WO2004026803A1 - Verfahren zur herstellung von dialdehyden und/oder ethylenisch ungesättigten monoaldehyden durch hydroformylierung ethylenisch ungesättigter verbindungen - Google Patents

Verfahren zur herstellung von dialdehyden und/oder ethylenisch ungesättigten monoaldehyden durch hydroformylierung ethylenisch ungesättigter verbindungen Download PDF

Info

Publication number
WO2004026803A1
WO2004026803A1 PCT/EP2003/010166 EP0310166W WO2004026803A1 WO 2004026803 A1 WO2004026803 A1 WO 2004026803A1 EP 0310166 W EP0310166 W EP 0310166W WO 2004026803 A1 WO2004026803 A1 WO 2004026803A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
hydrogen
aryl
alkyl
cycloalkyl
Prior art date
Application number
PCT/EP2003/010166
Other languages
English (en)
French (fr)
Inventor
Martin Volland
Wolfgang Ahlers
Klaus Ebel
Rocco Paciello
Michael Röper
Thomas Mackewitz
Volker BÖHM
Xavier Sava
Oliver LÖBER
Oliver Bey
Jürgen STEPHAN
Frank Haese
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to US10/527,635 priority Critical patent/US7145042B2/en
Priority to EP03748014A priority patent/EP1539666B1/de
Priority to JP2004537069A priority patent/JP4457012B2/ja
Priority to DE50311061T priority patent/DE50311061D1/de
Priority to AU2003267348A priority patent/AU2003267348A1/en
Publication of WO2004026803A1 publication Critical patent/WO2004026803A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6596Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having atoms other than oxygen, sulfur, selenium, tellurium, nitrogen or phosphorus as ring hetero atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/49Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide
    • C07C45/50Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reaction with carbon monoxide by oxo-reactions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/02Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen
    • C07C47/12Saturated compounds having —CHO groups bound to acyclic carbon atoms or to hydrogen containing more than one —CHO group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C47/00Compounds having —CHO groups
    • C07C47/20Unsaturated compounds having —CHO groups bound to acyclic carbon atoms
    • C07C47/21Unsaturated compounds having —CHO groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/572Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/553Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having one nitrogen atom as the only ring hetero atom
    • C07F9/572Five-membered rings
    • C07F9/5728Five-membered rings condensed with carbocyclic rings or carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/6552Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a six-membered ring
    • C07F9/65522Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a six-membered ring condensed with carbocyclic rings or carbocyclic ring systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6558Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system
    • C07F9/65586Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system at least one of the hetero rings does not contain nitrogen as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/6584Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms having one phosphorus atom as ring hetero atom
    • C07F9/65842Cyclic amide derivatives of acids of phosphorus, in which one nitrogen atom belongs to the ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6564Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms
    • C07F9/6581Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms
    • C07F9/6584Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having phosphorus atoms, with or without nitrogen, oxygen, sulfur, selenium or tellurium atoms, as ring hetero atoms having phosphorus and nitrogen atoms with or without oxygen or sulfur atoms, as ring hetero atoms having one phosphorus atom as ring hetero atom
    • C07F9/65848Cyclic amide derivatives of acids of phosphorus, in which two nitrogen atoms belong to the ring

Definitions

  • the present invention relates to a process for the preparation of dialdehydes and / or ethylenically unsaturated monoaldehydes by hydroformylation of at least one compound having at least two ethylenically unsaturated double bonds in the presence of a catalyst which comprises at least one complex of a metal of VIII. Subgroup with at least one pnicogen ligand.
  • Ethylenically unsaturated monoaldehydes (“enals”) and dialdehydes are important intermediates on an industrial scale.
  • the aldehyde group can thus easily be converted into a large number of other functional groups such as amino, hydroxyl, carboxy group etc.
  • Enaien a large number of compounds are obtained that are difficult to access on other synthetic routes and are suitable as bifunctional synthetic building blocks for subsequent reactions.
  • Dialdehydes and the diols, diamines and dicarboxylic acids obtainable from them are suitable for a large number of applications, eg. B. for the production of polyesters and polyamides and as a crosslinking agent for polymers.
  • catalysts for the hydroformylation of polyethylenically unsaturated compounds are to be distinguished by high activity at the lowest possible temperatures and the lowest possible reaction pressures in order to avoid undesirable side reactions, such as, for example, B. to avoid the aldol reaction.
  • Van der Slot et al., Organometallics 19., 2504 (2000) describe the synthesis of phosphorodiamide chelate ligands with a bisphenol or xanthene backbone, the diamide unit of which is formed by biuret groups, and the catalytic properties of the rhodium complexes thereof Hydroformylation compounds.
  • WO 00/56451 on phosphorato relates, inter alia, to cyclic oxaphosphorines substituted with pyrrole derivatives and the use of these as ligands in catalysts for hydroformylation.
  • WO 01/58589 describes compounds of phosphorus, arsenic and antimony based on diaryl-fused bicyclo [2.2.2] basic bodies and catalysts which contain these as ligands.
  • DE-A-100 23 471 describes a process for hydroformylation using a hydroformylation catalyst which comprises at least one phosphine ligand which has two triarylphosphine groups, an aryl radical of the two triarylphosphine groups in each case via a single bond to a nonaromatic 5- is linked to 8-membered carbocyclic or heterocyclic bridging group.
  • the phosphorus atoms also have hetaryl groups as further substituents.
  • DE-A-100 46 026 describes a hydroformylation process in which the catalyst used is a complex based on a phosphorus, arsenic or antimony-containing compound as ligand, this compound in each case two a P-, As- or Sb- Ato and at least two further heteroatom-containing groups bound to a xanthene-like molecular structure.
  • US Pat. No. 5,710,344 relates to the hydroformylation of olefins by means of rhodium catalysts which can be modified with chelate phosphorodiamidite ligands with a bisphenol or bisnaphthol backbone and whose phosphorus atoms can carry unsubstituted pyrrolyl, imidazolyl or indolyl groups.
  • rhodium catalysts which can be modified with chelate phosphorodiamidite ligands with a bisphenol or bisnaphthol backbone and whose phosphorus atoms can carry unsubstituted pyrrolyl, imidazolyl or indolyl groups.
  • olefin a. 1,3-butadiene used.
  • Rh (acac) (CO) P (C 6 H 5 ) 3 ) / P (C 6 H 5 ) 3 .
  • Rh (acac) (CO) P (C 6 H 5 ) 3 ) / P (C 6 H 5 ) 3 .
  • the formation of a large number of isomeric mono- and dialdehydes is observed.
  • the n-selectivity of these catalyst systems is inadequate for the targeted production of ⁇ , ⁇ -enals or dialdehydes.
  • WO 03/018192 describes a hydroformylation process using a catalyst complex which has as ligands at least one pyrrole-phosphorus compound in which a substituted and / or pyrrole group which is integrated into a fused ring system is covalently linked to the phosphorus atom via its pyrrolic nitrogen atom.
  • the unpublished international application PCT / EP 03/01245 describes phosphorus chelate compounds in which three nitrogen atoms, which are themselves part of an aromatic ring system, are covalently bound to the two phosphorus atoms, and their use as ligands for hydroformylation catalysts.
  • WO 02/083695 describes u.
  • These ligands have two groups containing pnicogen atoms which are connected to one another via a xanthene-like or triptycene-like molecular structure and where at least one pyrrole group is covalently bound to each pnicogen atom via the nitrogen atom thereof.
  • di- or polyenes are also mentioned in general in addition to a large number of others. Embodiments with these olefins are not included.
  • the present invention is based on the object of providing a process for the hydroformylation of compounds having at least two ethylenically unsaturated double bonds under the mildest possible pressure and / or temperature conditions with short reaction times and / or catalyst loads.
  • the highest possible proportion of ⁇ , ⁇ -dialdehydes and / or ⁇ , ⁇ -enals with good conversion should preferably be achieved (high n-selectivity).
  • the isomerization of ethylenically unsaturated double bonds in the molecule should be avoided as far as possible. In particular, the catalyst service lives should also be long.
  • the hydroformylation catalyst used being at least one complex of a metal of the VIII.
  • Subsidiary group with at least one pnicogen chelate ligand which has two groups containing pnicogen atoms which have a xanthene -like or triptycene-like molecular framework are connected to one another and wherein at least one pyrrole group is covalently bonded to each pnicogen atom via its nitrogen atom.
  • the invention therefore relates to a process for the preparation of dialdehydes and / or ethylenically unsaturated monoaldehydes by reacting at least one compound having at least two ethylenically unsaturated double bonds with carbon monoxide and hydrogen in the presence of a hydroformylation catalyst which comprises at least one complex of a metal from subgroup VIII comprising at least one ligand selected from pnicogen chelate compounds of the general formula I,
  • a 1 and A 2 independently represent 0, S, SiR a R b , NR C or CR d R e , where
  • R a , R b and R c independently of one another represent hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl,
  • R d and R e independently of one another represent hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl or the group R d together with another group R d or the group R e together with another group R e is an intramolecular bridge group D form,
  • R 9 and R 1 independently of one another represent hydrogen, alkyl, cycloalkyl, aryl, halogen, trifluoromethyl, carboxyl, carboxylate or cyano or are bonded to one another to form a C 3 -C -alkylene bridge,
  • c is 0 or 1 (if c is 0, there is no direct bond between ⁇ 1 and A 2 )
  • R 1 , R 11 , R 111 , R IV , R v and R VI independently of one another for hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, hetaryl, C00R f , C00-M +, S0 3 R f , SO ⁇ 3 M + , NE X E 2 , NE l E 2 E 3+ ", Alky- Ien-NE 1 E 2 E 3+ X-, OR f , SR f , (CHR3CH 2 0) x R f , (CH 2 N (E l )) x R f , (CH 2 CH 2 N (E l )) x R f , halogen, trifluoromethyl, nitro, acyl or cyano,
  • R f , E 1 , E 2 and E 3 each represent the same or different radicals selected from hydrogen, alkyl, cycloalkyl or aryl,
  • R9 represents hydrogen, methyl or ethyl
  • x represents an integer from 1 to 120
  • two adjacent radicals selected from R 1 , R 11 , R 111 , Ri v , R and R VI together with two adjacent carbon atoms of the benzene nucleus to which they are attached, represent a condensed ring system with 1, 2 or 3 further rings .
  • Pn represents a pnicogen atom selected from the elements phosphorus, arsenic or antimony
  • R 1, R 2 , R 3 , R 4 independently of one another represent hetaryl, hetaryloxy, alkyl, alkoxy, aryl, aryloxy, cycloalkyl, cycloalkoxy, heterocycloalkyl, heterocycloalkoxy or an NE i E group, with the proviso that R x and R 3 are pyrrole groups bonded to the pnicogen atom Pn via the nitrogen atom
  • Py is a pyrrole group which is bonded to the pnicogen atom Pn via the pyrrolic nitrogen atom,
  • I stands for a chemical bond or for 0, S, SiR a R b , NR C , optionally substituted C ⁇ -C ⁇ o alkylene or CRkR 1 ,
  • W represents cycloalkyl, cycloalkoxy, aryl, aryloxy, hetaryl or hetaryloxy,
  • R h and R 1 independently of one another for hydrogen, alkyl
  • R 1 together with R 2 and / or R 3 together with R 4 is a bispyrrole group of the formula which is bonded to the pnicogen atom Pn via the nitrogen atoms
  • the present invention relates to a process for the hydroformylation of compounds which contain at least two ethylenically unsaturated double bonds, with isolation of the unsaturated monoaldehydes formed.
  • the term “proportion of linear dialdehyde” (both double bonds are hydroformylated at the end) means the proportion of n, n-dialdehyde formed based on the sum of the n, n-, n, iso- and iso, iso-dialdehydes.
  • the n component is therefore calculated using the following equation:
  • alkyl' includes straight chain and branched alkyl groups. It is preferably straight-chain or branched C 1 -C 2 -alkyl, preferably C ⁇ -C ⁇ 2 -alkyl, particularly preferably C ⁇ -C 8 -alkyl and very particularly preferably C ⁇ -C-alkyl groups.
  • alkyl groups are in particular methyl, ethyl, propyl, isopropyl, n-butyl, 2-butyl, sec-butyl, tert-butyl, n-pentyl, 2-pentyl, 2-methylbutyl, 3-methylbutyl,
  • alkyl also includes substituted alkyl groups which generally have 1, 2, 3, 4 or 5, preferably 1, 2 or 3 and particularly preferably 1, substituents selected from the groups cycloalkyl, aryl, hetaryl, halogen, NE 1 E 2 , NE l E 2 E 3+ , carboxyl, carboxylate, -S0 3 H and sulfonate.
  • alkylene for the purposes of the present invention stands for straight-chain or branched alkanediyl groups with 1 to 4 carbon atoms.
  • cycloalkyl encompasses unsubstituted and substituted cycloalkyl groups, preferably C 5 to C 7 cycloalkyl groups, such as cyclopentyl, Cyclohexyl or cycloheptyl, which in the case of a substitution, in general 1, 2, 3, 4 or 5, preferably 1, 2 or 3 and particularly preferably 1, selected from the groups alkyl, alkoxy and halogen, can carry.
  • heterocycloalkyl in the context of the present invention encompasses saturated, cycloaliphatic groups with generally 4 to 7, preferably 5 or 6 ring atoms, in which 1 or 2 of the ring carbon atoms are replaced by heteroatoms selected from the elements oxygen, nitrogen and sulfur and which may optionally be substituted, where in the case of a substitution, these heterocycloaliphatic groups 1, 2 or 3, preferably 1 or 2, particularly preferably 1, selected from alkyl, aryl, C00R f , COO ⁇ M + and NE ⁇ -E 2.
  • heterocycloaliphatic groups are pyrrolidinyl, piperidinyl, 2,2, 6, 6-tetramethyl-piperidinyl, imidazolidinyl, pyrazolidinyl, oxazolidinyl, morpholidinyl, thiazolidinyl, isothiazolidinyl, isoxazolidinyl, piperazinylothiophenyl and tetrahedronyl , Tetrahydrofuranyl, Tetrahydropyrany1, Dioxanyl called.
  • aryl encompasses unsubstituted and substituted aryl groups, and preferably stands for phenyl, tolyl, xylyl, mesityl, naphthyl, fluorenyl, anthracenyl, phenanthrenyl or naphthacenyl, particularly preferably for phenyl or naphthyl, where these Aryl groups in the case of a substitution in general 1, 2, 3, 4 or 5, preferably 1, 2 or 3 and particularly preferably 1 substituent, selected from the groups alkyl, alkoxy, carboxyl, carboxylate, trifluoromethyl, -S0 3 H, sulfonate, NE X E 2 , alkylene-NE 1 E 2 , nitro, cyano or halogen.
  • heterocycloaromatic groups preferably the groups pyridyl, quinolinyl, acridinyl, pyridazinyl, pyrimidinyl, pyrazinyl, and the subgroup of the “pyrrole group”, these heterocycloaromatic groups being substituted in the general 1, 2 or 3 substituents selected from the groups alkyl, alkoxy, carboxyl, carboxylate, -S0 3 H, sulfonate, NE X E 2 , alkylene-NE I E 2 , trifluoromethyl or halogen.
  • pyrrole group stands for a series of unsubstituted or substituted, heterocycloaromatic groups which are structurally derived from the pyrrole backbone and contain a pyrrolic nitrogen atom in the heterocycle which is covalent with other atoms, for example, a pnicogen atom.
  • pyrrole group thus includes the unsubstituted or substituted groups pyrrolyl, imidazolyl, pyrazolyl, indolyl, purinyl, indazolyl, benzotriazolyl, 1,2, 3-triazolyl, 1,3,4-triazolyl and carbazolyl, which in the case of a Substitution in general 1, 2 or 3, preferably 1 or 2, particularly preferably 1, selected from the groups alkyl, alkoxy, acyl, carboxyl, carboxylate, -S0 3 H, sulfonate, NE I E 2 , alkylene-NE I E 2 , trifluoromethyl or halogen.
  • bispyrrole group in the context of the present invention includes double-bonded groups of the formula
  • the bispyrrole groups can also be unsubstituted or substituted and, in the case of substitution per pyrrole group unit, generally 1, 2 or 3, preferably 1 or 2, in particular 1, substituents selected from alkyl, alkoxy, carboxyl, carboxylate, -S0 3 H, sulfonate, NE X E 2 , alkylene-NE I E 2 , trifluoromethyl or halogen, with these details of the number of possible substituents linking the pyrrole group units by direct chemical bonding or by means of the linkage mediated by the above-mentioned groups is not considered a substitution.
  • Carboxylate and sulfonate in the context of this invention preferably represent a derivative of a carboxylic acid function or a sulfonic acid function, in particular a metal carboxylate or sulfonate, a carboxylic acid or sulfonic acid ester function or a carboxylic acid or sulfonic acid amide function.
  • these include e.g. B. the esters with C ⁇ -C alkanols, such as methanol, ethanol, n-propanol, isopropanol, n-butanol, sec-butanol and tert-butanol.
  • acyl stands for alkanoyl or aroyl groups with generally 2 to 11, preferably 2 to 8, carbon atoms, for example for the acetyl, propionyl, butyryl, pentanoyl, hexanoyl, heptanoyl, 2-ethyl-hexanoyl, 2-propylheptanoyl, benzoyl or naphthoyl group.
  • the groups NE X E 2 and NE 4 E 5 preferably represent N, N-dimethylamino, N, N-diethylamino, N, N-dipropylamino, N, N-diisopropylamino, N, N-di-n- butylamino, N, N-di-t-butylamino, N, N-dicyclohexylamino or N, N-diphenylamino.
  • Halogen represents fluorine, chlorine, bromine and iodine, preferably fluorine, chlorine and bromine.
  • M + stands for a cation equivalent, ie for a monovalent cation or the portion of a multivalent cation corresponding to a positive single charge.
  • the cation M + serves only as a counterion for the neutralization of negatively charged substituent groups, such as the C00- or the sulfonate group, and can in principle be chosen as desired.
  • Alkali metal ions in particular Na + , K + , Li + ions or onium ions, such as ammonium, mono, di, tri, tetraalkylammonium, phosphonium, tetraalkylphosphonium or tetraarylphosphonium ions are therefore preferred used.
  • anion equivalent X " which serves only as a counterion of positively charged substituent groups, such as the ammonium groups, and can be chosen arbitrarily from monovalent anions and the proportions of a polyvalent anion corresponding to a negative single charge, wherein halide ions X- are generally preferred , especially chloride and bromide.
  • the values for x stand for an integer from 1 to 240, preferably for an integer from 3 to 120.
  • Condensed ring systems can be aromatic, hydroaromatic and cyclic compounds linked by fusing.
  • Condensed ring systems consist of two, three or more than three rings.
  • Preferred among the condensed ring systems are ortho-condensed ring systems.
  • Y represents a chemical bond, i.e. the point of attachment of the bridging group Q to the groups -O-, or in the case when a and / or b is 0, to the groups PnR 1 R 2 or PnR 3 R 4 .
  • the groups A 1 and A 2 can generally stand independently of one another for 0, S, SiR a R b , NR C or CR d R e , the substituents R a , R b and R c generally being independent of one another can be hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl, whereas the groups R d and R e independently of one another represent hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl or the group R d together with a further group R d or the group R e together with another group R e can form an intramolecular bridge group D.
  • D is a double-bonded bridge group that is generally selected from the groups
  • R 9 and R 10 independently of one another represent hydrogen, alkyl, cycloalkyl, aryl, halogen, trifluoromethyl, carboxyl, carboxylate or cyano or are connected to one another to form a C 3 -C -alkylene group and R u , R i2 , R i3 and R i4 independently of one another for hydrogen, alkyl, cycloalkyl, aryl, halogen, trifluoromethyl, COOH, carboxylate, cyano, alkoxy, S0 3 H, sulfonate, NE X E 2 , alk len-NE l E ⁇ 3 "1 ⁇ -, aryl or nitro, preferably the groups R 9 and R 10 are hydrogen, C ⁇ -C 10 alkyl or Carboxylate and the groups R 11 , R i2 , R X3 and R i4 for hydrogen, C ⁇ -C ⁇ o-alkyl, halogen, in particular fluorine
  • R 9 , R 10 , R u , R i2 , R X3 and R i4 are particularly preferably hydrogen.
  • such pnicogen chelate compounds are preferred in which 1, 2 or 3, preferably 1 or 2, in particular 1 of the groups R u , R i2 , R i3 and / or R i4 for a C00-Me + , a S0 3 "M + or a NE I E 2 E 3+ ⁇ -- group, where M + and X- have the meaning given above.
  • Particularly preferred bridge groups D are the ethylene group
  • R d forms an intramolecular bridging group D with another group R d or R e with another group R e , then the index c in this case is 1.
  • those bridge groups Q are preferred in which A 1 is different from A 2 , where A 1 is preferably a CR d R e group and A 2 is preferably an O or S group, particularly preferably an oxa group 0.
  • Particularly preferred bridging groups Q are thus those which consist of a triptycene like or xanthene type (A 1: 0: CR d R e, A 2) are constructed scaffolding.
  • R 1 , R 11 , R ⁇ I ⁇ Riv R V and ⁇ RVI s i n d preferably selected from hydrogen, alkyl, alkoxy, cycloalkyl, hetero- cycloalkyl, aryl and hetaryl.
  • R 1 , R 11 , R 111 , R IV , R v and R VI are hydrogen f.
  • R 1 and R VI are independently C ⁇ -C-alkyl or C ⁇ -C 4 alkoxy.
  • R 1 and R VI are preferably selected from methyl, ethyl, isopropyl, tert-butyl and methoxy.
  • R 11 , R 111 , R IV and R v are preferably hydrogen.
  • R 11 and R v independently of one another are C ⁇ -C 4 -alkyl or C ⁇ -C 4 -alkoxy.
  • R 11 and R v are preferably selected from methyl, ethyl, isopropyl, tert-butyl and methoxy.
  • R 1 , R 111 , R IV and R VI in these compounds are preferably hydrogen.
  • the rings are preferably benzene or naphthalene rings.
  • Fused benzene rings are preferably unsubstituted or have 1, 2 or 3, in particular 1 or 2, substituents which are selected from alkyl, alkoxy, halogen, SO 3 H, sulfonate, NE X E 2 , alkylene-NElE 2 , trifluoromethyl, nitro, C00R f , alkoxycarbonyl, acyl and cyano.
  • Fused naphthalene rings are preferably unsubstituted or have a total of 1, 2 or 3, in particular 1 or 2, of the substituents mentioned above for the fused benzene rings in the non-fused ring and / or in the fused ring.
  • At least one of the radicals R 1 is present .
  • R 11 , R 111 , R IV , R v and / or R VI for a polar (hydrophilic) group water-soluble pnicogen chelate complexes then generally resulting when complexing with a Group VIII metal.
  • the polar groups are preferably selected from C0OR f , COO-M ", S0 3 R f , S0 3 -M" * ", NElE 2 , alkylene-NE l E 2 , NE l E 2 E 3+ X", alkylene NE l E 2 E 3+ ⁇ -, 0R f , SR f , (CHR9CH 2 0) x R f or (CH 2 CH 2 N (E l )) x R f , where R f , E 1 , E 2 , E 3 , RS, M +, X ⁇ and x have the meanings given above.
  • the bridge group Q is connected via the chemical bond Y either directly or via an oxa group O to the groups PnR i R 2 or PnR 3 R 4 .
  • Pn stands for an atom from the pnicogen group, selected from phosphorus, arsenic or antimony. Pn particularly preferably represents phosphorus.
  • the individual picnicogen atoms Pn of the picnicogen chelate compounds used according to the invention are each covalent via two Bonds connected to two substituents R 1 and R 2 or R 3 and R 4 , the substituents R 1 , R 2 , R 3 and R 4 independently of one another for hetaryl, hetaryloxy, alkyl, alkoxy, aryl, aryloxy, cycloalkyl, cycloalkoxy , Heterocycloalkyl, heterocycloalkoxy or a NE i E 2 group, with the proviso that R i and R 3 are pyrrole groups bonded to the pnicogen atom Pn via the pyrrolic nitrogen atom.
  • the substituents R 2 and / or R 4 are also advantageously pyrrole groups bonded to the pnicogen atom Pn via the pyrrolic nitrogen atom. Furthermore, the substituent R 1 together with the substituent R 2 and / or the substituent R 3 together with the substituent R 4 can advantageously form a bispyrrole group bonded to the pnicogen atom Pn via the pyrrolic nitrogen atoms.
  • a hydroformylation catalyst is used in the process according to the invention, in which the radicals R 1 , R 2 , R 3 and R 4 are selected independently of one another from groups of the formulas Ia to Ik:
  • Alk is a C ⁇ -C 4 alkyl group
  • Hydroformylation catalysts based on ligands which have one or more 3-methylindolyl group (s) bonded to the phosphorus atom are distinguished by a particularly high stability and thus particularly long catalyst life.
  • the substituent R 1 together with the substituent R 2 or the substituent R 3 together with the substituent R 4 can contain a divalent group of the formula containing pyrrole group bonded to the pnicogen atom Pn via the pyrrolic nitrogen atom
  • Py is a pyrrole group
  • I stands for a chemical bond or for O, S, SiR a R b , NR C or CR h R i ,
  • W represents cycloalkyl, cycloalkoxy, aryl, aryloxy, hetaryl or hetaryloxy
  • R h and R 1 independently of one another represent hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl,
  • Hydroformylation catalysts which comprise at least one ligand of the formula I are preferably used in the process according to the invention, in which the substituent R 1 together with the substituent R 2 or the substituent R 3 together with the substituent R 4 is a bispyrene group of the formula
  • I stands for a chemical bond or for 0, S, SiR a R b , NR C or optionally substituted C ⁇ -C ⁇ 0 alkylene, preferably CR k R 1 , in which R a , R b , R c , R h and R 1 independently of one another represent hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl or hetaryl,
  • R 3 l, R 3! ', R 32 , R 32 ', R 33 , R 33 ', R 34 and R 34 ' independently of one another for hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, hetaryl, W'C00R a , WC00-M + , W '( S0 3 ) R f , W '(S0 3 ) "M + , W'P0 3 (R f ) (R g ) W' (P0 3 ) 2 - (M + ) 2 , W'NE l E 2 , W '(NE l E 2 E 3 ) + X ⁇ , W'0R f , W'SR f , (CHR ⁇ 3CH 2 0) x R f , (CH 2 NE l ) x Rf, (CH 2 CH 2 NEl) x R f are halogen, trifluoromethyl,
  • W ' represents a single bond, a heteroatom or a divalent bridging group with 1 to 20 bridge atoms
  • R f , E 1 , E 2 , E 3 each represent the same or different radicals selected from hydrogen, alkyl, cycloalkyl or aryl,
  • R9 represents hydrogen, methyl or ethyl, 0
  • M + stands for a cation equivalent.
  • 5 x represents an integer from 1 to 240
  • I is preferably a chemical bond or a C ⁇ -C 4 alkylene group, particularly preferably a methylene group.
  • the pnicogen chelate compounds used according to the invention are selected from compounds of the general formula II
  • R i5 , R i6 , R i? and R X8 independently of one another for hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, hetaryl, W'COOR k , WC0O-M +, W '(S0 3 ) R k , W' (S0 3 ) -M +, W'P0 3 ( R k ) (R 1 ) W '(P0 3 ) 2 ⁇ (M + ) 2 ,
  • W ' represents a single bond, a hetero atom or a divalent bridging group with 1 to 20 bridge atoms
  • R k f E 4 , E 5 , E 6 each represent the same or different radicals selected from hydrogen, alkyl, cycloalkyl or aryl,
  • R 1 represents hydrogen, methyl or ethyl
  • y represents an integer from 1 to 240
  • R X9 and R 20 independently of one another represent cycloalkyl, heterocycloalkyl, aryl or hetaryl,
  • a and b independently of one another denote the number 0 or 1
  • Pn represents a pnicogen atom selected from the elements phosphorus, arsenic or antimony, preferably phosphorus,
  • Q is a bridge group as previously defined.
  • the picnicogen atoms Pn are preferably both phosphorus.
  • bridge group Q With regard to suitable and preferred embodiments of bridge group Q, reference is made in full to the previous statements.
  • the radicals R i5 to R 18 can each independently have the same or different meanings.
  • Compounds of the formula II are preferred in which the pyrrole groups in the 2-position, 2,5-position or 3,4-position carry a substituent other than hydrogen.
  • the substituents R i5 to R X8 which are different from hydrogen are preferably selected independently of one another from C ⁇ ⁇ to Cg-, preferably C ⁇ ⁇ to C 4 alkyl, especially methyl, ethyl, isopropyl and tert-butyl, alkoxycarbonyl, such as methoxycarbonyl, ethoxycar- bonyl, isopropyloxycarbonyl and tert-butyloxycarbonyl and trifluoromethyl.
  • Preferred compounds of the general formula II are those in which the radicals R 5 and R i6 and / or R 17 and R i8 together with the carbon atoms of the pyrrole ring to which they are attached represent a condensed ring system with 1, 2 or 3 further rings , If R 15 and R i6 and / or R i7 and R i8 stand for a fused-on, ie fused-on ring system, then it is preferably benzene or naphthalene rings.
  • Fused benzene rings are preferably unsubstituted and have 1, 2 or 3, in particular 1 or 2, substituents which are selected from alkyl, alkoxy, halogen, SO 3 H, sulfonate, NE 4 E 5 , alkylene-NE 4 E 5 , Trifluoromethyl, nitro, C00R k , alkoxycarbonyl, acyl and cyano.
  • Fused naphthalene rings are preferably unsubstituted or have in non-fused ring and / or in the fused ring each 1, 2 or 3, in particular 1 or 2 of the substituents previously mentioned for the fused benzene rings.
  • R 17 and R i8 are preferably 5 or R 18 is hydrogen and R 17 is a substituent which is selected from C ⁇ ⁇ to Cs-alkyl, preferably C ⁇ ⁇ to C 4 alkyl, especially methyl, ethyl, isopropyl or tert. -Butyl.
  • At least one of the radicals R i5 , R i ⁇ , R 17 and / or R 1 represents a polar (hydrophilic) group, in which case, as a rule, in the formation of the complex a Group VIII metal water-soluble complexes result.
  • the compounds of the formula II are preferably selected from compounds of the general formulas II.1 to II.3
  • R i5 , R i6 , R i? , R i8 , Q, a and b have the meanings given above, where in formula II.3 at least one of the radicals R X6 or R 17 is not hydrogen,
  • R X9 and R 20 independently of one another are cycloalkyl, heterocycloalkyl, aryl or hetaryl.
  • R i5 to R i8 are preferably all hydrogen.
  • R i5 and R i8 preferably represent hydrogen and are R 16 and R i? selected from C ⁇ -Cg-alkyl, preferably C ⁇ -C 4 alkyl, such as methyl, ethyl, isopropyl and tert-butyl.
  • the radicals R i6 and R l? selected from C ⁇ -Cs-alkyl, particularly preferably C ⁇ -C 4 alkyl, such as methyl, ethyl, isopropyl and tert-butyl, and C00R k , wherein R k for C ⁇ -C alkyl, such as methyl, ethyl, isopropyl and tert-butyl is.
  • catalytically active species of the general formula H g Z d (C0) e G f are formed from the catalysts or catalyst precursors used in each case, in which Z represents a metal of subgroup VIII, G represents a phosphorus or arsenic group. or antimony-containing ligands of the formula I or II and d, e, f, g are natural numbers, depending on the valency and type of the metal and the binding force of the ligand G.
  • e and f are independently at least 1, such as. B. 1, 2 or 3.
  • the sum of e and f is preferably from 2 to 5.
  • the complexes of the metal Z with the ligands G used according to the invention can, if desired, additionally at least one further ligand not used according to the invention, eg. B. from the class of triarylphosphines, especially triphenylphosphine, triarylphosphites, triarylphosphinites, triarylphosphonites, phosphabenzenes, trialkylphosphines or phosphametallocenes.
  • Such complexes of the metal Z with ligands used according to the invention and not used according to the invention form, for. B. in an equilibrium reaction after adding a ligand to a complex of the general formula H g Z d (C0) e G f .
  • the hydroformylation catalysts are prepared in situ in the reactor used for the hydroformylation reaction. If desired, however, the catalysts of the process according to the invention can also be prepared separately and isolated by customary processes. To prepare the catalysts in situ, at least one compound of the general formula I or II, a compound or a complex of a metal from subgroup VIII, if desired one or more additional ligands and optionally an activating agent in an inert solvent under the hydroformylation conditions implement.
  • Suitable rhodium compounds or complexes are e.g. B. rhodium (II) and rhodium (III) salts, such as rhodium (III) chloride, rhodium (III) nitrate, rhodium (III) sulfate, potassium rhodium sulfate, Rhodiu (II) - or rhodium ( III) carboxylate, rhodium (II) and rhodium (III) acetate, rhodium (III) oxide, salts of rhodium (III) acid, trisammonium hexachlororhodate (III) etc.
  • B. rhodium (II) and rhodium (III) salts such as rhodium (III) chloride, rhodium (III) nitrate, rhodium (III) sulfate, potassium rhodium sul
  • rhodium complexes such as rhodium biscarbonylacetylacetonate, ace- tylacetonatobisethylene rhodium (I) etc.
  • Rhodium biscarbonylacetylacetonate or rhodium acetate are preferably used.
  • Ruthenium salts or compounds are also suitable. Suitable ruthenium salts are, for example, ruthenium (III) chloride, ruthenium (IV) -, ruthenium (VI) - or ruthenium (VIII) oxide, alkali metal salts of ruthenium oxygen acids such as KRuO 4 or KRu0 4 or complex compounds, such as, for. B. RuHCl (CO) (PPh 3 ) 3 .
  • the metal carbonyls of ruthenium such as trisruthenium dodecacarbonyl or hexaruthenium octadecacarbonyl, or mixed forms in which CO is partially replaced by ligands of the formula PR 3 , such as Ru (CO) 3 (PPh 3 ) 2 , can also be used in the process according to the invention.
  • Suitable cobalt compounds are, for example, cobalt (II) chloride, cobalt (II) sulfate, cobalt (II) carbonate, cobalt (II) nitrate, their amine or hydrate complexes, cobalt carboxylates such as cobalt acetate, cobalt ethyl hexanoate and cobalt naphthenoate.
  • cobalt carboxylates such as cobalt acetate, cobalt ethyl hexanoate and cobalt naphthenoate.
  • the carbonyl complexes of cobalt such as dicobalt octacarbonyl, tetrakobalt dodecacarbonyl and hexacobalt hexadecacarbonyl can be used.
  • Suitable metals of subgroup VIII are in particular cobalt and rhodium.
  • the solvents used are preferably the aldehydes which are formed in the hydroformylation of the respective olefins, and their higher-boiling secondary reaction products, for. B. the products of aldol condensates.
  • suitable solvents are aromatics, such as toluene and xylenes, hydrocarbons or mixtures of hydrocarbons, also for diluting the above-mentioned aldehydes and the secondary products of the aldehydes.
  • Other solvents are esters of aliphatic carboxylic acids with alkanols len, for example Essigester or Texanol ®, ethers such as tert-butyl methyl ether and tetrahydrofuran.
  • ligands are sufficiently hydrophilized, alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, ketones such as acetone and methyl ethyl ketone etc. can also be used. Furthermore, as a solvent, so-called “ionic liquids" ver ⁇ be spent.
  • liquid salts for example N, N'-dialkylimidazolium salts such as the N-butyl-N'-methylimidazolium salts, tetraalkylammonium salts such as the tetra-n-butylammonium salts, N-alkylpyridinium salts such as the n-butylpyridinium salts, tetraalkylphosphonium salts, tetraalkylphosphonium salts Trishexyl (tetra-decyl) phosphonium salts, e.g. B. the tetrafluoroborates, acetates, Tetrachloroaluminates, hexafluorophosphates, chlorides and tosylates.
  • N, N'-dialkylimidazolium salts such as the N-butyl-N'-methylimidazolium salts
  • tetraalkylammonium salts such as the
  • aqueous solvent systems which, in addition to water, contain a water-miscible solvent, for example an alcohol such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, a ketone such as acetone and methyl ethyl ketone or contain another solvent.
  • the reactions then take the form of a two-phase catalysis, the catalyst being in the aqueous phase and feedstocks and products forming the organic phase.
  • the implementation in the "ionic liquids" can also be designed as a two-phase catalysis.
  • all compounds which contain at least two ethylenically unsaturated double bonds are suitable as substrates for the hydroformylation process according to the invention. These include, for example, di- or polyenes with isolated or conjugated double bonds. Suitable diolefins are, for example, compounds of the formula F
  • X a , X b , X d X e , X f , X ⁇ 3 each independently represent hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, hetaryl, and X c represents a single bond or C ⁇ -C 20 alkanediyl , which optionally one or more, for example 1, 2, 3, 4 or 5, substituents selected from the group cycloalkyl, aryl, hetaryl, halogen, C,-C 20 alkoxy, C ⁇ -C 20 alkoxycarbonyl, E i E 2 , carries and / or is optionally interrupted by at least one further double bond and / or is part of one or more cycloalkyl groups, heterocycloalkyl groups, aryl groups or hetaryl groups, it being possible for the cycloalkyl groups and heterocycloalkyl groups to be partially unsaturated.
  • the compound used for the hydroformylation with at least two ethylenically unsaturated double bonds is preferably selected from diolefins with one terminal and one internal double bond and ⁇ , ⁇ -diolefins, ie dioefins with two terminal double bonds.
  • the ⁇ , ⁇ -diolefins include, for example, 1,3-butadiene, 1,4-pentadiene, 1,5-hexadiene, 1,6-hepadiene, 1,7-octadiene, 1,8-nonadiene, 1,9 -Decadiene, 1, 10-undecadiene, 1, 11-dodecadiene, 1.12-tridecadiene, 1, 13-tetradecadiene, 1.14-pentadecadiene, 1, 15-hexadecadiene, 1, 16-heptadecadiene, 1, 17 -0ctadecadiene, 1, 18-nonadecadiene, 1, 19-icosadiene and mixtures thereof.
  • a diolefin or diolefin mixture which is commercially available is preferably used in the hydroformylation process according to the invention, preferably a mixture containing ⁇ , ⁇ -diolefins.
  • These include e.g. B. 1,3-butadiene-containing hydrocarbon mixtures.
  • the 1,3-butadiene is separated from these to obtain the so-called raffinate I.
  • Pure 1,3-butadiene can generally e.g. B. be isolated by extractive distillation from commercially available hydrocarbon mixtures.
  • 1,5-Hexadiene and 1,9-Decadiene are manufactured on an industrial scale by Shell.
  • 1,7-0ctadiene is obtained for example by reductive coupling of 1,3-butadiene in the presence of acetic acid and triethylamine as promoters.
  • a process is preferred which is characterized in that the hydroformylation catalyst is prepared in situ, using at least one compound of the formula I or II, a compound or a complex of a metal from subgroup VIII and, if appropriate, an activating agent in an inert solvent brings the hydroformylation conditions to reaction.
  • the ligand-metal complexes can also be prepared separately and isolated by customary methods.
  • the hydroformylation reaction can be carried out continuously, semi-continuously or batchwise.
  • Suitable reactors for the continuous reaction are known to the person skilled in the art and are described, for. B. in Ullmann's Encyclopedia of Industrial Chemistry, Vol. 1, 3rd Edition, 1951, pp. 743 ff. ben.
  • Suitable pressure-resistant reactors are also known to the person skilled in the art and are described, for. B. in Ullmann's Encyclopedia of Industrial Chemistry, Vol. 1, 3rd Edition, 1951, pp. 769 ff.
  • an autoclave is used for the method according to the invention, which can, if desired, be provided with a stirring device and an inner lining.
  • composition of the synthesis gas of carbon monoxide and hydrogen used in the process according to the invention can vary within wide ranges.
  • the molar ratio of carbon monoxide and hydrogen is usually about 5:95 to 70:30, preferably about 40:60 to 60:40.
  • a molar ratio of carbon monoxide and hydrogen in the range of approximately 1: 1 is particularly preferably used.
  • the temperature in the hydroformylation reaction is generally in a range from approximately 20 to 180 ° C., preferably approximately 40 to 80 ° C., in particular approximately 50 to 70 ° C.
  • the reaction is usually carried out at the partial pressure of the reaction gas at the selected reaction temperature.
  • the pressure is in a range from about 1 to 700 bar, preferably 1 to 600 bar, in particular 1 to 300 bar.
  • the reaction pressure can be varied depending on the activity of the hydroformylation catalyst used.
  • the catalysts based on phosphorus, arsenic or antimony-containing pnicogen chelate compounds allow reaction in a range of low pressures, such as in the range from 1 to 100 bar, preferably 5 to 50 bar.
  • the molar ratio of pnicogen chelate compound I or II to the metal of subgroup VIII in the hydroformylation medium is generally in a range from about 1: 1 to 1000: 1, preferably from 1: 1 to 100: 1, in particular from 1: 1 to 50: 1 and very particularly preferably 1: 1 to 20: 1.
  • the molar ratio of metal of VIII is usually Subgroup to substrate below 1 mol%, preferably below 0.5 mol% and in particular below 0.1 mol% and very particularly preferably below 0.05 mol%.
  • the hydroformylation catalysts can be separated from the discharge of the hydroformylation reaction by customary processes known to the person skilled in the art and can generally be used again for the hydroformylation.
  • the catalysts described above can also be suitably, e.g. B. by linking via functional groups suitable as anchor groups, adsorption, grafting, etc. to a suitable carrier, for. B. made of glass, silica gel, synthetic resins, etc., immobilized. They are then also suitable for use as solid-phase catalysts.
  • ethylenically unsaturated compounds in particular those with at least one terminal double bond, can advantageously be hydroformylated using the process according to the invention at low temperatures and low pressures.
  • shorter reaction times and / or smaller amounts of catalyst system, based on the substrate used, are required than would be required for the hydroformylation of the same substrate using the same catalytically active metal with other phosphorus-containing cocatalysts, such as Xantphos (see, for example, BC Botteghi et al. in J. Mol. Catal. A: Chem 2001, 175, 17, Table 2: high catalyst loading of 0.4-1 mol%).
  • the process according to the invention makes it possible to hydroformylate ethylenically unsaturated compounds, in particular those having two terminal double bonds, with reaction times of less than 15 h, preferably less than 10 h, with small amounts of catalyst system used.
  • isomerization of terminal double bonds to the thermodynamically more stable internal double bonds takes place only to a very small extent.
  • the catalysts used are therefore distinguished by a high n selectivity, ie. H. Starting from ⁇ , ⁇ -dioefins, ⁇ , ⁇ -enals and / or ⁇ , ⁇ -dialdehydes are obtained in high yields.
  • One embodiment of the present invention relates to the production of dialdehydes.
  • the dialdehydes are produced batchwise. Discontinuous hydroformylation processes are known in principle to the person skilled in the art.
  • the reactor is generally first let down.
  • the synthesis gas released in the process and any unreacted unsaturated compounds can be reused in whole or in part, if appropriate after working up.
  • the rest of the reactor consists essentially of dialdehyde, high-boiling by-products (hereinafter also referred to as high boilers) and catalyst.
  • the reactor contents can be subjected to a one- or multi-stage separation, at least one fraction of which is enriched in dialdehyde being obtained.
  • the separation into a fraction enriched in dialdehyde can be achieved in various ways. follow, for example by distillation, crystallization or Me bramfiltration, preferably by distillation.
  • a reactor with a distillation column attached is used, so that the distillation can be carried out directly from the reactor.
  • the distillation column is optionally provided with rectification trays in order to achieve the best possible separation performance.
  • the distillation can be carried out at normal pressure or at reduced pressure.
  • the dialdehyde-enriched fraction can be isolated at the top or in the upper region of the column, it being possible to isolate at least one dialdehyde-depleted fraction in the bottom or in the lower region of the column.
  • the fraction enriched in dialdehyde can be subjected to a further purification step.
  • the fraction depleted in dialdehyde essentially contains high boilers and the catalyst.
  • the catalyst can be separated off by customary processes known to the person skilled in the art and can generally be used again in a further hydroformylation, if appropriate after working up.
  • the dialdehydes are produced continuously.
  • an unsaturated compound is subjected to hydroformylation in one or more reaction zones.
  • a discharge is withdrawn from the reaction zone, which is generally first depressurized. This releases unreacted synthesis gas and unsaturated compounds, which are usually returned to the reaction zone - if necessary after working up.
  • the remaining discharge can be separated into a fraction enriched in dialdehyde by means of customary measures known from the prior art, for example by distillation, crystallization or membrane filtration. Suitable distillation plants are known to the person skilled in the art. Thin film evaporators are also suitable.
  • a fraction consisting essentially of high boilers and catalyst is removed from the bottom or from the lower region of the column and can be returned directly to the reaction zone.
  • the high boilers are preferably discharged beforehand in whole or in part before recycling and the catalyst is returned to the reaction zone, if appropriate after working up.
  • At least one fraction enriched in dialdehyde which may also contain unsaturated monoaldehyde, is removed from the top or in the upper region of the column.
  • the fraction containing dialdehyde-enriched, still unsaturated monoaldehyde is expediently subjected to at least one further separation, at least one fraction containing unsaturated monoaldehyde and a fraction enriched in dialdehyde.
  • the phase enriched in unsaturated monoaldehyde is returned to the reaction zone and the phase enriched in dialdehyde is discharged.
  • the present invention relates to a process for the hydroformylation of compounds having at least two ethylenically unsaturated double bonds with isolation of the unsaturated monoaldehydes (enals) formed therein.
  • Another object of the invention is therefore a method in which
  • the process can be carried out continuously, semi-continuously or batchwise. A continuous process is preferred.
  • step (i) of the process according to the invention the compound containing at least two ethylenically unsaturated double bonds is set with carbon monoxide and hydrogen in the presence of a hydroformylation catalyst which comprises at least one complex of a metal from subgroup VIII with at least one pnicogen chelate ligand of the formula I, such as previously described, includes um.
  • a hydroformylation catalyst which comprises at least one complex of a metal from subgroup VIII with at least one pnicogen chelate ligand of the formula I, such as previously described, includes um.
  • step (ii) a discharge is withdrawn from the reaction zone which contains essentially unreacted polyethylenically unsaturated compounds, unsaturated monoaldehyde, dialdehyde and catalyst.
  • the hydroformylation catalysts can be separated off by customary processes known to the person skilled in the art and can generally be used again for the hydroformylation.
  • the reaction mixture obtained in step (i) can be separated into a fraction enriched in unsaturated monoaldehyde and a fraction depleted in unsaturated monoaldehyde by means of customary measures known from the prior art (step ii).
  • the separation is preferably carried out by distillation, by crystallization or by membrane filtration.
  • Suitable distillation plants include all distillation devices known to those skilled in the art for the continuous or batchwise separation of liquid mixtures.
  • Thin film evaporators are also suitable. These include devices in which the mixtures to be separated are distributed onto heated surfaces by being trickled off (falling film evaporator, trickling column), centrifugal force or by specially designed wipers (wiper blade evaporator, Sambay evaporator, film truder).
  • the reaction effluent from the reaction zone is generally depressurized before working up by distillation.
  • the unreacted synthesis gas and unreacted olefins released can be returned to the reaction zone.
  • the fraction enriched in unsaturated monoaldehydes is generally obtained as the top product.
  • the fraction depleted in unsaturated monoaldehydes remaining as the bottom product can be subjected to a further separation to obtain a fraction enriched in catalyst and a fraction enriched in dialdehyde.
  • the fraction enriched in dialdehyde can be discharged as a further product of value.
  • the substrate recovered in the separation by distillation and the catalyst system are returned to the reactor in step (iii) and subjected to the hydroformylation again.
  • FIG. 1 shows a graphical representation of Example 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Beschrieben wird ein Verfahren zur Herstellung von Dialdehyden und/oder ethylenisch ungesättigtenMonoaldehyden durch Umsetzung wenigstens einer Verbindung mit mindestens zwei ethylenischungesättigten Doppelbindungen mit Kohlenmonoxid und Wasserstoff in Gegenwart eines Hydro-formylierungskatalysators, der wenigstens einen Komplex eines Metalls der VIII. Nebengruppe mit wenigstens Pnicogenchelatliganden umfasst.

Description

Verfahren zur Herstellung von Dialdehyden und/oder ethylenisch ungesättigten Monoaldehyden durch Hydroformylierung ethylenisch ungesättigter Verbindungen
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung von Dialdehyden und/oder ethylenisch ungesättigten Monoaldehyden durch Hydroformylierung wenigstens einer Verbindung mit mindestens zwei ethylenisch ungesättigten Doppelbindungen in Gegenwart eines Katalysators, der wenigstens einen Komplex eines Metalls der VIII . Nebengruppe mit wenigstens einem Pnicogenliganden um- fasst.
Ethylenisch ungesättigte Monoaldehyde ("Enale") und Dialdehyde sind großtechnisch wichtige Zwischenprodukte. So lässt sich die Aldehyd-Gruppe leicht in eine Vielzahl anderer funktioneller Gruppen wie Amino-, Hydroxy-, Carboxygruppe etc. überführen. Aus- gehend von Enaien erhält man so eine Vielzahl von auf anderen Synthesewegen schwer zugänglichen Verbindungen, die sich als bi- funktionelle Synthesebausteine für Folgeumsetzungen eignen. Dialdehyde und die aus ihnen erhältlichen Diole, Diamine und Dicar- bonsäuren eignen sich für eine Vielzahl von Anwendungen, z. B. zur Herstellung von Polyestern und Polyamiden sowie als Vernetzungsmittel für Polymere.
Es ist prinzipiell bekannt, Enale und Dialdehyde durch Hydroformylierung (Oxo-Synthese) von Verbindungen mit mindestens zwei ethylenisch ungesättigten Doppelbindungen herzustellen. Dabei werden die ethylenisch ungesättigten Verbindungen mit Kohlenmon- oxid und Wasserstoff (Synthesegas) in Gegenwart eines Hydroformy- lierungskatalysators umgesetzt. Bei der Hydroformylierung von mehrfach ungesättigten Verbindungen kann es je nach Ort der Anla- gerung der CO-Moleküle an die Doppelbindungen zur Bildung von Gemischen isomerer Aldehyde kommen. Zusätzlich kann es bei der Hydroformylierung von Diolefinen mit mehr als 4 Kohlenstoffatomen bzw. von drei- und mehrfach ungesättigten Verbindungen zu einer Doppelbindungsisomerisierung kommen. Aufgrund der großen techni- sehen Bedeutung linearer ethylenisch ungesättigter Monaldehyde, insbesondere mit endständiger Doppelbindung und Aldehydfunktion (o.,ω-Enale) sowie von linearen Dialdehyden (c.,ω-Dialdehyden) besteht ein Bedarf an Hydroforirtylierungskatalysatoren, die ausgehend von α,ω-ethylenisch ungesättigten Verbindungen (wie α,ω- Dioelfinen) hohe Ausbeuten an ,ω-Enalen und/oder α,ω-Dialdehyden liefern. Derartige Katalysatoren werden im Rahmen dieser Erfindung als Katalysatoren mit hoher Selektivität bezeichnet.
Eine weitere Forderung, die an Hydrofor ylierungskatalysatoren gestellt wird, ist eine gute Stabilität, sowohl unter den Hydro- formylierungsbedingungen als auch bei der Aufarbeitung, da Katalysatorverluste sich in hohem Maße negativ auf die Wirtschaftlichkeit des Verfahrens auswirken. Des Weiteren sollen Katalysa- toren für die Hydroformylierung mehrfach ethylenisch ungesättigter Verbindungen sich durch eine hohe Aktivität bei möglichst geringen Temperaturen und möglichst geringen Reaktionsdrücken auszeichnen, um unerwünschte Nebenreaktionen, wie z. B. die Aldol- reaktion, zu vermeiden.
WO 95/30680 und van Leeuwen et al., Organometallics JL4, 3081 (1995) beschreiben Chelatphosphine mit Xanthen-Rückgra , deren Anwendung bei der Rhodium-katalysierten Hydroformylierung endständiger Olefine zu hohen n-Selektivitäten führt. Bei den zur Hydroformylierung geeigneten ungesättigten Verbindungen werden auch Diolefine aufgeführt.
Van der Slot et al., Organometallics 19., 2504 (2000) beschreiben die Synthese von Phosphordiamid-Chelatliganden mit Bisphenol- oder Xanthen-Rückgrat, deren Diamid-Einheit durch Biuret-Gruppen gebildet wird, sowie die katalytischen Eigenschaften der Rhodium-Komplexe dieser Verbindungen bei der Hydroformylierung.
Die WO 00/56451 betrifft am Phosphorato unter anderem mit Pyr- rolderivaten substituierte, cyclische Oxaphosphorine und die Verwendung dieser als Liganden in Katalysatoren zur Hydroformylierung.
Die WO 01/58589 beschreibt Verbindungen des Phosphors, Arsens und des Antimons, basierend auf Diaryl-anellierten Bi- cyclo[2.2.2 ] -Grundkörpern und Katalysatoren, die diese als Liganden enthalten.
Die DE-A-100 23 471 beschreibt ein Verfahren zur Hydroformylie- rung unter Einsatz eines Hydroformylierungskatalysators, der wenigstens einen Phosphinliganden umfasst, der zwei Triarylphos- phingruppen aufweist, wobei jeweils ein Arylrest der beiden Tri- arylphosphingruppen über eine Einfachbindung an eine nichtaromatische 5- bis 8-gliedrige carbocyclische oder heterocyclische verbrückende Gruppe gebunden ist. Dabei können die Phosphoratome als weitere Substituenten unter anderem auch Hetarylgruppen aufweisen.
Die DE-A-100 46 026 beschreibt ein Hydroformylierungsverfahren, bei dem man als Katalysator einen Komplex auf Basis einer Phosphor-, Arsen- oder Antimon-haltigen Verbindung als Liganden einsetzt, wobei diese Verbindung jeweils zwei ein P-, As- oder Sb- Ato und wenigstens zwei weitere Heteroatome aufweisende Gruppen gebunden an ein Xanthen-artiges Molekülgerüst aufweist.
US-A 5,710,344 betrifft die Hydroformylierung von Olefinen mittels Rhodiumkatalysatoren, die mit Chelatphosphordiamidit-Li- ganden mit Bisphenol- oder Bisnaphthol-Rückgrat und deren Phosphoratome unsubstituierte Pyrrolyl-, Imidazolyl- oder Indo- lylgruppen tragen können, modifiziert sind. Als Olefin wird u. a. 1,3-Butadien eingesetzt.
A. M. Trzeciak und J. J. Ziolkowski beschreiben in J. Organo et. Chem., 464 (1994), 107 - 111 die selektive Hydroformylierung vo 1,5-Hexadien und 1,7-Octadien in Gegenwart der KatalysatorSysteme Rh(acac) (P(OC6H5)3)2/P(OC6H5)3 beziehungsweise
Rh(acac) (CO) (P(C6H5)3)/P(C6H5)3. Dabei wird die Bildung einer Vielzahl isomerer Mono- und Dialdehyde beobachtet. Die n-Selektivität dieser Katalysatorsysteme ist zur gezielten Herstellung von α,ω- Enalen bzw. -Dialdehyden unzureichend.
C. Botteghi et al. beschreiben in J. Mol. Catal. A: Chem 2001, 175, 17-25 die Herstellung von langkettigen linearen Dialdehyden durch Hydroformylierung von α,ω-Dienen oder ω-Vinylaldehydaceta- len. Die Selektivität bezüglich linearer α,ω-Dialdehyde ist bei Verwendung von Standard-Katalysatorsystemen wie Rh(CO)2(acac) , Rh(CO)2(acac)P(C6H5)3 oder Rh(CO)2(acac)P(OC6H5)3 gering. Bei Einsatz eines in situ aus RhH(CO) (P(C6Hs)3)3/Xantphos gebildeten Komplexes als katalytischen Prekursors erzielt man einen hohen α,ω-Diolefin-Umsatz und einen hohen Anteil an linearem Dialdehyd. Nachteilig an diesem Katalysatorsystem sind die sehr langen Reaktionszeiten und die hohen erforderlichen Katalysatoreinsatzmengen.
Die WO 03/018192 beschreibt ein Hydroformylierungsverfahren unter Einsatz eines Katalysatorkomplexes, der als Liganden wenigstens eine Pyrrolphosphorverbindung aufweist, bei der eine substituierte und/oder in ein anelliertes Ringsystem intergrierte Pyr- rolgruppe über ihr pyrrolisches Stickstoffatom kovalent mit dem Phosphoratom verknüpft ist. Die unveröffentlichte internationale Anmeldung PCT/EP 03/01245 beschreibt Phosphorchelatverbindungen, bei denen an die beiden Phosphoratome jeweils drei Stickstoffatome kovalent gebunden sind, die selbst Teil eines aromatischen Ringsystems sind,, und deren Einsatz als Liganden für Hydroformylierungskatalysatoren.
Die WO 02/083695 beschreibt u. A. ein Verfahren zur Hydroformylierung von Olefinen unter Einsatz eines Hydroformylierungskata- lysators, der einen Komplex eines Metalls der VIII. Nebengruppe mit mindestens einer PnicogenchelatVerbindung als Liganden um- fasst. Diese Liganden weisen zwei Pnicogenatome enthaltende Gruppen auf, welche über ein Xanthen-artiges oder Triptycen-artiges Molekülgerüst miteinander verbunden sind und wobei an jedes Pni- cogenatom mindestens eine Pyrrolgruppe über deren Stickstoffatom kovalent gebunden ist. Als zur Hydroformylierung geeignete Ole- fine werden neben einer Vielzahl weiterer auch ganz allgemein Dioder Polyene genannt. Ausführungsbeispiele mit diesen Olefinen sind nicht enthalten.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Hydroformylierung von Verbindungen mit mindestens zwei ethylenisch ungesättigten Doppelbindungen unter möglichst milden Druck- und/oder Temperaturbedingungen bei kurzen Reaktionszeiten und/oder Katalysatorbeladungen zur Verfügung zu stellen. Dabei soll bei der Hydroformylierung von Diolefinen vorzugsweise ein möglichst hoher Anteil an α,ω-Dialdehyden und/oder α,ω-Enalen bei gutem Umsatz erzielt werden (hohe n-Selektivität) . Die Isomeri- sierung von im molekülenthaltenen ethylenisch ungesättigten Doppelbindungen soll möglichst vermieden werden. Insbesondere sollen auch die Katalysatorstandzeiten hoch sein.
Überraschenderweise wurde nun gefunden, dass diese Aufgabe durch ein Verfahren zur Hydroformylierung gelöst wird, wobei man als Hydroformylierungskatalysator wenigstens einen Komplex eines Me- talls der VIII. Nebengrupe mit mindestens einem Pnicogenchelatli- ganden einsetzt, der zwei Pnicogenatome enthaltende Gruppen aufweist, welche über ein Xanthen-artiges oder Triptycen-artiges Molekülgerüst miteinander verbunden sind und wobei an jedes Pnico- genatom mindestens eine Pyrrolgruppe über deren Stickstoffatom kovalent gebunden ist.
Gegenstand der Erfindung ist daher ein Verfahren zur Herstellung von Dialdehyden und/oder ethylenisch ungesättigten Monoaldehyden durch Umsetzung wenigstens einer Verbindung mit mindestens zwei ethylenisch ungesättigten Doppelbindungen mit Kohlenmonoxid und Wasserstoff in Gegenwart eines Hydroformylierungskatalysators, der wenigstens einen Komplex eines Metalls der VIII. Nebengruppe mit wenigstens einem Liganden umfasst, der ausgewählt ist unter Pnicogenchelatverbindungen der allgemeinen Formel I,
Rl Pn (0)a Q (0)b Pn- R3
R2 R4 worin
eine Brückengruppe der Formel
Figure imgf000006_0001
ist,
worin
A1 und A2 unabhängig voneinander für 0, S, SiRaRb, NRC oder CRdRe stehen, wobei
Ra,Rb und Rc unabhängig voneinander für Wasserstoff, Alkyl, Cyclo- alkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen,
Rd und Re unabhängig voneinander für Wasserstoff, Alkyl, Cyclo- alkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen oder die Gruppe Rd gemeinsam mit einer weiteren Gruppe Rd oder die Gruppe Re gemeinsam mit einer weiteren Gruppe Re eine intramolekulare Brückengruppe D bilden,
D eine zweibindige Brückengruppe, ausgewählt aus den Gruppen
Figure imgf000006_0002
ist, in denen R9 und Rl° unabhängig voneinander für Wasserstoff, Alkyl, Cyclo- alkyl, Aryl, Halogen, Trifluormethyl, Carboxyl, Carboxylat oder Cyano stehen oder miteinander zu einer C3- bis C -Alky- lenbrücke verbunden sind,
RU, Ri2, R!3 und Ri4 unabhängig voneinander für Wasserstoff,
Alkyl, Cycloalkyl, Aryl, Halogen, Trifluormethyl, COOH, Carboxylat, Cyano, Alkoxy, S03H, Sulfonat, NEXE2, Alky- len-NElE2E3+χ-, Acyl oder Nitro stehen,
c 0 oder 1 ist, (wenn c für 0 steht, liegt keine direkte Bindung zwischen Α1 und A2 vor)
Y eine chemische Bindung darstellt,
R1, R11, R111, RIV, Rv und RVI unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl, Hetaryl, C00Rf, C00-M+, S03Rf, SO~ 3M+, NEXE2, NElE2E3+ ", Alky- Ien-NE1E2E3+X-, ORf, SRf, (CHR3CH20)xRf, (CH2N(El) )xRf, (CH2CH2N(El) )xRf, Halogen, Trifluormethyl, Nitro, Acyl oder Cyano stehen,
worin
Rf, E1, E2 und E3 jeweils gleiche oder verschiedene Reste, ausgewählt unter Wasserstoff, Alkyl, Cycloalkyl oder Aryl bedeuten,
R9 für Wasserstoff, Methyl oder Ethyl steht,
M+ für ein Kation steht,
X- für ein Anion steht, und
x für eine ganze Zahl von 1 bis 120 steht,
oder
zwei benachbarte Reste, ausgewählt unter R1, R11, R111, Riv, R und RVI zusammen mit zwei benachbarten Kohlenstoffatomen des Benzolkerns, an den sie gebunden sind, für ein kondensiertes Ringsystem, mit 1, 2 oder 3 weiteren Ringen stehen,
a und b unabhängig voneinander die Zahl 0 oder 1 bedeuten Pn für ein Pnicogenatom ausgewählt aus den Elementen Phosphor, Arsen oder Antimon steht,
und
Ri , R2 , R3 , R4 unabhängig voneinander für Hetaryl, Hetaryloxy, Alkyl, Alkoxy, Aryl, Aryloxy, Cycloalkyl, Cycloalkoxy, Heterocycloalkyl, Heterocycloalkoxy oder eine NEiE -Gruppe stehen, mit der Maßgabe, dass Rx und R3 über das Stickstof - atom an das Pnicogenatom Pn gebundene Pyrrolgruppen sind
oder worin R1 gemeinsam mit R2 und/oder R3 gemeinsam mit R4 eine zweibindige Gruppe E der Formel,
Py-I-W
bildet, worin
Py eine Pyrrolgruppe ist, die über das pyrrolische Stick- stoffatom an das Pnicogenatom Pn gebunden ist,
I für eine chemische Bindung oder für 0, S, SiRaRb, NRC, gegebenenfalls substituiertes Cχ-Cιo-Alkylen oder CRkR1 steht,
W für Cycloalkyl, Cycloalkoxy, Aryl, Aryloxy, Hetaryl oder Hetaryloxy steht,
und
Rh und R1 unabhängig voneinander für Wasserstoff, Alkyl,
Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen,
oder worin Rl gemeinsam mit R2 und/oder R3 gemeinsam mit R4 eine über die Stickstoffatome an das Pnicogenatom Pn gebundene Bispyrrolgruppe der Formel
Py-I-Py
bildet.
In einer speziellen Ausfuhrungsform betrifft die vorliegende Erfindung ein Verfahren zur Hydroformylierung von Verbindungen, die wenigstens zwei ethylenisch ungesättigte Doppelbindung enthalten, unter Isolierung der gebildeten ungesätttigten Monoaldehyde . Für den Zweck der Erläuterung der vorliegenden Erfindung versteht man unter dem Ausdruck "Anteil an linearem Dialdehyd" (beide Doppelbindungen endständig hydroformyliert) den Anteil an gebildetem n,n-Dialdehyd bezogen auf die Summe der gebildeten n,n-, n,iso- und iso,iso-Dialdehyde. Der n-Anteil berechnet sich somit nach der folgenden Gleichung:
Anteil an gebildetem n,n-Dialdehyd n-Anteil = Summe aller gebildeten Dialdehyde
Summe aller Dialdehyde = Anteil an n,n-Dialdehyd +
Anteil an n,iso-Dialdehyd + Anteil an iso,iso-Dialdehyd
Für den Zweck der Erläuterung der vorliegenden Erfindung umfasst der Ausdruck 'Alkyl' geradkettige und verzweigte Alkylgruppen. Vorzugsweise handelt es sich dabei um geradkettige oder verzweigte Cι-C2o-Alkyl, bevorzugterweise Cχ-Cχ2-Alkyl-, besonders bevorzugt Cχ-C8-Alkyl- und ganz besonders bevorzugt Cχ-C-Alkyl- gruppen. Beispiele für Alkylgruppen sind insbesondere Methyl, Ethyl, Propyl, Isopropyl, n-Butyl, 2-Butyl, sec.-Butyl, tert.-Bu- tyl, n-Pentyl, 2-Pentyl, 2-Methylbuty1, 3-Methylbutyl,
1 , 2-Dimethylpropyl, 1, 1-Dimethylpropyl, 2 ,2-Dimethylpropyl, 1-Ethylpropyl, n-Hexyl, 2-Hexyl, 2-Methylpentyl, 3-Methylpentyl, 4-Methylpentyl, 1,2-Dimethylbutyl, 1, 3-Dimethylbutyl, 2 , 3-Dimethylbutyl, 1, 1-Dimethylbutyl, 2 , 2-Dimethylbutyl, 3,3-Dimethylbutyl, 1, 1,2-Trimethylpropyl, 1, 2 , 2-Trimethylpropyl, 1-Ethylbutyl, 2-Ethylbutyl, 1-Ethyl- 2-methylpropyl, n-Heptyl, 2-Heptyl, 3-Heptyl, 2-Ethylpentyl, 1-Propylbutyl, n-Octyl, 2-Ethylhexyl, 2-Propylheptyl, Nonyl, Decyl.
Der Ausdruck „Alkyl" umfasst auch substituierte Alkylgruppen, welche im allgemeinen 1, 2, 3, 4 oder 5, bevorzugt 1, 2 oder 3 und besonders bevorzugt 1 Substituenten, ausgewählt aus den Gruppen Cycloalkyl, Aryl, Hetaryl, Halogen, NElE2, NElE2E3+, Carboxyl, Carboxylat, -S03H und Sulfonat, tragen können.
Der Ausdruck „Alkylen" im Sinne der vorliegenden Erfindung steht für geradkettige oder verzweigte Alkandiyl-Gruppen mit 1 bis 4 Kohlenstoffatomen.
Der Ausdruck „Cycloalkyl" umfasst im Sinne der vorliegenden Erfindung unsubstituierte als auch substituierte Cycloalkylgruppen, vorzugsweise C5- bis C7-Cycloalkylgruppen, wie Cyclopentyl, Cyclohexyl oder Cycloheptyl, die im Falle einer Substitution, im allgemeinen 1, 2, 3, 4 oder 5, bevorzugt 1, 2 oder 3 und besonders bevorzugt 1 Substituenten, ausgewählt aus den Gruppen Alkyl, Alkoxy und Halogen, tragen können.
Der Ausdruck „Heterocycloalkyl" im Sinne der vorliegenden Erfindung umfasst gesättigte, cycloaliphatische Gruppen mit im allgemeinen 4 bis 7, vorzugsweise 5 oder 6 Ringatomen, in denen 1 oder 2 der Ringkohlenstoffatome durch Heteroatome, ausgewählt aus den Elementen Sauerstoff, Stickstoff und Schwefel, ersetzt sind und die gegebenenfalls substituiert sein können, wobei im Falle einer Substitution, diese heterocycloaliphatischen Gruppen 1, 2 oder 3, vorzugsweise 1 oder 2, besonders bevorzugt 1 Substituenten, ausgewählt aus Alkyl, Aryl, C00Rf, COO~M+ und NE^-E2, bevorzugt Alkyl, tragen können. Beispielhaft für solche heterocycloaliphatischen Gruppen seien Pyrrolidinyl, Piperidinyl, 2,2, 6, 6-Tetrame- thyl-piperidinyl, Imidazolidinyl, Pyrazolidinyl, Oxazolidinyl, Morpholidinyl, Thiazolidinyl, Isothiazolidinyl, Isoxazolidinyl, Piperazinyl-, Tetrahydrothiophenyl, Tetrahydrofuranyl, Tetra- hydropyrany1, Dioxanyl genannt.
Der Ausdruck „Aryl" umfasst im Sinne der vorliegenden Erfindung unsubstituierte als auch substituierte Arylgruppen, und steht vorzugsweise für Phenyl, Tolyl, Xylyl, Mesityl, Naphthyl, Fluor- enyl, Anthracenyl, Phenanthrenyl oder Naphthacenyl, besonders bevorzugt für Phenyl oder Naphthyl, wobei diese Arylgruppen im Falle einer Substitution im allgemeinen 1, 2, 3, 4 oder 5, vorzugsweise 1, 2 oder 3 und besonders bevorzugt 1 Substituenten, ausgewählt aus den Gruppen Alkyl, Alkoxy, Carboxyl, Carboxylat, Trifluormethyl, -S03H, Sulfonat, NEXE2, Alkylen-NElE2, Nitro, Cyano oder Halogen, tragen können.
Der Ausdruck „Hetaryl" umfasst im Sinne der vorliegenden Erfindung unsubstituierte oder substituierte, heterocycloaromatische Gruppen, vorzugsweise die Gruppen Pyridyl, Chinolinyl, Acridinyl, Pyridazinyl, Pyrimidinyl, Pyrazinyl, sowie die Untergruppe der „Pyrrolgruppe", wobei diese heterocycloaromatischen Gruppen im Falle einer Substitution im allgemeinen 1, 2 oder 3 Substituenten, ausgewählt aus den Gruppen Alkyl, Alkoxy, Carboxyl, Carboxylat, -S03H, Sulfonat, NEXE2, Alkylen-NElE2, Trifluormethyl oder Halogen, tragen können.
Der Ausdruck „Pyrrolgruppe" steht im Sinne der vorliegenden Erfindung für eine Reihe unsubstituierter oder substituierter, he- terocycloaromatischer Gruppen, die strukturell vom Pyrrolgrundge- rüst abgeleitet sind und ein pyrrolisches Stickstoffatom im Heterocyclus enthalten, das kovalent mit anderen Atomen, beispielsweise einem Pnicogenatom, verknüpft werden kann. Der Ausdruck „Pyrrolgruppe" umfasst somit die unsubstituierten oder substituierten Gruppen Pyrrolyl, Imidazolyl, Pyrazolyl, Indolyl, Purinyl, Indazolyl, Benzotriazolyl, 1,2, 3-Triazolyl, 1,3,4-Tri- azolyl und Carbazolyl, die im Falle einer Substitution im allgemeinen 1, 2 oder 3, vorzugsweise 1 oder 2, besonders bevorzugt 1 Substituenten, ausgewählt aus den Gruppen Alkyl, Alkoxy, Acyl, Carboxyl, Carboxylat, -S03H, Sulfonat, NElE2, Alkylen-NElE2, Tri- fluormethyl oder Halogen, tragen können.
Dementsprechend umfasst der Ausdruck „Bispyrrolgruppe" im Sinne der vorliegenden Erfindung zweibindige Gruppen der Formel
Py-I-Py,
die zwei durch direkte chemische Bindung oder Alkylen-, Oxa-, Thio-, Imino-, Silyl oder Alkyliminogruppen vermittelte Verknüpfung, verbundene Pyrrolgruppen enthalten, wie die Bisindoldiyl- Gruppe der Formel
Figure imgf000011_0001
als Beispiel für eine Bispyrrolgruppe, die zwei direkt verknüpfte Pyrrolgruppen, in diesem Falle Indolyl, enthält, oder die Bis- pyrroldiyl-methan-Gruppe der Formel
Figure imgf000011_0002
als Beispiel für eine Bispyrrolgruppe, die zwei über eine Methylengruppe verknüpfte Pyrrolgruppen, in diesem Falle Pyrrolyl, enthält. Wie die Pyrrolgruppen können auch die Bispyr- rolgruppen unsubstituiert oder substituiert sein und im Falle einer Substitution pro Pyrrolgruppeneinheit im Allgemeinen 1, 2 oder 3, vorzugsweise 1 oder 2, insbesondere 1 Substituenten, ausgewählt aus Alkyl, Alkoxy, Carboxyl, Carboxylat, -S03H, Sulfonat, NEXE2, Alkylen-NElE2, Trifluormethyl oder Halogen, tragen, wobei bei diesen Angaben zur Anzahl möglicher Substituenten die Verknüpfung der Pyrrolgruppeneinheiten durch direkte chemische Bin- düng oder durch die mittels der vorstehend genannten Gruppen vermittelte Verknüpfung nicht als Substitution betrachtet wird. Carboxylat und Sulfonat stehen im Rahmen dieser Erfindung vorzugsweise für ein Derivat einer Carbonsäurefunktion bzw. einer Sulfonsäurefunktion, insbesondere für ein Metallcarboxylat oder -sulfonat, eine Carbonsäure- oder Sulfonsäureesterfunktion oder eine Carbonsäure- oder Sulfonsaureamidfunktion. Dazu zählen z. B. die Ester mit Cχ-C -Alkanolen, wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, sec.-Butanol und tert.-Butanol.
Die obigen Erläuterungen zu den Ausdrücken „Alkyl", „Cycloalkyl", „Aryl", „Heterocycloalkyl" und „Hetaryl" gelten entsprechend für die Ausdrücke „Alkoxy", „Cycloalkoxy", „Aryloxy", „Heterocycloal- koxy" und „Hetaryloxy" .
Der Ausdruck "Acyl" steht im Sinne der vorliegenden Erfindung für Alkanoyl- oder Aroylgruppen mit im Allgemeinen 2 bis 11, vorzugsweise 2 bis 8 Kohlenstoffatomen, beispielsweise für die Acetyl-, Propionyl-, Butyryl-, Pentanoyl-, Hexanoyl-, Heptanoyl-, 2-Ethyl- hexanoyl-, 2-Propylheptanoyl-, Benzoyl- oder Naphthoyl-Gruppe .
Die Gruppen NEXE2 und NE4E5 stehen vorzugsweise für N,N-Di- methylamino, N,N-Diethylamino, N,N-Dipropylamino, N,N-Diisopro- pylamino, N,N-Di-n-butylamino, N,N-Di-t.-butylamino, N,N-Dicyclo- hexylamino oder N,N-Diphenylamino.
Halogen steht für Fluor, Chlor, Brom und Iod, bevorzugt für Fluor, Chlor und Brom.
M+ steht für ein Kationäquivalent, d. h. für ein einwertiges Kation oder den einer positiven Einfachladung entsprechenden Anteil eines mehrwertigen Kations . Das Kation M+ dient lediglich als Gegenion zur Neutralisation negativ geladener Substituentengrup- pen, wie der C00- oder der Sulfonat-Gruppe und kann im Prinzip beliebig gewählt werden. Vorzugsweise werden deshalb Alkalimetall-, insbesondere Na+-, K+-, Li+-Ionen oder Onium-Ionen, wie Ammonium-, Mono-, Di-, Tri-, Tetraalkylammonium-, Phosphonium-, Tetraalkyl- phosphonium oder Tetraarylphosphonium-Ionen verwendet.
Entsprechendes gilt für das Anionäquivalent X", das lediglich als Gegenion positiv geladener Substituentengruppen, wie den Ammoniumgruppen, dient und beliebig gewählt werden kann unter einwertigen Anionen und den einer negativen Einfachladung entsprechenden Anteilen eines mehrwertigen Anions, wobei im Allgemeinen Halogenid-Ionen X- bevorzugt sind, insbesondere Chlorid und Bromid. Die Werte für x stehen für eine ganze Zahl von 1 bis 240, vorzugsweise für eine ganze Zahl von 3 bis 120.
Kondensierte Ringsysteme können durch Anellierung verknüpfte (an- kondensierte) aromatische, hydroaromatische und cyclische Verbindungen sein. Kondensierte Ringsysteme bestehen aus zwei, drei oder mehr als drei Ringen. Je nach der Verknüpfungsart unterscheidet man bei kondensierten Ringsystemen zwischen einer ortho- Anellierung, d. h. jeder Ring hat mit jedem Nachbarring jeweils eine Kante, bzw. zwei Atome gemeinsam, und einer peri-Anellie- rung, bei der ein Kohlenstoffatom mehr als zwei Ringen angehört. Bevorzugt unter den kondensierten Ringsystemen sind ortho-konden- sierte Ringsysteme.
Y stellt eine chemische Bindung, also den Anknüpfungspunkt der Brückengruppe Q an die Gruppen -O-, oder im Falle wenn a und/oder b gleich 0 ist, an die Gruppen PnRlR2 bzw. PnR3R4 dar.
In der Brückengruppe Q können die Gruppen A1 und A2 im Allgemeinen unabhängig voneinander für 0, S, SiRaRb, NRC oder CRdRe stehen, wobei die Substituenten Ra, Rb und Rc im Allgemeinen unabhängig voneinander die Bedeutung Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl haben können, wohingegen die Gruppen Rd und Re unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen oder die Gruppe Rd gemeinsam mit einer weiteren Gruppe Rd oder die Gruppe Re gemeinsam mit einer weiteren Gruppe Re eine intramolekulare Brückengruppe D bilden können.
D ist eine zweibindige Brückengruppe, die im Allgemeinen ausgewählt ist aus den Gruppen
Figure imgf000013_0001
in denen R9 und R10 unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Aryl, Halogen, Trifluormethyl, Carboxyl, Carboxylat oder Cyano stehen oder miteinander zu einer C3-C -Alkylengruppe verbunden sind und Ru, Ri2, Ri3 und Ri4 unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Aryl, Halogen, Trifluormethyl, COOH, Carboxylat, Cyano, Alkoxy, S03H, Sulfonat, NEXE2, Alk len-NElE^3"1^-, Aryl oder Nitro stehen können. Vorzugsweise stehen die Gruppen R9 und R10 für Wasserstoff, Cχ-C10-Alkyl oder Carboxylat und die Gruppen R11, Ri2, RX3 und Ri4 für Wasserstoff, Cχ-Cχo-Alkyl, Halogen, insbesondere Fluor, Chlor oder Brom, Tri- fluormethyl, Cχ-C -Alkoxy, Carboxylat, Sulfonat oder C6-C1 -Aryl. Besonders bevorzugt stehen R9, R10, Ru, Ri2, RX3 und Ri4 für Was- serstoff. Für den Einsatz in einem wassrigen Reaktionsmedium sind solche Pnicogenchelatverbindungen bevorzugt, in denen 1, 2 oder 3, vorzugsweise 1 oder 2, insbesondere 1 der Gruppen Ru, Ri2, Ri3 und/oder Ri4 für eine C00-Me+, eine S03"M+ oder eine NElE2E3+χ-- Gruppe stehen, wobei M+ und X- die vorstehend genannte Bedeutung haben.
Besonders bevorzugte Brückengruppen D sind die Ethylengruppe
R9 -RIO
CH CH
und die 1 , 2-Phenylengruppe
Figure imgf000014_0001
Wenn Rd mit einer weiteren Gruppe Rd oder Re mit einer weiteren Gruppe Re eine intramolekulare Brückengruppe D bildet, dann ist der Index c in diesem Falle gleich 1.
Bevorzugte Brückengruppen Q sind außer denen mit Triptycen-arti- ge Kohlenstoffgerüst solche, in denen der Index c für 0 steht und die Gruppen Al und A2 ausgewählt sind aus den Gruppen 0, S und CRdRe, insbesondere unter O, S, der Methylengruppe (Rd = Re = H) , der Dimethylmethylengruppe (Rd = Re = CH3), Diethylmethylengruppe (Rd = Re = C2H5), der Di-n-propyl-methylengruppe (Rd = Re = n-Pro- pyl) oder der Di-n-butylmethylengruppe (Rd = Re = n-Butyl) . Insbesondere sind solche Brückengruppen Q bevorzugt, in denen A1 von A2 verschieden ist, wobei A1 bevorzugt eine CRdRe-Gruppe und A2 bevorzugt eine O- oder S-Gruppe, besonders bevorzugt eine Oxa- gruppe 0 ist.
Besonders bevorzugte Brückengruppen Q sind somit solche, die aus einem Triptycen-artigen oder Xanthen-artigen (A1: CRdRe, A2: 0) Gerüst aufgebaut sind.
Die Substituenten R1, R11, RΠI^ Riv RV unα RVI sind vorzugsweise ausgewählt unter Wasserstoff, Alkyl, Alkoxy, Cycloalkyl, Hetero- cycloalkyl, Aryl und Hetaryl. Nach einer ersten bevorzugten Ausführungsform stehen R1, R11, R111, RIV, Rv und RVI für Wasserstof f . Nach einer weiteren bevorzugten Ausfuhrungsform stehen R1 und RVI unabhängig voneinander für Cχ-C-Alkyl oder Cχ-C4-Alkoxy. Vorzugs- weise sind R1 und RVI ausgewählt unter Methyl, Ethyl, Isopropyl, tert-Butyl und Methoxy. Bevorzugt stehen in diesen Verbindungen R11, R111, RIV und Rv für Wasserstoff. Nach einer weiteren bevorzugten Ausfuhrungsform stehen R11 und Rv unabhängig voneinader für Cχ-C4-Alkyl oder Cχ-C4-Alkoxy. Vorzugsweise sind R11 und Rv ausge- wählt unter Methyl, Ethyl, Isopropyl, tert-Butyl und Methoxy. Bevorzugt stehen in diesen Verbindungen R1, R111, RIV und RVI für Wasserstoff.
Wenn zwei benachbarte Reste, ausgewählt unter R1, R11, R111, RIV, Rv und RVI für ein ankondensiertes, also anelliertes, Ringsystem stehen, so handelt es sich bevorzugt um Benzol- oder Naphthalinringe. Anellierte Benzolringe sind vorzugsweise unsubstituiert oder weisen 1, 2 oder 3, insbesondere 1 oder 2 Substituenten auf, die ausgewählt sind unter Alkyl, Alkoxy, Halogen, S03H, Sulfonat, NEXE2, Alkylen-NElE2, Trifluormethyl, Nitro, C00Rf, Alkoxy- carbonyl, Acyl und Cyano. Anellierte Naphthalinringe sind vorzugsweise unsubstituiert oder weisen im nicht anellierten Ring und/oder im anellierten Ring insgesamt 1, 2 oder 3, insbesondere 1 oder 2 der zuvor bei den anellierten Benzolringen genannten Substituenten auf.
Ist der Einsatz der erfindungsgemäß eingesetzten Pnicogenchelat- verbindungen in einem wassrigen Hydroformylierungsmedium vorgesehen, steht wenigstens einer der Reste R1. R11, R111, RIV, Rv und/ oder RVI für eine polare (hydrophile) Gruppe, wobei dann in der Regel bei der Komplexbildung mit einem Gruppe VIII Metall wasserlösliche Pnicogenchelatkomplexe resultieren. Bevorzugt sind die polaren Gruppen ausgewählt unter C0ORf, COO-M", S03Rf, S03-M"*", NElE2, Alkylen-NElE2, NElE2E3+X", Alkylen-NElE2E3+χ-, 0Rf, SRf, (CHR9CH20)xRf oder (CH2CH2N(El) )xRf, worin Rf, E1, E2, E3, RS, M+, X~ und x die zuvor angegebenen Bedeutungen besitzen.
Die Brückengruppe Q ist über die chemische Bindung Y entweder direkt oder über eine Oxagruppe O mit den Gruppen PnRiR2 bzw. PnR3R4 verbunden.
Pn steht für ein Atom aus der Pnicogengruppe, ausgewählt aus Phosphor, Arsen oder Antimon. Besonders bevorzugt steht Pn für Phosphor .
Die einzelnen Pnicogenatome Pn der erfindungsgemäß eingesetzten Pnicogenchelatverbindungen sind jeweils über zwei kovalente Bindungen mit zwei Substituenten R1 und R2 bzw. R3 und R4 verbunden, wobei die Substituenten R1, R2, R3 und R4 unabhängig voneinander für Hetaryl, Hetaryloxy, Alkyl, Alkoxy, Aryl, Aryloxy, Cycloalkyl, Cycloalkoxy, Heterocycloalkyl, Heterocycloalkoxy oder eine NEiE2-Gruppe stehen können, mit der Maßgabe, dass Ri und R3 über das pyrrolische Stickstoffatom an das Pnicogenatom Pn gebundene Pyrrolgruppen sind. Vorteilhaft stehen auch die Substituenten R2 und/oder R4 für über das pyrrolische Stickstoffatom an das Pnicogenatom Pn gebundene Pyrrolgruppen. Weiterhin vorteilhaft kann der Substituent R1 gemeinsam mit dem Substituenten R2 und/ oder der Substituent R3 gemeinsam mit dem Substituenten R4 eine über die pyrrolischen Stickstoffatome an das Pnicogenatom Pn gebundene Bispyrrolgruppe bilden.
Die Bedeutung der einzelnen im vorstehenden Absatz genannten Ausdrücke entspricht der eingangs gegebenen Definition.
In einer bevorzugten Ausführungsform wird in dem erfindungsgemäßen Verfahren ein Hydroformylierungskatalysator eingesetzt, in dem die Reste R1, R2, R3 und R4 unabhängig voneinander ausgewählt sind unter Gruppen der Formeln I.a bis I.k:
Figure imgf000016_0001
( I . a) ( i .b )
AlkOOC /N. COOAlk
Figure imgf000016_0002
AlkOOC COOAlk
( I . c ) ( I .d)
Figure imgf000016_0003
(I.e) (I.f) (∑.g)
Figure imgf000017_0001
(I.h) (I.i) (I.k)
worin
Alk eine Cχ-C4-Alkylgruppe ist und
R°, RP, R<2 und Rr unabhängig voneinander für Wasserstoff,
Cχ-C4-Alkyl, Cχ-C4-Alkoxy, Acyl, Halogen, Trifluormethyl, Cχ-C -Alkoxycarbonyl oder Carboxyl stehen.
Zur Veranschaulichung werden im Folgenden einige vorteilhafte Pyrrolgruppen aufgelistet:
H3
Figure imgf000017_0002
(I.al) ( I . a2 ) (I.bl)
H3COOC N. COOCH3
Figure imgf000017_0003
(I.b2) (I.cl)
Figure imgf000018_0001
COOCH3
(I.c2) (I.dl)
Figure imgf000018_0002
(I.d2) (I.el) (I.e2)
Figure imgf000018_0003
H3C
(I.f3) (I.gl) (I.hl)
Figure imgf000018_0004
(I.il) (I.kl) (I.k2)
Besonders vorteilhaft ist die 3-Methylindolylgruppe (Skatolyl- gruppe) der Formel I.fl. Hydroformylierungskatalysatoren auf Basis von Liganden, die eine oder mehrere 3-Methylindolylgruppe(n) an das Phosphoratom gebunden aufweisen, zeichnen sich durch eine besonders hohe Stabilität und somit besonders lange Katalysatorstandzeiten aus .
In einer weiteren vorteilhaften Ausgestaltung der vorliegenden Erfindung kann der Substituent R1 gemeinsam mit dem Substituenten R2 oder der Substituent R3 gemeinsam mit dem Substituenten R4 eine über das pyrrolische Stickstoffatom an das Pnicogenatom Pn gebundene Pyrrolgruppe enthaltende zweibindige Gruppe der Formel
Py-I-W
bilden,
worin
Py eine Pyrrolgruppe ist,
I für eine chemische Bindung oder für O, S, SiRaRb, NRC oder CRhRi steht,
W für Cycloalkyl, Cycloalkoxy, Aryl, Aryloxy, Hetaryl oder Hetaryloxy steht
und
Rh und R1 unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen,
wobei die hierbei verwendeten Bezeichnungen die eingangs erläu- terte Bedeutung haben.
Bevorzugte zweibindige Gruppen der Formel
Py-I-W
sind z. B.
Figure imgf000019_0001
Figure imgf000020_0001
Bevorzugt werden in dem erfindungsgemäßen Verfahren Hydroformy- lierungskatalysatoren eingesetzt, die wenigstens einen Liganden der Formel I umfassen, worin der Substituent R1 gemeinsam mit dem Substituenten R2 oder der Substituent R3 gemeinsam mit dem Substi- tuenten R4 eine Bispyrolgruppe der Formel
Figure imgf000020_0002
bildet, worin
I für eine chemische Bindung oder für 0, S, SiRaRb, NRC oder gegebenenfalls substituiertes Cχ-Cχ0-Alkylen, bevorzugt CRkR1, steht, worin Ra , Rb, Rc, Rh und R1 unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen,
R3l, R3!', R32, R32', R33, R33', R34 und R34' unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl, Hetaryl, W'C00Ra, WC00-M+, W' ( S03 )Rf, W' (S03)"M+, W'P03(Rf)(Rg) W'(P03)2-(M+)2, W'NElE2, W' (NElE2E3 )+X~, W'0Rf, W'SRf, (CHR<3CH20)xRf, (CH2NEl)xRf, ( CH2CH2NEl )xRf, Halogen, Trifluormethyl, Nitro, Acyl oder Cyano stehen,
worin W' für eine Einfachbindung, ein Heteroatom oder eine zweiwertige verbrückende Gruppe mit 1 bis 20 Brük- kenatomen steht,
> Rf, E1, E2, E3 jeweils gleiche oder verschiedene Reste, ausgewählt unter Wasserstoff, Alkyl, Cycloalkyl oder Aryl bedeuten,
R9 für Wasserstoff, Methyl oder Ethyl steht, 0
M+ für ein Kationäquivalent steht.
X- für ein Anionäquivalent steht und
5 x für eine ganze Zahl von 1 bis 240 steht,
wobei jeweils zwei benachbarte Reste R3i und R32 und/oder R3i' und R32' zusammen mit den Kohlenstoffatomen des Pyrrolrings, an die sie gebunden sind, auch für ein kondensiertes Ringsy- 0 stem mit 1, 2 oder 3 weiteren Ringen stehen können.
Vorzugsweise steht I für eine chemische Bindung oder eine Cχ-C4-Alkylengruppe, besonders bevorzugt eine Methylengruppe.
5 Zur Veranschaulichung werden im Folgenden einige vorteilhafte "Bispyrrolylgruppen" aufgelistet:
Figure imgf000021_0001
b: Rλ = H
Figure imgf000021_0002
0
In einer bevorzugten Ausfuhrungsform sind die erfindungsgemäß eingesetzten Pnicogenchelatverbindungen ausgewählt unter Verbindungen der allgemeinen Formel II
ET
Figure imgf000022_0001
(II)
worin
Ri5, Ri6, Ri? und RX8 unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl, Hetaryl, W'COORk, WC0O-M+, W'(S03)Rk, W'(S03)-M+, W'P03(Rk) (R1) W' (P03 )2~(M+)2,
W'NE E5, W' (NE4E5E6)+X-, W'ORk, W'SRk, (CHR1CH20)yRk, (CH2NE )yRk, (CH2CH2NE )yRk, Halogen, Trifluormethyl, Nitro, Acyl oder Cyano stehen,
worin
W' für eine Einfachbindung, ein Heteroatom oder eine zweiwertige verbrückende Gruppe mit 1 bis 20 Brückenatomen steht,
Rk f E4, E5, E6 jeweils gleiche oder verschiedene Reste, ausgewählt unter Wasserstoff, Alkyl, Cycloalkyl oder Aryl bedeuten,
R1 für Wasserstoff, Methyl oder Ethyl steht,
M+ für ein Kationäquivalent steht,
X- für ein Anionäquivalent steht und
y für eine ganze Zahl von 1 bis 240 steht,
wobei jeweils zwei benachbarte Reste Ri5, i6, R17 Und Ri& zusammen mit den Kohlenstoffatomen des Pyrrolrings, an die sie gebunden sind, auch für ein kondensiertes Ringsystem mit 1, 2 oder 3 weiteren Ringen stehen können,
mit der Maßgabe, dass wenigstens einer der Reste Ris, 16Λ R17 oder R18 nicht für Wasserstoff steht, und dass i9 und R2o nicht mit einander verknüpft sind, RX9 und R20 unabhängig voneinander für Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen,
a und b unabhängig voneinander die Zahl 0 oder 1 bedeuten,
Pn für ein Pnicogenatom, ausgewählt aus den Elementen Phosphor, Arsen oder Antimon, bevorzugt für Phosphor, steht,
Q eine Brückengruppe wie zuvor definiert ist.
Bevorzugt stehen in den Verbindungen der Formel II die Pnicogenatome Pn beide für Phosphor.
Bezüglich geeigneter und bevorzugter Ausfuhrungsformen der Brückengruppe Q wird auf die vorherigen Ausführungen in vollem Umfang Bezug genommen.
Die Reste Ri5 bis R18 können jeweils unabhängig voneinander gleiche oder verschiedene Bedeutungen aufweisen.
Bevorzugt sind Verbindungen der allgemeinen Formel II, wobei in den Pyrrolgruppen jeweils einer oder zwei der Reste Ri5, Riß, Ri7 und R8 für einen der zuvor genannten, von Wasserstoff verschiedenen Substituenten stehen und die übrigen für Wasserstoff stehen. Bevorzugt sind Verbindungen der Formel II, bei denen die Pyrrolgruppen in 2-Position, 2,5-Position oder 3,4-Position einen von Wasserstoff verschiedenen Substituenten tragen.
Vorzugsweise sind die von Wasserstoff verschiedenen Substituenten Ri5 bis RX8 unabhängig voneinander ausgewählt unter Cχ~ bis Cg-, vorzugsweise Cχ~ bis C4-Alkyl, speziell Methyl, Ethyl, Isopropyl und tert.-Butyl, Alkoxycarbonyl, wie Methoxycarbonyl, Ethoxycar- bonyl, Isopropyloxycarbonyl und tert .-Butyloxycarbonyl sowie Trifluormethyl.
Bevorzugt sind Verbindungen der allgemeinen Formel II, worin die Reste R5 und Ri6 und/oder R17 und Ri8 zusammen mit den Kohlenstoffatomen des Pyrrolrings, an die sie gebunden sind, für ein kondensiertes Ringsystem mit 1, 2 oder 3 weiteren Ringen stehen. Wenn R15 und Ri6 und/oder Ri7 und Ri8 für ein ankondensiertes, also anelliertes Ringsystem stehen, so handelt es sich bevorzugt um Benzol- oder Naphthalinringe. Anellierte Benzolringe sind vorzugsweise unsubstituiert und weisen 1, 2 oder 3, insbesondere 1 oder 2 Substituenten auf, die ausgewählt sind unter Alkyl, Al- koxy, Halogen, S03H, Sulfonat, NE4E5, Alkylen-NE4E5, Trifluormethyl, Nitro, C00Rk, Alkoxycarbonyl, Acyl und Cyano. Anellierte Naphthalinringe sind vorzugsweise unsubstituiert oder weisen im nichtanellierten Ring und/oder im anellierten Ring je 1, 2 oder 3, insbesondere 1 oder 2 der zuvor bei den anellierten Benzolringen genannten Substituenten auf. Wenn R15 und RX6 für ein ankondensiertes Ringsystem stehen, so stehen R17 und Ri8 vorzugsweise 5 für Wasserstoff oder steht R18 für Wasserstoff und R17 für einen Substituenten, der ausgewählt ist unter Cχ~ bis Cs-Alkyl, vorzugsweise Cχ~ bis C4-Alkyl, speziell Methyl, Ethyl, Isopropyl oder tert . -Butyl .
10 Ist der Einsatz der Verbindungen der Formel II in einem wassrigen Hydroformylierungsmedium vorgesehen, steht wenigstens einer der Reste Ri5, R, R17 und/oder R1 für eine polare (hydrophile) Gruppe, wobei dann in der Regel bei der Komplexbildung mit einem Gruppe VIII Metall wasserlösliche Komplexe resultieren. Bevorzugt
15.sind die polaren Gruppen ausgewählt unter C00Rk, C00~M+, S03Rk, S03"M+, NE4E5, Alkylen-NE E5, NE E5E6+X-, Alkylen-NE4E5E6+X~, ORk, SRk, (CHR!CH20)yRk oder (CH2CH2N(E4) )yRk, worin R , E4, E5, E6, Rl, M+, X- und y die zuvor angegebenen Bedeutungen besitzen.
20 Vorzugsweise sind die Verbindungen der Formel II ausgewählt unter Verbindungen der allgemeinen Formeln II.1 bis II.3
Figure imgf000024_0001
35
R19-(0); (0)b-Q-(0)a- '(O)b-R0
Figure imgf000024_0002
(II.2)
45
Figure imgf000025_0001
(II.3)
worin
Ri5, Ri6, Ri?, Ri8, Q, a und b die zuvor angegebenen Bedeutungen " besitzen, wobei in der Formel II.3 wenigstens einer der Reste RX6 oder R17 nicht für Wasserstoff steht,
RX9 und R20 unabhängig voneinander für Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen.
Vorzugsweise stehen in den Verbindungen der Formel II.1 die Reste Ri5 bis Ri8 alle für Wasserstoff. Des Weiteren vorzugsweise stehen Ri5 und Ri8 für Wasserstoff und sind R16 und Ri? ausgewählt unter Cχ-Cg-Alkyl, vorzugsweise Cχ-C4-Alkyl, wie Methyl, Ethyl, Isopro- pyl und tert.-Butyl.
Vorzugsweise sind in den Verbindungen der Formel II.3 die Reste Ri6 und Rl? ausgewählt unter Cχ-Cs-Alkyl, besonders bevorzugt Cχ-C4-Alkyl, wie Methyl, Ethyl, Isopropyl und tert.-Butyl, sowie C00Rk, worin Rk für Cχ-C -Alkyl, wie Methyl, Ethyl, Isopropyl und tert.-Butyl steht.
Lediglich zur Veranschaulichung der erfindungsgemäß eingesetzten Pnicogenchelatverbindung werden im folgenden einige vorteilhafte Verbindungen aufgelistet:
Figure imgf000025_0002
Figure imgf000026_0001
45
Figure imgf000027_0001
Figure imgf000027_0002
25
Figure imgf000027_0003
Figure imgf000027_0004
Figure imgf000028_0001
Figure imgf000028_0002
Figure imgf000028_0003
Figure imgf000028_0004
Figure imgf000029_0001
Figure imgf000029_0002
Figure imgf000029_0003
45
Figure imgf000030_0001
Figure imgf000030_0002
45
Figure imgf000031_0001
Figure imgf000031_0002
Figure imgf000031_0003
Figure imgf000031_0004
45
Figure imgf000032_0001
Figure imgf000032_0002
Figure imgf000032_0003
F3C CF3 P3C CF3
Figure imgf000032_0004
Figure imgf000033_0001
Figure imgf000033_0002
35
Figure imgf000033_0003
Figure imgf000034_0001
Figure imgf000034_0002
Figure imgf000034_0003
45
Figure imgf000035_0001
Figure imgf000036_0001
Figure imgf000036_0002
Figure imgf000036_0003
Figure imgf000037_0001
10
Figure imgf000037_0002
40
45
Figure imgf000038_0001
48
Figure imgf000038_0002
49 50
Figure imgf000038_0003
Figure imgf000039_0001
54
53
Figure imgf000039_0002
55
Figure imgf000039_0003
56 Me Methyl Et Ethyl Die Herstellung der Pnicogenchelatverbindungen ist in der
WO 02/083695 beschrieben, auf die hiermit im vollen Umfang Bezug genommen wird.
Im Allgemeinen werden unter Hydroformylierungsbedingungen aus den jeweils eingesetzten Katalysatoren oder Katalysatorvorstufen ka- talytisch aktive Spezies der allgemeinen Formel HgZd(C0)eGf gebildet, worin Z für ein Metall der VIII. Nebengruppe, G für eine Phosphor-, Arsen- oder Antimon-haltigen Liganden der Formel I bzw. II und d, e, f, g für natürliche Zahlen, abhängig von der Wertigkeit und Art des Metalls sowie der Bindigkeit des Liganden G, stehen. Vorzugsweise stehen e und f unabhängig voneinander mindestens für einen Wert von 1, wie z. B. 1, 2 oder 3. Die Summe aus e und f steht bevorzugt für einen Wert von 2 bis 5. Dabei können die Komplexe des Metalls Z mit den erfindungsgemäß eingesetzten Liganden G gewünschtenfalls zusätzlich noch mindestens einen weiteren nicht erfindungsgemäß verwendeten Liganden, z. B. aus der Klasse der Triarylphosphine, insbesondere Triphenyl- phosphin, Triarylphosphite, Triarylphosphinite, Triarylphospho- nite, Phosphabenzole, Trialkylphosphine oder Phosphametallocene enthalten. Derlei Komplexe des Metalls Z mit erfindungsgemäß verwendeten und nicht-erfindungsgemäß verwendeten Liganden bilden sich z. B. in einer Gleichgewichtsreaktion nach Zusatz eines Liganden zu einem Komplex der allgemeinen Formel HgZd(C0)eGf.
Nach einer bevorzugten Ausführungsform werden die Hydroformylie- rungskatalysatoren in situ, in dem für die Hydroformylierungs- reaktion eingesetzten Reaktor, hergestellt. Gewünschtenfalls können die Katalysatoren des erfindungsgemäßen Verfahrens jedoch auch separat hergestellt und nach üblichen Verfahren isoliert werden. Zur in situ-HerStellung der Katalysatoren kann man wenigstens eine Verbindung der allgemeinen Formel I bzw. II, eine Verbindung oder einen Komplex eines Metalls der VIII. Nebengruppe, gewünschtenfalls einen oder mehrere weitere zusätzliche Liganden und gegebenenfalls ein Aktivierungsmittel in einem inerten Lösungsmittel unter den Hydroformylierungsbedingungen umsetzen.
Geeignete Rhodiumverbindungen oder -komplexe sind z. B. Rhodium(II)- und Rhodium( III) -salze, wie Rhodium( III) -Chlorid, Rhodium(III)-nitrat, Rhodium(III)-sulfat, Kalium-Rhodiumsulfat, Rhodiu (II)- bzw. Rhodium(III) -carboxylat, Rhodium(II)- und Rhodium(III)-acetat, Rhodium(III)-oxid, Salze der Rhodium( III) - säure, Trisammoniumhexachlororhodat(III) etc. Weiterhin eignen sich Rhodiumkomplexe, wie Rhodiumbiscarbonylacetylacetonat, Ace- tylacetonatobisethylenrhodium(I) etc. Vorzugsweise werden Rhodi- umbiscarbonylacetylacetonat oder Rhodiumacetat eingesetzt. Ebenfalls geeignet sind Rutheniumsalze oder -Verbindungen. Geeignete Rutheniumsalze sind beispielsweise Ruthenium( III) Chlorid, Ruthenium(IV)-, Ruthenium(VI)- oder Ruthenium(VIII)oxid, Alkalisalze der Rutheniumsauerstoffsäuren wie KRuθ4 oder KRu04 oder Komplexverbindungen, wie z. B. RuHCl(CO) (PPh3 ) 3. Auch können die Metallcarbonyle des Rutheniums wie Trisrutheniumdodecacarbo- nyl oder Hexarutheniumoctadecacarbonyl, oder Mischformen, in denen CO teilweise durch Liganden der Formel PR3 ersetzt sind, wie Ru(C0)3(PPh3)2, im erfindungsgemäßen Verfahren verwendet werden.
Geeignete Kobaltverbindungen sind beispielsweise Kobalt(II)Chlorid, Kobalt(II) sulfat, Kobalt( II)carbonat, Kobalt( II)nitrat, deren A in- oder Hydratkomplexe, Kobaltcarboxylate, wie Kobalt- acetat, Kobaltethylhexanoat sowie Kobaltnaphthenoat. Auch hier können die Carbonylkomplexe des Kobalts wie Dikobaltoctacarbonyl, Tetrakobaltdodecacarbonyl und Hexakobalthexadecacarbonyl eingesetzt werden.
Die genannten und weitere geeignete Verbindungen des Kobalts, Rhodiums, Rutheniums und Iridiums sind bekannt, kommerziell erhältlich oder ihre Herstellung ist in der Literatur hinreichend beschrieben oder sie können vom Fachmann analog zu den bereits bekannten Verbindungen hergestellt werden.
Geeignete Metalle der VIII. Nebengruppe sind insbesondere Kobalt und Rhodium.
Als Lösungsmittel werden vorzugsweise die Aldehyde eingesetzt, die bei der Hydroformylierung der jeweiligen Olefine entstehen, sowie deren höher siedende Folgereaktionsprodukte, z. B. die Produkte der Aldolkondensatiσn. Ebenfalls geeignete Lösungsmittel sind Aromaten, wie Toluol und Xylole, Kohlenwasserstoffe oder Gemische von Kohlenwasserstoffen, auch zum Verdünnen der oben genannten Aldehyde und der Folgeprodukte der Aldehyde. Weitere Lösungsmittel sind Ester aliphatischer Carbonsäuren mit Alkano- len, beispielsweise Essigester oder Texanol®, Ether wie tert.-Bu- tylmethylether und Tetrahydrofuran. Bei ausreichend hydrophili- sierten Liganden können auch Alkohole, wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, Isobutanol, Ketone, wie Ace- ton und Methylethylketon etc., eingesetzt werden. Ferner können als Lösungsmittel auch sogenannte "Ionische Flüssigkeiten" ver¬ wendet werden. Hierbei handelt es sich um flüssige Salze, beispielsweise um N,N'-Dialkylimidazoliumsalze wie die N-Butyl-N'- methylimidazoliumsalze, Tetraalkylammoniumsalze wie die Tetra- n-butylammoniumsalze, N-Alkylpyridiniumsalze wie die n-Butylpyri- diniumsalze, Tetraalkylphosphoniumsalze wie die Trishexyl(tetra- decyl)ρhosphoniumsalze, z. B. die Tetrafluoroborate, Acetate, Tetrachloroaluminate, Hexafluorophosphate, Chloride und Tosylate.
Weiterhin ist es möglich die Umsetzungen auch in Wasser oder w ssrigen Lösungsmittelsystemen, die neben Wasser ein mit Wasser mischbares Lösungsmittel, beispielsweise einen Alkohol wie Methanol, Ethanol, n-Propanol, Isopropanol, n-Butanol, Isobutanol, ein Keton wie Aceton und Methylethylketon oder ein anderes Lösungsmittel enthalten. Zu diesem Zweck setzt man Liganden der Formel I bzw. II ein, die mit polaren Gruppen, beispielsweise ionischen Gruppen wie S03M, C0M mit M = Na, K oder NH4 oder wie N(CH3)4 + modifiziert sind. Die Umsetzungen erfolgen dann im Sinne einer Zweiphasenkatalyse, wobei der Katalysator sich in der wassrigen Phase befindet und Einsatzstoffe und Produkte die organische Phase bilden. Auch die Umsetzung in den "Ionischen Flüssigkeiten" kann als Zweiphasenkatalyse ausgestaltet sein.
Als Substrate für das erfindungsgemäße Hydroformylierungsverfahren kommen prinzipiell alle Verbindungen in Betracht, welche wenigstens zwei ethylenisch ungesättigte Doppelbindungen enthalten. Dazu zählen beispielsweise Di- oder Polyene mit isolierten oder konjugierten Doppelbindungen. Geeignete Diolefine sind zum Beispiel Verbindungen der Formel F,
Figure imgf000042_0001
worin
Xa, Xb, Xd Xe, Xf, X<3 jeweils unabhängig voneinander für Wasser- Stoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl, Hetaryl, stehen und Xc für eine Einfachbindung oder Cχ-C20-Alkandiyl steht, welches gegebenenfalls einen oder mehrere, beispielsweise 1, 2, 3, 4 oder 5 Substituenten, ausgewählt aus der Gruppe Cycloalkyl, Aryl, Hetaryl, Halogen, Cχ-C20-Alkoxy, Cχ-C20-Alkoxycarbonyl, EiE2, trägt und/oder gegebenenfalls von wenigstens einer weiteren Doppelbindung unterbrochen ist und/oder teilweise Bestandteil einer oder mehrerer Cycloalkylgruppen, Heterocyclo- alkylgruppen, Arylgruppen oder Hetarylgruppen ist, wobei die Cycloalkylgruppen und Heterocycloalkylgruppen auch teilweise ungesättigt sein können. Bevorzugt ist die zur Hydroformylierung eingesetzte Verbindung mit mindestens zwei ethylenisch ungesättigten Doppelbindungen ausgewählt unter Diolefinen mit einer terminalen und einer internen Doppelbindung und α, ω-Diolefinen, d. h. Dioelfinen mit zwei terminalen Doppelbindungen. Zu den α, ω-Diolefinen zählen beispielsweise 1,3-Butadien, 1, 4-Pentadien, 1,5-Hexadien, 1,6-Hepta- dien, 1, 7-0ctadien, 1,8-Nonadien, 1,9-Decadien, 1, 10-Undecadien, 1, 11-Dodecadien, 1,12-Tridecadien, 1, 13-Tetradecadien, 1,14-Pen- tadecadien, 1, 15-Hexadecadien, 1, 16-Heptadecadien, 1, 17-0ctadeca- dien, 1, 18-Nonadecadien, 1, 19-Icosadien und deren Gemische.
Vorzugsweise wird in dem erfindungsgemäßen Hydroformylierungsverfahren ein großtechnisch zugängliches Diolefin oder Diolefinge- isch eingesetzt, vorzugsweise ein α, ω-Diolefine enthaltendes Ge- misch. Hierzu zählen z. B. 1,3-Butadien-haltige Kohlenwasser- stoffgemische. So fällt z. B. bei der Aufarbeitung von Erdöl durch Steamcracken von Naphtha ein als C4-Schnitt bezeichnetes Kohlenwasserstoffgemisch mit einem hohen Gesamtolefinanteil an, wobei z. B. etwa 20 - 60 Gew.-% auf 1,3-Butadien und der Rest auf Monoolefine und mehrfach ungesättigte Kohlenwasserstoffe sowie Alkane entfällt. Aus diesen wird das 1,3-Butadien zur Gewinnung des sogenannten Raffinats I abgetrennt. Reines 1,3-Butadien kann allgemein z. B. durch extraktive Destillation aus technisch erhältlichen Kohlenwasserstoffgemischen isoliert werden.
1,5-Hexadien und 1,9-Decadien werden großtechnisch von Shell hergestellt. l,7-0ctadien wird beispielsweise durch reduktive Kupplung von 1,3-Butadien in Gegenwart von Essigsäure und Triethyl- amin als Promotoren gewonnen.
Bevorzugt ist ein Verfahren, das dadurch gekennzeichnet ist, dass der Hydroformylierungskatalysator in situ hergestellt wird, wobei man mindestens eine Verbindung der Formel I bzw. II, eine Verbindung oder einen Komplex eines Metalls der VIII. Nebengruppe und gegebenenfalls ein Aktivierungsmittel in einem inerten Lösungsmittel unter den Hydroformylierungsbedingungen zur Reaktion bringt. Gewünschtenfalls können die Ligand-Metall-Komplexe jedoch auch separat hergestellt und nach üblichen Verfahren isoliert werden.
Die Hydroformylierungsreaktion kann kontinuierlich, semikontinuierlich oder diskontinuierlich erfolgen.
Geeignete Reaktoren für die kontinuierliche Umsetzung sind dem Fachmann bekannt und werden z. B. in Ullmanns Encyklopädie der technischen Chemie, Bd. 1, 3. Aufl., 1951, S. 743 ff. beschrie- ben .
Geeignete druckfeste Reaktoren sind dem Fachmann ebenfalls bekannt und werden z. B. in Ullmanns Encyklopädie der technischen Chemie, Bd. 1, 3. Auflage, 1951, S. 769 ff. beschrieben. Im Allgemeinen wird für das erfindungsgemäße Verfahren ein Autoklav verwendet, der gewünschtenfalls mit einer Rührvorrichtung und einer Innenauskleidung versehen sein kann.
Die Zusammensetzung des im erfindungsgemäßen Verfahren eingesetzten Synthesegases aus Kohlenmonoxid und Wasserstoff kann in weiten Bereichen variieren. Das molare Verhältnis von Kohlenmonoxid und Wasserstoff beträgt in der Regel etwa 5:95 bis 70:30, bevorzugt etwa 40:60 bis 60:40. Insbesondere bevorzugt wird ein mola- res Verhältnis von Kohlenmonoxid und Wasserstoff im Bereich von etwa 1 : 1 eingesetzt .
Die Temperatur bei der Hydroformylierungsreaktion liegt im Allgemeinen in einem Bereich von etwa 20 bis 180 °C, bevorzugt etwa 40 bis 80 °C, insbesondere etwa 50 bis 70 °C. Die Reaktion wird in der Regel bei dem Partialdruck des Reaktionsgases bei der gewählten Reaktionstemperatur durchgeführt. Im Allgemeinen liegt der Druck in einem Bereich von etwa 1 bis 700 bar, bevorzugt 1 bis 600 bar, insbesondere 1 bis 300 bar. Der Reaktionsdruck kann in Abhängigkeit von der Aktivität des eingesetzten Hydroformylie- rungskatalysators variiert werden. Im Allgemeinen erlauben die Katalysatoren auf Basis von Phosphor-, Arsen- oder Antimon-haltigen Pnicogenchelat-Verbindungen eine Umsetzung in einem Bereich niedriger Drücke, wie etwa im Bereich von 1 bis 100 bar, bevor- zugt 5 bis 50 bar.
Das Molmengenverhältnis von Pnicogenchelatverbindung I bzw. II zum Metall der VIII. Nebengruppe im Hydroformylierungsmedium liegt im Allgemeinen in einem Bereich von etwa 1:1 bis 1000:1, vorzugsweise von 1:1 bis 100:1, insbesondere von 1:1 bis 50:1 und ganz besonders bevorzugt 1:1 bis 20:1.
Üblicherweise liegt das molare Verhältnis von Metall der VIII . Nebengruppe zu Substrat unter 1 mol-%, vorzugsweise unter 0,5 mol-% und insbesondere unter 0,1 mol-% und ganz besonders bevorzugt unter 0,05 mol-%.
Die Hydroformylierungskatalysatoren lassen sich nach üblichen, dem Fachmann bekannten Verfahren vom Austrag der Hydroformylie- rungsreaktion abtrennen und können im Allgemeinen erneut für die Hydroformylierung eingesetzt werden. Die zuvor beschriebenen Katalysatoren können auch in geeigneter Weise, z. B. durch Anbindung über als Ankergruppen geeignete funktioneile Gruppen, Adsorption, Pfropfung, etc. an einen geeigneten Träger, z. B. aus Glas, Kieselgel, Kunstharzen etc., immo- bilisiert werden. Sie eignen sich dann auch für einen Einsatz als Festphasenkatalysatoren.
Es hat sich gezeigt, dass ethylenisch ungesättigte Verbindungen, insbesondere solche mit wenigstens einer terminalen Doppelbin- düng, mit dem erfindungsgemäßen Verfahren bei niedrigen Temperaturen und niederen Drücken in vorteilhafter Weise hydroformyliert werden können. Dabei sind in der Regel kürzere Reaktionszeiten und/oder geringere Mengen an Katalysatorsystem, bezogen auf eingesetztes Substrat erforderlich, als zur Hydroformylierung des gleichen Substrats unter Verwendung des gleichen katalytisch aktiven Metalls mit anderen phosphorhaltigen Cokatalysatoren, wie Xantphos, erforderlich wären (siehe z. B. C. Botteghi et al. in J. Mol. Catal. A: Chem 2001, 175, 17, Tabelle 2: hohe Katalysatorbeladung von 0,4 - 1 mol%). Insbesondere ist mit dem erfin- dungsgemäßen Verfahren die Hydroformylierung ethylenisch ungesättigter Verbindungen, insbesondere solcher mit zwei terminalen Doppelbindungen, bei Reaktionszeiten von weniger als 15 h, vorzugsweise weniger als 10 h, bei geringen Einsatzmengen an Katalysatorsystem möglich. Vorteilhafterweise findet unter den Bedin- gungen der Hydroformylierung mit den erfindungsgemäß eingesetzten Katalysatoren keine oder nur in sehr geringem Maße Isomerisierung terminaler Doppelbindungen zu den thermodynamisch stabileren internen Doppelbindungn statt. Die eingesetzten Katalysatoren zeichnen sich somit durch eine hohe n-Selektivität aus, d. h. ausgehend von α,ω-Dioelfinen erhält man in hohen Ausbeuten α,ω- Enale und/oder α,ω-Dialdehyde.
Eine Ausführungsform der vorliegenden Erfindung betrifft die Herstellung von Dialdehyden. In einer bevorzugten Ausfuhrungsform erfolgt die Herstellung der Dialdehyde diskontinuierlich. Diskontinuierliche Hydroformylierungsverfahren sind dem Fachmann prinzipiell bekannt. Nach beendeter Umsetzung entspannt man in der Regel zunächst den Reaktor. Das dabei freigesetzte Synthesegas und gegebenenfalls nicht umgesetzte, ungesättigte Verbindungen können - gegebenenfalls nach Aufarbeitung - ganz oder teilweise erneut eingesetzt werden. Der übrige Reaktorinhalt besteht im Wesentlichen aus Dialdehyd, hochsiedenden Nebenprodukten (im Folgenden auch als Hochsieder bezeichnet) und Katalysator. Zur Aufarbeitung kann der Reaktorinhalt einer ein- oder mehrstufigen Auftrennung unterworfen werden, wobei man zumindest eine an Dialdehyd angereicherte Fraktion erhält. Die Auftrennung in eine an Dialdehyd angereicherte Fraktion kann auf verschiedene Weise er- folgen, beispielsweise durch Destillation, Kristallisation oder Me bramfiltration, vorzugsweise durch Destillation. In einer insbesondere bevorzugten Ausgestaltung des diskontinuierlichen Verfahrens verwendet man einen Reaktor mit aufgesetzter Destillati- onskolonne, so dass die Destillation direkt aus dem Reaktor erfolgen kann. Die Destillationskolonne ist gegebenenfalls mit Rektifikationsböden versehen, um eine möglichst gute Trennleistung zu erzielen. Die Destillation kann bei Normaldruck oder bei vermindertem Druck erfolgen. Am Kopf oder im oberen Bereich der Ko- lonne kann man die an Dialdehyd angereicherte Fraktion isolieren, wobei im Sumpf oder im unteren Bereich der Kolonne wenigstens eine an Dialdehyd abgereicherte Fraktion isoliert werden kann. Geeignete Kolonnen, Temperatur- und Druckparameter sind dem Fachmann bekannt. Die an Dialdehyd angereicherte Fraktion kann gege- benenfalls einem weiteren Reinigungsschritt unterzogen werden. Die an Dialdehyd abgereicherte Fraktion enthält im Wesentlichen Hochsieder sowie den Katalysator. Der Katalysator l sst sich nach üblichen, dem Fachmann bekannten Verfahren abtrennen und kann im Allgemeinen - gegebenenfalls nach Aufarbeitung - erneut in einer weiteren Hydroformylierung eingesetzt werden.
In einer weiteren bevorzugten Ausfuhrungsform erfolgt die Herstellung der Dialdehyde kontinuierlich. Bei der kontinuierlichen Verfahrensführung unterwirft man eine ungesättigte Verbindung in einer oder mehreren Reaktionszonen der Hydroformylierung. Man entnimmt aus der Reaktionszone einen Austrag, der in der Regel zunächst entspannt wird. Dabei werden nicht umgesetztes Synthesegas sowie ungesättigte Verbindungen freigesetzt, die in der Regel - gegebenenfalls nach Aufarbeitung- in die Reaktionszone zurück- geführt werden. Die Auftrennung des verbleibenden Austrages in eine an Dialdehyd angereicherte Fraktion kann mittels üblicher, aus dem Stand der Technik bekannter Maßnahmen erfolgen, wie beispielsweise durch Destillation, Kristallisation oder Membranfiltration. Geeignete Destillationsanlagen sind dem Fachmann be- kannt. Des Weiteren sind auch Dünnschichtverdampfer geeignet. Bei der destillativen Auftrennung entnimmt man aus dem Sumpf oder aus dem unteren Bereich der Kolonne eine im Wesentlichen aus Hochsie- dern und Katalysator bestehende Fraktion, die direkt in die Reaktionszone zurückgeführt werden kann. Vorzugsweise schleust man die Hochsieder jedoch zuvor ganz oder teilweise vor der Rückführung aus und führt den Katalysator - gegebenenfalls nach Aufarbeitung - in die Reaktionszone zurück. Am Kopf oder im oberen Bereich der Kolonne entnimmt man wenigstens eine an Dialdehyd angereicherte Fraktion, die gegebenenfalls auch ungesättigten Monoal- dehyd enthält. Zweckmäßigerweise unterzieht man die an Dialdehyd angereicherte, noch ungesättigten Monoaldehyd enthaltene Fraktion wenigstens einer weiteren Auftrennung, wobei man wenigstens eine an ungesättigtem Monoaldehyd angereicherte Fraktion und eine an Dialdehyd angereicherte Fraktion erhält. Die an ungesättigtem Monoaldehyd angereicherte Phase wird in die Reaktionszone zurückgeführt und die an Dialdehyd angereicherte Phase wird ausge- schleust.
In einer speziellen Ausfuhrungsform betrifft die vorliegende Erfindung ein Verfahren zur Hydroformylierung von Verbindungen mit mindestens zwei ethylenisch ungesättigten Doppelbindungen unter Isolierung der darin gebildeten ungesättigten Monoaldehyde (Enale) .
Ein weiterer Gegenstand der Erfindung ist ein daher Verfahren, bei dem man
(i) eine Verbindung mit wenigstens zwei ethylenisch ungesättigten
Doppelbindung in einer Reaktionszone der Hydroformylierungs- reaktion unterwirft,
(ii)aus der Reaktionszone einen Austrag entnimmt und in eine an ungesättigten Monoaldehyden angereicherte Fraktion und eine an ungesättigten Monoaldehyden abgereicherte Fraktion auftrennt, und
(iii)die gegebenenfalls aufgearbeitete, an ungesättigten Monoaldehyden abgereicherte Fraktion in die Reaktionszone zurückführt.
Das Verfahren kann sowohl kontinuierlich, semikontinuierlich oder diskontinuierlich durchgeführt werden. Bevorzugt ist eine kontinuierliche Verfahrensführung.
In Schritt (i) des erfindungsgemäßen Verfahrens setzt man die wenigstens zwei ethylenisch ungesättigte Doppelbindungen enthal- tende Verbindung mit Kohlenmonoxid und Wasserstoff in Gegenwart eines Hydroformylierungskatalysators, der wenigstens einen Komplex eines Metalls der VIII. Nebengruppe mit wenigstens einem Pnicogenchelat-Liganden der Formel I, wie zuvor beschrieben, enthält um. Bezüglich geeigneter und bevorzugter Hydrofor ylierungs- katalysatoren und Reaktionsbedingungen wird auf das zuvor Gesagte Bezug genommen.
In Schritt (ii) entnimmt man aus der Reaktionszone einen Austrag, der im Wesentlichen unumgesetzte mehrfach ethylenisch ungesät- tigte Verbindungen, ungesättigten Monoaldehyd, Dialdehyd und Katalysator enthält. Die Hydroformylierungskatalysatoren lassen sich nach üblichen, dem Fachmann bekannten Verfahren abtrennen und können im Allgemeinen erneut für die Hydroformylierung eingesetzt werden. Die Auftrennung des in Schritt (i) erhaltenen Reaktionsgemisches in eine an ungesättigtem Monoaldehyd angereicherte und eine an ungesättigtem Monoaldehyd abgereicherte Fraktion kann mittels üblicher aus dem Stand der Technik bekannter Maßnahmen erfolgen (Schritt ii) . Vorzugsweise erfolgt die Abtrennung de- stillativ, durch Kristallisation oder durch Membranfiltration.
Geeignete Destillationsanlagen umfassen alle dem Fachmann bekann- ten Destillationsvorrichtungen zur kontinuierlichen oder absatzweisen Auftrennung von flüssigen Stoffgemischen. Des Weiteren sind auch Dünnschichtverdampfer geeignet. Dazu zählen Vorrichtungen, in denen die aufzutrennenden Gemische durch Abrieselnlassen (Fallfilmverdampfer, Rieselkolonne), Zentrifugalkraft oder durch besonders konstruierte Wischer (Wischblattverdampfer, Sambay-Ver- dampfer, Filmtruder) auf beheizte Flächen verteilt werden.
Der Reaktionsaustrag aus der Reaktionszone wird vor einer destil- lativen Aufarbeitung in der Regel entspannt. Das dabei freige- setzte nicht umgesetzte Synthesegas und nicht umgesetzte Olefine können in die Reaktionszone zurückgeführt werden. Bei der destil- lativen Auftrennung wird die an ungesättigten Monoaldehyden angereicherte Fraktion im Allgemeinen als Kopfprodukt gewonnen. Die als Sumpfprodukt verbleibende an ungesättigten Monoaldehyden ab- gereicherte Fraktion kann gewünschtenfalls einer weiteren Auf- trennung unter Erhalt einer an Katalysator angereicherten Fraktion und einer an Dialdehyd angereicherten Fraktion unterzogen werden. Die an Dialdehyd angereicherte Fraktion kann gewünschtenfalls als weiteres Wertprodukt ausgeschleust werden.
Das bei der destillativen Trennung rückgewonnene Substrat sowie das Katalysatorsystem werden in Schritt (iii) wieder in den Reaktor zurückgeführt und erneut der Hydroformylierung unterworfen.
Die Erfindung wird anhand der folgenden, nicht einschränkenden Beispiele näher erläutert.
Beispiele
Es wurde der folgende Ligand eingesetzt: Ligand B
Figure imgf000049_0001
Beispiel 1:
Synthese von Ligand B
28,5 g (218 mmol) 3-Methylindol (Skatol) wurden bei Raumtemperatur in etwa 50 ml trockenem Toluol vorgelegt und das Lösungsmittel wurde im Vakuum abdestilliert (Entfernung von Wasserspuren) . Dieser Vorgang wurde noch einnmal wiederholt. Der Rückstand wurde anschließend in 700 ml trockenem Toluol unter Argon aufgenommen und auf -65 °C abgekühlt. Anschließend wurden zunächst 14,9 g (109 mmol) PC13 und danach langsam 40 g (396 mmol) Triethylamin bei -65 °C zugegeben. Die Mischung wurde innerhalb 16 Stunden auf Raumtemperatur erwärmt und anschließend 16 h am Rückfluss er- hitzt. Danach wurden 19,3 g (58 mmol) 4, 5-Dihydroxy-2 ,7-di-tert- butyl-9, 9-dimethylxanthen in 300 ml trockenem Toluol bei Raumtemperatur zugegeben und die Mischung wurde 16 h am Rückfluss erhitzt. Das entstandene Triethylaminhydrochlorid wurde abfiltriert und einmal mit Toluol nachgewaschen. Nach Einengen der organi- sehen Phasen wurde der Rückstand zweimal aus heißem Ethanol umkristallisiert. Nach Trocknen im Vakuum wurden 36,3 g (71 % der Theorie) eines farblosen Feststoffes erhalten. 3l _NMR (298 K) δ: 105 ppm.
Beispiel 2: Hydroformylierung von 1,7-Octadien mit Ligand B
5,0 mg Rh(C0)2acac (acac = Actetylacetonat) und 181 mg Ligand B (99 ppm Rh = 0,02 mol%, Ligand:Rh = 10:1) wurden separat eingewogen, in je 5 g Toluol gelöst, vermischt und bei 60°C mit 10 bar Synthesegas (C0:H2 = 1:1) begast. Nach 30 Minuten wurde entspannt, dann wurden 10 g 1,7-Octadien zugegeben, 20 bar Synthesegas (CO:H2 = 1:1) aufgepresst und 6 h bei 60°C hydroformyliert. Der Umsatz betrug 98%, die Dialselektivität 84% und die Linearität 98% (beide Doppelbindungen endständig hydroformyliert) . Das erhaltene 1,10-Decandial wurde anschließend bei 69 bis 71 °C/1 mbar (nicht geeicht) destilliert. GC/MS (Ionisation: EI): Molpeak 170. iH-NMR (CDC13, 400 MHz, 298K) : δ = 1,05 (breites s, C4, C4 ' , C5, C5', 8H), 1,35 (Quintett, J = 7 Hz, C3, C3 ' , 4H), 2,17 (dt, J = 1,7 Hz und 7,3 Hz, C2, C2 ' , 4H), 9, .47 (t, J = 1,7 Hz, Cl, Cl', 2H) . 5 l3C{lH}-NMR (CDC13, 101 MHz, 298K) [DEPT-135]: δ = 22,1 (C5, C5 ' , [CH2]), 29,2 (C4, C4', [CH2]), 29,3 (C3, C3 ' , [CH2]), 43,9 (C2, C2', [CH2]), 202,4 (Cl, Cl', [CH, CH3 ] ) .
Beispiel 3: Hydroformylierung von 1,7-Octadien
10
5.0 mg Rh(CO)2acac und 181 mg Ligand B (99 ppm Rh = 0,02 mol%, Li- gand:Rh = 10:1) wurden separat eingewogen, in je 5 g Toluol gelöst, vermischt und bei 80°C mit 10 bar Synthesegas (CO:H2 = 1:1) begast. Nach 30 Minuten wurde entspannt, dann wurden 10 g 1,7-Oc-
15 tadien zugegeben, 20 bar Synthesegas (CO:H2 = 1:1) aufgepresst und 6 h bei 80°C hydroformyliert. Der Umsatz betrug 99%, die Dial- selektivität 34% und die Linearität 96% (beide Doppelbindungen endständig hydroformyliert) .
20 Beispiel 4: Hydroformylierung von 1,9-Decadien
5.1 mg Rh(CO) acac und 202 mg Ligand B (100 ppm Rh = 0,03 mol%, Ligand:Rh = 11:1) wurden separat eingewogen, in je 5 g Toluol gelöst, vermischt und bei 100°C mit 10 bar Synthesegas (CO:H2 = 1:1)
25 begast. Nach 30 Minuten wurde auf 60°C abgekühlt, entspannt, dann wurden 10 g 1,9-Decadien zugegeben, 20 bar Synthesegas (CO:H2 = 1:1) aufgepresst und 8 h bei 60°C hydroformyliert. Der Umsatz betrug 97%, die Dialselektivität 92% und die Linearität 98% (beide Doppelbindungen endständig hydroformyliert) . Das erhaltene
30 1,12-Dodecandial wurde anschließend bei 130 bis 140 °C/7 bis 10 mbar (nicht geeicht) destilliert. GC/MS (Ionisation: EI): Molpeak 198. iH-NMR (CDC13, 400 MHz, 298K) : δ = 1,06 (breites s, C4, C4 ' , C5, C5', C6, C6', 12H), 1,38 (Quintett, J = 7,1 Hz, C3, C3 ' , 4H),
35 2,18 (dt, J = 1,7 Hz und 7,3 Hz, C2, C2 ' , 4H) , 9,50 (t, J = 1.7 Hz, Cl, Cl', 2H). l3C{lH}-NMR (CDC13, 101 MHz, 298K) [DEPT-135] δ = 22,18 (C6, C6', [CH2]), 29,27 (C5, C5 ' , [CH2]), 29,47 (C4, C4 ' , [CH2]), 29,48 (C3, C3', [CH2]), 43,92 (C2, C2 ' , [CH2]), 202,41 (Cl, Cl', [CH, CH3]).
40
Beispiel 5: Reaktionskinetik: Bildung von Undec-10-en-l-al bei der Hydroformylierung von 1,9-Decadien
5,1 mg Rh(CO)2acac und 202 mg Ligand B (100 ppm Rh, Ligand:Rh = 45 11:1) wurden separat eingewogen, in je 5 g Toluol gelöst, vermischt und bei 100°C mit 10 bar Synthesegas (CO:H2 = 1:1) begast. Nach 30 Minuten wurde auf 60°C abgekühlt, entspannt, dann wurden 10 g 1,9-Decadien zugegeben, 20 bar Synthesegas (CO:H2 = 1:1) aufgepresst und bei 60°C hydroformyliert . Es wurden nach verschiedenen Zeiten Proben entnommen und analysiert. Das Intermediat wurde zusätzlich durch GC-MS identifiziert. Figur 1 zeigt eine graphi- sehe Darstellung des Beispiels 5.

Claims

Patentansprüche
1. Verfahren zur Herstellung von Dialdehyden und/oder ethyle- nisch ungesättigten Monoaldehyden durch Umsetzung wenigstens einer Verbindung mit mindestens zwei ethylenisch ungesättigten Doppelbindungen mit Kohlenmonoxid und Wasserstoff in Gegenwart eines Hydroformylierungskatalysators, der wenigstens einen Komplex eines Metalls der VIII. Nebengruppe mit wenig- stens einem Liganden umfasst, der ausgewählt ist unter Pnicogenchelatverbindungen der allgemeinen Formel I,
Rl Pn (0)a Q (0)b Pn R3
R2 R4 worin
eine Brückengruppe der Formel
Figure imgf000052_0001
ist,
worin
Al und A2 unabhängig voneinander für 0, S, SiRaRb, NRC oder CRdRe stehen, wobei
Ra,Rb und Rc unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen,
Rd und Re unabhängig voneinander für Wasserstoff, Alkyl,
Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen oder die Gruppe Rd gemeinsam mit einer weiteren Gruppe Rd oder die Gruppe Re gemeinsam mit einer weiteren Gruppe Re eine intramolekulare Brückengruppe D bilden,
D eine zweibindige Brückengruppe, ausgewählt aus den Gruppen
Figure imgf000053_0001
ist, in denen
R9 und Rio unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Aryl, Halogen, Trifluormethyl, Carboxyl, Carboxylat oder Cyano stehen oder miteinander zu einer C3- bis C4-Alkylenbrücke verbunden sind,
RU, Ri2, Ri3 und Ri4 unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Aryl, Halogen, Trifluormethyl, COOH, Carboxylat, Cyano, Alkoxy, S03H, Sulfonat, EE2, Alky- len-NElE2E3+χ-, Acyl oder Nitro stehen,
c 0 oder 1 ist,
Y eine chemische Bindung darstellt,
R1, R11, R111, RIV, Rv und RVI unabhängig voneinander für Was- serstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl,
Hetaryl, COORf, COO-M+, S03Rf, S0~ 3M+, E^2, NElE2E3+X", Alkylen-NElE2E3+X-, ORf, SRf, ( CHRgCH20)xRf, (CH2N(E1) )xRf, (CH2CH2N(El) )xRf, Halogen, Trifluormethyl, Nitro, Acyl oder Cyano stehen,
worin
Rf, El, E2 und E3 jeweils gleiche oder verschiedene Reste, ausgewählt unter Wasserstoff, Alkyl, Cycloalkyl oder Aryl bedeuten,
R3 für Wasserstoff, Methyl oder Ethyl steht,
M+ für ein Kation steht,
X- für ein Anion steht, und
x für eine ganze Zahl von 1 bis 120 steht,
oder zwei benachbarte Reste, ausgewählt unter R1, RIX, R111, RIV, Rv und RVI zusammen mit zwei benachbarten Kohlenstoffatomen des Benzolkerns, an den sie gebunden sind, für. ein kondensiertes Ringsystem, mit 1, 2 oder 3 wei- teren Ringen stehen,
a und b unabhängig voneinander die Zahl 0 oder 1 bedeuten,
Pn für ein Pnicogenatom ausgewählt aus den Elementen Phosphor, Arsen oder Antimon steht,
und
Rl, R2, R3, R4 unabhängig voneinander für Hetaryl, Hetaryloxy, Alkyl, Alkoxy, Aryl, Aryloxy, Cycloalkyl, Cycloalkoxy,
Heterocycloalkyl, Heterocycloalkoxy oder eine NE!E2-Gruppe stehen, mit der Maßgabe, dass Ri und R3 über das Stickstoffatom an das Pnicogenatom Pn gebundene Pyrrolgruppen sind
oder worin l gemeinsam mit R2 und/oder R3 gemeinsam mit R4 eine zweibindige Gruppe E der Formel
Py-I-W
bildet, worin
Py eine Pyrrolgruppe ist, die über das pyrrolische
Stickstoffatom an das Pnicogenatom Pn gebunden ist,
I für eine chemische Bindung oder für 0, S, SiRaRb, NRC, gegebenenfalls substituiertes Cχ-Cχo-Alkylen oder CRhR1 steht,
W für Cycloalkyl, Cycloalkoxy, Aryl, Aryloxy, Hetaryl oder Hetaryloxy steht,
und
Rh und R1 unabhängig voneinander für Wasserstoff, Alkyl,
Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen,
oder worin Ri gemeinsam mit R2 und/oder R3 gemeinsam mit R4 eine über die Stickstoffatome an das Pnicogenatom Pn gebundene Bispyrrolgruppe der Formel Py-I-Py
bildet .
2. Verfahren nach Anspruch 1, bei dem man wenigstens einen Liganden der Formel I einsetzt, in dem die Reste Rl, R2, R3 und R4 unabhängig voneinander ausgewählt sind unter Gruppen der Formeln I.a bis I.k
Al
Figure imgf000055_0001
(I.a) (i.b)
AlkOO
Figure imgf000055_0002
(I.c) (I.d)
Figure imgf000055_0003
(I.e) (I.f) ( -g)
Figure imgf000055_0004
worin Alk eine Cχ-C4-Alkylgruppe ist und
R°, RP, R<3 und Rr unabhängig voneinander für Wasserstoff,
Cχ-C4-Alkyl, Cχ-C4-Alkoxy, Acyl, Halogen, Trifluormethyl, Cχ-C4-Alkoxycarbonyl oder Carboxyl stehen.
3. Verfahren nach Anspruch 2 , bei dem man wenigstens einen Liganden der Formel I einsetzt, in dem die Reste Rl, R2, R3 und R4 unabhängig voneinander für eine 3-Alkylindolylgruppe, be- vorzugt eine 3-Methylindolylgruppe, stehen.
4. Verfahren nach einem der vorherigen Ansprüche, wobei die Pni- cogenchelatverbindung der Formel I ausgewählt ist unter Pni- cogenchelatverbindung der allgemeinen Formel II,
Figure imgf000056_0001
( II )
worin
Ri5, Ri6, R17 und Ri8 unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl, Hetaryl, W'C00Rk, WC00-M+, W' (S03)Rk, W'(S03)~M+, W'P03 (Rk) (Rl) , W'(P03)2~(M+)2, W'NE4E5, W' (NE4E5E6)+X-, W'0R , W'SRk, (CHRlCH20)yRk, (CH2NE )yRk, (CH2CH2NE )yRk, Halogen, Trifluormethyl, Nitro, Acyl oder Cyano stehen,
worin
W' für eine Einfachbindung, ein Heteroatom oder eine zweiwertige verbrückende Gruppe mit 1 bis 20 Brückenatomen steht,
Rk, E4, E5, E6 jeweils gleiche oder verschiedene Reste, ausgewählt unter Wasserstoff, Alkyl, Cycloalkyl oder
Aryl bedeuten,
R1 für Wasserstoff, Methyl oder Ethyl steht,
M+ für ein Kationäquivalent steht, X- für ein Anionäquivalent steht und
y für eine ganze Zahl von 1 bis 240 steht,
wobei jeweils zwei benachbarte Reste R15 , R16 , R17 und R18 zusammen mit den Kohlenstoffatomen des Pyrrolrings, an die sie gebunden sind, auch für ein kondensiertes Ringsystem mit 1, 2 oder 3 weiteren Ringen stehen können,
mit der Maßgabe, dass wenigstens einer der Reste Ri5, R16, Ri7 oder Ri8 nicht für Wasserstoff steht, und dass R19 und R20 nicht mit einander verknüpft sind,
R19 und R20 unabhängig voneinander für Cycloalkyl, Heterocy- cloalkyl, Aryl oder Hetaryl stehen, oder Ri9 gemeinsam mit Ri5 oder Ri6 und/oder Ri9 gemeinsam mit Ri7 oder Ri8 für eine zweibindinge Gruppe
-I-W-
stehen, worin
I für eine chemische Bindung oder für 0, S, SiRaRb,NRc oder gegebenenfalls substituiertes Cχ-Cχn-Alkylen, bevorzugt CRhRi, steht, worin Ra , Rb, Rc, Rh und R1 unabhängig von- einander für Wasserstoff, Alkyl, Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen und
W für Cycloalkyl, Cycloalkoxy, Aryl, Aryloxy, Hetaryl oder Hetaryloxy steht.
Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Pnicogenchelatverbindung der Formel I für eine Pnicogenchelatverbindung der allgemeinen Formel II .1 bis II.3 steht,
Figure imgf000057_0001
Figure imgf000058_0001
( II .2 )
Figure imgf000058_0002
( II . 3 )
worin
Ri5, Ri6, Ri7, Ri8, Q, a und b die in Anspruch 4 angegebenen
Bedeutungen besitzen, wobei in der Formel II.3 wenigstens einer der Reste Ri6 oder RX7 nicht für Wasserstoff steht,
Ri9 und R20 unabhängig voneinander für Cycloalkyl, Heterocycloalkyl, Aryl oder Hetaryl stehen.
Verfahren nach einem der Ansprüche 1 bis 5 , wobei die Brückengruppe Q für eine Triptycendiyl-Gruppe der Formel
Figure imgf000058_0003
oder der Formel
Figure imgf000059_0001
steht, in denen R1, R11, R111, RIV, Rv und RVI, R9, Rio, RH und Ri2 die in Anspruch 1 genannte Bedeutung haben.
7. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Brückengruppe Q für eine Xanthendiyl- Gruppe der Formel
Figure imgf000059_0002
steht, in der R1, R11, R111, RIV, RV und RVI und Y die in Anspruch 1 genannte Bedeutung haben und Rd und Re unabhängig voneinander für Wasserstoff, Alkyl, Cycloalkyl, Heterocyloal- kyl, Aryl oder Hetaryl stehen.
8. Verfahren nach einem der vorherigen Ansprüche, wobei man in der Reaktionsmischung ein molares Verhältnis von Ligand zu Metall der VIII. Nebengruppe von 1:1 bis 1000:1 einstellt.
9. Verfahren nach einem der vorherigen Ansprüche, wobei man die Umsetzung bei Temperaturen im Bereich von 40 bis 80 °C durchführt .
10. Verfahren nach einem der vorherigen Ansprüche, wobei man als Verbindung mit mindestens zwei ethylenisch ungesättigten Dop- pelbindungen ein α, ω-Diolefin einsetzt.
11. Verfahren nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass man (i) eine Verbindung mit mindestens zwei ethylenisch ungesättigten Doppelbindungen in einer Reaktionszone der Hydro- formylierungsreaktion unterwirft,
(ü) aus der Reaktionszone einen Austrag entnimmt und in eine an ungesättigten Monoaldehyden angereicherte Fraktion und eine an ungesättigten Monoaldehyden abgereicherte Fraktion auftrennt, und
(iii)die gegebenenfalls aufgearbeitete, an ungesättigten Monoaldehyden abgereicherte Fraktion in die Reaktionszone zurückführt .
PCT/EP2003/010166 2002-09-13 2003-09-12 Verfahren zur herstellung von dialdehyden und/oder ethylenisch ungesättigten monoaldehyden durch hydroformylierung ethylenisch ungesättigter verbindungen WO2004026803A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/527,635 US7145042B2 (en) 2002-09-13 2003-09-12 Method for producing dialdehydes and or ethylenically unsaturated monoaldehydes by hydroformylating ethylenically unsaturated compounds
EP03748014A EP1539666B1 (de) 2002-09-13 2003-09-12 Verfahren zur herstellung von dialdehyden und/oder ethylenisch ungesättigten monoaldehyden durch hydroformylierung ethylenisch ungesättigter verbindungen
JP2004537069A JP4457012B2 (ja) 2002-09-13 2003-09-12 エチレン性不飽和化合物のヒドロホルミル化によるジアルデヒドおよび/またはエチレン性不飽和モノアルデヒドの製造法
DE50311061T DE50311061D1 (de) 2002-09-13 2003-09-12 Verfahren zur herstellung von dialdehyden und/oder ethylenisch ungesättigten monoaldehyden durch hydroformylierung ethylenisch ungesättigter verbindungen
AU2003267348A AU2003267348A1 (en) 2002-09-13 2003-09-12 Method for producing dialdehydes and/or ethylenically unsaturated monoaldehydes by hydroformylating ethylenically unsaturated compounds

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10242636.8 2002-09-13
DE10242636A DE10242636A1 (de) 2002-09-13 2002-09-13 Verfahren zur Herstellung von Dialdehyden und/oder ethylenisch ungesättigten Monoaldehyden durch Hydroformylierung ethylenisch ungesättigter Verbindungen

Publications (1)

Publication Number Publication Date
WO2004026803A1 true WO2004026803A1 (de) 2004-04-01

Family

ID=31724740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/010166 WO2004026803A1 (de) 2002-09-13 2003-09-12 Verfahren zur herstellung von dialdehyden und/oder ethylenisch ungesättigten monoaldehyden durch hydroformylierung ethylenisch ungesättigter verbindungen

Country Status (10)

Country Link
US (1) US7145042B2 (de)
EP (1) EP1539666B1 (de)
JP (1) JP4457012B2 (de)
KR (1) KR20050057307A (de)
CN (1) CN1681760A (de)
AT (1) ATE420065T1 (de)
AU (1) AU2003267348A1 (de)
DE (2) DE10242636A1 (de)
ES (1) ES2319638T3 (de)
WO (1) WO2004026803A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150337A1 (ja) 2016-03-01 2017-09-08 株式会社クラレ ジアルデヒド化合物の製造方法
WO2018228879A1 (en) 2017-06-13 2018-12-20 Basf Se Hydroformylation process for producing 1,6-hexanediol derivatives
US10315975B2 (en) 2015-07-10 2019-06-11 Basf Se Method for the hydroformylation of 2-substituted butadienes and the production of secondary products thereof, especially ambrox
US10647651B2 (en) 2015-10-12 2020-05-12 Basf Se Hydroformylation process for producing 1,6-disubstituted hexane derivatives

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2442039C (en) * 2001-03-29 2010-10-05 Basf Aktiengesellschaft Ligands for pnicogen chelate complexes with a metal of subgroup viii and use of the complexes as catalysts for hydroformylation, carbonylation, hydrocyanation or hydrogenation
DE10242636A1 (de) 2002-09-13 2004-03-18 Basf Ag Verfahren zur Herstellung von Dialdehyden und/oder ethylenisch ungesättigten Monoaldehyden durch Hydroformylierung ethylenisch ungesättigter Verbindungen
US8329795B2 (en) * 2009-07-07 2012-12-11 Exxonmobil Research And Engineering Company Oil based polyols or diacids esterified with oxo-acids or oxo-alcohols for producing plasticizers
MX346922B (es) 2010-11-12 2017-04-05 Dow Technology Investments Llc Moderación de suciedad en procesos de hidroformilación mediante adición de agua.
SA112330271B1 (ar) 2011-04-18 2015-02-09 داو تكنولوجى انفستمنتس ال ال سى تخفيف التلوث في عمليات هيدروفورملة عن طريق إضافة الماء
DE102011085883A1 (de) * 2011-11-08 2013-05-08 Evonik Oxeno Gmbh Neue Organophosphorverbindungen auf Basis von Anthracentriol
EP2855016A1 (de) 2012-06-04 2015-04-08 Dow Technology Investments LLC Hydroformylierungsverfahren
US9328047B2 (en) 2012-09-25 2016-05-03 Dow Technology Investments Llc Process for stabilizing a phosphite ligand against degradation
US9382180B2 (en) 2012-12-06 2016-07-05 Dow Technology Investments Llc Hydroformylation process
BR112016013001B1 (pt) 2013-12-19 2020-12-29 Dow Technology Investments Llc processo de hidroformilação
CN104725170B (zh) 2013-12-19 2019-08-23 陶氏技术投资有限责任公司 加氢甲酰化方法
US10131608B2 (en) 2014-03-31 2018-11-20 Dow Technology Investments Llc Hydroformylation process
ES2867952T3 (es) * 2017-02-24 2021-10-21 Basf Se Procedimiento para la preparación de ácidos carboxílicos insaturados mediante carbonilación de alcoholes alílicos y sus productos de acilación
EP3990176A1 (de) 2019-06-27 2022-05-04 Dow Technology Investments LLC Verfahren zur herstellung einer lösung aus hydroformylierungsprozess zur rückgewinnung von edelmetallen
WO2021126421A1 (en) 2019-12-19 2021-06-24 Dow Technology Investments Llc Processes for preparing isoprene and mono-olefins comprising at least six carbon atoms

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710344A (en) * 1996-11-08 1998-01-20 E. I. Du Pont De Nemours And Company Process to prepare a linear aldehyde
WO2001058589A1 (de) * 2000-02-10 2001-08-16 Basf Aktiengesellschaft VERBINDUNGEN DES PHOSPHORS, ARSENS UND DES ANTIMONS BASIEREND AUF DIARYLANELLIERTEN BICYCLO`2.2.N&excl;-GRUNDKÖRPERN UND DIESE ENTHALTENDE KATAKYSATOREN
WO2002083695A1 (de) * 2001-03-29 2002-10-24 Basf Aktiengesellschaft Liganden für pnicogenchelatkomplexe mit einem metall der viii. nebengruppe und verwendung der komplexe als katalysatoren für hydroformylierung, carbnonylierung, hydrocyanierung oder hydrierung
DE10239134A1 (de) * 2002-08-27 2003-01-23 Basf Ag Verfahren zur Herstellung gesättigter alophatischer C3- bis C30-Carbonsäuren
WO2003018192A2 (de) * 2001-08-24 2003-03-06 Basf Aktiengesellschaft Verfahren zur herstellung von 2-propylheptanol sowie dafür geeignete hydroformylierungskatalysatoren und deren weitere verwendung zur carbonylierung, hydrocyanierung und hydrierung
WO2003062251A1 (de) * 2002-01-24 2003-07-31 Basf Aktiengesellschaft Verfahren zur abtrennung von säuren aus chemischen reaktionsgemischen mit hilfe von ionischen flüssigkeiten
WO2003066642A1 (de) * 2002-02-08 2003-08-14 Basf Aktiengesellschaft Phosphorchelatverbindungen

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3816452A (en) * 1972-01-25 1974-06-11 Du Pont Organophosphorus compounds containing n-bonded pyrrole groups
BE1008343A3 (nl) 1994-05-06 1996-04-02 Dsm Nv Bidentaat fosfineligand
IT1270082B (it) * 1994-07-12 1997-04-28 Univ Degli Studi Milano Difosfine eteroaromatiche come leganti chirali, complessi tra dette difosfine e metalli di transizione ed impiego di detti complessi come catalizzatori chirali
GB9515098D0 (en) 1995-07-21 1995-09-20 Bp Chem Int Ltd Catalyst compositions
US5874628A (en) 1997-03-26 1999-02-23 Monsanto Company Method for preparation of tertiary phosphines via nickel-catalyzed cross coupling
IT1299068B1 (it) 1998-04-10 2000-02-07 Chemi Spa Legandi fosforati chirali e loro complessi organometallici, utili come catalizzatori in sintesi stereoselettive
DE69918093T2 (de) 1998-04-16 2005-07-28 Invista Technologies S.A.R.L., Wilmington Hydrocyanierung von olefinen und isomerisierung von nichtkonjugierten 2-alkyl-3-monoalken- nitrilen
DE19913352A1 (de) 1999-03-24 2000-09-28 Basf Ag Katalysator, umfassend einen Komplex eines Metalls der VIII. Nebengruppe auf Basis eines Phospinamiditliganden
DE10003482A1 (de) * 2000-01-27 2001-08-02 Basf Ag Verfahren zur Herstellung von C9-Alkoholen und Verfahren zur integrierten Herstellung von C9-Alkoholen und C10-Alkoholen
DE10023471A1 (de) 2000-05-12 2001-11-15 Basf Ag Verfahren zur Hydroformylierung, verbrückte Phosphine und Katalysator, umfassend einen Komplex dieser verbrückten Phosphine
JP2002047294A (ja) 2000-07-28 2002-02-12 Mitsubishi Chemicals Corp 二座リン化合物及びそれを用いるヒドロホルミル化方法
DE10046026A1 (de) * 2000-09-18 2002-03-28 Basf Ag Verfahren zur Hydroformylierung, Xanthen-verbrückte Liganden und Katalysator, umfassend einen Komplex dieser Liganden
DE10110242C2 (de) 2001-03-05 2003-09-04 Imp Werke Ohg Dunstabzugshaube mit Schaltstange
DE10242636A1 (de) 2002-09-13 2004-03-18 Basf Ag Verfahren zur Herstellung von Dialdehyden und/oder ethylenisch ungesättigten Monoaldehyden durch Hydroformylierung ethylenisch ungesättigter Verbindungen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5710344A (en) * 1996-11-08 1998-01-20 E. I. Du Pont De Nemours And Company Process to prepare a linear aldehyde
WO2001058589A1 (de) * 2000-02-10 2001-08-16 Basf Aktiengesellschaft VERBINDUNGEN DES PHOSPHORS, ARSENS UND DES ANTIMONS BASIEREND AUF DIARYLANELLIERTEN BICYCLO`2.2.N&excl;-GRUNDKÖRPERN UND DIESE ENTHALTENDE KATAKYSATOREN
WO2002083695A1 (de) * 2001-03-29 2002-10-24 Basf Aktiengesellschaft Liganden für pnicogenchelatkomplexe mit einem metall der viii. nebengruppe und verwendung der komplexe als katalysatoren für hydroformylierung, carbnonylierung, hydrocyanierung oder hydrierung
WO2003018192A2 (de) * 2001-08-24 2003-03-06 Basf Aktiengesellschaft Verfahren zur herstellung von 2-propylheptanol sowie dafür geeignete hydroformylierungskatalysatoren und deren weitere verwendung zur carbonylierung, hydrocyanierung und hydrierung
WO2003062251A1 (de) * 2002-01-24 2003-07-31 Basf Aktiengesellschaft Verfahren zur abtrennung von säuren aus chemischen reaktionsgemischen mit hilfe von ionischen flüssigkeiten
WO2003066642A1 (de) * 2002-02-08 2003-08-14 Basf Aktiengesellschaft Phosphorchelatverbindungen
DE10239134A1 (de) * 2002-08-27 2003-01-23 Basf Ag Verfahren zur Herstellung gesättigter alophatischer C3- bis C30-Carbonsäuren

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10315975B2 (en) 2015-07-10 2019-06-11 Basf Se Method for the hydroformylation of 2-substituted butadienes and the production of secondary products thereof, especially ambrox
US10647651B2 (en) 2015-10-12 2020-05-12 Basf Se Hydroformylation process for producing 1,6-disubstituted hexane derivatives
WO2017150337A1 (ja) 2016-03-01 2017-09-08 株式会社クラレ ジアルデヒド化合物の製造方法
WO2018228879A1 (en) 2017-06-13 2018-12-20 Basf Se Hydroformylation process for producing 1,6-hexanediol derivatives
US10941092B2 (en) 2017-06-13 2021-03-09 Basf Se Hydroformylation process for producing 1,6-hexanediol derivatives

Also Published As

Publication number Publication date
KR20050057307A (ko) 2005-06-16
US20060052645A1 (en) 2006-03-09
EP1539666B1 (de) 2009-01-07
JP2005538181A (ja) 2005-12-15
DE10242636A1 (de) 2004-03-18
ES2319638T3 (es) 2009-05-11
JP4457012B2 (ja) 2010-04-28
US7145042B2 (en) 2006-12-05
ATE420065T1 (de) 2009-01-15
CN1681760A (zh) 2005-10-12
EP1539666A1 (de) 2005-06-15
DE50311061D1 (de) 2009-02-26
AU2003267348A1 (en) 2004-04-08

Similar Documents

Publication Publication Date Title
EP1539666B1 (de) Verfahren zur herstellung von dialdehyden und/oder ethylenisch ungesättigten monoaldehyden durch hydroformylierung ethylenisch ungesättigter verbindungen
EP1383777B1 (de) Liganden für pnicogenchelatkomplexe mit einem metall der viii. nebengruppe und verwendung der komplexe als katalysatoren für hydroformylierung, carbonylierung, hydrocyanierung oder hydrierung
EP1677911B1 (de) Stabilisierung von hydroformylierungskatalysatoren auf basis von phosphoramiditliganden
EP3319951B1 (de) Verfahren zur hydroformylierung von 2-substituierten butadienen und zur herstellung von folgeprodukten davon, speziell von ambrox
WO1999046044A1 (de) Katalysator, umfassend einen komplex eines metalls der viii. nebengruppe auf basis eines phosphonitliganden und verfahren zur hydroformylierung
EP1209164A1 (de) Neue Phosphininverbindung und deren Metallkomplexe
EP1486481A2 (de) Verfahren zur Hydroformylierung
DE10052462A1 (de) Verbindungen des Phosphors, Arsens und des Antimons
WO2003018192A2 (de) Verfahren zur herstellung von 2-propylheptanol sowie dafür geeignete hydroformylierungskatalysatoren und deren weitere verwendung zur carbonylierung, hydrocyanierung und hydrierung
WO2002022261A2 (de) Verfahren zur hydroformylierung mit katalysatoren von xanthen-verbruckten liganden
EP1667950A1 (de) Verfahren zur herstellung von 1,7-octadien und dessen verwendung
DE102004052040A1 (de) Liganden zur asymmetrischen Hydroformylierung
WO2005009934A2 (de) Zweistufiges hydroformylierungsverfahren
DE102007052640A1 (de) Verfahren zur Hydroformylierung
DE10206697A1 (de) Hydroformylierungsverfahren
WO2003066642A1 (de) Phosphorchelatverbindungen
WO2005051964A1 (de) Verfahren zur asymmetrischen synthese
DE10342760A1 (de) Pnicogenverbindungen
EP1280811B1 (de) Verfahren zur hydroformylierung, verbrückte verbindungen des phosphors, arsens und des antimons und katalysator, umfassend einen komplex dieser verbrückten verbindungen
DE102008015773A1 (de) Verfahren zur decarboxylativen Hydroformylierung alpha,beta-ungesättigter Carbonsäuren
DE102005061642A1 (de) Phosphorchelatverbindungen
EP1813587A1 (de) 3(4),7(8)-Dihydroxymethyl-bicyclo[4.3.0] nonan und ein Verfahren zu seiner Herstellung
DE2317625C3 (de) Verfahren zur Herstellung von aliphatischen oder cycloaliphatischen Dialdehyden und/oder deren Acetale
DE10260797A1 (de) Monopnicogenverbindungen
DE10246035A1 (de) 1-Pnicogena-2-oxanorbornan-Verbindungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003748014

Country of ref document: EP

Ref document number: 2004537069

Country of ref document: JP

Ref document number: 1020057004239

Country of ref document: KR

ENP Entry into the national phase

Ref document number: 2006052645

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10527635

Country of ref document: US

Ref document number: 20038217686

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003748014

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1020057004239

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 10527635

Country of ref document: US