WO2004026899A1 - Immunogene permettant de preparer des vaccins ou des medicaments therapeutiques pour traiter l'hepatite b et son procede de production et d'utilisation - Google Patents

Immunogene permettant de preparer des vaccins ou des medicaments therapeutiques pour traiter l'hepatite b et son procede de production et d'utilisation Download PDF

Info

Publication number
WO2004026899A1
WO2004026899A1 PCT/CN2003/000792 CN0300792W WO2004026899A1 WO 2004026899 A1 WO2004026899 A1 WO 2004026899A1 CN 0300792 W CN0300792 W CN 0300792W WO 2004026899 A1 WO2004026899 A1 WO 2004026899A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
sequence
acid sequence
immunogen
variant
Prior art date
Application number
PCT/CN2003/000792
Other languages
English (en)
French (fr)
Other versions
WO2004026899A9 (fr
Inventor
Yuzhang Wu
Jiang Bian
Wei Zhou
Zhengcai Jia
Tongdong Shi
Liyun Zou
Original Assignee
Institute Of Immunology, Pla
Chongqing Jiachen Bioengineering Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Immunology, Pla, Chongqing Jiachen Bioengineering Co., Ltd. filed Critical Institute Of Immunology, Pla
Priority to AU2003271021A priority Critical patent/AU2003271021A1/en
Priority to US10/528,350 priority patent/US8591908B2/en
Publication of WO2004026899A1 publication Critical patent/WO2004026899A1/zh
Publication of WO2004026899A9 publication Critical patent/WO2004026899A9/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/005Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2730/00Reverse transcribing DNA viruses
    • C12N2730/00011Details
    • C12N2730/10011Hepadnaviridae
    • C12N2730/10111Orthohepadnavirus, e.g. hepatitis B virus
    • C12N2730/10122New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes

Definitions

  • the invention relates to an immunogen for the treatment of hepatitis B, a preparation method and application thereof, and a hepatitis B vaccine or medicine containing the immunogen, and a production method and application thereof.
  • Hepatitis B virus is a global disease. According to the WHO report, approximately 30% of the population is infected with hepatitis B virus worldwide, approximately 1.8 billion; approximately 35 million are chronically infected. The latter is manifested as persistent viremia, and its viral level is more than 100-1000 times that of AIDS virus (HCV) and hepatitis C virus (HCV). Within the global community, China is a highly endemic area, with hepatitis B virus carriers accounting for approximately 10% (120 million) of the population, and approximately 30 million patients with chronic hepatitis. Viral hepatitis B is mostly transmitted during the perinatal period, the onset of adolescence, and the deterioration of young adults.
  • HCV AIDS virus
  • HCV hepatitis C virus
  • HBV Hepatitis B virus
  • the main means of controlling the hepatitis B epidemic is the global immunization programme run by the WHO. But because: (1) the preventive vaccine adopted by the plan is not effective for infected people; (2) 5-15% of non-infected newborns do not respond; (3) the vaccination penetration rate is still not high, and According to statistics in 1999, the immunization rate of newborns in high-incidence areas is only 62%. Therefore, for a long time to come, hepatitis B will remain one of the most important issues that endanger human health.
  • HBV core antigen (HBcAg) in liver cancer and its adjacent tissues were 62.5% and 29.2%, respectively. It has been confirmed that: (1) HBV as a hepatotropic virus cannot directly cause liver cell damage, and the pathological and clinical consequences of its infection depend on the immunity Epidemic mechanism. (2) As an intracellular infection, the state of chronic persistent infection is mainly related to the weak cellular immune response. Among them, HBV-specific cytotoxic T lymphocyte (CTL) response determines the final result of HBV infection. After infection with HBV, the virus in the body with high CTL activity was cleared and healed; those with low or undetectable CTL activity developed chronic chronic infection and further developed cirrhosis or / and liver cancer. Therefore, overcoming the immune tolerance status of patients with persistent HBV infection and initiating the HBV-specific CTL response in vivo can treat the persistent status of chronic HBV infection and prevent its related secondary cirrhosis, liver cancer and other diseases.
  • CTL cytotoxic T lymphocyte
  • a first object of the present invention is to provide an immunogen capable of inducing HBV-specific CTL, and a therapeutic hepatitis B vaccine containing the immunogen.
  • a second object is to provide a method for preparing the immunogen and a method for preparing the therapeutic hepatitis B vaccine.
  • a third object of the present invention is to provide the use of the immunogen for the preparation of a therapeutic hepatitis B vaccine or medicine.
  • the invention also provides the application of the immunogen for preparing a vaccine or a medicament for treating a persistent state of HBV chronic infection and its related secondary liver cirrhosis, liver cancer and other diseases.
  • Figure 1 is a schematic diagram of an epitope-based vaccine design route (EPVOPE-BASED VACCINE DESIGN, EBVD).
  • EBVD epitope-based vaccine design route
  • the molecule is obtained through chemical or gene synthesis, and is subjected to functional screening and preliminary toxicological and pharmacological evaluation. Through structure-activity relationship analysis, the molecule is modified and optimized, and then synthesized and evaluated to enter the next cycle. With about 200 cycles, a leading structure can be obtained.
  • Figure 2 shows the proliferation effect of induced lymphocytes. Take fresh peripheral blood of HLA-A2 + healthy people, isolate peripheral blood mononuclear lymphocytes by Ficoll-Hypaque method, and culture in vitro in a 96-well cell culture plate ( 106 cells / well) with RPMI1640 medium (containing 10% fetal bovine serum). .
  • test drug group CH 3 (CH 2 ) 14 COKSSQYIKANSKFI GITEAAAFLPSDFFPSVGGGDPRVRGLYFPA
  • Pre-S2 control group a Pre-S2 control group
  • a blank control group IL-2 (5IU) and the test drug
  • IL-2 5IU
  • 3 H-TdR ly Ci / ml
  • the results show that the test drug can significantly induce the proliferation response of lymphocytes.
  • the lowest effective dose is (King, which is a dose-dependent response in the range of 0.1-10ng dose.
  • Figure 3 shows the effect of inducing Thl polarization.
  • test drug could induce IFN-Y secretion with a significant dose-response effect, while the effect of inducing IL-4 secretion was not significant. It is suggested that the test drug has a stronger function of inducing polarization of Thl type T cells, and a function of inducing polarization of Th2 type T cells is weak.
  • CHCH 2 CH CH (CH 2 ) 7 C07 SSQYI ANSKFIGITEGGGDPRVR GLYFPA), continue to culture for 6 days, and then stimulate with the same dose of IL-2 and the test drug once a week for a total of 3 times, 3 days after the last stimulation, obtain the antigen Specific effector CTL cells. Cytotoxic activity was compared using a standard 51 Cr release test.
  • the target cells are: 2215 (HBV-infected human hepatocellular carcinoma cell line, which can simulate the function of HBV-infected hepatocytes), E6 (human HLA-A * 0201 transfected P815 cells, CTL epitope peptide antigen pre-incubation), 2 (111 ⁇ 2 + human T and B lymphoma cell lines, CTL epitope peptide antigen pre-incubation); the ratio of effective target cells was (E / T): 12.5, 25, 50, 100. The results show that the test drug can induce CTL effect in human PBMC and specifically lyse target cells (A).
  • the ELISPOT method was used to detect and compare the proliferation effect of the test drug-induced IFN-Y-secreting CTL cells in peripheral A lymphocytes. The results show that the test drug can induce the proliferation of IFN-Y secreting cells in human PBMC, and has a significant dose-response relationship (B, C).
  • Figure 5 shows the antiviral effect of the immunogen of the invention.
  • A HBV-DNA copy number
  • B HBeAg
  • B HBeAg
  • B HBeAg
  • B HBeAg secretion
  • test drug CH 3 (CH 2 ) 14 COKSSQYIKANSKFIGIT EAAAFLPSDFFPSVGGGCTKPTDGNCT
  • HLA-A2 + human PBMC activation with a significant dose-response relationship.
  • HBV-DNA transgenic mice (ayw type HBV whole gene (1.3Kb) transfected to Kunming mice) were used as models. Animals were randomly divided into groups of 5 animals, injected subcutaneously under the lateral flank and hind paw, and administered at 3 doses of 10, 100, and 1000 U / rats, and boosted once a week for a total of 3 times. Let IFN-a 2b (15000U / mouse) be the positive control drug and normal saline as the negative control drug. Thirty days after the administration, the spleen of the mouse was collected, and the lymphocytes of the spleen were isolated. The test sample was stimulated with 10 ng / ml for 3 days in vitro.
  • the supernatant was taken out and the cytokines such as IFN-Y and IL-4 in the culture supernatant were detected by ELISA.
  • the secretion status of the test drug (CH 3 (CH 2 ) 14 COKSSQYIKANSKFIGITEAAASIVSPFIPL LGGGDPRVRGLYFPA) was used to induce Thl / Th2 polarization of T cells in vivo.
  • strong IFN-Y secretion could be detected; there was no obvious dose-response relationship between the detection of IL-4 (A, B, C) o
  • the above supernatant was detected by ELI-SPOT method- Frequency of expression in peripheral blood lymphocytes.
  • the present invention provides the following aspects:
  • an immunogen characterized in that the immunogen contains a polypeptide sequence containing amino acid sequence 1, amino acid sequence 2 and amino acid sequence 3, amino acid sequence 1, amino acid sequence 2 and amino acid sequence 3 are respectively composed of several amino acids
  • a linker peptide consisting of residues is covalently linked;
  • the amino acid sequence 1 is a Th cell epitope sequence;
  • the amino acid sequence 2 is a CTL epitope sequence derived from a hepatitis B virus;
  • the amino acid sequence 3 is a hepatitis B virus B-cell epitope sequence of origin.
  • the above amino acid sequence 1 is the 830-843 amino acid sequence or a variant sequence of the tetanus toxoid-derived Th cell epitope or the universal Th cell epitope PADRE; the amino acid sequence 2 is: 18-27 of the HBV core antigen Amino acid sequence or its variant sequence, 141-151 amino acid sequence or its variant sequence, 117-125 amino acid sequence or its variant sequence, 88-94 amino acid sequence or its variant sequence, 88-96 amino acid sequence or its variant sequence, HBV surface antigen 183-191 amino acid sequence or its variant sequence, 201-210 amino acid sequence or its variant sequence, 204-212 amino acid sequence or its variant sequence, 370-379 amino acid sequence or its variant sequence, 251-259 amino acid sequence or its variant Sequence, 260-269 amino acid sequence or variation thereof, 335-343 amino acid sequence or variation thereof, 338-347 amino acid sequence or variation sequence, 348-357 amino acid sequence or variation sequence, 378-387 amino acid sequence or variation thereof Sequence; 10-17th amino acid sequence
  • amino acid sequence 1 is QYIKANSKFIGITE or its variant sequence, PADRE or its variant sequence;
  • amino acid sequence 2 is: PLGFFPDH or its variant sequence, MQWNSTALHQALQDP or its variant sequence, SILSKTGDPV or its variant sequence, VLQAGFFLL or its variant sequence, FLLTRILTI or Its variant sequence, FLGGTPVCL or its variant sequence, LLCLIFLLV or its variant sequence, LLDYQGMLPV or its variant sequence, WLSLLVPFV or its variant sequence, GLSPTVWLSV or its variant sequence, KVLHKRTLGL or its variant sequence, VLHKRTLGL or its variant sequence, GLSAMSTTDL or its variant Sequence, CLFKDWEEL or its variant sequence, VLGGCRHKLV or its variant sequence, FLPSDFFPSV or its variant sequence, STLPETTVVRR or its variant sequence, E YLVSFGVW or its variant sequence, GLYSSTVPV or its variant sequence, GLSRYVARL or its variant sequence
  • the above immunogen is characterized in that the connecting peptide is composed of three to seven amino acid residues.
  • the above immunogen is characterized in that the connecting peptide is AAA, SSS or GGG.
  • the above immunogen is characterized in that the connection order between amino acid sequence 1, amino acid sequence 2 and amino acid sequence 3 is: amino acid sequence 1-amino acid sequence 2-amino acid sequence 3, amino acid sequence 1-amino acid sequence 3-amino acid sequence 2, amino acid sequence 2-amino acid sequence 1-amino acid sequence 3, amino acid sequence 2-amino acid sequence 3-amino acid sequence 1, amino acid sequence 3-amino acid sequence 1-amino acid sequence 2, or amino acid sequence 3-amino acid sequence 2-amino acid sequence 1.
  • the above immunogen is characterized in that the immunogen further contains several modification groups, and the modification groups are an alkylcarbonyl group and an alkenylcarbonyl group.
  • the immunogen described above is characterized in that the immunogen contains two modifying groups.
  • the above-mentioned immunogen is characterized in that the immunogen contains a modifying group.
  • the above immunogen is characterized in that the alkylcarbonyl group is selected from the group consisting of CH 3 (CH 2 ) ioCO-, CH 3 (CH 2 ) 12 CO-, CH 3 (CH 2 ) 14 CO-, and CH 3 (CH 2 ) 16 one to five of a group of alkylcarbonyl groups consisting of co-;
  • the above immunogen is characterized in that the modified group is covalently linked to any one amino acid residue of the polypeptide sequence.
  • the above immunogen is characterized in that the modifying group is covalently linked to any one of a side chain group of an N-terminal ⁇ amino group, a C-terminal ⁇ carboxyl group or an amino acid residue of the polypeptide sequence.
  • the above immunogen is characterized in that the modifying group and the N-terminal ⁇ amino group of the polypeptide sequence are connected through a linking peptide KSS, wherein the terminal ⁇ amino group of the polypeptide sequence and the C terminal of the linking peptide KSS are connected The peptide bond is linked, and the modifying group is covalently linked to the epsilon amino group of the linking peptide KSS.
  • the above immunogen is characterized in that the modifying group is covalently connected to a group such as an amino group, a carboxyl group, or a hydroxyl group on the side chain group.
  • the immunogen is characterized in that the modifying group is covalently linked to the ⁇ amino group of the N-terminal lysine.
  • the above immunogen is characterized in that an ⁇ amino group of the linking peptide KSS is further covalently linked to one of the modifying groups.
  • CH 3 (CH 2 ) 7 CH CH (CH 2 ) -CO
  • the above immunogen is characterized by a primary structure.
  • the above immunogen is characterized by a primary structure.
  • a method for designing, screening and synthesizing the above-mentioned immunogens including epitope-based vaccine design (EBVD), molecular simulation, molecular design, screening system and peptide solid phase synthesis, in which the resin and each amino acid are used in peptide solid phase synthesis Or the molar ratio of palmitic acid feed is 1: 2-1: 8.
  • the arginine, asparagine and palmitic acid components are connected by double coupling, and the reaction temperature is 20-40 ° C.
  • the molar ratio of the above feed is 1: 4, and the above reaction temperature is 30 ° C.
  • a method for preparing the above-mentioned immunogen characterized in that the method includes the following steps: (1) the polypeptide solid phase synthesizes the immunogen-resin, and the immunogen-resin represents an immunogen bound to the resin; (2) the Lysing the immunogen-resin to obtain a lysate;
  • the immunogen is purified by reversed-phase chromatography.
  • step (2) uses a TFA lysate; the lysis conditions are the concentration of the immunogen-resin: less than 100 mg / ml, the reaction temperature: 15-50 ° C, the reaction time: 0.5-3 hour.
  • the TFA lysate is: 0.75 g benzyl phenol, 0.25 ml ethanedithiol, 0.5 ml anisole, 0.5 ml deionized water, 10.0 ml TFA; the lysis condition is immune Proto-resin concentration: 40.00 mg / ml, reaction temperature: 25 ° C, reaction time: 1.5 hours.
  • the method described above is characterized in that the column packing used in the size exclusion chromatography in the step (3) is Sephadex LH20, and the mobile phase is dimethyl sulfoxide.
  • the method described above is characterized in that the column packing used in the reverse-phase chromatography in step (4) is POROS 50 Rl, POROS 50 R2, SOURCE 30 RPC or Dleta Pak C18.
  • the method as described above is characterized in that the reversed-phase chromatography in step (4) uses a gradient elution and the mobile phase uses an acetonitrile / TFA, acetonitrile / HC1, ethanol / TFA, ethanol / HC1 or ethanol / phosphoric acid aqueous solution.
  • the method as described above is characterized in that the column temperature of the reversed-phase chromatography purification is 20-60X3.
  • the method as described above characterized in that the column temperature of the reversed phase chromatography purification is 34 "C.
  • the above immunogen is used for preparing a vaccine for treating chronic HBV infection and its related secondary cirrhosis, liver cancer and other diseases Or drug use.
  • a therapeutic hepatitis B vaccine is characterized in that the vaccine contains the above-mentioned immunogen.
  • a therapeutic hepatitis B vaccine is characterized in that the vaccine contains the above-mentioned immunogen and a pharmaceutically acceptable excipient, adjuvant and / or carrier.
  • the therapeutic hepatitis B vaccine as described above is characterized in that the vaccine is any one of pharmaceutically acceptable dosage forms.
  • the hepatitis B vaccine for treatment as described above is characterized in that the preparation of the vaccine is an injection, a transdermal agent, an oral agent, an inhaler or a suppository.
  • the hepatitis B vaccine for treatment as described above is characterized in that the dosage form of the vaccine is Ethanol solution formulations, suspension formulations, liquid liposome formulations, or lyophilized liposome formulations.
  • the hepatitis B vaccine for treatment as described above characterized in that the liquid liposome dosage form or the lyophilized liposome dosage form contains a phospholipid.
  • the hepatitis B vaccine for treatment as described above is characterized in that the molar ratio of immunogen, phospholipid, cholesterol, vitamin E and palmitic acid in the vaccine is 0.1-0.5: 40-80: 0-40: 0-10: 0 -10.
  • the hepatitis B vaccine for treatment as described above is characterized in that the molar ratio of the immunogen, phospholipid, cholesterol, vitamin E and palmitic acid in the vaccine is 0.2-0.4: 60: 20: 6: 6.
  • the hepatitis B vaccine for treatment as described above is characterized in that the molar ratio of immunogen, phospholipid, cholesterol, vitamin E and palmitic acid in the vaccine is 0.3-0.36: 60: 20: 6: 6.
  • a method for preparing the above-mentioned therapeutic hepatitis B vaccine characterized in that the method includes preparing a liposome by a secondary emulsification method.
  • the above-mentioned therapeutic hepatitis B vaccine is characterized in that the lyophilized liposome dosage form contains the immunogen, phospholipid, cholesterol, palmitic acid, vitamin E, mannitol, human albumin, KH 2 P04, Na 2 HP04, whose molar ratio is 0.01-0.1: 5-15: 1-7: 0.5-1.5: 0.5-1.5: 70- 150: 0.1-0.3: 1-10: 1-10.
  • the object of the present invention is also to provide a method for designing, screening, and preparing the immunogen or vaccine of the present invention as described above.
  • the invention establishes for the first time an epitope-based vaccine design technology route (English translation: EPITOPE-BASED VACCINE DESIGN, EBVD).
  • EBVD based on the hepatitis B antigen epitope map, according to different types of epitopes, different antigen source epitopes, different connection sequences, different chemical modification groups, etc., the EBVD scheme was used for design and screening.
  • An immunogen with the aforementioned skeletal structure was identified for the first time.
  • this molecule can stimulate human peripheral blood lymphocytes to produce a proliferative response, Thl polarization response, HBV-specific CTL response, and inhibit HBV replication; it is more than 200 times more efficient than using a single epitope peptide.
  • HBV transgenic mice Thl polarization response, HBV-specific CTL response, and inhibition of HBV replication were effectively stimulated.
  • the experimental results show that the above immunogen can be developed into a new type of hepatitis B and a vaccine or drug for the treatment of secondary cirrhosis and liver cancer.
  • This molecule was prepared by solid-phase chemical synthesis. Factors such as the optimal temperature of the reaction system, feed ratio, method and time of peptide resin cleavage, and purification conditions were determined.
  • the optimal reaction temperature is 30-40 ° C; using the HOBT / DCC coupling strategy, ⁇ , ⁇ , ⁇ , ⁇ four components are continuously synthesized, and R, ⁇ , and ⁇ are double-coupled.
  • the optimal molar feed ratio of the resin is 4: 1, and the average coupling efficiency of each amino acid or component is more than 99.5%; the peptide resin is cracked by the trifluoroacetic acid method, and the optimal cracking time is 90 minutes.
  • a two-step purification method is used: (1) preliminary purification by size exclusion chromatography with dimethyl sulfoxide (DMSO) as the mobile phase, and the optimal column temperature is 20-40 ° C. (2) Highly purified by reversed phase chromatography. Factors such as the best loading conditions, the best chromatographic packing, and the best column temperature were studied.
  • the optimal chromatographic packing is POROS 50 Rl, and the optimal column temperature is.
  • the invention adopts L 9 (3 4 ) orthogonal design and screening to obtain the best prescription of the immunogen liposome injection. It contains the above-mentioned immunogen, soy phospholipid, palmitic acid, vitamin E and / or cholesterol.
  • a third object of the present invention is to provide a method for treating these immunogens of the present invention.
  • HBV chronic infection status and its associated secondary cirrhosis, liver cancer vaccine or drug application are associated with HBV chronic infection status and its associated secondary cirrhosis, liver cancer vaccine or drug application.
  • the above-mentioned immunogen and its dosage form are immunized by using any known method of immunization, such as subcutaneous injection, intradermal injection, intraperitoneal injection, intravenous injection, and the like.
  • the immunization dose may be from 0.1 to 20 nmol. No additional adjuvant may be used.
  • For immunizing mice or HLA transgenic mice can stimulate lymphocyte activation and proliferation, Thl polarization and CTL response; for immunizing HBV transgenic mice can stimulate lymphocyte activation and proliferation, Thl polarization and CTL response in a dose-dependent manner It also inhibits HBV replication, decreases HBV DNA copy number in blood, decreases or disappears HBsAg and HBeAg titers.
  • Stimulating human peripheral blood mononuclear cells in vitro can stimulate lymphocyte activation and proliferation, Thl polarization and CTL response in a dose-dependent manner, the latter can kill HepG2.2.1.5 cells, E6 cells, inhibit HBV replication, and HBV DNA copy number Decrease, HBsAg, HBeAg titers decrease or disappear. This effect is more than 200 times higher than using a single epitope polypeptide alone. Examples
  • the EBVD scheme is used to design and screen the source range of the epitope components. Including: HBV s antigen, e antigen, c antigen-derived B-cell epitope, T helper cell (Th) epitope, cytotoxic T cell (CTL) epitope, general Th cell epitope from other antigens, epitope Modification group.
  • epitope-modifying groups single-chain fatty acids which have been proven in the literature to promote immune activity and carbohydrate groups proven by the present inventors are considered.
  • the order of attachment between epitopes is -A-A-A- or -G-G-G-, which has been shown to have no effect on antigenicity (immunogenicity). Thus, 200 ⁇ structures were obtained.
  • molecular simulation method (Insightll software) was used to compare the structure of the designed antigenic peptide with the similarity of the natural antigen, the steric hindrance of binding to MHC, etc., and the immunogenicity, physicochemical, and biochemical characteristics of the antigenic peptide were analyzed. Sort.
  • the designed immunogen was synthesized by chemical synthesis. First, a computer sequencing and theoretically most probable structure was synthesized, and then in vitro functional screening was performed. In vitro function Screening includes: induction of Th1 polarization on human peripheral blood mononuclear cells, induction of HBV-specific CTL, and inhibition of peptide antigen-specific CTL on HBsAg and HBeAg of HepG2.2.1.5 cells. According to the in vitro functional experiments, the designed structure is optimized, improved, and synthesized, and the next round of experiments is performed. The structure screened in vitro is screened in vivo, including: induced Thl polarization in Balb / C mice, virus replication inhibition in HBV transgenic mice, and acute toxicity experiments in mice.
  • the number of listed epitopes is an immunogen composed of three types of epitopes (including different arrangements). Among them, C: CTL epitope; ⁇ : Beta cell epitope; T: Th cell epitope. The number indicates the number of the epitope. The results are shown in the table.
  • the arrangement refers to the epitope arrangement from the N-terminus to the C-terminus.
  • C CTL epitope
  • B B cell epitope
  • T Th cell epitope.
  • the table shows the results of in vitro experiments.
  • Fmoc solid-phase chemical synthesis protocol was used. The fixed carboxyl terminus extends the peptide chain from the C-terminus to the N-terminus. Performed on an Applied Biosystems 431 A peptide synthesizer. Fmoc amino acid is used as the raw material, the loading amount is lmM, and the side chain protection is: Ser (tBu), Thr (tBu), Tyr (tBu), His (Trt), Gln (Trt), ASP (OtBu), Glu (OtBu), Arg (Pmc). HMP-resin was used as the solid phase carrier, the loading amount was 0.25mM, and the ratio of raw material / resin was 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the polypeptide) coupled to the resin was activated by the symmetric anhydride activation method, and the remaining amino acids and palmitic acid were activated by the HOBt / DCC activation method. Among them, asparagine, arginine and palmitic acid are double-coupled, and there is no step of removing the Fmoc protecting group after palmitic acid coupling.
  • Fmoc solid-phase chemical synthesis protocol was used. The fixed carboxyl terminus extends the peptide chain from the C-terminus to the N-terminus. Performed on an Applied Biosystems 431A peptide synthesizer. Fmoc amino acid as raw material, loading amount of ImM, side chain protection is: Ser (tBu), Thr (tBu), Tyr (tBu), His (Trt), Gln (Trt), ASP (OtBu), Glu (OtBu), Arg (Pmc) facedSelects HMP-resin as the solid phase carrier, the loading amount is 0.25mM, and the raw material / resin ratio is 4: 1.
  • the amino acid (the first amino acid at the carboxyl end of the peptide) coupled to the resin is activated by a symmetric anhydride
  • the remaining amino acids and palmitic acid are activated by the HOBt / DCC activation method.
  • asparagine, arginine, and palmitic acid are double-coupled, and there is no step of removing the Fmoc protecting group after palmitic acid coupling.
  • Fmoc solid-phase chemical synthesis protocol was used. The fixed carboxyl terminus extends the peptide chain from the C-terminus to the N-terminus. Performed on an Applied Biosystems 431 A peptide synthesizer. Fmoc amino acid as raw material, loading amount of ImM, side chain protection is: Ser (tBu), Thr (tBu), Tyr (tBu), His (Trt), Gln (Trt), ASP (OtBu), Glu (OtBu), Arg (Pmc) facedSelects HMP-resin as the solid phase carrier, the loading amount is 0.25mM, and the raw material / resin ratio is 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the peptide at the peptide end) coupled to the resin is activated by a symmetrical acid anhydride activation method
  • the activation of the remaining amino acids and palmitic acid uses the HOBt / DCC activation method. Among them, asparagine, arginine, and palmitic acid are double-coupled, and there is no step of removing the Fmoc protecting group after palmitic acid coupling.
  • Fmoc solid-phase chemical synthesis protocol was used. The fixed carboxyl terminus extends the peptide chain from the C-terminus to the N-terminus. Performed on an Applied Biosystems 431 A peptide synthesizer. Fmoc amino acid as raw material, loading amount of ImM, side chain protection is: Ser (tBu), Thr (tBu), Tyr (tBu), His (Trt), Gln (Trt). ASP (OtBu), Glu (OtBu), Arg (Pmc) facedSelects HMP-resin as the solid phase carrier, the loading amount is 0.25mM, and the raw material / resin ratio is 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the peptide at the carboxyl end of the peptide) coupled to the resin is activated by a symmetrical acid anhydride activation method
  • the activation of the remaining amino acids and palmitic acid uses the HOBt / DCC activation method. Among them, double coupling is used, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • TFA, EDT, benzoic acid, crystalline phenol, and ultrapure water are mixed at a certain ratio to cut the peptide from the resin, the side protective groups are cut from the amino acid, the ether is precipitated, and the rotary evaporation is used to make the crude
  • the peptide product was identified by HPLC, and the crude peptide product was stable at about 80%.
  • Fmoc solid-phase chemical synthesis scheme was used.
  • the fixed carboxyl terminus extends the peptide chain from the C-terminus to the N-terminus.
  • Fmoc amino acid was used as the raw material, and the loading amount was lmM.
  • the side chain protection was the same as in Example 3.
  • HMP-resin was used as the solid phase carrier, and the loading amount was 0.25 mM.
  • the ratio of raw material / resin was 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the peptide at the peptide end) coupled to the resin was activated by the symmetric anhydride activation method.
  • the activation of the acid was performed using the HOBt / DCC activation method. Among them, double coupling is adopted, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • Cleavage and deprotection TFA, EDT, anisole, crystalline phenol, and ultrapure water are mixed at a certain ratio to cut the peptide from the resin, the side protective groups are cut off from the amino acid, and the ether is precipitated.
  • the crude peptide product was identified by HPLC, and the purity of the crude peptide product was stable at about 80%.
  • Fmoc solid-phase chemical synthesis protocol was used. The fixed carboxyl terminus extends the peptide chain from the C-terminus to the N-terminus. Performed on an Applied Biosystems 431 A peptide synthesizer. Fmoc amino acid was used as the raw material, the loading amount was 1 mM, and the side chain protection was the same as in Example 3. HMP-resin was used as the solid phase carrier. The loading amount was 0.25mM, and the ratio of raw material / resin was 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the polypeptide) coupled to the resin was activated by the symmetric anhydride activation method, and the remaining amino acids and palmitic acid were activated by the HOBt / DCC activation method. Among them, the double coupling is adopted, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • TFA, EDT, anisole, crystalline phenol, and ultrapure water are mixed at a certain ratio to cut the peptide from the resin, the side protective groups are cut off from the amino acid, and the ether is precipitated.
  • the crude peptide product was identified by HPLC, and the purity of the crude peptide product was stable at about 80%.
  • Fmoc solid-phase chemical synthesis scheme was used. The fixed carboxyl terminus extends the peptide chain from the C-terminus to the N-terminus. Performed on an Applied Biosystems 431 A peptide synthesizer. Fmoc amino acid was used as the raw material, the loading amount was ImM, and the side chain protection was the same as in Example 3. HMP-resin was selected as the solid phase carrier, and the loading amount was 0.25 mM. The raw material / resin ratio was 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the polypeptide) coupled to the resin was activated by the symmetric anhydride activation method, and the remaining amino acids and palmitic acid were activated by the HOBt / DCC activation method. Among them, double coupling is adopted, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • Cleavage and deprotection Use TFA, EDT, benzosulfonyl, crystalline phenol, and ultrapure water to mix the peptide in a certain ratio to cut the peptide from the resin and the side protective groups from the amino acid. Ether precipitation, rotary evaporation
  • the crude peptide product was identified by HPLC, and the purity of the crude peptide product was stable at about 80%.
  • Fmoc solid-phase chemical synthesis protocol was used. The fixed carboxyl terminus extends the peptide chain from the C-terminus to the N-terminus. Performed on an Applied Biosystems 431A peptide synthesizer. Fmoc amino acid was used as raw material, and the loading amount was 1 mM. The side chain protection was the same as in Example 3. HMP-resin was selected as the solid phase carrier, the loading amount was 0.25mM, and the raw material / resin ratio was 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the polypeptide) coupled to the resin was activated by the symmetric anhydride activation method, and the remaining amino acids and palmitic acid were activated by the HOBt / DCC activation method. Among them, the double coupling is adopted, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • TFA, EDT, anisole, crystalline phenol, and ultrapure water are mixed at a certain ratio to cut the peptide from the resin, the side protective groups are cut off from the amino acid, and the ether is precipitated.
  • the crude peptide product was identified by HPLC, and the purity of the crude peptide product was stable at about 80%.
  • Fmoc solid-phase chemical synthesis protocol was used. The fixed carboxyl terminus extends from the C-terminus to the N-terminus. Performed on an Applied Biosystems 431A peptide synthesizer. Fmoc amino acid was used as the raw material, the loading amount was lmM, and the side chain protection was the same as in Example 3. “HMP-resin was used as the solid phase carrier, the loading amount was 0.25 mM, and the raw material / resin ratio was 4: 1.
  • the amino acid coupled to the resin ( The first amino acid at the carboxyl terminus of the peptide is activated by a symmetric anhydride activation method, and the remaining amino acids and palmitic acid are activated by a HOBt / DCC activation method. Among them, double coupling is used, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • Fmoc solid-phase chemical synthesis protocol was used. The fixed carboxyl terminus extends the peptide chain from the C-terminus to the N-terminus. Performed on an Applied Biosystems 431 A peptide synthesizer. Fmoc amino acid was used as raw material, and the loading amount was 1 mM. The side chain protection was the same as in Example 3. HMP-resin was used as the solid phase carrier, and the loading amount was 0.25 mM. The ratio of raw material / resin was 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the polypeptide) coupled to the resin was activated by the symmetric anhydride activation method, and the remaining amino acids and palmitic acid were activated by the HOBt / DCC activation method. Among them, the double coupling is adopted, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • TFA, EDT, anisole, crystalline phenol, and ultrapure water are mixed at a certain ratio to cut the peptide from the resin, the side protective groups are cut off from the amino acid, and the ether is precipitated.
  • the crude peptide product was identified by HPLC, and the purity of the crude peptide product was stable at about 78%.
  • Fmoc solid-phase chemical synthesis protocol was used. The fixed carboxyl terminus extends the peptide chain from the C-terminus to the N-terminus. Performed on an Applied Biosystems 431 A peptide synthesizer. Fmoc amino acid was used as the raw material, the loading amount was 1 mM, and the side chain protection was the same as in Example 3. HMP-resin was used as the solid phase carrier, and the loading amount was 0.25 mM. The ratio of raw material / resin was 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the polypeptide) coupled to the resin was activated by the symmetric anhydride activation method, and the remaining amino acids and palmitic acid were activated by the HOBt / DCC activation method. Among them, the double coupling is adopted, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • Fmoc solid-phase chemical synthesis protocol was used. The fixed carboxyl terminus extends the peptide chain from the C-terminus to the N-terminus. Performed on an Applied Biosystems 431A peptide synthesizer. Fmoc amino acid was used as raw material, and the loading amount was 1 mM. The side chain protection was the same as in Example 3. HMP-resin was selected as the solid phase plant. The loading amount was 0.25 mM, and the raw material / resin ratio was 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the polypeptide) coupled to the resin was activated by the symmetric anhydride activation method, and the remaining amino acids and palmitic acid were activated by the HOBt / DCC activation method. Among them, the double coupling is adopted, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • TFA, EDT, anisole, crystalline phenol, and ultrapure water are mixed at a certain ratio to cut the peptide from the resin, the side protective groups are cut off from the amino acid, and the ether is precipitated.
  • the crude peptide product was identified by HPLC, and the purity of the crude peptide product was stable at about 83%.
  • Fmoc solid-phase chemical synthesis protocol was used. The fixed carboxyl terminus extends from the C-terminus to the N-terminus. Performed on an Applied Biosystems 431A peptide synthesizer. Fmoc amino acid was used as the raw material, the loading amount was 1 mM, and the side chain protection was the same as in Example 3. HMP-resin was used as the solid phase carrier, and the loading amount was 0.25 mM. The ratio of raw material / resin was 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the polypeptide) coupled to the resin was activated by a symmetric anhydride activation method, and the activation of its amino acids and palmitic acid was performed by the HOBt / DCC activation method. Among them, the double coupling is adopted, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • Fmoc solid-phase chemical synthesis protocol was used. The fixed carboxyl terminus extends the peptide chain from the C-terminus to the N-terminus. Performed on an Applied Biosystems 431A peptide synthesizer. Fmoc amino acid was used as the raw material, the loading amount was 1 mM, and the side chain protection was the same as in Example 3. HMP-resin was used as the solid phase carrier, and the loading amount was 0.25 mM. The ratio of raw material / resin was 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the polypeptide) coupled to the resin was activated by the symmetric anhydride activation method, and the remaining amino acids and palmitic acid were activated by the HOBt / DCC activation method. Among them, the double coupling is adopted, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • TFA, EDT, anisole, crystalline phenol, and ultrapure water are mixed at a certain ratio to cut the peptide from the resin, the side protective groups are cut off from the amino acid, and the ether is precipitated.
  • the crude peptide product was identified by HPLC, and the purity of the crude peptide product was stable at about 80%.
  • Fmoc solid-phase chemical synthesis protocol was used. The fixed carboxyl terminus extends the peptide chain from the C-terminus to the N-terminus. Performed on an Applied Biosystems 431A peptide synthesizer. Fmoc amino acid was used as raw material, and the loading amount was 1 mM. The side chain protection was the same as in Example 3. HMP-resin was used as the solid phase carrier, and the loading amount was 0.25 mM. The ratio of raw material / resin was 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the polypeptide) coupled to the resin was activated by the symmetric anhydride activation method, and the remaining amino acids and palmitic acid were activated by the HOBt / DCC activation method. Among them, the double coupling is adopted, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • Fmoc solid-phase chemical synthesis protocol was used. The fixed carboxyl terminus extends the peptide chain from the C-terminus to the N-terminus. Performed on an Applied Biosystems 431A peptide synthesizer. Fmoc amino acid was used as raw material, and the loading amount was 1 mM. The side chain protection was the same as in Example 3. HMP-resin was selected as the solid phase carrier, and the loading amount was 0.25 mM. The ratio of raw material / resin was 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the peptide) coupled to the resin was activated by the symmetric acidic liver activation method, and the remaining amino acids and palmitic acid were activated by the HOBt / DCC activation method. Among them, the double coupling is adopted, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • TFA, EDT, anisole, crystalline phenol, and ultrapure water are mixed at a certain ratio to cut the peptide from the resin, the side protective groups are cut off from the amino acid, and the ether is precipitated.
  • the crude peptide product was identified by HPLC, and the purity of the crude peptide product was stable at about 81%.
  • Fmoc solid-phase chemical synthesis protocol was used. The fixed carboxyl terminus extends the peptide chain from the C-terminus to the N-terminus. Performed on an Applied Biosystems 431A peptide synthesizer. Fmoc amino acid was used as the raw material, the loading amount was 1 mM, and the side chain protection was the same as in Example 3. HMP-resin was used as the solid phase carrier, and the loading amount was 0.25 mM. The ratio of raw material / resin was 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the polypeptide) coupled to the resin was activated by the symmetric anhydride activation method, and the remaining amino acids and palmitic acid were activated by the HOBt / DCC activation method. Among them, the double coupling is adopted, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • TFA, EDT, benzoic acid, crystalline phenol, and ultrapure water are mixed at a certain ratio to cut the peptide from the resin, the side protective groups are cut from the amino acid, the ether is precipitated, and the rotary evaporation is used to make the crude
  • the peptide product was identified by HPLC, and the purity of the crude peptide product was stable at about 86%.
  • Fmoc solid-phase chemical synthesis protocol was used. The fixed carboxyl terminus extends the peptide chain from the C-terminus to the N-terminus. Performed on an Applied Biosystems 431 A peptide synthesizer. Fmoc amino acid was used as the raw material, the loading amount was 1 mM, and the side chain protection was the same as in Example 3. HMP-resin was used as the solid phase carrier. The loading amount was 0.25mM, and the ratio of raw material / resin was 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the peptide) coupled to the resin was activated by the symmetrical acid g activation method, and the remaining amino acids and palmitic acid were activated by the HOBt / DCC activation method. Among them, the double coupling is adopted, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • TFA, EDT, anisole, crystalline phenylhydrazone, and ultrapure water are mixed in a certain ratio to cut the peptide from the resin, the side protective groups are cut from the amino acid, the ether is precipitated, and the rotary evaporation is performed.
  • the crude peptide product was obtained and identified by HPLC. The purity of the crude peptide product was stable at about 78%.
  • Adopt Fmoc solid-phase chemical synthesis scheme. The fixed carboxyl terminus extends the peptide chain from the C-terminus to the N-terminus. Performed on an Applied Biosystems 431A peptide synthesizer. Fmoc amino acid was used as the raw material, the loading amount was 1 mM, and the side chain protection was the same as in Example 3. HMP-resin was used as the solid phase carrier, and the loading amount was 0.25 mM. The ratio of raw material / resin was 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the polypeptide) coupled to the resin was activated by the symmetric anhydride activation method, and the remaining amino acids and palmitic acid were activated by the HOBt / DCC activation method. Among them, the double coupling is adopted, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • TFA, EDT, anisole, crystalline phenol, and ultrapure water are mixed at a certain ratio to cut the peptide from the resin, the side protective groups are cut from the amino acid, the acetamidine is precipitated, and the rotovap is evaporated.
  • the crude peptide product was obtained and identified by HPLC. The purity of the crude peptide product was stable at about 83%.
  • the amino acid (the first amino acid at the carboxyl terminus of the polypeptide) coupled to the resin was activated by a symmetric anhydride activation method, and the remaining amino acids and palmitic acid were activated by a HOBt / DCC activation method. Among them, double coupling is adopted, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • TFA, EDT, benzoic acid, crystalline phenol, and ultrapure water are mixed at a certain ratio to cut the peptide from the resin, the side protective groups are cut from the amino acid, the ether is precipitated, and the rotary evaporation is used to make the crude
  • the peptide product was identified by HPLC, and the purity of the crude peptide product was stable at about 80%.
  • Fmoc solid-phase chemical synthesis protocol was used. The fixed carboxyl terminus extends the peptide chain from the C-terminus to the N-terminus. Performed on an Applied Biosystems 431 A peptide synthesizer. Fmoc amino acid was used as the raw material, the loading amount was 1 mM, and the side chain protection was the same as in Example 3. HMP-resin was selected as the solid phase carrier, the loading amount was 0.25mM, and the raw material / resin ratio was 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the polypeptide) coupled to the resin was activated by the symmetric anhydride activation method, and the remaining amino acids and palmitic acid were activated by the HOBt / DCC activation method. Among them, the double coupling is adopted, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • TFA, EDT, anisole, crystalline phenol, and ultrapure water are mixed at a certain ratio to cut the peptide from the resin, the side protective groups are cut off from the amino acid, and the ether is precipitated.
  • the crude peptide product was identified by HPLC, and the purity of the crude peptide product was stable at about 74%.
  • Fmoc solid-phase chemical synthesis scheme was used. Fixed carboxyl terminus extended from C-terminus to N-terminus Extending peptide chain. Performed on an Applied Biosystems 431A peptide synthesizer. Fmoc amino acid was used as the raw material, the loading amount was ImM, and the side chain protection was the same as in Example 3. HMP-resin was selected as the solid phase carrier, and the loading amount was 0.25 mM. The raw material / resin ratio was 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the polypeptide) coupled to the resin was activated by a symmetric anhydride activation method, and the remaining amino acids and palmitic acid were activated by a HOBt / DCC activation method. Among them, double coupling is adopted, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • TFA, EDT, anisole, crystalline phenol, and ultrapure water are mixed at a certain ratio to cut the peptide from the resin, the side protective groups are cut off from the amino acid, and the ether is precipitated.
  • the crude peptide product was identified by HPLC, and the purity of the crude peptide product was stable at about 78%.
  • Fmoc solid-phase chemical synthesis protocol was used.
  • the fixed carboxyl terminal extends the chain from the C terminal to the N terminal.
  • Fmoc amino acid was used as the raw material, the loading amount was 1 mM, and the side chain protection was the same as in Example 3.
  • HMP-resin was used as the solid phase carrier, and the loading amount was 0.25 mM.
  • the ratio of raw material / resin was 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the polypeptide) coupled to the resin was activated by the symmetric anhydride activation method, and the remaining amino acids and palmitic acid were activated by the HOBt / DCC activation method. Among them, the double coupling is adopted, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • TFA, EDT, anisole, crystalline phenol, and ultrapure water are mixed at a certain ratio to cut the peptide from the resin, the side protective groups are cut off from the amino acid, and the ether is precipitated.
  • the crude peptide product was identified by HPLC, and the purity of the crude peptide product was stable at about 79%.
  • Fmoc solid-phase chemical synthesis scheme was used. The fixed carboxyl terminus extends the peptide chain from the C-terminus to the N-terminus. Performed on an Applied Biosystems 431 A peptide synthesizer. Fmoc Amino acids were used as raw materials, the loading amount was ImM, and the side chain protection was the same as in Example 3. HMP-wax was used as the solid phase carrier, and the loading amount was 0.25 mM. The ratio of raw material / resin was 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the polypeptide) coupled to the resin was activated by a symmetric anhydride activation method, and the remaining amino acids and palmitic acid were activated by a HOBt / DCC activation method. Among them, double coupling is adopted, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • TFA, EDT, anisole, crystalline phenol, and ultrapure water are mixed at a certain ratio to cut the peptide from the resin, the side protective groups are cut off from the amino acid, and the ether is precipitated.
  • the crude peptide product was identified by HPLC, and the purity of the crude peptide product was stable at about 82%.
  • Fmoc solid-phase chemical synthesis protocol was used. The fixed carboxyl terminus extends the peptide chain from the C-terminus to the N-terminus. Performed on an Applied Biosystems 431 A peptide synthesizer. Fmoc amino acid was used as the raw material, the loading amount was 1 mM, and the side chain protection was the same as in Example 3. HMP-resin was selected as the solid phase carrier, the loading amount was 0.25mM, and the raw material / resin ratio was 4: 1.
  • the amino acid (the first amino acid at the carboxyl terminus of the polypeptide) coupled to the resin was activated by the symmetric anhydride activation method, and the remaining amino acids and palmitic acid were activated by the HOBt / DCC activation method. Among them, the double coupling is adopted, and there is no step of removing the Fmoc protecting group after the fatty acid coupling.
  • TFA, EDT, anisole, crystalline phenol, and ultrapure water are mixed at a certain ratio to cut the peptide from the resin, the side protective groups are cut off from the amino acid, and the ether is precipitated.
  • the crude peptide product was identified by HPLC, and the purity of the crude peptide product was stable at about 85%.
  • TTA lysate (0.75 g phenol, 0.25 ml ethanedithiol, 0.5 ml anisole, 0.5 ml deionized water, 10.0 ml TFA) can be used to minimize the occurrence of side reactions.
  • lysate volume 1.5 ml; reaction temperature: 25 ° C; reaction time: 2.0 hours.
  • the resin was filtered off, and the collected filtrate was slowly added to 1.0 ml of dimethyl sulfoxide (DMSO) in a 20 ° C water bath and shaken in time to dissipate heat.
  • DMSO dimethyl sulfoxide
  • Size exclusion chromatography was used to separate and purify ⁇ PA 4 4 by adding 2.0 ml of the above sample.
  • the ⁇ PA 4 4 components were collected and analyzed by reversed-phase high-performance liquid chromatography (RP-HPLC).
  • ⁇ P A 4 4 has good solubility and stability in DMSO, while the solubility and stability in other solutions are not ideal. See Table 5 for details. Therefore, DMSO was selected as the mobile phase of SEC.
  • Chromatographic techniques were used as the purification method for ⁇ P A 4 4.
  • the purification effects of ⁇ P A 4 4 were compared by gel filtration, ion exchange chromatography, and reversed-phase chromatography.
  • the peaks of ⁇ P A 4 4 elution peaks were collected and analyzed by Rp-HPLC for purity.
  • POROS 50 Rl 98.73 The results of POROS 50 Rl 98.73 are shown in Table 8.
  • POROS 50 Rl a relatively hydrophobic reversed-phase chromatography medium, as the stationary phase.
  • the collected elution peaks had higher peak tip purity. It shows that when using reversed-phase chromatography to purify this product with higher hydrophobicity, it is not suitable to use relatively hydrophobic reverse-phase chromatography packings (Dleta Pak C18, SOURCE 30 RPC, and POROS 50 R2) as the stationary phase.
  • the column SR 10/450 POROS 50 R1 was used for reversed-phase chromatography, and the effect of purification using different mobile phases on purity was compared.
  • the ⁇ P A 4 4 elution peak was collected and analyzed for purity by RP-HPLC.
  • Phosphoric acid was used instead of hydrochloric acid as the ion-pairing reagent (to avoid future corrosion effects on large-scale stainless steel chromatography preparation systems), and the column SR 10/200 POROS 50 Rl was used to further observe the column temperature on CH 3 (CH 2 ) 16 COKSSPADREAAAVLQAGFFLLGGGDPRVRGLYFPA Effect of purity and yield in reversed phase chromatography.
  • Loading volume (ml) Loading volume / column volume (%) Loading capacity (mg / ml) Purity (%) Yield (%)
  • AP550 / 275 POROS 50 R1 was used for batch preparation. After the peptide resin was lysed and preliminary purified, the collected ⁇ PA 4 4 sample was divided into 7 times for high purification. The batch purification effect and repeatability of the ⁇ PA 4 4 stock solution were further observed.
  • soybean phospholipids and cholesterol are used to form a phospholipid bilayer membrane.
  • the former is the main lipid-like component, and the latter has the function of stabilizing the bilayer membrane of phospholipids.
  • the former can increase the amount of negative charge and enhance the liposome's ability to CH 3 (CH 2 )- ⁇ CO SSQYIKANSKFIGITEAAAF LPSDFFPSVGGGDPRVRGLYFPA (pi 8.1); the latter is to prevent oxidative decomposition of phospholipids.
  • Mannitol and human blood albumin can be used as protective agents and excipients for lyophilized liposomes.
  • Phosphate buffer (pH 6.5) slows the hydrolysis of soybean phospholipids and adjusts the osmotic pressure to isotonicity.
  • Liposomes are prepared by a secondary emulsification method.
  • the lipid-like components are dissolved in an ether solution and mixed with the concentrated solution of this product to form an emulsion (W / 0), which is injected into a phosphate buffer solution (PB) or water.
  • PB phosphate buffer solution
  • W / O / W a secondary emulsion
  • liposomes were gradually formed with the volatilization of ethyl acetate.
  • Concentration and dialysis by ultrafiltration device dialysis multiple must be more than 200 times
  • 10 ⁇ m microporous membrane filtration to remove the product which may be free in the liquid and may aggregate and precipitate.
  • the results are shown in the table.
  • the liposome encapsulation efficiency is above 90% (P>0.05); when the concentration is increased to 2.5 mg / ml, The blocking rate decreased to below 80% (P ⁇ 0.001). Therefore, when preparing liposomes, the immunogen solution was concentrated by ultrafiltration to 1.5 ⁇ 2.0 mg / mL.
  • the volume of the concentrated liposome concentrate is equal to the volume of the emulsion (w / o) (see
  • the volume of the concentrated liposome concentrate is determined to be 37.5% (V / V) of the volume of the divided solution, that is, the liposome is concentrated.
  • the average level of liquid addition should meet the requirements of Table 16-4, and the split volume should be 1 ml and meet the requirements of the lyophilized liposome injection formulation.
  • the volume of the liposome concentrate is larger than the volume of the emulsion (W / O), which may increase the volume of the packaging solution.
  • the actual packaging volume needs to be calculated according to the following formula: Filling volume
  • the volume of emulsion (W / 0) was suspended by adding 1 ml of water for injection.
  • D50, D90 and D99 refer to the particles of 10%, 50% and 90%, respectively, whose particle size is smaller than this value.
  • the results in Table 17 show that the encapsulation rate of the liposomes of this product is 89.76 to 1.26%.
  • the D50, D90, and D99 of the liposomes are 0.29 ⁇ 0.04, 0.80 ⁇ 0.12, and 2.83 ⁇ 0.82, ⁇ PA 4 4 content is 303.11 ⁇ 7.47 g / bottle, with a specific activity of 13627.46 ⁇ 648.95 U / mg. Achieved better repeatability.
  • mice Balb / c mice aged 2-3 months, both male and female.
  • O.OOlnmol, O.Olnmol, O.lnmol, 0.5nmol, lnmol, lOnmol, 20nmoK 40nmol were divided into 8 dose groups, bilateral hindfoot immunization ⁇ PA 30, once a week, a total of 3 times.
  • Mice were sacrificed, and bilateral lunar fossa lymph nodes were removed under aseptic conditions and tested by 3H-TdR incorporation. The results proved that O. Olnmol was effective and showed a dose-dependent response in the range of O. Olnmol to 20 nmol .
  • mice There are 8 dose groups divided into 0.001nmol, 0.01nmol, 0.1iimol, 0.5nmoL lnmol, lOnmol, 20nmoL and 40nmol.
  • the hind hind palms are immunized with this product once a week for a total of 3 times.
  • anticoagulated blood was taken from the orbits of mice aseptically.
  • PBMCs were isolated by the FicoU-Hypaque method, and RPMI1640 medium (containing 10% calf serum, 100 ⁇ / ml green) was used.
  • Streptomycin was cultured in vitro (10 6 / ml, 96-well cell culture plate) for one day, and it was used as a test cell after it returned to its original growth state.
  • the ELISPOT 96-well cell culture plate was pre-coated with IFN- ⁇ coated antibody overnight. Three wells were set for each well, and the cells were blocked with RPMI1640 containing 5% calf serum for 1 hour at room temperature. After air-drying, cells to be tested were added (5 xlO 4 cells / 100ul / well, containing RPMI1640 medium, 10% calf serum, 100 ⁇ / mI penicillin, lug / ml peptide), in which the mouse PBMC immunized with the melan A27-35 peptide was used as a negative control, After 15 hours of incubation, wash 6 times, dry the plate empty, add biotin-labeled detection antibody, incubate at 37 ° C for 1 hour, wash again, and dry the substrate, develop the color and count the spots. The results showed that the lowest effective dose was O. Olnmol, which showed a dose-dependent response in the range of O. Olnmol-20 mol.
  • CH 3 (CH 2 ) -4 COKSSQYIKANSKFIGITEAAAFLPSDF FPSVGGGDPRVRGLYFPA induces peripheral blood mononuclear cells in healthy people
  • PBMCs peripheral blood from normal people were aseptically collected, PBMCs were separated by conventional FicoU-Hypaque density gradient centrifugation, and RPMI1640 medium (containing 10% calf serum, 100u / ml penicillin, L-glutamine) was used.
  • the cells were cultured in vitro in a 24-well cell culture plate with a cell concentration of 10 6 / ml.
  • a blank control group, a test group, and a Pre-S (2) control group were added with IL-2 (30IU / ml) and the test drug (0.!
  • PBMC Peripheral Blood Mononuclear Cells
  • Human PBMCs were cultured in RPMI1640 medium (containing 10% calf serum, 100 ⁇ / ml penicillin) in groups (10 6 / ml, 24-well cell culture plates) for one day. After they were restored to their original growth state, IL was added. -2 (30IU / ml) and the test drug (0.1 ⁇ g / mL 1 g / ml), after culturing for 6 days, the same dose of IL-2 and the test drug were stimulated once a week for a total of 3 times. Three days after the last stimulation, antigen-specific effector CTL cells were obtained. Cytotoxic activity was compared using a standard 51 Cr release test.
  • Target cells (peptide pre-coated T2 cells and HepG2.2.1.5 cells) are cultured to a good condition before use
  • the test drug 10 g / ml was added to the culture medium for 10 hours, and the culture was continued.
  • 10 6 target cells were placed in 1 ml of RPMI 1640 medium (containing 20% calf serum), added with 100 M Ci 51 Cr (NEN), and labeled in a 371: water bath for 2 hours. After the labeled target cells with sterile PBS three times with wash buffer by centrifugation (500rpm / 5min), and then at 10 4 target cells / well plated 5OuI number / V--bottom 96-well cell culture plates, each well done 3 compound holes.
  • 51 Cr release test results showed that: human PBMCs were cultured in vitro, induced by repeated stimulation and expanded the number of antigen-specific effector CTL cells, and cytotoxic to HepG2.2.15 cells, peptide antigen-coated T2 cells and E6 cells In the killing test, the T-lymphocytes induced by the test drugs were able to specifically kill the peptide-coated T2 cells, E cells and HepG2.2.15, and the target cell specific lysis rate was up to 62.8%.
  • Human PBMCs were used as test cells 6 days after the first stimulation.
  • the ELISPOT 96-well cell culture plate was pre-coated with IFN-Y coated antibody overnight. Three replicates were set in each well. The cells were blocked with RPMI1640 containing 5% calf serum for 1 hour at room temperature. After air-drying, cells to be tested were added (5 xlO 4 cells / 100ul / well, containing RPMI1640 medium, 10% calf serum, 100 ⁇ / ml penicillin, lug / ml peptide), with unstimulated normal PBMC was used as a negative control. After 15 hours of incubation, the plates were washed 6 times, and the plates were dried.
  • biotin-labeled detection antibody was added, incubated at 37 for 1 hour, washed again, and dried after adding the substrate for color development. Observe and count the number of spots under an inverted microscope. The results prove that: this product induces a cytotoxic response in a dose-dependent manner within a dose range of 0.01nmol-20nmol.
  • PBMCs were separated by conventional Ficoll-Hypaque density gradient centrifugation.
  • RPMI1640 medium containing 10% calf serum, 100u / ml penicillin, L-glutamine) Amide
  • IL-2 30IU / ml
  • test drug 0.1 ⁇ g / ml, 1 ⁇ g / mL 10 ⁇ g / ml
  • Ci ⁇ rCiJ ⁇ itfCOKSSPADREGGGSLNFLGGTTVSSSDPR VRGLYFPA-induced PBMC lymphocyte polarization in patients with hepatitis A blank control group of acute and chronic hepatitis, an acute liver containing test drug group, and a slow liver test drug group were set up, and Thhl / Th2 polarization was detected by Endogen kit or EELISPOT method. Results: The ELISA method was used to detect the concentrations and changes of IL-4, IL-10, IFN-Y and other cytokines in the culture supernatant of patients' PBMCs.
  • Pre-S2 can induce stronger Th2 type T cell transformation, but Basically, T lymphocytes cannot be induced to transform into Th1 type; the test drugs can induce T lymphocytes to transform into Th1 and Th2 types, and the Thl type is the most obvious.
  • a blank control group of acute and chronic hepatitis, an acute liver test drug group, and a slow liver test drug group were established.
  • Patients' PBMCs were cultured in vitro, induced by repeated stimulation and expanded the number of antigen-specific effect CTL cells, and pre-coated with peptides Cytotoxic killing test of T2, E6 cells and HepG2.2.15 cells.
  • the T-lymphocytes induced by the test drugs could specifically kill the three target cell lines.
  • the target cells were specific The rate of sexual lysis is 68.6%.
  • the specific lysis rate of target cells is slightly lower, reaching 42.6%.
  • Human PBMCs were used as test cells 6 days after the first stimulation.
  • the ELISPOT 96-well cell culture plate was pre-coated with IFN-Y coated antibody overnight. Three replicates were set in each well. The cells were blocked with RPMI1640 containing 5% calf serum for 1 hour at room temperature. After air-drying, cells to be tested were added (5 xlO 4 cells / 100ul / well, containing RPMI1640 medium, 10% calf serum, 100 ⁇ / ml penicillin, lug / ml peptide), in which unstimulated normal PBMC was used as a negative control.
  • ⁇ -PAC30 induces a cytotoxic response in a dose-dependent manner within a dose range of O. Olmnol-20 mol.
  • the spleen of the mouse was collected, the spleen lymphocytes were isolated, and the test sample was stimulated with 10 ng / ml for 3 days in vitro.
  • the supernatant was taken out and the culture supernatant was tested for TNF-a, Li- ⁇ , IL- 4
  • the secretion of other cytokines, and the function of inducing Thl / Th2 polarization of T cells in vivo was analyzed. As a result, strong IFN-Y secretion could be detected; there was no obvious dose-response relationship in the detection of IL-4.
  • HBV-DNA transgenic mice (ayw-type HBV whole gene (1.3Kb) were transfected into Kunming mice). Animals were randomly divided into groups of 15 animals, injected subcutaneously on both sides of the flank and hind paw, and administered in 3 doses of 10, 100, and 1000 U / rats, and boosted once a week for a total of 3 times. Let IFN-o 2b (15000U / mouse) be the positive control drug and normal saline as the negative control drug. Before, 10, 20, 30 days after the last dose.
  • the spleen of the mouse was collected, the spleen lymphocytes were isolated, and the test sample was stimulated with 10 ng / ml for 3 days in vitro.
  • the expression frequency of IFN-V secreting cells in peripheral blood lymphocytes was detected by the ELI-SPOT method.
  • the results showed that the expression frequency of IFN-Y secretion cells in peripheral blood lymphocytes increased with the increase of the original immune dose on the 30th day after the immunization.
  • the expression frequency of IFN-Y-secreting cells in peripheral blood lymphocytes was significantly increased, and the highest Y-secreting cells / 10 6 PBMC could be detected.
  • HBV-DNA transgenic mice (ayw type HBV whole gene (1.3Kb) were used to transfect Kunming mice). Animals were randomly divided into groups of 15 animals, injected subcutaneously under the lateral flank and hind paw, and administered in three doses of 10, 100, and 1000 U / rats, and boosted once a week for a total of 3 times. Let IFN-a 2b (15000U / mouse) be the positive control drug and normal saline as the negative control drug. Before, 10, 20, 30 days after the last dose. On the 10th, 20th, and 30th days after the end of the three immunizations, blood was collected and the serum was separated, and the HBsAg in the serum was measured by ELISA. The results showed that serum HBsAg was significantly reduced and was dose- and time-dependent.
  • HBV-DNA transgenic mice (ayw type HBV whole gene (1.3Kb) were used to transfect Kunming mice). Animals were randomly divided into groups of 15 animals, injected subcutaneously under the lateral flank and hind paw, and administered in three doses of 10, 100, and 1000 U / rats, and boosted once a week for a total of 3 times. Let IFN- ot 2b (15000U / mouse) be the positive control drug and normal saline as the negative control drug. Before, 10, 20, 30 days after the last dose. On the 10th, 20th, and 30th days after the end of the three immunizations, blood was collected and the serum was separated, and the HBV DNA copy number in the serum was detected by quantitative PCR. The results showed that the serum HBV DNA copy number was significantly reduced and was dose- and time-dependent.
  • Adopting amphoteric electrolyte PH gradient isoelectric polymer gel Pretreatment: 8 N urea And 2% TritonX-114. At the same time, the corresponding concentration of urea and 0.5% TritonX-114 should be added to the polyacrylamide gel. The staining was performed using conventional Coomassie blue staining. The results show that the isoelectric point of this product is pH7.2.
  • a UV spectrophotometer was used to scan the UV-spectrum of the hepatitis B therapeutic peptide ⁇ -PAC44 and determine the wavelength corresponding to the maximum UV absorption value. Dilute the submitted samples to the measuring range of the instrument, and take samples for UV spectral scanning. The scanning wavelength is: 190nm-500nm; the blank control is: 50% ethanol. The results show that the maximum characteristic absorption peak of its UV spectrum is at 276nm.
  • Instrument and chromatographic conditions Waters Delta 600 high performance liquid chromatography; Waters Millennium 32 color software; Waters Ultrahydrogel 250 high-resolution gel analysis column (particle size 6 ⁇ ⁇ , pore size 250 people, column diameter 7.8mm column length 300 mm); CH 3 CN (acetonitrile, HPLC grade, Linhai, Zhejiang); TFA (trifluoroacetic acid, HPLC grade, Sigma, USA).
  • the mobile phase was 40% CH 3 CN 0.1% TFA; the concentrated semi-finished product was sampled and applied for 2ul; flow rate: 0.5ml / min; UV detection wavelength: 214nm. The results showed that the purity of the product was 99.8%.
  • This product was separated by a gradient reversed-phase high-pressure liquid chromatography method.
  • the absorption of peptide bonds was detected at a wavelength of 214 nm, and the percent purity of the main peak ⁇ PA44 was calculated based on the area normalization method integration.
  • RP-HPLC reversed-phase high-performance liquid chromatography
  • Mobile phase A 100% H2O-0.1% TFA
  • Mobile phase B 100% CH 3 CN-0.1% TFA
  • Linear gradient 30%-60% B 15min
  • Flow rate lml / min
  • UV detection wavelength 214nm
  • the content of this product is 4.5mg / ml.
  • Soft ionization using electrospray ionization mass spectrometry enables peptides and protein molecules to carry multiple charges, forming different mass-to-charge ratios, so that the simultaneous equations based on the mass-to-charge ratio of two adjacent peaks (ii inr H / ma-ii) The obtained number of charges is used to accurately determine the molecular weight of ⁇ PA44.
  • a laser particle size analyzer (Laser Particle Sizer "Analysette 22"; FRITSCH, Germany) and a microcell (FRITSCH, Germany) were used to detect the particle size distribution of ⁇ PA 4 4 liposomes. Detection range: 0.1 ⁇ m-100.25 ⁇ m, resolution: 62 channels (9 mm / 38 mm). Randomly sample the finished lyophilized ⁇ PA 4 4 liposomes, dissolve in water, dilute, and allow to test after mixing. The results show that this product has a D50 of 0.25 ⁇ m, a D90 of 0.72 ⁇ m, and a span of less than 3. 68. CH 3 (CH 2 ⁇ - ⁇ COKSSQYIKANSKFIGITEAAAFLPSDFF PSVGGGDPRVRGLYFPA semi-finished product potency / specific activity determination
  • the enzyme-linked plate was washed 4 times with washing solution, and the substrate solution A and B were added to each well after air-drying. Each 50 ⁇ , set color at 37 ° C in the dark for 15 minutes; add 50 ⁇ 1 of stop solution to each well. A 45 on m was determined on a Model 550 microplate reader. According to the half-effect value (half-maximum absorbance value) of the reference product of ⁇ PA 4 4, the program or linear regression method is used to calculate the half-effect dilution multiples of the reference product and the sample, respectively. Substituting it into the following formula to calculate the test result Sample titer and specific activity of the finished product.
  • the enzyme-linked plate was washed 4 times with washing solution, and the substrate solution A and B were added to each well after air-drying. 50 ⁇ ⁇ , develop color for 15 minutes; add 50 ⁇ l of stop solution to each well. Measure A 450nm on 550 enzyme-linked instrument. According to the half-effect value (half maximum absorbance value) of ⁇ PA 4 4 reference, use the program. Or the linear regression method is used to calculate the semi-effective dilution multiples of the reference product and sample of the product respectively; Substituting it into the following formula to calculate the titer of the sample to be tested and the specific activity of the finished product.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Peptides Or Proteins (AREA)

Description

用于生产治疗用乙型肝炎疫苗或
药物的免疫 J1及其制备方法和用途 技术领域
本发明涉及乙型肝炎治疗用免疫原及其制备方法和应用, 以 及含有该免疫原的乙型肝炎疫苗或药物及其生产方法和应用。
背景技术
乙型病毒性肝炎是一种全球性疾病。 据 WHO报告:全球乙型 肝炎病毒感染者约占人群的 30%, 约 18亿; 慢性感染者约 0.35 亿。 后者表现为持续性病毒血症, 其病毒水平是爱滋病毒(HIV ) 和丙肝病毒(HCV ) 的 100-1000倍以上。 在全球范闺内, 中国 属高流行区, 乙型肝炎病毒携带者约占人口的 10%- ( 1.2亿)、 慢 性肝炎患者约 0.3 亿。 乙型病毒性肝炎多为围产期传播、 青春期 发病、 青壮年恶化。 因此, 其危害的人群多为青壮年。 大部分病 人感染后通过自然病程痊愈, 而部分病人则迁延不愈并发展为肝 硬化、 肝癌。 据估计全球每年至少有 50万慢性感染患者死于肝硬 化和肝癌。 乙型肝炎病毒(Hepatitis B virus, HBV )是已知仅次 于烟草的人类致癌原。
目前, 控制乙型肝炎流行的主要手段是由 WHO推行的全球 免疫接种计划。 但是由于: (1)该计划采用的预防性疫苗, 对已感 染者无效; (2)在未感染的新生儿人群, 有 5-15 %不应答; (3)接种 普及率仍不高, 具 1999年的统计, 全球高发区新生儿的接种率只 有 62 %。 因此, 在今后一个相当长的时期内, 乙型肝炎仍将是危 害人类健康的重要问题之一。
HBV核心抗原(HBcAg )在肝癌及其癌旁組织中的阳性率分 别为 62.5%和 29.2%。 目前已证实:( 1 ) HBV作为一种嗜肝病毒, 并不能直接引起肝细胞损伤,其感染的病理和临床后果取决于免 疫机制。 (2 )作为细胞内感染, 慢性持续性感染状态主要与机体 细胞免疫应答太弱有关。 其中, HBV特异性细胞毒性 T淋巴细胞 ( cytotoxic T lymphocyte, CTL )反应决定了 HBV感染的 最终 结果。 感染 HBV后 CTL活性高者体内病毒被清除而痊愈; CTL 活性低或测不到的感染者则发展为慢性持续感染状态, 并进一步 发展为肝硬化或 /和肝癌。 因此, 克服 HBV持续感染患者的免疫 耐受状态, 在体启动 HBV特异性 CTL反应, 可治疗 HBV慢性 感染持续状态及防止其相关的继发性肝硬化、 肝癌等疾病。
美国 Scripps 研究所的 F V Chisari在自己研究的基础上分别 申请了 4项美国专利(专利号 6235288,5932224,5840303,5788969 )。 这些专利的主要内容均是关于在 HBV抗原上所确定的 CTL 表 位, 这些表位分别来源于核心抗原、 表面抗原、 多聚酶和 X抗原。 这些部位或结构, 是 HBV所诱导的 CTL所识别的部位。 中国江 西南昌医学院申请了一种含 Pre-S2和 HBsAg的质粒 DNA疫苗, 以激发细胞免疫和体液免疫反应, 用于乙型肝炎的预防和治疗。
当前, 对 HBV慢性持续感染状态 (包括病毒携带者、 慢性迁 延性肝炎和慢性活动性肝炎)尚无特效治疗手段。 干扰素 (IFN- 0 / β, IFN- Υ )及肿瘤坏死因子 (TNF- α )被证明能下调感染细胞 ΗΒ V 的复制和基因表达,它对复制中的 DNA中间体和转录模板等具有 敏感性, 但并不能清除病毒。 拉米呋定 (3TC)是第一个用于临床的 核苷类抗病毒复制药物, 能减低病毒血症达 2倍 log。 但却很难清 除病毒, 因为 e抗原阳性携带者的血清中病毒滴度达 108以上。 实际上, 临床研究也未发现 HBsAg转阴的经治病人。 因此, 急 需发展有效治疗 HBV慢性持续感染状态的手段。
本发明的概述
本发明的第一个目的在于提供一种能诱导 HBV特异性 CTL 的免疫原, 以及含有该免疫原的治疗用乙型肝炎疫苗。 本发明的 第二个目的在于提供了所迷免疫原的制备方法和所述治疗用乙型 肝炎疫苗的制备方法。 本发明第三个目的在于提供了所述免疫原 用于制备治疗用乙型肝炎疫苗或药物的用途。 本发明还提供了所 述免疫原用于制备治疗 HBV慢性感染持续状态及其相关的继发 性肝硬化、 肝癌等疾病的疫苗或药物的应用。
附图的主要描述
图 1 是基于表位的疫苗设计路线(EPITOPE-BASED VACCINE DESIGN, EBVD)示意图。 首先选择靶抗原, 通过高分 辨率的免疫识别研究获得表位图谱。 基于表位图谱, 采用分子设 计、 分子模拟技术设计免疫原。 通过化学或基因合成得到该分子, 进行功能筛选和毒理、 药代初步评价, 通过构效关系分析, 对分 子进行改造、 优化, 而后合成、 评价, 进入下一循环。 通过 200 个循环左右, 可获得先导结构。
图 2是显示了诱导淋巴细胞的增殖效应。取 HLA-A2+健康人 新鲜外周血, Ficoll-Hypaque 法分离外周血单核淋巴细胞, 用 RPMI1640培养基 (含 10%胎牛血清)于 96孔细胞培养板内(106细 胞 /孔)体外培养。设受试药物組 (CH3(CH2)14COKSSQYIKANSKFI GITEAAAFLPSDFFPSVGGGDPRVRGLYFPA), Pre-S2对照組、 空白对照组, 分别加 IL-2(5IU)和受试药物, 继续培养 6天, 再用 相同剂量的 IL-2和受试药物再次刺激 48小时, 并加 3H-TdR(l y Ci/ml), 继续培养 18h后收集细胞, 测 Y -记数值。 结果表明受试 药物可显著诱导淋巴细胞的增殖反应。 最低有效剂量为(King, 在 0.1-10ng剂量范围内呈剂量依赖性反应。
图 3显示了诱导 Thl极化的效应。 取 HLA-A2+健康人新鲜 外周血, Ficoll-Hypaque 法分离外周血单核淋巴细胞, 用 RPMI1640培养基 (含 10%胎牛血清、 100U/ml青链霉素)分组培养 (106/孔, 24孔细胞培养板), 分别加 IL-2(30IU)和受试药物(不同 剂量 CH3CH2CH-CHCH2CH=CH(CH2)CH=CH(CH2)7COKSSPA DREGGGWLSLLVPFVSSSDPRVRGLYFPA), 继续培养 6 天, 再用相同剂量的 IL-2和受试药物每周刺激 1次, 共 3次, 末次刺 激 24小时后,取培养上清,用 ELISA方法检测其中的 IL-4和翻- γ分泌情况。 结果表明: 受试药物可诱导 IFN- Y分泌, 剂量 -效应 显箸; 而诱导 IL-4 分泌的效应不明显。 提示受试药物诱导 Thl 型 T细胞极化的功能较强,而诱导 Th2型 T细胞极化的功能较弱。
图 4显示了诱导细胞毒效应的结果。取 HLA-A2+健康人新鲜 外周血, : Ficoll-Hypaque 法分离外周血单核淋巴细胞, 用 RPMI1640培养基 (含 10%胎牛血清)分组培养 (106/孔, 24孔细胞 培养板), 分别加 IL-2(30IU)和受试药物 (10ng CO, CH3CH2CH=
CHCH2CH=CH(CH2)7C07 SSQYI ANSKFIGITEGGGDPRVR GLYFPA), 继续培养 6天, 再用相同剂量的 IL-2和受试药物每周 刺激 1次, 共 3次,末次刺激 3天后, 获得抗原特异性效应 CTL 细胞。 采用标准 51Cr释放试验检测比较细胞毒活性。 靶细胞分别 为: 2215(HBV感染的人肝细胞癌细胞系, 可模拟 HBV感染肝细 胞的功能)、 E6(人 HLA-A*0201转染 P815细胞, CTL表位肽抗 原预孵)、 2(111^ 2+人 T、 Β淋巴细胞瘤细胞系, CTL表位肽 抗原预孵); 效耙细胞比例分别为(Ε/Τ): 12.5、 25、 50、 100。 结 果表明受试药物可诱导人 PBMC产生 CTL效应, 特异性溶破靶 细胞(Α)。 上述 HLA-A2+人 PBMC 末次刺激 24 小时后, 用 ELISPOT方法检测比较受试药物诱导 IFN- Y分泌型 CTL细胞在 外周 Α淋巴细胞中的增殖效应。 结果表明受试药物可诱导人 PBMC 中 IFN- Y分泌细胞的增殖,并有显箸的剂量-效应关系 (B、 C)。
图 5显示了本发明免疫原的抗病毒效应。 取 HLA-A2+HBV 携带者、 急性肝炎患者、 慢性肝炎患者新鲜外周血单核淋巴细胞, 做病毒抑制实验, 取上清, 测定 HBV-DNA拷贝数 (A)、 HBeAg, HBsAg 分泌量 (B、 C)„ 结果表明随着共培养时间的增长, HBV-DNA, HBsAg、 HBeAg的表达 /复制被抑制, 有明显的剂量 -效应关系。 表明受试药物 (CH3(CH2)14COKSSQYIKANSKFIGIT EAAAFLPSDFFPSVGGGCTKPTDGNCT)诱 导 HLA-A2+人 PBMC活化有显箸的剂量 -效应关系。
图 6
HBV-DNA转基因小鼠 (ayw型 HBV全基因(1.3Kb)转染昆明 种小鼠)为模型。 将动物随机分组, 每组 5只, 于双侧胁下和后足 掌皮下注射, 按 10、 100、 1000U/鼠的 3个剂量给药, 每周加强 免疫一次, 共 3次。 设 IFN- a 2b (15000U/鼠)为阳性对照药、 设 生理盐水为阴性对照药。 给药结束后 30天, 取小鼠脾脏, 分离脾 脏淋巴细胞, 用试品 10ng/ml体外刺激 3天, 取上清, 用 ELISA 法检测培养上清中 IFN- Y、 IL-4等细胞因子的分泌情况, 分析受 试药物(CH3(CH2)14COKSSQYIKANSKFIGITEAAASIVSPFIPL LGGGDPRVRGLYFPA)体内诱导 T细胞 Thl/Th2型极化的功能。 结果可检测到较强的 IFN- Y分泌; IL-4 的检测未见明显的剂量- 效应关系(A、 B、 C) o 上述上清液, 用 ELI-SPOT 法检测 画- γ分泌细胞在外周血淋巴细胞中的表达频率。 结果表明, 在结束 免疫后第 30天,随着原免疫剂量的升高,外周血淋巴细胞中誦- γ分泌细胞的表达频率升高, 其中 100、 1000U/鼠的免疫剂量, 体内诱导外周血淋巴细胞中 IFN- Y分泌细胞的表达频率升高明 显, 最高可检测到 3660IFN- Y分泌细胞 /106PBMC。 IFN- ot 2b给 药組最高可检测到 1250IFN- Y分泌细胞 /106PBMC(D;)。 于三次免 疫结束后的第 10、 20、 30天, 取血分离血清, 分别用 ELISA法、 定量 PCR法检测血清中 HBsAg、 HBV-DNA的含量。 结果表明该 品可以剂量依赖性的方式导致表面抗原分泌 (C)水平 、 HBV-DNA 复制 (F)水平的明显下降。 本发明的详细描述
本发明提供了以下几方面的内容:
一种免疫原, 其特征在于该免疫原含有一个多肽序列, 该多 肽序列含有氨基酸序列 1、 氨基酸序列 2和氨基酸序列 3, 氨基酸 序列 1、 氨基酸序列 2与氨基酸序列 3之间分别由若干个氨基酸 残基组成的连接肽段共价连接; 所述氨基酸序列 1是 Th细胞表 位序列; 所述氨基酸序列 2 是乙型肝炎病毒来源的 CTL表位序 列; 所述氨基酸序列 3是乙型肝炎病毒来源的 B细胞表位序列。
上述氨基酸序列 1是破伤风类毒素来源的 Th细胞表位上的 第 830-843氨基酸序列或其变异序列、通用 Th细胞表位 PADRE; 所述氨基酸序列 2是: HBV核心抗原上第 18-27氨基酸序列或其 变异序列、 141-151氨基酸序列或其变异序列、 117-125氨基酸序 列或其变异序列、 88-94氨基酸序列或其变异序列、 88-96氨基酸 序列或其变异序列, HBV表面抗原上第 183-191氨基酸序列或其 变异序列、 201-210氨基酸序列或其变异序列、 204-212氨基酸序 列或其变异序列、 370-379氨基酸序列或其变异序列、 251-259氨 基酸序列或其变异序列、 260-269 氨基酸序列或其变异序列、 335-343氨基酸序列或其变异序列、 338-347氨基酸序列或其变异 序列、 348-357氨基酸序列或其变异序列、 378-387氨基酸序列或 其变异序列; Pre SI抗原上第 10-17氨基酸序列或其变异序列, Pre S2 抗原上第 109-123 氨基酸序列或其变异序列、 抗原上第 152-161氨基酸序列或其变异序列; HBx抗原上第 92-100氨基酸 序列或其变异序列、 99-108 氨基酸序列或其变异序列、 115-123 氨基酸序列或其变异序列、 133-141 氨基酸序列或其变异序列; Pol抗原上第 61-69氨基酸序列或其变异序列、 455-463氨基酸序 列或其变异序列、 575-583氨基酸序列或其变异序列、 773-782氨 基酸序列或其变异序列、 803-811 氨基酸序列或其变异序列、 756-764氨基酸序列或其变异序列、 816-824氨基酸序列或其变异 序列、 655-663氨基酸序列或其变异序列、 551-559氨基酸序列或 其变异序列、 772-780氨基酸序列或其变异序列、 502-510氨基酸 序列或其变异序列、 538-546 氨基酸序列或其变异序列、 642-650 氨基酸序列或其变异序列、 646-654氨基酸序列或其变异序列; 所 述氨基酸序列 3是 HBV Pre-S2来源的 B细胞表位上的第 14-24 氨基酸序列或其变异序列、 HBS抗原上 a决定簇。
上述氨基酸序列 1 是 QYIKANSKFIGITE 或其变异序列、 PADRE或其变异序列; 所述氨基酸序列 2是: PLGFFPDH或其 变异序列 、 MQWNSTALHQALQDP 或其变异序列 、 SILSKTGDPV 或其变异序列、 VLQAGFFLL 或其变异序列、 FLLTRILTI 或其变异序列、 FLGGTPVCL 或其变异序列、 LLCLIFLLV或其变异序列、 LLDYQGMLPV或其变异序列、 WLSLLVPFV或其变异序列、 GLSPTVWLSV或其变异序列、 KVLHKRTLGL或其变异序列、 VLHKRTLGL或其变异序列、 GLSAMSTTDL或其变异序列、 CLFKDWEEL或其变异序列、 VLGGCRHKLV或其变异序列、 FLPSDFFPSV或其变异序列、 STLPETTVVRR或其变异序列、 E YLVSFGVW或其变异序列、 GLYSSTVPV 或其变异序列、 GLSRYVARL 或其变异序列、 FLLSLGIHL 或其变异序列、 ILRGTSFVYV 或其变异序列、 SLYADSPSV 或其变异序列、 KYTSFPWLL 或其变异序列、 SLYADSPSV 或其变异序列、 ALMPLYACI 或其变异序列、 YMDDWLGA 或其变异序列、 WILRGTSFV 或其变异序列、 KLHLYSHPI 或其变异序列、 FTQAGYPAL 或其变异序列、 SLNFLGGTTV或其变异序列、 LLDYQGMLPV或其变异序列、 LLVPFVQWFV或其变异序列、 GLSPTVWLS V或其变异序列、 LLPIFFCLWV 或其变异序列、 YVNTNMG 或其变异序列, YVNTNMGL 或其变异序列、 SILSKTGDPV 或其变异序列、 GLSPTVWLSV或其变异序列, SIVSPFIPLL或其变异序列; 所述 氨基酸序列 3是 DPRVRGLYFPA或其变异序列、 CTKPTDGNCT 或其变异序列。
上述免疫原, 其特征在于所述连接肽段是由三至七个氨基酸 残基组成。
上述免疫原,其特征在于所述连接肽段是 AAA、 SSS或 GGG。 上述的免疫原, 其特征在于氨基酸序列 1、 氨基酸序列 2与 氨基酸序列 3之间的连接次序是: 氨基酸序列 1-氨基酸序列 2-氨 基酸序列 3, 氣基酸序列 1-氨基酸序列 3-氨基酸序列 2, 氨基酸 序列 2-氨基酸序列 1-氨基酸序列 3, 氨基酸序列 2-氨基酸序列 3- 氨基酸序列 1, 氨基酸序列 3-氨基酸序列 1-氨基酸序列 2, 或着 氨基酸序列 3-氨基酸序列 2-氨基酸序列 1。
上述免疫原,其特征在于所述免疫原还含有若干个修饰基团, 该修饰基团是烷基羰基、 链烯基羰基。
上述免疫原, 其特征在于所迷免疫原含有两个修饰基团。 上迷免疫原, 其特征在于所述免疫原含有一个修饰基团。 上述免疫原, 其特征在 于所述烷基羰基选 自 由 CH3(CH2)ioCO-, CH3(CH2)12CO-, CH3 ( CH2 ) 14CO-和 CH3( CH2 ) 16co-组成的一組烷基羰基中的一个至五个;所述链烯基羰基选自 由 CH3( CH2 )7CH=CH( CH2 )7CO-, CH3CH2CH=CHCH2CH=CH (CH2)7CO-和 CH3CH2CH=CHCH2CH= H(CH2)CH-CH(CH2)7 CO-组成的一组链烯基羰基中的一个至五个。
上迷免疫原, 其特征在于所迷修饰基团与所述多肽序列的任 意一个氨基酸残基共价连接。 上述免疫原, 其特征在于所述修饰基团与所述多肽序列的 N 末端 α氨基、 C末端 α羧基或氨基酸残基的任何一个侧链基团共价 连接。
上述免疫原, 其特征在于所述修饰基团与所述多肽序列的 Ν 末端 α氨基之间通过连接肽段 KSS连接, 其中, 所述多肽序列的 末端 α氨基与连接肽段 KSS的 C末端通过肽键连接, 所述修饰 基团与连接肽段 KSS的 ε氨基共价连接。
上述免疫原, 其特征在于所述修饰基团与所述侧链基团上的 氨基、 羧基或羟基等基团共价连接。
上述免疫原, 其特征在于所述修饰基团与 Ν 末端赖氨酸的 ε 氨基共价连接。
上述免疫原, 其特征在于所述连接肽段 KSS的 α氨基上还共 价连接一个所述的修饰基团。
上述免疫原, 其特征在于一级结构是
C^rC¾)/eCOKSSPADREGGGSLNFLGGTTVSSSDPRVRGLY 上述免疫原, 其特征在于一级结构是
CH3( CH2 ^COKSSQYIKANSKFIGITEAAALLCLIFLLVGGGD PRVRGLYFPA。
上述免疫原, 其特征在于一级结构是
CH3 ( CH2 ) ^COKSSPADREAAALLDYQGMLPVGGGDPRVRG LYFPA.
上迷免疫原, 其特征在于一级结构是
CH3 ( CH2 ) 7CH=CH ( CH2 ) -CO, CH3CH2CH=CHCH2CH= CH(CH2) 7C07KSSQYI ANSKFIGITEGGG.
上迷免疫原, 其特征在于一级结构是
CH3CH2CH=CHCH2CH=CH(C ^ CH=CH(CH2) 7COFLPSDFFPS VAAADPRVRGLYFPA。
上述免疫原, 其特征在于一级结构是
CH3CH2CH=C CH2CH=CH(CH2) CH-CH(CH 7COKSSPADREG GGWLSLLVPFVSSSDPRVRGLYFPA。
上述免疫原, 其特征在于一级结构是
CH3 ( CH2 ) ^COKSSQYIKANSKFIGITEAAAFLPSDFFPSVGG GDPRVRGLYFPA。
上述免疫原, 其特征在于一級结构是
CHS ( CH2 ) i^COKSSPADREAAAFLPSDFFPSVGGGDPRVRGL YFPA。
上述的免疫原, 其特征在于一级结构是
CH3 ( CH2 ) i4COKSSPADREGGGLLVPFVQWFVSSSDPRVRGL YFPAo
上述免疫原, 其特征在于一级结构是
CH3(CH2 ^COKSSPADREAAAGLSPTVWLSVGGGDPRVRGL YFPAo
上述免疫原, 其特征在于一级结构是
CH3 ( CH2 ) i(iCOKSSPADREAAALLPIFFCLWVGGGDPRVRGL YFPA
上述免疫原, 其特征在于一级结构是
CH3 ( CH2 ) 75COKSSQYIKANSKFIGITEAAAYVNTNMGG GGDPRVRGLYFPA。
上述免疫原, 其特征在于一级结构是
CH3 ( CH2 ) i COKSSQYI ANSKFIGITEAAAFLPSDFFPSVGG GDPRVRGLYFPA。
上述免疫原, 其特征在于一级结构是
CH3 ( CH2 ) ^COKSSQYI ANSKFIGITEGGGFLPSDFFPSVSSS DPRVRGLYFPAo
上述免疫原, 其特征在于一级结构是
CH3 (CH2 ) ^COKSSQYIKANSKFIGITEAAAYVNTNMGLKGG GDPRVRGLYFPA。
上述免疫原, 其特征在于一级结构是.
CH3 ( CH2 ) ^COKSSQYIKANSKFIGITEAAAPLGFFPDHGGG DPRVRGLYFPAo
上述免疫原, 其特征在于一级结构是
CH3 ( CH2 ) -/4COKSSQYIKANSKFIGITEAAAMQWNSTALH QALQDPGGGDPRVRGLYFPA
上述免疫原, 其特征在于一级结构是
CH3 ( CH2 ) ^COKSSPDAREAAASILSKTGDPVGGGDPRVRGL YFPA。
上述免疫原, 其特征在于一级结构是
CH3 (CH2 ) /6COKSSPADREAAAVLQAGFFLLGGGDPRVRGL ΥΓΡΑο
上述免疫原, 其特征在于一级结构是
CH3 (CH2 ) i6COKSSPADRESSSFLLTRILTIGGGDPRVRGLYF PA。
上述免疫原, 其特征在于一级结构是
CH3 ( CH2 ) iiCOKSSPADREAAAFLGGTPVCLGGGDPRVRG LYFPA。
上述免疫原, 其特征在于一级结构是.
CH3 ( CH2 >i^COKSSQYIKANS FIGITEAAAGLSPTVWLSVGG GDPRVRGLYFPA„
上述免疫原, 其特征在于一级结构是
CH3 ( CH2 ) /^COKSSQYIKANSKFIGITEAAASIVSPFIPLLGGG DPRVRGLYFPAo
上述免疫原, 其特征在于一级结构是
CH3 ( CH2 ) /6COKSSPADREAAASTLPETTVVRRGGGDPRVR GLYFPA。
上述免疫原, 其特征在于一级结构是
CH3 (CH2 ) ^COKSSQYIKANSKFIGITEAAAFLPSDFFPSVGG GCTKPTDGNCTo
一种设计、 筛选和合成上述的免疫原的方法, 包括基于表位 的疫苗设计(EBVD ), 分子模拟、 分子设计、 筛选体系和多肽固 相合成, 其中多肽固相合成中树脂与每种氨基酸或棕榈酸投料的 摩尔比为 1: 2-1:8, 精氨酸、 天酰胺以及椋榈酸组分的连接采用 双偶联, 反应温度为 20-40°C。
上述投料的摩尔比为 1: 4, 上述反应温度为 30°C。
一种制备上述免疫原的方法, 其特征在于该方法包括以下步 骤: (1 ) 多肽固相合成所述免疫原-树脂, 所述免疫原-树脂表示 与树脂结合的免疫原;(2 )对免疫原-树脂进行裂解, 得到裂解液;
( 3 )将步骤(2 )的裂解液采用体积排阻层析进行初步分离纯化;
( 4 ) 通过反相层析纯化得到免疫原。
如上述的方法, 其特征在于所述步骤(2 )选用 TFA裂解液; 裂解条件是免疫原-树脂的浓度:小于 100 mg/ml,反应温度: 15-50 °C , 反应时间: 0.5-3小时。
如上述的方法, 其特征在于所述 TFA裂解液为: 0.75 g笨酚、 0.25 ml乙二硫醇、 0.5 ml苯甲硫醚、 0.5 ml去离子水、 10.0 ml TFA; 所述裂解条件是免疫原-树脂的浓度: 40.00 mg/ml, 反应温度: 25 °C , 反应时间: 1.5小时。
如上述的方法, 其特征在于所述步骤(3 ) 中的体积排阻层析 采用的柱填料为 Sephadex LH20, 流动相为二甲基亚砜。 如上述的方法, 其特征在于所述步骤(4 ) 中的反相层析采用 的柱填料为 POROS 50 Rl、 POROS 50 R2、 SOURCE 30 RPC或 Dleta Pak C18。
如上述的方法, 其特征在于所述步骤(4 ) 中的反相层析采用 梯度洗脱,流动相采用乙腈 /TFA、 乙腈 /HC1、 乙醇 /TFA、 乙醇 /HC1 或乙醇 /磷酸的水溶液。 如上述的方法, 其特征在于所述反相层析纯化的柱温是 20— 60X3。
如上述的方法, 其特征在于所述反相层析纯化的柱温是 28 - 40°C。
如上述的方法, 其特征在于所述反相层析纯化的柱温是 32 - 36。C。
如上述的方法,其特征在于所述反相层析纯化的柱温是 34 "C。 上述的免疫原在制备治疗 HBV慢性感染持续状态及其相关 的继发性肝硬化、 肝癌等疾病的疫苗或药物的用途。
一种如上述的用途,其特征在于所述 HBV慢性感染持续状态 为慢性乙型肝炎或乙型肝炎病毒携带者。
一种治疗用乙型肝炎疫苗, 其特征在于该疫苗含有上述的免 疫原。
一种治疗用乙型肝炎疫苗, 其特征在于该疫苗含有上述的免 疫原以及药学上可接受的辅料、 佐剂和 /或载体。
如上述的治疗用乙型肝炎疫苗, 其特征在于该疫苗是药学上 可接受的任意一种剂型。
如上述治疗用乙型肝炎疫苗, 其特征在于该疫苗的制剂是注 射剂、 透皮剂、 口服剂、 吸入剂或栓剂。
如上述的治疗用乙型肝炎疫苗, 其特征在于该疫苗的剂型为 乙醇溶液剂型、 混悬液剂型、 液体脂质体剂型或冻干脂质体剂型。 如上述治疗用乙型肝炎疫苗, 其特征在于所述液体脂质体剂 型或冻干脂质体剂型含有磷脂。
如上述治疗用乙型肝炎疫苗, 其特征在于所述液体脂质体剂 型或冻干脂质体剂型还含有胆固醇。
如上述治疗用乙型肝炎疫苗, 其特征在于所述液体脂质体剂 型或冻干脂质体剂型还含有维生素 E。
如上述治疗用乙型肝炎疫苗, 其特征在于所述液体脂质体剂 型或冻干脂质体剂型还含有棕榈酸。
如上述的治疗用乙型肝炎疫苗, 其特征在于该疫苗中的免疫 原、磷脂、胆固醇、维生素 E和棕榈酸的摩尔比为 0.1-0.5: 40-80: 0-40: 0-10: 0-10。
如上述的治疗用乙型肝炎疫苗, 其特征在于该疫苗中的免疫 原、 磷脂、 胆固醇、 维生素 E和棕榈酸的摩尔比为 0.2-0.4: 60: 20: 6: 6。
如上述的治疗用乙型肝炎疫苗, 其特征在于该疫苗中的免疫 原、 磷脂、 胆固醇、 维生素 E和棕榈酸的摩尔比为 0.3 - 0.36: 60: 20: 6: 6。
如上述的治疗用乙型肝炎疫苗, 其特征在于所述磷脂为大豆 磷脂或卵磷脂。
一种制备上述的治疗用乙型肝炎疫苗的方法, 其特征在于所 述方法包括采用二次乳化法制备脂质体。
如上述的治疗用乙型肝炎疫苗, 其特征在于所述冻干脂质体 剂型还含有人白蛋白、 甘露醇和磷酸盐。 如上所述的治疗用乙型 肝炎疫苗, 其特征在于所迷冻干脂质体剂型含上述述免疫原、 磷 脂、 胆固醇、 棕榈酸、 维生素 E、 甘露醇、 人血白蛋白、 KH2P04、 Na2HP04, 其摩尔 比为 0.01-0.1:5-15:1-7:0.5-1.5:0.5-1.5:70- 150:0.1-0.3:1-10:1-10.
本发明的目的也在于提供一种设计、 筛选、 制备本发明的如 上所述免疫原或疫苗的方法。
本发明首次建立了基于表位的疫苗设计技术路线(英文译名 为: EPITOPE-BASED VACCINE DESIGN, EBVD )。采用 EBVD, 以乙型肝炎抗原表位图谱为基础, 按照不同类型表位、 不同抗原 来源表位、不同的连接顺序、不同的化学修饰基团等, 采用 EBVD 方案进行设计、 筛选。 首次确定了具有前述骨架结构的免疫原。 该种分子一方面能刺激人外周血淋巴细胞产生增殖反应、 Thl 极 化反应、 HBV特异性 CTL反应、 抑制 HBV的复制; 比采用单表 位多肽提高 200倍以上效率。 另一方面, 在 HBV转基因小鼠体内 有效激发 Thl极化反应、 HBV特异性 CTL反应、 抑制 HBV的 复制。 实验结果表明上述免疫原可开发成为一种新型乙型肝炎及 其继发性肝硬化、 肝癌的治疗用疫苗或药物。
采用固相化学合成方法制备该种分子。 确定了反应体系的最 佳温度、 投料比、 肽树脂裂解方法和时间、 纯化条件等因素。 在 本发明方法中, 最佳反应温度 30-40°C ; 采用 HOBT/DCC偶联策 略, α、 β、 γ、 δ四各組分连续合成, R、 Ν、 α采用双偶联, 原料和树脂的最佳摩尔投料比是 4: 1, 每个氨基酸或組分平均偶 联效率达 99.5%以上; 肽树脂裂解采用三氟乙酸法, 最佳裂解时 间 90分钟。
在本发明的方法中, 纯化采用两步法: (1 ) 采用体积排阻层 析法初步纯化, 二甲基亚砜(DMSO )为流动相, 最佳柱温 20-40 °C。 (2 ) 采用反相层析法高度纯化。 研究了其最佳上样条件、 最 佳层析填料、 最佳柱温度等因素。 在本发明中, 最佳层析填料是 POROS 50 Rl, 最佳柱温度 。
经乙醇溶液、 脂质体混悬液体剂型、 冻干剂型的比较, 证明 脂质体剂型在诱导 Thl极化、 诱导 CTL活性方面优于乙醇溶液 剂型、 皮下注射疼痛感明显减轻。 脂质体冻干剂型在稳定性方面 明显优于脂质体混旋液剂型。
本发明采用 L9 ( 3 4)正交设计、筛选获得所述免疫原脂质体注 射剂最佳处方。 其中, 含有上述免疫原、 大豆磷脂、 棕榈酸、 维 生素 E和 /或胆固醇。
进一步比较了各种不同条件下, 对脂质体形成、 包封率、 粒 度分布等影响。 确定了脂质体的制备条件和工艺流程。 超滤浓缩
40 、 混悬
Figure imgf000017_0001
I注射用水
40 、 混悬 超滤 浓缩透析
I乳化液 py/o/w)
Figure imgf000017_0002
本发明的第三个目的是提供将本发明的这些免疫原制成治疗
HBV慢性感染持续状态及其相关的继发性肝硬化、肝癌的疫苗或 药物的应用。
上述免疫原及其剂型, 使用任何一种公知的免疫方式, 例如: 皮下注射、 皮内注射、 腹腔注射、 静脉注射等进行免疫。 免疫剂 量可以是 O.Olnmol至 20nmol。 可以不使用另外的佐剂。 用于免 疫小鼠或 HLA转基因小鼠可刺激淋巴细胞活化和增殖、 Thl极化 和 CTL应答; 用于免疫 HBV转基因小鼠可以剂量依赖性方式激 淋巴细胞活化和增殖、 Thl极化和 CTL应答, 并抑制 HBV复制、 血中 HBV DNA拷贝数下降、 HBsAg、 HBeAg滴度下降或消失。 该效应为单独使用单表位多肽或多表位多肽所不能达到。 在体外 刺激人外周血单个核细胞可以剂量依赖性方式激淋巴细胞活化和 增殖、 Thl极化和 CTL应答, 后者可杀伤 HepG2.2.1.5细胞、 E6 细胞, 抑制 HBV复制、 HBV DNA拷贝数下降、 HBsAg、 HBeAg 滴度下降或消失。 该效应比单独使用单表位多肽高 200倍以上。 实施例
1. 采用 EBVD 对三表位治疗用 (合成肽) 乙型肝炎疫苗表 位数目、 的极其排列組合的设计和筛选
以乙型肝炎抗原表位图谱为基础, 按照不同类型表位、 不同 抗原来源表位、 不同的连接顺序、 不同的化学修饰基团等, 采用 EBVD方案进行设计、 筛选表位組分的来源范围包括: HBV之 s 抗原、 e抗原、 c抗原来源的优势 B细胞表位、 T辅助细胞(Th ) 表位、 细胞毒性 T 细胞(CTL )表位、 其它抗原来源的通用 Th 细胞表位、 表位修饰基团。 在表位修饰基团中考虑了有文献证明 可促进免疫活性的单链脂肪酸和本发明人证明的糖类基团。 采用 了线形单表位修饰类、 单表位分枝类(2、 4、 8分枝)、 CTL表位 -Th细胞表位嵌合体类、 CTL表位 -Th细胞表位嵌合体修饰类、 B 细胞表位- CTL表位 -Th细胞表位嵌合体类、 B细胞表位- CTL表 位 -Th细胞表位嵌合体修饰类等 6类。 表位间的联结顺序采用已 证明对抗原性(免疫原性) 无影响的 -A-A-A-或 -G-G-G -。 由此获 得 200佘种结构。 在 02工作站采用分子模拟方法( Insightll软 件) 比较所设计抗原多肽的结构与天然抗原的相似形、 与 MHC 结合的位阻情况等, 并对抗原多肽进行免疫原性、 理化、 生化特 性分析, 进行排序。
采用化学合成法合成所设计的免疫原。 首先合成计算机排序 和理论上可能性最大的结构, 而后进入体外功能筛选。 体外功能 筛选包括: 对人外周血单个核细胞诱导 Thl极化、 诱导 HBV特 异性 CTL、 多肽抗原特异性 CTL对 HepG2.2.1.5细胞 HBsAg、 HBeAg的抑制作用等。 根据体外功能实验, 对所设计的结构进行 优化、 改进、 合成, 进入下一轮实验。 对体外实验所筛选到的结 构, 进入体内实验筛选, 包括: 在 Balb/C 小鼠诱导 Thl极化、 在 HBV转基因小鼠抑制病毒复制、 小鼠急性毒性实验等。 经过大 量初步節选和比较分析发现: 有 3个表位是较好的侯选组分。 进 一步的筛选表明: 3 表位的多肽抗原较单表位或双表位多肽抗原 为优, 而与四个以上表位的效果无明显差别 (见表 3 ); 三表位分 子中表位间不同的排列组合以 εΡΑ44的组合效果最好(见表 4 ); 经体内实验和体外实验证明: 化学修飾中以棕榈酸共价修饰的效 果较好; 经单克隆抗体和肽探针技术检测证明: 联结顺序的选择 保证了表位在免疫原中的表位成分的免疫特异性未发生改变。 筛 选结果见表 1和表 2。
*所列表位数目为由三类表位組成的免疫原(含不同的排列方 式)。 其中, C: CTL表位; Β: Β细胞表位; T: Th细胞表位。 数字表示该表位的个数。 表内所示为体外实验筛选结果。
表 1 治疗用 (合成肽) 乙型肝炎疫苗表位数目的筛选 * 表位数目 分子模拟 Thl极化 淋巴细胞增殖 CTL应答 病毒抑制效应
1C +++ ± + ++ ++
1C-1T +++ ++ +++ +++ +++
1C-1B ++ + + ++ +
1B-1T - + ++ - -
1C-1B-1T +++ ++ ++++ ' ++++ +++
2C-1B-1T ± ++ ++++ +++ +++
2T-1B-1C 土 ++ +++ +++ +++ 三表位分子中不同排列组合的筛选 排列方式 分子模拟 Thl极化 琳巴细胞增殖 CTL应答 病毒抑制效应
T-C-B +++ ++ ++++ ++++ +++
T-B-C ++ ++ +++ ++ ++
C-T-B ++ + ++ + ±
C-B-T + ++ +++ ++ +
B-T-C +++ ++ ++++ +++ ++
B-C-T +++ + ++ ++ +
*排列方式指从 N-末端向 C-末端的表位排布。 其中, C: CTL 表位; B: B 细胞表位; T: Th 细胞表位。 表内所示为体外实验 筛选结果
2. CH3(CH^10CO KSSPADREGGGSLNFLGGTTVSSSDPRV RGLYFPA的固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431 A多肽合成仪上进行。 Fmoc 氨基酸为原料, 上样量 lmM, 侧链保护为: Ser (tBu), Thr(tBu), Tyr(tBu)、 His(Trt)、 Gln(Trt), ASP(OtBu), Glu(OtBu), Arg(Pmc)。 选用 HMP-树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树脂上的氨基酸(多肽羧基端第一个氨基酸)采用对称酸酐 活化法活化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC 活化 法。 其中, 天冬酰胺、 精氨酸和棕榈酸采用双偶联, 棕榈酸偶联 后无脱 Fmoc保护基团步骤。
切割与脱保护: 用 TFA、 EDT、 笨甲硫醚、 结晶苯酚和超纯 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙酸沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 80%左右。 3. CH3(CH2 ^i^COKSSQYIKANSKFIGITEAAALLCLIFLLV GGGDPRVRGLYFPA的固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431A多肽合成仪上进行。 Fmoc 氨基酸为原料, 上样量 ImM, 侧链保护为: Ser (tBu), Thr(tBu), Tyr(tBu)、 His(Trt)、 Gln(Trt), ASP(OtBu), Glu(OtBu), Arg(Pmc)„ 选用 HMP-树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树脂上的氨基酸(多肽羧基端第一个氨基酸)釆用对称酸酐 活化法活化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC 活化 法。 其中, 天冬酰胺、 精氨酸和棕榈酸采用双偶联, 棕榈酸偶联 后无脱 Fmoc保护基团步驟。
切割与脱保护: 用 TFA、 EDT、 笨甲硫醚、 结晶苯酚和超純 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 85%左右。
4. CH3 ( CH2 ) 7(iCOKSSPADREAAALLDYQGMLPVGGGD PRVRGLYFPA的固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431 A多肽合成仪上进行。 Fmoc 氨基酸为原料, 上样量 ImM, 侧链保护为: Ser (tBu), Thr(tBu), Tyr(tBu), His(Trt)、 Gln(Trt), ASP(OtBu), Glu(OtBu), Arg(Pmc)„ 选用 HMP-树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树脂上的氨基酸 (多肽羧基端第一个氨基酸)采用对称酸酐 活化法活化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC 活化 法。 其中, 天冬酰胺、 精氨酸和棕榈酸采用双偶联, 棕榈酸偶联 后无脱 Fmoc保护基团步骤。
切割与脱保护: 用 TFA、 EDT、 苯甲硫醚、 结晶草酚和超纯 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 80%左右。
5- CH3 (CH2 ) 7CH=CH ( CH2 ) -CO, CH3CH2CH=CHCH2CH= CH(CH2) 7C07KSSQYIKANSKFIGITEGGGDPRVRGLYFPA 的 固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431 A多肽合成仪上进行。 Fmoc 氨基酸为原料, 上样量 ImM, 侧链保护为: Ser (tBu), Thr(tBu), Tyr(tBu), His(Trt)、 Gln(Trt). ASP(OtBu), Glu(OtBu), Arg(Pmc)„ 选用 HMP-树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树脂上的氨基酸(多肽羧基端第一个氨基酸)采用对称酸酐 活化法活化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC 活化 法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步骤。
切割与脱保护: 用 TFA、 EDT、 苯甲硫酸、 结晶苯酚和超纯 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯麾稳定在 80%左右。
6. CH3CH2CH=CHCH2CH=CH(CH2)CH=CH(CH2)7COFLVS DFFPSVAAADPRVRGLYFPA的固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431 A多肽合成仪上进行。 Fmoc 氨基酸为原料,上样量 lmM,侧链保护为同实施例 3。选用 HMP- 树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1. 偶联到树 脂上的氨基酸 (多肽羧基端第一个氨基酸)采用对称酸酐活化法活 化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC活化法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步骤。 切割与脱保护: 用 TFA、 EDT、 苯甲硫醚、 结晶苯酚和超纯 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 80%左右。
7. CH3CH2CH=CHCH2CH=CH(CH2) CH=CH(CH2) 7COKSSP ADREGGGWLSLLVPFVSSSDPRVRGLYFPARGLYFPA的固相 化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431 A多肽合成仪上进行。 Fmoc 氨基酸为原料,上样量 ImM,侧链保护为同实施例 3。选用 HMP - 树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树 脂上的氨基酸 (多肽羧基端第一个氨基酸)采用对称酸酐活化法活 化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC活化法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步骤。
切割与脱保护: 用 TFA、 EDT、 苯甲硫醚、 结晶苯酚和超纯 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 80%左右。
8. CH3 (CH2 ^^COKSSQYIKANSKFIGITEAAAFLPSDFFP SVGGGDPRVRGLYFPA的固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431 A多肽合成仪上进行。 Fmoc 氨基酸为原料,上样量 ImM,侧链保护为同实施例 3。选用 HMP- 树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树 脂上的氨基酸(多肽羧基端第一个氨基酸)采用对称酸酐活化法活 化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC活化法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步骤。 切割与脱保护: 用 TFA、 EDT、 苯甲硫酰、 结晶苯酚和超纯 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 80%左右。
9. CH3 (CH2 COKSSPADREAAAFLPSDFFPSVGGGDPR VRGLYFPA的固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431A多肽合成仪上进行。 Fmoc 氨基酸为原料,上样量 lmM,侧链保护为同实施例 3。选用 HMP- 树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树 脂上的氨基酸(多肽羧基端第一个氨基酸)采用对称酸酐活化法活 化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC活化法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步骤。
切割与脱保护: 用 TFA、 EDT、 苯甲硫醚、 结晶苯酚和超纯 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 80%左右。
10. CH3 ( CH2 COKSSPADREGGGLLVPFVQWFVSSSDP RVRGLYFPA的固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸狀链。 在 Applied Biosystems 431A多肽合成仪上进行。 Fmoc 氨基酸为原料,上样量 lmM,侧链保护为同实施例 3„选用 HMP- 树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树 脂上的氨基酸(多肽羧基端第一个氨基酸)采用对称酸酐活化法活 化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC活化法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步骤。
切割与脱保护: 用 TFA、 EDT、 苯甲硫醚、 结晶苯酚和超纯 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 75%左右。
11. CH3(CH2 A^COKSSPADREAAAGLSPTVWLSVGGGDP RVRGLYFPA的固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431 A多肽合成仪上进行。 Fmoc 氨基酸为原料,上样量 lmM,侧链保护为同实施例 3。选用 HMP- 树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树 脂上的氨基酸(多肽羧基端第一个氨基酸)采用对称酸酐活化法活 化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC活化法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步骤。
切割与脱保护: 用 TFA、 EDT、 苯甲硫醚、 结晶苯酚和超纯 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 78%左右。
12. CH3 ( CH2 J ^COKSSPADREAAALLPIFFCLWVGGGD PRVRGLYFPA的固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431 A多肽合成仪上进行。 Fmoc 氨基酸为原料,上样量 ImM,侧链保护为同实施例 3。选用 HMP- 树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树 脂上的氨基酸 (多肽羧基端第一个氨基酸)采用对称酸酐活化法活 化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC活化法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步驟。
切割与脱保护: 用 TFA、 EDT、 苯甲硫醚、 结晶苯酚和超纯 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 80%左右。
13. C 3 ( Ci¾ i(iCO SSQYI ANS FIGITEAAAYVNTNM GGGGDPRVRGLYFPA的固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431A多肽合成仪上进行。 Fmoc 氨基酸为原料,上样量 lmM,侧链保护为同实施例 3。选用 HMP- 树脂为固相栽体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树 脂上的氨基酸(多肽羧基端第一个氨基酸)采用对称酸酐活化法活 化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC活化法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步骤。
切割与脱保护: 用 TFA、 EDT、 苯甲硫醚、 结晶苯酚和超纯 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 83%左右。
14- CH3( CH2 )- (iCi?KSSQYI ANSKFIGITEAAAFLPSDFF PSVGGGDPRVRGLYFPA的固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸 链。 在 Applied Biosystems 431A多肽合成仪上进行。 Fmoc 氨基酸为原料,上样量 ImM,侧链保护为同实施例 3。选用 HMP- 树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树 脂上的氨基酸 (多肽羧基端第一个氨基酸)采用对称酸酐活化法活 化, 其佘氨基酸和棕榈酸的活化采用 HOBt/DCC活化法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步骤。
切割与脱保护: 用 TFA、 EDT、 苯甲硫醚、 结晶苯酚和超纯 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 80%左右。
15. CH3(CH2 -^COKSSQYIKANSKFIGITEGGGFLPSDFF PSVSSSDPRVRGLYFPA的固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431A多肽合成仪上进行。 Fmoc 氨基酸为原料,上样量 ImM,侧链保护为同实施例 3。选用 HMP- 树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树 脂上的氨基酸 (多肽羧基端第一个氨基酸)采用对称酸酐活化法活 化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC活化法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步骤。
切割与脱保护: 用 TFA、 EDT、 苯甲硫醚、 结晶苯酚和超纯 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 80%左右。
16. CH3 (CH2 ) -i4COKSSQYIKANSKFIGITEAAAYVNTN MGLKGGGDPRVRGLYFPA的固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431A多肽合成仪上进行。 Fmoc 氨基酸为原料,上样量 lmM,侧链保护为同实施例 3。选用 HMP- 树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树 脂上的氨基酸 (多肽羧基端第一个氨基酸)采用对称酸酐活化法活 化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC活化法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步骤。
切割与脱保护: 用 TFA、 EDT、 苯甲硫醚、 结晶苯酚和超纯 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 81%左右。 17. CH3 Cjy^i^COKSSQYIKANSKFIGITEAAAPLGFFPD HGGGDPRVRGLYFPA的固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431A多肽合成仪上进行。 Fmoc 氨基酸为原料,上样量 lmM,侧链保护为同实施例 3。选用 HMP - 树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树 脂上的氨基酸 (多肽羧基端第一个氨基酸)采用对称酸肝活化法活 化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC活化法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步骤。
切割与脱保护: 用 TFA、 EDT、 苯甲硫醚、 结晶苯酚和超纯 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 81%左右。
Figure imgf000028_0001
LHQALQDPGGGDPRVRGLYFPA的固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431A多肽合成仪上进行。 Fmoc 氨基酸为原料,上样量 ImM,侧链保护为同实施例 3。选用 HMP- 树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树 脂上的氨基酸 (多肽羧基端第一个氨基酸)采用对称酸酐活化法活 化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC活化法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步骤。
切割与脱保护: 用 TFA、 EDT、 苯甲硫酸、 结晶苯酚和超純 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 86%左右。
Figure imgf000028_0002
PRVRGLYFPA的固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431 A多肽合成仪上进行。 Fmoc 氨基酸为原料,上样量 ImM,侧链保护为同实施例 3。选用 HMP - 树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树 脂上的氨基酸 (多肽羧基端第一个氨基酸)采用对称酸 g 活化法活 化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC活化法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步驟。
切割与脱保护: 用 TFA、 EDT、 苯甲硫醚、 结晶苯酴和超纯 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 78%左右。
20. CH3 ( CH2 A^C SSPADREAAAVLQAGFFLLGGGDPR VRGLYFPA的固相化学合成
采用: Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431A多肽合成仪上进行。 Fmoc 氨基酸为原料,上样量 ImM,侧链保护为同实施例 3。选用 HMP- 树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树 脂上的氨基酸(多肽羧基端第一个氨基酸)采用对称酸酐活化法活 化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC活化法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步骤。
切割与脱保护: 用 TFA、 EDT、 苯甲硫醚、 结晶苯酚和超純 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙瞇沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 83%左右。
21. CH3 ( CH2 ) /6CO SSPAD ESSSFLLTRILTIGGGDPRV RGLYFPA的固相化学合成 采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431 A多肽合成仪上进行。 Fmoc 氨基酸为原料,上样量 lmM,侧链保护为同实施例 3。选用 HMP- 树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树 脂上的氨基酸 (多肽羧基端第一个氨基酸)采用对称酸酐活化法活 化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC活化法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步骤。
切割与脱保护: 用 TFA、 EDT、 苯甲硫酸、 结晶苯酚和超纯 水按一定比例混合液将肽从树脂上、 側保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物純度稳定在 80%左右。
22. CH3(CH2 (iCO SSPADREAAAFLGGTPVCLGGGDPR VRGLYFPA的固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431 A多肽合成仪上进行。 Fmoc 氨基酸为原料,上样量 ImM,侧链保护为同实施例 3。选用 HMP- 树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树 脂上的氨基酸 (多肽羧基端第一个氨基酸)采用对称酸酐活化法活 化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC活化法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步骤。
切割与脱保护: 用 TFA、 EDT、 苯甲硫醚、 结晶苯酚和超纯 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 74%左右。
23. CH3 (CH2 ) -i^COKSSQYIKANSKFIGITEAAAGLSPTV WLSVGGGDPRVRGLYFPA的固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431A多肽合成仪上进行。 Fmoc 氨基酸为原料,上样量 ImM,侧链保护为同实施例 3。选用 HMP- 树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树 脂上的氨基酸 (多肽羧基端第一个氨基酸)采用对称酸酐活化法活 化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC活化法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步骤。
切割与脱保护: 用 TFA、 EDT、 苯甲硫醚、 结晶苯酚和超纯 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 78%左右。
24. CH3 (CH2 ) -^COKSSQYIKANSKFIGITEAAASIVSPF IPLLGGGDPRVRGLYFPA的固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸版链。 在 Applied Biosystems 431 A多狀合成仪上进行。 Fmoc 氨基酸为原料,上样量 ImM,侧链保护为同实施例 3。选用 HMP- 树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树 脂上的氨基酸 (多肽羧基端第一个氨基酸)采用对称酸酐活化法活 化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC活化法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步骤。
切割与脱保护: 用 TFA、 EDT、 苯甲硫醚、 结晶苯酚和超纯 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 79%左右。
25. CH3 ( CH2 ) liCOKSSPADREAAASTLPETTVVRRGGG DPRVRGLYFPA的固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431 A多肽合成仪上进行。 Fmoc 氨基酸为原料,上样量 ImM,侧链保护为同实施例 3。选用 HMP- 树腊为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树 脂上的氨基酸 (多肽羧基端第一个氨基酸)采用对称酸酐活化法活 化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC活化法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步骤。
切割与脱保护: 用 TFA、 EDT、 苯甲硫醚、 结晶苯酚和超纯 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 82%左右。
26- CH3 ( CH2 ) -^CO SSQYIKANSKFIGITEAAAFLPSD FFPSVGGGCTKPTDGNCT的固相化学合成
采用 Fmoc固相化学合成方案。 固定羧基端由 C端向 N端延 伸肽链。 在 Applied Biosystems 431 A多肽合成仪上进行。 Fmoc 氨基酸为原料,上样量 ImM,侧链保护为同实施例 3。选用 HMP- 树脂为固相载体, 上样量 0.25mM, 原料 /树脂比 4: 1。 偶联到树 脂上的氨基酸(多肽羧基端第一个氨基酸)采用对称酸酐活化法活 化, 其余氨基酸和棕榈酸的活化采用 HOBt/DCC活化法。 其中, 采用双偶联, 脂肪酸偶联后无脱 Fmoc保护基团步骤。
切割与脱保护: 用 TFA、 EDT、 苯甲硫醚、 结晶苯酚和超纯 水按一定比例混合液将肽从树脂上、 侧保护性基团从氨基酸上切 下, 乙醚沉淀、 旋转转蒸发得粗肽产物, 经 HPLC鉴定, 此粗肽 产物纯度稳定在 85%左右。
27. CH3 ( CH2 ) -i^COKSSQYIKANSKFIGITEAAAFLPSDF FPSVGGGCTKPTDGNCT肽树脂的裂解
选用 TTA裂解液 (0.75 g苯酚、 0.25 ml乙二硫醇、 0.5 ml苯 甲硫醚、 0.5 ml去离子水、 10.0 ml TFA), 可最大限度地抑制副反 应的发生。 首先, 比较 ε P A 4 4肽树脂裂解反应浓度, 对其裂 解液分离纯化的影响。 反应条件, 裂解液体积: 1.5 ml; 反应温度: 25°C ; 反应时间: 2.0小时。 反应结束后滤除树脂, 收集的滤液在 20°C水浴下, 緩慢加入 1.0 ml二甲基亚砜 (DMSO)并及时摇动散 热。 采用体积排阻层析 (SEC), 加上述样品 2.0 ml进行 ε P A 4 4的分离纯化。层柝条件, 层析系统: P-6000泵及 AKTAexplorer 100; 层析柱: 直径 10 mm, 柱长 250 mm, 填料 Sephadex LH20; 流动相: DMSO; 流速: 0.4 ml/min。 收集 ε P A 4 4组分并进行 反相高效液相色谱 (RP-HPLC)分析,测定纯度和含量并计算 J 肽树脂 肽树脂裂解反应浓度对其裂解液分离纯化的影响 肽树脂浓度 (mg/ml) 加入 DMSO 肽 /肽树脂^。
26.67 无沉淀 28.17
40.00 无沉淀 29.80
53.33 有沉淀 26.03 注: 以 肽 /肽树脂(%) "间接反映出 收率"的变化。 表 3的结果显示,当 ε P A 4 4肽树脂浓度过高 (53.33 mg/ml) 时, 裂解液加入 DMSO可产生沉淀, 分离的 ε P A 4 4占肽树脂 26.03 % , 收率较低; 当 ε P A 4 4肽树脂浓度为 40 mg/ml时, 裂解液加入 DMSO不产生沉淀,分离的 ε P A 4 4占肽树脂 29.80 , 收率较高。 因此, 将 ε P A 4 4肽树脂裂解反应浓度确定为
Figure imgf000033_0001
采用上述方法及确定的 ε P A 4 4肽树脂裂解反应浓度下, 进一步观察裂解反应时间对肽树脂裂解液分离纯化的影响。 裂解时间(h) ε P A 4 4纯度 (%) 肽 /肽树脂 /。)5"
0.5 55.44 19.90
1.0 64.74 29.72
1.5 66.16 29.89
2.0 64.92 29.80
2.5 61.80 22.75
3.0 60.78 20.86 注: 以 肽 /肽树脂(%)"间接反映出 牧率"的变化。
由表 4可以看出, 将裂解反应时间控制在 1 ~ 2小时, 肽树脂 裂解液经 SEC分离后, 收集的 ε P A 4 4纯度和收率均较高。 因 此将裂解反应时间确定为 1.5小时。
28- CH3 (CH2 76COKSSPADREAAASTLPETTVVRRGGGD PRVRGLYFPA肽树脂裂解液的初步纯化
在 DMSO中 ε P A 4 4溶解性好且稳定, 而在其它溶液中溶 解度及稳定性均不够理想, 详见表 5。 因此选用 DMSO作为 SEC 的流动相。
在不同溶液体系中的溶解度和稳定性
溶液体系 溶解度 (mg/ml) 稳定性
0.1mol/L PB (pH6.8) 0.01 ―
2 % 吐温 80 — 0.1mol/L PB(pH6.8) 0.08 ―
50 % 乙氰 一 0.1 % TFA 1.67 不稳定
50 % 甲醇 一 0.1 % TFA 1.54 ―
50 % 乙醇 一 10mmol/L HCl 2.48 不稳定
50 % 乙醇 一 10mmoI/L 磷酸 2.43 不稳定
DMSO 11.7
50 % DMSO 2.53 ― 注: 室温下放置 1个月, 经 RP-HPLC分析 ε P A 4 4纯 度和含量无变化。 在上述确定的裂解反应条件下进行批量制备。采用 SEC加样 55.0 ml, 进行 ε P A 4 4肽树脂裂解液的初步纯化。 层析条件, 层析系统: P-6000泵及 AKTAexplorer 100;层析柱:直径 25 mm, 柱长 850 mm, 填料 Sephadex LH20; 流动相: DMSO; 流速: 2.0 ml/min。 收集 ε P A 4 4组分并进行 RP-HPLC分析, 测定纯度 和含量并计算 肽 /肽树脂 表 6肽树脂裂解液的初步纯化效果及重复性观察
批号 纯度 (%) 肽 /肽树脂(%)
1 52.96 47.27
2 50.58 47.21
3 55.76 46.31
X JS 53.10 ¾.59 46.93 ^0.54 注: 以 肽 /肽树脂 (%)"间接反映出 收率"的变化。 结果见表 6及层析图诿。 采用 DMSO作为流动相以及上述 SEC 对树脂裂解液进行初步纯化, 收集的 ε P A 4 4, 纯度为 53.10 ±2.59 % , 占肽树脂的 46.93 ±0.54 % 得到了较好的初步純 化效果及重复性。
29- CH3 (CH2 ) -i^COKSSQYIKANSKFIGITEAAAGLSPT VWLSVGGGDPRVRGLYFPA精制方法
采用层析技术作为 ε P A 4 4的精制方法。 比较凝胶过滤、 离子交换层析和反相层析对 ε P A 4 4的纯化效果, 收集 ε Ρ Α 4 4洗脱峰峰尖并进行 Rp-HPLC分析纯度。
凝胶过滤层析不能达到精制的要求; 离子交换层析未见到明 显的洗脱峰, 非特异性吸附严重, 不宜采用; 而反相层析尽管成 本较高, 却能够满足精制的要求。 表 7 不同层析方法纯化的纯度比较
精制方法 純度(%) 凝胶过滤 78.12 离子交换层析 ―
反相层析 99.18
30. 反相层析填料的筛选
采用不同的反相层析填料装柱, 分别对 CH3 ( CH2 )
-^COKSSPADREAAAFLGGTPVCLGGGDPRVRGLYFPA 进行 精制, 收集洗脱峰峰尖并进行 RP-HPLC分析纯度。 表 8不同反相层析填料固定相的纯化比较
反相层析填料 纯度 (%)
Dleta Pak C18 97.69
SOURCE 30 RPC 94.26
POROS 50 R2 96.24
POROS 50 Rl 98.73 结果见表 8。 选择疏水性较弱的反相层析填料 POROS 50 Rl 作为固定相, 收集的洗脱峰峰尖纯度较高。 表明采用反相层析对 疏水性较强的本品进行纯化时, 不宜选用疏水性较强的反相层析 填料 (Dleta Pak C18、 SOURCE 30 RPC和 POROS 50 R2)作为固 定相。
31. 离子对试剂对 CH3 ( CH2 ) -idCOKSSPADRESSSFLLT RILTIGGGDPRVRGLYFPA的反相层析的影响
采用层析柱 SR 10/450 POROS 50 R1进行反相层析, 比较了 采用不同的流动相进行纯化对纯度的影响。 层析条件, 层析系统: AKTAexplorer 100;样品及加样量: 2.0 ml;层析柱: 直径 10 mm, 柱长 450 mm, 填料 POROS 50 Rl; 柱温: 流动相 (A、 B): 详见表 6-07;梯度: 0 100 %B, 10 CV (柱体积);流速: 4.0 ml/min。 收集 ε P A 4 4洗脱峰峰尖并进行 RP-HPLC分析純度。 表 9 离子对试剂对反相层析中纯度的影响
流动相 纯度
A B (%)
30 % 乙醇 90 % 乙醇 ―
30 % 乙醇 -lO mmol/L NaOH 90 % 乙醇 -10 mmol/L NaOH 81.73
30 % 乙醇 -20 mmol/L HCI 90 % 乙醇 -20 mmol/L HC1 98.73 由表 9可以看出, 以乙醇溶液作为流动相, 当不加入任何离 子对试剂时, 未见明显的本品洗脱峰; 当加入离子对试剂时, 可 以使本品被完全洗脱下来。 其中, 加入酸 (HC1)比碱 (NaOH)更有 利于 ε本品的纯化。
32. 反相层析柱温的确定
选用磷酸代替盐酸作为离子对试剂(可避免将来对大规模不 锈钢层析制备系统的腐蚀作用),并采用层析柱 SR 10/200 POROS 50 Rl , 进 一 步 观 察 柱 温 对 CH3 ( CH2 ) 16COKSSPADREAAAVLQAGFFLLGGGDPRVRGLYFPA 在反 相层析中纯度和收率的影响。层析条件,层析系统: AKTAexplorer 100; 样品及加样量: ε P A 4 4 (10.34 mg/ml), 0.5 ml; 层析柱: 直径 10 mm, 柱长 200 mm, 填料 POROS 50 Rl; 柱温: 详见表 6-08; 流动相 A: 30%乙醇 -10 mmol/L磷酸, 流动相 B: 90%乙 醇 -10 mmol/L磷酸; 梯度: 0~50 B, 5 CV、 50~100%B, 0.5 CV、 100~ 100% B, 0.5 CV; 流速: 4.0 ml/min。 收集洗脱峰并进 行 RP-HPLC分析, 测定純度和含量并计算收率。 表 10 柱温对反相层析中纯度和收率的影响
柱温 ('c) 纯度(%) 收率 (%)
22 95.79 6.33
28 96.74 40.69
32 97.53 46.51
36 97.71 45.98
40 97.61 35.32 表 10 中的结果显示, 当柱温为 22°C时, 由于样品中的本品 溶解于 DMSO, 此温度下样品溶液的粘度较大, 不利于本品的扩 散以及同固定相的结合, 使其大部分随溶剂峰穿过柱子, 造成了 纯化后的本品收率降低; 当柱温升高到 28~40°C时, 收率较室温 (22°C)有显著的提高。 其中, 确定的优化后反相层析柱温为 32~ 36°C。
Figure imgf000038_0001
PRVRGLYFPA反相层析加样量及载量的确定
由于本品溶解在 DMSO中, 加样量和样品中本品浓度, 都可 能成为影响层析过程的重要参数。 因此进一步观察了加样量及载 量, 对本品在反相层析中純度和收率的影响。 层析条件, 层析系 统: AKTAexplorer 100; 样品及加样量: 本品 (10.34 mg/ml), 见 表 6-09;层析柱:直径 10 mm,柱长 450 mm,填料 POROS 50 R1; 柱温: 34" ; 流动相 A: 30%乙醇 -10 mmol/L磷酸, 流动相 B: 90%乙醇 -10 mmol/L磷酸; 梯度: 0~50%B, 5 CV、 50 ~ 100% B, 0.5 CV、 100~ 100% B, 0.5 CV; 流速: 4.0 ml/miii。 收集本 品洗脱峰并进行 RP-HPLC分析, 测定纯度和含量并计算收率。 表 11 样品量对本品在反相层析中纯度和收率的影响
加样量 (ml) 加样量 /柱体积(%) 载量 (mg/ml) 纯度(%) 收率 (%)
0.50 1.41 0.14 99.37 68.96
0.75 2.12 0.22 99.08 68.24
1.00 2.83 0.29 97.88 65.66 由表 11看出, 当加样量低于 0.75 ml时, 纯化后本品纯度达 到 99%以上, 收率接近 70%; 当加样量为 1.00 ml时, 收率降低 且纯度仅为 97.88%, 达不到精制的要求。 因此, 通常加样量和载 量控制在柱体积的 2%和 0.2 mg/ml左右。
34. CH3(CH2 ^CO SSYIKANS FIGITEAAAMQWNSTA LHQALQDPGGGDPRVRGLYFPA 原液的批量精制效果及重复 性观察
采用层析柱 AP550/275 POROS 50 R1进行批量制备。 肽树 脂经过裂解和初步纯化后, 收集的 ε P A 4 4样品分成 7次进行 高度纯化, 进一步观察了 ε P A 4 4原液的批量精制效果及重复 性。层析条件,层析系统: AKTAexplorer 100 ;样品:详见表 6-10, 加样量: 11.0 ml;层析柱:直径 50 mm,柱长 275 mm,填料 POROS 50 R1; 柱温: 34°C; 流动相 A: 30%乙醇 -10mmol/;L磷酸, 流动 相 B: 90%乙醇 -10mmol/L磷酸; 梯度: 0~50%B, 5 CV, 50 ~ 100 %B, 0.5 CV 100~ 100% B, 0.5 CV; 流速: 100.0 ml/min。 将收集的 ε P A 4 4洗脱峰合并液混匀后, 取样经检定合格即为 原液, 存放于 -20°C备用。 并且根据检定结果计算出本品的产量、 收率和比活性。
结果见表 12。 经过反相层析高度纯化批量精制的原液, 本品 的产量为 694.88 ±12.71 mg, 纯度为 98.66 ±0.14 % , 收率为 86.89 ±0.43 %, 比活性为 11689.76 ±1503.57 U/mg。 达到了较好的精制 效果及重复性。 表 12.本品原液的批量精制效果及重复性观察
Figure imgf000040_0001
纯度 浓度 产量 (mg) 纯度(%) 收率 (%) 比活 (U/mg) (%) (ms/ml)
1 52.96 10.52 7 707.00 98.54 87.28 13261.42
2 50.58 10.44 7 695.97 98.63 86.58 11542.77
3 55.76 10.21 7 681.66 98.81 86.71 10265.08
X 53.10 10.39 ― 694.88 98.66 86.89 11689.76
±2.59 ¾.16 ±12.71 ^0.1 i0.43 ±1503.57
35-冻干 ^COKSSQYI ANSKFIGITEAAAPLGF FPDHGGGDPRVRGLYFPA脂质体注射剂工艺流程 超滤浓缩
菌高純氮
注入 401!、 混悬
Figure imgf000040_0002
化液 (w/o)|
40 混悬 超滤浓缩透析 乳化液 (w/o/w)| - >|脂质体混 ϋ I脂质体浓缩 分装 冻干 灭菌 包装—
38. 冻干 CfiT/Ci^ ^COKSSQYIKANSKFIGITEAAAYVNT NMGL GGGDPRVRGLYFPA脂质体注射剂制备工艺
工艺过程中通入无菌高純氮气, 以防磷脂氧化并促使乙醚挥 发。 采用超滤方法反复对脂质体混悬液进行浓缩和透析, 最终的 体积浓缩倍数和透析倍数分别达到 8倍和 200倍以上, 以除去液 体中残留的有机溶剂。 工艺过程中各物料及其体积变化详见表
16-1。 表 13 工艺过程中的物料名称及其体积比
物料名称 体积比 本品浓縮液 1 类脂质(乙醚)溶液 1
乳化液 (w/o) 2
注射用水 50 脂质体浓缩液 2 ~ 6 半成品分装液 4 ~ 8
39 一种乙型肝炎治疗用疫苗处方
选用最常用的大豆磷脂和胆固醇构成磷脂双分子层膜。其中, 前者是主要的类脂质成分,后者兼有稳定磷脂双分子层膜的作用。 另外添加少量棕榈酸和維生素 E , 前者能够增加负电荷数量, 增 强脂质体对 CH3 ( CH2 ) -^CO SSQYIKANSKFIGITEAAAF LPSDFFPSVGGGDPRVRGLYFPA (pi 8.1)的结合能力; 后者是 为了防止磷脂氧化分解。 甘露醇和人血白蛋白可作为冻干脂质体 的保护剂和赋形剂。 磷酸緩冲液 (pH 6.5)可减緩大豆磷脂的水解, 并调节渗透压至等渗。
40. CH3 (CH2 ) -i COKSSQYIKANSKFIGITEGGGFLPSD FFPSVSSSDPRVRGLYFPA 治疗性疫苗制剂类脂质成分及脂质 体形成条件的确定
采用二次乳化法制备脂质体, 将类脂质成分溶解于乙醚溶液 中,再与本品浓缩液混合,形成乳化液 (W/0),注入磷酸緩冲液 (PB) 或水中, 同时控制温度和搅拌, 二次形成乳化液 (W/O/W), 随着 乙醜的挥发逐步形成脂质体。 通过超滤装置浓缩和透析 (透析倍数 须达到 200倍以上)以及 10 μ ιη微孔滤膜过滤,以除去液体中可能 游离的和可能发生聚集沉淀的本品。 取样进行反相高效液相色谱 (RP-HPLC)分析,测定包封量并与投药量比较计算脂质体包封率。 试验设计采用 L9 ( 3 4)正交表。
表 14 乙醚溶液成分及脂质体形成条件对其包封率的影响 编 大豆磷脂 /胆固醇 椋榈酸 温度 PB浓度 包封率 号 A (mmol/L) B C (iC ) D (%)
(mmol/L) (mmol/L)
1 40/40 0 40 0 93.16
2 40/40 2 50 15 54.75
3 40/40 6 60 75 44.92
4 60/20 0 50 75 69.48
5 60/20 2 60 0 97.27
6 60/20 6 40 15 79.26
7 80/0 0 60 15 53.75
8 80/0 2 40 75 79.29
9 80/0 6 50 0 109.4
I 192.83 216.39 251.71 299.83 D I 影
Π 246.01 231.31 233.63 187.76 C I 响 m 242.44 233.58 195.94 193.69 A Π 递
R 53.18 17.19 55.77 112.07 B m 減
P < 0.10 ― 0.10 0.05
注: 1 ~ 9编号乙醚溶液中均含 6 mmol/L维生素 E。 表 14 中结果表明, 影响的主要因素依次为0、 C、 A和 B , 因素与水平的最佳组合为 A π B m c I D I 。
41.免疫原浓度对脂质体包封率的影响
在上述正交试验确定的配方和条件基础上, 比较了免疫原溶 液的浓度对脂质体包封率的影响。
结果见表, 当免疫原浓度在 1.0 ~ 2.0 mg/ml之间时, 脂质体 包封率均在 90 %以上 (P > 0.05); 当浓度增加至 2.5 mg/ml时, 包 封率降至 80 %以下 (P < 0.001)。 因此在制备脂质体时, 将免疫 原原液超滤浓缩至 1.5 ~ 2.0 mg/mL
表 15 不同浓度 ε P A 4 4溶液对脂质体包封率的影响 ε P A 4 4浓度 脂 质 体 包 封 率 (%)
(mg/ml) 1 2 3 X iS
1.0 92.12 92.80 93.62 92.85 i0.75
1.5 94.38 92.67 93.96 93.67 .89
2.0 92.94 91.93 90.70 91.86 ±1.12
2.5 79.94 79.30 75.23 78.16 ¾.55
41. CH3 ( CH2 ^-/iCOKSSQYIKANSKFIGITEAAAFLPSDFF PSVGGGDPRVRGLYFPA 一种冻干 ε P A 4 4脂质体注射剂处 方的确定 在表 16中,编号 1 ~ 11配方均含 5 %甘露醇 /10 mmol/L磷酸 緩沖液 (KH2P04/Na2HP04为 60/40)。
表 16脂质体浓缩液和赋形剂及其浓度对冻干的影响
编 脂质体浓缩液 賦形剂及其浓度 脂质体冻干后 号 (%, V/V) (%, W/V) 外形收缩程度
1 50 ― ++++
2 25 ― +++
3 50 聚维網 Κ30(1.θ) +++
4 25 聚维鲷 Κ30(1.0) ++
5 50 聚维鲷 Κ30(0.5) +++
6 25 聚维網 Κ30(0.5) " +++
7 50 人血白蛋白(1.0) -
8 25 人血白蛋白(1.0) -
9 50 人血白蛋白(0.5) +
10 25 人血白蛋白(0.5) +
11 ― ― - 注: 浓缩后的脂质体浓缩液体积等于乳化液 (w/o)体积 (参
16-1)。 当脂质体浓缩液加量为半成品分装液的 25 ~ 50%(V/V)时,选 择加入 1%人血白蛋白为赋形剂能得到很好的冻干效果。 因此, 当浓缩后的脂质体浓缩液体积等于乳化液 (W/O)体积时, 将脂质 体浓缩液体积确定为分装液体积的 37.5 %(V/V),即脂质体浓缩液 加量的平均水平。 此时, 分装液中各辅料浓度应符合表 16-4的要 求, 分装量为 l ml且符合冻干脂质体注射剂处方的要求。 实际操 作时, 经常由于脂质体浓缩液体积大于乳化液 (W/O)体积, 可能 使分装液体积增大, 需按以下公式计算实际分装量, 即: 分装液体积
X 37. 5 % (ml)
乳化液 (W/0)体积 给药时均加入 1 ml注射用水悬浮。
42. 冻干 CH CH2 -^COKSSQYIKANSKFIGITEAAAYVN TNMGGGGDPRVRGLYFPA 注射剂的批量制备结果及重复性观 察
在上述试验确定的工艺条件下, 经本品原液的超滤浓缩及脂 质体的制备, 加入辅料液分装、 冻干和辐射灭菌, 进行本品冻干 注射剂成品的批量制备。 表 17 本品冻干注射剂的批量制备结果及重复性观察 批号 脂质体 脂质体粒度分布( in ε P A 4 4含量 比活性 包封率 (%) D50 D90 D99 ( g/瓶) (U/mg)
1 90.08 0.25 0.72 2.74 294.76 14173.51
2 88.38 0.30 0.75 2.06 309.14 13798.85
3 90.83 0.33 0.94 3.69 305.43 12910.01
89.76 0.29 0.80 2.83 303.11 13627.46
±1.26 i0.04 i0.12 J0.82 *7.47 s.95 注: D50、 D90和 D99分别指 10 %、 50 %和 90 %的粒子其 粒径均小于该值。 表 17的结果显示, 批量制备的本品脂质体包封率为 89.76 土 1.26 %; 本品注射剂成品中, 脂质体的 D50、 D90和 D99分别为 0.29 ±0.04、 0.80 ±0.12和 2.83 ±0.82, ε P A 4 4含量为 303.11 ±7.47 g/瓶, 比活性为 13627.46 ±648.95 U/mg。 达到了较好的 重复性。
43. CH3 ( CH2 j(iCOKSSPADREAAALLPIFFCLWVGGGDP RVRGLYFPA的淋巴细胞转化实验:
2-3 月 龄 Balb/c 小 鼠 , 雌 雄 均 可 。 分 O.OOlnmol, O.Olnmol, O.lnmol、 0.5nmol、 lnmol 、 lOnmol、 20nmoK 40nmol 共 8 个剂量组, 双侧后足掌免疫 ε P A 30, 每 周一次, 共 3次。 脱颈处死小鼠, 无菌条件下取双侧月国窝淋巴 结,用 3H-TdR掺入法检测,结果证明 O.Olnmol起效,在 O.Olnmol 至 20nmol的剂量范围内呈剂量依赖性反应。
44. CH3 ( C¾ 4COKSSPADREAAAGLSPTVWLSVGGGD PRVRGLYFPA中和性抗体检测及特异性鉴定:
2-3 月龄 Balb/c 小鼠, 雌雄均可。 O.OOlmnol, O.Olnmol, O.lnmoK 0.5nmo InmoL lOnmoK 20nmol、 40nmol共 8个剂 量組, 双侧后足掌免疫 ε P A 44, 每周一次, 共 3次。 免疫结束 后 3周, 取眼球放血, 收集血清, 用双抗体夹心法检测抗体。 采 用国际上全部的 10 株单抗, 通过抗体竟争抑制实验检测其特异 性。 证明 O.Olnmol可诱发抗体产生, 在 O.Olnmol至 20nmol的剂 量范围内呈剂量依赖性反应。 此抗体为 HBV中和性抗体。
45. CH3 ( CH2 ) / COKSSPADREGGGLLVPFVQWFVSSSD PRVRGLYFPA诱导 Thl极化检测
2-3 月龄 Balb/c 小鼠, 雌雄均可。 O.OOlnmol, O.Olnmol, O.lnmoK 0.5nmol、 Inmo lOnmoK 20nmol、 40nmol共 8个剂 量组, 双侧后足掌免疫 ε P A 44, 每周一次, 共 3次。 免疫结束 后 3周, 取眼球放血, 收集血清。 采用 ELISA法检测 Thl/Th2 细胞因子。 结果证明本品 O.Olnmol剂量可在体诱导 IFN- Y、 IL-2 为优势的细胞因子产生, 且在 O.Olnmol— -lOnmol剂量范围内呈 剂量依赖性反应。
46. ELISPOT 法检测 CH3 ( CH2 ) -i4C KSSPADREAAA FLPSDFFPSVGGGDPRVRGLYFPA诱导的细胞毒活性
2-3月龄 Balb/c小鼠, 雌雄均可。
分 0.001nmol,0.01nmol,0.1iimol、 0.5nmoL lnmol 、 lOnmol, 20nmoL 40nmol 共 8个剂量组, 双侧后足掌免疫本品, 每周一 次, 共 3次。 分别在免疫后第 6、 12、 18、 24天, 自小鼠眼眶后 无菌采取抗凝血, FicoU-Hypaque法分离 PBMC,用 RPMI1640培 养基(含 10%小牛血清、 100 μ /ml青链霉素)体外培养(10 6/ml , 96孔细胞培养板)一天, 待其恢复原生长状态后, 用作待测细胞。
ELISPOT 96孔细胞培养板用 IFN- γ包被抗体预包被过夜, 每孔 设 3个复孔, 用含 5%小牛血清的 RPMI1640室温封闭 1小时, 空干后, 加入待测细胞(5 xlO4细胞 /lOOul/孔, 含 RPMI1640培 养基、 10%小牛血清、 ΙΟΟ μ /mI 青链霉素、 lug/ml肽), 其中以 melan A27-35肽免疫的小鼠 PBMC为阴性对照,培养 15小时后, 洗涤 6次, 空干板, 加生物素标记的检测抗体, 于 37°C温育 1小 时, 再次洗涤, 空干后, 加底物显色, 计数斑点数 。 结果表明 最低有效剂量为 O.Olnmol, 在 O.Olnmol— -20nmol剂量范围内呈 剂量依赖性反应。
47. CH3 ( CH2 ) - 4COKSSQYIKANSKFIGITEAAAFLPSDF FPSVGGGDPRVRGLYFPA 诱导健康人外周血单个核细胞
( PBMC )增殖实验
无菌取正常人的抗凝外周血, 常规 FicoU-Hypaque密度梯度 离心法分离 PBMC, 用 RPMI1640培养基(含 10%小牛血清、 100u/ml青链霉素、 L-谷氨酰胺), 在 24孔细胞培养板中体外培 养, 细胞浓度为 106/ml。 设空白对照组、 试验组、 Pre-S ( 2 ) 对 照組, 分别加 IL-2(30IU/ml)和受试药物 (0.! g/ml、 1 μ g/ml、 10 μ g/ml ), 继续培养 6天后, 再用相同剂量的 IL-2和受试药物 同剂量下再次刺激 1次, 并加 3H-TdR(luCi/ml), 继续培养 18h 后收集细胞, 液闪检测。 结果表明: 在 0.1 g/ml、 1 μ g/mL 10 μ g/ml剂量范围内, 本品以剂量依赖方式刺人 PBMC增殖。
48. CH 3CH 2CH-CHCH 2CH=CH(CH 2) CH=CH(CH^ 7COKSS PADREGGGWLSLLVPFVSSSDPRVRGLYFPA诱导健康人外周 血单个核细胞(PBMC ) Thl/Th2极化分析
无菌取正常人的抗凝外周血, 常规 Ficoll-Hypaque密度梯度 离心法分离 PBMC, 用 RPMI1640培养基(含 10%小牛血清、 100u/ml青链霉素、 L-谷氨酰胺), 在 24孔细胞培养板中体外培 养, 细胞浓度为 106/ml„ 设正常对照组、 含受试药物組, 分别加 IL-2(30IU/ml)和受试药物 (0.l g/ml、 l M /ml ), 培养 6天后, 再用相同剂量受试药物再次刺激 1 次, 3天后, 离心取上清, 用 Endogen试剂盒检测 Thl/Th2极化。 结果表明, Pre-S ( 2 ) 可诱 导较强的 Th2型的 T细胞转化, 但基本不能诱导 T琳巴细胞向 Thl型转化; 受试药物能够诱导 T淋巴细胞向 Thl、 Th2型转化, 尤以 Thl型转化明显。
49. CH3CH2CH=CHCH2CH=CH(C 2)C =CH(CH2)7COFhP SDFFPSVAAADPRVRGLYFPA诱导 HBV特异性效应 CTL的诱 导及细胞毒活性检测
人 PBMC用 RPMI1640培养基(含 10%小牛血清、 100 μ /ml 青链霉素) 分組培养(10 6/ml , 24孔细胞培养板)一天, 待其 恢复原生长状态后,分别加 IL-2(30IU/ml)和受试药物( 0.1 μ g/mL 1 g/ml ), 继续培养 6天后, 再用相同剂量的 IL-2和受试药物每 周刺激 1次, 共 3次,末次刺激 3天后, 获得抗原特异性效应 CTL 细胞。 采用标准 51Cr释放试验检测比较细胞毒活性。 靶细胞(肽 预包被的 T2 细胞和 HepG2.2.1.5 细胞) 培养至状态良好, 用前 10小时在培养液中加入受试药物 10 g/ml, 继续培养。 106靶细 胞置于 1 ml RPMI 1640培养基(含 20% 小牛血清) 中, 加 100 M Ci 51Cr (NEN) , 于 371:水浴中标记 2小时。 标记后的靶细胞 用无菌 PBS緩冲液离心洗涤 3次( 500rpm/5min ), 然后以 104靶 细胞 /50ul/孔的数量铺于 96孔 V-型底细胞培养板中, 每孔做 3个 复孔。 按效靶比(E/T ) 12.5、 25、 50、 100: 1分别加入效应细胞, 轻轻振荡混匀, 500rpm 离心 3-5分钟, 然后置于 37°C ,5% C02 培养箱中共培养 4小时。 取上清检测 y计数值。 最大释放值为 104 靶细胞置于 lmol/L盐酸中培养所得上清的 Y计数值,最小释放值 为 104靶细胞置于含 20%小牛血清的 RPMI1640培养基中 4小时 所得上清的 Y计数值。 其中, 最小释放值应低于最大释放值的 30%。 slCr 释放百分数计算公式为: [(样本 cpm-最小释放 cpm)/ (最大释放 cpm-最小释放 cpm)】 <100%。
51Cr释放试验结果表明: 人 PBMC体外培养、 经累次刺激诱 导产生并扩大抗原特异性效应 CTL 细胞的数量, 并做对 HepG2.2.15细胞、肽抗原预包被的 T2细胞和 E6细胞的细胞毒杀 伤试验, 结果受试药物诱导的 T淋巴细胞均能够特异性杀伤肽预 包被的 T2细胞、 E细胞和 HepG2.2.15, 靶细胞特异性溶破率可 达 62.8%.
50. CH3 (CH2 )7CH=CH(C 2 )-CO, CH3C 2CH=CHCH2CH= CH(CH2) 7C07KSSQYIKANS FIGITEGGGDPRVRGLY 之 ELISPOT法检测细胞毒活性
人 PBMC, 经首次刺激 6天后, 作为待测细胞。 ELISPOT 96 孔细胞培养板用 IFN- Y包被抗体预包被过夜, 每孔设 3个复孔, 用含 5%小牛血清的 RPMI1640室温封闭 1小时, 空干后, 加入 待测细胞(5 xlO4细胞 /lOOul/孔, 含 RPMI1640培养基、 10%小 牛血清、 100 μ /ml 青链霉素、 lug/ml肽), 其中以未刺激的正常 PBMC为阴性对照, 培养 15小时后, 洗涤 6次, 空干板, 加生物 素标记的检测抗体, 于 37 温育 1小时, 再次洗涤, 空干后, 加 底物显色。 在倒置显微镜下观察、 计数斑点数目。 结果证明: 本 品在 0.01nmol—-20nmol剂量范围内以剂量依赖性方式诱导细胞 毒反应。
51. CH3 (CH2 ) (iCOKSSPADREAAALLDYQGMLPVGGG DPRVRGLYFPA诱导的 HBV抗原抑制试验:
24孔细胞培养板, HepG2.2.1.5 细胞单层培养, 加入无毒浓 度以下 2倍稀释的 7个浓度药物激活的 PBMC, 按效靶比 10:1, 同时设正常对照和药物对照。 培养第 3、 5、 7、 10、 14天, 取上 清, 测定 HBsAg、 HBeAg。 结果表明: 本品在 O.Olnmol— -20nmol 剂量范围内以剂量依赖性方式抑制 HBsAg、 HBeAg的浓度。
52. CH3( CH2 )- i^COKSSQYIKANSKFIGITEAAALLCLIFL LVGGGDPRVRGLYFPA诱导急性乙型肝炎病人 PBMC之淋巴 细胞增殖实验
无菌取急性肝炎恢复期病人和的抗凝外周血, 常规 Ficoll-Hypaque密度梯度离心法分离 PBMC, 用 RPMI1640培养 基(含 10%小牛血清、 100u/ml青链霉素、 L-谷氨酰胺), 在 24 孔细胞培养板中体外培养, 细胞浓度为 106/ml。 设空白对照組、 试验组、 Pre-S ( 2 )对照组, 分别加 IL-2(30IU/ml)和受试药物( 0.1 μ g/ml, 1 μ g/mL 10 μ g/ml ), 继续培养 6天后, 再用相同剂量的 IL-2和受试药物同剂量下再次刺激 1次,并加 3H-TdR(luCi/ml), 继续培养 18h后收集细胞, 液闪检测。 结果表明: 在 0.1 g/ml、 1 μ g/mL 10 g/mI剂量范围内, 本品以剂量依赖方式刺急性肝炎 恢复期病人 PBMC增殖。
53. Ci^rCiJ^itfCOKSSPADREGGGSLNFLGGTTVSSSDPR VRGLYFPA诱导的肝炎病人 PBMC之淋巴细胞极化分析 设急慢性肝炎空白对照组、 急肝含受试药物组、 慢肝受试药 物组, 用 Endogen试剂盒或 EELISPOT法检测 Thl/Th2极化情 况。 结果: ELISA法检测病人 PBMC的培养上清中 IL-4、 IL-10、 IFN- Y等细胞因子浓度及变化情况, 结果表明, Pre-S2可诱导较 强的 Th2型的 T细胞转化, 但基本不能诱导 T淋巴细胞向 Thl 型转化; 受试药物能够诱导 T淋巴细胞向 Thl、 Th2型转化, 以 Thl型转化最为明显。
54. CH3 ( CH2 ) -i4C KSSQYIKANSKFIGITEAAAFLPSDF FPSVGGGDPRVRGLYFPA诱导肝炎病人 PBMC之淋巴细胞的 HBV特异性效应 CTL的产生及细胞毒活性检测
设急慢性肝炎空白对照組、 急肝受试药物組、 慢肝受试药物 組, 病人 PBMC体外培养、 经累次刺激诱导产生并扩大抗原特异 性效应 CTL 细胞的数量, 并做对肽预包被的 T2、 Ε6 细胞和 HepG2.2.15细胞的细胞毒杀伤试验,结果受试药物诱导的 T淋巴 细胞均能够特异性杀伤上述三种靶细胞系, 对急肝恢复期病人 PBMC 而言, 耙细胞特异性溶破率可达 68.6%.而慢性肝炎病人 PBMC, 靶细胞特异性溶破率略低, 可达 42.6%.
55. CH3 ( CH2 ) -J4C SSQYIKANS FIGITEAAAFLPSDF FPSVGGGDPRVRGLYFPA诱导乙型肝炎病人 ELISPOT法检测 细胞毒活性:
人 PBMC, 经首次刺激 6天后, 作为待测细胞。 ELISPOT 96 孔细胞培养板用 IFN- Y包被抗体预包被过夜, 每孔设 3个复孔, 用含 5%小牛血清的 RPMI1640室温封闭 1小时, 空干后, 加入 待测细胞(5 xlO4细胞 /lOOul/孔, 含 RPMI1640培养基、 10%小 牛血清、 ΙΟΟ μ /ml青链霉素、 lug/ml肽), 其中以未刺激的正常 PBMC为阴性对照, 培养 15小时后, 洗涤 6次, 空干板, 加生物 素标记的检测抗体, 于 37°C温育 1小时, 再次洗涤, 空干后, 加 底物显色。 在倒置显微镜下观察、 计数斑点数目。 结果证明: ε -ΡΑ30在 O.Olmnol— -20nmol剂量范围内以剂量依赖性方式诱导 细胞毒反应。
56. CH3 ( CH2 ) -i4C KSSQYIKANSKFIGITE AAAFLPSD FFPSVGGGDPRVRGLYFPA在 HBV转基因小鼠诱导 Thl极化 采用 HBV-DNA转基因小鼠( ayw型 HBV全基因 ( 1.3Kb ) 转染昆明种小鼠)。 将动物随机分组, 每组 10只, 于双侧胁下和 后脚掌皮下注射, 按 10、 100、 1000U/鼠的 3个剂量给药, 每周 加强免疫一次, 共 3次。 设 IFN- ot 2b ( 15000U/鼠)为阳性对照 药、设生理盐水为阴性对照药。 给药前、 最后一次给药结束后 10、 20、 30天。 给药结束后 30天, 取小鼠脾脏, 分离脾脏淋巴细胞, 用试品 10ng/ml体外刺激 3天, 取上清, 用 ELISA法检测培养上 清中 TNF- a、 丽 - γ、 IL-4 等细胞因子的分泌情况, 分析受试 药物体内诱导 T细胞 Thl/Th2型极化的功能。 结果可检测到较强 的 IFN- Y分泌; IL-4的检测未见明显的剂量 -效应关系。
57. CH3 (CH2 ) -^CO SSQYIKANSKFIGITEAAAFLPSD FFPSVGGGDPRVRGLYFPA在 HBV转基因小鼠诱导 CTL活性 采用 HBV-DNA转基因小鼠( ayw型 HBV全基因 ( 1.3Kb ) 转染昆明种小鼠)。 将动物随机分组, 每组 15只, 于双侧胁下和 后脚掌皮下注射, 按 10、 100、 1000U/鼠的 3 个剂量给药, 每周 加强免疫一次, 共 3次。 设 IFN- o 2b ( 15000U/鼠) 为阳性对照 药、设生理盐水为阴性对照药。 给药前、 最后一次给药结束后 10、 20、 30天。 给药结束后 30天, 取小鼠脾脏, 分离脾脏淋巴细胞, 用试品 10ng/ml体外刺激 3天,用 ELI-SPOT 法检测 IFN- V分泌 细胞在外周血淋巴细胞中的表达频率。 结果表明, 在结束免疫后 第 30天, 随着原免疫剂量的升高, 外周血淋巴细胞中 IFN- Y分 泌细胞的表达频率升高, 其中 100、 1000U/鼠的免疫剂量, 体内 诱导外周血淋巴细胞中 IFN- Y分泌细胞的表达频率升高明显, 最 高可检测到 Y分泌细胞 /106PBMC。
58. CH3 (CH2 ) -i^COKSSQYIKANSKFIGITEAAAFLPSD FFPSVGGGDPRVRGLYFPA在 HBV转基因小鼠抑制病毒表面 抗原 (HBsAg )
采用 HBV-DNA转基因小鼠( ayw型 HBV全基因 ( 1.3Kb ) 转染昆明种小鼠)。 将动物随机分组, 每组 15只, 于双侧胁下和 后脚掌皮下注射, 按 10、 100、 1000U/鼠的 3 个剂量给药, 每周 加强免疫一次, 共 3次。 设 IFN- a 2b ( 15000U/鼠)为阳性对照 药、 设生理盐水为阴性对照药。 给药前、 最后一次给药结束后 10、 20、 30天。 于三次免疫结束后的第 10、 20、 30天, 取血, 分离 血清, 分别用 ELISA法血清中 HBsAg。 结果表明血清 HBsAg明 显降低, 且呈剂量依赖性和时间依赖性。
59. CH3 ( CH2 ) i^COKSSQYIKANSKFIGITEAAAFLPSDFF PSVGGGDPRVRGLYFPA在 HBV转基因小鼠抑制病毒复制
采用 HBV-DNA转基因小鼠( ayw型 HBV全基因 ( 1.3Kb ) 转染昆明种小鼠)。 将动物随机分组, 每組 15只, 于双侧胁下和 后脚掌皮下注射, 按 10、 100、 1000U/鼠的 3 个剂量给药, 每周 加强免疫一次, 共 3次。 设 IFN- ot 2b ( 15000U/鼠) 为阳性对照 药、 设生理盐水为阴性对照药。 给药前、 最后一次给药结束后 10、 20、 30天。 于三次免疫结束后的第 10、 20、 30天, 取血, 分离 血清, 分别用定量 PCR法检测血清中 HBV DNA拷贝数。 结果表 明血清 HBV DNA拷贝数明显降低, 且呈剂量依赖性和时间依赖 性。
60. CH3 ( CH2 ) -^COKSSQYIKANSKFIGITEAAAFLPSD FFPSVGGGDPRVRGLYFPA的等电点测定
采用载体两性电解质 PH梯度等电聚胶。 预处理: 8 N 尿素 和 2% TritonX-114 , 同时在聚丙烯酰胺凝胶中也要加入相应浓 度的尿素和 0.5%的 TritonX-114 。染色采用常规的考马斯亮兰染 色。 结果表明: 本品等电点为 pH7.2。
61- CH3 (CH2 ) -i^CO SSQYIKANSKFIGITEAAAFLPSDF FPSVGGGDPRVRGLYFPA的紫外光谱测定
采用紫外分光光度计, 对乙型肝炎治疗性多肽 ε -ΡΑ44 半成 品进行紫外光谱扫描, 并确定最大紫外吸收值对应的波长。 将送 检样品稀释至仪器的测定范围内, 取样进行紫外光谱扫描, 扫描 波长为: 190nm-500nm; 空白对照为: 50%乙醇。 结果表明: 其 紫外光谱最大特征吸收峰在 276nm。
62. CH3 (CH2 ) -^COKSSQYIKANSKFIGITEAAAFLPSDF FPSVGGGDPRVRGLYFPA的肽图测定
称重 lmg胰蛋白酶于 1.5ml离心管, 并溶于 0.1M NaHC03 中, 终浓度为 lmg/ml, 即为胰蛋白酶储液。 加 ΙΟ μ Ι胰蛋白酶液 于 ε ΡΑ44样品管。 盖紧离心管,反应混合物于 37°C孵育 2小时。 在消化反应正在进行的同时, 置剩余的胰蛋白酶储液于水上。 2 小时后补加 Ιθ μ ΐ胰蛋白酶于消化混合物。 盖紧离心管, 再继续 在 37°C下孵育 4.5小时。 反应结束时加 IO I TFA终止反应。 直 接取样 20 μ Γ进行 RP-HPLC分析 [HP 1100高效液相色镨仪; 色 谱柱: Waters Symmetry C18 分析柱(粒度 5 μ m, 孔径 10θΑ, 柱直径 3.9mm 柱长 150mm ) ]。
结果获得其特征性肽图。
63. CH3 ( CH2 ) ^COKSSQYIKANSKFIGITEAAAFLPSDF FPSVGGGDPRVRGLYFPA纯度分析(一)
采用有效的分子量线性范围为 1000 -— 80000的高效凝胶分析 柱对分子量约为 4947.37 道尔顿的 ε ΡΑ44 純度进行分析, 以 214nm紫外波长检测肽键的吸收, 根据面积归一化法积分计算本 品主峰的百分纯度。 仪器与色谱条件: Waters Delta 600 高效液 相色谱仪; Waters Millennium 32色镨软件; Waters Ultrahydrogel 250 高分辨凝胶分析柱( 粒度 6 μ ιη,孔径 250人 ,柱直径 7.8mm 柱长 300 mm ); CH3CN (乙腈, HPLC级, 浙江临海); TFA (三 氟乙酸, HPLC级, 美国 Sigma公司)。 流动相选用 40%CH3CN 0.1% TFA; 浓缩后的半成品取样 2ul上样; 流速: 0.5ml/min; 紫 外检测波长: 214nm。 结果表明: 该品纯度在 99.8%。
64. C 3 ( CH2 ) ^COKSSQYIKANSKFIGITEAAAFLPSDF FPSVGGGDPRVRGLYFPA纯度分析(二)
采用梯度反相高压液相色镨的方法分离本品, 以 214nm紫外 波长检测肽键的吸收,根据面积归一化法积分计算主峰 ε PA44的 百分纯度。 仪器与色谱条件: HP 1100高效液相色谱仪; 色诿注: Waters Symmetry C18 分析柱(粒度 5 μ m, 孔径 ΙΟθΑ, 柱直径 3.9mm 柱长 150mm ) 及保护柱 (粒度 5 μ ιη, 孔径 ΙΟθΑ, 柱直 径 3.9mm 柱长 20mm ); CH3CN (乙腈, HPLC级, 浙江临海); TFA (三氟乙酸, HPLC级, 美国 Sigma公司)。 流动相 A相为 100% H2O-0.1% TFA ; B相为 100% CH3CN-0.1%TFA; 线性梯 度: 10%B ~ 70%B 30min;流速: lml/min;紫外检测波长: 214nm„ 结果表明: 本品纯度为: 99.9%。
65- CH3 (CH2 ) /^COKSSQYIKANSKFIGITEAAAFLPSDF FPSVGGGDPRVRGLYFPA含量测定
采用外标法和反相高效液相色谱 (RP-HPLC)分析技术, 测定 组分收集液、 半成品、 浓缩液及其脂质体浓缩液等样品中本品的 含量。
将送检样品稀释至本品标准曲线的定量范围内, 取样进行 RP-HPLC 分析, 根据建立的定量标准曲线线性回归方程: Y (峰 面积) =12.362 X(浓度) + 80.702和样品的稀释倍数, 计算送检样品 的本品含量。
仪器与色谱条件: HP 1100高效液相色谱仪; 色谱注: Waters Symmetry C18 分析柱 (粒度 5 μ m, 孔径 100人, 柱直径 3.9mm, 柱长 150mm)及保护柱 (粒度 5 μ m, 孔径 ΙΟθΑ, 柱直径 3.9mm, 柱长 20mm); 柱温: 25°C ; CH3CN (乙腈, HPLC级, 浙江临海); TFA (三氟乙酸, HPLC 级, 美国 Sigma 公司)。 流动相 A: 100%H2O-0.1%TFA; 流动相 B: 100%CH3CN-0.1%TFA; 线性 梯度: 30% - 60%B 15min;流速: lml/min;紫外检测波长: 214nm„ 结果表明: 本品含量 4.5mg/ml。
66- CH3 (CH2 ) ^COKSSQYIKANSKFIGITEAAAFLPSDF FPSVGGGDPRVRGLYFPA分子量测定
运用电喷雾质谱 (ESI-MS)软电离使多肽及蛋白质分子带多个 电荷, 形成不同质量电荷比, 从而根据相邻两个峰的质荷比联立 方程( ii inr H / ma - ii )得到的所带电荷数来达到准确测定 ε ΡΑ44分子量的目的。 仪器与质谱条件: ΡΕ ΑΒΙ 2000 质谱仪; PE SCIEX Analyst 1.0b3 质潘分析软件 ; 扫描 Q1 正离子, GAS1 : 20 GAS2 : 0 CUR: 20 TEM: 50 °C CAD : 0 IS : 5500 NC : 2 DP : 30 FP : 350 EP: -10 DF : 0 CEM : 1800。 检测结果: 4929.12u,与理论分子量相符。
67 CH3 ( CH2 ) -^CO SSQYIKANSKFIGITEAAAFLPSDF FPSVGGGDPRVRGLYFPA脂质体的粒径分布测定
采用激光粒度分析仪 ( Laser Particle Sizer "Analysette 22"; 德国 FRITSCH )、 用微量池 (德国 FRITSCH)检测 ε P A 4 4脂 质体的粒径分布。 检测范围: 0.1 μ m - 100.25 μ m , 分 辨 率: 62 道( 9 mm/38 mm )。 将冻干 ε P A 4 4脂质体成品随机抽样, 用水溶解、稀释、混允后检测。结果表明:本品 D50为 0.25 μ m,D90 为 0.72 μ ιη,跨距小于 3。 68. CH3 (CH2 ^- ^COKSSQYIKANSKFIGITEAAAFLPSDFF PSVGGGDPRVRGLYFPA半成品的效价 /比活性测定
将送检的原液半成品, 稀释至本品效价测定的范围内, 进行 酶联板的包被、 封闭、 酶标抗体的结合及显色。 在酶标仪 450 nm 下检测吸光值 (A450nm), 并与本品参考品比较, 测定萃取样品中 ε P A 4 4的效价, 计算出本品半成品的比活性。
将本品参考品用 50 %乙醇稀释 10倍, 再进行倍比稀释; 分 别吸取 100 μ ΐ稀释液加入 96孔酶标板, 均重复 3孔, 置 4°C水箱 包被 20-24 小时。 ε P A 4 4原液按照参考品的搡作进行稀释和 包被。 阴性对照孔: 加入 50 %乙醇 100 μ 1。 包被结束后, 每孔加 1 %小牛血清 200 μ 1, 放置 4°C冰箱封闭 2小时。 将酶联板空干, 每孔加入酶标抗体 80 μ 1, 置于 37°C孵育 40分钟; 将酶联板用洗 液清洗 4次, 空干后每孔加入底物液 A、 : B各 50 μ ΐ, 置 37°C避光 显色 15分钟; 每孔加终止液 50 μ 1。 在 550型酶标检测仪上测定 A45onm 。, 根据 ε P A 4 4参考品的半效值(半数最大吸光值), 采用程序或直线回归方法处理, 分别计算参考品和样品的半效稀 释倍数; 将其代入以下面公式, 计算出待检样品效价和本品成品 比活性。
ma A
A = 2(nane) E = ; SA =
me C
检测结果表明: 本品比活性为 13985.31U/mg;每瓶效价为 4085.53XL
69. CH3 ( CH2 -^CO SSQYIKANSKFIGITEAAAFLPSDFF PSVGGGDPRVRGLYFPA脂质体效价 /比活性测定
经洗涤、离心、萃取和干燥处理,再溶解并取样进行 RP-HPLC 分析测定 ε P A 4 4的含量。 依据测定的含量将样品稀释至效价 测定的范围内, 进行酶联板的包被、 封闭、 酶标抗体的结合及显 色。 在酶标仪 450 nm下检测吸光值 (A450nm), 并与本品参考品 比较, 测定萃取样品中本品的效价, 计算出本品成品的比活性。 将参考品用 50 %乙醇稀释 10倍, 再进行倍比稀释; 分别吸取 100 μ ΐ稀释液加入 96孔酶标板, 均重复 3孔, 置 4 水箱包被 20-24 小时。 本品成品经上述预处理样品, 按照本品参考品的搡作进行 稀幹和包被。 阴性对照孔: 加入 50 %乙醇 100 μ 1。 包被结束, 每 孔加 1 %小牛血清 200 μ ΐ, 放置 4°C水箱封闭 2小时。 将酶联板空 干, 每孔加入酶标抗体 80 μ 1, 置于 37"C孵育 40分钟; 将酶联板 用洗液清洗 4次, 空干后每孔加底物液 A、 B各 50 μ Ι , 置 显色 15分钟;每孔加终止液 50 μ 1。在 550型酶联仪上测定 A450nm。 根据 ε P A 4 4参考品的半效值(半数最大吸光值), 采用程序或 直线回归方法处理,分别计算本品参考品和样品的半效稀释倍数; 将其代入以下面公式, 计算出待检样品效价和本品成品比活性。
ma A
A = 2(na" ne) E- ; SA =
me C
检测结果表明: 本品比活性为 14173.51U/mg;每瓶效价为
4177.78U。

Claims

1. 一种免疫原, 其特征在于该免疫原含有一个多肽序列, 该 多肽序列含有氨基酸序列 1、 氨基酸序列 2和氨基酸序列 3, 氨基 酸序列 1、 氨基酸序列 2与氨基酸序列 3之间分别由若干个氨基 酸残基组成的连接肽段共价连接; 所述氨基酸序列 1是 Th细胞 表位序列; 所述氨基酸序列 2 是乙型肝炎病毒来源的 CTL表位 序列;所述氨基酸序列 3是乙型肝炎病毒来源的 B细胞表位序列。
2. —种如权利要求 1 所述的免疫原, 其特征在于所述氨基酸 序列 1是破伤风类毒素来源的 Th细胞表位上的第 830-843氨基酸 序列或其变异序列、 通用 Th细胞表位 PADRE; 所述氨基酸序列 2是: HBV核心抗原上第 18-27氨基酸序列或其变异序列、 141-151 氨基酸序列或其变异序列、 117-125 氨基酸序列或其变异序列、 88-94氨基酸序列或其变异序列、 88-96氨基酸序列或其变异序列, HBV表面抗原上第 183-191 氨基酸序列或其变异序列、 201-210 氨基酸序列或其变异序列、 204-212 氨基酸序列或其变异序列、 370-379氨基酸序列或其变异序列、 251-259氨基酸序列或其变异 序列、 260-269氨基酸序列或其变异序列、 335-343氨基酸序列或 其变异序列、 338-347氨基酸序列或其变异序列、 348-357氨基酸 序列或其变异序列、 378-387 氨基酸序列或其变异序列; Pre SI 抗原上第 10-17 氨基酸序列或其变异序列, Pre S2 抗原上第 109-123氨基酸序列或其变异序列、抗原上第 152-161氨基酸序列 或其变异序列; HBx抗原上第 92-100氨基酸序列或其变异序列、 99-108氨基酸序列或其变异序列、 115-123氨基酸序列或其变异序 列、 133-141氨基酸序列或其变异序列; Pol抗原上第 61-69氨基 酸序列或其变异序列、 455-463氨基酸序列或其变异序列、 575-583 氨基酸序列或其变异序列、 773-782 氨基酸序列或其变异序列、 803-811氨基酸序列或其变异序列、 756-764氨基酸序列或其变异 序列、 816-824氨基酸序列或其变异序列、 655-663氨基酸序列或 其变异序列、 551-559氨基酸序列或其变异序列、 772-780氨基酸 序列或其变异序列、 502-510 氨基酸序列或其变异序列、 538-546 氨基酸序列或其变异序列、 642-650 氨基酸序列或其变异序列、 646-654氨基酸序列或其变异序列; 所述氨基酸序列 3是 HBV Pre-S2来源的 B细胞表位上的第 14-24氨基酸序列或其变异序列、 HBS抗原上 a决定簇。
3. 如权利要求 1或 2所述的免疫原, 其特征在于所述氨基酸 序列 1是 QYI ANSKFIGITE或其变异序列、 PADRE或其变异 序列; 所述氨基酸序列 2 是: PLGFFPDH 或其变异序列、 MQWNSTALHQALQDP或其变异序列、 SILSKTGDP V或其变 异序列、 VLQAGFFLL或其变异序列、 FLLTRILTI或其变异序 列、 FLGGTPVCL或其变异序列、 LLCLIFLLV或其变异序列、 LLDYQGMLPV或其变异序列、 WLSLLVPFV 或其变异序列、 GLSPTVWLSV或其变异序列、 KVLHKRTLGL或其变异序列、 VLHKRTLGL或其变异序列、 GLSAMSTTDL或其变异序列、 CLFKDWEEL或其变异序列、 VLGGCRHKLV或其变异序列、 FLPSDFFPSV或其变异序列、 STLPETTVVRR或其变异序列、 EYLVSFGVW 或其变异序列、 GLYSSTVPV 或其变异序列、 GLSRYVARL 或其变异序列、 FLLSLGIHL 或其变异序列、 ILRGTSFVYV 或其变异序列、 SLYADSPSV 或其变异序列、 KYTSFPWLL 或其变异序列、 SLYADSPSV 或其变异序列、 ALMPLYACI 或其变异序列、 YMDDVVLGA 或其变异序列、 WILRGTSFV 或其变异序列、 KLHLYSHPI 或其变异序列、 FTQAGYPAL 或其变异序列、 SLNFLGGTTV 或其变异序列、 LLDYQGMLPV或其变异序列、 LLVPFVQWFV或其变异序列、 GLSPTVWLSV或其变异序列、 LLPIFFCLW V或其变异序列、 YVNTNMG 或其变异序列, YVNTNMGLK 或其变异序列、 SILSKTGDPV 或其变异序列、 GLSPTVWLSV 或其变异序 列,SIVSPFIPLL 或其变异序列; 所述氨基酸序列 3 是 DPRVRGLYFPA或其变异序列、 CTKPTDGNCT或其变异序列。
4. 如权利要求 1至 3中任一项权利要求所述的免疫原, 其特 征在于所述连接肽段是由三至七个氨基酸残基组成。
5. 权利要求 1至 4中任一项权利要求所述的免疫原, 其特征 在于所述连接肽段是 AAA、 SSS或 GGG。
6. 如权利要求 1至 5中任一项权利要求所述的免疫原, 其特 征在于氨基酸序列 1、 氨基酸序列 2与氨基酸序列 3之间的连接 次序是: 氨基酸序列 1-氨基酸序列 2-氨基酸序列 3, 氨基酸序列
1-氨基酸序列 3-氨基酸序列 2, 氨基酸序列 2-氨基酸序列 1-氨基 酸序列 3, 氨基酸序列 2-氨基酸序列 3-氨基酸序列 1, 氨基酸序 列 3-氨基酸序列 1-氨基酸序列 2, 或着氨基酸序列 3-氨基酸序列
2-氨基酸序列 1。
7. 如权利要求 1至 6中任一项权利要求所述的免疫原, 其特 征在于所述免疫原还含有若干个修饰基团, 该修饰基团是烷基羰 基、 链埽基凝基-
8. 如权利要求 1至 7中任一项权利要求所述的免疫原, 其特 征在于所述免疫原含有两个修饰基团。
9. 如权利要求 1至 7中任一项权利要求所述的免疫原, 其特 征在于所述免疫原含有一个修饰基团。
10. 如权利要求 7至 9中任一项权利要求所述的免疫原, 其特 征在于所述烷基羰基选自由 CH3(CH2)10CO-, CH3(CH2)12CO-, CH3 ( CH2 ) 14CO-和 CH3 ( CH2 ) 16CO-組成的一组烷基羰基中的 一个至五个; 所述链烯基羰基选自由 CH3 ( CH2 ) 7CH=CH ( CH2 ) 7CO-,CH3CH2CH=CHCH2CH=CH(CH2)7CO- 和 CH3CH2CH=CHCH2CH=CH(CH2)CH=CH(CH2)7CO-組成的一组 链烯基羰基中的一个至五个。
11. 如权利要求 7至 10 中任一项权利要求所述的免疫原, 其 特征在于所述修饰基团与所述多肽序列的任意一个氨基酸残基共 价连接。
12. 如权利要求 7至 11 中任一项权利要求中所述的免疫原, 其特征在于所述修饰基团与所述多肽序列的 N末端 α氨基、 C末 端 α羧基或氨基酸残基的任何一个侧链基团共价连接。
13. 如权利要求 12 中所述的免疫原, 其特征在于所述修饰基 团与所述多肽序列的 Ν末端 α氨基之间通过连接肽段 KSS连接, 其中, 所述多肽序列的 Ν末端 α氨基与连接肽段 KSS的 C末端通 过肽键连接, 所述修饰基团与连接肽段 KSS的 ε氨基共价连接。
14. 如权利要求 12或 13所述的免疫原, 其特征在于所述修饰 基团与所述侧链基团上的氨基、 羧基或羟基等基团共价连接。
15. 如权利要求 12所述的免疫原, 其特征在于所述修饰基团 与 Ν末端赖氨酸的 ε氨基共价连接。
16. 如权利要求 13 中所述的免疫原, 其特征在于所述连接肽 段 KSS的 α氨基上还共价连接一个所述的修饰基团。
17. 如权利要求 1-16 中所述的免疫原, 其特征在于一级结构 是 <¾(t¾^ OKSSPADREGGGSLNFLGGTTVSSSDPRVRGL YFPA。
18. 如权利要求 1-16 中所述的免疫原, 其特征在于一级结构 是 CH3 (CH2 ^COKSSQYIKANSKFIGITEAAALLCLIFLLVGG GDPRVRGLYFPA。
19. 如权利要求 1-16 中所述的免疫原, 其特征在于一级结构 是 CH3 (CH2 ) i^CO SSPADREAAALLDYQGMLPVGGGDPR VRGLYFPAo
20. 如权利要求 1-16 中所迷的免疫原, 其特征在于一级结构 是 Cjff3 ( CH2 ) 7CH=CH ( CH2 ) - CO,CH3CH2CH=CHCH2CH= C fC¾) 7ra7KSSQYIKANSKFIGITEGGGDPRVRGLWPA。
21. 如权利要求 1-16 中所迷的免疫原, 其特征在于一级结构 是 CH3CH2CH^CHCH2CH^CH(CH^ CH^CH(CH^ 7COFLPSDFF PSVAAADPRVRGLYFPA。
22. 如权利要求 1-16 中所迷的免疫原, 其特征在于一级结构 是 CH3CH2CH=CHCH2CH=CH(CH2) CH=CH(CHJ, 7COKSSPADR EGGGWLSLLVPFVSSSDPRVRGLYFPAo
23. 如权利要求 1-16 中所述的免疫原, 其特征在于一级结构 是 CH3 ( CH2 ) ^COKSSQYI ANSKFIGITEAAAFLPSDFFPSV GGGDPRVRGLYFPAo
24. 如权利要求 1-16 中所述的免疫原, 其特征在于一级结构 是 CH3_ ( CH2 /^C^KSSPADREAAAFLPSDFFPSVGGGDPRVR GLYFPAo
25. 如权利要求 1-16 中所述的免疫原, 其特征在于一级结构 是 CH3— (CH2 ^/^C SSPADREGGGLLVPFVQWFVSSSDPRVR GLYFPA。
26. 如权利要求 1-16 中所迷的免疫原, 其特征在于一级结构 是 ¾_ ( CH2 ) i4COKSSPADREAAAGLSPTVWLSVGGGDPR VRGLYFPAo
27. 如权利要求 1-16 中所迷的免疫原, 其特征在于一级结构 是 CH3. (CH2 ) J6COKSSPADREAAALLPIFFCLWVGGGDPRV RGLYFPA。
28. 如权利要求 1-16 中所述的免疫原, 其特征在于一级结构 是 CH3 (CH2 ) iiCOKSSQYIKANSKFIGITEAAAYVNTNMGGG GDPRVRGLYFPA,
29. 如权利要求 1-16 中所述的免疫原, 其特征在于一级结构 是 CH3- ( CH2 ) ^COKSSQYIKANSKFIGITEAAAFLPSDFFPSV GGGDPRVRGLYFPA.
30. 如权利要求 1-16 中所述的免疫原, 其特征在于一级结构 是 CH3 ( CH2 ) ^COKSSQYIKANSKFIGITEGGGFLPSDFFPSVS SSDPRVRGLYFPAo
31. 如权利要求 1-16 中所迷的免疫原, 其特征在于一级结构 是 CH3_( CH2 ^^COKSSQYIKANSKFIGITEAAAYVNTNMGLKG GGDPRVRGLYFPA。
32. 如权利要求 1-16 中所述的免疫原, 其特征在于一级结构 是 CH3 (CH2 ) COKSSQYIKANSKFIGITEAAAPLGFFPDHG GGDPRVRGLYFPA。
33. 如权利要求 1-16 中所迷的免疫原, 其特征在于一级结构 是 CH3(CH2 ^/^COKSSYIKANSKFIGITEAAAMQWNSTALHQA I^DPGGGDPRVRGLYFPA。
34. 如权利要求 1-16 中所述的免疫原, 其特征在于一级结构 是 CH3 (CH2 ) ^COKSSPDAREAAASILSKTGDPVGGGDPRVR GLYFPAo
35. 如权利要求 1-16 中所迷的免疫原, 其特征在于一级结构 是 CH3 (CH2 ^COKSSPADREAAAVLQAGFFLLGGGDPRVRG LYFPA„
36. 如权利要求 1-16 中所述的免疫原, 其特征在于一级结构 是 CH3 (CH2 J(iCOKSSPADRESSSFLLTRILTIGGGDPRVRGLY FPA。
37. 如权利要求 1-16 中所述的免疫原, 其特征在于一级结构 是 CH3 ( CH2 ) /6COKSSPADREAAAFLGGTPVCLGGGDPRVR GLYFPA»
38. 如权利要求 1-16 中所述的免疫原, 其特征在于一级结构 是 CH3 ( CH2 )
Figure imgf000066_0001
GGGDPRVRGLYFPA.
39. 如权利要求 1-16 中所述的免疫原, 其特征在于一级结构 是 CH3 ( CH2 ) 4C SSQYIKANSKFIGITEAAASIVSPFIPLLG GGDPRVRGLYFPA。
40. 如权利要求 1-16 中所述的免疫原, 其特征在于一级结构 是 CH3( CH2 COKSSPADREAAASTLPETTVVRRGGGDPRVR GLYFPA。
41. 如权利要求 1-16 中所述的免疫原, 其特征在于一级结构 是 CH3 ( CH2 ^COKSSQYIKANSKFIGITEAAAFLPSDFFPSVG GGCTKPTDGNCT。
42. —种设计、 筛选和合成权利要求 1至 41 中任一项权利要 求所述的免疫原的方法, 包括基于表位的疫苗设计(EBVD ), 分 子模拟、 分子设计、 筛选体系和多肽固相合成, 其中多肽固相合 成中树脂与每种氨基酸或棕榈酸投料的摩尔比为 1: 2-1:8, 精氨 酸、 天冬酰胺以及棕榈酸組分的连接采用双偶联, 反应温度为 20-40 C:。
43. 如权利要求 42所迷的方法, 其中所迷投料的摩尔比为 1: 4, 所述反应温度为 30°C。
44. 一种制备权利要求 1至 41 中任一项权利要求所迷免疫原 的方法, 其特征在于该方法包括以下步骤: (1 ) 多肽固相合成所 述免疫原-树脂, 所述免疫原 -树脂表示与树脂结合的免疫原; (2 ) 对免疫原-树脂进行裂解, 得到裂解液; (3 ) 将步骤(2 ) 的裂解 液采用体积排阻层析进行初步分离纯化; (4 ) 通过反相层析纯化 得到免疫原。
45. 如权利要求 44所迷的方法, 其特征在于所迷步骤(2 )选 用 TFA裂解液;裂解条件是免疫原-树脂的浓度:小于 100 mg/ml, 反应温度: 15-50*C , 反应时间: 0.5-3小时。
46. 如权利要求 44或 45中任一项权利要求所述的方法, 其特 征在于所述 TFA裂解液为: 0.75 苯酚、 0.25 ml乙二硫醇、 0.5 ml 苯甲硫醚、 0.5 ml.去离子水、 10.0 ml TFA; 所述裂解条件是免疫 原-树脂的浓度: 40.00 mg/ml, 反应温度: 25"C , 反应时间: 1.5 小时。
47. 如权利要求 44所述的方法, 其特征在于所述步骤(3 ) 中 的体积排阻层析采用的柱填料为 Sephadex LH20, 流动相为二甲 基亚巩。
48. 如权利要求 44所述的方法, 其特征在于所迷步骤(4 ) 中 的反相层析采用的柱填料为 POROS 50 Rl、 POROS 50 R2、 SOURCE 30 RPC或 Dleta Pak C18。
49. 如权利要求 44或 47中任一项权利要求所述的方法, 其特 征在于所述步骤(4 ) 中的反相层析采用梯度洗脱, 流动相采用乙 腈 /TFA、 乙腈 /HC1、 乙醇 /TFA、 乙醇 /HC1或乙醇 /磷酸的水溶液。
50. 如权利要求 44或 47或 48中任一项权利要求所迷的方法, 其特征在于所述反相层析纯化的柱温是 20-60 。
51. 如权利要求 50所述的方法, 其特征在于所述反相层析纯 化的柱温是 28- 40 。
52. 如权利要求 51所迷的方法, 其特征在于所述反相层析纯 化的柱温是 32- 36°C;。
53. 如权利要求 52所述的方法, 其特征在于所述反相层析纯 化的柱温是 34°C。
54. 权利要求 1至 41 中任一项权利要求所述的免疫原在制备 治疗 HBV慢性感染持续状态及其相关的继发性肝硬化、肝癌等疾 媽的 ¾L ^ 约物 用 3£。
55. 一种如权利要求 54 所述的用途, 其特征在于所述 慢性感染持续状态为慢性乙型肝炎或乙型肝炎病毒携带者。
56. 一种治疗用乙型肝炎疫苗, 其特征在于该疫苗含有权利要 求 1至 41中任一项权利要求所述的免疫原。
57. 一种治疗用乙型肝炎疫苗, 其特征在于该疫苗含有权利^ 求 1至 41中任一项权利要求所述的免疫原以及药学上可接受的辅 料、 佐剂和 /或载体。
58. 如权利要求 54或 55所述的治疗用乙型肝炎疫苗, 其特^ 在于该疫苗是药学上可接受的任意一种剂型。
59. 如权利要求 54、 55、 56或 57所述治疗用乙型肝炎疫苗, 其特征在于该疫苗的制剂是注射剂、 透皮剂、 口服剂、 吸入剂 ' 栓剂。
60. 如权利要求 58权利要求所述的治疗用乙型肝炎疫苗, ^ 特征在于该疫苗的剂型为液体剂型、 混悬液剂型、 液体脂质体^ 型或冻干脂质体剂型。
61. 如权利要求 60所述的治疗用乙型肝炎疫苗, 其特征在 液体剂型为乙醇溶液剂型。
62. 如权利要求 60所述治疗用乙型肝炎疫苗, 其特征在于 述液体脂质体剂型或冻干脂质体剂型含有磷脂。
63. 如权利要求 62所述治疗用乙型肝炎疫苗, 其特征在于^ 述液体脂质体剂型或冻干脂盾体剂型还含有胆固醇。
64. 如权利要求 62或 63所述治疗用乙型肝炎疫苗, 其特征^ 于所迷液体脂质体剂型或冻干脂质体剂型还含有维生素 E。
-b ^- . 62 ¾ 64所述治 用乙型肝炎疫苗, 其特征^
-1/9 ^ΛΤ火 丁^ T 0 兄 ^、 /w、 n=- y^ ^r. 维生素 E和棕榈酸的摩尔比为 0.1-0.5: 40—80: 0—40: 0-10: 0—10。
67. 如权利要求 66所述的治疗用乙型肝炎疫苗, 其特征在于 该疫苗中的免疫原、 磷脂、 胆固醇、 维生素 E和棕榈酸的摩尔比 为 0.2—0.4: 60: 20: 6: 6。
68. 如权利要求 67所述的治疗用乙型肝炎疫苗, 其特征在于 该疫苗中的免疫原、 磷脂、 胆固醇、 维生素 E和棕榈酸的摩尔 Λ 为 0.3-0.36: 60: 20: 6: 6。
69. 如权利要求 60或 62任一项权利要求所述的治疗用乙型^ 炎疫苗, 其特征在于所迷磷脂为大豆磷脂或卵磷脂。
70. 一种制备权利要求 60或 62任一项权利要求所述的治疗用 乙型肝炎疫苗的方法, 其特征在于所述方法包括采用二次乳化 ¾ 制备脂质体。
71. 如权利要求 60或 62任一项权利要求所述的治疗用乙型 炎疫苗, 其特征在于所述冻干脂质体剂型还含有人白蛋白、 甘灣 醇和磷酸盐。
72. 如权利要求 60或 62至 71任何一项权利要求所述的治^ 用乙型肝炎疫苗, 其特征在于所述冻干脂质体剂型含权利要求 : 至 41所述免疫原、 磷脂、 胆固醇、 棕榈酸、 维生素 E、 甘露醇、 人 血 白 蛋 白 、 KH2P04 、 Na2HP04 , 其 摩 * 比
0.01-0.1:5-15:1-7:0.5-1.5:0.5-1.5:70-150:0.1-0.3:1-10:1-10„
0/9
PCT/CN2003/000792 2002-09-18 2003-09-18 Immunogene permettant de preparer des vaccins ou des medicaments therapeutiques pour traiter l'hepatite b et son procede de production et d'utilisation WO2004026899A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003271021A AU2003271021A1 (en) 2002-09-18 2003-09-18 Immunogen for preparation of therapeutic vaccines or drugs for treatment of hepatitis b and the producing method and use thereof
US10/528,350 US8591908B2 (en) 2002-09-18 2003-09-18 Immunogen for preparation of therapeutic vaccines or drugs for treatment of hepatitis B and the producing method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN02130738.5 2002-09-18
CNB021307385A CN100381463C (zh) 2002-09-18 2002-09-18 用于生产治疗用乙型肝炎疫苗或药物的免疫原及其制备方法和用途

Publications (2)

Publication Number Publication Date
WO2004026899A1 true WO2004026899A1 (fr) 2004-04-01
WO2004026899A9 WO2004026899A9 (fr) 2005-05-12

Family

ID=32000391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2003/000792 WO2004026899A1 (fr) 2002-09-18 2003-09-18 Immunogene permettant de preparer des vaccins ou des medicaments therapeutiques pour traiter l'hepatite b et son procede de production et d'utilisation

Country Status (4)

Country Link
US (1) US8591908B2 (zh)
CN (1) CN100381463C (zh)
AU (1) AU2003271021A1 (zh)
WO (1) WO2004026899A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9238679B2 (en) 2011-02-11 2016-01-19 The Trustees Of The University Of Pennslyvania Nucleic acid molecule encoding hepatitis B virus core protein and surface antigen protein and vaccine comprising the same
US9403879B2 (en) 2011-02-11 2016-08-02 The Trustees Of The University Of Pennsylvania Nucleic acid molecule encoding hepatitis B virus core protein and vaccine comprising the same

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105884903B (zh) 2009-03-10 2019-12-06 贝勒研究院 靶向抗原呈递细胞的疫苗
CN106432493B (zh) * 2009-03-10 2020-01-31 贝勒研究院 抗-cd40抗体及其用途
ES2622228T3 (es) 2009-03-10 2017-07-06 Baylor Research Institute Vacunas antivíricas dirigidas a células presentadoras de antígenos
CN101717433A (zh) * 2009-12-08 2010-06-02 张嘎 一种多肽免疫原及其制备方法和应用
TW201300418A (zh) 2011-03-25 2013-01-01 Baylor Res Inst 用於抗c型肝炎病毒免疫之組合物及方法
CN102199217B (zh) * 2011-04-01 2013-03-27 中国人民解放军第三军医大学 乙型肝炎病毒多表位融合蛋白及其制备方法和应用
CN104341506A (zh) * 2013-07-30 2015-02-11 复旦大学 一种重组融合蛋白及其用途
WO2015106281A1 (en) 2014-01-13 2015-07-16 Baylor Research Institute Novel vaccines against hpv and hpv-related diseases
TWI745278B (zh) 2014-10-10 2021-11-11 以色列商艾畢克生物實驗有限公司 發泡性降低之疫苗組合物
CN107496912B (zh) * 2017-04-14 2021-06-29 郑振宜 一种乙肝病毒抗原肽联合肝癌细胞抗原信息的抗原提呈信号群及其应用
CN107141355B (zh) * 2017-05-31 2021-05-14 中国人民解放军第四军医大学 一种htnv抗原表位线性串联多肽及表位肽-复合物四聚体和应用
US10610585B2 (en) 2017-09-26 2020-04-07 Inserm (Institut National De La Sante Et De La Recherche Medicale) Methods and compositions for treating and preventing HIV
CN109575141A (zh) * 2017-09-29 2019-04-05 苏州工业园区唯可达生物科技有限公司 一种cd4辅助性t细胞表位融合肽及其疫苗
CN108283715A (zh) * 2017-12-20 2018-07-17 江苏孟德尔基因科技有限公司 一种模拟抗原化合物用于治疗hbv感染相关症状的用途
WO2019217654A1 (en) * 2018-05-10 2019-11-14 Walsh Renae Methods and compositions for the treatment of hepatitis b infection
CN109021109A (zh) * 2018-07-20 2018-12-18 上海交通大学 一种牛源性抗金黄色葡萄球菌融合抗体scFv-Fc及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6322789B1 (en) * 1991-08-26 2001-11-27 Epimmune, Inc. HLA-restricted hepatitis B virus CTL epitopes
US6333021B1 (en) * 1994-11-22 2001-12-25 Bracco Research S.A. Microcapsules, method of making and their use
CA2352738A1 (en) * 1998-12-04 2000-06-08 Biogen, Inc. Hbv core antigen particles with multiple immunogenic components attached via peptide ligands
WO2002062959A2 (en) * 2001-02-05 2002-08-15 Stressgen Biotechnologies Corp. Hepatitis b virus treatment

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LING-LING AN ET AL.: "A multivalent minigene vaccine, containing B-cell, cytotoxic T-lymphocyte and Th epitopes from several microbes, induces appropriate responses in vivo and confers protection against more than one pathogen", JOURNAL OF VIROLOGY, vol. 71, no. 3, March 1997 (1997-03-01), pages 2292 - 2302 *
SHI TONG-DONG ET AL.: "Therapeutic peptides based on HBcAg18-27 epitope can induce CTL response in vitro and in vivo", IMMUNOLOGICAL JOURNAL, vol. 19, no. 3, 25 May 2003 (2003-05-25), pages 65 - 169 *
WU YU-ZHANG ET AL.: "Studies on molecular design, chemical synthesis and immunogenicity of novel antigenic peptides against hepatitis B virus", ACTA ACDEMIAE MEDICINAE MILITARIS TERTIAE, vol. 22, no. 10, October 2000 (2000-10-01), pages 919 - 923 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9238679B2 (en) 2011-02-11 2016-01-19 The Trustees Of The University Of Pennslyvania Nucleic acid molecule encoding hepatitis B virus core protein and surface antigen protein and vaccine comprising the same
US9403879B2 (en) 2011-02-11 2016-08-02 The Trustees Of The University Of Pennsylvania Nucleic acid molecule encoding hepatitis B virus core protein and vaccine comprising the same
US9675690B2 (en) 2011-02-11 2017-06-13 The Trustees Of The University Of Pennsylvania Nucleic acid molecule encoding hepatitis B virus core protein and surface antigen protein and vaccine comprising the same
US10195268B2 (en) 2011-02-11 2019-02-05 The Trustees Of The University Of Pennsylvania Nucleic acid molecule encoding hepatitis B virus core protein and vaccine comprising the same
US10695421B2 (en) 2011-02-11 2020-06-30 The Trustees Of The University Of Pennsylvania Nucleic acid molecule encoding hepatitis B virus core protein and vaccine comprising the same
EP3760227A1 (en) 2011-02-11 2021-01-06 The Trustees of the University of Pennsylvania Nucleic acid molecule encoding hepatitis b virus core protein and vaccine comprising the same

Also Published As

Publication number Publication date
US8591908B2 (en) 2013-11-26
CN1483736A (zh) 2004-03-24
AU2003271021A8 (en) 2004-04-08
US20060246089A1 (en) 2006-11-02
CN100381463C (zh) 2008-04-16
AU2003271021A1 (en) 2004-04-08
WO2004026899A9 (fr) 2005-05-12

Similar Documents

Publication Publication Date Title
WO2004026899A1 (fr) Immunogene permettant de preparer des vaccins ou des medicaments therapeutiques pour traiter l&#39;hepatite b et son procede de production et d&#39;utilisation
US11918645B2 (en) Vaccines against hepatitis B virus
EP3148566B1 (en) Synthetic long peptides (slp) for therapeutic vaccination against hepatitis b virus infection
JP3738395B2 (ja) Hla−制限型b型肝炎ウィルスのctlエピトープ
JP3650110B2 (ja) B型肝炎ウイルスに対する細胞毒性tリンパ球応答を誘発するためのペプチド
JP3694299B2 (ja) B型肝炎ウイルスに対する細胞障害性tリンパ球の応答を誘発するペプチド
EP1666487A1 (en) Purification of hbv antigens for use in vaccines
AU2001282073A1 (en) Purification of HBV antigens for use in vaccines
Karpenko et al. Combined virus-like particle-based polyepitope DNA/protein HIV-1 vaccine: Design, immunogenicity and toxicity studies
JP5102209B2 (ja) 切り詰め型hbcコアタンパク質と、サポニンが主成分の免疫増進剤とを含有するワクチン
ES2399356T3 (es) Polipéptidos sintéticos derivados de pre-S1 del virus de la hepatitis B y usos de los mismos
JP3000569B2 (ja) B型肝炎ウイルスコア抗原のアミノ酸残基配列
Wang et al. CpG oligodeoxynucleotide-adjuvanted fusion peptide derived from HBcAg epitope and HIV-Tat may elicit favorable immune response in PBMCs from patients with chronic HBV infection in the immunotolerant phase
Shi et al. Therapeutic polypeptides based on HBcAg18-27 CTL epitope can induce antigen-specific CD8+ CTL-mediated cytotoxicity in HLA-A2 transgenic mice
CN102199217A (zh) 乙型肝炎病毒多表位融合蛋白及其制备方法和应用
KR20060117920A (ko) 치료용 약학적 조성물

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1564/DELNP/2005

Country of ref document: IN

COP Corrected version of pamphlet

Free format text: CLAIMS, PAGES 1/9 AND 0/9, REPLACED BY CORRECT PAGES 67 AND 68

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 2006246089

Country of ref document: US

Ref document number: 10528350

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP

WWP Wipo information: published in national office

Ref document number: 10528350

Country of ref document: US