WO2004026509A1 - Particules metallurgiques enrobees - Google Patents

Particules metallurgiques enrobees Download PDF

Info

Publication number
WO2004026509A1
WO2004026509A1 PCT/SE2003/001432 SE0301432W WO2004026509A1 WO 2004026509 A1 WO2004026509 A1 WO 2004026509A1 SE 0301432 W SE0301432 W SE 0301432W WO 2004026509 A1 WO2004026509 A1 WO 2004026509A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
hard particles
slurry
effected
salt
Prior art date
Application number
PCT/SE2003/001432
Other languages
English (en)
Inventor
Paul Alexander Anderson
Mike James Edmondson
Clive Brian Ponton
Original Assignee
Sandvik Ab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sandvik Ab filed Critical Sandvik Ab
Priority to EP03797770A priority Critical patent/EP1539410A1/fr
Publication of WO2004026509A1 publication Critical patent/WO2004026509A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/18Non-metallic particles coated with metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/08Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of metallic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a method of coating metallurgical particles with a binder metal and to the particles formed thereby.
  • the hard carbides, carbonitrides and/or nitrides of metals such as tungsten, titanium, tantalum, niobium, molybdenum, chromium, vanadium, zirconium and hafnium (hereinafter referred to as "hard particles")
  • tungsten, titanium, tantalum, niobium, molybdenum, chromium, vanadium, zirconium and hafnium hereinafter referred to as "hard particles”
  • a suitable binder metal typically cobalt, nickel, iron or a combination of two or more of these.
  • agglomerates are suitable for compaction in automatic presses to form geometries which in turn can be sintered in a gaseous atmosphere or vacuum to form finished or semi-finished components for use as tools or wear-parts.
  • the dissolved binder phase is chemically precipitated (as for example an oxalate or malate etc.), before being furnace treated.
  • the binder metal salt as an ionic metal complex
  • the binder metal salt is adsorbed uniformly onto the surfaces of the hard particles after step (iii).
  • Such uniformity of coating is not possible using prior art methods.
  • the method is effected to produce a coating of less than 1 ⁇ m thickness.
  • the coating may be a continuous coating in which the surfaces of substantially all the particles are completely covered by the coating, or a partial coating in which parts of the surfaces of a significant number of the particles remain uncoated.
  • the salt used in step (ii) may be any water soluble salt of the metal and is preferably selected from one or more of a chloride, an acetate, and hydrates thereof. Highly preferred examples include cobalt (II) chloride, cobalt (II) or (III) acetate, and cobalt (II) acetate tetrahydrate. Preferably the molality of the salt(s) is about 0.4m.
  • step (iii) is effected by the addition of one or more of ammonia, and substituted or unsubstituted quaternary ammonium hydroxides (e.g. ammonium hydroxide, tetramethyl-ammonium hydroxide, diethyl-dimethyl ammonium hydroxide and tetraethyl-ammonium hydroxide).
  • the pH is adjusted to between about 8 and 9.
  • Step (iv) is preferably effected at about 150 to 300°C and more preferably about 200°C.
  • the preferred pressure range for step (iv) is 25-35 bar (2.5-3 MPa).
  • step (iv) (and preferably step (v)) is effected in an autoclave, in which case the pressure is preferably autogenous pressure.
  • the slurry is stirred for at least a part of the duration of step (iv).
  • step (iv) is effected for up to about 3 hours, preferably at a heating rate of about l°C/minute.
  • step (v) is effected by introducing hydrogen gas into the slurry. More preferably, hydrogen is added at a partial pressure of from 10 to 50 bar (1 to 5 MPa) and most preferably at about 30 bar (3 MPa). Preferably, step (v) is effected for about 2 hours.
  • the present invention also relates to coated hard particles producible by the method of the present invention, and to a compacted and sintered component comprising such hard particles.
  • the hard particles are formed into an aqueous slurry where the pH is controlled between 7 and 14. If the hard particles are agglomerated, deagglomeration is carried out by techniques well known in the art. The control of the pH may be achieved by additions of ammonia, and/or quaternary hydroxides. To this slurry is added an aqueous solution of a suitable salt/salts of the binder metal(s) with a molality of between 0. lm and 1.6m. As previously mentioned, the binder metal salt is adsorbed uniformly onto the surfaces of the hard particles after step (iii).
  • the hard particle/metal salt mixture is then placed in an autoclave and heated, whilst stirring at its autogenous pressure. Hydrogen is then admitted to the autoclave at the specified pressure and for the specified duration.
  • the autoclave is then cooled, depressurised and purged of residual hydrogen.
  • the now coated particles are separated from the slurry by sedimentation, or filtration, reslurried with, for example, water, alcohol, or a mixture of both mixed with a suitable pressing lubricant, such as polyethylene glycol, and spray dried to give the desired agglomerated powder.
  • the initial binder metal is reduced to the final product as a finely dispersed metal adherent to the hard particles, without addition of the previously mentioned activation and/or nucleation agents, the use of which is circumvented by the heterocoagulation step.
  • the remaining 1% of the initial binder metal stays in solution in the aqueous phase after filtration. This can be re-used in a subsequent process batch, there being no deleterious or harmful breakdown or byproducts, as only water, carbon dioxide and nitrogen are generated,
  • the powder was then mixed with a suitable pressing lubricant, such as paraffin wax, or polyethylene glycol as is standard in the industry, pressed in a die and subsequently de- lubricated and sintered in a vacuum furnace at 1410°C.
  • a suitable pressing lubricant such as paraffin wax, or polyethylene glycol as is standard in the industry, pressed in a die and subsequently de- lubricated and sintered in a vacuum furnace at 1410°C.
  • Metallurgical and high resolution metallographic examination showed excellent cobalt distribution and the absence of tungsten carbide grain contiguity, cobalt lakes or porosity.
  • Example 3 91.2g of tungsten carbide powder with a grain-size of 0.2 ⁇ m together with 0.3g of vanadium carbide with a grain-size of 0.3 ⁇ m and 0.5g chromium carbide with a grain-size of 0.3 ⁇ m were mixed at room temperature into a slurry with a 0.4m solution of cobalt II acetate, corresponding to an 8g addition of cobalt. Subsequent treatment was as described for example 1. Analysis of the resultant powder showed it to contain 8% cobalt as metal. The powder was then mixed with a suitable pressing lubricant, pressed in a die and subsequently de-lubricated and sintered in a vacuum furnace at 1360°C.
  • Metallurgical and high resolution metallographic examination showed excellent cobalt distribution and absence of tungsten carbide grain contiguity, cobalt lakes or porosity.
  • the average sintered grain-size was less than 0.4 ⁇ m with an average of less than one grain over 2 ⁇ m per observed field at 1500X.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

Cette invention se rapporte à un procédé d'enrobage de particules dures dans un métal, ce procédé comprenant les étapes séquentielles suivantes : (i) former une suspension épaisse aqueuse de ces particules dures ; (ii) ajouter à la suspension épaisse une solution aqueuse d'un ou de plusieurs sels de ce métal, ladite solution ayant une valeur molaire comprise entre 0,1 m et 1,6 m ; (iii) régler le pH de la solution suspension épaisse/sel de métal sur une valeur comprise entre 7 et 14, de façon à enrober les particules dures dans ledit sel de métal ; (iv) chauffer la suspension épaisse faite de particules enrobées de ce sel de métal à une température élevée et à une pression élevée, afin de convertir ledit sel de métal en un oxyde, un oxyde-hydroxyde ou un hydroxyde de métal ; et (v) à réduire cet oxyde, cet oxyde-hydroxyde ou cet hydroxyde de métal à ladite température et à ladite pression élevée en métal constitutif, afin de former lesdites particules dures enrobées de métal. Ces particules dures sont constituées par un ou plusieurs des composés suivants ; carbure, carbonitrure et nitrure d'un ou de plusieurs des élément suivants : tungstène, titane, tantale, niobium, molybdène, chrome, vanadium, zirconium et hafnium ; et ledit métal est constitué par un ou plusieurs des métaux suivants : cobalt, nickel et fer.
PCT/SE2003/001432 2002-09-21 2003-09-12 Particules metallurgiques enrobees WO2004026509A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03797770A EP1539410A1 (fr) 2002-09-21 2003-09-12 Particules metallurgiques enrobees

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
GB0221999.6 2002-09-21
GB0221999A GB2399824A (en) 2002-09-21 2002-09-21 Metal coated metallurgical particles

Publications (1)

Publication Number Publication Date
WO2004026509A1 true WO2004026509A1 (fr) 2004-04-01

Family

ID=9944560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/SE2003/001432 WO2004026509A1 (fr) 2002-09-21 2003-09-12 Particules metallurgiques enrobees

Country Status (4)

Country Link
EP (1) EP1539410A1 (fr)
CN (1) CN101018632A (fr)
GB (1) GB2399824A (fr)
WO (1) WO2004026509A1 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006069614A2 (fr) * 2004-12-27 2006-07-06 Umicore Produits composites poudreux pour metaux durs
US8679207B2 (en) * 2006-03-30 2014-03-25 Komatsu Ltd. Wear resisting particle and wear resisting structure member
EP3527306A1 (fr) 2018-02-14 2019-08-21 H.C. Starck Tungsten GmbH Particules de matériau dur revêtues contenant de la poudre
EP3924533A4 (fr) * 2019-02-14 2023-07-12 Public Joint Stock Company "Severstal" Procédés et systèmes de revêtement de substrat en acier

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2010084812A1 (ja) * 2009-01-22 2012-07-19 住友電気工業株式会社 冶金用粉末の製造方法、圧粉磁心の製造方法、圧粉磁心およびコイル部品
CN103418785B (zh) * 2012-05-23 2016-05-25 北京航空航天大学 一种耐腐蚀钛/氧化钌复合粉体的制备方法
JP7117296B2 (ja) * 2016-10-05 2022-08-12 エクソンモービル ケミカル パテンツ インコーポレイテッド 金属窒化物および金属炭化物を製造する方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2119488A (en) * 1936-07-31 1938-05-31 Sirian Wire And Contact Compan Alloys and process of making same
GB1378958A (en) * 1971-04-15 1975-01-02 Sherritt Gordon Mines Ltd Cobalt-coated composite powders
WO1996024454A1 (fr) * 1995-02-09 1996-08-15 Sandvik Ab Procede de production de materiaux metalliques composites
WO2003045612A1 (fr) * 2001-11-28 2003-06-05 Omg Americas, Inc. Procede de production de poudres composites de metal

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR866944A (fr) * 1940-05-17 1941-09-18 Préparation d'alliages par frittage
JPS588530B2 (ja) * 1978-03-10 1983-02-16 株式会社東芝 真空開閉器用電極材の製造方法
US4801472A (en) * 1987-08-24 1989-01-31 Gte Product Corporation Process for coating tungsten carbide with cobalt metal
SE504244C2 (sv) * 1994-03-29 1996-12-16 Sandvik Ab Sätt att tillverka kompositmaterial av hårdämnen i en metallbindefas
SE507211C2 (sv) * 1995-09-29 1998-04-27 Sandvik Ab Sätt att tillverka ett belagt hårdämnespulver
SE510659C2 (sv) * 1997-10-14 1999-06-14 Sandvik Ab Sätt att framställa en hårdmetall innefattande beläggning av partiklar av hårdämnet med bindemetall
SE510749C2 (sv) * 1997-12-22 1999-06-21 Sandvik Ab Sätt att framställa ett metallkompositmaterial innehållande hårda partiklar och bindemetall
DE19962015A1 (de) * 1999-12-22 2001-06-28 Starck H C Gmbh Co Kg Pulvermischungen bzw. Verbundpulver, Verfahren zu ihrer Herstellung und ihre Verwendung in Verbundwerkstoffen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2119488A (en) * 1936-07-31 1938-05-31 Sirian Wire And Contact Compan Alloys and process of making same
GB1378958A (en) * 1971-04-15 1975-01-02 Sherritt Gordon Mines Ltd Cobalt-coated composite powders
WO1996024454A1 (fr) * 1995-02-09 1996-08-15 Sandvik Ab Procede de production de materiaux metalliques composites
WO2003045612A1 (fr) * 2001-11-28 2003-06-05 Omg Americas, Inc. Procede de production de poudres composites de metal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006069614A2 (fr) * 2004-12-27 2006-07-06 Umicore Produits composites poudreux pour metaux durs
WO2006069614A3 (fr) * 2004-12-27 2006-09-08 Umicore Nv Produits composites poudreux pour metaux durs
US8679207B2 (en) * 2006-03-30 2014-03-25 Komatsu Ltd. Wear resisting particle and wear resisting structure member
EP3527306A1 (fr) 2018-02-14 2019-08-21 H.C. Starck Tungsten GmbH Particules de matériau dur revêtues contenant de la poudre
WO2019158418A1 (fr) 2018-02-14 2019-08-22 H.C. Starck Tungsten Gmbh Poudre contenant des particules de substances dures enduites
JP2021513601A (ja) * 2018-02-14 2021-05-27 ハー.ツェー.スタルク タングステン ゲゼルシャフト ミット ベシュレンクテル ハフツング コーティングされた硬質材料の粒子を含む粉体
US11478848B2 (en) 2018-02-14 2022-10-25 H.C. Starck Tungsten Gmbh Powder comprising coated hard material particles
JP7394769B2 (ja) 2018-02-14 2023-12-08 ハー.ツェー.スタルク タングステン ゲゼルシャフト ミット ベシュレンクテル ハフツング 硬質材料粒子、硬質材料粒子の製造方法、硬質材料粒子の使用方法、硬質材料粒子を含む粉末、及び硬質材料粒子を含む粉末の使用方法
EP3924533A4 (fr) * 2019-02-14 2023-07-12 Public Joint Stock Company "Severstal" Procédés et systèmes de revêtement de substrat en acier

Also Published As

Publication number Publication date
EP1539410A1 (fr) 2005-06-15
CN101018632A (zh) 2007-08-15
GB0221999D0 (en) 2002-10-30
GB2399824A (en) 2004-09-29

Similar Documents

Publication Publication Date Title
JP4969008B2 (ja) 粉末混合物と複合粉末、その製造方法、及び複合材料におけるその使用
JP4257690B2 (ja) 粉末冶金用途のための焼結活性金属粉末及び合金粉末、それらの製造方法並びにそれらの使用
KR100364952B1 (ko) 금속복합재료제조방법
US4915733A (en) Agglomerated metal composite powders
US3974245A (en) Process for producing free flowing powder and product
US4705560A (en) Process for producing metallic powders
US6576037B1 (en) Metal micropowders based on tungsten and/or molybdenum and 3D transition metals
EP0752922B1 (fr) Procede de fabrication d'une poudre metallique composite
JP2015503034A (ja) 超硬合金の製造方法
JP2013224491A (ja) 金属粉
EP0805728A1 (fr) Procede de production de materiaux metalliques composites
WO2004026509A1 (fr) Particules metallurgiques enrobees
US4545814A (en) Production of cobalt and nickel powder
US20030097907A1 (en) Methods of producing composite powders
EP3582916B1 (fr) Procédé de production d'une poudre métallique dure
KR19990063282A (ko) 금속 복합 재료 제조 방법
US5135567A (en) Method for producing metal powders from liquid phase containing metal ions
RU2763369C1 (ru) Порошок, содержащий покрытые частицы твердого материала
Hamill et al. Water atomized fine powder technology
SU1727950A1 (ru) Способ борировани твердых сплавов
CN115747547A (zh) 一种通过纳米颗粒改善合金微观形貌的冶金方法及其产品和应用
Meissl et al. Hard Materials: Powders: Hydrothermal Reduction of Co^ sub 3^ O^ sub 4^-Suspensions with Hydrogen-A Novel Approach to Coated Tungsten Carbide Powders

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

WWE Wipo information: entry into national phase

Ref document number: 2003797770

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2003801582X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2003797770

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP