WO2004026457A1 - マイクロカプセルの製造方法 - Google Patents

マイクロカプセルの製造方法 Download PDF

Info

Publication number
WO2004026457A1
WO2004026457A1 PCT/JP2003/011846 JP0311846W WO2004026457A1 WO 2004026457 A1 WO2004026457 A1 WO 2004026457A1 JP 0311846 W JP0311846 W JP 0311846W WO 2004026457 A1 WO2004026457 A1 WO 2004026457A1
Authority
WO
WIPO (PCT)
Prior art keywords
emulsion
dispersed phase
producing
polymer electrolyte
phase
Prior art date
Application number
PCT/JP2003/011846
Other languages
English (en)
French (fr)
Inventor
Mitsutoshi Nakajima
Tatsuya Oda
Shinji Sugiura
Original Assignee
Koyama, Yuu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koyama, Yuu filed Critical Koyama, Yuu
Priority to US10/525,108 priority Critical patent/US20060121122A1/en
Priority to JP2004537584A priority patent/JPWO2004026457A1/ja
Priority to AU2003266525A priority patent/AU2003266525A1/en
Publication of WO2004026457A1 publication Critical patent/WO2004026457A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/40Mixing liquids with liquids; Emulsifying
    • B01F23/41Emulsifying
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5089Processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/30Injector mixers
    • B01F25/31Injector mixers in conduits or tubes through which the main component flows
    • B01F25/314Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit
    • B01F25/3142Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction
    • B01F25/31425Injector mixers in conduits or tubes through which the main component flows wherein additional components are introduced at the circumference of the conduit the conduit having a plurality of openings in the axial direction or in the circumferential direction with a plurality of perforations in the axial and circumferential direction covering the whole surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • B01J13/06Making microcapsules or microballoons by phase separation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • A61K9/5036Polysaccharides, e.g. gums, alginate; Cyclodextrin
    • A61K9/5042Cellulose; Cellulose derivatives, e.g. phthalate or acetate succinate esters of hydroxypropyl methylcellulose
    • A61K9/5047Cellulose ethers containing no ester groups, e.g. hydroxypropyl methylcellulose

Definitions

  • the present invention relates to a method for producing microcapsules used in DDS (drug delivery system), the food industry, cosmetics production, and the like.
  • DDS drug delivery system
  • This capsule allows the outer hydrogel to act as a barrier to attack (rejection) from the biological immune system, and allows the inner islets of Langerhans to secrete insulin over time in the body.
  • Japanese Patent Application Laid-Open No. Hei 10-50989, Japanese Patent Laid-Open No. Japanese Patent Application Publication No. 3-0698 or Japanese Patent Application Laid-Open Publication No. 2002-52007473 has been proposed.
  • Japanese Patent Application Publication No. 10-500 '889 discloses that the mouth shell virus is encapsulated in a microphone mouth capsule whose outer shell is a reactive product of alginic acid and spermine and whose inside is an aqueous core. Is disclosed.
  • Japanese Patent Application Laid-Open No. 11-13968 discloses that an aqueous alginic acid solution (W) is emulsified and dispersed in a fatty acid ester (O) to prepare a W / 0 emulsion, and a polyvalent metal ( C a 2 + and B a 2 + ) are added to make primary particles of polyvalent metal alginate (gel) with a particle size of 0.01 to 5 m. It discloses a content in which a poorly soluble drug is supported on an aggregate of primary particles.
  • microparticles of alginate solution was prepared by spray, collide with the C a 2 + aqueous solution flowing down the microparticles of alginate solution produced by the spray into a film
  • a microphone mouth capsule of 100 to 400 ⁇ m is disclosed.
  • Japanese Patent Application Publication No. 9-5001332 proposes a vaccine having a gel of 15 zm or less as an oral gel microencapsulated vaccine for oral delivery.
  • the outer shell (gel) of the microcapsules described above is formed using a polyelectrolyte reaction. Specifically: ": Biotechnology Progress 13
  • a method using a double nozzle to reduce the diameter of the capsule is proposed in “AIChE J, 40, 1026-1031 1994”.
  • a capsule of about 2 mm to 200 m is prepared by flowing a polymer electrolyte solution from an inner nozzle and flowing air from an outer nozzle.
  • JP-A-1 1 1 3 0 6 9 8 discloses, as a WZO emulsion by conventional how, in the case that brought into contact with this C a 2 + aqueous solution or the like, constituting the WZO emulsion It is difficult to keep the droplet diameter of the dispersed phase within the specified range, and it is possible to create extremely fine particles. It is not possible to produce a double-structured capsule with an aqueous solution and a gel outer shell.
  • the above-mentioned literature suggests that a microcapsule in which cells are fixed is implanted into the body and functions as a “micro drug factory” in the body. In order for a cell-immobilized microcapsule to function as a “micro drug field”, it must not only secrete active substances such as insulin and pile cancer drugs, but also survive in the capsule for a long time. You will need it.
  • the particle size of the microcapsule is an important factor.
  • the outer shell not only withstands attacks from the immune system, but also releases secretions from cells to the outside and allows cells to survive from the outside. It is necessary to take in nutrients and discharge the waste generated in the capsule to the outside.
  • the distance to the center of the microcapsule exceeds 150 m (diameter of 300 m), nutrients will not reach the cells fixed in the center, and waste from cells in the center will be discharged.
  • the present inventors have found that cells cannot be killed. Also, if the diameter of the microcapsules is small, cells cannot be immobilized inside.
  • microcapsules for cell fixation must fit within a very limited particle size range.
  • the particle size distribution of the microcapsules for cell immobilization is as narrow as 50 to 300 / im. Can be manufactured, but it is not possible to manufacture a microcapsule having a uniform particle size. Further, even when a conventional emulsion obtained by simply stirring is used, microcapsules having a uniform and uniform particle size cannot be produced.
  • Microcapsules having a uniform particle size are also required in the fields of food and cosmetics. Disclosure of the invention
  • the method for producing microcapsules according to the present invention comprises first preparing an emulsion containing a polymer electrolyte solution in a dispersed phase, and then simultaneously demulsifying the emulsion with the polymer electrolyte solution. Is brought into contact with a polyelectrolyte solution or polyvalent ion solution having the opposite charge, and a gel layer composed of an electrolyte complex is formed around the small polyelectrolyte solution that has formed the dispersed phase by the polymer electrolyte reaction. It was formed.
  • the polymer electrolyte solution is not brought into direct contact with a polymer electrolyte solution having a reverse charge or a polyvalent ion solution, but is once converted into an emulsion containing a dispersed phase having a uniform particle size.
  • the microcapsules having a diameter substantially equal to the dispersed phase constituting the emulsion can be obtained by setting the contact point to 0 with a polymer electrolyte solution or a polyvalent ion solution having a positive charge.
  • the dispersed phase and the continuous phase are separated through a plate having a through-hole, and a pressure higher than the pressure applied to the continuous phase is applied to the dispersed phase. It is preferable to take a means for extruding as a key.
  • demulsification In order to efficiently bring the dispersed phase into contact with a polymer electrolyte solution or a polyvalent ion solution having a charge opposite to that of the dispersed phase, demulsification is required. There are two possible means of demulsification. One is that a surfactant is usually added to the continuous phase in order to maintain the state of the emulsion, so the same substance as that constituting the continuous phase (for example, hexane) or a substance solubilized in the continuous phase is added. The other method is to add no surfactant from the beginning when preparing the emulsion.
  • the emulsion is demulsified in a short time, so that the emulsion is immediately brought into contact with a polymer electrolyte solution or polyvalent ion solution having the opposite charge.
  • the dispersed phase constituting the emulsion include alginic acid, potassium oxypropylcellulose, pectin, carrageenan, cellulose sulfate, and chondroitin sulfate.
  • the polymer electrolyte which reacts with the dispersed phase constituting the emulsion is poly Polymers containing amino acids (eg, polyhistidine, polylysine, polyorditin, etc.), primary amine groups, secondary amine groups, tertiary amine groups or pyridinyl nitrogen (eg, polyethylenimine, polyallylimine) , Polyetheramine, polyvinyl pyridine) or aminated polysaccharides (eg, chitosan).
  • amino acids eg, polyhistidine, polylysine, polyorditin, etc.
  • primary amine groups eg, secondary amine groups, tertiary amine groups or pyridinyl nitrogen (eg, polyethylenimine, polyallylimine)
  • Polyetheramine polyvinyl pyridine
  • aminated polysaccharides eg, chitosan
  • the polyvalent ions that react with the dispersed phase constituting the emulsion are C a 2+ , B a 2+ , P b 2+ , Cu2 + , Cd2 + , Sr2 + , Co2 + , Ni2 + , Zn2 + , or M n 2 + and the like.
  • FIGS. 1 (a) to 1 (c) are diagrams illustrating the steps of preparing an emulsion in the method for producing microcapsules according to the present invention.
  • FIGS. 2 (a) and (b) are diagrams illustrating the steps of manufacturing microcapsules in the method of manufacturing microcapsules according to the present invention.
  • FIG. 3 is an enlarged sectional view of a microcapsule obtained by the method of the present invention.
  • FIG. 4 is a cross-sectional view of an emulsion preparation apparatus used in (Example 1) and (Example 2).
  • FIG. 5 is a micrograph showing the preparation state of the emulsion of (Example 1).
  • FIG. 6 is a micrograph of a microphone-mouth capsule obtained by (Example 1).
  • FIG. 5 is a micrograph showing a prepared state of the emulsion of (Example 2).
  • FIG. 8 is a micrograph of a microphone-mouth capsule obtained by (Example 2). BEST MODE FOR CARRYING OUT THE INVENTION
  • FIGS. 1 (a) to 1 (c) are diagrams illustrating a process for preparing an emulsion in the method for producing a microcapsule according to the present invention
  • FIGS. 2 (a) and (b) are diagrams illustrating a microcapsule according to the present invention.
  • FIG. 3 is a diagram illustrating a process of manufacturing a microcapsule in a method of manufacturing a capsule
  • FIG. 3 is an enlarged cross-sectional view of a microphone output capsule obtained by the method of the present invention.
  • a polymer electrolyte solution is supplied as a dispersed phase to one chamber partitioned by a plate having a large number of pores, and a continuous phase (hexane) is supplied to the other chamber. ).
  • the dispersed phase that has entered is spherical.
  • the diameter of the spherical dispersed phase entering the continuous phase depends on the size of the pores.
  • the pores are formed by plasma etching used when manufacturing an integrated circuit, and by making the shape of the opening non-circular, a more homogeneous spherical dispersed phase can be obtained.
  • the emulsion was phase-separated on a polymer electrolyte solution or a polyvalent ion solution having a charge opposite to that of the dispersed phase. Put it in the same container in the same condition and let the emulsion demulsify.
  • Demulsification reduces the concentration of surfactant in the continuous phase by adding the same substance (hexane) or a substance that solubilizes in the continuous phase (soy oil, triolein, octane, etc.) to the emulsion. Or, do not add surfactant to the continuous phase from the beginning.
  • the dispersed phase constituting the emulsion and the polymer electrolyte solution or polyvalent ionic solution having a charge opposite to that of the dispersed phase are formed.
  • the microcapsules In order to use the microcapsules to which cells and the like are added for treating the human body and to prevent disease, the microcapsules are injected into a target site of the human body by a syringe, a catheter, or surgery.
  • FIG. 4 is a cross-sectional view of an emulsion preparation apparatus used in the following (Example 1) and (Example 2).
  • the preparation apparatus includes a plurality of plates 2, 3, and 4 in an annular case 1. 4 and a spacer.
  • 1 1 is a liquid-tight first flow path in which the dispersed phase flows
  • 1 2 is a liquid-tight second flow path in which the continuous phase and the emulsion flow.
  • the first flow path 11 and the second flow path 12 are intermediate. It communicates with the pores (microchannels) formed on plate 3.
  • P1 is a dispersed phase supply pump
  • P2 is a continuous phase supply pump
  • P3 is an emulsion extraction pump
  • 13 is a transparent window
  • 14 is a CCD camera.
  • Chitosan (manufactured by Kimi Power Co., Ltd.) and sodium lipoxymethylcell mouth monosodium (manufactured by Nippon Rika Chemical Co., Ltd.) were used as the raw materials for the capsules.
  • Hexane was used as a continuous phase component of the emulsion
  • TGCR-310 (manufactured by Sakamoto Pharmaceutical Co., Ltd.) was used as a surfactant.
  • an extremely monodispersed emulsion having a particle diameter of about 50 ⁇ m was prepared by using the pores (microchannels) formed on the plate (partition wall). Capsules made from the emulsion were also almost monodisperse with almost the same particle size.
  • Alginate made by Kimikiri Co., Ltd. was used as a raw material for the capsule. Soybean oil was used for the oil phase. A 0.1 M calcium chloride solution was used as the reaction solution.
  • a 1.5% aqueous solution of alginic acid (dispersed phase) is supplied to the first flow path 11 of the apparatus shown in FIG. 4, and soybean oil (continuous phase) to which no surfactant is added is supplied to the second flow path 12. Then, a 1.5% aqueous solution of alginic acid was extruded into soybean oil through pores (microchannels) to prepare an emulsion.
  • Example 2 As shown in FIG. 7, a homogeneous emulsion having a dispersed phase (droplet diameter) of about 80 m could be prepared. Then, by contacting (dropping) this with an aqueous solution of calcium chloride, a capsule having a particle size of about 100 m was obtained as shown in FIG.
  • an emulsion was once prepared, and then the dispersed phase constituting this emulsion was brought into contact with a polymer electrolyte solution or polyvalent ion solution of opposite charge and a polyvalent ion solution in another container in another container.
  • Micro force capsules are being produced, but one device is used to continuously produce microphone mouth capsules. It can also be made.
  • the first flow path 11 is divided into right and left by a partition wall at a substantially middle point, and the dispersed phase is supplied to the left flow path via the pump P 1 as before.
  • a polymer electrolyte solution or a polyvalent ion solution having a charge opposite to that of the dispersed phase is supplied by another pump.
  • an emulsion is produced on the upstream side of the second flow path 12, that is, in the region where the dispersed phase is supplied through the pores of the plate 3, and on the downstream side (right side in the figure), that is, the plate 3
  • Microcapsules are formed in a region where a polymer electrolyte solution or a polyvalent ion solution having a charge opposite to that of the dispersed phase is supplied through the pores.
  • the particle size of the dispersed phase particles (microcapsules) of the emulsion depends on the pore size, and the particle size is controlled. Becomes difficult.
  • a continuous phase is flowed into one of the microchannels that merge with each other, and a dispersed phase is flowed into the other, and the continuous phase and the dispersed phase are merged in a laminar flow state.
  • a method is also conceivable in which the flow velocity of the continuous phase and the dispersed phase is rapidly reduced to make the dispersed phase particles visible in the continuous phase to form an emulsion.
  • the dispersed phase is taken into the continuous phase one by one by the shear force of the continuous phase, and the particle size can be controlled by the flow rates of the continuous phase and the dispersed phase.
  • the microchannel is formed on a glass substrate, a silicon substrate, or the like.
  • the flow path of the continuous phase merges at an angle of 30 to 80 ° from both sides across the microchannel serving as the flow path of the dispersed phase, and immediately after this, the flow rate is rapidly reduced. It is conceivable to set up a large-capacity pool.
  • a capsule having a double structure in which the inside is a polymer electrolyte solution and the outside is a gel formed by the reaction of this polymer electrolyte solution with another electrolyte solution Can be stably produced in large quantities with a uniform particle size distribution.
  • the present invention can be effectively used in the fields of DDS (drug delivery system), treatment of the human body, food industry or cosmetics manufacturing.

Abstract

多数の細孔(マイクロチャネル)を形成したプレートによって仕切られる一方の室に高分子電解質溶液を分散相として供給し、他方の室に連続相を供給し、分散相に圧力をかけてエマルションを調製し、このエマルションを解乳化し、分散相を分散相とは逆電荷の高分子電解質溶液または多価イオン溶液と接触せしめ、高分子電解質反応により球状分散相の周囲にゲルを形成し、外側が不溶性のゲルで、内部が細胞などを添加した高分子電解質溶液となった二重構造のカプセルを得る。

Description

明細書 マイクロカプセルの製造方法 技術分野
本発明は、 DD S (ドラッグデリバリーシステム)、 食品工業或いは化 粧品製造等に利用されるマイクロカプセルの製造方法に関する。 背景技術
生体内に移植するカプセルとして、 1〜 2個の細胞 (ランゲルハンス 島) を 5 0 0〜 8 0 0 mのマイク口カプセルに封入したものが知られ ている。 (文献 「蛋白質、 核酸、 酵素 Vol.4 5 No.13 (2000)」)。
このカプセルは外側のヒドロゲルが生態の免疫機構からの攻 (拒絶 反応) に対するバリヤとして機能し、 内部のランゲルハンス島が体内で 長期に亘つてィンスリンを分泌するのを可能とするものである。
このようなカプセルについての最初の提案は既に、 米国特許第 43 5 2 8 8 3号 ( 1 9 7 9 ) になされている。 この先行技術には、 アルギン 酸カルシウムゲルに細胞を固定化することが記載されている。
またこの他にも、 免疫機構からの攻撃に耐える殻内に細胞を固定化し て体内に移植する技術として、 特表平 1 0— 5 0 0 8 8 9号公報、 特開 平 1 1一 1 3 0 6 9 8号公報或いは特表 2 0 0 2— 5 0 7 4 7 3号公報 などが提案されている。
特表平 1 0 _ 5 0 0 '8 8 9号公報には、 外殻がアルギン酸とスペルミ ンとの反応性生物で、 内部が水性コアとなったマイク口カプセル内に、 口夕ウィルスを封入した内容が開示されている。
特開平 1 1一 1 3 0 6 9 8号公報には、 アルギン酸水溶液 (W) を脂 肪酸エステル (O) に乳化分散させて W/0エマルシヨンを作製し、 こ のエマルションに多価金属 (C a 2 +や B a 2 +) を加えてアルギン酸多価 金属塩 (ゲル) からなる粒径 0. 0 1〜 5 mの 1次粒子を作り、 この 1次粒子の集合体に難溶性薬剤を担持せしめる内容が開示されている。 特表 2 0 0 2 - 5 0 7 4 7 3号公報には、 アルギン酸水溶液の微粒子 を噴霧によって作製し、 この噴霧によって作製したアルギン酸水溶液の 微粒子をフィルム状に流下する C a 2 +水溶液に衝突させることで、 1 0 0〜4 0 0 ^mのマイク口カプセルが開示されている。
また特表平 9 - 5 0 0 1 3 2号公報には、 経口デリバリのためのヒド 口ゲルマイクロカプセル化ワクチンとして、 1 5 zm以下のものが提案 されている。
上述したマイクロカプセルの外殻 (ゲル) は、 高分子電解質反応を利 用して形成されている。 具体的には 「: Biotechnology Progress 13
562-568 1997」 に開示されるようにノズルを用いて、 アルギン酸溶液 などのポリァニオン溶液をポリカチオン溶液に滴下するのが一般的であ る。
また、 カプセルの径を小さくするため こ二重ノズルを用いる方法が、 「AIChE J、 40、 1026-1031 1994」 に提案されている。 この方法は 内側ノズルから高分子電解質溶液を流し、 外側のノズルから空気を流す ことで、 2mm~ 2 0 0 m程度のカプセルを調製している。
上述した従来の方法によれば、 0. 0 1 mから数百 の範囲のマ イク口カプセルを得ることができる。 しかしながら、 従来法によると粒 径の分布が広く、 均一な粒径のマイクロカプセルを得ることが困難であ る。
例えば、 特表平 1 0— 5 0 0 8 8 9号公報ゃ特表 2 0 0 2— 5 0 74 7 3号公報にあっては、 アルギン酸溶液を空中に噴霧することで微細な 粒子とし、 これを C a 2 +水溶液に接触せしめるようにしているが、 均一 な粒径のカプセルを得ることができない。
また、 特開平 1 1— 1 3 0 6 9 8号公報に開示されるように、 従来方 法で WZOエマルションとし、 これを C a 2 +水溶液等に接触せしめる場 合には、 WZOエマルションを構成する分散相の液滴径を所定の範囲に 揃えることが難しく、 極めて細かな粒子を作成することはできるが、 内 部を水溶液とし、外殻をゲルとした二重構造のカプセルを作製できない。 上述した文献は、 細胞を固定したマイクロカプセルを体内に移植し、 体内において 「ミクロの薬品工場」 として機能せしめることを示唆する ものである。 そして、 細胞固定化マイクロカプセルが 「ミクロの薬品ェ 場」 として機能するには、 単にインスリンや杭がん剤などの有効物質を 分泌するだけでなく、 長期に亘つてカプセル内で生存することが必要に なる。
長期に亘つてカプセル内で細胞が生存するには、 マイクロカプセルの 粒径が重要なファクターになる。
即ち、 細胞固定用のマイクロカプセルにあっては、 外殻 (ゲル) は免 疫機構からの攻撃に耐えるだけでなく、 細胞からの分泌物を外部に放出 し且つ外部から細胞が生存するための栄養を取り入れ、 更にはカプセル 内で生じた老廃物を外部に排出する必要がある。
そして、 マイクロカプセルの中心部までの距離が 1 5 0 m (直径 3 0 0 m ) を超えると、 中心部に固定されている細胞まで栄養分が届か ず、 また中心部の細胞の老廃物を排出できず、 細胞が死滅してしまうこ とを本発明者らは知見した。 また、 マイクロカプセルの径が小さいと内 部に細胞を固定化することができない。
したがって、 細胞固定用のマイクロカプセルについては、 極めて限ら れた粒径範囲内に殆んどのマイク口カプセルが収まっていなければなら ない。
このように、 細胞固定化用のマイクロカプセルについては、 粒径分布 が 5 0〜 3 0 0 /i mと狭いことが重要であるが、 滴下などの従来法によ るとこの範囲のマイク口カプセルを製造できるが、 均一な粒径のマイク 口カプセルを製造することができない。 また従来の単に攪拌によって得 られたエマルションを用いる場合も均一で一定粒径のマイクロカプセル を製造することができない。
また、 均一な粒径のマイクロカプセルは、 食品や化粧品の分野におい ても要求されている。 発明の開示
上記問題を解決するため、 本発明に係るマイクロカプセルの製造方法 は、 先ず高分子電解質溶液を分散相に含むエマルシヨンを調製し、 次い で、 このエマルシヨンの解乳化と同時に前記高分子電解質溶液とは逆の 電荷を持つ高分子電解質溶液または多価イオン溶液と接触せしめ、 高分 子電解質反応により分散相を構成していた微小な高分子電解質溶液の周 囲に電解質複合体からなるゲル層を形成するようにした。
本発明にあっては、 高分子電解質溶液を逆の電荷を持つ高分子電解質 溶液または多価イオン溶液に直接接触させずに、 一旦均一な粒径の分散 相を含むエマルシヨンとし、 このエマルションを逆の電荷を持つ高分子 電解質溶液または多価イオン溶液に接触せしめるようにした 0で、 エマ ルションを構成する分散相とほぼ等しい径のマイクロカプセルが得られ る。
均一な径のマイクロカプセルを得るには分散相が均一な径のエマルシ ヨンを得ることが必要である。 このためには、 貫通孔を形成したプレー トを介して分散相と連続相を分離し、 分散相に対し連続相にかかる圧力 よりも大きな圧力をかけることで分散相を連続相中にマイクロスフィァ として押し出す手段をとることが好ましい。
また、 効率よく分散相と逆の電荷を持つ高分子電解質溶液または多価 イオン溶液とを接触せしめるには、 解乳化させることが必要である。 解 乳化の手段としては 2つ考えられる。 1つはエマルションの状態を維持 するため通常は界面活性剤を連続相に添加しているので、 連続相を構成 する物質 (例えばへキサン) と同一の物質若しくは連続相に可溶化する 物質を添加して界面活性剤の濃度を低下せしめる方法で、 他の 1つは、 エマルションの調製の際にはじめから界面活性剤を添加しない方法であ る。 後者の場合はエマルシヨンが短時間のうちに解乳化するため、 直ち に逆の電荷を持つ高分子電解質溶液または多価イオン溶液とを接触せし める。 また、 前記エマルシヨンを構成する分散相としては、 アルギン酸、 力 ルポキシメチルセルロース、 ぺクチン、カラギーナン、硫酸セルロース、 コンドロイチン硫酸などが挙げられ、 前記エマルションを構成する分散 相と反応する高分子電解質は、 ポリアミノ酸(例えば、 ポリヒスチジン、 ポリ リジン、 ポリオル二チンなど)、 第一級ァミン基、 第二級ァミン基、 第三級ァミン基またはピリジニル窒素を含むポリマー (例えば、 ポりェ チレンィミン、 ポリアリルイミン、 ポリエーテルァミン、 ポリビニルビ リジン) またはアミノ化多糖類 (例えばキトサン) などが挙げられ、 前 記エマルションを構成する分散相と反応する多価イオンは C a 2 +、 B a 2 +、 P b 2 +、 C u 2 +、 C d 2 +、 S r 2 +、 C o 2 +、 N i 2 +、 Z n 2 +、 または M n 2 +などが挙げられる。 図面の簡単な説明
第 1図 ( a) 乃至 ( c ) は、 本発明に係るマイクロカプセルの製造 方法のうち、 エマルシヨンの調製工程を説明した図である。
第 2図 ( a) および (b) は、 本発明に係るマイクロカプセルの製 造方法のうち、 マイクロカプセルの製造工程を説明した図である。
第 3図は、 本発明方法によって得られたマイクロカプセルの拡大断 面図である。
第 4図は、 (実施例 1 ) および (実施例 2 ) に用いたエマルシヨンの 調製装置の断面図である。
第 5図は、 (実施例 1 )のエマルションの調製状態を示す顕微鏡写真 である。
第 6図は、 (実施例 1 )によって得られたマイク口カプセルの顕微鏡 写真である。
第 Ί図は、 (実施例 2 )のエマルションの調製状態を示す顕微鏡写真 である。
第 8図は、 (実施例 2 )によって得られたマイク口カプセルの顕微鏡 写真である。 発明を実施するための最良の形態
以下に本発明の実施の形態を添付図面に基づいて説明する。 第 1図 ( a ) 乃至(c ) は、 本発明に係るマイクロカプセルの製造方法のうち、 エマルシヨンの調製工程を説明した図、 第 2図 ( a ) および (b ) は、 本発明に係るマイクロカプセルの製造方法のうち、 マイクロカプセルの 製造工程を説明した図、 第 3図は本発明方法によって得られたマイク口 力プセルの拡大断面図である。
先ず第 1図 ( a ) に示すように、 多数の細孔を形成したプレートによ つて仕切られる一方の室に高分子電解質溶液を分散相として供給し、 他 方の室に連続相 (へキサン) を供給する。
次いで、 一方の室の高分子電解質溶液に圧力を加える。 すると、 (b ) に示すように、 高分子電解質溶液が分散相となって連続相中に進入し、 ( c ) に示すエマルシヨンが調製される。
ここで、 進入した分散相は球状をなす。 尚、 連続相中に進入する球状 分散相の径は細孔の大きさに依存し、 細孔の寸法が等しい場合には全て 等しい径の球状分散相が得られる。 細孔は集積回路を作製する際に利用 するプラズマエッチングにて形成され、 その開口部の形状を非円形とす ることで、 より均質な球状分散相が得られる。
以上の操作により、 エマルシヨンが調製されたならば、 第 2図 (a ) に示すように、 分散相とは逆電荷の高分子電解質溶液または多価イオン 溶液の上に、 前記エマルションを相分離した状態で同一容器内に入れ、 エマルションに解乳化を起こさせる。
解乳化は連続相と同一物質 (へキサン) 若しくは連続相に可溶化する 物質 (大豆油、 トリオレイン、 オクタンなど) をエマルシヨンに添加す ることで連続相中の界面活性剤の濃度を低下せしめるか、 はじめから連 続相に界面活性剤を添加しないようにする。
以上の如くして、 解乳化が起こると、 エマルシヨンを構成していた分 散相と、 この分散相とは逆電荷の高分子電解質溶液または多価イオン溶 „^,TO
PCT/JP2003/011846
7 液とが接触して反応を起こし、 球状分散相の周囲にゲルが形成され、 第 3図に示すように、 外側が不溶性のゲルで、 内部が細胞などを添加した 高分子電解質溶液となった二重構造のカプセルが得られる。
このようにして内部に細胞などを添加したマイクロカプセルを用いて、 人体の治療や病気予防を行うには、 注射器、 カテーテル或いは手術によ つて人体の目的とする部位にマイクロカプセルを注入する。
次に、 具体的な実施例を説明する。 先ず、 第 4図は以下の (実施例 1 ) および (実施例 2 ) に用いたエマルシヨン調製装置の断面図であり、 調 製装置は、 環状をなすケース 1内に複数のプレート 2、 3、 4およびス ぺーサを組み付けて構成される。 1 1は分散相が流れる液密な第 1流路、 1 2は連続相とエマルションが流れる液密な第 2流路で、 これら第 1流 路 1 1と第 2流路 1 2は中間のプレ一ト 3に形成した細孔 (マイクロチ ャネル) にて連通している。 また、 P 1は分散相供給ポンプ、 P 2は連 続相供給ポンプ、 P 3はエマルシヨン取り出しポンプ、 1 3は透明窓、 1 4は C C Dカメラである。
(実施例 1 )
カプセルの原料として、 キトサン (キミ力 (株) 製) と力ルポキシメ チルセル口一スナトリウム (日本理化学薬品 (株) 製) を用いた。 また、 エマルションの連続相成分としてへキサン、 界面活性剤として T G C R - 3 1 0 (阪本薬品工業 (株) 製) を用いた。
先ず、 0 . 8 w t %カルボキシメチルセルロースを調製し、 これを分 散相として第 1流路 1 1にポンプ P 1を用いて供給し、 中間プレート 3 の細孔を介して第 2流路 1 2内の連続相 (へキサン) に押出し、 単分散 WZ Oエマルションを調整した。 第 5図はこの W/ Oエマルションを拡 大して示す顕微鏡写真である。
そして、 上記のエマルシヨンと 0 . · 5 w t %キトサン溶液 (溶媒:酢 酸) を相分離した状態で同一の容器内に存在させ、 エマルシヨンの部分 にへキサンを加えていった。
へキサンを加えることによって、 界面活性剤濃度低下による解乳化が 起こり、 瞬時に分散相のカルポキシメチルセルロースとキトサン溶液が 接触し、 高分子電解質複合体ゲルがカルポキシメチルセルロース液滴の 周りに形成され、 これによりキトサンノカルボキシメチルセルロースマ イク口カプセルが得られた。 '
以上の如く、 プレート (隔壁) に形成した細孔 (マイクロチャネル) を用いることで、 粒子径が約 5 0 x mの極めて単分散なエマルションが 調製できた。 またそのエマルションを材料として作製したカプセルもほ ぼ同一の粒径で、 極めて単分散であった。
また、 作製されたマイクロカプセルをプレパラートに採取して顕微鏡 観察を行ったところ、 第 6図に示すように、 無数のゲル繊維でカプセル 表面膜が形成されている様子が観察された。
(実施例 2 )
カプセルの原料には、 アルギン酸 (キミ力 (株) 製) を用いた。 油相 には大豆油を用いた。 反応液には塩化カルシウム溶液 0 . 1 M水溶液を 用いた。
1 . 5 %アルギン酸水溶液 (分散相) を、 第 4図に示した装置の第 1 流路 1 1に、 界面活性剤を添加していない大豆油 (連続相) を第 2流路 1 2に供給し、 細孔 (マイクロチャネル) を介して大豆油中に 1 . 5 % アルギン酸水溶液を押し出し、 エマルシヨンを調製した。
上記のエマルシヨンを塩化カルシウム水溶液 (多価イオン) と接触さ せた。 その結果、 アルギン酸カルシウムカプセルを得た。
実施例 2によれば、 第 7図に示すように、 分散相 (液滴径) が約 8 0 mの均質なエマルションを調製できた。 そしてこれを塩化カルシウム 水溶液中に接触 (滴下) することで、 第 8図に示すように、 粒径が約 1 0 0 mのカプセルを得ることができた。
以上の実施例に用いた装置は一旦エマルシヨンを調製し、 その後、 こ のエマルションを構成する分散相と逆電荷の高分子電解質溶液または多 価イオン溶液とエマルションとを別の容器内で接触せしめてマイクロ力 プセルを作製しているが、 1つの装置で連続してマイク口カプセルを作 製することも出来る。
例えば、 第 4図に示した装置であれば、 第 1流路 1 1を略中間箇所で 隔壁により左右に分け、 左側の流路には今まで通りポンプ P 1を介して 分散相を供給し、 右側の流路には当該分散相と逆電荷の高分子電解質溶 液または多価イオン溶液を別のポンプで供給する。 このようにすると、 第 2流路 1 2の上流側、 即ちプレート 3の細孔を介して分散相が供給さ れる領域ではエマルシヨンが作製され、 その下流側 (図の右側)、 即ちプ レート 3の細孔を介して分散相と逆電荷の高分子電解質溶液または多価 イオン溶液が供給される領域ではマイクロカプセルが形成される。
上記のプレート 3の厚み方向に貫通する細孔を介して、 分散相を連続 相に導入する方法では、 エマルションの分散相粒子 (マイクロカプセル) の粒径が細孔径に依存し、 粒径のコントロールが困難となる。
そこで、 細孔径に依存しないエマルシヨンの作製法として、 互いに合 流するマイクロチャネルの一方に連続相を、 他方に分散相を流し、 連続 相と分散相とを層流状態で合流せしめ、 その直後に連続相と分散相の流 速を急激に低下させることで、 連続相中に分散相粒子を顕在化せしめて エマルションとする方法も考えられる。 この場合は、 連続相の剪断力に よって分散相が 1粒子づっ連続相中に取り込まれ、 連続相と分散相の流 量によって粒径が制御できる。
尚、 マイクロチャネルはガラス基板やシリコン基板等に形成する。 ま た合流の態様としては、 分散相の流路となるマイクロチャネルを挟んで 両側から連続相の流路が 3 0〜 8 0 ° の角度で合流し、 この直後に流速 を急激に低下させる手段として大容量のプールを設けることが考えられ る。
以上に説明したように、 本発明によれば、 内部を高分子電解質溶液と し、 外側をこの高分子電解質溶液と他の電解質溶液との反応によって形 成されるゲルとした二重構造のカプセルを、 粒径分布を揃えた状態で安 定して大量に生産することができる。
したがって、 食品、 化粧品の分野のみならず、 細胞固定用などの医療分 野においても有効なカプセルを得ることができる。 産業上の利用可能性
本発明は、 D D S (ドラッグデリバリーシステム)、 人体の治療、 食品 工業或いは化粧品製造の分野において有効に利用することができる。

Claims

請求の範囲
1 . 高分子電解質溶液を均一な粒径の分散相として含むエマルションを 調製し、 このエマルションの解乳化と同時に前記高分子電解質溶液とは 逆の電荷を持つ高分子電解質溶液または多価イオン溶液と接触せしめ、 高分子電解質反応により分散相を構成していた微小な高分子電解質溶液 の周囲に電解質複合体からなるゲル層を形成することを特徴とするマイ クロカプセルの製造方法。
2 . 請求の範囲第 1項に記載のマイクロカプセルの製造方法において、 前記エマルシヨンの調製は、 貫通孔を形成したプレートを介して分散相 と連続相を分離し、 分散相に対し連続相にかかる圧力よりも大きな圧力 をかけることで分散相を連続相中に前記貫通孔を介してマイクロスフィ ァとして押し出すことで調製することを特徴とするマイクロカプセルの 製造方法。
3 . 請求の範囲第 1項または請求の範囲第 2項に記載のマイクロカプセ ルの製造方法において、 前記解乳化は、 エマルシヨンに連続相を構成す る物質と同一物質若しくは連続相に可溶化する物質を添加して界面活性 剤の濃度を低下せしめることで起こさせることを特徴とするマイクロ力 プセルの製造方法。
4 . 請求の範囲第 1項または請求の範囲第 2項に記載のマイクロカプセ ルの製造方法において、 前記エマルションを構成する連続相には界面活 性剤を添加せず、 解乳化しやすい状態のエマルシヨンを調製し、 このェ マルションを直ちに分散相を構成する高分子電解質溶液とは逆の電荷を 持つ高分子電解質溶液または多価イオン溶液と接触せしめることを特徴 とするマイクロカプセルの製造方法。
5 . 請求の範囲第 1項乃至請求の範囲第 4項に記載のマイクロカプセル の製造方法において、 前記エマルシヨンを構成する分散相は、 アルギン 酸、 カルポキシメチルセルロース、 ぺクチン、 カラギーナン、 硫酸セル ロース、 コンドロイチン硫酸の何れかであり、 前記エマルシヨンを構成 する分散相と反応する高分子電解質は、ポリアミノ酸、第一級ァミン基、 第二級アミン基、第三級アミン基またはピリジニル窒素を含むポリマー、 またはアミノ化多糖類の何れかであり、 前記エマルションを構成する分 散相と反応する多価イオンは C a 2 +、 B a 2 +、 P b 2 +、 C u 2 +、 C d 2 +、 S r 2 +、 C o 2 +、 N i 2 +、 Z n 2 +または Mn 2 +の何れかである ことを特徴とするマイクロカプセルの製造方法。
6. 請求の範囲第 1項乃至請求の範囲第 5項に記載のマイクロカプセル の製造方法において、 前記エマルションを構成する分散相となる高分子 電解質溶液中には、 予め所定の物質を生産する細胞を添加しておく こと を特徴とするマイクロカプセルの製造方法。
7. 請求の範囲第 1項乃至請求の範囲第 6項に記載のマイクロカプセル の製造方法において、 前記エマルションを構成する分散相の粒径を 5 0 im〜 3 0 0 mとしたことを特徴とするマイク口カプセルの製造方法。
8. 請求の範囲第 1項乃至請求の範囲第 7項に記載のマイクロカプセル の製造方法によって得られたマイクロカプセルを、 注射器、 カテーテル 或いは手術によって人体の目的とする部位に注入することを特徴とする 人体の治療方法。
PCT/JP2003/011846 2002-09-18 2003-09-17 マイクロカプセルの製造方法 WO2004026457A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/525,108 US20060121122A1 (en) 2002-09-18 2003-09-17 Process for producing microcapsule
JP2004537584A JPWO2004026457A1 (ja) 2002-09-18 2003-09-17 マイクロカプセルの製造方法
AU2003266525A AU2003266525A1 (en) 2002-09-18 2003-09-17 Process for producing microcapsule

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002271973 2002-09-18
JP2002-271973 2002-09-18

Publications (1)

Publication Number Publication Date
WO2004026457A1 true WO2004026457A1 (ja) 2004-04-01

Family

ID=32024889

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/011846 WO2004026457A1 (ja) 2002-09-18 2003-09-17 マイクロカプセルの製造方法

Country Status (4)

Country Link
US (1) US20060121122A1 (ja)
JP (1) JPWO2004026457A1 (ja)
AU (1) AU2003266525A1 (ja)
WO (1) WO2004026457A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007516067A (ja) * 2003-05-16 2007-06-21 ヴェロシス,インク. マイクロチャネルプロセス技術を用いてエマルジョンを作製するプロセス
JP2008174510A (ja) * 2007-01-19 2008-07-31 Kyushu Univ 多糖質微粒子及び多糖質微粒子の製造方法
JP2008537028A (ja) * 2005-04-22 2008-09-11 ウニベルシダージ ド ミーニョ 繊維に結合する反応性官能基を有するマイクロカプセル及びその使用方法
WO2008108324A1 (ja) 2007-03-02 2008-09-12 University Of Tsukuba ベシクルの製造方法、この製造方法によって得られるベシクル、ベシクルの製造に用いられる凍結粒子の製造方法
US20100172898A1 (en) * 2005-10-25 2010-07-08 Massachusetts Institute Of Technology Microstructure synthesis by flow lithography and polymerization
JP2010532706A (ja) * 2007-05-18 2010-10-14 アプライド バイオシステムズ インコーポレイテッド 粒子を含む実質的に均一なエマルジョンを調製するための機器および方法
US9290816B2 (en) 2010-06-07 2016-03-22 Firefly Bioworks Inc. Nucleic acid detection and quantification by post-hybridization labeling and universal encoding
US9310361B2 (en) 2006-10-05 2016-04-12 Massachusetts Institute Of Technology Multifunctional encoded particles for high-throughput analysis
CN108239293A (zh) * 2016-12-27 2018-07-03 中国海洋大学 一种浒苔多糖微球及其制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7485671B2 (en) * 2003-05-16 2009-02-03 Velocys, Inc. Process for forming an emulsion using microchannel process technology
JP5643474B2 (ja) 2004-10-01 2014-12-17 ヴェロシス,インク. マイクロチャネルプロセス技術を用いる多相混合プロセス
CA2587546C (en) 2004-11-16 2013-07-09 Velocys Inc. Multiphase reaction process using microchannel technology
WO2006057895A2 (en) * 2004-11-17 2006-06-01 Velocys Inc. Process for making or treating an emulsion using microchannel technology
US20070085227A1 (en) * 2005-10-13 2007-04-19 Tonkovich Anna L Multi-phase contacting process using microchannel technology
KR100740169B1 (ko) 2006-06-28 2007-07-16 학교법인 포항공과대학교 세포를 포함하는 알긴산 마이크로 섬유 지지체 및 그제작방법
KR100942184B1 (ko) 2008-04-25 2010-02-11 한국과학기술연구원 마이크로 캡슐 제조장치 및 방법
FR2931141B1 (fr) 2008-05-13 2011-07-01 Commissariat Energie Atomique Systeme microfluidique et procede pour le tri d'amas de cellules et de preference pour leur encapsulation en continu suite a leur tri
CA2743491C (en) 2008-11-11 2016-10-11 Zelton Dave Sharp Inhibition of mammalian target of rapamycin
US9283211B1 (en) 2009-11-11 2016-03-15 Rapamycin Holdings, Llc Oral rapamycin preparation and use for stomatitis
WO2014160328A1 (en) 2013-03-13 2014-10-02 The Board Of Regents Of The University Of Texas System Mtor inhibitors for prevention of intestinal polyp growth
US9700544B2 (en) 2013-12-31 2017-07-11 Neal K Vail Oral rapamycin nanoparticle preparations
AU2014373683B2 (en) 2013-12-31 2020-05-07 Rapamycin Holdings, Llc Oral rapamycin nanoparticle preparations and use
US11040324B2 (en) * 2015-04-13 2021-06-22 The Trustees Of The University Of Pennsylvania Polyelectrolyte microcapsules and methods of making the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0301777A1 (en) * 1987-07-28 1989-02-01 Queen's University At Kingston Multiple membrane microencapsulation

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4352883A (en) * 1979-03-28 1982-10-05 Damon Corporation Encapsulation of biological material
US4942129A (en) * 1987-07-28 1990-07-17 Queen's University At Kingston Multiple membrane microencapsulation
US5500161A (en) * 1993-09-21 1996-03-19 Massachusetts Institute Of Technology And Virus Research Institute Method for making hydrophobic polymeric microparticles
JP3012608B1 (ja) * 1998-09-17 2000-02-28 農林水産省食品総合研究所長 マイクロチャネル装置及び同装置を用いたエマルションの製造方法
JP3030364B1 (ja) * 1999-03-24 2000-04-10 農林水産省食品総合研究所長 単分散固体脂質マイクロスフィアの製造方法
JP3511238B2 (ja) * 2000-10-13 2004-03-29 独立行政法人食品総合研究所 マイクロスフィアの製造方法および製造装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0301777A1 (en) * 1987-07-28 1989-02-01 Queen's University At Kingston Multiple membrane microencapsulation

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
NOBUHIRO HAYADA ET AL.: "Micro channel nyukaho o mochiita chitosan/carboxymethylcellulose microcapsule no chosei", JAPAN SOCIETY FOR BIOSCIENCE, BIOTECHNOLOGY AND AGROCHEMISTRY TAIKAI KOEN YOSHISHU, vol. 2002, 5 March 2002 (2002-03-05), pages 81, XP002974670 *
NOBUHIRO HAYADA ET AL.: "Micro channel o mochiita chitosan/CM cellulose microcapsule no sakusei", THE SOCIETY OF CHEMICAL ENGINEERS, JAPAN SHUKI TAIKAI KENKYU HAPPYO KOEN YOSHISHU, vol. 35, 18 August 2002 (2002-08-18), pages 828, XP002974668 *
SATOSHI IWAMOTO ET AL.: "Micro channel ni yoru chitosan/carboxymethylcellulose microcapsule chosei", JAPAN SOCIETY FOR FOOD ENGINEERING NENJI TAIKAI KOEN YOSHISHU, vol. 3, 19 July 2002 (2002-07-19), pages 71, XP002974669 *
TAKAHIRO KAWAKATSU ET AL.: "Micro channel W/O nyukaho ni yoru tanbunsan albumin gel microcapsule no sakusei", KAGAKU KOGAKU RONBUNSHU, vol. 26, no. 1, pages 122 - 125, XP002974671 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007516067A (ja) * 2003-05-16 2007-06-21 ヴェロシス,インク. マイクロチャネルプロセス技術を用いてエマルジョンを作製するプロセス
JP2008537028A (ja) * 2005-04-22 2008-09-11 ウニベルシダージ ド ミーニョ 繊維に結合する反応性官能基を有するマイクロカプセル及びその使用方法
US9910352B2 (en) 2005-10-25 2018-03-06 Massachusetts Institute Of Technology Microstructure synthesis by flow lithography and polymerization
US20100172898A1 (en) * 2005-10-25 2010-07-08 Massachusetts Institute Of Technology Microstructure synthesis by flow lithography and polymerization
US9310361B2 (en) 2006-10-05 2016-04-12 Massachusetts Institute Of Technology Multifunctional encoded particles for high-throughput analysis
JP2008174510A (ja) * 2007-01-19 2008-07-31 Kyushu Univ 多糖質微粒子及び多糖質微粒子の製造方法
US8246868B2 (en) 2007-03-02 2012-08-21 University Of Tsukuba Method for producing vesicle, vesicle obtained by the production method, and method for producing frozen particle used in production of vesicle
WO2008108324A1 (ja) 2007-03-02 2008-09-12 University Of Tsukuba ベシクルの製造方法、この製造方法によって得られるベシクル、ベシクルの製造に用いられる凍結粒子の製造方法
JP2010532706A (ja) * 2007-05-18 2010-10-14 アプライド バイオシステムズ インコーポレイテッド 粒子を含む実質的に均一なエマルジョンを調製するための機器および方法
US9290816B2 (en) 2010-06-07 2016-03-22 Firefly Bioworks Inc. Nucleic acid detection and quantification by post-hybridization labeling and universal encoding
US9476101B2 (en) 2010-06-07 2016-10-25 Firefly Bioworks, Inc. Scanning multifunctional particles
CN108239293A (zh) * 2016-12-27 2018-07-03 中国海洋大学 一种浒苔多糖微球及其制备方法
CN108239293B (zh) * 2016-12-27 2021-04-20 中国海洋大学 一种浒苔多糖微球及其制备方法

Also Published As

Publication number Publication date
US20060121122A1 (en) 2006-06-08
JPWO2004026457A1 (ja) 2006-06-15
AU2003266525A1 (en) 2004-04-08

Similar Documents

Publication Publication Date Title
WO2004026457A1 (ja) マイクロカプセルの製造方法
Liu et al. Microfluidic nanoparticles for drug delivery
Prajapati et al. Current knowledge on biodegradable microspheres in drug delivery
Tran et al. Why and how to prepare biodegradable, monodispersed, polymeric microparticles in the field of pharmacy?
CA1145258A (en) Encapsulation of viable tissue and tissue implantation method
Yow et al. Formation of liquid core–polymer shell microcapsules
AU769951B2 (en) Emulsion-based processes for making microparticles
Luo et al. Microfluidic devices in fabricating nano or micromaterials for biomedical applications
Gao et al. Recent advances in microfluidic-aided chitosan-based multifunctional materials for biomedical applications
CN106038512B (zh) 一种层层自组装纳米载体及其制备方法
Huang et al. One-Step microfluidic synthesis of spherical and bullet-like alginate microcapsules with a core–shell structure
CN101541300A (zh) 粒子形成
Bhujel et al. Practical quality attributes of polymeric microparticles with current understanding and future perspectives
JP3818384B2 (ja) エマルションの製造装置、反応装置、この反応装置を用いたマイクロカプセルの製造方法、マイクロチューブの製造方法およびマイクロチューブ
Cai et al. Microfluidics-derived microcarrier systems for oral delivery
CN100566708C (zh) 一种肝靶向性药物微胶囊的制备方法
US9012203B2 (en) Microfluidic device, system, and method for controlled encapsulation of particles or particle clusters
WO2012099482A2 (en) Device, method and system for preparing microcapsules
Chen et al. Microfluidic‐Generated Biopolymer Microparticles as Cargo Delivery Systems
KR20110121320A (ko) 나노입자, 나노입자의 제조 방법 및 제조 장치
CN107050466B (zh) 一种脂溶性药物的自组装多脉冲释放方法
GB2119737A (en) Encapsulation of viable tissue
GB2119734A (en) Encapsulated living tissue
Akbari et al. Evaluation of microparticles formation by external gelationin a microfluidic system
Song et al. Application of nanofluids to microsphere generation using MEMS technology

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004537584

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006121122

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10525108

Country of ref document: US

122 Ep: pct application non-entry in european phase
WWP Wipo information: published in national office

Ref document number: 10525108

Country of ref document: US