JP2015121486A - Microcrystal structure analysis method and microcrystal structure analysis device - Google Patents

Microcrystal structure analysis method and microcrystal structure analysis device Download PDF

Info

Publication number
JP2015121486A
JP2015121486A JP2013265882A JP2013265882A JP2015121486A JP 2015121486 A JP2015121486 A JP 2015121486A JP 2013265882 A JP2013265882 A JP 2013265882A JP 2013265882 A JP2013265882 A JP 2013265882A JP 2015121486 A JP2015121486 A JP 2015121486A
Authority
JP
Japan
Prior art keywords
diffraction
diffraction image
sample
microcrystal
structure analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013265882A
Other languages
Japanese (ja)
Inventor
木村 恒久
Tsunehisa Kimura
恒久 木村
史子 木村
Fumiko Kimura
史子 木村
賢司 松本
Kenji Matsumoto
賢司 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University NUC
Original Assignee
Kyoto University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University NUC filed Critical Kyoto University NUC
Priority to JP2013265882A priority Critical patent/JP2015121486A/en
Publication of JP2015121486A publication Critical patent/JP2015121486A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a microcrystal structure analysis method and a microcrystal structure analysis device which can perform structural analysis of microcrystal with a simple configuration.SOLUTION: A microcrystal structure analysis method comprises: a first detection step ST1 for detecting a first diffraction image of an X-ray irradiated to a specimen container in a state where the specimen container in which the microcrystal is suspended is rotated at constant speed with respect to a magnetic field generation part; a second detection step ST2 for detecting a second diffraction image of the X-ray irradiated to the specimen container in a state where the rotation of the specimen container is stopped with respect to the magnetic field generation part; first determination steps ST3, ST4, ST5 for determining the crystal system of the microcrystal, grating constant, Miller index and space group on the basis of the detected first diffraction image and second diffraction image; a second determination step ST6 for determining the diffraction intensity of the diffraction spot in each determined Miller index on the basis of the first diffraction image and the second diffraction image; and an analysis step ST7 for performing analysis processing on the basis of the determined diffraction intensity.

Description

本発明は、微結晶構造解析方法及び微結晶構造解析装置に関する。   The present invention relates to a microcrystal structure analysis method and a microcrystal structure analysis apparatus.

物体の結晶構造を解析するものとして、X線構造解析が知られている。このX線構造解析は、通常100μm程度以上の単結晶又は微結晶粉末(以下、単に「微結晶」という)を用いて行う。近年、試料中に懸濁した微結晶を三次元配向させ、擬単結晶化した状態で解析を行う方法が開発されている。
この方法に関しては、従来、微結晶を懸濁させた試料に時間的に変動する磁場を印加して微結晶を三次元配向(擬単結晶化)させた後、懸濁媒体を紫外線硬化させて微結晶の配向を固定した状態で解析を行う方法が知られている(例えば、特許文献1参照)。
X-ray structural analysis is known as a technique for analyzing the crystal structure of an object. This X-ray structural analysis is usually performed using a single crystal or microcrystal powder (hereinafter simply referred to as “microcrystal”) of about 100 μm or more. In recent years, a method has been developed in which microcrystals suspended in a sample are three-dimensionally oriented and analyzed in a quasi-single crystal state.
With respect to this method, conventionally, after applying a time-varying magnetic field to a sample in which microcrystals are suspended to make the microcrystals three-dimensionally oriented (pseudo-single crystallization), the suspension medium is UV-cured. A method is known in which analysis is performed with the orientation of microcrystals fixed (see, for example, Patent Document 1).

特許文献1に記載された微結晶構造解析方法では、微結晶を懸濁させた試料を磁場発生部に対して回転させることにより微結晶を三次元配向(擬単結晶化)させ、その回転を継続しながら試料に対してX線を照射し、その試料を透過して回折したX線をX線検出部が検出することで、擬単結晶のX線回折像を得るものである。その際、X線遮蔽装置により、試料の回転方向の一部である特定部位が所望の方向を向いていないときはX線の照射を遮蔽し、前記特定部位が所望の方向を向いたときにのみX線の照射を許容している。これにより、前記特定部位が所望の方向を向いた状態の試料を透過して回折したX線を、X線検出部で断続的に検出することができるため、擬単結晶化した試料を回転させながら良好なX線回折像を得ることができる。   In the microcrystal structure analysis method described in Patent Document 1, the microcrystal is three-dimensionally oriented (pseudo-single crystallization) by rotating the sample in which the microcrystal is suspended with respect to the magnetic field generator, and the rotation is performed. The X-ray diffraction image of the quasi-single crystal is obtained by continuously irradiating the sample with X-rays and detecting the X-ray transmitted through the sample and diffracted by the X-ray detector. At that time, the X-ray shielding device shields X-ray irradiation when a specific part that is a part of the rotation direction of the sample does not face the desired direction, and when the specific part faces the desired direction. Only X-ray irradiation is allowed. As a result, the X-ray diffracted through the sample with the specific portion facing the desired direction can be intermittently detected by the X-ray detector, so that the pseudo-single crystal sample is rotated. However, a good X-ray diffraction image can be obtained.

国際公開第2013/118761号パンフレットInternational Publication No. 2013/118761 Pamphlet

しかしながら、上記微結晶構造解析方法にあっては、試料を回転させながらX線の照射を遮蔽及び許容するためのX線遮蔽装置が必要になるため、解析装置全体が大型化し、製造コストが増大するという問題があった。
本発明は、前記問題点に鑑みてなされたものであり、簡素な構成で微結晶の構造解析を行うことができる微結晶構造解析方法及び微結晶構造解析装置を提供することを目的としている。
However, the microcrystal structure analysis method requires an X-ray shielding device for shielding and allowing X-ray irradiation while rotating the sample, so that the entire analysis device becomes large and the manufacturing cost increases. There was a problem to do.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a microcrystal structure analysis method and a microcrystal structure analysis apparatus that can perform microcrystal structure analysis with a simple configuration.

本発明の微結晶構造解析方法は、微結晶を懸濁させた試料を磁場又は電場に対して一定速度で回転させた状態で、前記試料に照射された放射線の第1回折像を検出する第1検出工程と、前記試料を磁場又は電場に対して回転停止させた状態で、前記試料に照射された放射線の第2回折像を検出する第2検出工程と、検出された前記第1回折像及び第2回折像のうちの少なくとも一方の回折像に基づいて、前記微結晶の結晶系、格子定数、面指数及び空間群をそれぞれ決定する第1決定工程と、前記少なくとも一方の回折像に基づいて、決定された前記各面指数における回折スポットの回折強度を決定する第2決定工程と、決定された前記回折強度に基づいて解析処理を行う解析工程と、を含む。   According to the microcrystal structure analysis method of the present invention, the first diffraction image of the radiation irradiated to the sample is detected in a state where the sample in which the microcrystal is suspended is rotated at a constant speed with respect to a magnetic field or an electric field. A first detection step; a second detection step of detecting a second diffraction image of the radiation applied to the sample in a state where the rotation of the sample is stopped with respect to a magnetic field or an electric field; and the detected first diffraction image And a first determination step for determining a crystal system, a lattice constant, a plane index, and a space group of the microcrystal based on at least one diffraction image of the second diffraction image, and based on the at least one diffraction image. A second determination step of determining the diffraction intensity of the diffraction spot at each determined plane index, and an analysis step of performing an analysis process based on the determined diffraction intensity.

本発明の微結晶構造解析方法によれば、微結晶を懸濁させた試料を磁場又は電場に対して回転させた状態で照射した放射線の第1回折像、及び試料を磁場又は電場に対して回転停止させた状態で照射した放射線の第2回折像のうちの少なくとも一方の回折像に基づいて、微結晶の構造解析を行うため、従来のように試料を回転させながら、放射線(X線)の照射を遮蔽及び許容するための遮蔽装置が不要になり、簡素な構成で微結晶の構造解析を行うことができる。   According to the microcrystal structure analysis method of the present invention, the first diffraction image of the radiation irradiated with the sample in which the microcrystal is suspended is rotated with respect to the magnetic field or the electric field, and the sample is applied to the magnetic field or the electric field. In order to analyze the structure of the microcrystal based on at least one of the second diffraction images of the radiation irradiated with the rotation stopped, radiation (X-rays) while rotating the sample as in the past. Therefore, a shielding device for shielding and permitting the irradiation is not required, and the structure analysis of the microcrystal can be performed with a simple configuration.

前記第1決定工程では、前記少なくとも一方の回折像から得られる回折スポット及び層線に基づいて前記結晶系を決定することが好ましい。この場合、微結晶の結晶系を容易に決定することができる。   In the first determining step, the crystal system is preferably determined based on a diffraction spot and a layer line obtained from the at least one diffraction image. In this case, the crystal system of the microcrystal can be easily determined.

前記第1決定工程では、前記少なくとも一方の回折像から得られる層線に基づいて前記格子定数を決定することが好ましい。この場合、微結晶の格子定数を容易に決定することができる。   In the first determination step, it is preferable to determine the lattice constant based on a layer line obtained from the at least one diffraction image. In this case, the lattice constant of the microcrystal can be easily determined.

他の観点からみた本発明の微結晶構造解析装置は、磁場又は電場の発生部と、微結晶を懸濁させた試料に磁場又は電場を印加させた状態で、前記試料を一定速度で回転可能な試料駆動部と、前記試料駆動部により前記試料を回転させた状態及び回転停止させた状態で、それぞれ放射線を前記試料に対して照射可能な放射線源と、前記回転させた状態の試料に照射された放射線の第1回折像、及び前記回転停止させた状態の試料に照射された放射線の第2回折像のうちの少なくとも一方の回折像を検出可能な回折像検出部と、を備えていることを特徴とする。   From another viewpoint, the microcrystal structure analysis apparatus of the present invention is capable of rotating the sample at a constant speed in a state where a magnetic field or an electric field is applied to a magnetic field or electric field generating unit and a sample in which the microcrystal is suspended. A sample source, a radiation source capable of irradiating the sample with radiation while the sample is rotated and stopped by the sample driver, and the sample in the rotated state. A diffraction image detection unit capable of detecting at least one diffraction image of the first diffraction image of the emitted radiation and the second diffraction image of the radiation irradiated to the sample in the rotation stopped state. It is characterized by that.

本発明の微結晶構造解析装置によれば、微結晶を懸濁させた試料を磁場又は電場の発生部に対して回転させた状態で照射した放射線の第1回折像、及び試料を発生部に対して回転停止させた状態で照射した放射線の第2回折像のうちの少なくとも一方の回折像に基づいて、微結晶の構造解析を行うことで、従来のように試料を回転させながら放射線(X線)の照射を遮蔽及び許容するための遮蔽装置が不要になり、簡素な構成で微結晶の構造解析を行うことができる。   According to the microcrystal structure analysis apparatus of the present invention, the first diffraction image of the radiation irradiated with the sample in which the microcrystals are suspended being rotated with respect to the magnetic field or electric field generation unit, and the sample to the generation unit On the other hand, the structure of the microcrystal is analyzed based on at least one of the second diffraction images of the radiation irradiated with the rotation stopped, so that the radiation (X The shielding device for shielding and allowing the irradiation of the (line) is not required, and the structural analysis of the microcrystal can be performed with a simple configuration.

本発明によれば、簡素な構成で微結晶の構造解析を行うことができる。   According to the present invention, the structural analysis of microcrystals can be performed with a simple configuration.

本発明の一実施形態に係る微結晶構造解析装置を示す概略構成図である。It is a schematic block diagram which shows the microcrystal structure analysis apparatus which concerns on one Embodiment of this invention. 微結晶の磁化軸を示す斜視図である。It is a perspective view which shows the magnetization axis of a microcrystal. 回転磁場及び静磁場における微結晶の配向を説明する斜視図である。It is a perspective view explaining the orientation of the microcrystal in a rotating magnetic field and a static magnetic field. 微結晶構造解析装置を示す図1のA矢視図である。It is A arrow line view of FIG. 1 which shows a microcrystal structure analysis apparatus. 回転磁場におけるX線の第1回折像を示す図面代用写真である。It is a drawing substitute photograph which shows the 1st diffraction image of the X-ray in a rotating magnetic field. 静磁場におけるX線の第2回折像を示す図面代用写真である。It is a drawing substitute photograph which shows the 2nd diffraction image of the X-ray in a static magnetic field. 微結晶構造解析装置を用いた微結晶構造解析方法を示すフローチャートである。It is a flowchart which shows the microcrystal structure analysis method using a microcrystal structure analyzer. 結晶系と格子定数との関係を示す表である。It is a table | surface which shows the relationship between a crystal system and a lattice constant. 結晶系と空間群との関係を示す表である。It is a table | surface which shows the relationship between a crystal system and a space group. 第1回折像及び第2回折像の各面指数における回折強度の計算値及び実測値を示す表である。It is a table | surface which shows the calculated value and measured value of the diffraction intensity in each surface index | exponent of a 1st diffraction image and a 2nd diffraction image. 図10に示す各回折強度の計算値と実測値とを比較したグラフである。It is the graph which compared the calculated value and measured value of each diffraction intensity shown in FIG.

以下、本発明の実施の形態を図面に基づいて説明する。
図1は、本発明の一実施形態に係る微結晶構造解析装置を示す概略構成図である。図1において、微結晶構造解析装置1は、所定位置に配置された試料容器2に磁場を印加する微結晶配向装置10を備えている。試料容器2は、例えば有底円筒状に形成されており、医薬分野、バイオテクノロジー分野、高分子材料分野等における有機化合物、無機化合物、生体物質等の微結晶3(図2参照)を懸濁させた試料を収容している。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing a microcrystalline structure analysis apparatus according to an embodiment of the present invention. In FIG. 1, a microcrystal structure analysis apparatus 1 includes a microcrystal orientation apparatus 10 that applies a magnetic field to a sample container 2 placed at a predetermined position. The sample container 2 is formed in, for example, a bottomed cylindrical shape, and suspends microcrystals 3 (see FIG. 2) of organic compounds, inorganic compounds, biological materials, etc. in the fields of medicine, biotechnology, polymer materials, and the like. The sample is stored.

前記微結晶3の多くは、互いに直交する三方向の磁化率がそれぞれ異なる二軸性結晶(斜方晶、単斜晶、三斜晶)からなり、磁気的に二軸異方性を有する。図2は、例として斜方晶系の微結晶3の磁化軸を示す斜視図である。斜方晶である微結晶3は、図2に示すように、三軸方向それぞれに3つの異なる磁化率χ1、χ2及びχ3を有し、χ1>χ2>χ3の大小関係にある。以下、磁化率χ1の軸を磁化容易軸、磁化率χ2の軸を中間軸、磁化率χ3の軸を磁化困難軸という。   Most of the microcrystals 3 are biaxial crystals (orthorhombic, monoclinic, and triclinic) having different magnetic susceptibility in three directions orthogonal to each other, and have magnetic biaxial anisotropy. FIG. 2 is a perspective view showing the magnetization axis of an orthorhombic crystallite 3 as an example. As shown in FIG. 2, the microcrystal 3 which is an orthorhombic crystal has three different magnetic susceptibilities χ1, χ2, and χ3 in each of the three axial directions, and has a magnitude relationship of χ1> χ2> χ3. Hereinafter, the axis of the magnetic susceptibility χ1 is called an easy axis, the axis of the magnetic susceptibility χ2 is called an intermediate axis, and the axis of the magnetic susceptibility χ3 is called a hard axis.

図1において、前記微結晶配向装置10は、基台11と、この基台11上において設けられた回転台12と、この回転台12上に設けられた磁場の発生部である磁場発生部13と、この磁場発生部13に対して試料容器2を一定速度で回転可能な試料駆動部14とを備えている。   In FIG. 1, the microcrystal orientation apparatus 10 includes a base 11, a rotary base 12 provided on the base 11, and a magnetic field generator 13 that is a magnetic field generator provided on the rotary base 12. And a sample driving unit 14 capable of rotating the sample container 2 at a constant speed with respect to the magnetic field generating unit 13.

回転台12は、基台11上において、図示しないアクチュエータによりチャック15(後述)に保持された試料容器2を中心として回転するように取り付けられている。これにより、後述するX線源(図4参照)から試料容器2に向けて照射されたX線(放射線)Rに対して試料容器2の向きを任意に調節することができる。   The turntable 12 is mounted on the base 11 so as to rotate around a sample container 2 held by a chuck 15 (described later) by an actuator (not shown). Thereby, the direction of the sample container 2 can be arbitrarily adjusted with respect to the X-ray (radiation) R irradiated toward the sample container 2 from an X-ray source (see FIG. 4) described later.

回転台12上には、側面視でコ字形状に形成された支持部材16が固定されている。支持部材16は、上下一対の水平部16a,16bと、これら両水平部16a,16bの端部同士を連結する垂直部16cとを有している。   A support member 16 formed in a U shape in a side view is fixed on the turntable 12. The support member 16 has a pair of upper and lower horizontal portions 16a and 16b and a vertical portion 16c that connects the ends of the horizontal portions 16a and 16b.

磁場発生部13は、支持部材16の水平部16aの下面に固定された永久磁石13aと、支持部材16の水平部16bの上面に固定された永久磁石13bとからなる。各永久磁石13a,13bは、互いにN極とS極とが向かい合うように配置されている。これらの永久磁石13a,13bの間には、試料容器2を配置するための空間Sが形成されている。   The magnetic field generator 13 includes a permanent magnet 13 a fixed to the lower surface of the horizontal portion 16 a of the support member 16 and a permanent magnet 13 b fixed to the upper surface of the horizontal portion 16 b of the support member 16. Each permanent magnet 13a, 13b is arranged so that the N pole and the S pole face each other. A space S for arranging the sample container 2 is formed between the permanent magnets 13a and 13b.

試料駆動部14は、例えばステッピングモータからなり、その出力軸14aは、支持部材16の垂直部16cを水平方向に貫通して、当該垂直部16cに回転可能に支持されている。出力軸14aの先端には、試料容器2を保持するチャック15が取り付けられている。これにより、試料駆動部14を駆動させると、出力軸14a及びチャック15を介して試料容器2が、固定された磁場発生部13に対して一方向(矢印D方向)に回転するようになっている。その際、試料容器2の回転速度は、回転磁場を形成するのに必要な速度に設定されている。   The sample driving unit 14 includes, for example, a stepping motor, and the output shaft 14a penetrates the vertical portion 16c of the support member 16 in the horizontal direction and is rotatably supported by the vertical portion 16c. A chuck 15 that holds the sample container 2 is attached to the tip of the output shaft 14a. Accordingly, when the sample driving unit 14 is driven, the sample container 2 rotates in one direction (arrow D direction) with respect to the fixed magnetic field generating unit 13 via the output shaft 14a and the chuck 15. Yes. At that time, the rotation speed of the sample container 2 is set to a speed necessary for forming a rotating magnetic field.

これにより、試料容器2内において懸濁された微結晶3は、試料容器2を回転させた状態で回転磁場が形成されることにより、図3(a)に示すようにランダムに配置された状態から、図3(b)に示すように微結晶3の磁化困難軸がxy平面(回転面)に対して垂直なz軸方向に配向される。
また、微結晶3は、試料容器2の回転を停止させた状態で静磁場が形成されるため、図3(a)に示すようにランダムに配置された状態から、図3(c)に示すように微結晶3の磁化容易軸がx軸方向と平行に配向される。
Thereby, the microcrystals 3 suspended in the sample container 2 are randomly arranged as shown in FIG. 3A by forming a rotating magnetic field with the sample container 2 rotated. Thus, as shown in FIG. 3B, the magnetization difficult axis of the microcrystal 3 is oriented in the z-axis direction perpendicular to the xy plane (rotation plane).
Further, since the static magnetic field is formed in the state where the rotation of the sample container 2 is stopped, the microcrystal 3 is shown in FIG. 3C from a state where it is randomly arranged as shown in FIG. Thus, the easy axis of magnetization of the microcrystal 3 is oriented parallel to the x-axis direction.

図4は、微結晶構造解析装置1を示す図1のA矢視図である。図4において、微結晶構造解析装置1は、微結晶3のX線構造解析を行うために試料容器2に対してX線Rを照射するX線源(放射線源)21と、試料容器2に照射されたX線Rの回折像を検出する回折像検出部23とを備えている。   FIG. 4 is a view taken along the arrow A in FIG. In FIG. 4, the microcrystal structure analysis apparatus 1 includes an X-ray source (radiation source) 21 that irradiates a sample container 2 with X-rays R in order to perform an X-ray structure analysis of the microcrystal 3, and a sample container 2. And a diffraction image detector 23 that detects a diffraction image of the irradiated X-ray R.

X線源21は、試料駆動部14に保持されている試料容器2に対して、当該試料容器2を回転させた状態及び回転停止させた状態でそれぞれX線を照射するものである。X線源21から放射されたX線Rは、コリメータ22を通過し、試料駆動部14に保持された状態で回転している試料容器2に対して、その回転軸線Cと直交する方向、又は90°以外の方向から照射される。   The X-ray source 21 irradiates the sample container 2 held by the sample driving unit 14 with X-rays while the sample container 2 is rotated and stopped. The X-ray R radiated from the X-ray source 21 passes through the collimator 22 and is in a direction orthogonal to the rotation axis C with respect to the rotating sample container 2 held by the sample driving unit 14, or Irradiated from directions other than 90 °.

回折像検出部23は、例えばイメージングプレートからなり、試料駆動部14により回転させた状態の試料容器2に照射されたX線Rの第1回折像24(図5参照)と、試料駆動部14による回転を停止させた状態の試料容器2に照射されたX線Rの第2回折像25(図6参照)とを検出する。これにより、回折像検出部23は、回転磁場における第1回折像24と、静磁場における第2回折像25とを得ることができる。なお、図5の第1回折像24は、図中の上下方向を磁場方向B、図中の左右方向を回転軸線C方向とした場合の回折像であり、図6の第2回折像25は、図中の上下方向を磁場方向Bとした場合の回折像である。   The diffraction image detector 23 is made of, for example, an imaging plate, and the first diffraction image 24 (see FIG. 5) of the X-ray R irradiated on the sample container 2 rotated by the sample driver 14 and the sample driver 14. The second diffraction image 25 (see FIG. 6) of the X-ray R irradiated to the sample container 2 in a state where the rotation due to is stopped is detected. Thereby, the diffraction image detection unit 23 can obtain the first diffraction image 24 in the rotating magnetic field and the second diffraction image 25 in the static magnetic field. The first diffraction image 24 in FIG. 5 is a diffraction image when the vertical direction in the drawing is the magnetic field direction B and the horizontal direction in the drawing is the rotation axis C direction, and the second diffraction image 25 in FIG. The diffraction image when the vertical direction in the figure is the magnetic field direction B.

図7は、上記微結晶構造解析装置1を用いた微結晶構造解析方法を示すフローチャートである。以下、図7を参照しつつ、本実施形態の微結晶構造解析方法について説明する。
図7に示すように、まず、回折像検出部23により回転磁場における第1回折像24を検出する(第1検出工程、ステップST1)。具体的には、図1に示すように、微結晶3を懸濁させた試料容器2をチャック15に保持した状態で、試料駆動部14を駆動させ、試料容器2を磁場発生部13に対して回転軸線C回りに一定速度で回転させる。これにより回転磁場が形成されることで、試料容器2内の微結晶3は、図3(b)に示すように磁化困難軸がxy平面(回転面)に対して垂直なz軸方向に配向される。この状態で、図4に示すように、X線源21からX線Rを照射し、回折像検出部23により試料容器2に照射されたX線Rの第1回折像24を検出する。
FIG. 7 is a flowchart showing a microcrystal structure analysis method using the microcrystal structure analyzer 1. Hereinafter, the microcrystal structure analysis method of the present embodiment will be described with reference to FIG.
As shown in FIG. 7, first, the diffraction image detector 23 detects the first diffraction image 24 in the rotating magnetic field (first detection step, step ST1). Specifically, as shown in FIG. 1, in a state where the sample container 2 in which the microcrystal 3 is suspended is held by the chuck 15, the sample driving unit 14 is driven, and the sample container 2 is moved to the magnetic field generating unit 13. And rotate around the rotation axis C at a constant speed. As a result of the formation of a rotating magnetic field, the microcrystal 3 in the sample container 2 is oriented in the z-axis direction in which the hard axis of magnetization is perpendicular to the xy plane (rotation plane) as shown in FIG. Is done. In this state, as shown in FIG. 4, X-ray R is irradiated from the X-ray source 21, and the first diffraction image 24 of the X-ray R irradiated to the sample container 2 is detected by the diffraction image detector 23.

次に、回折像検出部23により静磁場における第2回折像25を検出する(第2検出工程、ステップST2)。具体的には、まず、試料駆動部14による試料容器2の回転を停止させて静磁場を形成する。これにより、試料容器2内の微結晶3は、図3(c)に示すように微結晶3の磁化容易軸がx軸方向と平行に配向される。この状態で、図4に示すようにX線源21からX線Rを照射し、回折像検出部23により試料容器2に照射されたX線Rの第2回折像25を検出する。なお、ステップST2はステップST1よりも前に行っても良い。   Next, the diffraction image detection unit 23 detects the second diffraction image 25 in the static magnetic field (second detection step, step ST2). Specifically, first, the rotation of the sample container 2 by the sample driving unit 14 is stopped to form a static magnetic field. Thereby, in the microcrystal 3 in the sample container 2, as shown in FIG. 3C, the easy axis of magnetization of the microcrystal 3 is oriented parallel to the x-axis direction. In this state, as shown in FIG. 4, X-ray R is emitted from the X-ray source 21, and the diffraction image detector 23 detects the second diffraction image 25 of the X-ray R irradiated on the sample container 2. Step ST2 may be performed before step ST1.

図7において、次に、回折像検出部23により得られた第1回折像24及び第2回折像25に基づいて、微結晶3の結晶系を決定する(ステップST3)。結晶系は、図8に示すように、立方晶、正方晶、斜方晶(直方晶)、単斜晶、三斜晶、六方晶及び三方晶からなる。ステップST3では、第1回折像24及び第2回折像25から得られる層線H(図5及び図6参照)に基づいて、これら7つのうちから選択して微結晶3の結晶系を決定する。ここで、層線Hとは、回折像に現れた複数の回折スポットP(図5及び図6中の黒い点)を繋いだ線である。   In FIG. 7, next, the crystal system of the microcrystal 3 is determined based on the first diffraction image 24 and the second diffraction image 25 obtained by the diffraction image detector 23 (step ST3). As shown in FIG. 8, the crystal system consists of cubic, tetragonal, orthorhombic (tetragonal), monoclinic, triclinic, hexagonal and trigonal. In step ST3, based on the layer line H (see FIGS. 5 and 6) obtained from the first diffraction image 24 and the second diffraction image 25, the crystal system of the microcrystal 3 is determined by selecting from these seven. . Here, the layer line H is a line connecting a plurality of diffraction spots P (black dots in FIGS. 5 and 6) appearing in the diffraction image.

具体的には、第1回折像24及び第2回折像25の両方に回折スポットPが現れた場合は、以下のようにして決定される。すなわち、第1回折像24及び第2回折像25のうちどちらからも層線Hを得た場合、結晶系は斜方晶として決定される。また、第1回折像24及び第2回折像25のうちいずれか一方のみから層線Hを得た場合、結晶系はχ1軸(磁化容易軸)又はχ3軸(磁化困難軸)がb軸(図2における上下方向の軸)となる単斜晶として決定される。さらに、第1回折像24及び第2回折像25のうちどちらからも層線Hが得られない場合、結晶系はχ2軸(中間軸)がb軸となる単斜晶又は三斜晶として決定される。
一方、第1回折像24及び第2回折像25のうちのいずれか一方に回折スポットPが現れた場合は、結晶系は正方晶、六方晶又は三方晶のいずれかであると決定される。さらに、第1回折像24及び第2回折像25の両方において、回折スポットPが現れずにリング形状が現れた場合は、結晶系は立方晶として決定される。
Specifically, when the diffraction spot P appears in both the first diffraction image 24 and the second diffraction image 25, it is determined as follows. That is, when the layer line H is obtained from either the first diffraction image 24 or the second diffraction image 25, the crystal system is determined to be orthorhombic. When the layer line H is obtained from only one of the first diffraction image 24 and the second diffraction image 25, the crystal system has a χ1 axis (easy magnetization axis) or a χ3 axis (magnetization difficulty axis) b axis ( It is determined as a monoclinic crystal which becomes the vertical axis in FIG. Further, when the layer line H is not obtained from either the first diffraction image 24 or the second diffraction image 25, the crystal system is determined as a monoclinic crystal or a triclinic crystal whose χ2 axis (intermediate axis) is the b axis. Is done.
On the other hand, when the diffraction spot P appears in one of the first diffraction image 24 and the second diffraction image 25, the crystal system is determined to be any one of tetragonal crystal, hexagonal crystal, and trigonal crystal. Further, in both the first diffraction image 24 and the second diffraction image 25, when the ring shape appears without the diffraction spot P appearing, the crystal system is determined as a cubic crystal.

図7において、ステップST3において微結晶3の結晶系を決定すると、次に微結晶3の格子定数及び面指数を決定する(ステップST4)。格子定数は、図2に示すように、微結晶3の各辺の長さa,b,c、及び隣り合う辺同士がなす角度α,β,γからなり、図8に示すように、これらの長さa,b,cの関係式、及び角度α,β,γの関係式は、結晶系の種類毎に予め定められている。   In FIG. 7, when the crystal system of the microcrystal 3 is determined in step ST3, the lattice constant and the plane index of the microcrystal 3 are then determined (step ST4). As shown in FIG. 2, the lattice constant is made up of the lengths a, b, c of the sides of the microcrystal 3 and the angles α, β, γ formed by adjacent sides, and as shown in FIG. The relational expressions of lengths a, b, and c and the relational expressions of angles α, β, and γ are predetermined for each type of crystal system.

そこで、まず、ステップST3で決定された結晶系に対応する長さa,b,cの関係式、及び角度α,β,γの関係式を図8の表から選択する。例えば、本実施形態の斜方晶の場合は、長さa,b,cの関係式はa≠b≠c、角度α,β,γの関係式はα=β=γ=90°となる。これにより、格子定数のうちの角度α,β,γはいずれも90°として決定される。   Therefore, first, a relational expression of lengths a, b, c and a relational expression of angles α, β, γ corresponding to the crystal system determined in step ST3 is selected from the table of FIG. For example, in the orthorhombic crystal of this embodiment, the relational expression of lengths a, b, c is a ≠ b ≠ c, and the relational expression of angles α, β, γ is α = β = γ = 90 °. . As a result, the angles α, β, and γ of the lattice constant are determined as 90 °.

次に、第1回折像24及び第2回折像25から得られた層線Hに基づいて、格子定数及び面指数を決定する。面指数は、回折スポットPがどの結晶面から反射されたものかを表すもので、(hkl)で表される(図10参照)。ここでは、図5及び図6をそれぞれ第1回折像24及び第2回折像25として説明する。まず、図2に示す格子定数の長さbはχ3軸方向の長さであるため、図5の第1回折像24において横方向(χ3軸方向)に隣り合う層線H同士の間隔を、格子定数の長さbとして決定する。また、図2に示す格子定数の長さaはχ1軸方向の長さであるため、図6の第2回折像25においてχ1軸方向に隣り合う層線H同士の間隔を、格子定数の長さaとして決定する。そして、求めた長さa,bに基づいて、図5及び図6の二つの回折像24,25の回折スポットの指数付けを行う。最も上手く指数付けを行えるように、格子定数の長さcを調節することで、a,b,cの全ての長さを求めることができる。   Next, the lattice constant and the plane index are determined based on the layer line H obtained from the first diffraction image 24 and the second diffraction image 25. The plane index represents from which crystal plane the diffraction spot P is reflected, and is represented by (hkl) (see FIG. 10). Here, FIGS. 5 and 6 will be described as a first diffraction image 24 and a second diffraction image 25, respectively. First, since the length b of the lattice constant shown in FIG. 2 is the length in the χ3 axis direction, the interval between the layer lines H adjacent in the lateral direction (χ3 axis direction) in the first diffraction image 24 of FIG. It is determined as the length b of the lattice constant. Further, since the length a of the lattice constant shown in FIG. 2 is the length in the χ1 axis direction, the interval between the layer lines H adjacent in the χ1 axis direction in the second diffraction image 25 of FIG. Determine as a. Then, based on the obtained lengths a and b, indexing of the diffraction spots of the two diffraction images 24 and 25 in FIGS. 5 and 6 is performed. By adjusting the length c of the lattice constant so that indexing can be performed best, all the lengths of a, b, and c can be obtained.

図7において、ステップST4において微結晶3の面指数及び格子定数を決定すると、次に微結晶3の空間群を決定する(ステップST5)。微結晶3の空間群は、図9に示すように、結晶系毎に予め定められたものであり、各結晶系において複数の空間群に分かれている。例えば本実施形態の斜方晶では、空間群は16−24、25−46及び47−74の3種類に分かれている。回折スポットPでは、空間群によって消滅則が決まっている。消滅則とは、結晶系によれば回折像に出現するはずの回折スポットが周期的に消滅する規則性である。したがって、空間群は、回折スポットの消滅則から絞り込むことによって決定することができる。
なお、本実施形態では、上記ステップST3〜ステップST5が、微結晶3の結晶系、格子定数、面指数及び空間群をそれぞれ決定する第1決定工程とされている。また、これらのステップST3〜ステップST5の順序は前後してもよい。
In FIG. 7, when the plane index and lattice constant of the microcrystal 3 are determined in step ST4, the space group of the microcrystal 3 is then determined (step ST5). As shown in FIG. 9, the space group of the microcrystal 3 is predetermined for each crystal system, and is divided into a plurality of space groups in each crystal system. For example, in the orthorhombic crystal of this embodiment, the space group is divided into three types: 16-24, 25-46, and 47-74. In the diffraction spot P, the extinction rule is determined by the space group. The extinction rule is a regularity in which a diffraction spot that should appear in a diffraction image according to a crystal system periodically disappears. Therefore, the space group can be determined by narrowing down from the extinction rule of the diffraction spot.
In the present embodiment, the above-described steps ST3 to ST5 are the first determination steps for determining the crystal system, lattice constant, plane index, and space group of the microcrystal 3 respectively. The order of these steps ST3 to ST5 may be changed.

図7において、ステップST5において微結晶3の面指数及び空間群を決定すると、次に各面指数における回折スポットPの回折強度を決定する(第2決定工程、ステップST6)。具体的には、第1回折像24及び第2回折像25における各回折スポットPを含む周辺部分を画像データとしてコンピュータ(図示省略)に読み込ませた後、当該コンピュータに記憶されている周知の強度計算プログラムが前記画像データを処理することによって回折強度が決定される。   In FIG. 7, when the plane index and space group of the microcrystal 3 are determined in step ST5, the diffraction intensity of the diffraction spot P at each plane index is then determined (second determination step, step ST6). Specifically, after a peripheral portion including each diffraction spot P in the first diffraction image 24 and the second diffraction image 25 is read as image data by a computer (not shown), the well-known intensity stored in the computer is stored. The diffraction intensity is determined by the calculation program processing the image data.

次に、決定された各回折スポットPの回折強度に基づいて解析処理が行われる(解析工程、ステップST7)。具体的には、コンピュータプログラムによって各回折スポットPの回折強度のデータと上記格子定数とを用いてフーリエ合成や最小二乗法等を用いた演算処理が行われる。   Next, an analysis process is performed based on the determined diffraction intensity of each diffraction spot P (analysis process, step ST7). Specifically, an arithmetic process using Fourier synthesis, a least square method, or the like is performed using the diffraction intensity data of each diffraction spot P and the lattice constant by a computer program.

図10は、第1回折像24及び第2回折像25の各面指数における回折強度の計算値及び実測値を示す表である。図11は、図10に示す各回折強度の計算値と実測値とを比較した棒グラフである。図11において、白塗り棒は回折強度の計算値を示し、黒塗り棒は回折強度の実測値を示している。回折強度の計算値は、コンピュータ上の構造解析によって得られた値である。一方、回折強度の実測値は、本実施形態の微結晶構造解析方法を用いて実験的に得られた値である。図11に示すように、各回折強度の実測値は、対応する回折強度の計算値と概ね近い値を示しており、本実施形態の解析方法を用いることによって良好な解析結果が得られるのが分かる。   FIG. 10 is a table showing calculated values and actually measured values of diffraction intensities at the respective plane indices of the first diffraction image 24 and the second diffraction image 25. FIG. 11 is a bar graph comparing the calculated values of the respective diffraction intensities shown in FIG. 10 with the measured values. In FIG. 11, white bars indicate calculated values of diffraction intensity, and black bars indicate actual measured values of diffraction intensity. The calculated value of diffraction intensity is a value obtained by structural analysis on a computer. On the other hand, the measured value of the diffraction intensity is a value obtained experimentally using the microcrystal structure analysis method of the present embodiment. As shown in FIG. 11, the actually measured values of the respective diffraction intensities show values that are substantially close to the corresponding calculated values of the diffraction intensities, and good analysis results can be obtained by using the analysis method of the present embodiment. I understand.

以上、本実施形態の微結晶構造解析装置1及び微結晶構造解析方法によれば、微結晶3を懸濁させた試料容器2を磁場発生部13に対して回転させた状態で照射したX線Rの第1回折像24と、試料容器2を磁場発生部13に対して回転停止させた状態で照射したX線Rの第2回折像25とに基づいて、微結晶3の構造解析を行うため、従来のように試料を回転させながらX線の照射を遮蔽及び許容するためのX線遮蔽装置が不要になり、簡素な構成で微結晶の構造解析を行うことができる。
また、従来の解析方法では、試料を回転させながら特定部位が所望の方向を向いたときに回折像を検出するため、試料を所定角度ずつ回転させたときの回折像を少なくとも3つ以上検出する必要があるのに対して、本実施形態では、二つの回折像24,25だけで微結晶3の構造解析を行うことができるため、測定時間及び解析時間を短縮することができる。
As described above, according to the microcrystal structure analysis apparatus 1 and the microcrystal structure analysis method of the present embodiment, the X-rays irradiated while the sample container 2 in which the microcrystals 3 are suspended are rotated with respect to the magnetic field generator 13. Based on the first diffraction image 24 of R and the second diffraction image 25 of X-ray R irradiated with the sample container 2 being rotated with respect to the magnetic field generator 13, the structure analysis of the microcrystal 3 is performed. This eliminates the need for an X-ray shielding device for shielding and allowing X-ray irradiation while rotating the sample as in the prior art, and allows structural analysis of microcrystals with a simple configuration.
Further, in the conventional analysis method, since a diffraction image is detected when a specific part is directed in a desired direction while rotating the sample, at least three diffraction images when the sample is rotated by a predetermined angle are detected. In contrast, in the present embodiment, since the structural analysis of the microcrystal 3 can be performed with only the two diffraction images 24 and 25, the measurement time and the analysis time can be shortened.

また、微結晶構造解析方法の第1決定工程では、第1回折像24及び第2回折像25から得られる回折スポットP及び層線Hに基づいて微結晶3の結晶系を決定するため、微結晶3の結晶系を容易に決定することができる。
また、微結晶構造解析方法の第1決定工程では、第1回折像24及び第2回折像25から得られる回折スポットP及び層線Hに基づいて微結晶3の格子定数を決定するため、微結晶3の格子定数を容易に決定することができる。
また、微結晶構造解析方法の第1決定工程では、第1回折像24及び第2回折像25から得られる消滅則に基づいて微結晶3の空間群を決定するため、微結晶3の空間群を容易に決定することができる。
In the first determination step of the microcrystal structure analysis method, the crystal system of the microcrystal 3 is determined based on the diffraction spot P and the layer line H obtained from the first diffraction image 24 and the second diffraction image 25. The crystal system of crystal 3 can be easily determined.
In the first determination step of the microcrystal structure analysis method, the lattice constant of the microcrystal 3 is determined based on the diffraction spot P and the layer line H obtained from the first diffraction image 24 and the second diffraction image 25. The lattice constant of the crystal 3 can be easily determined.
In the first determination step of the microcrystal structure analysis method, the space group of the microcrystal 3 is determined based on the extinction rule obtained from the first diffraction image 24 and the second diffraction image 25. Can be easily determined.

微結晶構造解析方法の第2決定工程では、第1回折像24及び第2回折像25における回折スポットPを含む周辺部分の画像データに基づいて、各面指数における回折スポットPの回折強度を決定するため、各面指数における回折スポットPの回折強度を容易に決定することができる。   In the second determination step of the microcrystal structure analysis method, the diffraction intensity of the diffraction spot P at each plane index is determined based on the image data of the peripheral portion including the diffraction spot P in the first diffraction image 24 and the second diffraction image 25. Therefore, the diffraction intensity of the diffraction spot P at each surface index can be easily determined.

なお、本発明は、上記の実施形態に限定されることなく適宜変更して実施可能である。例えば、上記実施形態における磁場発生部13は、永久磁石13a,13bを用いているが、電磁石など磁場を発生させるものを用いても良い。また、上記実施形態では、磁場発生部13を本発明の発生部として説明しているが、電場を発生する電場発生部を本発明の発生部としても良い。   The present invention is not limited to the above-described embodiment, and can be implemented with appropriate modifications. For example, although the magnetic field generation unit 13 in the above embodiment uses the permanent magnets 13a and 13b, an element such as an electromagnet that generates a magnetic field may be used. Moreover, in the said embodiment, although the magnetic field generation | occurrence | production part 13 was demonstrated as a generation | occurrence | production part of this invention, the electric field generation | occurrence | production part which generate | occur | produces an electric field is good also as a generation | occurrence | production part of this invention.

また、上記実施形態では、微結晶の結晶系、格子定数、面指数及び空間群をそれぞれ決定するために、第1回折像24及び第2回折像25の両方を用いているが、いずれか一方のみに基づいて決定しても良い。また、上記実施形態における微結晶構造解析装置1は、放射線源としてX線を照射するX線源を用いているが、中性子線を照射する中性子線源を用いても良い。   In the above embodiment, both the first diffraction image 24 and the second diffraction image 25 are used to determine the crystal system, lattice constant, plane index, and space group of the microcrystal, but either one of them is used. You may decide based on only. Moreover, although the microcrystal structure analysis apparatus 1 in the said embodiment uses the X-ray source which irradiates X-rays as a radiation source, you may use the neutron source which irradiates a neutron beam.

1 微結晶構造解析装置
2 試料容器
3 微結晶
13 磁場発生部(発生部)
14 試料駆動部
21 X線源(放射線源)
23 回折像検出部
24 第1回折像
25 第2回折像
H 層線
P 回折スポット
R X線(放射線)
DESCRIPTION OF SYMBOLS 1 Microcrystal structure analyzer 2 Sample container 3 Microcrystal 13 Magnetic field generator (generator)
14 Sample drive unit 21 X-ray source (radiation source)
23 Diffraction image detector 24 First diffraction image 25 Second diffraction image H Layer line P Diffraction spot R X-ray (radiation)

Claims (4)

微結晶を懸濁させた試料を磁場又は電場に対して一定速度で回転させた状態で、前記試料に照射された放射線の第1回折像を検出する第1検出工程と、
前記試料を磁場又は電場に対して回転停止させた状態で、前記試料に照射された放射線の第2回折像を検出する第2検出工程と、
検出された前記第1回折像及び第2回折像のうちの少なくとも一方の回折像に基づいて、前記微結晶の結晶系、格子定数、面指数及び空間群をそれぞれ決定する第1決定工程と、
前記少なくとも一方の回折像に基づいて、決定された前記各面指数における回折スポットの回折強度を決定する第2決定工程と、
決定された前記回折強度に基づいて解析処理を行う解析工程と、
を含む微結晶構造解析方法。
A first detection step of detecting a first diffraction image of radiation irradiated to the sample in a state in which the sample in which the microcrystals are suspended is rotated at a constant speed with respect to a magnetic field or an electric field;
A second detection step of detecting a second diffraction image of radiation applied to the sample in a state where the sample is rotated with respect to a magnetic field or an electric field;
A first determination step of determining a crystal system, a lattice constant, a plane index, and a space group of the microcrystal based on at least one of the detected first diffraction image and second diffraction image,
A second determination step of determining a diffraction intensity of a diffraction spot at each determined plane index based on the at least one diffraction image;
An analysis step of performing an analysis process based on the determined diffraction intensity;
A microcrystalline structure analysis method comprising:
前記第1決定工程では、前記少なくとも一方の回折像から得られる回折スポット及び層線に基づいて前記結晶系を決定する請求項1に記載の微結晶構造解析方法。   The microcrystal structure analysis method according to claim 1, wherein, in the first determination step, the crystal system is determined based on a diffraction spot and a layer line obtained from the at least one diffraction image. 前記第1決定工程では、前記少なくとも一方の回折像から得られる層線に基づいて前記格子定数を決定する請求項1又は2に記載の微結晶構造解析方法。   The microcrystal structure analysis method according to claim 1 or 2, wherein in the first determination step, the lattice constant is determined based on a layer line obtained from the at least one diffraction image. 磁場又は電場の発生部と、
微結晶を懸濁させた試料に磁場又は電場を印加させた状態で、前記試料を一定速度で回転可能な試料駆動部と、
前記試料駆動部により前記試料を回転させた状態及び回転停止させた状態で、それぞれ放射線を前記試料に対して照射可能な放射線源と、
前記回転させた状態の試料に照射された放射線の第1回折像、及び前記回転停止させた状態の試料に照射された放射線の第2回折像のうちの少なくとも一方の回折像を検出可能な回折像検出部と、
を備えていることを特徴とする微結晶構造解析装置。
A magnetic or electric field generator;
A sample driving unit capable of rotating the sample at a constant speed in a state where a magnetic field or an electric field is applied to the sample in which the microcrystals are suspended;
A radiation source capable of irradiating the sample with radiation in a state where the sample is rotated by the sample driving unit and in a state where the sample is stopped from rotating,
Diffraction capable of detecting at least one diffraction image of the first diffraction image of the radiation irradiated to the sample in the rotated state and the second diffraction image of the radiation irradiated to the sample in the rotation stopped state An image detector;
A microcrystalline structure analyzing apparatus comprising:
JP2013265882A 2013-12-24 2013-12-24 Microcrystal structure analysis method and microcrystal structure analysis device Pending JP2015121486A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013265882A JP2015121486A (en) 2013-12-24 2013-12-24 Microcrystal structure analysis method and microcrystal structure analysis device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013265882A JP2015121486A (en) 2013-12-24 2013-12-24 Microcrystal structure analysis method and microcrystal structure analysis device

Publications (1)

Publication Number Publication Date
JP2015121486A true JP2015121486A (en) 2015-07-02

Family

ID=53533218

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013265882A Pending JP2015121486A (en) 2013-12-24 2013-12-24 Microcrystal structure analysis method and microcrystal structure analysis device

Country Status (1)

Country Link
JP (1) JP2015121486A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019203204A1 (en) * 2018-04-18 2019-10-24 国立大学法人京都大学 Oriented body device and method for manufacturing oriented body
CN113287004A (en) * 2018-11-22 2021-08-20 株式会社理学 Single crystal X-ray structure analysis device and method therefor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182148A (en) * 1984-06-22 1986-04-25 サ−トル ナシヨナル デ ラ ラシエルシエ サイエンテイフイク Goniometer device for sample diffraction of single crystal body, etc. by x-ray or neutron
JP2001107105A (en) * 1999-09-30 2001-04-17 Tdk Corp Method for evaluating crystal orientation, and method for manufacture of magnet
JP2008039699A (en) * 2006-08-09 2008-02-21 Tokyo Metropolitan Univ Magnetic field application device for particle orientation, and particle structure analysis method
JP2012173042A (en) * 2011-02-18 2012-09-10 Kyoto Univ Particle orientation apparatus and particle orientation method
WO2013118761A1 (en) * 2012-02-06 2013-08-15 国立大学法人京都大学 Microcrystal structure analysis device, microcrystal structure analysis method, and x-ray shield device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6182148A (en) * 1984-06-22 1986-04-25 サ−トル ナシヨナル デ ラ ラシエルシエ サイエンテイフイク Goniometer device for sample diffraction of single crystal body, etc. by x-ray or neutron
JP2001107105A (en) * 1999-09-30 2001-04-17 Tdk Corp Method for evaluating crystal orientation, and method for manufacture of magnet
JP2008039699A (en) * 2006-08-09 2008-02-21 Tokyo Metropolitan Univ Magnetic field application device for particle orientation, and particle structure analysis method
JP2012173042A (en) * 2011-02-18 2012-09-10 Kyoto Univ Particle orientation apparatus and particle orientation method
WO2013118761A1 (en) * 2012-02-06 2013-08-15 国立大学法人京都大学 Microcrystal structure analysis device, microcrystal structure analysis method, and x-ray shield device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019203204A1 (en) * 2018-04-18 2019-10-24 国立大学法人京都大学 Oriented body device and method for manufacturing oriented body
JP2019192668A (en) * 2018-04-18 2019-10-31 国立大学法人京都大学 Orientating element device and orientating element manufacturing method
JP7193107B2 (en) 2018-04-18 2022-12-20 国立大学法人京都大学 Oriented Body Manufacturing Apparatus and Oriented Body Manufacturing Method
CN113287004A (en) * 2018-11-22 2021-08-20 株式会社理学 Single crystal X-ray structure analysis device and method therefor

Similar Documents

Publication Publication Date Title
Hierro-Rodríguez et al. Revealing 3D magnetization of thin films with soft X-ray tomography: magnetic singularities and topological charges
JP6099053B2 (en) Microcrystal structure analysis apparatus, microcrystal structure analysis method, and X-ray shielding apparatus
EP3242139A1 (en) Method and apparatus for determining a magnetic field
JP5511020B2 (en) X-ray analyzer
JP6726675B2 (en) Particle analyzer and particle analysis method
Cureton et al. Review of swift heavy ion irradiation effects in CeO2
JP6905748B2 (en) Solar slits, X-ray diffractometers and methods
JP5871393B2 (en) X-ray analyzer
JP2015121486A (en) Microcrystal structure analysis method and microcrystal structure analysis device
Platunov et al. X-ray natural circular dichroism imaging of multiferroic crystals
JP2008039699A (en) Magnetic field application device for particle orientation, and particle structure analysis method
WO2020045490A1 (en) Nuclear magnetic resonance device, and microcrystalline structure analysis method
Treimer et al. Review about old and new imaging signals for neutron computerized tomography
JP5834422B2 (en) Fine particle aligning apparatus and fine particle aligning method
JP2009175065A (en) Simultaneous three-dimensional distribution-visualization observation-measurement method of a plurality of elements by neutron prompt gamma-ray analysis, and device thereof
Krikunov et al. Refraction of an astigmatic laser beam in a transition layer of a stratified liquid
Saini et al. X-ray diffraction
JP2010117365A (en) Structure factor tensor element determination method, and x-ray diffraction device utilization method therefor
Badger et al. Three-dimensional imaging of crystalline inclusions embedded in intact maize stalks
JP4561312B2 (en) X-ray image reconstruction device
US12031926B2 (en) Mesh-based crystal sample holder for serial crystallography
JP7050273B2 (en) Diffractive ring measuring device
Argunova et al. Large-Area Mapping of Voids and Dislocations in Basal-Faceted Sapphire Ribbons by Synchrotron Radiation Imaging
Yuan Workflows For X-ray And Neutron Interferometry/Tomography As Applied To Additive Manufacturing
JP2003149179A (en) Orientation measuring device for monocrystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20180522