WO2004027856A1 - Method for supporting substrate, substrate supporting apparatus and exposure apparatus - Google Patents

Method for supporting substrate, substrate supporting apparatus and exposure apparatus Download PDF

Info

Publication number
WO2004027856A1
WO2004027856A1 PCT/JP2003/008795 JP0308795W WO2004027856A1 WO 2004027856 A1 WO2004027856 A1 WO 2004027856A1 JP 0308795 W JP0308795 W JP 0308795W WO 2004027856 A1 WO2004027856 A1 WO 2004027856A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
rubber ring
wafer
support member
points
Prior art date
Application number
PCT/JP2003/008795
Other languages
French (fr)
Japanese (ja)
Inventor
Hidekazu Kikuchi
Original Assignee
Sendai Nikon Corporation
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sendai Nikon Corporation, Nikon Corporation filed Critical Sendai Nikon Corporation
Priority to AU2003298996A priority Critical patent/AU2003298996A1/en
Publication of WO2004027856A1 publication Critical patent/WO2004027856A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • H01L21/687Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
    • H01L21/68714Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
    • H01L21/6875Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a plurality of individual support members, e.g. support posts or protrusions
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70733Handling masks and workpieces, e.g. exchange of workpiece or mask, transport of workpiece or mask
    • G03F7/7075Handling workpieces outside exposure position, e.g. SMIF box
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/20Means for supporting or positioning the objects or the material; Means for adjusting diaphragms or lenses associated with the support

Definitions

  • the present invention relates to a method and an apparatus for holding a substrate such as a wafer and a reticle in a vacuum treatment apparatus, a semiconductor manufacturing apparatus, an exposure apparatus, and the like.
  • a vacuum suction method using a flat table is most widely used.
  • this vacuum suction method cannot be used, and a method of mechanically clamping the substrate from above or from the side has been adopted.
  • this method causes problems such as generation of wear powder due to mechanical contact and friction, and damage to the substrate.
  • FIG. 6 is a side view of a conventional substrate holding device.
  • the conventional substrate holding device has a plurality of support members 200 and 200 '.
  • the support members 200 and 200 ' are composed of columns 201 and 201' and a disc-shaped rubber pad 203 provided on the top of the columns.
  • the rubber pad 203 is made of fluororubber having a high friction coefficient of 0.2 to 0.3, and has a size (diameter) of several mm.
  • fluororubber having a high friction coefficient of 0.2 to 0.3, and has a size (diameter) of several mm.
  • the column 201 is fixed to the port 205.
  • Porto 205 is screwed from above base 3 and secured by nuts 205. By rotating Porto 205, The length of the port 205 extending upward from the base 3 changes, and the height of the column 201 can be adjusted.
  • the support column 201 of the support member 200 ′ shown in FIG. 6B is fixed to the pin 209, and the pin 209 is fitted into the base 3.
  • the height of the column 201 ' is fixed, but the height of the column 201' can be adjusted by inserting a shim between the base 3 and the column 201 '.
  • Such support members 200 are provided at a plurality of locations along the outer edge of the substrate on the holder base 3.
  • the outer edge of the substrate W is placed on the rubber pad 203 of the support member 200. Since the rubber pad 203 has a high friction coefficient as described above, the substrate W is unlikely to be displaced even when disturbance vibration occurs. It is also effective in the vacuum.
  • the rubber pad 203 is attached to the upper end surface of the column 201 by bonding, and the bonding may cause the upper surface of the pad 203 to be concavely curved.
  • a space S is formed between the substrate W and the upper surface of the pad 203. Then, a sucker phenomenon occurs, and the substrate W may be adsorbed on the upper surface of the pad. In the case of the air, such adsorption force is generated because there is air around.
  • the present invention has been made in view of the above problems, and has as its object to provide a substrate holding device and a method for reducing the positional deviation generated during pickup and stabilizing the amount of deviation.
  • a substrate holding method is a method for holding a substrate such as a wafer or a reticle, wherein three or more points (support points) of the substrate are soft or non-conductive from below. It is supported by a support member having an upwardly convex support portion made of an adhesive material.
  • the substrate holding apparatus of the present invention is an apparatus for holding a substrate such as a wafer or a reticle, and supports at least three points (supporting points) of the substrate from below.
  • a support member having a convex support portion is provided.
  • a space for generating a suction force is not formed between the substrate and the support portion, and the sucking phenomenon can be prevented. Therefore, no vibration or displacement occurs when the substrate is removed. Therefore, it is suitable for application to a field in which a displacement of several tens of meters is a problem, such as a brialignment in an exposure apparatus.
  • the friction member has a high friction coefficient, so that it is unlikely to be displaced by disturbance vibration. Also, it can be used in air and vacuum.
  • the horizontal state of the substrate can be adjusted if the support member has a height adjustment mechanism for the support portion.
  • Another substrate supporting device of the present invention is a device for holding a substrate such as a wafer or a reticle, and has a supporting member for supporting three or more points (supporting points) of the substrate from below, and
  • the member is constituted by a column extending in the height direction, a horizontal bar extending laterally from a tip of the column, and a rubber ring fitted into the horizontal bar.
  • the outer peripheral surface of the rubber ring State. As described above, since the substrate is in contact at the uppermost point of the rubber ring, no space is formed between the substrate and the rubber ring, and the sucker phenomenon does not occur. If the contact portion of the rubber ring is worn, the ring can be rotated around a horizontal bar to make contact with the substrate on a new outer peripheral surface. In addition, rubber rings are readily available, so if the rubber ring becomes worn or deteriorated and needs to be replaced, it can be easily replaced.
  • An exposure apparatus is an exposure apparatus that selectively irradiates a sensitive substrate with an energy beam to form a pattern, and includes the substrate holding device according to any one of the above.
  • FIG. 1 is a diagram showing a structure of a support member of a substrate holding device according to an embodiment of the present invention, wherein FIG. 1 (A) is a side view and FIG. 1 (B) is a front view.
  • FIG. 2 is a plan view showing the overall structure of the substrate holding device.
  • FIG. 3 is a plan view showing a substrate loader provided with the substrate holding device of FIG.
  • FIG. 4 is a side view showing a structure of a substrate holding device according to another embodiment of the present invention.
  • FIG. 5 is a diagram schematically illustrating a configuration of an exposure apparatus according to an embodiment of the present invention.
  • FIG. 6 is a side view of a conventional substrate holding device. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram showing a structure of a support member of a substrate holding device according to an embodiment of the present invention, where FIG. 1 (A) is a side view and FIG. 1 (B) is a front view.
  • FIG. 2 is a plan view showing the entire structure of the substrate holding device.
  • the substrate holding device 1 has three support members 10 arranged on the holder base 3 at the same central angle (120 °).
  • the support member 10 is composed of a column 11, small screws (horizontal bar) 13, and a rubber ring (support portion) 15.
  • the support 11 includes a head 11 a and a port 11.
  • the port 11 b is inserted into a screw hole 5 formed in the holder base 3 and fixed with a nut 17.
  • a small screw 13 is screwed into the head 11a from the side.
  • a groove 13 b having a concave cross section is formed along the outer peripheral surface of the head portion 13 a of the small screw 13.
  • a rubber ring 15 is fitted in the concave groove 13b.
  • the rubber ring 15 is made of a soft, non-adhesive fluoro rubber. Alternatively, it may be made of nitrile rubber or silicone rubber. As can be seen from FIG. 1, the uppermost part of the outer peripheral surface of the rubber ring 15 is in an upwardly convex state, and the uppermost part is located higher than the small screw 13.
  • the support member 10 is disposed along a substantially outer edge of the substrate W at a center angle ⁇ (120 °) equal to that on the holder base 3.
  • the rubber ring 15 side of the member is located outside.
  • the substrate W is placed on the rubber ring 15 of each support member 10. Since the rubber ring 15 is arranged in the vertical direction, the outer peripheral surface is convex upward, so that the lower surface of the substrate W and the uppermost portion of the outer convex surface are almost in contact with each other. Since the coefficient of friction between the rubber ring 15 and the silicon or glass substrate is as high as 0.1 to 0.3, even if the rubber ring 15 and the substrate W make contact at points, the displacement of the substrate W It does not easily occur and is kept stable. Also, since the two are almost in contact at a point, no space is formed between them, and the sucker phenomenon that occurs when the contact surface becomes concave does not occur. Therefore, no force other than its own weight acts on the substrate W, and when the substrate W is picked up, no displacement occurs due to the reaction force to the attraction force. In addition, the displacement error can be stabilized within a narrow range (about several meters).
  • the height of the support can be adjusted by rotating the support 11.
  • a rubber block having an upwardly convex surface may be attached to the upper end surface of the column.
  • FIG. 3 is a plan view showing a substrate loader provided with the substrate holding device of FIG.
  • the substrate loader (vacuum port pot) 30 is disposed in the vacuum port pot chamber 31.
  • the chamber 31 is provided with a turbo pump 33 to evacuate the chamber.
  • the vacuum robot chamber 31 has a hexagonal planar shape, and each side faces various substrate transport destinations. One of the side surfaces communicates with the wafer chamber 121 of the exposure apparatus 100 via a gate valve 35.
  • a stage 13 1 is provided in the wafer chamber 12 1.
  • the board opening 30 is connected to the base 37 so as to articulate to the base 37 and to the first arm 39 and the first arm 39 fixed to be movable in the Z direction. And a second arm 41, and an end effector 43 connected to the second arm 41 so as to rotate. The end effector 43 rotates in the XY plane and moves in the Z direction.
  • Another side of the vacuum port pot chamber 31 communicates with a bri-alignment chamber 45.
  • a briar alignment holder 47 is provided in the bri-alignment chamber 45.
  • the substrate holding device 1 shown in FIG. 1 is provided on the bri-alignment holder 47.
  • the other two sides of the vacuum robot chamber 31 communicate with mouth lock chambers 53, 55 via gate valves 49, 51, respectively.
  • Load lock holders 57, 59 are installed in each of the load lock chambers 53, 55.
  • Gate valves 61, 63 are provided at the entrances of the respective drop chambers 53, 55.
  • the substrate holding device 1 is also provided on the mouth lock holders 57 and 59 in each load box.
  • the remaining two sides of the vacuum robot chamber 31 are sealed with a sealing plate 65.
  • Atmospheric loaders (atmospheric robots) 67 are installed outside the load lock chambers 53, 55.
  • the atmospheric loader 67 has a base 71 fixed on a base 69, a first arm 73 fixed to the base 71 and movable movably in the Z direction, and a first arm 73 fixed to the first arm 73.
  • the second arm 75 is connected to the second arm 75 and the end effector 77 is connected to the second arm 75 so as to articulate.
  • the end effector 7 can rotate in the XY plane and move in the Z direction.
  • a cassette section 79 and a bri-alignment section 81 are provided on the frame 69.
  • the atmospheric loader 67 takes out the wafer from the cassette section 79 on the gantry 69 and transfers it to the bri-alignment section 81. A briar alignment will be conducted at the same department. Thereafter, the gate valve 63 at the entrance of the load lock chamber 55 is opened, and the wafer is transferred to the door lock holder 59 in the chamber by the atmospheric loader 67. Then, the gate valve 63 at the inlet is closed, and the first lock chamber 55 is evacuated.
  • the gate valve 51 on the vacuum robot chamber side of the mouth lock chamber 55 is opened, the wafer is taken out from the mouth lock chamber 55 by the vacuum loader 30, and the brialignment chamber of the blind alignment chamber 45 is opened. Conveyed to da47. Then, higher precision briar alignment is performed in the same chamber 45.
  • the mechanism is not installed in the stage chamber but is installed on the vacuum loader side in order to prevent the influence of the magnetic field generated from the bri-alignment mechanism. Due to such a configuration, high-precision positioning is required when a wafer that has been subjected to high-precision brialignment is transferred to a stage in the exposure apparatus main body.
  • the substrate holding device shown in FIGS. Device 1 is provided. For this reason, when the wafer is picked up from the pre-alignment holder 47 by the vacuum port header 30, the misalignment hardly occurs, and the wafer is transferred from the bri-alignment holder 47 to the holder on the wafer stage 13 1 with high precision. be able to. Further, at the time of the bri-alignment, it is possible to prevent the substrate from being displaced due to vibration generated by driving the stage in the exposure apparatus main body or vibration transmitted from the floor.
  • FIG. 4 is a side view showing a structure of a substrate holding device according to another embodiment of the present invention.
  • the support member 20 of the substrate holding device of this example includes a support 21, small screws 23, and rubber rings 25.
  • the support 21 is erected on the holder base 3 by screws 27 screwed from holes 5 on the lower surface of the holder base 3.
  • a small screw 23 is screwed into the upper part of the column 21.
  • a groove having a concave cross section is formed along the outer peripheral surface of the head portion of the small screw 23.
  • a rubber ring 25 is fitted in the concave groove.
  • the height of the substrate holding surface can be constant.
  • the position of the uppermost portion of the outer peripheral surface of the rubber ring 25 becomes constant, and it is effective to apply to a reticle having a limited contact portion.
  • the rubber ring 15 when the support 11 is rotated when adjusting the height of the support member 10 in FIG. 1, the rubber ring 15 also rotates around the support 11 so that the ring 15 and the substrate W The contact position changes.
  • a shim may be inserted between the column 21 and the holder base 3 so that the circumferential position of the rubber ring 25 is the initial position. does not change.
  • FIG. 5 is a diagram for schematically explaining the configuration of the exposure apparatus according to the embodiment of the present invention.
  • An optical lens barrel 101 is disposed above the electron beam exposure apparatus 100.
  • a vacuum pump (not shown) is installed in the optical column 101, and the inside of the optical column 101 is evacuated.
  • An electron gun 103 is arranged at the top of the optical barrel 101, and is directed downward. Emits an electron beam.
  • an illumination optical system 104 including a condenser lens 104a, an electron beam deflector 104b, and the like are arranged in this order.
  • a reticle R is disposed below the lens barrel 104.
  • the electron beam emitted from the electron gun 103 is converged by the condenser lens 104a. Subsequently, the light is sequentially scanned (scanned) in the horizontal direction in the figure by the deflector 104b, and illumination of each small area (subfield) of the reticle R within the field of view of the optical system is performed.
  • the condenser lens 104a has one stage in the figure, the actual illumination optical system is provided with several stages of lenses, a beam shaping aperture, a blanking aperture, and the like.
  • Reticle R is supported by holder 110 of reticle stage 111.
  • the reticle stage 1 1 1 is mounted on a surface plate 1 16.
  • the reticle stage 111 is connected to a drive device 112 shown on the left side of the figure.
  • the driving device (linear motor) 112 is incorporated in the stage 111.
  • the drive device 112 is connected to the control device 115 via a driver 114.
  • a laser interferometer 113 is set on the side of the reticle stage 111 (to the right in the figure).
  • the laser interferometer 113 is also connected to the control device 115.
  • Accurate positional information of the reticle stage 111 measured by the laser interferometer 113 is input to the controller 115.
  • a command is sent from the control unit 115 to the driver 114 so that the position of the reticle stage 111 is set as the target position, and the drive unit 112 is driven.
  • the position of the reticle stage 111 can be accurately feedback-controlled in real time.
  • a wafer chamber (vacuum chamber) 121 is disposed below the platen 116.
  • a vacuum pump (not shown) is connected to the side (right side in the figure) of the wafer chamber 122, and the inside of the wafer chamber 121 is evacuated.
  • the lower part of the wafer champer 1 2 1 (Substrate) W is arranged.
  • the electron beam passing through reticle R is converged by condenser lens 124a.
  • the electron beam passing through the condenser lens 124a is deflected by the deflector 124b to form an image of the reticle R at a predetermined position on the wafer W.
  • the condenser lens 124a has one stage, but in practice, the projection optical system is provided with a plurality of stages of lenses and a lens coil for aberration correction.
  • the wafer W is transferred onto the stage 13 1 by the vacuum loader 30 in the vacuum port pot chamber 31, and is supported on the holder 1 30 on the wafer stage 13 1. It is supported on 10 (see Fig. 1).
  • the wafer stage 13 1 is mounted on the platen 13.
  • the driving device 13 2 shown on the left side of the figure is connected to the wafer stage 13 1. Note that the driving device 13 2 is actually incorporated in the stage 13 1.
  • the drive unit 132 is connected to the control unit 115 via a driver 134.
  • a laser interferometer 13 3 is installed on the side of the wafer stage 13 1 (to the right in the figure).
  • the laser interferometer 133 is also connected to the controller 115.
  • the accurate position information of the wafer stage 13 1 measured by the laser interferometer 13 3 is input to the controller 1 15.
  • a command is sent from the control device 115 to the driver 134, and the drive device 132 is driven.
  • the position of the wafer stage 13 1 can be feedback-controlled accurately in real time.
  • the substrate is held on the support member at almost points, no displacement occurs during the pickup, and the displacement can be stabilized. This makes it possible to provide an exposure apparatus that can stably hold a substrate with high accuracy.

Abstract

A substrate supporting apparatus has a supporting member (10), which supports a substrate from below at three or more points (supporting points). The supporting member comprises a pillar (11) extending in the direction of height, a crossbar (13), which horizontally extends from the end of the pillar, and a rubber ring (15) fitted on the crossbar. By vertically arranging the rubber ring (15), the outer surface of the rubber ring is of a convex shape, thereby coming into contact with the substrate at a single point, the uppermost point of the rubber ring. Consequently, no space is formed between the substrate and the rubber ring and thus, no suction-cup phenomenon occurs. Therefore, neither vibration nor positional deviation occurs when the substrate is dismounted.

Description

明 細 書 基板保持方法、 基板保持装置及び露光装置 技術分野  Description Substrate holding method, substrate holding apparatus, and exposure apparatus
本発明は、 真空処置装置や半導体製造装置、 露光装置等において、 ウェハ ゃレチクル等の基板を保持する方法及び装置に関する。 背景技術  The present invention relates to a method and an apparatus for holding a substrate such as a wafer and a reticle in a vacuum treatment apparatus, a semiconductor manufacturing apparatus, an exposure apparatus, and the like. Background art
半導体製造装置においてウェハゃレチクル等の基板を保持する方法として は、 平らなテーブルを用いる真空吸着方式が最も普及している。 しかし、 真 空環境下で基板を保持する場合には、この真空吸着方式は使用できないため、 基板を機械的に上や横から押えてクランプする方法がとられている。しかし、 この方法では機械的な接触や摩擦によつて磨耗粉が発生したり、 基板に傷が 付くなどの不具合が生じる。  As a method of holding a substrate such as a wafer reticle in a semiconductor manufacturing apparatus, a vacuum suction method using a flat table is most widely used. However, when holding a substrate in a vacuum environment, this vacuum suction method cannot be used, and a method of mechanically clamping the substrate from above or from the side has been adopted. However, this method causes problems such as generation of wear powder due to mechanical contact and friction, and damage to the substrate.
そこで、 従来は、 基板を複数の支柱の上部に設けた弾性部材上に載置する 方式がとられている。  Therefore, conventionally, a method has been adopted in which a substrate is placed on an elastic member provided above a plurality of columns.
' 図 6は、 従来の基板保持装置の側面図である。  FIG. 6 is a side view of a conventional substrate holding device.
図に示すように、 従来の基板保持装置は複数の支持部材 2 0 0、 2 0 0 ' を有する。 支持部材 2 0 0、 2 0 0 'は、 支柱 2 0 1、 2 0 1 'と、 同支柱 の上部に設けられた円板状のゴムパッド 2 0 3とからなる。 ゴムパッド 2 0 3は、 摩擦係数が 0 . 2〜0 . 3と高いフッ素ゴム製で、 大きさ (径) は数 mmである。 フッ素ゴムの代わりにセラミックスやアルミ、 樹脂を用い る方法もあるが、 このような材料は摩擦係数が 0 . 1以下と小さいため、 有 効ではない。  As shown in the figure, the conventional substrate holding device has a plurality of support members 200 and 200 '. The support members 200 and 200 'are composed of columns 201 and 201' and a disc-shaped rubber pad 203 provided on the top of the columns. The rubber pad 203 is made of fluororubber having a high friction coefficient of 0.2 to 0.3, and has a size (diameter) of several mm. There is a method using ceramics, aluminum, or resin instead of fluororubber, but such a material is not effective because its coefficient of friction is as small as 0.1 or less.
図 6 (A)に示す支持部材 2 0 0においては、支柱 2 0 1はポルト 2 0 5に 固定されている。 ポルト 2 0 5はベース 3の上からねじ込まれて、 ナット 2 0 7によって固定されている。 ポルト 2 0 5を回転させることによって、 ベース 3から上方に延びるポルト 2 0 5の長さが変わり、 支柱 2 0 1の高さ を調整できる。 In the support member 200 shown in FIG. 6 (A), the column 201 is fixed to the port 205. Porto 205 is screwed from above base 3 and secured by nuts 205. By rotating Porto 205, The length of the port 205 extending upward from the base 3 changes, and the height of the column 201 can be adjusted.
図 6 ( B ) に示す支持部材 2 0 0 'の支柱 2 0 1一はピン 2 0 9に固定さ れており、 ピン 2 0 9がベース 3にはめ込まれている。 この支柱 2 0 1 'は 高さが固定であるが、 ベース 3と支柱 2 0 1 'との間にシムを挟みこめば、 支柱 2 0 1 'の高さ調整ができる。  The support column 201 of the support member 200 ′ shown in FIG. 6B is fixed to the pin 209, and the pin 209 is fitted into the base 3. The height of the column 201 'is fixed, but the height of the column 201' can be adjusted by inserting a shim between the base 3 and the column 201 '.
そして、 このような支持部材 2 0 0が、 ホルダベース 3上の基板の外縁に 沿った複数ケ所に設けられている。 基板 Wの外縁は支持部材 2 0 0のゴム パッド 2 0 3上に載置される。 ゴムパッド 2 0 3は上述のように摩擦係数が 高いため、 外乱振動が起こっても基板 Wの位置ズレが生じにくい。 また、 真 空中でも有効である。  Such support members 200 are provided at a plurality of locations along the outer edge of the substrate on the holder base 3. The outer edge of the substrate W is placed on the rubber pad 203 of the support member 200. Since the rubber pad 203 has a high friction coefficient as described above, the substrate W is unlikely to be displaced even when disturbance vibration occurs. It is also effective in the vacuum.
このような基板保持装置においては、 基板の位置に高い精度が要求される 場合、 基板の受け渡し時に生じる位置ズレ量を小さくする必要がある。 ゴム パッド 2 0 3は支柱 2 0 1の上端面に接着によって取り付けられているが、 この接着によって、 同パッド 2 0 3の上面が凹型に湾曲することがある。 こ のように湾曲したゴムパッド 2 0 3の上面に基板 Wが置かれると、 基板 Wと パッド 2 0 3の上面との間に空間 Sが形成される。 すると吸盤現象が発生し て、 基板 Wがパッド上面に吸着されることがある。 大気中の場合は周囲に空 気が存在するので、 このような吸着力が生じる。  In such a substrate holding apparatus, when high precision is required for the position of the substrate, it is necessary to reduce the amount of positional deviation that occurs when the substrate is transferred. The rubber pad 203 is attached to the upper end surface of the column 201 by bonding, and the bonding may cause the upper surface of the pad 203 to be concavely curved. When the substrate W is placed on the upper surface of the curved rubber pad 203, a space S is formed between the substrate W and the upper surface of the pad 203. Then, a sucker phenomenon occurs, and the substrate W may be adsorbed on the upper surface of the pad. In the case of the air, such adsorption force is generated because there is air around.
このように、 基板がパッドにある力をもって吸着しているときに、 基板を 搬送ロポット等によってピックアップすると、 基板がパッドから離れた時点 で吸着力が失われ、 その反力によって基板に振動が発生して位置ズレを起こ す場合がある。 この位置ズレ量は数 〜数百 とバラバラである。位置 ズレ量が大きい場合は、 ブリアライメント時にステージ上のマークを読み取 れなくなる等の不具合が生じる。 高精度を要求される露光装置においては、 基板ハンドリング時の位置ズレ量は数十 / m以下で、 かつ、 ズレ量の誤差が 安定していることが求められる。 発明の開示 In this way, if the substrate is picked up by a transport robot or the like while the substrate is being attracted to the pad with a certain force, the attracting force is lost when the substrate is separated from the pad, and the reaction force generates vibration on the substrate. May cause misalignment. The amount of the positional deviation varies from several to several hundreds. If the amount of displacement is large, problems such as the inability to read the mark on the stage during the bri-alignment occur. In an exposure apparatus that requires high accuracy, it is required that the positional deviation amount during substrate handling be several tens of meters / m or less, and that the deviation amount error be stable. Disclosure of the invention
本発明は上記の問題点に鑑みてなされたものであって、 ピックアップ時に 発生する位置ズレを小さくするとともに、 ズレ量の安定した基板保持装置及 び方法を提供することを目的とする。  SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a substrate holding device and a method for reducing the positional deviation generated during pickup and stabilizing the amount of deviation.
上記課題を解決するため、 本発明の基板保持方法は、 ウェハ又はレチク ル等の基板を保持する方法であって、 該基板の 3ケ所以上の点 (支持点) を、 下方から、 軟質,非粘着性材料からなる上凸の支持部を有する支持部材 で支持することを特徴とする。  In order to solve the above problems, a substrate holding method according to the present invention is a method for holding a substrate such as a wafer or a reticle, wherein three or more points (support points) of the substrate are soft or non-conductive from below. It is supported by a support member having an upwardly convex support portion made of an adhesive material.
本発明の基板保持装置は、 ウェハ又はレチクル等の基板を保持する装置 であって、 該基板の 3ケ所以上の点(支持点) を下方から支持する、軟質.' 非粘着性材料からなる上凸の支持部を有する支持部材を備えることを特徴と する。  The substrate holding apparatus of the present invention is an apparatus for holding a substrate such as a wafer or a reticle, and supports at least three points (supporting points) of the substrate from below. A support member having a convex support portion is provided.
上凸で軟質 ·非粘着性の支持部で基板を支持することにより、 基板と支持 部との間に吸引力を生ずる空間が形成されず、 吸盤現象を防止できる。 この ため、 基板取り外し時に振動や位置ズレが発生しない。 したがって、 露光装 置におけるブリアライメントなど、数十 mのズレ量が問題となる分野への 応用に好適である。  By supporting the substrate with the upwardly convex, soft, non-adhesive support portion, a space for generating a suction force is not formed between the substrate and the support portion, and the sucking phenomenon can be prevented. Therefore, no vibration or displacement occurs when the substrate is removed. Therefore, it is suitable for application to a field in which a displacement of several tens of meters is a problem, such as a brialignment in an exposure apparatus.
本発明においては、 前記支持部材の支持部をゴムリング又はゴムブロッ クとすれば、摩擦係数が高いため、外乱振動に対して位置ズレが生じにくい。 また、 大気中及び真空中で使用できる。  In the present invention, if the support portion of the support member is a rubber ring or a rubber block, the friction member has a high friction coefficient, so that it is unlikely to be displaced by disturbance vibration. Also, it can be used in air and vacuum.
本発明においては、 前記支持部材が前記支持部の高さ調節機構を備えれ ば、 基板の水平状態を調節できる。  In the present invention, the horizontal state of the substrate can be adjusted if the support member has a height adjustment mechanism for the support portion.
本発明の他の基板支持装置は、 ゥヱハ又はレチクル等の基板を保持する 装置であって、 該基板の 3ケ所以上の点 (支持点) を下方から支持する支 持部材を有し、 該支持部材が、 高さ方向に延びる支柱と、 該支柱の先端 から横方向に延びる横棒と、 該横棒にはめ込まれるゴムリングとから構成 されることを特徴とする。  Another substrate supporting device of the present invention is a device for holding a substrate such as a wafer or a reticle, and has a supporting member for supporting three or more points (supporting points) of the substrate from below, and The member is constituted by a column extending in the height direction, a horizontal bar extending laterally from a tip of the column, and a rubber ring fitted into the horizontal bar.
ゴムリングを縦方向に配置することによって、 ゴムリング外周面が上凸の 状態となる。 このようにゴムリングの最上部の 1点で基板が接触するため、 基板とゴムリングとの間に空間が形成されず、吸盤現象が起こらない。また、 ゴムリングの接触部が磨耗した場合には、 同リングを横棒の回りを回転させ て新しい外周面で基板と接触させることができる。 さらに、 ゴムリングは容 易に入手できるため、 ゴムリングが磨耗や劣化して交換が必要になった場合 は、 簡単に交換できる。 By arranging the rubber ring in the vertical direction, the outer peripheral surface of the rubber ring State. As described above, since the substrate is in contact at the uppermost point of the rubber ring, no space is formed between the substrate and the rubber ring, and the sucker phenomenon does not occur. If the contact portion of the rubber ring is worn, the ring can be rotated around a horizontal bar to make contact with the substrate on a new outer peripheral surface. In addition, rubber rings are readily available, so if the rubber ring becomes worn or deteriorated and needs to be replaced, it can be easily replaced.
本発明の露光装置は、 感応基板上にエネルギ線を選択的に照射してパ ターン形成する露光装置であって、 上記いずれかに記載の基板保持装置を 備えることを特徴とする。  An exposure apparatus according to the present invention is an exposure apparatus that selectively irradiates a sensitive substrate with an energy beam to form a pattern, and includes the substrate holding device according to any one of the above.
ウェハゃレチクルを位置ズレなく保持できるため、 ブリアライメントゃ搬 送作業を高精度で行うことができる。 図面の簡単な説明  Since the wafer / reticle can be held without displacement, the bri-alignment / transport operation can be performed with high precision. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施の形態に係る基板保持装置の支持部材の構造を示 す図であり、 図 1 (A) は側面図、 図 1 ( B ) は正面図である。  FIG. 1 is a diagram showing a structure of a support member of a substrate holding device according to an embodiment of the present invention, wherein FIG. 1 (A) is a side view and FIG. 1 (B) is a front view.
第 2図は、 基板保持装置の全体構造を示す平面図である。  FIG. 2 is a plan view showing the overall structure of the substrate holding device.
第 3図は、 図 1の基板保持装置を備えた基板ローダを示す平面図である。 第 4図は、 本発明の他の実施の形態に係る基板保持装置の構造を示す側面 図である。  FIG. 3 is a plan view showing a substrate loader provided with the substrate holding device of FIG. FIG. 4 is a side view showing a structure of a substrate holding device according to another embodiment of the present invention.
第 5図は、 本発明の実施の形態に係る露光装置の構成を模式的に説明する ための図である。  FIG. 5 is a diagram schematically illustrating a configuration of an exposure apparatus according to an embodiment of the present invention.
第 6図は、 従来の基板保持装置の側面図である。 発明を実施するための形態  FIG. 6 is a side view of a conventional substrate holding device. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照しつつ説明する。  Hereinafter, description will be made with reference to the drawings.
図 1は、 本発明の実施の形態に係る基板保持装置の支持部材の構造を示す 図であり、 図 1 (A) は側面図、 図 1 ( B ) は正面図である。  FIG. 1 is a diagram showing a structure of a support member of a substrate holding device according to an embodiment of the present invention, where FIG. 1 (A) is a side view and FIG. 1 (B) is a front view.
図 2は、 基板保持装置の全体構造を示す平面図である。 図 2に示すように、 基板保持装置 1は、 ホルダベース 3上に等しい中心角 度(1 2 0 ° )で配置された 3個の支持部材 1 0を有する。支持部材 1 0は、 図 1に示すように、 支柱 1 1と、 小ネジ (横棒) 1 3と、 ゴムリング (支持 部) 1 5とから構成される。 支柱 1 1はヘッド部 1 1 aとポルト部 1 1 と からなる。 ポルト部 1 1 bはホルダベース 3に開けられたネジ孔 5に挿入さ れて、 ナツト 1 7で固定されている。 へッド部 1 1 aには、 横方向から小ネ ジ 1 3がねじ込まれている。小ネジ 1 3のへッド部 1 3 aの外周面に沿って、 断面が凹状の溝 1 3 bが形成されている。 この凹状溝 1 3 b内にゴムリング 1 5がはめ込まれている。 ゴムリング 1 5は、 軟質で非粘着性のフッ素ゴム 製である。 または、 二トリルゴムやシリコンゴム製であってもよい。 図 1か ら分かるように、 ゴムリング 1 5の外周面の最上部は上凸の状態となってお り、 同最上部は、 小ネジ 1 3よりも高い位置に位置している。 FIG. 2 is a plan view showing the entire structure of the substrate holding device. As shown in FIG. 2, the substrate holding device 1 has three support members 10 arranged on the holder base 3 at the same central angle (120 °). As shown in FIG. 1, the support member 10 is composed of a column 11, small screws (horizontal bar) 13, and a rubber ring (support portion) 15. The support 11 includes a head 11 a and a port 11. The port 11 b is inserted into a screw hole 5 formed in the holder base 3 and fixed with a nut 17. A small screw 13 is screwed into the head 11a from the side. A groove 13 b having a concave cross section is formed along the outer peripheral surface of the head portion 13 a of the small screw 13. A rubber ring 15 is fitted in the concave groove 13b. The rubber ring 15 is made of a soft, non-adhesive fluoro rubber. Alternatively, it may be made of nitrile rubber or silicone rubber. As can be seen from FIG. 1, the uppermost part of the outer peripheral surface of the rubber ring 15 is in an upwardly convex state, and the uppermost part is located higher than the small screw 13.
図 2に示すように、 支持部材 1 0は、 基板 Wのほぼ外縁に沿って、 ホルダ ベース上 3に等しい中心角度 Θ ( 1 2 0 ° ) で配置されている。 そして、 同 部材のゴムリング 1 5の側が外側に位置している。  As shown in FIG. 2, the support member 10 is disposed along a substantially outer edge of the substrate W at a center angle Θ (120 °) equal to that on the holder base 3. The rubber ring 15 side of the member is located outside.
基板 Wは、 各支持部材 1 0のゴムリング 1 5上に載置される。 ゴムリング 1 5は縦方向に配置されているため、 外周面は上に凸の状態となり、 基板 W の下面と外周凸面の最上部とがほぼ点で接触することになる。 ゴムリング 1 5とシリコン製基板やガラス製基板との摩擦係数は 0 . 1〜0 . 3と高い ため、 ゴムリング 1 5と基板 Wとが点で接触しても、 基板 Wの位置ズレが起 こりにくく、 安定に保持される。 また、 両者はほぼ点で接触しているため、 両者の間に空間が形成されず、 接触面が凹型となった場合に起こる吸盤現象 を生じることがない。したがって、基板 Wには自重以外の力が働いておらず、 基板 Wをピックアツプする際に、 吸着力に対する反力による位置ズレが生じ ない。 そして、 位置ズレ誤差を、 狭い範囲内 (数 m程度) で安定させるこ とができる。  The substrate W is placed on the rubber ring 15 of each support member 10. Since the rubber ring 15 is arranged in the vertical direction, the outer peripheral surface is convex upward, so that the lower surface of the substrate W and the uppermost portion of the outer convex surface are almost in contact with each other. Since the coefficient of friction between the rubber ring 15 and the silicon or glass substrate is as high as 0.1 to 0.3, even if the rubber ring 15 and the substrate W make contact at points, the displacement of the substrate W It does not easily occur and is kept stable. Also, since the two are almost in contact at a point, no space is formed between them, and the sucker phenomenon that occurs when the contact surface becomes concave does not occur. Therefore, no force other than its own weight acts on the substrate W, and when the substrate W is picked up, no displacement occurs due to the reaction force to the attraction force. In addition, the displacement error can be stabilized within a narrow range (about several meters).
また、 支柱 1 1を回転させることによって支柱の高さを調整できる。  In addition, the height of the support can be adjusted by rotating the support 11.
なお、 ゴムリング 1 5の接触部が磨耗したり損傷した場合は、 ゴムリング 1 5の新しい面が最上位置となるように、 同リングを小ネジ 1 3の回りに回 転させる。また、ゴムリング 1 5が劣化した場合は、同リングを小ネジ 1 3か ら外して簡単に交換できる。 ゴムリング 1 5は容易に入手できるため、 メン テナンスが容易である。 If the contact area of the rubber ring 15 is worn or damaged, Turn the ring around the machine screw 13 so that the new face of 15 is at the top. If the rubber ring 15 has deteriorated, it can be easily replaced by removing the ring from the small screw 13. Since the rubber ring 15 is easily available, maintenance is easy.
また、 ゴムリング 1 5の代わりに、 上凸の面を有するゴムブロックを支柱 の上端面に取り付けてもよい。  Further, instead of the rubber ring 15, a rubber block having an upwardly convex surface may be attached to the upper end surface of the column.
図 3は、 図 1の基板保持装置を備えた基板ローダを示す平面図である。 基板ローダ (真空口ポット) 3 0は、 真空口ポットチャンバ 3 1内に配置 されている。 同チャンバ 3 1にはターボポンプ 3 3が備えられて、 チャンバ 内を真空に引いている。真空ロポットチャンバ 3 1は、平面形状が六角形で、 各側面が様々な基板搬送先に面している。側面の一つは、ゲ一卜バルブ 3 5を 介して露光装置 1 0 0のウェハチヤンバ 1 2 1と連通している。 ウェハチヤ ンバ 1 2 1内にはステージ 1 3 1が設置されている。  FIG. 3 is a plan view showing a substrate loader provided with the substrate holding device of FIG. The substrate loader (vacuum port pot) 30 is disposed in the vacuum port pot chamber 31. The chamber 31 is provided with a turbo pump 33 to evacuate the chamber. The vacuum robot chamber 31 has a hexagonal planar shape, and each side faces various substrate transport destinations. One of the side surfaces communicates with the wafer chamber 121 of the exposure apparatus 100 via a gate valve 35. A stage 13 1 is provided in the wafer chamber 12 1.
基板口一ダ 3 0は、 ベース 3 7と、 ベース 3 7に関節運動及び Z方向に移 動可能に固定された第 1アーム 3 9、 第 1ァ一ム 3 9に関節運動するように 接続した第 2のアーム 4 1、 第 2アーム 4 1に関節蓮動するように接続した エンドェフエクタ 4 3から構成される。 エンドェフエクタ 4 3は X Y平面内 を回転するとともに、 Z方向に移動する。  The board opening 30 is connected to the base 37 so as to articulate to the base 37 and to the first arm 39 and the first arm 39 fixed to be movable in the Z direction. And a second arm 41, and an end effector 43 connected to the second arm 41 so as to rotate. The end effector 43 rotates in the XY plane and moves in the Z direction.
真空口ポットチャンバ 3 1の別の側面には、 ブリアライメントチャンバ 4 5が連通している。 同ブリアライメントチャンバ 4 5内には、 ブリアライ メントホルダ 4 7が設置されている。 ブリアライメントホルダ 4 7上には、 図 1に示す基板保持装置 1が設けられている。 真空ロポッ卜チャンバ 3 1の 別の 2つの側面には、各々ゲ一トバルブ 4 9、 5 1を介して口一ドロツクチャ ンバ 5 3、 5 5が連通している。各ロードロツクチャンバ 5 3、 5 5内には、 ロードロックホルダ 5 7、 5 9が設置されている。 各口一ドロツクチャンバ 5 3、 5 5の入口にはゲートバルブ 6 1、 6 3が設けられている。 各ロード □ツクチャンバ内の口一ドロックホルダ 5 7、 5 9上にも同基板保持装置 1が設けられている。 真空ロポットチャンバ 3 1の残りの 2つの側面は封止板 6 5で封止されて いる。 Another side of the vacuum port pot chamber 31 communicates with a bri-alignment chamber 45. A briar alignment holder 47 is provided in the bri-alignment chamber 45. On the bri-alignment holder 47, the substrate holding device 1 shown in FIG. 1 is provided. The other two sides of the vacuum robot chamber 31 communicate with mouth lock chambers 53, 55 via gate valves 49, 51, respectively. Load lock holders 57, 59 are installed in each of the load lock chambers 53, 55. Gate valves 61, 63 are provided at the entrances of the respective drop chambers 53, 55. The substrate holding device 1 is also provided on the mouth lock holders 57 and 59 in each load box. The remaining two sides of the vacuum robot chamber 31 are sealed with a sealing plate 65.
各ロードロックチャンバ 5 3、 5 5の外側には、 大気ローダ (大気ロボッ ト) 6 7が設置されている。大気ローダ 6 7は、架台 6 9上に固定されたベー ス 7 1と、 ベース 7 1に関節運動及び Z方向に移動可能に固定された第 1アーム 7 3、 第 1アーム 7 3に関節運動するように接続した第 2のァ一ム 7 5、 第 2アーム 7 5に関節運動するように接続したェンドエフエクタ 7 7から構成される。 エンドェフエクタ 7 7は X Y平面内を回転するととも に、 Z方向に移動可能である。  Atmospheric loaders (atmospheric robots) 67 are installed outside the load lock chambers 53, 55. The atmospheric loader 67 has a base 71 fixed on a base 69, a first arm 73 fixed to the base 71 and movable movably in the Z direction, and a first arm 73 fixed to the first arm 73. The second arm 75 is connected to the second arm 75 and the end effector 77 is connected to the second arm 75 so as to articulate. The end effector 7 can rotate in the XY plane and move in the Z direction.
架台 6 9上には、 カセット部 7 9とブリアライメント部 8 1とが設けられ ている。  On the frame 69, a cassette section 79 and a bri-alignment section 81 are provided.
この基板ローダ 3 0の動作を説明する。  The operation of the substrate loader 30 will be described.
まず、 大気ローダ 6 7が、 架台 6 9上のカセット部 7 9からウェハを取り 出し、 ブリアライメント部 8 1へ搬送する。 そして、 同部でブリアライメン トを行う。 その後、 ロードロックチャンバ 5 5の入口のゲートバルブ 6 3を 開けて、 大気ローダ 6 7によって同チャンバ内の口一ドロックホルダ 5 9に ウェハを搬送する。 そして、 入口のゲートバルブ 6 3を閉め、 同口一ドロッ クチャンバ 5 5を真空に引く。  First, the atmospheric loader 67 takes out the wafer from the cassette section 79 on the gantry 69 and transfers it to the bri-alignment section 81. A briar alignment will be conducted at the same department. Thereafter, the gate valve 63 at the entrance of the load lock chamber 55 is opened, and the wafer is transferred to the door lock holder 59 in the chamber by the atmospheric loader 67. Then, the gate valve 63 at the inlet is closed, and the first lock chamber 55 is evacuated.
その後、 口一ドロツクチャンバ 5 5の真空ロボットチャンバ側のゲ一トバ ルブ 5 1を開け、 真空ローダ 3 0によってウェハを口一ドロツクチャンバ 5 5から取り出し、 ブリアライメントチャンバ 4 5のブリアライメントホル ダ 4 7に搬送する。 そして、 同チャンバ 4 5でより高精度なブリアライメン トを行う。 E B露光装置では、 ブリアライメント機構から発する磁場の影響 を防ぐために、 同機構をステージチャンバ内に設置せずに、 真空ローダ側に 設置している。 このような構成のため、 高精度にブリアライメントされたゥ ェハを露光装置本体内のステージに搬送する際には、 高精度な位置決めが要 求される。  Thereafter, the gate valve 51 on the vacuum robot chamber side of the mouth lock chamber 55 is opened, the wafer is taken out from the mouth lock chamber 55 by the vacuum loader 30, and the brialignment chamber of the blind alignment chamber 45 is opened. Conveyed to da47. Then, higher precision briar alignment is performed in the same chamber 45. In the EB exposure system, the mechanism is not installed in the stage chamber but is installed on the vacuum loader side in order to prevent the influence of the magnetic field generated from the bri-alignment mechanism. Due to such a configuration, high-precision positioning is required when a wafer that has been subjected to high-precision brialignment is transferred to a stage in the exposure apparatus main body.
そこで、 ブリアライメントチャンバ 4 5内に、 図 1、 2に示す基板保持装 置 1が設けられている。 このため、 真空口一ダ 3 0によって、 ウェハをプリ ァライメントホルダ 4 7からピックアップする際に位置ズレが起こりにくく、 ブリアライメントホルダ 4 7からウェハステージ 1 3 1上のホルダへ高精度 で搬送することができる。 また、 ブリアライメント時に、 露光装置本体内で のステージ駆動によって発生する振動や、 床から伝わる振動による、 基板の 位置ズレを防ぐことができる。 Therefore, the substrate holding device shown in FIGS. Device 1 is provided. For this reason, when the wafer is picked up from the pre-alignment holder 47 by the vacuum port header 30, the misalignment hardly occurs, and the wafer is transferred from the bri-alignment holder 47 to the holder on the wafer stage 13 1 with high precision. be able to. Further, at the time of the bri-alignment, it is possible to prevent the substrate from being displaced due to vibration generated by driving the stage in the exposure apparatus main body or vibration transmitted from the floor.
図 4は、 本発明の他の実施の形態に係る基板保持装置の構造を示す側面図 である。  FIG. 4 is a side view showing a structure of a substrate holding device according to another embodiment of the present invention.
この例の基板保持装置の支持部材 2 0は、 支柱 2 1と、 小ネジ 2 3と、 ゴ ムリング 2 5とから構成される。支柱 2 1は、ホルダベース 3の下面の穴 5か らねじ込まれたネジ 2 7によって、同ベース 3上に立設している。支柱 2 1の 上部には、 小ネジ 2 3がねじ込まれている。 小ネジ 2 3のへッド部の外周面 に沿って、 断面が凹状の溝が形成されている。 この凹状溝内にゴムリング 2 5がはめ込まれている。  The support member 20 of the substrate holding device of this example includes a support 21, small screws 23, and rubber rings 25. The support 21 is erected on the holder base 3 by screws 27 screwed from holes 5 on the lower surface of the holder base 3. A small screw 23 is screwed into the upper part of the column 21. A groove having a concave cross section is formed along the outer peripheral surface of the head portion of the small screw 23. A rubber ring 25 is fitted in the concave groove.
この基板保持装置の支持部材 2 0においては、 支柱 2 1の高さが一定であ るため、 基板保持面の高さを一定とすることができる。 また、 ゴムリング 2 5の外周面の最上部の位置が一定となり、 接触部が制限されるレチクルへ の適用が有効である。 つまり、 図 1の支持部材 1 0の高さを調整する際に支 柱 1 1を回転させると、 ゴムリング 1 5も共に支柱 1 1の周囲を回転し、 同 リング 1 5と基板 Wとが接する位置が変わる。 一方、 この実施例の支持部材 2 1の高さを調整する際は、 支柱 2 1とホルダベース 3との間にシムを挟み こめばよく、 ゴムリング 2 5の周方向位置が最初の位置と変わらない。  In the support member 20 of the substrate holding device, since the height of the column 21 is constant, the height of the substrate holding surface can be constant. In addition, the position of the uppermost portion of the outer peripheral surface of the rubber ring 25 becomes constant, and it is effective to apply to a reticle having a limited contact portion. In other words, when the support 11 is rotated when adjusting the height of the support member 10 in FIG. 1, the rubber ring 15 also rotates around the support 11 so that the ring 15 and the substrate W The contact position changes. On the other hand, when adjusting the height of the support member 21 of this embodiment, a shim may be inserted between the column 21 and the holder base 3 so that the circumferential position of the rubber ring 25 is the initial position. does not change.
図 5は、 本発明の実施の形態に係る露光装置の構成を模式的に説明するた めの図である。  FIG. 5 is a diagram for schematically explaining the configuration of the exposure apparatus according to the embodiment of the present invention.
電子線露光装置 1 0 0の上部には、 光学鏡筒 1 0 1が配置されている。 光 学鏡筒 1 0 1には、 真空ポンプ (図示されず) が設置されており、 光学鏡筒 1 0 1内を真空排気している。  An optical lens barrel 101 is disposed above the electron beam exposure apparatus 100. A vacuum pump (not shown) is installed in the optical column 101, and the inside of the optical column 101 is evacuated.
光学鏡筒 1 0 1の上部には、 電子銃 1 0 3が配置されており、 下方に向け て電子線を放射する。 電子銃 1 0 3の下方には、 順にコンデンサレンズ 1 0 4 a , 電子線偏向器 1 0 4 b等を含む照明光学系 1 0 4が配置されてい る。 同鏡筒 1 0 4の下方には、 レチクル Rが配-置されている。 An electron gun 103 is arranged at the top of the optical barrel 101, and is directed downward. Emits an electron beam. Below the electron gun 103, an illumination optical system 104 including a condenser lens 104a, an electron beam deflector 104b, and the like are arranged in this order. A reticle R is disposed below the lens barrel 104.
電子銃 1 0 3から放射された電子線は、 コンデンサレンズ 1 0 4 aによつ て収束される。続いて、偏向器 1 0 4 bにより図の横方向に順次走査(スキヤ ン) され、 光学系の視野内にあるレチクル Rの各小領域 (サブフィールド) の照明が行われる。なお、図ではコンデンサレンズ 1 0 4 aは一段であるが、 実際の照明光学系には、 数段のレンズやビーム成形開口、 ブランキング開口 等が設けられている。  The electron beam emitted from the electron gun 103 is converged by the condenser lens 104a. Subsequently, the light is sequentially scanned (scanned) in the horizontal direction in the figure by the deflector 104b, and illumination of each small area (subfield) of the reticle R within the field of view of the optical system is performed. Although the condenser lens 104a has one stage in the figure, the actual illumination optical system is provided with several stages of lenses, a beam shaping aperture, a blanking aperture, and the like.
レチクル Rは、レチクルステージ 1 1 1のホルダ 1 1 0に支持されている。 レチクルステージ 1 1 1は、 定盤 1 1 6に載置されている。  Reticle R is supported by holder 110 of reticle stage 111. The reticle stage 1 1 1 is mounted on a surface plate 1 16.
レチクルステージ 1 1 1には、 図の左方に示す駆動装置 1 1 2が接続され ている。なお、実際には、駆動装置(リニアモータ) 1 1 2はステージ 1 1 1に 組み込まれている。 駆動装置 1 1 2は、 ドライバ 1 1 4を介して'、 制御装置 1 1 5に接続されている。 また、 レチクルステージ 1 1 1の側方(図の右方) にはレーザ干渉計 1 1 3が設置されている。 レーザ干渉計 1 1 3も、 制御装 置 1 1 5に接続されている。 レーザ干渉計 1 1 3で計測されたレチクルス テ一ジ 1 1 1の正確な位置情報が制御装置 1 1 5に入力される。 レチクルス テ一ジ 1 1 1の位置を目標位置とすべく、 制御装置 1 1 5からドライバ 1 1 4に指令が送出され、 駆動装置 1 1 2が駆動される。 その結果、 レチク ルステージ 1 1 1の位置をリアルタイムで正確にフィードバック制御するこ とができる。  The reticle stage 111 is connected to a drive device 112 shown on the left side of the figure. Actually, the driving device (linear motor) 112 is incorporated in the stage 111. The drive device 112 is connected to the control device 115 via a driver 114. Further, a laser interferometer 113 is set on the side of the reticle stage 111 (to the right in the figure). The laser interferometer 113 is also connected to the control device 115. Accurate positional information of the reticle stage 111 measured by the laser interferometer 113 is input to the controller 115. A command is sent from the control unit 115 to the driver 114 so that the position of the reticle stage 111 is set as the target position, and the drive unit 112 is driven. As a result, the position of the reticle stage 111 can be accurately feedback-controlled in real time.
定盤 1 1 6の下方には、 ウェハチャンバ (真空チャンバ) 1 2 1が配置さ れている。 ウェハチャンバ 1 2 1の側方 (図の右側) には真空ポンプ (図示 されず) が接続されており、 ウェハチャンバ 1 2 1内を真空排気している。 ウェハチャンバ 1 2 1内 (実際にはチャンバ内の光学鏡筒内) には、 コン デンサレンズ (投影レンズ) 1 2 4 a、 偏向器 1 2 4 b等を含む投影光学系 1 2 4が配置されている。 ウェハチャンパ 1 2 1内の下部には、 ウェハ (感 応基板) Wが配置されている。 A wafer chamber (vacuum chamber) 121 is disposed below the platen 116. A vacuum pump (not shown) is connected to the side (right side in the figure) of the wafer chamber 122, and the inside of the wafer chamber 121 is evacuated. A projection optical system 124 including a capacitor lens (projection lens) 124 a and a deflector 124 b is arranged in the wafer chamber 122 (actually in the optical barrel in the chamber). ing. The lower part of the wafer champer 1 2 1 (Substrate) W is arranged.
レチクル Rを通過した電子線は、 コンデンサレンズ 1 2 4 aにより収束さ れる。 コンデンサレンズ 1 2 4 aを通過しこ電子線は、 偏向器 1 2 4 bによ り偏向され、ウェハ W上の所定の位置にレチクル Rの像が結像される。なお、 図ではコンデンサレンズ 1 2 4 aは一段であるが、 実際には、 投影光学系中 には複数段のレンズや収差補正用のレンズゃコィルが設けられている。  The electron beam passing through reticle R is converged by condenser lens 124a. The electron beam passing through the condenser lens 124a is deflected by the deflector 124b to form an image of the reticle R at a predetermined position on the wafer W. In the figure, the condenser lens 124a has one stage, but in practice, the projection optical system is provided with a plurality of stages of lenses and a lens coil for aberration correction.
ウェハ Wは、 ブリアライメント終了後、 真空口ポットチャンバ 3 1内の真 空ローダ 3 0によってステージ 1 3 1上に搬送され、 ウェハステージ 1 3 1上のホルダ 1 3 0上に設けられた支持部材 1 0 (図 1参照) 上に支持 されている。 ウェハステージ 1 3 1は、 定盤 1 3 6に載置されている。  After the completion of the bri-alignment, the wafer W is transferred onto the stage 13 1 by the vacuum loader 30 in the vacuum port pot chamber 31, and is supported on the holder 1 30 on the wafer stage 13 1. It is supported on 10 (see Fig. 1). The wafer stage 13 1 is mounted on the platen 13.
ウェハステージ 1 3 1には、 図の左方に示す駆動装置 1 3 2が接続されて いる。なお、実際には駆動装置 1 3 2はステージ 1 3 1に組み込まれている。 駆動装置 1 3 2は、 ドライバ 1 3 4を介して、 制御装置 1 1 5に接続されて いる。 ウェハステージ 1 3 1の側方 (図の右方) にはレーザ干渉計 1 3 3が 設置されている。レーザ干渉計 1 3 3も、制御装置 1 1 5に接続されている。 レーザ干渉計 1 3 3で計測されたウェハステージ 1 3 1の正確な位置情報が 制御装置 1 1 5に入力される。ウェハステージ 1 3 1の位置を目標とすべく、 制御装置 1 1 5からドライバ 1 3 4に指令が送出され、 駆動装置 1 3 2が駆 動される。 その結果、 ウェハステージ 1 3 1の位置をリアルタイムで正確に フィードバック制御することができる。 発明の効果  The driving device 13 2 shown on the left side of the figure is connected to the wafer stage 13 1. Note that the driving device 13 2 is actually incorporated in the stage 13 1. The drive unit 132 is connected to the control unit 115 via a driver 134. A laser interferometer 13 3 is installed on the side of the wafer stage 13 1 (to the right in the figure). The laser interferometer 133 is also connected to the controller 115. The accurate position information of the wafer stage 13 1 measured by the laser interferometer 13 3 is input to the controller 1 15. In order to target the position of the wafer stage 131, a command is sent from the control device 115 to the driver 134, and the drive device 132 is driven. As a result, the position of the wafer stage 13 1 can be feedback-controlled accurately in real time. The invention's effect
以上の説明から明らかなように、 本発明によれば、 基板を支持部材上にほ ぼ点で保持するため、 ピックアップ時に位置ズレを起こさず、 かつ、 ズレ量 を安定させることができる。 これにより、 基板を高精度で安定に保持できる 露光装置を提供できる。  As is clear from the above description, according to the present invention, since the substrate is held on the support member at almost points, no displacement occurs during the pickup, and the displacement can be stabilized. This makes it possible to provide an exposure apparatus that can stably hold a substrate with high accuracy.

Claims

請 求 の 範 囲 The scope of the claims
1 . ウェハ又はレチクル等の基板を保持する方法であって、 1. A method for holding a substrate such as a wafer or a reticle,
該基板の 3ケ所以上の点 (支持点) を、 下方から、 軟質,非粘着性材料か らなる上凸の支持部を有する支持部材で支持することを特徴とする基板保持 方法。  A substrate holding method, wherein three or more points (support points) of the substrate are supported from below by a support member having an upwardly convex support portion made of a soft or non-adhesive material.
2 . ウェハ又はレチクル等の基板を保持する装置であって、  2. A device for holding a substrate such as a wafer or a reticle,
該基板の 3ケ所以上の点 (支持点) を下方から支持する、 軟質,非粘着性 材料からなる上凸の支持部を有する支持部材を備えることを特徴とする基板 保持装置。  A substrate holding device, comprising: a support member having an upwardly convex support portion made of a soft and non-adhesive material, which supports three or more points (support points) of the substrate from below.
3 . 前記支持部材の支持部がゴムリング又はゴムブロックであることを特 徴とする請求項 2記載の基板保持装置。  3. The substrate holding device according to claim 2, wherein the support portion of the support member is a rubber ring or a rubber block.
4 . 前記支持部材が前記支持部の高さ調節機構を備えることを特徴とする 請求項 2又は 3記載の基板保持装置。  4. The substrate holding device according to claim 2, wherein the support member includes a height adjustment mechanism of the support portion.
5 . ウェハ又はレチクル等の基板を保持する装置であって、 5. An apparatus for holding a substrate such as a wafer or a reticle,
該基板の 3ケ所以上の点 (支持点) を下方から支持する支持部材を有し、 該支持部材が、 高さ方向に延びる支柱と、 該支柱の先端から横方向に延 びる横棒と、 該横棒にはめ込まれるゴムリングとから構成されることを特 徴とする基板保持装置。  A support member for supporting three or more points (support points) of the substrate from below; the support member includes a column extending in a height direction; a horizontal bar extending laterally from a tip of the column; A substrate holding device comprising a rubber ring fitted to the horizontal bar.
6 . 感応基板上にエネルギ線を選択的に照射してパターン形成する露光装 置であって、 6. An exposure apparatus for selectively irradiating an energy beam onto a sensitive substrate to form a pattern,
請求項 2〜 5のいずれか 1項記載の基板保持装置を備えることを特徴とす  A substrate holding device according to any one of claims 2 to 5,
PCT/JP2003/008795 2002-09-19 2003-07-10 Method for supporting substrate, substrate supporting apparatus and exposure apparatus WO2004027856A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003298996A AU2003298996A1 (en) 2002-09-19 2003-07-10 Method for supporting substrate, substrate supporting apparatus and exposure apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002272842A JP2004111685A (en) 2002-09-19 2002-09-19 Method and apparatus for holding substrate, and aligner
JP2002-272842 2002-09-19

Publications (1)

Publication Number Publication Date
WO2004027856A1 true WO2004027856A1 (en) 2004-04-01

Family

ID=32024939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008795 WO2004027856A1 (en) 2002-09-19 2003-07-10 Method for supporting substrate, substrate supporting apparatus and exposure apparatus

Country Status (3)

Country Link
JP (1) JP2004111685A (en)
AU (1) AU2003298996A1 (en)
WO (1) WO2004027856A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006086427A (en) * 2004-09-17 2006-03-30 Nikon Corp Substrate holding method and apparatus therefor, and exposure device
JP5129626B2 (en) * 2008-03-24 2013-01-30 株式会社ニューフレアテクノロジー Electron beam drawing apparatus and electron beam drawing method
JP6482061B2 (en) * 2014-11-25 2019-03-13 レーザーテック株式会社 Mask stage and stage apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04736A (en) * 1990-04-17 1992-01-06 Tokyo Electron Ltd Wafer pushing-up device
JPH08159662A (en) * 1994-12-07 1996-06-21 Sumitomo Kinzoku Ceramics:Kk Jig for setting workpieces
JPH10335429A (en) * 1997-06-04 1998-12-18 Tokyo Electron Ltd Wafer allignment and apparatus therefor
JPH1187474A (en) * 1997-09-01 1999-03-30 Jeol Ltd Sample stage
JP2002009139A (en) * 2000-06-20 2002-01-11 Nikon Corp Electrostatic chuck

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04736A (en) * 1990-04-17 1992-01-06 Tokyo Electron Ltd Wafer pushing-up device
JPH08159662A (en) * 1994-12-07 1996-06-21 Sumitomo Kinzoku Ceramics:Kk Jig for setting workpieces
JPH10335429A (en) * 1997-06-04 1998-12-18 Tokyo Electron Ltd Wafer allignment and apparatus therefor
JPH1187474A (en) * 1997-09-01 1999-03-30 Jeol Ltd Sample stage
JP2002009139A (en) * 2000-06-20 2002-01-11 Nikon Corp Electrostatic chuck

Also Published As

Publication number Publication date
JP2004111685A (en) 2004-04-08
AU2003298996A1 (en) 2004-04-08
AU2003298996A8 (en) 2004-04-08

Similar Documents

Publication Publication Date Title
JP6855010B6 (en) Substrate holding device, exposure device and device manufacturing method
JP5273522B2 (en) Exposure apparatus and device manufacturing method
US6900878B2 (en) Reticle-holding pods and methods for holding thin, circular reticles, and reticle-handling systems utilizing same
US20020008864A1 (en) Substrate holding apparatus and exposure apparatus including substrate holding apparatus
JP5277059B2 (en) Film forming apparatus and film forming system
US6825915B2 (en) Alignment device
JP7244401B2 (en) Alignment apparatus, film formation apparatus, alignment method, film formation method, and electronic device manufacturing method
JPH02100311A (en) Alignment device and sor-x ray exposure device provided with same
US6906790B2 (en) Reticle manipulators and related methods for conveying thin, circular reticles as used in charged-particle-beam microlithography
US20200365442A1 (en) Substrate processing apparatus and substrate processing method
WO2006057299A1 (en) Stage apparatus and exposure apparatus
WO2021015224A1 (en) Alignment mechanism, alignment method, film formation device, and film formation method
JPH1041376A (en) Apparatus and method for holding substrate and exposure apparatus
WO2004027856A1 (en) Method for supporting substrate, substrate supporting apparatus and exposure apparatus
WO2017188343A1 (en) Holding device, exposure method, exposure system, and transfer system
CN111434795A (en) Film forming apparatus, film forming method, and apparatus and method for manufacturing electronic device
JP4393150B2 (en) Exposure equipment
CN111434797B (en) Film forming apparatus and electronic device manufacturing apparatus
JP2006086427A (en) Substrate holding method and apparatus therefor, and exposure device
JP7379072B2 (en) Film forming equipment, electronic device manufacturing equipment, film forming method, and electronic device manufacturing equipment
WO2024062801A1 (en) Film forming apparatus and film forming method
US20220277979A1 (en) Bonding apparatus, bonding system, and bonding method
WO2023210464A1 (en) Film deposition device, film deposition method, electronic device manufacturing method, and computer program recording medium
JP2005032886A (en) Mask frame and method and device for exposure
TW202314401A (en) Stage apparatus, lithography apparatus and article manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase