WO2004025831A1 - Mehrfachresonanzfilter - Google Patents

Mehrfachresonanzfilter Download PDF

Info

Publication number
WO2004025831A1
WO2004025831A1 PCT/DE2003/002986 DE0302986W WO2004025831A1 WO 2004025831 A1 WO2004025831 A1 WO 2004025831A1 DE 0302986 W DE0302986 W DE 0302986W WO 2004025831 A1 WO2004025831 A1 WO 2004025831A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode layers
filter
capacitors
base body
filter according
Prior art date
Application number
PCT/DE2003/002986
Other languages
English (en)
French (fr)
Inventor
Günter Engel
Thomas Feichtinger
Markus Ortner
Reinhard Sperlich
Original Assignee
Epcos Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos Ag filed Critical Epcos Ag
Priority to US10/526,687 priority Critical patent/US7403083B2/en
Priority to EP03769185.4A priority patent/EP1537655B1/de
Priority to JP2004535011A priority patent/JP4469719B2/ja
Publication of WO2004025831A1 publication Critical patent/WO2004025831A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/38Multiple capacitors, i.e. structural combinations of fixed capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/35Feed-through capacitors or anti-noise capacitors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0014Capacitor filters, i.e. capacitors whose parasitic inductance is of relevance to consider it as filter
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H1/00Constructional details of impedance networks whose electrical mode of operation is not specified or applicable to more than one type of network
    • H03H2001/0021Constructional details
    • H03H2001/0085Multilayer, e.g. LTCC, HTCC, green sheets

Definitions

  • the invention relates to a multiple resonance filter that contains several multilayer capacitors.
  • a multiple resonance filter is known from the publication US 5898562, in which two adjacent multilayer capacitors of different capacitance are integrated in a multilayer component. This component is used to attenuate interference signals at two frequencies predetermined by the capacitances of the two capacitors.
  • the known component has the disadvantage that the damping has relatively poor values.
  • a multiple resonance filter is specified, which is an electrical multilayer component. It contains at least three multilayer capacitors, which are arranged side by side. The multilayer capacitors have at least two different capacitors. The two outer ones of the multilayer capacitors lying in a row have the same capacitance.
  • the multiple resonance filter By constructing the multiple resonance filter with capacitors arranged next to one another in a row and by forming capacitors of the same capacitance at the two edges of the row, it can be achieved that the electromagnetic fields in the filter are decoupled, as a result of which the damping behavior at the individual resonance frequencies of the filter is improved.
  • the multilayer capacitors are connected in parallel with one another.
  • the filter properties of the multiple resonance filter can be further improved by the parallel connection.
  • a base body Qr which has a stack of dielectric layers lying one on top of the other. Electrode layers are arranged between the dielectric layers. This embodiment has the advantage that the technology of the multilayer capacitors, which is known per se, can be used to implement the multiple resonance filter.
  • Multilayer capacitors are generally constructed in such a way that interdigitated electrode stacks in the interior of the component are formed by internal electrode layers. Each stack of internal electrodes is connected to an external contact.
  • external contacts of the electrode layers are arranged on the end faces of the base body.
  • electrode layers belonging to different capacitors are connected to one another in the interior of the base body.
  • the individual capacitors can advantageously be connected in parallel inside the base body, that is to say inside the component.
  • electrode layers run in the longitudinal direction of the base body. In another embodiment, electrode layers run transversely to the longitudinal direction of the base body.
  • external contacts of the electrode layers are arranged on side surfaces of the base body.
  • This embodiment of the filter allows the external contacts to be individually assigned to each individual capacitor of the multilayer component and the desired interconnection of the capacitors to one another only on the circuit board to be equipped with the component. As a result, the flexibility of the possible uses of the component is advantageously increased.
  • this enables the multilayer capacitors to be connected in parallel to one another outside the base body.
  • three multilayer capacitors are provided.
  • four multilayer capacitors are provided, the two middle multilayer capacitors having the same capacitance.
  • the multilayer capacitors form LC filters together with the inductances of the electrode layers or together with the inductances of the leads to the electrode layers.
  • the filter properties of the component can be further improved by adding inductors to the component. Since the main contribution of the inductances required for the filter comes from the supply lines and the electrode layers, it is possible to adjust the inductance to a desired level by appropriately designing the electrode layers or the supply lines to the electrode layers.
  • the dielectric layers contain a capacitor ceramic based on barium titanate.
  • a so-called "COG” ceramic can be used as the dielectric layer.
  • Such a material would be, for example, a (Ba, Sm) NdTiO ⁇ ceramic.
  • an "X7R" ceramic can also be used, for example doped barium titanate.
  • the dielectric layers contain a capacitor material with a varistor effect.
  • a ceramic material based on ZnO-Bi or ZnO-Pr can be considered as a ceramic material with a varistor effect.
  • Dielectric layers of this type have the advantage that, in addition to the capacitor, they also integrate a varistor into the multilayer component as a further component.
  • the base body has a base area that is smaller than 6 mm 2 .
  • This embodiment has the advantage that the space requirement of the component is very small, which is advantageous for miniaturized circuits.
  • electrode layers that belong to the two outer multilayer capacitors have the same areas. This embodiment has the advantage that the requirement for the same capacitances of the outer multilayer capacitors can be realized particularly easily by the same areas.
  • FIG. 1 shows a multiple resonance filter in a schematic cross section.
  • FIG. 2 shows the insertion loss of the component from FIG. 1.
  • FIG. 3 shows an example of a further multiple resonance filter in a perspective external view, the external view comprising several options for the internal structure.
  • FIGS. 31, 31A, 31D show an example of the inner structure for a component with an outer structure according to FIG. 3.
  • Figures 32, 32A, 32D show the inner structure of another filter, the outer structure of which is shown in Figure 3.
  • Figures 33, 33A, 33D show an inner example
  • FIGS. 34, 34A, 34D show an example of the inner structure of a further filter, the outer structure of which is given by FIG. 3.
  • FIG. 4 shows an example of the outer structure for a filter, this structure for filters, the inner structure of which is shown in Figures 41, 41A and 41D and in Figures 42, 42A and 42D.
  • FIGS. 41, 4 A, 41D show the inner structure for an embodiment of the filter, the outer structure of which is given by FIG. 4.
  • Figures 42, 42A, 42D show the inner structure for a further filter ', the outer structure of which is given by Figure 4. ;
  • FIG. 5 shows an example of the outer structure of a filter in a perspective view, the outer structure being valid for a large number of inner structures.
  • FIGS. 51, 5 A, 51D show the inner structure of a filter, the outer structure of which is given by FIG. 5.
  • FIGS. 52, 52A, 52D show the inner structure of a further filter, the outer structure of which is given by FIG. 5.
  • FIG. 1 shows a multiple resonance filter which has a base body 1.
  • capacitors K1, K2, K3, K4 are arranged side by side in a row.
  • Each of the capacitors K1, K2, K3, K4 is connected to a first capacitor connection 211, 212, 213, 214 and to a second capacitor connection 221, 222, 223, 224.
  • the first capacitor connections 211, 212, 213, 214, each belonging to a capacitor K1, K2, K3, K4, are electrically conductively connected to one another by a contact 31.
  • the second capacitor connections 221, 222, 223, 224 belonging to a respective capacitor K1, K2, K3, K4 are electrically conductively connected to one another by a contact 32.
  • FIG. 2 shows the damping behavior of the multiple resonance filter from FIG. 1 in the event that the two capacitors K2 and K3 from FIG. 1 have the same capacitance C2.
  • the attenuation S is plotted in the unit decibel over the frequency f, measured in GHz, of an electrical signal that was applied to the filter. It can be seen in FIG. 2 that a very high attenuation of less than -40 dB was measured at the resonance frequencies fl and f2. This shows that the multiple resonance filter described in this appendix has very good damping properties.
  • the two resonance frequencies fl, f2 at which the minima appear in the damping curve are given by the capacitances C1 and C2 of the capacitors K1, K2, K3, K4.
  • FIG. 3 shows the outer structure of a multiple resonance filter, in which the external contacts 71, 72 are arranged in a cap shape on the end faces of the base body 1.
  • the cap-shaped arrangement of the external contacts 71, 72 has the advantage that the component is suitable for surface mounting technology.
  • the outer contact 71 is applied to the end face 81 of the base body 1 and the outer contact 72 is applied to the end face 82 of the base body 1.
  • FIG. 31 shows a section along the line CC from FIG. 3.
  • the dielectric layers 4 lying one above the other can be seen, which are separated from one another by electrode layers 52, 62. Since in the example in FIG. 31 the electrode layers 52, 62 are contacted via the end faces of the base body, in FIG. 31 the electrode layers 52, 62 are not extended to the outer lateral edge of the base body.
  • the electrode layers 52 belong to a multilayer capacitor, wherein the electrodes 52 are all connected in parallel with one another.
  • the electrode layers 62 which in turn, like the electrode layers 52 are stacked one above the other, also belong to the same multilayer capacitor as the electrode layers 52 and are arranged laterally offset to the electrode layers 52.
  • FIG. 31 The comb-like intermeshing of the electrode layers 52 and 62 can also be seen from FIG. In FIG. 31, the electrode layers 52 are identified by solid lines, while the electrode layers 62 are each identified by a dotted line. This applies analogously to FIGS. 31D, 32, 32D, 33, 33D, 34, 34D, 41, 41D, 42, 42D, 51, 51D, 52 and 52D.
  • the multilayer capacitors described here are all built as shown in FIG. 31. This applies in particular to the comb-like interlocking of the electrode layers.
  • FIG. 31A shows a section along the line AA from FIG. 31. It can be seen that three multilayer capacitors K1, K2, K3 are arranged in the interior of the multilayer component.
  • the two outer capacitors K1, K3 have electrode layers 51, 53 and 61, 63, which have the same areas.
  • the capacitors K1 and K3 therefore have the same capacitance.
  • the multilayer capacitor K2, which is arranged in the middle of the row of capacitors K1, K2, K3, on the other hand has electrode layers 52, 62 which are larger than the electrode layers 51, 61, 53, 63. Accordingly, the capacitor K2 has a larger capacitance than the capacitors Kl and K3.
  • FIG. 31A shows that the electrode lying in the sectional plane are shown as shaded areas, which are bounded by solid 'lines. Electrode layers arranged in a plane above or below this, in particular the electrode layers 61, 62, 63 and the inner connecting element 92, are represented by surfaces which are delimited by dashed lines.
  • FIG. 31A shows that the electrode layers 51, 52, 53 are connected to one another by an inner connecting element 91.
  • the inner connecting element 91 can be formed in the same way as the electrode layers 51, 52, 53. For example, in multi-layer technology nik be formed from a metal-containing paste.
  • the connecting element 91 is in direct contact with the external contact 72.
  • an inner connecting element 92 for the electrode layers 61, 62, 63 which connects these electrode layers 61, 62, 63 to one another in an electrically conductive manner.
  • the inner connecting element 92 is electrically conductively connected to the external contact 71.
  • An internal parallel connection of the capacitors K1, K2, K3 is thereby realized.
  • FIG. 31D shows a section along the line DD from FIG. 3 A. It can be seen in an analogous representation as in FIG. 31 that for each capacitor stacked electrode layers 51, 52, 53 (for the first contact of the capacitors, with solid lines marked) or stacked electrode layers 61, 62, 63 (for the second contact of the respective capacitor, marked with dashed lines).
  • the stacked electrode layers 51, 61 and 52, 62 and 53, 63 each form a multilayer capacitor K1, K2, K3.
  • the connecting elements 91, 92 are also shown in FIG. 31D. It should be noted that in the illustration in FIG. 31D, the connecting elements 91, 92 are also shown in a plurality as a stack of connecting elements 91, 92 stacked one on top of the other.
  • FIG. 32 shows the internal structure of a multiple resonance filter corresponding to FIG. 31, but with the difference that only the inner connecting elements 91, 92 are shown.
  • the inner connecting elements 91 are shown as dashed lines.
  • the inner connecting elements 92 are shown as solid lines.
  • FIG. 32A shows a section along the line AA from FIG. 32. It can be seen in an analogous manner to that in FIG. 31A that the multiple resonance filter consists of four capacitors K1, K2, K3, K4, which are arranged in a manner corresponding to FIG , Figure 31D and Figure 31 are constructed in an analogous manner.
  • the difference between see Figures 32, 32A and 32D to Figures 31, Figure 31A and Figure 31D consists only in the number of capacitors.
  • 32A also shows a feed line 110 or a feed line 111, from which it can be seen that inductances can be integrated into the component with the aid of the feed lines 110, 111.
  • the inductances are determined over the length of the leads 110, 111.
  • the supply lines 110, 111 have the function of the inner connecting elements 91, 92. It should be noted that the inductances of the component also depend on the shapes and areas of the electrode layers 51, 52, 53, 54 and 61, 62 , 63, 64, as shown in FIG. 32A as a top view and in FIG. 32D in cross section.
  • Figure 32D shows a section along line D-D of Figure 32A.
  • Four stacked electrode layers 51, 61 and 52, 62 and 53, 63 and 54, 64 are shown again.
  • the structure is again shown in accordance with the structure of Figure 31D.
  • FIGS. 33, 33A and 33D show a multiple resonance filter corresponding to FIGS. 31, 31A, 31D and corresponding to FIGS. 32, 32A, 32D with the difference that the electrode layers -51, 52, 53 and 61, 62, 63 respectively 33, 33A, 33D do not run transversely to the longitudinal direction of the base body, but rather in this longitudinal direction. Accordingly, the length of the inner connecting element 91, 92 is shortened, but the length of the electrode layers 51, 52, 53 and 61, 62, 63 is increased.
  • FIGS. 33, 33A, 33D corresponds to the examples from FIGS. 31, 31A, 3ID.
  • FIGS. 34, 34A, 34D show an embodiment of the multiple resonance filter corresponding to FIGS. 33, 33A, 33D with the difference that four instead of three multilayer capacitors are formed in the component.
  • FIG. 4 shows an outer structure for a group of multiple resonance filters, examples of this group being shown in FIGS. 41, 41A, 41D and 42, 42A, 42D for the inner structure.
  • FIG. 4 shows the multiple resonance filter with the base body 1, on the side surfaces 101, 102 of which external contacts 71, 72 are arranged.
  • FIG. 41 shows a section along the line C-C of FIG. 4.
  • FIGS. 41, 41A and 41D differ from the illustration in FIGS. 31, 31A, 31D only in that the contacting of the capacitors does not come from the end faces of the base body, but from the side faces of the base body he follows .
  • the length of the supply lines 110, 111 is correspondingly z. B. in Figures 41, 41A, 41D, which is why the inductance of the component is reduced in this embodiment.
  • FIGS. 41A, 41D each show sectional views as they correspond to FIGS. 31A, 31D in an analogous manner.
  • Figures 42, 42A, 42D show an embodiment for the multiple resonance filter corresponding to Figures 41, 41A, 41D, with the difference that a plurality of four capacitors
  • Kl, K2, K3, K4 is formed in the interior of the component instead of three capacitors. Otherwise, the representations in FIGS. 42, 42A, 42D correspond to the representations in FIGS. 41, 41A, 4ID.
  • FIG. 5 shows an outer structure for a multiple resonance filter, a base body 1 being provided.
  • the basic body per 1 has end faces 81, 82.
  • the base body 1 also has side surfaces 101, 102.
  • Four external contacts 711, 712, 713, 714 and 721, 722, 723, 724 are arranged on each side surface 101, 102.
  • each countertransference 'lying pair is one of external contacts 711, 721 or 712, 722 or 713, 723 or 714, 724 to a condenser in the interior of the base body.
  • FIG. 51 shows a section along the line CC from FIG. 5.
  • the illustration in FIGS. 51, 51A, 51D corresponds to the illustration in FIGS. 41, 41A, 41D, with the difference that the connecting elements 91, 92 are missing here, since everyone individual capacitor K1, K2, K3 is individually connected to external contacts 711, 712, 713, 714 or 721, 722, 723, 724 (see FIG. 51A). Otherwise, the illustration in FIGS. 51, 51A, 51D corresponds to the illustration in FIGS. 41, 41A, 41D.
  • FIGS. 52, 52A, 52D show the inner structure of a multiple resonance filter, as can be formed with an outer structure corresponding to FIG. 5.
  • the illustration in FIGS. 52, 52A, 52D corresponds to the illustration in FIGS. 51, 5LA, 51D, with the difference that four multilayer capacitors Kl, K2, K3, K4 instead of three capacitors Kl, K2, K3 of the component are arranged.
  • the two middle capacitors K2, ' K3 with regard to their electrode layers 52, 53 and 62, 63 in such a way that they have the same capacitance C2, the damping behavior at the second resonance frequency f2 can again be significantly improved.
  • the invention is not limited to multiple resonance filters with two filter frequencies, but can be applied to multiple resonance filters with a large number of different resonance frequencies. LIST OF REFERENCE NUMBERS

Abstract

Die Erfindung betrifft ein Mehrfachresonanzfilter als Vielschichtbauelement, enthaltend mindestens drei nebeneinanderliegende Vielschichtkondensatoren (K1, K2, K3, K4) mit mindestens zwei verschiedenen Kapazitäten (C1, C2, C3), wobei die beiden äußeren Vielschichtkondensatoren (K1, K4) dieselbe Kapazität (C1) aufweisen. Das Filter hat den Vorteil einer verbesserten Einfügedämpfung.

Description

Beschreibung
Mehrfachresonanzfilter
Die Erfindung betrifft ein Mehrfachresonanzfilter, das mehrere Vielschichtkondensatoren enthält.
Aus der Druckschrift US 5898562 ist ein Mehrfachresonanzfilter bekannt, bei dem in einem Vielschichtbauelement zwei ne- beneinanderliegende Vielschichtkondensatoren unterschiedlicher Kapazität integriert sind. Dieses Bauelement wird zur Dämpfung von Störsignalen bei zwei durch die Kapazitäten der beiden Kondensatoren vorgegebenen Frequenzen verwendet . Das bekannte Bauelement hat den Nachteil, das die Dämpfung rela- tiv schlechte Werte aufweist.
Es ist daher Aufgabe der vorliegenden Erfindung, ein Mehrfachresonanzfilter anzugeben, das gute Dämpfungswerte aufweist .
Diese Aufgabe wird gelöst durch ein Mehrfachresonanzfilter gemäß Patentanspruch 1. Vorteilhafte Ausgestaltungen der Erfindung sind den weiteren Patentansprüchen zu entnehmen.
Es wird ein Mehrfachresonanzfilter angegeben, das ein elektrisches Vielschichtbauelement ist. Es enthält mindestens drei Vielschichtkondensatoren, die nebeneinander angeordnet sind. Die Vielschichtkondensatoren weisen dabei wenigstens zwei voneinander verschiedene Kapazitäten auf . Die beiden äu- ßeren der in einer Reihe liegenden Vielschichtkondensatoren weisen dabei dieselbe Kapazität auf.
Durch den Aufbau des Mehrfachresonanzfilters mit nebeneinander in einer Reihe angeordneten Kondensatoren und durch das Ausbilden von Kondensatoren gleicher Kapazität an den beiden Rändern der Reihe kann erreicht werden, daß .eine Entkopplung der elektromagnetischen Felder im Filter stattfindet, wodurch das Dämpfungsverhalten bei den einzelnen Resonanzfrequenzen des Filters verbessert wird.
Daraus ergibt sich der Vorteil, daß das Mehrfachresonanzfil- ter ein verbessertes Dämpfungsverhalten aufweist.
In einer vorteilhaften Ausführungsform des Mehrfachresonanz- filters sind die Vielschichtkondensatoren zueinander parallel geschaltet. Durch die Parallelschaltung können die Filterei- genschaften des Mehrfachresonanzfilters noch zusätzlich verbessert werden. I
In einer Ausführungsform des VielSchichtbauelements ist ein GrundkörpQr vorgesehen, der einen Stapel aus übereinanderlie- genden Dielektrikumschichten aufweist. Zwischen den Dielektrikumschichten sind Elektrodenschichten angeordnet . Diese Ausführungsform hat den Vorteil, daß zur Realisierung des Mehrfachresonanzfilters die an und für sich gut bekannte Technologie der Vielschichtkondensatoren genutzt werden kann.
Vielschichtkondensatoren sind im allgemeinen so aufgebaut, daß kammartig ineinandergreifende Elektrodenstapel im Inneren des Bauelements durch innenliegende Elektrodenschichten gebildet werden. Jeder Stapel von Innenelektroden ist gemeinsam mit einem Außenkontakt verbunden.
In einer Ausführungsform des Mehrfachresonanzfilters sind Außenkontakte der Elektrodenschichten an den Stirnseiten des Grundkörpers angeordnet .
In einer anderen Ausführungsform des Mehrfachresonanzfilters sind zu verschiedenen Kondensatoren gehörende Elektrodenschichten im Inneren des Grundkörpers miteinander verbunden. Dadurch kann in vorteilhafter Weise im Inneren des Grundkör- pers, also im Inneren des Bauelements, eine Parallelschaltung der einzelnen Kondensatoren erfolgen. In einer Ausführungsform des Mehrfachresonanzfilters verlaufen Elektrodenschichten in Längsrichtung des Grundkörpers . In einer anderen Ausführungsform verlaufen Elektrodenschichten quer zur Längsrichtung des Grundkörpers .
In einer Ausführungsform des Mehrfachresonanzfilters sind Außenkontakte der Elektrodenschichten an Seitenflächen des Grundkörpers angeordnet. Diese Ausführungsform des Filters erlaubt es, die Außenkontakte einzeln jedem einzelnen Konden- sator des Vielschichtbauelements zuzuordnen und die gewünschte Verschaltung der Kondensatoren untereinander erst auf der mit dem Bauelement zu bestückenden Platine vorzunehmen. Da- durch wird die Flexibilität der Einsatzmöglichkeiten des Bauelements vorteilhafterweise erhöht.
Insbesondere wird es dadurch ermöglicht, daß die Vielschichtkondensatoren außerhalb des Grundkörpers zueinander parallel geschaltet werden.
In einer Ausführungsform des Filters sind drei Vielschichtkondensatoren vorgesehen. In einer anderen Ausführungsform des Filters sind vier Vielschichtkondensatoren vorgesehen, wobei die beiden mittleren Vielschichtkondensatoren dieselbe Kapazität aufweisen.
In einer Ausführungsform des Filters bilden die Vielschichtkondensatoren zusammen mit den Induktivitäten der Elektrodenschichten bzw. zusammen mit den Induktivitäten der Zuleitungen zu den Elektrodenschichten LC-Filter. Durch die Hinzunah- me von Induktivitäten zu dem Bauelement können die Filtereigenschaften des Bauelements weiter verbessert werden. Indem der Hauptbeitrag der für das Filter benötigten Induktivitäten von den Zuleitungen und den Elektrodenschichten herrührt, ist es möglich, die Induktivität durch eine entsprechende Ausge- staltung der Elektrodenschichten bzw. der Zuleitungen zu den Elektrodenschichten auf ein gewünschtes Maß einzustellen. In einer Ausführungsform des Filters enthalten die Dielektrikumschichten eine Kondensatorkeramik auf der Basis von Bari- umtitanat. Beispielsweise kommt als Dielektrikumschicht eine sogenannte "COG" -Keramik in Betracht. Ein solches Material wäre beispielsweise eine (Ba, Sm) NdTiOς-Keramik. Es kommt aber auch eine "X7R" -Keramik in Betracht, beispielsweise dotiertes Bariumtitanat .
In einer anderen Ausführungsform enthalten die Dielektrikum- schichten ein Kondensatormaterial mit Varistoreffekt.
Als Keramikmaterial mit Varistoreffekt kommt beispielsweise ein Keramikmaterial auf der Basis von ZnO-Bi oder ZnO-Pr in Betracht. Solche Dielektrikumschichten haben den Vorteil, daß sie neben dem Kondensator noch als weiteres Bauelement einen Varistor in das Vielschichtbauelement integrieren.
Es ist darüber hinaus auch möglich, Kondensatorkeramiken und Keramiken mit Varistoreffekt innerhalb eines einzigen Bauele- ments miteinander zu kombinieren.
In einer Ausfütirungsform des Filters weist der Grundkörper eine Grundfläche auf, die kleiner als 6 mm2 ist. Diese Ausführungsform hat den Vorteil, daß der Platzbedarf des Bauele- ments sehr klein ist, was vorteilhaft für miniaturisierte Schaltungen ist.
In einer Ausführungsform des Filters weisen Elektrodenschich- ten, die zu den beiden äußeren Vielschichtkondensatoren gehö- ren, gleiche Flächen auf. Diese Ausführungsform hat den Vorteil, daß die Forderung nach gleichen Kapazitäten der äußeren Vielschichtkondensatoren durch gleiche Flächen besonders leicht realisiert werden kann.
Im Folgenden wird die Erfindung anhand von Ausführungsbei- spielen und den dazugehörigen Figuren näher erläutert : Figur 1 zeigt ein Mehrfachresonanzfilter in einem schematischen Querschnitt .
Figur 2 zeigt die Einfügedämpfung des Bauelements aus Figur 1.
Figur 3 zeigt beispielhaft ein weiteres Mehrfachresonanz- filter in einer perspektivischen Außenansicht, wobei die Außenansicht mehrere Möglichkeiten für die innere Struktur um- faßt.
Figuren 31, 31A, 31D zeigen beispielhaft die innere Struktur für ein Bauelement mit einer äußeren Struktur gemäß Figur 3.
Figuren 32, 32A, 32D zeigen die innere Struktur eines weiteren Filters, dessen äußere Struktur in Figur 3 dargestellt ist.
Figuren 33, 33A, 33D zeigen beispielhaft eine innere
Struktur eines weiteren Bauelements, dessen äußere Struktur in Figur 3 gezeigt ist.
Figuren 34, 34A, 34D zeigen beispielhaft die innere Struktur eines weiteren Filters, wobei dessen äußere Struktur durch Figur 3 gegeben ist.
I i Figur 4 zeigt beispielhaft die äußere Struktur für ein Filter, wobei diese Struktur für Filter, deren innere Struktur in den Figuren 41, 41A und 41D sowie in den Figuren 42, 42A und 42D gezeigt ist, gilt.
Figuren 41, 4 A, 41D zeigen die innere Struktur für eine Ausführungsform des Filters, dessen äußere Struktur durch Fi- gur 4 gegeben ist. Figuren 42, 42A, 42D zeigen die innere Struktur für ein weiteres Filter', dessen äußere Struktur durch Figur 4 gegeben ist. ;
Figur 5 zeigt die äußere Struktur eines Filters beispielhaft in einer perspektivischen Ansicht, wobei die äußere Struktur für eine Vielzahl von inneren Strukturen gültig ist .
Figuren 51, 5 A, 51D zeigen die innere Struktur eines Filters, dessen äußere Struktur durch Figur 5 gegeben ist.
Figuren 52, 52A, 52D zeigen die innere Struktur eines weiteren Filters, dessen äußere Struktur durch Figur 5 gegeben ist.
Figur 1 zeigt ein Mehrfachresonanzfilter, das einen Grundkörper 1 aufweist. Im Inneren des Grundkörpers 1 sind Kondensatoren Kl, K2, K3, K4 nebeneinanderliegend in einer Reihe angeordnet. Jeder der Kondensatoren Kl, K2, K3 , K4 ist jeweils mit einem ersten Kondensatoranschluß 211, 212, 213, 214 und mit einem i zweiten Kondensatoranschluß 221, 222, 223, 224 verbunden. Die jeweils zu einem Kondensator Kl, K2 , K3 , K4 gehörenden ersten Kondensatoranschlüsse 211, 212, 213, 214 sind durch einen Kontakt 31 miteinander elektrisch leitend verbun- den. Die zu jeweils einem Kondensator Kl, K2, K3 , K4 gehörenden zweiten Kondensatoranschlüsse 221, 222, 223, 224 sind durch einen Kontakt 32 elektrisch leitend miteinander verbunden. Durch die Kontakte 31, 32 wird eine parallele Schaltung der Kondensatoren Kl, K2 , K3 , K4 realisiert. Die Kondensato- ren Kl, K2 , K3 , K4 sind hinsichtlich ihrer Kapazität Cl, C2 , C3 so ausgeführt, daß die Kondensatoren Kl und K4 die Kapazität Cl aufweisen, also in der Kapazität gleich sind. Die Kondensatoren K2 und K3 weisen die Kapazität C2 und C3 auf. Die Kapazitäten C2, C3 können gleich oder auch voneinander ver- schieden sein. Figur 2 zeigt das Dämpfungsverhalten des Mehrfachresonanzfilter aus Figur 1 für den Fall, daß die beiden Kondensatoren K2 und K3 aus Figur 1 die gleiche Kapazität C2 aufweisen. In Figur 2 ist die Dämpfung S in der Einheit Dezibel aufgetragen über die Frequenz f, gemessen in GHz, eines elektrischen Signals, welches an das Filter angelegt wurde. Es ist in Figur 2 zu erkennen, daß bei den Resonanzfrequenzen fl und f2 eine sehr hohe Dämpfung kleiner als -40 dB gemessen wurde. Dies zeigt, daß das Mehrfachresonanzfilter, welches in dieser An- meidung beschrieben wird, sehr gute Dämpfungseigenschaften hat. Die beiden Resonanzfrequenzen fl, f2 , bei denen die Mi- nima in der Dämpfungskurve auftreten, sind dabei durch die Kapazitäten Cl und C2 der Kondensatoren Kl, K2 , K3 , K4 gegeben.
Figur 3 zeigt die äußere Struktur eines Mehrfachresonanzfilters, bei dem die Außenkontakte 71, 72 an den Stirnseiten des Grundkörpers 1 kappenförmig angeordnet sind. Die kappenförmi- ge Anordnung der Außenkontakte 71, 72 hat den Vorteil, daß das Bauelement für die Oberflächenmontagetechnik geeignet ist. Dabei ist der Außenkontakt 71 an der Stirnfläche 81 des Grundkόrpers 1 und der Außenkontakt 72 an der Stirnseite 82 des Grundkörpers 1 aufgebracht .
Die Figur 31 zeigt einen Schnitt entlang der Linie C-C von Figur 3. Es sind die übereinanderliegenden Dielektrikumschichten 4 zu erkennen, die durch Elektrodenschichten 52, 62 voneinander getrennt sind. Da in dem Beispiel von Figur 31 die Kontaktierung der Elektrodenschichten 52, 62 über die Stirnseiten des Grundkörpers erfolgt, sind in Figur 31 die Elektrodenschichten 52, 62 nicht bis zum äußeren seitlichen Rand des Grundkörpers hinausgezogen. Die Elektrodenschichten 52 gehören dabei zu einem Vielschichtkondensator, wobei die Elektroden 52 alle miteinander parallel verschaltet sind. Die Elektrodenschichten 62, die ihrerseits ebenso wie die Elektrodenschichten 52 übereinandergestapelt sind, gehören ebenfalls zu demselben Vielschichtkondensator wie die Elektroden- schichten 52 und sind seitlich zu den Elektrodenschichten 52 versetzt angeordnet. Aus Figur 31 geht auch das kammartige Ineinandergreifen der Elektrodenschichten 52 und 62 hervor. In Figur 31 sind die Elektrodenschichten 52 durch durchgezo- gene Striche gekennzeichnet, während die Elektrodenschichten 62 durch jeweils eine gepunktete Linie gekennzeichnet sind. Dies gilt in analoger Art und Weise für die Figuren 31D, 32, 32D, 33, 33D, 34, 34D, 41, 41D, 42, 42D, 51, 51D, 52 und 52D.
Die hier beschriebenen Vielschichtkondensatoren sind prinzipiell alle so apfgebaut, wie in Figur 31 gezeigt. Dies gilt insbesondere für das kammartige Ineinandergreifen der Elektrodenschichten.
Figur 31A zeigt einen Schnitt entlang der Linie A-A aus Figur 31. Es ist erkennbar, daß im Inneren des Vielschichtbauelements drei Vielschichtkondensatoren Kl, K2, K3 angeordnet sind. Die beiden äußeren Kondensatoren Kl, K3 weisen dabei Elektrodenschichten 51, 53 bzw. 61, 63 auf, die gleiche Flä- chen haben. Daher haben die Kondensatoren Kl und K3 dieselbe Kapazität. Der Vielschichtkondensator K2 , der in der Mitte der Reihe von Kondensatoren Kl, K2 , K3 angeordnet ist, weist dagegen Elektrodenschichten 52, 62 auf, welche größer sind als die Elektrodenschichten 51, 61, 53, 63. Entsprechend hat der Kondensator K2 eine größere Kapazität als die Kondensatoren Kl und K3. In Figur 31A sind die in der Schnittebene liegenden Elektroden als schraffierte Flächen, welche von durchgezogenen 'Linien begrenzt sind, dargestellt. In einer darüber- oder darunterliegenden Ebene angeordnete Elektroden- schichten, dies sind insbesondere die Elektrodenschichten 61, 62, 63 sowie das innere Verbindungselement 92, sind durch Flächen, die von gestrichelten Linien begrenzt werden, dargestellt. In Figur 31A ist gezeigt, daß die Elektrodenschichten 51, 52, 53 durch ein inneres Verbindungselement 91 miteinan- der verbunden sind. Das innere Verbindungselement 91 kann in derselben Art und Weise wie die Elektrodenschichten 51, 52, 53 gebildet sein. Es kann beispielsweise in Vielschichttech- nik aus einer metallhaltigen Paste gebildet sein. Das Verbindungselement 91 ist unmittelbar mit dem Außenkontakt 72 kontaktiert. Entsprechend gibt es für die Elektrodenschichten 61, 62, 63 ein inneres Verbindungseiement 92, das diese Elektrodenschichten 61, 62, 63 miteinander elektrisch leitend verbindet.' Das innere Verbindungselement 92 ist mit dem Außenkontakt 71 elektrisch leitend verbunden. Dadurch wird eine innere Parallelschaltung der Kondensatoren Kl, K2, K3 realisiert .
Figur 31D zeigt einen Schnitt entlang der Linie D-D aus Figur 3 A. Es ist in einer analogen Darstellung wie in Figur 31 zu erkennen, daß es für jeden Kondensator übereinandergestapelte Elektrodenschichten 51, 52, 53 (für den ersten Kontakt der Kondensatoren, mit durchgezogenen Linien gekennzeichnet) bzw. übereinandergestapelte Elektrodenschichten 61, 62, 63 (für den zweiten Kontakt des jeweiligen Kondensators, mit gestrichelten Linien gekennzeichnet) gibt. Die übereinandergesta- pelten Elektrodenschichten 51, 61 sowie 52, 62 und 53, 63 bilden jeweils einen Vielschichtkondensator Kl, K2, K3. Es sind ferner die Verbindungselemente 91, 92 in Figur 31D gezeigt . Es ist dabei zu beachten, daß in der Darstellung von Figur 31D auch die Verbindungselemente 91, 92 in einer Vielzahl als Stapel von Verbindungselementen 91, 92 übereinander- gestapelt dargestellt sind.
Figur 32 zeigt den inneren Aufbau eines Mehrfachresonanzfilters entsprechend Figur 31, jedoch mit dem Unterschied, daß nur die inneren Verbindungselemente 91, 92 dargestellt sind. Die inneren Verbindungselemente 91 sind als gestrichelte Linien dargestellt. Die inneren Verbindungselemente 92 sind als durchgezogene Linien dargestellt. Figur 32A zeigt einen Schnitt entlang der Linie A-A aus Figur 32. Es ist in analoger Art und Weise wie in Figur 31A zu erkennen, daß das Mehr- fachresonanzfilter aus vier Kondensatoren Kl, K2 , K3 , K4 besteht, welche in einer zu Figur 31A, Figur 31D und Figur 31 analogen Art und Weise aufgebaut sind. Der Unterschied zwi- sehen den Figuren 32, 32A und 32D zu den Figuren 31, Figur 31A und Figur 31D besteht lediglich in der Anzahl von Kondensatoren. In Figur 32A ist noch eine Zuleitung 110 bzw. eine Zuleitung 111 gezeigt, woraus hervorgeht, daß mit Hilfe der Zuleitungen 110, 111 Induktivitäten in das Bauelement integriert werden können. Dabei werden die Induktivitäten über die Länge der Zuleitungen 110, 111 bestimmt. Die Zuleitungen 110, 111 haben dabei die Aufgabe der inneren Verbindungselemente 91, 92. Es ist dabei zu beachten, daß die Induktivitä- ten des Bauelements auch noch von den Formen und Flächen der Elektrodenschichten 51, 52, 53, 54 bzw. 61, 62, 63, 64, wie sie in Figur 32A als Draufsicht und in Figur 32D im Querschnitt dargestellt sind, abhängen.
Die Figur 32D zeigt einen Schnitt entlang der Linie D-D von Figur 32A. Es sind noch mal vier übereinandergestapelte Elektrodenschichten 51, 61 bzw. 52, 62 bzw. 53, 63 und 54, 64 dargestellt. Der Aufbau ist wieder entsprechend dem Aufbau von Figur 31D dargestellt.
Die Figuren 33,, 33A und 33D zeigen ein Mehrfachresonanzfilter entsprechend deμ Figuren 31, 31A, 31D bzw. entsprechend den Figuren 32, 32A, 32D mit dem Unterschied, daß die Elektrodenschichten -51, 52, 53 bzw. 61, 62, 63 bei dem Ausführungsbei- spiel gemäß den Figuren 33, 33A, 33D nicht quer zur Längsrichtung des Grundkörpers, sondern in dieser Längsrichtung verlaufen. Dementsprechend ist die Länge des inneren Verbindungselements 91, 92 verkürzt, wobei jedoch die Länge der Elektrodenschichten 51, 52, 53 bzw. 61, 62, 63 vergrößert ist. Die verschiedenen Ausführungsbeispiele hinsichtlich der Orientierung der Elektrodenschichten 51, 52, 53, 54 bzw. 61, 62, 63, 64 zeigen, daß man bei der Gestaltung der Kapazitäten bzw. Induktivitäten für das Mehrfachresonanzfilter einen großen Spielraum hat. Ansonsten entspricht die Darstellung der Figuren 33, 33A, 33D den Beispielen aus den Figuren 31, 31A, 3ID. Die Figuren 34, 34A, 34D zeigen eine Ausführungsform des Mehrfachresonanzfilters entsprechend den Figuren 33, 33A, 33D mit dem Unterschied, daß vier anstelle von drei Vielschichtkondensatoren in dem Bauelement ausgebildet sind.
Figur 4 zeigt eine äußere Struktur für eine Gruppe von Mehrfachresonanzfiltern, wobei beispielhaft für diese Gruppe in den Figuren 41, 41A, 41D sowie 42, 42A, 42D Ausführungsformen für die Innenstruktur gezeigt sind. Figur 4 zeigt das Mehr- fachresonanzfilter mit dem Grundkörper 1, an dessen Seitenflächen 101, 102 Außenkontakte 71, 72 angeordnet sind.
Figur 41 zeigt einen Schnitt entlang der Linie C-C von Figur 4. Es sind analog zur Darstellung in den Figuren 31, 32, 33, 34 Stapel von übereinanderliegen Dielektrikumschichten 4 sowie Elektrodenschichten 52, 62 dargestellt. Die in den Figuren 41, 41A und 41D gezeigten Ansichten des Mehrfachresonanz- filters unterscheiden sich von der Darstellung in den Figuren 31, 31A, 31D lediglich dadurch, daß die Kontaktierung der Kondensatoren nicht von den Stirnflächen des Grundkörpers, sondern von den Seitenflächen des Grundkörpers her erfolgt . Entsprechend ist die Länge der Zuleitungen 110, 111 z. B. bei den Figuren 41, 41A, 41D verkürzt, weswegen bei dieser Ausführungsform die Induktivität des Bauelements verringert ist. Die Figuren 41A, 41D zeigen jeweils Schnittansichten, wie sie in analoger Weise den Figuren 31A, 31D entsprechen.
I
Die Figuren 42, 42A, 42D zeigen eine Ausführungsform für das Mehrfachresonanzfilter entsprechend den Figuren 41, 41A, 41D, mit dem Unterschied, daß eine Vielzahl von vier Kondensatoren
Kl, K2, K3 , K4 anstelle von drei Kondensatoren im Inneren des Bauelements ausgebildet ist. Ansonsten entsprechen die Darstellungen in den Figuren 42, 42A, 42D den Darstellungen in den Figuren 41, 41A, 4ID.
Figur 5 zeigt eine äußere Struktur für ein Mehrfachresonanzfilter, wobei ein Grundkörper 1 vorgesehen ist. Der Grundkör- per 1 weist Stirnseiten 81, 82 auf. Der Grundkörper 1 weist auch Seitenflächen 101, 102 auf. An jeder Seitenfläche 101, 102 sind jeweils vier Außenkontakte 711, 712, 713, 714 bzw. 721, 722, 723, 724 angeordnet. Dabei gehört jedes gegenüber- ' liegende Paar von Außenkontakten 711, 721 bzw. 712, 722 bzw. 713, 723 bzw. 714, 724 zu einem Kondensator im Inneren des Grundkörpers 1.
Figur 51 zeigt einen Schnitt entlang der Linie C-C von Figur 5. Die Darstellung in den Figuren 51, 51A, 51D entspricht der Darstellung in den Figuren 41, 41A, 41D, mit dem Unterschied, daß hier die Verbindungselemente 91, 92 fehlen, da jeder einzelne Kondensator Kl, K2, K3 einzeln mit Außenkontakten 711, 712, 713, 714 bzw. 721, 722, 723, 724 (vergleiche Figur 51A) verbunden ist. Im übrigen entspricht die Darstellung in den Figuren 51, 51A, 51D der Darstellung in den Figuren 41, 41A, 41D.
Die Figuren 52, 52A, 52D zeigen die innere Struktur eines Mehrfachresonanzfilters, wie es mit einer Außenstruktur entsprechend ' Figur 5 ausgebildet werden kann. Die Darstellung in den Figuren 52, 52A, 52D entspricht der Darstellung in den Figuren 51, 5LA, 51D, mit dem Unterschied, daß vier Viel- Schichtkondensatoren Kl, K2 , K3 , K4 anstelle von drei Konden- satoren Kl, K2 , K3 entlang des Bauelements angeordnet sind. Indem die beiden mittleren Kondensatoren K2,' K3 hinsichtlich ihrer Elektrodenschichten 52, 53 bzw. 62, 63 so ausgebildet sind, daß sie dieselbe Kapazität C2 aufweisen, kann das Dämpfungsverhalten bei der zweiten Resonanzfrequenz f2 noch mal deutlich verbessert werden.
Die Erfindung beschränkt sich nicht auf Mehrfachresonanzfilter mit zwei Filterfrequenzen, sondern kann auf Mehrfachresonanzfilter mit einer Vielzahl verschiedener Resonanzfrequen- zen angewendet werden. Bezugszeichenliste
1 Grundkörper
211, 212, 213, 214 erste Kondensatoranschlüsse 221, 222, 223, 223 zweite Kondensatoranschlüsse 31, 32 Kontakt
4 Dielektrikύmschicht
51, 52, 53, 54 Elektrodenschicht
61, 62, 63, 64 Elektrodenschicht 711, 712, ^713, 714 Außenkontakt
721, 722, 723, 724 Außenkontakt
71, 72 Außenkontakt
81, 82 Stirnseite
91, 92 inneres Verbindungseiement 101, 102 Seitenfläche
110, 111 Zuleitung
Cl, C2, C3 Kapazität
Kl, K2, K3, K4 Kondensator
5 Einfügedämpfung f Frequenz fl, f2 Resonanzfrequenz

Claims

Patentansprüche
1. Mehrfachresonanzfilter als Vielschichtbauelement,
- enthaltend mindestens drei nebeneinanderliegende Viel- Schichtkondensatoren (Kl, K2 , K3 , K4) mit mindestens zwei verschiedenen Kapazitäten (Cl, C2 , C3) ,
- wobei die beiden äußeren Vielschichtkondensatoren (Kl, K4) dieselbe Kapazität (Cl) aufweisen.
2. Filter nach Anspruch 1,
- bei dem die Vielschichtkondensatoren (Kl, K2 , K3 , K4) zueinander parallel geschaltet sind.
3. Filter ;nach einem der Ansprüche 1 oder 2 , - das einen Grundkörper (1) aufweist und das einen Stapel aus übereinanderliegenden Dielektrikumschichten (4) mit dazwischenliegenden Elektrodenschichten (51, 52, 53, 54; 61, 62, 63, 64) aufweist.
4. Filter nach Anspruch 3,
- bei dem Außenkontakte (71, 72) der Elektrodenschichten (51, 52, 53, 54; 61, 62, 63, 64) an den Stirnseiten (81, 82) des Grundkörpers (1) angeordnet sind.
5. Filter nach einem der Ansprüche 3 bis 4,
- bei dem zu verschiedenen Kondensatoren (Kl, K2 , K3 , K4) gehörende Elektrodenschichten (51, 52, 53, 54; 61, 62, 63, 64) im Inneren des Grundkörpers (1) miteinander verbunden sind.
6. Filter nach einem der Ansprüche 3 bis 5,
- bei dem Elekt'rodenschichten (51, 52, 53, 54; 61, 62, 63, 64) in Längsrichtung des Grundkörpers (1) verlaufen.
7. Filter ,nach einem der Ansprüche 3 bis 5,
- bei dem Elektrodenschichten (51, 52, 53, 54; 61, 62, 63, 64) quer zur Längsrichtung des Grundkδrpers (1) verlaufen.
8. Filter nach einem der Ansprüche 3 bis 6,
- bei dem Außenelektroden (711, 712, 713, 714; 721, 722, 723, 724, 71, 72) der Elektrodenschichten (51, 52, 53, 54; 61, 62, 63, 64) an Seitenflächen (101, 102) des Grundkörpers (1) angeordnet sind.
9. Filter nach einem der Ansprüche 3 bis 7,
- bei dem die Vielschichtkondensatoren (Kl, K2 , K3 , K4) au- ßerhalb des Grundkörpers (1) zueinander parallel geschaltet sind.
10. Filter nach einem der Ansprüche 1 bis 9,
- bei dem drei Vielschichtkondensatoren (Kl, K2 , K3) vorgese- hen sind.
I
11. Filter nach einem der Ansprüche 1 bis 9,
- bei dem vier Vielschichtkondensatoren (Kl, K2, K3 , K4) vorgesehen sind, wobei die beiden mittleren Vielschichtkonden- satoren (K2, K3) dieselbe Kapazität (C2) aufweisen.
12. Filter nach einem der Ansprüche 1 bis 11,
- bei dem die Vielschichtkondensatoren (Kl, K2 , K3 , K4) zusammen mit Induktivitäten der Elektrodenschichten (51, 52, 53, 54; 61, 62, 63, 64) und der Zuleitungen (110, 111) LC- Filter bilden.
13. Filter nach einem der Ansprüche 3 bis 12,
- bei dem die Dielektrikumschichten (4) eine Kondensatorkera- mik auf der Basis von Bariumtitanat enthalten.
14. Filter nach einem der Ansprüche 3 bis 13,
- bei dem die Elektrodenschichten ein Keramikmaterial mit Varistoreffekt enthalten.
15. Filter nach einem der Ansprüche 3 bis 14, - bei dem der Grundkδrper (1) eine Grundfläche aufweist, die kleiner als 6 m2 ist.
16. Filter nach einem Ansprüche 3 bis 15,
- bei dem Elektrodenschichten (51, 52, 53, 54; 61, 62, 63, 64) , die zu den beiden äußeren Vielschichtkondensatoren (Kl, K4) gehören, gleiche Flächen aufweisen.
PCT/DE2003/002986 2002-09-09 2003-09-09 Mehrfachresonanzfilter WO2004025831A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/526,687 US7403083B2 (en) 2002-09-09 2003-09-09 Multiple resonance filter
EP03769185.4A EP1537655B1 (de) 2002-09-09 2003-09-09 Mehrfachresonanzfilter
JP2004535011A JP4469719B2 (ja) 2002-09-09 2003-09-09 多重共振器フィルタ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10241674A DE10241674A1 (de) 2002-09-09 2002-09-09 Mehrfachresonanzfilter
DE10241674.5 2002-09-09

Publications (1)

Publication Number Publication Date
WO2004025831A1 true WO2004025831A1 (de) 2004-03-25

Family

ID=31895724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002986 WO2004025831A1 (de) 2002-09-09 2003-09-09 Mehrfachresonanzfilter

Country Status (5)

Country Link
US (1) US7403083B2 (de)
EP (1) EP1537655B1 (de)
JP (1) JP4469719B2 (de)
DE (1) DE10241674A1 (de)
WO (1) WO2004025831A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004032706A1 (de) 2004-07-06 2006-02-02 Epcos Ag Verfahren zur Herstellung eines elektrischen Bauelements und das Bauelement
DE102004058410B4 (de) * 2004-12-03 2021-02-18 Tdk Electronics Ag Vielschichtbauelement mit ESD-Schutzelementen
DE102005012395A1 (de) * 2005-03-17 2006-09-21 Epcos Ag Durchführungsfilter und elektrisches Mehrschicht-Bauelement
DE102009049077A1 (de) 2009-10-12 2011-04-14 Epcos Ag Elektrisches Vielschichtbauelement und Schaltungsanordnung
DE102012104117B4 (de) * 2012-05-10 2022-09-22 Guido Schulte Verbindungsdübel sowie Verbindung zweier Bauelemente
JP2015019045A (ja) * 2013-07-15 2015-01-29 サムソン エレクトロ−メカニックス カンパニーリミテッド. アレイ型積層セラミック電子部品及びその実装基板
KR101525672B1 (ko) * 2013-07-15 2015-06-03 삼성전기주식회사 어레이형 적층 세라믹 전자 부품 및 그 실장 기판
US11670453B2 (en) * 2020-07-20 2023-06-06 Knowles UK Limited Electrical component having layered structure with improved breakdown performance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6088214A (en) * 1998-06-01 2000-07-11 Motorola, Inc. Voltage variable capacitor array and method of manufacture thereof
EP1079520A2 (de) * 1999-08-23 2001-02-28 Murata Manufacturing Co., Ltd. Mehrschichtiges zusammengesetztes elektronisches Bauelement
US6304156B1 (en) * 1993-08-24 2001-10-16 Toshio Ishizaki Laminated dielectric antenna duplexer and a dielectric filter
EP1215748A1 (de) * 1994-09-28 2002-06-19 Murata Manufacturing Co., Ltd. Zusammengestellte Hochfrequenz-Vorrichtung

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3617834A (en) * 1970-08-31 1971-11-02 Illinois Tool Works Monolithic capacitor components and process for producing same
US4729058A (en) * 1986-12-11 1988-03-01 Aluminum Company Of America Self-limiting capacitor formed using a plurality of thin film semiconductor ceramic layers
JPH0635462Y2 (ja) * 1988-08-11 1994-09-14 株式会社村田製作所 積層型コンデンサ
JPH0831392B2 (ja) * 1990-04-26 1996-03-27 株式会社村田製作所 積層コンデンサ
JPH0555856A (ja) * 1991-08-22 1993-03-05 Tdk Corp Lcフイルタ
US5657199A (en) * 1992-10-21 1997-08-12 Devoe; Daniel F. Close physical mounting of leaded amplifier/receivers to through holes in monolithic, buried-substrate, multiple capacitors simultaneous with electrical connection to dual capacitors otherwise transpiring, particularly for hearing aid filters
US5428499A (en) * 1993-01-28 1995-06-27 Storage Technology Corporation Printed circuit board having integrated decoupling capacitive core with discrete elements
JP3134640B2 (ja) * 1993-12-09 2001-02-13 株式会社村田製作所 容量内蔵型積層電子部品
JPH07201634A (ja) * 1993-12-28 1995-08-04 Tdk Corp セラミックチップ部品
US5898562A (en) * 1997-05-09 1999-04-27 Avx Corporation Integrated dual frequency noise attenuator
US6058004A (en) * 1997-09-08 2000-05-02 Delaware Capital Formation, Inc. Unitized discrete electronic component arrays
DE10064447C2 (de) * 2000-12-22 2003-01-02 Epcos Ag Elektrisches Vielschichtbauelement und Entstörschaltung mit dem Bauelement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6304156B1 (en) * 1993-08-24 2001-10-16 Toshio Ishizaki Laminated dielectric antenna duplexer and a dielectric filter
EP1215748A1 (de) * 1994-09-28 2002-06-19 Murata Manufacturing Co., Ltd. Zusammengestellte Hochfrequenz-Vorrichtung
US6088214A (en) * 1998-06-01 2000-07-11 Motorola, Inc. Voltage variable capacitor array and method of manufacture thereof
EP1079520A2 (de) * 1999-08-23 2001-02-28 Murata Manufacturing Co., Ltd. Mehrschichtiges zusammengesetztes elektronisches Bauelement

Also Published As

Publication number Publication date
DE10241674A1 (de) 2004-03-25
JP4469719B2 (ja) 2010-05-26
EP1537655A1 (de) 2005-06-08
US7403083B2 (en) 2008-07-22
EP1537655B1 (de) 2016-03-16
US20060104002A1 (en) 2006-05-18
JP2005538622A (ja) 2005-12-15

Similar Documents

Publication Publication Date Title
DE4008507C2 (de) Laminiertes LC-Filter
DE4113576C2 (de) Vielschichtkondensator
EP2143117B1 (de) Elektrisches vielschichtbauelement mit elektrisch nicht kontaktierter abschirmstruktur
DE69930680T2 (de) Laminiertes Filter
DE19628890A1 (de) Elektronikteile mit eingebauten Induktoren
WO2002052614A1 (de) Elektrisches vielschichtbauelement und entstörschaltung mit dem bauelement
EP1369880B1 (de) Elektrisches Vielschichtbauelement und Schaltungsanordnung
DE69823637T2 (de) Laminat-Varistor
DE112018005239T5 (de) Abstimmbarer Mehrschichtkondensator mit hoher Kapazität und Array
EP1880399B1 (de) Elektrisches durchführungsbauelement
EP1425762B1 (de) Elektrisches vielschichtbauelement
EP1817778B1 (de) Vielschichtbauelement mit mehreren varistoren unterschiedlicher kapazität als esd-schutzelement
EP1537655B1 (de) Mehrfachresonanzfilter
EP1369881B1 (de) Elektrisches Vielschichtbauelement
DE19814688B4 (de) Chip-artiges piezoelektrisches Filter
EP1776725B1 (de) Piezoelektrischer transformator
EP1391898B1 (de) Elektrisches Vielschichtbauelement
DE102004010001A1 (de) Elektrisches Bauelement und schaltungsanordnung mit dem Bauelement
DE10064445A1 (de) Elektrisches Vielschichtbauelement und Anordnung mit dem Bauelement
DE102004016146B4 (de) Elektrisches Vielschichtbauelement
EP1560235B1 (de) Elektrisches Vielschichtbauelement
DE102004029411B4 (de) Keramischer Mehrschichtkondensator
DE1614591B1 (de) Stapelkondensator der auf einen gewünschten sollwert seiner kapazität abgleichbar ist
DE2439581C2 (de) Abgleichbarer Schichtkondensator
DE4410753A1 (de) Kondensator-Array

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003769185

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004535011

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003769185

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006104002

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10526687

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10526687

Country of ref document: US