WO2004024609A1 - Elevator controller - Google Patents

Elevator controller Download PDF

Info

Publication number
WO2004024609A1
WO2004024609A1 PCT/JP2002/009267 JP0209267W WO2004024609A1 WO 2004024609 A1 WO2004024609 A1 WO 2004024609A1 JP 0209267 W JP0209267 W JP 0209267W WO 2004024609 A1 WO2004024609 A1 WO 2004024609A1
Authority
WO
WIPO (PCT)
Prior art keywords
car
floor
distance
speed
control device
Prior art date
Application number
PCT/JP2002/009267
Other languages
French (fr)
Japanese (ja)
Inventor
Masanori Yasue
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to KR1020047007099A priority Critical patent/KR100619616B1/en
Priority to CNB028227816A priority patent/CN100372752C/en
Priority to EP02765482A priority patent/EP1538121B1/en
Priority to JP2004535830A priority patent/JP4288236B2/en
Priority to PCT/JP2002/009267 priority patent/WO2004024609A1/en
Publication of WO2004024609A1 publication Critical patent/WO2004024609A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/24Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration
    • B66B1/28Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical
    • B66B1/285Control systems with regulation, i.e. with retroactive action, for influencing travelling speed, acceleration, or deceleration electrical with the use of a speed pattern generator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B1/00Control systems of elevators in general
    • B66B1/34Details, e.g. call counting devices, data transmission from car to control system, devices giving information to the control system
    • B66B1/36Means for stopping the cars, cages, or skips at predetermined levels
    • B66B1/44Means for stopping the cars, cages, or skips at predetermined levels and for taking account of disturbance factors, e.g. variation of load weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B7/00Other common features of elevators
    • B66B7/06Arrangements of ropes or cables

Definitions

  • the present invention relates to a control device for an elevator that drives a car up and down by a plurality of winding machines.
  • Japanese Patent Application Laid-Open No. 6-64863 discloses a system in which a pulley is provided on a car, a main rope is wound around the pulley, and the pulley is started up and driven by two small hoists. It has been disclosed.
  • FIG. 17 shows a conventional elevator having the same contents as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 6_64863, in which a car is driven by two hoists.
  • a pulley 201 is attached to the car 2, and the main rope 13 is wound around the pulley 201 to start up, and further wound around the hoisting machines 9L and 9R to be lowered and the counterweight 17L Locked to the 17 R.
  • Each of the hoisting machines 9L and 9R is an equivalent product consisting of a sheave 10L, 101, brakes 11_111, motors 12 and 12R of the same specifications.
  • Reference numerals 202, 203L, 203R, 204L and 204R indicate pulleys for guiding the main cable 13.
  • the size of the hoist can be reduced, and when a speed difference occurs between each of the winding machines 9 L and 9 R, the pulley 201 rotates and the winding is performed.
  • the torque sharing between the upper units 9 L and 9 R is always equalized.
  • the main rope 13 is transferred from the hoisting machine 9R side to the hoisting machine 9L side. Will be.
  • the transfer of the main rope 13 causes the balance suspended by the hoisting machine 9R.
  • the weight 17R is lifted, and the counterweight 17L suspended by the hoist 9L is suspended and brought into a state indicated by reference numerals 17L 'and 17R'.
  • the brakes 11 L and 11 R are the most important safety devices. Due to such importance, when two hoisting machines 9 L and 9 R are used, at least one of the brakes 11 L and 11 R is used. It is desirable that car 2 be able to stop when R operates.
  • Japanese Unexamined Patent Publication No. 7-25553 discloses that the relative position of the main cable 13 is detected by detecting the rotation angle of the pulley 201 and feeding it to the speed command input side of one motor 12L or 12R. A configuration in which the deviation is zero is disclosed. Therefore, according to this, the torque distribution between the hoisting machines 9 L and 9 R is equalized, the relative displacement of the main cable 13 is prevented, and the car 2 and the counterweight 17 L, 17 R Can be maintained in a normal state.
  • the present invention solves the above-described problems by reducing the size of the hoist by driving the car with a plurality of hoists, and at the same time, the relative position of the main cable generated by each hoist.
  • a control device for an elevator that can stably raise and lower a car by preventing a positional displacement beforehand or correcting a relative displacement of a main rope when it occurs.
  • the purpose is to: Summary of the Invention 1.
  • the present invention relates to a method for raising and lowering a car by individually locking main ropes to a plurality of portions of a car that moves up and down in a hoistway and winding the car around a plurality of hoisting machines installed correspondingly.
  • the tension of the main rope in a stationary state before starting the car is detected for each main rope locking portion, and the output of the corresponding hoist is detected as described above.
  • the car is driven up and down by increasing or decreasing individually based on the value. For this reason, even if the load is biased and loaded on the car and the tension of the main ropes is different for each main rope locking part, the hoist drives the car with a reasonable output, so the relative Movement can be prevented and the car can be prevented from tilting abnormally.
  • the present invention sums up the tensions detected for each main rope locking portion in a stationary state of the car before starting, and uses the sum as a load in the car.
  • the degree of congestion in the car is calculated. Therefore, there is no need to install a separate detector to detect the load.
  • the present invention relates to a method in which a main rope is individually fixed to a plurality of portions of a car that moves up and down the hoistway, and the main rope is started up and wound around a plurality of hoisting machines installed correspondingly.
  • the elevator control device that moves up and down detects the difference between the floor and the car floor when the car arrives at the destination floor for each main rope anchoring section, and this detected value exceeds a predetermined value.
  • the main hoist locking parts are individually moved up and down by the corresponding hoist to make the floor fit. For this reason, even if the hoisting machine causes relative movement of the main ropes and the car floor is inclined, the relative movement of the main ropes will not increase cumulatively because they will be corrected by floor matching.
  • the present invention relates to an elevator control apparatus in which a car is driven up and down by a plurality of hoists, wherein a hoisting distance is calculated for each hoist, and a difference between the calculated values is a predetermined value.
  • the hoisting machine is stopped when it exceeds. For this reason, the car floor can be prevented from abnormally tilting.
  • the present invention calculates the above-mentioned lifting distance by measuring the rotational angular velocity of the hoist, and stops the hoist when the difference between the calculated values exceeds a predetermined value. It is something that has been done. For this reason, the hoisting machine can be stopped not only when the main ropes actually move relative to each other, but also when the turning of the hoisting machine is irregular and the rotation angular velocity is different. If there is a variation in the wear of the upper machine, Can be.
  • the present invention relates to an elevator control device in which a car is driven up and down by a plurality of hoists, wherein the power of the motor of each hoist is individually measured, and the difference between the measured values is measured. When a predetermined value is exceeded, the hoist is stopped. For this reason, it is possible to prevent operation in a state where the load is extremely biased to one motor, for example, in a state where the car is abnormally inclined.
  • the present invention further relates to a car for raising and lowering a main hoist individually at a plurality of portions of a car which is moved up and down in a hoistway, and winding the car around a plurality of hoisting machines installed correspondingly.
  • the elevator control device that drives the elevator up and down
  • the up-and-down distance from the departure floor to the destination floor is calculated in advance and given as a common target ascent / descent distance to each winding machine.
  • the remaining distance is calculated for each main rope anchoring section, and the speed corresponding to the remaining distance is used as a speed command to individually control each corresponding hoist. For this reason, speed control suitable for the target ascent / descent distance becomes possible, and it is possible to accurately land on the destination floor.
  • the present invention relates to the above-mentioned car, in which the main ropes are individually locked at a plurality of portions of the car which rises and descends in the hoistway, and the main ropes are started up and wound around a plurality of hoisting machines installed correspondingly.
  • the operation command is issued at the beginning of the elevator control device that drives the elevator up and down
  • the speed command is calculated over time and the hoist is controlled collectively. From the deceleration point set in front of the predetermined distance to the destination floor, the speed corresponding to the remaining distance is calculated for each main rope locking part, and each hoist corresponding to the speed command is controlled individually. It is.
  • the detection area is reduced as compared with the case where the car position is detected over the entire range of the elevating distance, so that the car position detecting device can be simplified by the amount corresponding to the reduction, and the remaining position from the deceleration point can be reduced.
  • the control is performed by speed commands corresponding to the distance, so that the rider can land accurately without impairing the riding comfort.
  • FIG. 1 is a perspective view showing the entirety including a preferred elevator control apparatus according to Embodiment 1 of the present invention.
  • FIG. 2 is a block diagram showing an electric circuit in the same manner.
  • FIG. 3 is a longitudinal sectional view showing a main part of the tension detector 21 in the same manner.
  • FIG. 4 is an explanatory diagram showing an operation state of the tension detector 21 in the same manner.
  • FIG. 5 is a perspective view showing the car position detectors 35 and 41 in the same manner.
  • FIG. 6 is a front view showing the car 2 at the time of landing.
  • FIG. 7 is a front view showing the car 2 at the time of landing.
  • FIG. 8 is an explanatory diagram showing a speed command V o with respect to the remaining distance in the call answering operation.
  • FIG. 9 is an explanatory diagram showing a speed command L Vo with respect to the remaining distance in the floor-matching operation.
  • FIG. 10 is a flowchart showing the operation of the call answering operation.
  • FIG. 11 is a flowchart showing the operation of the floor matching operation.
  • FIG. 12 is a block diagram showing an electric circuit of a preferred elevator control apparatus according to Embodiment 2 of the present invention.
  • FIG. 13 is a perspective view showing a car position detector 41 according to Embodiment 2 of the present invention.
  • FIG. 14 is an explanatory diagram showing a time-to-speed command V ao and a remaining distance-to-speed command V do in a call answering operation according to the second embodiment of the present invention.
  • FIG. 15 is a flowchart showing a call answering operation according to Embodiment 2 of the present invention.
  • FIG. 16 is a perspective view showing the entirety of a preferred elevator according to Embodiment 3 of the present invention.
  • FIG. 17 is a conceptual diagram of a conventional elevator equipped with a plurality of winding machines.
  • the elevator is provided with two hoisting machines on the left and right, and is similar to the elevator disclosed in Japanese Patent Application Laid-Open No. 2000-261257. You The elements related to the left side are marked with “L” at the end of the code, the elements related to the right side with “R” at the end of the code, and the left and right are Omit “L” and “R” when grouping without distinction.
  • FIG. 1 to FIG. 11 show Embodiment 1 of a control device for an entire elevator equipped with a plurality of hoists according to the present invention.
  • two hoists are installed at the top of the hoistway, and the distance from the departure floor to the destination floor is given to each hoist as a target elevating distance, and the remaining from the current position to the destination floor is provided.
  • Each hoist is individually controlled at a speed commensurate with the distance.
  • FIG. 1 is a perspective view showing the entire control device of the elevator.
  • 1 is the hoistway
  • 2 is the car
  • 3 is the car floor
  • 4 is the lower frame that supports the car floor
  • 5 is the vertical frame erected on both left and right sides of car 2
  • 6 is above car 2. It is the upper frame which was installed horizontally.
  • Reference numeral 7 denotes a pair of car guide rails which are fixed to the hoistway side walls on both sides of the car 2
  • 8 denotes weight guide rails which are fixed to the hoistway side walls on the back of the car 2 to stand upright.
  • a pair of weight guide rails 8 are provided side by side on the right and left, respectively.
  • Reference numeral 9 denotes a pair of hoisting machines installed on the left and right of the hoistway 1 so as to be spaced apart from each other at the top, and drives the sheave 10, the brake 11 for stopping the sheave 10, and the sheave 10. It consists of a motor 1 2.
  • 1 3 is a pair of left and right main ropes wound around the sheave 10 and one end of which is locked to the lower frame 4 of the car 2
  • 14 is a deflecting wheel that guides each main rope 1 3 to the car 2
  • 1 5 Is a shirt loop rod attached to the end of each main rope 13
  • 16 is a shackle spring interposed between the lower frame 4 and each shackle opening
  • 17 is the other end of each main rope 13
  • the counterweight is locked to the left and right, and is provided separately on the left and right.
  • Reference numeral 18 denotes a floor on which the car 2 arrives
  • reference numeral 19 denotes a control panel for controlling each hoisting machine 9.
  • Reference numeral 35 denotes a pair of left and right lattice plates attached to the car guide rail 7 with the longitudinal direction of the cage extending vertically, and slits are formed as shown in detail in FIG.
  • Reference numeral 1 denotes a U-shaped optical sensor, which is mounted on the lower frame 4 on the left and right sides of the car 2 with the opening directed toward the hoistway side wall, and is intermittently transmitted through the grid plate 3 5 inserted into the opening. It outputs a pulse signal.
  • the grid plate 35 and the optical sensor 41 function as a car position detector.
  • the counterweight 17 is set to have a weight so as to be just balanced when a load of 40% to 60% of the normal load is loaded on the car 2.
  • equilibrium at 50% load Assuming that the loaded load is Wf and acts equally on the left and right hoisting machines 9, a load torque is applied to each sheave 10 based on the unbalanced load Wf / 4. Therefore, if one of the brakes 11 does not operate, the unbalanced load will concentrate on the other brake 11. As a result, a load torque based on the unbalanced load (W f Z 4) X 2 is applied to the other brake 11, but the brake 11 applies a load torque due to the regular unbalanced load W f Z 4.
  • the car 2 having the loaded load W f can be stopped by one brake 11 1.
  • FIG. 2 is a block diagram showing an electric circuit of the control device of the elevator.
  • reference numeral 21 denotes a tension detector which is attached to the lower surface of the lower frame 4 of the car 2 and detects the contraction of the shirt loop spring 16 to detect the tension of each main rope 13. Shown in
  • 51 is a car operation panel, and 52 is a landing button attached to each floor 18.
  • 53 is an encoder that emits a pulse signal in accordance with the rotation of each hoisting machine 9.
  • Reference numeral 60 denotes an operation management device, a call registration circuit 60a for registering a call using the car operation panel 51 and the landing button 52, and a target elevating operation for calculating an elevating distance to the destination floor as a target elevating distance Do.
  • the load in the car 2 is calculated by adding up the tensions of the main ropes 13 to calculate the load in the car 2.
  • 61 L indicates a device related to ascending and descending on the left side of the car 2
  • 61 R indicates a device related to ascending and descending on the right side of the car 2, as indicated by a chain line in the figure.
  • the two devices 61 L and 61 R have the same device configuration, and will be described together without distinguishing between them.
  • Reference numeral 62 denotes an operation contact which is closed by an instruction of the operation instruction circuit 60c or the floor alignment instruction circuit 60e and supplies electric power from the power converter 77 to the motor 12.
  • 6 3 is a car speed calculating means for calculating the car speed Vm of the car 2 from the number of pulse signals generated per unit time by the encoder 53.
  • 6 4 is a vertical distance calculator for calculating the vertical distance D m from the departure floor to the current position of the car 2 by integrating the car speed Vm.
  • 6 5 is a subtractor that calculates the remaining distance D r to the destination floor by subtracting the lifting distance D m from the target lifting distance D o
  • 6 6 is a position controller that outputs a speed command V o corresponding to the remaining distance Dr
  • the details of the speed command Vo are shown in Fig. 8.
  • 6 7 is based on the command of the operation command circuit 60c.
  • the terminals a and c are connected to each other, and the terminals b and c are connected according to the command of the floor alignment command circuit 60 e.
  • Reference numeral 68 denotes a subtractor for calculating a speed difference between the speed command Vo and the car speed Vm
  • 69 a speed controller for outputting a torque command To corresponding to the speed difference.
  • 7 1 is a switch that connects terminals b and c before the start of the car 2 and connects the terminals a and c together with the closing of the operating contact 6
  • 7 2 is a switch just before the start detected by the tension detector 2 1
  • the stationary torque calculator that calculates the static torque Ts from the tension of the main rope 13 in the stationary state of the motor
  • 73 is an adder that adds the static torque Ts to the torque command To
  • 74 is through the switch 71.
  • a load torque calculator that calculates the load torque Tm from the tension of the main rope 13
  • 75 is a subtractor that calculates the torque difference between the added value of the torque command To and the static torque Ts and the load torque Tm
  • 7 6 Is a torque controller that outputs a current command Io corresponding to the torque difference
  • 77 is a power converter that supplies electric power to the motor 12 based on the current command Io and the output current
  • 78 is a power converter 77 This is a current transformer that detects the output current from
  • Reference numeral 79 denotes a floor-matching zone memory in which floor-matching zones LZU and LZD set above and below the floor 18 are recorded. Details of the floor-matching zones LZU and LZD are shown in FIG. 80 is a car position calculator that calculates the car position L Dm by counting the pulse signal of the optical sensor 41, and 81 is the car position calculator that subtracts the car position L Dm from the floor matching zone LZU or LZD to the floor 18 A subtractor that calculates the remaining distance LDr, 82 is a floor matching controller that outputs a speed command LVo corresponding to the remaining distance LDr, and details of the speed command LVo are shown in FIG.
  • 8 5 is an elevating distance comparator for comparing the elevating distance Dm of the left and right hoisting machines 9, and 8 6 is a current value of the right and left hoisting machines 9 input through the respective current transformers 7 8 to calculate both current values.
  • the current comparator for comparison, 87 is used when the range of the vertical distance Dm by the vertical distance comparator 85 exceeds the predetermined value, or when the range of the current value by the current comparator 86 exceeds the predetermined value. This is a safety circuit that stops the hoisting machine 9.
  • FIG. 3 is a longitudinal sectional view showing a main part of the tension detector 21.
  • a plurality of main ropes 13 are used on each of the left and right sides.
  • the tension of one main rope 13 is detected.
  • 22 is a pobin
  • 23 is a primary winding wound around the center of the pobin
  • 24 and 25 are secondary windings wound around the pobin 22 on both sides of the primary winding 23.
  • Reference numeral 26 denotes a movable iron core that is inserted into the pobin 22 and is locked to the shirt loop rod 15 via the bracket 27. Move up and down.
  • the tension detector 21 is composed of a differential transformer, the primary winding 23 is connected to an AC power supply 28 having a voltage e1, and the secondary windings 24 and 25 output voltages e2a and e2b, respectively. Is done.
  • the difference voltage eo 0.
  • the tension detector 21 first, the tension of the left and right main ropes 13 is measured with the car 2 being unloaded.
  • the positions of the movable iron cores of the left and right tension detectors 21 are set so that the output eo becomes “0” when the smaller one of the tensions acts. Therefore, the output eo of the tension detector 21 is a value proportional to the difference from the smaller tension of the left and right main ropes 13 when no load is applied.
  • FIG. 4 shows an operation state of the tension detector 21. That is, the tension detectors 21 are attached to the left and right sides of the car 2 and operate independently to output eOL and eOR.
  • the static torques TsL and TsR are calculated by the static torque calculators 72L and 72R based on the outputs eOL and eOR.
  • the right main rope 13R has a larger tension than the left main rope 13L. For this reason, since the shirt spring 16 R on the side is more compressed, the output e oR is larger than the output e o L, and the static torque T s R is also the same.
  • FIG. 5 is a perspective view showing a cage position detector composed of a lattice plate 35 and an optical sensor 41, and slits 36 are punched at a constant pitch d in the lattice plate 35 whose longitudinal direction is directed vertically. At the same time, a notch 37 for the landing zone is formed on one side, which is cut out from the center by equal dimensions LU and LD.
  • Reference numeral 38 denotes a bracket for attaching the grid plate 35 to the car guide rail 7.
  • a projector 42p, 43p is mounted vertically at a predetermined distance, and a projector 44p is mounted in the depth direction, and the other is a receiver opposite to the other.
  • 42 r, 43 r, 44 r are installed.
  • the light receivers 42r and 43r function as car position encoders that output pulse signals when the light of the light emitters 42p and 43p is interrupted by the grid plate 35.
  • the light receiver 44r detects the floor matching zones LZU and LZD when the light from the light emitter 44p is blocked by the grid plate 35, and detects the landing zones LU and LD when the light is transmitted. I do. Therefore, the light receiver 44r functions as a landing zone detector.
  • the lattice plate 35 is connected via the bracket 38 so that the center of the lattice plate 35 coincides with the center of the optical sensor 41 attached to the lower frame 4 when the car floor 3 and the floor 18 are aligned. It is attached to the car guide rail 7.
  • FIG. 6 shows the car 2 at the time of landing. That is, the car position detectors composed of the optical sensor 41 and the grid plate 35 are attached to the left and right of the car 2 and operate independently to detect the position of the car floor 3. As shown in the figure, the car floor 3 is inclined upward to the left with respect to the floor 18, and the right receiver 44 rR is in the landing zone LU LD, but the left receiver 44 r L is Suppose that it is out of the landing zone LU and is in the upper rank. Floor matching is performed only on the left side, and floor matching is performed by lowering only the left side of car 2 so that the receiver 44rL is within the landing zone LULD.
  • Fig. 7 shows the car 2 at the time of landing. That is, floor matching is performed only when both the left and right are within the floor matching zone LZU L ZD. As shown in the figure, car floor 3 is inclined higher than floor 18 and stops, and the right receiver 44 r R is in the floor matching zone LZU, but the left receiver 44 r L is in the floor matching zone. If it is out of L ZU and above the floor, no floor matching will be performed.
  • FIG. 8 shows a speed command Vo output from the position controller 66 in the call answering operation.
  • the speed command Vo is calculated for the remaining distance Dr to the destination floor.
  • the speed command vo1 is output as an initial value.
  • the ascent / descent distance calculator 64 outputs the distance Dml when the ascending / descending operation is performed based on the speed command Vo1, the remaining distance Dr to the destination floor becomes Dr (Do-Dml) as the target ascent / descent distance Do. .
  • the speed command vo 2 is output for the remaining distance Dr.
  • the time t3 when the vehicle moves up and down based on the speed command vo3 and moves up and down by a distance Dm3 from the departure floor is the current position of the car 2.
  • a decelerated speed command Vo is output in accordance with the remaining distance Dr, and the vehicle reaches the destination floor according to the speed command Vo.
  • Fig. 9 shows the speed command LVo in floor matching operation.
  • the floor command L Vo is output from the floor controller 82, outputs an initial value LVmax, and then outputs a speed command LVo that gradually decreases in accordance with the remaining distance LD r from the subtractor 81.
  • the optical sensor 41 engages with the grid plate 35.
  • the car position calculator 80 detects the operating direction of the car 2 from the operation order of the receiver 42r and the receiver 43r, and receives light starting from the upper reference position Pu or the lower reference position Pd.
  • the position LDm of car 2 is calculated from the number of pulse signals of the detector 42r or the receiver 43r. Accordingly, the position LDm of the car 2 is detected starting from the upper reference position Pu in the case of descending operation and starting from the lower reference position Pd in the case of ascending operation.
  • the car floor 3 is disengaged from the landing zones LU and LD and the light to the receiver 44r is cut off, floor matching is performed according to the speed command LVo.
  • step S13 the ascent / descent distance from the departure floor to the destination floor is calculated by the ascent / descent distance calculation circuit 60b, and is output as a target ascent / descent distance Do common to the left device 61L and the right device 61R.
  • step S14 connect the switch 71 to the terminal b, input the output of the tension detector 21 to the static torque calculator 72, and calculate the static torque Ts from the tension of the main rope 13 in the static state before starting. After that, the switch 71 is connected to the terminal a.
  • step S15 switch 67 is also connected to terminal a.
  • step S16 the operation contact 62 is closed, the brake 11 is released, and power is supplied to the motor 12.
  • step S17 the pulse signal of the encoder 53 is input to the car speed calculation means 63 to calculate the car speed Vm, and then the car speed Vm is integrated by the elevating distance calculator 64, and the current of the car 2 from the departure floor Calculate the vertical distance Dm to the position.
  • the remaining distance Dr to the destination floor is calculated by subtracting the lifting distance Dm from the target lifting distance Do by the subtractor 65 in S18.
  • the position controller 66 outputs a speed command Vo corresponding to the remaining distance Dr.
  • step S20 the subtracter 68 calculates the speed difference ⁇ between the speed command Vo and the car speed Vm.
  • step S21 the speed controller 69 is used based on the speed difference ⁇ .
  • the torque command To is calculated.
  • step S22 the torque command To and the static torque Ts are added by the adder 73.
  • step S23 the subtractor 75 calculates the torque difference ⁇ between the added value of the torque command To and the static torque Ts and the load torque Tm.
  • step S24 the torque controller 76 calculates the current command Io based on the torque difference ⁇ .
  • step S25 power is supplied to the motor 12 by the power converter 77 based on the current command Io.
  • step S26 when the car position detector consisting of the grid plate 3 5 and the optical sensor 4 1 detects that the car 2 has arrived at the destination floor, the operation proceeds to step S27, in which the operating contacts 62 are opened. Activate the brake 11 and deactivate the motor 12 to return to step S11 and perform the next call answering operation. If car 2 has not arrived at the destination floor in step S26, return to step S17, and repeat steps S17 to S26 to drive car 2 to the destination floor. .
  • step S32 moves to step S32 only when both floor matching zones LZU and LZD are detected.
  • Fig. 7 if there is a receiver 44r that has not detected the floor matching zones LZU and LZD, floor matching operation is not performed. This is because floor matching operation when the difference between floors 18 and 3 is large. If the receivers 4 4 r of the left and right optical sensors 41 in step S 32 detect both the landing zones L U and L D, floor matching operation is not performed. This is because there is no need for floor matching.
  • the receiver 44r detects the landing zone LU and LD in step S33.
  • the floor alignment command circuit 60 e on the side that is not running operates.
  • step S 3 4 Connect the switch 7 1 to the terminal b in step S 3 4 and input the output of the tension detector 2 1 to the static torque calculator 7 2, and calculate the static torque T based on the tension of the main rope 1 3 in the static state before starting.
  • step S35 switcher 67 is also connected to terminal b.
  • step S36 the operating contacts 62 are closed to release the brake 11, and power is supplied to the motor 12.
  • step S3 7 floor-matching controller 8 2 floor-matching operation Outputs the initial value LVmax as the speed command LVo.
  • step S38 the car position LDm is read from the car position calculator 80.
  • the car position LDm is calculated by the car position calculator 80 from the pulse signal of the optical sensor 41 starting from the upper reference position Pu or the lower reference position Pd when the car 2 arrives at the destination floor in the call answering operation. It has already been calculated and stored.
  • the floor alignment zones LZU and LZD are read from the floor alignment zone memory 79, and the floor alignment zones LZU and LZD and the car position LDm are subtracted by the subtractor 81 to the floor 18.
  • the remaining distance LDr is calculated.
  • the floor matching controller 82 outputs a speed command LVo that gradually decreases in accordance with the remaining distance LDr, as shown in FIG.
  • the speed difference ⁇ between the speed command LVo and the car speed Vm is calculated by the subtractor 68.
  • Step S42 is the same processing as steps S21 to S25 in FIG. 10, in which the torque controller To is calculated by the speed controller 69 based on the speed difference ⁇ , and the torque command T is calculated by the adder 73. o and the static torque T s are added, the subtractor 75 calculates the torque difference ⁇ between the added value of the torque command To and the static torque T s and the load torque Tm, and the torque controller 76 calculates the torque difference ⁇ based on the torque difference ⁇ .
  • a current command Io is calculated, and electric power is supplied to the motor 12 by the power converter 77 based on the current command I0 to drive the car 2 up and down.
  • step S43 When it is detected in step S43 that the car floor 3 has entered the landing zones LU and LD by the photodetector 44r, the process proceeds to step S44, in which the operation contact 62 is opened, the brake 11 is operated, and the motor 12 is turned on. Deenergize and end floor matching operation. If it is determined in step S43 that the car floor 3 has not reached the landing zones LU and LD, the procedure returns to step S38, and the steps from step S38 to step S43 are repeated to perform floor matching operation.
  • the car 2 is raised and lowered by locking the main ropes 13 on the left and right sides of the car 2, respectively, and winding the car 2 around the hoisting machines 9 installed correspondingly. Therefore, even if one of the brakes 11 does not operate, the other brake 11 can stop the car 2 having the loaded load Wf.
  • a tension detector 21 is provided for each main rope 13, and the sum of the outputs of the tension detectors 21 when the car 2 is not running before starting is used as the load in the car. Since 60 f is provided, the load in the car 2 can be detected and the degree of congestion can be calculated without separately installing a detector.
  • the corresponding hoisting machine 9 Since the floors are individually laid, if the hoisting machine 9 causes the main ropes 13 to move relative to each other, and even if the car floor 3 is tilted, it will be corrected by the flooring, so that the main ropes 13 The relative movement does not increase.
  • the lifting distance Dm is calculated for each of the hoisting machines 9 and compared with the lifting distance comparator 85.
  • the safety circuit 87 is actuated to stop the hoisting machine 9, so that the car floor 3 can be prevented from being abnormally inclined.
  • the rotational angular velocity ⁇ of the hoisting machine 9 is measured by the encoder 53, and the above-described elevation distance Dm is calculated from the measured value, it is limited only when the main rope 13 actually moves relatively.
  • the hoisting machine can also be stopped when the hoisting machine 9 has irregular rotation and a difference in the lifting distance Dm, so that even if the sheave 10 wears unevenly, And can take action.
  • the current of the motor 12 of each hoisting machine 9 is individually measured and compared by the current comparator 86, and when the difference exceeds a predetermined value, the safety circuit 87 is operated to wind up. Since the motor 9 is stopped, it is possible to prevent the operation in a state in which the load on one motor 12 is extremely biased, for example, a state in which the car 2 is abnormally inclined.
  • the elevating distance from the departure floor to the destination floor is calculated in advance and given as a common target elevating distance D o for each hoist 9, and the remaining distance D r from the current position to the destination floor is provided for each hoist 9. Since the speed corresponding to the remaining distance Dr is calculated as a speed command Vo and the corresponding hoisting machines 9 are individually controlled, speed control suitable for the target elevating distance Do can be performed. You can land exactly on the floor.
  • the bias of the load applied to the hoist 9 is controlled by the current transformer 78.
  • the motor current is detected and compared by the current comparator 86, the present invention is not limited to this.
  • the load torque applied to each hoist 9 is compared to detect the deviation of the load. It may be.
  • FIGS. 12 to 15 show Embodiment 2 of the control device for an elevator equipped with a plurality of hoists according to the present invention.
  • a speed command is calculated with the passage of time and the winding machine is controlled collectively, and a speed corresponding to the remaining distance from the deceleration point to the destination floor is obtained.
  • the hoisting machine is individually controlled by the degree command.
  • FIG. 12 is a block diagram showing an electric circuit of the control device of the elevator, and 91 is a pair of left and right lattice plates attached to the car guide rail 7 with the longitudinal direction of the control device being vertical. As shown in Fig. 13, a slit 36 is formed from the upper and lower deceleration points PPu, PPd to the floor position.
  • 100 is an operation management device.
  • the optical sensor 4 1 Is engaged with the lattice plate 91 and detects a deceleration point set a predetermined distance before the destination floor, and includes a deceleration command circuit 60d for instructing deceleration.
  • Reference numeral 101 denotes a time speed calculator which calculates a speed command V ao with the passage of time when an operation command is issued from the operation command circuit 60 c and controls both the hoisting machines 9 collectively.
  • 102 L indicates equipment related to the ascending and descending of the main rope 13 L on the left side of the car 2 as indicated by the chain line in the figure
  • 102 R indicates the equipment of the main rope 13 R on the right side of the car 2 as well. Shows equipment related to elevating.
  • the two devices 102 L and 102 R have the same device configuration, and will be described collectively without distinguishing between them.
  • Reference numeral 103 denotes a deceleration controller which calculates a speed corresponding to the remaining distance GDr from the deceleration point to the destination floor for each hoisting machine 9 to generate a speed command V do shown in FIG.
  • terminals 104 is connected to terminals a and d by the command of the operation command circuit 60c, terminals b and d are connected by the command of the deceleration command circuit 60d, and the terminals are connected by the command of the floor matching command circuit 60e. c and d are switches to be connected.
  • FIG. 13 is a perspective view showing a car position detector composed of a lattice plate 91 and an optical sensor 41.
  • the lattice plate 91 having its longitudinal direction directed upward and downward has a constant deceleration point from the upper and lower deceleration points PPu, PPd to the floor 18.
  • a slit 36 is punched at a pitch d of the floor, and a notch 3 7 for the landing zone is formed on one side of the floor 18 with the same dimensions LU and LD cut out vertically above and below the floor 18.
  • Shielding portions 92 for specifying floor matching zones LZU and LZD are formed above and below the flooring notch portion 37 with the floor 18 as the center.
  • the lattice plate 91 starts from the upper deceleration point PPu or the lower deceleration point PPd,
  • FIG. 14 shows a speed command Vao output from the time speed calculator 101 and a speed command Vdo output from the deceleration controller 103.
  • the speed command Vao increases stepwise every time a predetermined time ⁇ t elapses, and becomes a constant value when the rated speed Vmax is reached. .
  • the operation of the deceleration command circuit 60d causes the terminals b and d of the switch 104 to be connected to output the deceleration speed command Vd0. That is, the car position calculator 106 calculates the car position G Dm starting from the upper deceleration point PPu in the descending operation and starting from the lower deceleration point P Pd in the ascending operation.
  • the deceleration controller 103 calculates a speed corresponding to the remaining distance GDr. This speed is output as a speed command V do via the switch 104.
  • step S51 When a hall call or a car call is registered in the call registration circuit 60a, the procedure moves from step S51 to step S52, and an operation command for responding to the call is issued from the operation command circuit 60c.
  • step S53 the switch 71 is connected to the terminal b, and the static torque Ts is calculated from the tension of the main rope 13 in the stationary state before starting and stored, and then the switch 71 is connected to the terminal a. Connect the switch 104 to the terminal a in step S54.
  • step S55 the operation contact 62 is closed, the brake 11 is released, and power is supplied to the motor 12.
  • step S56 the speed command V ao is output from the time speed calculator 101 according to the run command of the run command circuit 60c.
  • step S57 a speed difference ⁇ between the speed command V ao and the car speed Vm is calculated by the subtractor 68.
  • Step S58 is a process similar to steps S21 to S25 in FIG. 10, in which the torque command To is calculated based on the speed difference ⁇ , and the static torque Ts is added to the torque command To.
  • the electric motor 12 is energized so as to output a torque to move the car 2 up and down.
  • step S59 it is checked whether the optical sensor 41 is engaged with the lattice plate 91 and a deceleration command is output from the deceleration command circuit 60d. If the deceleration command has not been output yet, the process returns to step S56, and repeats the processes from step S56 to step S59.
  • step S59 When the deceleration command is output in step S59, the terminals b and d of the switch 104 are connected in step S60.
  • step S61 the car position GDm starting from the deceleration point PPu or PPd is read from the car position calculator 106.
  • step S62 the deceleration distance GZU or GZD is read from the deceleration distance memory 107, and the car position GDm is subtracted from the deceleration distance GZU or GZD by the subtractor 108 to calculate the remaining distance GDr to the floor 18.
  • step S63 the deceleration controller 103 outputs a speed command Vdo that decreases stepwise according to the remaining distance GDr, as shown in FIG.
  • step S64 the speed difference ⁇ between the speed command Vd o and the car speed Vm is calculated by the subtractor 68.
  • Step S65 is a process similar to steps S21 to S25 in FIG. 10, in which a torque command ⁇ is calculated based on the speed difference ⁇ , and a static torque T s is added to the torque command ⁇ 0.
  • the motor 12 is energized so as to output the added torque to perform deceleration operation. If it is detected in step S66 that the car floor 3 has entered the landing zone LU or LD by the receiver 44r, the process proceeds to step S67, in which the operating contact 62 is opened and the brake 11 is operated. The motor 12 is deenergized to terminate the call answering operation.
  • step S66 If it is determined in step S66 that the car floor 3 has not reached the landing zones LU and LD, the process returns to step S61, and repeats the processes from step S61 to step S66 to perform a call answering operation.
  • the floor matching operation is the same as in Fig. 11, and the description is omitted.
  • the speed command V ao is output from the time speed calculator 101 as time elapses from the departure floor to the deceleration points PPu and PPd. Calculation of V ao is easy.
  • the left and right hoists 9L and 9R are controlled collectively by the same speed command V ao, there is little difference in the vertical distance between the two.
  • the position of the car 2 by each main rope 13 is directly detected by the optical sensor 41 and the grid plate 91, so accurate Position control becomes possible.
  • FIG. 16 shows Embodiment 3 of the elevator control device according to the present invention.
  • the counterweights 17 are individually suspended on the left and right.
  • a common fishing line is used for the left and right main ropes 13L and 13R. The weight is suspended. That is, each of the main ropes 13L and 13R is locked at both ends by a common car 2 and a common counterweight 17A.
  • the counterweight 17A is set to the same weight as in the first embodiment. Therefore, even if one of the brakes 11 is not operated, only the other brake 11 is used. The car 2 with the loaded load W f can be stopped.
  • the counterweight 17A is common to the left and right main ropes 13L and 13R, only one pair of the weight guide rails 8 is required, so that installation work is reduced. . Industrial applicability
  • the elevator control apparatus including a plurality of hoists is suitable for the elevator control apparatus in which a plurality of hoists must be installed in a small place. ing. It is also suitable for a control device that controls the lifting of heavy objects during installation.

Abstract

An elevator controller wherein main ropes (13) are locked to a cab (2) to raise the latter and entrained around a plurality of winches (9) disposed in spaced opposed relation to each other, so as to drive the cab (2) for rising and lowering movement, the controller being adapted to detect the tension in each main rope (13) in a stationary state prior to driving the cab (2) and to individually increase or decrease the output power from the corresponding winch (9) on the basis of the detected value, thereby raising or lowering the cab (2). Therefore, even if the load is imbalancedly placed on the cab (2) to cause the tensions in the main ropes (13) to differ from each other, the winches (9) drives the cab (2) with their respective corresponding output powers, so that there is no possibility of the cab (2) being inclined.

Description

明 細 書 エレベータの制御装置  Description Elevator control device
技術分野 Technical field
この発明は、 複数の卷上機でかごを昇降駆動するエレべ一夕の制御装置に関する ものである。 背景技術  The present invention relates to a control device for an elevator that drives a car up and down by a plurality of winding machines. Background art
従来のエレべ一タは、 1台の巻上機でかごを駆動していたので、 積載荷重が大き くなるに従って、 巻上機の容量も大きくなる。 このため、 大形のエレべ一夕には大 形の巻上機が必要であり、 その据付けには大容量の揚重機を必要とした。  In the conventional elevator, the car is driven by one hoist, so the capacity of the hoist increases as the loaded load increases. For this reason, a large hoist was required for large elevators, and a large-capacity hoist was required for installation.
そこで、 例えば、 日本特開平 6— 64863号公報には、 かご上に滑車を設け、 この滑車に主索を巻き掛けて立ち上げて、 小形の巻上機 2台で駆動するようにした ものが開示されている。  Thus, for example, Japanese Patent Application Laid-Open No. 6-64863 discloses a system in which a pulley is provided on a car, a main rope is wound around the pulley, and the pulley is started up and driven by two small hoists. It has been disclosed.
第 17図は、 上記日本特開平 6_ 64863号公報に開示されたものと同じ内容 であって、 2台の巻上機によってかごを駆動する従来のエレべ一夕を示す。  FIG. 17 shows a conventional elevator having the same contents as disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 6_64863, in which a car is driven by two hoists.
即ち、 かご 2には滑車 201が取り付けられ、 この滑車 201に主索 13が巻き 掛けられて立ち上げられ、 更に卷上機 9 L、 9 Rに巻き掛けられて立ち下げられて 釣合錘 17L、 17 Rに係止されている。 各巻上機 9 L、 9Rは同じ仕様の綱車 1 0L、 101、 ブレーキ1 11_ 111 、 電動機12乙、 12 Rで構成された同等 品である。 なお、 符号 202、 203 L、 203 R、 204 L及び 204 Rは主索 13を案内する滑車を示す。  That is, a pulley 201 is attached to the car 2, and the main rope 13 is wound around the pulley 201 to start up, and further wound around the hoisting machines 9L and 9R to be lowered and the counterweight 17L Locked to the 17 R. Each of the hoisting machines 9L and 9R is an equivalent product consisting of a sheave 10L, 101, brakes 11_111, motors 12 and 12R of the same specifications. Reference numerals 202, 203L, 203R, 204L and 204R indicate pulleys for guiding the main cable 13.
2台の卷上機 9 L、 9Rを使用することによつて巻上機の小形化を図ると共に、 各巻上機 9 L、 9 R間に速度差が生ずると滑車 201が回動して卷上機 9 L、 9 R 間のトルク分担を常に均等化させるようになつている。  By using two winding machines 9 L and 9 R, the size of the hoist can be reduced, and when a speed difference occurs between each of the winding machines 9 L and 9 R, the pulley 201 rotates and the winding is performed. The torque sharing between the upper units 9 L and 9 R is always equalized.
しかしながら、 例えば第 17図に鎖線で示したとおり、 滑車 201が何らかの原 因で時計方向へ回動したとすると、 主索 13は巻上機 9 R側から巻上機 9 L側へ移 送されることになる。 この主索 13の移送によって、 巻上機 9 Rに吊持された釣合 錘 17 Rは吊り上げられ、 巻上機 9 Lに吊持された釣合錘 17 Lは吊り下げられて 、 符号 17L' 、 17R' で示した状態になる。 この状態でかご 2を上昇させると 釣合錘 17L' が昇降路底部と干渉する。 また、 かご 2を下降させると釣合錘 17 R' が昇降路天井部と干渉する。 However, for example, as shown by the chain line in FIG. 17, if the pulley 201 turns clockwise for some reason, the main rope 13 is transferred from the hoisting machine 9R side to the hoisting machine 9L side. Will be. The transfer of the main rope 13 causes the balance suspended by the hoisting machine 9R. The weight 17R is lifted, and the counterweight 17L suspended by the hoist 9L is suspended and brought into a state indicated by reference numerals 17L 'and 17R'. When the car 2 is raised in this state, the counterweight 17L 'interferes with the bottom of the hoistway. When the car 2 is lowered, the counterweight 17R 'interferes with the hoistway ceiling.
つまり、 滑車 20 1が回動すると主索 13が移送され、 かご 2と釣合錘 17 L、 17 Rの相対的位置関係が変化してかご 2の昇降行程が減縮する、 という問題があ つ 7こ  In other words, when the pulley 201 rotates, the main rope 13 is transferred, and the relative positional relationship between the car 2 and the counterweights 17L and 17R changes, thereby reducing the up-and-down stroke of the car 2. 7
また、 ブレーキ 1 1 L、 1 1 Rは最も重要な安全装置であり、 かかる重要性から 2台の巻上機 9L、 9Rが使用される場合は、 少なくとも一方のブレーキ 1 1 L又 は 1 1 Rが作動すれば、 かご 2を停止させることができることが望ましい。  Also, the brakes 11 L and 11 R are the most important safety devices. Due to such importance, when two hoisting machines 9 L and 9 R are used, at least one of the brakes 11 L and 11 R is used. It is desirable that car 2 be able to stop when R operates.
しかしながら、 第 17図によれば、 双方のブレーキ 1 1 L、 1 1Rが作動しなけ れば、 かご 2を制止させることはできない、 という問題もあった。  However, according to FIG. 17, there was also a problem that the car 2 could not be stopped unless both brakes 11 L and 11 R were operated.
また、 日本特開平 7— 25553号公報には、 滑車 20 1の回転角度を検出して 一の電動機 12L又は 12 Rの速度指令入力側へフィードパックすることにより、 主索 1 3の相対的位置ずれがゼロとなるようにしたものが開示されている。 従って 、 このものによれば、 巻上機 9 L、 9 R間のトルク分担を均等化させると共に、 主 索 13の相対的位置ずれを阻止して、 かご 2と釣合錘 1 7 L、 17Rの位置関係を 正常な状態に保持することができる。  Japanese Unexamined Patent Publication No. 7-25553 discloses that the relative position of the main cable 13 is detected by detecting the rotation angle of the pulley 201 and feeding it to the speed command input side of one motor 12L or 12R. A configuration in which the deviation is zero is disclosed. Therefore, according to this, the torque distribution between the hoisting machines 9 L and 9 R is equalized, the relative displacement of the main cable 13 is prevented, and the car 2 and the counterweight 17 L, 17 R Can be maintained in a normal state.
しかしながら、 このものにあっても、 かご 2は滑車 20 1を介して主索 13に吊 持されている点で日本特開平 6— 64863号公報に開示されたものと変りはない ので、 いずれか一方のブレーキ 1 1 L又は 1 1 Rが作動しなかった場合、 同様にか ご 2を制止させることができない、 という問題があった。  However, even in this case, since the car 2 is suspended from the main rope 13 via the pulley 201, there is no difference from the one disclosed in Japanese Patent Application Laid-Open No. 6-64863. If one of the brakes 11 L or 11 R did not operate, the car 2 could not be similarly stopped.
この発明は、 複数の巻上機でかごを駆動することにより、 巻上機の小形化を図つ たエレべ一夕において、 上記問題点を解決すると共に、 各巻上機によって生ずる主 索の相対的位置ずれを未然に防止し、 又は主索の相対的位置ずれが発生した場合は 修正することにより、 安定してかごを昇降させることができるようにしたエレべ一 夕の制御装置を提供することを目的とする。 発明の概要 1 . この発明は、 昇降路内を昇降するかごの複数の部位に主索を個別に係止して 立ち上げて対応して設置された複数の巻上機に巻き掛けて上記かごを昇降駆動する ようにしたエレべ一夕の制御装置において、 かごを起動させる前の静止状態におけ る主索の張力を各主索係止部ごとに検出し、 対応する巻上機の出力を上記検出値に 基いて個別に増減させてかごを昇降駆動するようにしたものである。 このため、 荷 重が偏ってかごに積載されて主索の張力が各主索係止部毎に異なっていても、 巻上 機は応分の出力でかごを駆動するので、 各主索の相対移動を防止することができ、 かごが異常に傾斜するのを避けることができる。 The present invention solves the above-described problems by reducing the size of the hoist by driving the car with a plurality of hoists, and at the same time, the relative position of the main cable generated by each hoist. Provided is a control device for an elevator that can stably raise and lower a car by preventing a positional displacement beforehand or correcting a relative displacement of a main rope when it occurs. The purpose is to: Summary of the Invention 1. The present invention relates to a method for raising and lowering a car by individually locking main ropes to a plurality of portions of a car that moves up and down in a hoistway and winding the car around a plurality of hoisting machines installed correspondingly. In the control device of the elevator, the tension of the main rope in a stationary state before starting the car is detected for each main rope locking portion, and the output of the corresponding hoist is detected as described above. The car is driven up and down by increasing or decreasing individually based on the value. For this reason, even if the load is biased and loaded on the car and the tension of the main ropes is different for each main rope locking part, the hoist drives the car with a reasonable output, so the relative Movement can be prevented and the car can be prevented from tilting abnormally.
2 . また、 この発明は、 起動前のかごの静止状態において主索係止部ごとに検出 された上記張力を合算し、 この合算値をかご内の荷重とするもので、 例えば、 この 荷重からかご内の混雑度を算出するものである。 このため、 荷重を検出するのに別 に検出器を設置する必要がないものである。  2. In addition, the present invention sums up the tensions detected for each main rope locking portion in a stationary state of the car before starting, and uses the sum as a load in the car. The degree of congestion in the car is calculated. Therefore, there is no need to install a separate detector to detect the load.
3 . 更に、 この発明は、 昇降路内を昇降するかごの複数の部位に主索を個別に係 止して立ち上げて対応して設置された複数の巻上機に巻き掛けて上記かごを昇降駆 動するようにしたエレベータの制御装置において、 かごが目的階に着床したときの 階床とかご床との差を主索係止部ごとに検出し、 この検出値が所定値を超えたとき 着床差を減少させるように対応する巻上機で主索係止部を個別に上下動させて床合 せをするようにしたものである。 このため、 仮に巻上機によって主索に相対移動が 生じ、 かご床が傾斜したとしても、 床合せによって修正されるので、 主索の相対移 動が累増することはない。  3. In addition, the present invention relates to a method in which a main rope is individually fixed to a plurality of portions of a car that moves up and down the hoistway, and the main rope is started up and wound around a plurality of hoisting machines installed correspondingly. The elevator control device that moves up and down detects the difference between the floor and the car floor when the car arrives at the destination floor for each main rope anchoring section, and this detected value exceeds a predetermined value. In order to reduce the difference in landing, the main hoist locking parts are individually moved up and down by the corresponding hoist to make the floor fit. For this reason, even if the hoisting machine causes relative movement of the main ropes and the car floor is inclined, the relative movement of the main ropes will not increase cumulatively because they will be corrected by floor matching.
4 . 更にまた、 この発明は、 複数の巻上機でかごを昇降駆動するようにしたエレ ベー夕の制御装置において、 卷上機ごとに昇降距離を演算し、 その演算値の較差が 所定値を超えたときに巻上機を停止させるようにしたものである。 このため、 かご 床が異常に傾斜するのを未然に阻止することができる。  4. Further, the present invention relates to an elevator control apparatus in which a car is driven up and down by a plurality of hoists, wherein a hoisting distance is calculated for each hoist, and a difference between the calculated values is a predetermined value. The hoisting machine is stopped when it exceeds. For this reason, the car floor can be prevented from abnormally tilting.
5 . 更にまた、 この発明は、 上記昇降距離を、 巻上機の回動角速度を計測するこ とにより演算し、 その演算値の較差が所定値を超えたときに卷上機を停止させるよ うにしたものである。 このため、 現実に主索が相対移動した場合に限らず、 巻上機 の回動に不揃いが生じて回動角速度に差が生じた場合も巻上機を停止させることが できるので、 各卷上機の磨耗にばらつきが生じた場合も早期に検知して対処するこ とができる。 5. Furthermore, the present invention calculates the above-mentioned lifting distance by measuring the rotational angular velocity of the hoist, and stops the hoist when the difference between the calculated values exceeds a predetermined value. It is something that has been done. For this reason, the hoisting machine can be stopped not only when the main ropes actually move relative to each other, but also when the turning of the hoisting machine is irregular and the rotation angular velocity is different. If there is a variation in the wear of the upper machine, Can be.
6 . 更にまた、 この発明は、 複数の巻上機でかごを昇降駆動するようにしたエレ ベータの制御装置において、 各卷上機の電動機の動力を個別に計測し、 その計測値 の較差が所定値を超えたときに巻上機を停止させるようにしたものである。 このた め、 一の電動機に極端に負荷が偏る状態、 例えば、 かごが異常に傾斜したような状 態での運転を阻止することができる。  6. Furthermore, the present invention relates to an elevator control device in which a car is driven up and down by a plurality of hoists, wherein the power of the motor of each hoist is individually measured, and the difference between the measured values is measured. When a predetermined value is exceeded, the hoist is stopped. For this reason, it is possible to prevent operation in a state where the load is extremely biased to one motor, for example, in a state where the car is abnormally inclined.
7 . 更にまた、 この発明は、 昇降路内を昇降するかごの複数の部位に主索を個別に 係止して立ち上げて対応して設置された複数の巻上機に巻き掛けて上記かごを昇降 駆動するようにしたエレべ一夕の制御装置において、 出発階から目的階までの昇降 距離を予め演算して各卷上機に共通の目標昇降距離として与え、 現在位置から目的 階までの残距離を各主索係止部ごとに演算し、 この残距離に見合った速度を速度指 令として対応する各巻上機を個別に制御するようにしたものである。 このため、 目 標昇降距離に適した速度制御が可能となり、 目的階に正確に着床させることができ る。  7. The present invention further relates to a car for raising and lowering a main hoist individually at a plurality of portions of a car which is moved up and down in a hoistway, and winding the car around a plurality of hoisting machines installed correspondingly. In the elevator control device that drives the elevator up and down, the up-and-down distance from the departure floor to the destination floor is calculated in advance and given as a common target ascent / descent distance to each winding machine. The remaining distance is calculated for each main rope anchoring section, and the speed corresponding to the remaining distance is used as a speed command to individually control each corresponding hoist. For this reason, speed control suitable for the target ascent / descent distance becomes possible, and it is possible to accurately land on the destination floor.
8 . 更にまた、 この発明は、 昇降路内を昇降するかごの複数の部位に主索を個別 に係止して立ち上げて対応して設置された複数の巻上機に巻き掛けて上記かごを昇 降駆動するようにしたエレべ一夕の制御装置において、 運転指令が発せられた当初 は、 時間経過に伴って速度指令を算出して巻上機を一括して制御し、 目的階から所 定距離手前に設定された減速点から目的階までは残距離に見合った速度を主索係止 部ごとに演算して速度指令として対応する各卷上機を個別に制御するようにしたも のである。 このため、 昇降距離の全域に亘ってかご位置を検出する場合に比べて検 出領域は減縮されるので、 減縮相当分だけ、 かご位置検出装置を簡単化することが できると共に、 減速点から残距離に対応した速度指令によって制御するようにした ので、 乗り心地を害することなく正確に着床させることができる。 図面の簡単な説明  8. Furthermore, the present invention relates to the above-mentioned car, in which the main ropes are individually locked at a plurality of portions of the car which rises and descends in the hoistway, and the main ropes are started up and wound around a plurality of hoisting machines installed correspondingly. When the operation command is issued at the beginning of the elevator control device that drives the elevator up and down, the speed command is calculated over time and the hoist is controlled collectively. From the deceleration point set in front of the predetermined distance to the destination floor, the speed corresponding to the remaining distance is calculated for each main rope locking part, and each hoist corresponding to the speed command is controlled individually. It is. As a result, the detection area is reduced as compared with the case where the car position is detected over the entire range of the elevating distance, so that the car position detecting device can be simplified by the amount corresponding to the reduction, and the remaining position from the deceleration point can be reduced. The control is performed by speed commands corresponding to the distance, so that the rider can land accurately without impairing the riding comfort. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 この発明の実施の形態 1に係る好ましいエレべ一夕の制御装置を含む 全体を示す斜視図である。  FIG. 1 is a perspective view showing the entirety including a preferred elevator control apparatus according to Embodiment 1 of the present invention.
第 2図は、 同じく電気回路を示すブロック図である。 第 3図は、 同じく張力検出器 2 1の要部を示す縦断面図である。 FIG. 2 is a block diagram showing an electric circuit in the same manner. FIG. 3 is a longitudinal sectional view showing a main part of the tension detector 21 in the same manner.
第 4図は、 同じく張力検出器 2 1の動作状態を示す説明用図である。  FIG. 4 is an explanatory diagram showing an operation state of the tension detector 21 in the same manner.
第 5図は、 同じくかご位置検出器 3 5、 4 1を示す斜視図である。  FIG. 5 is a perspective view showing the car position detectors 35 and 41 in the same manner.
第 6図は、 同じく着床時のかご 2を示す正面図である。  FIG. 6 is a front view showing the car 2 at the time of landing.
第 7図は、 同じく着床時のかご 2を示す正面図である。  FIG. 7 is a front view showing the car 2 at the time of landing.
第 8図は、 同じく呼び応答運転における残距離に対する速度指令 V oを示す説明 用図である。  FIG. 8 is an explanatory diagram showing a speed command V o with respect to the remaining distance in the call answering operation.
第 9図は、 同じく床合せ運転における残距離に対する速度指令 L V oを示す説明 用図である。  FIG. 9 is an explanatory diagram showing a speed command L Vo with respect to the remaining distance in the floor-matching operation.
第 1 0図は、 同じく呼び応答運転の動作を示す流れ図である。  FIG. 10 is a flowchart showing the operation of the call answering operation.
第 1 1図は、 同じく床合せ運転の動作を示す流れ図である。  FIG. 11 is a flowchart showing the operation of the floor matching operation.
第 1 2図は、 この発明の実施の形態 2に係る好ましいエレべ一夕の制御装置の電 気回路を示すプロック図である。  FIG. 12 is a block diagram showing an electric circuit of a preferred elevator control apparatus according to Embodiment 2 of the present invention.
第 1 3図は、 この発明の実施の形態 2に係るかご位置検出器 4 1を示す斜視図で ある。  FIG. 13 is a perspective view showing a car position detector 41 according to Embodiment 2 of the present invention.
第 1 4図は、 この発明の実施の形態 2に係る呼び応答運転における時間対速度指 令 V a o及び残距離対速度指令 V d oを示す説明用図である。  FIG. 14 is an explanatory diagram showing a time-to-speed command V ao and a remaining distance-to-speed command V do in a call answering operation according to the second embodiment of the present invention.
第 1 5図は、 この発明の実施の形態 2に係る呼び応答運転の動作を示す流れ図で ある。  FIG. 15 is a flowchart showing a call answering operation according to Embodiment 2 of the present invention.
第 1 6図は、 この発明の実施の形態 3に係る好ましいエレべ一夕の全体を示す斜 視図である。  FIG. 16 is a perspective view showing the entirety of a preferred elevator according to Embodiment 3 of the present invention.
第 1 7図は、 従来の複数の卷上機を備えたエレべ一夕の概念図である。 発明を実施するための最良の形態  FIG. 17 is a conceptual diagram of a conventional elevator equipped with a plurality of winding machines. BEST MODE FOR CARRYING OUT THE INVENTION
本発明をより詳細に説述するために、 添付の図面に従ってこれを説明する。 なお 、 各図中、 同一または相当する部分には同一の符号を付しており、 その重複説明は 適宜に簡略化ないし省略する。  The present invention will be described in more detail with reference to the accompanying drawings. In the drawings, the same or corresponding portions are denoted by the same reference characters, and description thereof will be appropriately simplified or omitted.
また、 以下の実施の形態では、 エレベータは左右に 2台の巻上機を備えたもので あって、 日本特開 2 0 0 1 - 2 6 1 2 5 7号公報に開示されたエレベータに類似す るエレべ一夕の制御に係るもので、 左側に関係する要素には符号の末尾に 「L」 を 付し、 右側に関係する要素には符号の末尾に 「R」 を付し、 左右を区別せずに一括 する場合は 「L」 及び 「R」 を省略する。 Also, in the following embodiment, the elevator is provided with two hoisting machines on the left and right, and is similar to the elevator disclosed in Japanese Patent Application Laid-Open No. 2000-261257. You The elements related to the left side are marked with “L” at the end of the code, the elements related to the right side with “R” at the end of the code, and the left and right are Omit “L” and “R” when grouping without distinction.
実施の形態 1 . Embodiment 1
第 1図から第 1 1図は、 この発明に係る複数の巻上機を備えたエレべ一夕の制御 装置の実施の形態 1を示す。 この実施の形態 1は、 特に昇降路の頂部に 2台の巻上 機が設置され、 出発階から目的階までを目標昇降距離として各巻上機に共通に与え 、 現在位置から目的階までの残距離に見合った速度で各巻上機を個別に制御するよ うにしたものである。  FIG. 1 to FIG. 11 show Embodiment 1 of a control device for an entire elevator equipped with a plurality of hoists according to the present invention. In the first embodiment, in particular, two hoists are installed at the top of the hoistway, and the distance from the departure floor to the destination floor is given to each hoist as a target elevating distance, and the remaining from the current position to the destination floor is provided. Each hoist is individually controlled at a speed commensurate with the distance.
第 1図はエレべ一夕の制御装置の全体を示す斜視図である。 図において、 1は昇 降路、 2はかご、 3はかご床、 4はかご床 3を下支えする下枠、 5はかご 2の左右 両側に立設された縦枠、 6はかご 2の上に横設された上枠である。 7はかご 2の両 側の昇降路側壁に固定されて立設された一対のかごガイドレール、 8はかご 2の背 面の昇降路側壁に固定されて立設された錘ガイドレールで、 二対の錘ガイドレール 8が左右にそれぞれ並設されている。 9は昇降路 1内の頂部に離隔して左右に設置 された一対の巻上機で、 綱車 1 0と、 この綱車 1 0を制止させるブレーキ 1 1と、 綱車 1 0を駆動する電動機 1 2からなる。 1 3は綱車 1 0に巻き掛けられて一端が かご 2の下枠 4に係止されたた左右一対の主索、 1 4は各主索 1 3をかご 2へ導く そらせ車、 1 5は各主索 1 3の端部に取り付けられたシャツクルロッド、 1 6は下 枠 4と各シャックル口ッド 1 5の間に介在するシャックルばね、 1 7は各主索 1 3 の他端に係止された釣合錘で、 左右に個別に設けられている。 1 8はかご 2が着床 する階床、 1 9は各巻上機 9を制御する制御盤である。 3 5は長手を上下方向へ向 けてかごガイドレール 7に取り付けられた左右一対の格子板で、 第 5図に詳細を示 したとおりスリットが形成されている。 4 1はコ字状をした光センサで、 開口を昇 降路側壁へ向けてかご 2の左右の下枠 4に取り付けられ、 上記開口に遊挿される格 子板 3 5を透過する断続光によってパルス信号を出力するものである。 なお、 格子 板 3 5と光センサ 4 1はかご位置検出器として機能するものである。  FIG. 1 is a perspective view showing the entire control device of the elevator. In the figure, 1 is the hoistway, 2 is the car, 3 is the car floor, 4 is the lower frame that supports the car floor 3, 5 is the vertical frame erected on both left and right sides of car 2, and 6 is above car 2. It is the upper frame which was installed horizontally. Reference numeral 7 denotes a pair of car guide rails which are fixed to the hoistway side walls on both sides of the car 2, and 8 denotes weight guide rails which are fixed to the hoistway side walls on the back of the car 2 to stand upright. A pair of weight guide rails 8 are provided side by side on the right and left, respectively. Reference numeral 9 denotes a pair of hoisting machines installed on the left and right of the hoistway 1 so as to be spaced apart from each other at the top, and drives the sheave 10, the brake 11 for stopping the sheave 10, and the sheave 10. It consists of a motor 1 2. 1 3 is a pair of left and right main ropes wound around the sheave 10 and one end of which is locked to the lower frame 4 of the car 2, 14 is a deflecting wheel that guides each main rope 1 3 to the car 2, 1 5 Is a shirt loop rod attached to the end of each main rope 13, 16 is a shackle spring interposed between the lower frame 4 and each shackle opening 15, 17 is the other end of each main rope 13 The counterweight is locked to the left and right, and is provided separately on the left and right. Reference numeral 18 denotes a floor on which the car 2 arrives, and reference numeral 19 denotes a control panel for controlling each hoisting machine 9. Reference numeral 35 denotes a pair of left and right lattice plates attached to the car guide rail 7 with the longitudinal direction of the cage extending vertically, and slits are formed as shown in detail in FIG. Reference numeral 1 denotes a U-shaped optical sensor, which is mounted on the lower frame 4 on the left and right sides of the car 2 with the opening directed toward the hoistway side wall, and is intermittently transmitted through the grid plate 3 5 inserted into the opening. It outputs a pulse signal. The grid plate 35 and the optical sensor 41 function as a car position detector.
ところで、 釣合錘 1 7は、 通常積載荷重の 4 0 %〜 6 0 %の荷重がかご 2に積載 されたときに丁度平衡するように重量設定される。 ここでは、 5 0 %の荷重で平衡 するものとし、 積載荷重を W f として左右の卷上機 9に均等に作用するとして、 各 綱車 1 0には不平衡荷重 W f / 4に基く負荷トルクがかかる。 従って、 何れか一方 のブレーキ 1 1が作動しなかった場合、 不平衡荷重は他方のブレーキ 1 1に集中す る。 このため、 他方のブレーキ 1 1には不平衡荷重 (W f Z 4 ) X 2に基く負荷ト ルクがかかるが、 ブレーキ 1 1は、 正規の不平衡荷重 W f Z 4による負荷トルクのBy the way, the counterweight 17 is set to have a weight so as to be just balanced when a load of 40% to 60% of the normal load is loaded on the car 2. Here, equilibrium at 50% load Assuming that the loaded load is Wf and acts equally on the left and right hoisting machines 9, a load torque is applied to each sheave 10 based on the unbalanced load Wf / 4. Therefore, if one of the brakes 11 does not operate, the unbalanced load will concentrate on the other brake 11. As a result, a load torque based on the unbalanced load (W f Z 4) X 2 is applied to the other brake 11, but the brake 11 applies a load torque due to the regular unbalanced load W f Z 4.
2 5 0 %〜3 0 0 %の制動トルクを発生するように設定されているので、 一のブレ ーキ 1 1で積載荷重 W f のかご 2を静止させることができる。 Since it is set so as to generate a braking torque of 250% to 300%, the car 2 having the loaded load W f can be stopped by one brake 11 1.
第 2図はエレべ一夕の制御装置の電気回路を示すプロック図である。 図において 、 2 1はかご 2の下枠 4の下面に取り付けられてシャツクルばね 1 6の侔縮を検出 することにより各主索 1 3の張力を検出する張力検出器で、 詳細を第 3図に示す。 FIG. 2 is a block diagram showing an electric circuit of the control device of the elevator. In the figure, reference numeral 21 denotes a tension detector which is attached to the lower surface of the lower frame 4 of the car 2 and detects the contraction of the shirt loop spring 16 to detect the tension of each main rope 13. Shown in
5 1はかご操作盤、 5 2は各階床 1 8に取り付けられた乗り場釦である。 5 3は各 卷上機 9の回動に伴ってパルス信号を発するエンコーダである。 51 is a car operation panel, and 52 is a landing button attached to each floor 18. 53 is an encoder that emits a pulse signal in accordance with the rotation of each hoisting machine 9.
6 0は運転管理装置で、 かご操作盤 5 1及び乗場釦 5 2による呼びを登録する呼 び登録回路 6 0 aと、 目的階までの昇降距離を目標昇降距離 D oとして演算する目 標昇降距離演算回路 6 0 bと、 目的階への運転を指令する運転指令回路 6 0 cと、 床合せ運転を指令する床合せ指令回路 6 0 eと、 起動前のかご 2の静止状態におい て各主索 1 3の張力を合算してかご 2内の荷重を算出するかご内荷重検出回路 6 0 f とならなる。  Reference numeral 60 denotes an operation management device, a call registration circuit 60a for registering a call using the car operation panel 51 and the landing button 52, and a target elevating operation for calculating an elevating distance to the destination floor as a target elevating distance Do. Distance calculation circuit 60b, operation command circuit 60c for commanding operation to the destination floor, floor matching command circuit 60e for commanding floor matching operation, and The load in the car 2 is calculated by adding up the tensions of the main ropes 13 to calculate the load in the car 2.
6 1 Lは図に鎖線で囲って示したとおり、 かご 2の左側の昇降に係る機器を示し 、 6 1 Rは同じくかご 2の右側の昇降に係る機器を示す。 両機器 6 1 L、 6 1 Rは 同一の機器構成であり、 以下、 両者を区別せずに一括して説明する。 6 2は運転指 令回路 6 0 c又は床合せ指令回路 6 0 eの指令によって閉成して電力変換器 7 7か ら電動機 1 2に電力を供給する運転接点である。 6 3はエンコーダ 5 3によるパル ス信号の単位時間当たりの発生数からかご 2のかご速度 Vmを演算するかご速度演 算手段である。 6 4はかご速度 Vmを積分して出発階からのかご 2の現在位置まで の昇降距離 D mを演算する昇降距離演算器である。  61 L indicates a device related to ascending and descending on the left side of the car 2, and 61 R indicates a device related to ascending and descending on the right side of the car 2, as indicated by a chain line in the figure. The two devices 61 L and 61 R have the same device configuration, and will be described together without distinguishing between them. Reference numeral 62 denotes an operation contact which is closed by an instruction of the operation instruction circuit 60c or the floor alignment instruction circuit 60e and supplies electric power from the power converter 77 to the motor 12. 6 3 is a car speed calculating means for calculating the car speed Vm of the car 2 from the number of pulse signals generated per unit time by the encoder 53. 6 4 is a vertical distance calculator for calculating the vertical distance D m from the departure floor to the current position of the car 2 by integrating the car speed Vm.
6 5は目標昇降距離 D oから昇降距離 Dmを減算して目的階までの残距離 D rを 演算する減算器、 6 6は残距離 D rに見合った速度指令 V oを出力する位置制御器 で、 速度指令 V oの詳細は第 8図に示す。 6 7は運転指令回路 6 0 cの指令によつ て端子 a、 cを接続し、 床合せ指令回路 6 0 eの指令によって端子 b、 cを接続す る切替器である。 6 8は速度指令 V oとかご速度 Vmの速度差を演算する減算器、 6 9は速度差に見合ったトルク指令 T oを出力する速度制御器である。 6 5 is a subtractor that calculates the remaining distance D r to the destination floor by subtracting the lifting distance D m from the target lifting distance D o, 6 6 is a position controller that outputs a speed command V o corresponding to the remaining distance Dr The details of the speed command Vo are shown in Fig. 8. 6 7 is based on the command of the operation command circuit 60c. The terminals a and c are connected to each other, and the terminals b and c are connected according to the command of the floor alignment command circuit 60 e. Reference numeral 68 denotes a subtractor for calculating a speed difference between the speed command Vo and the car speed Vm, and 69 a speed controller for outputting a torque command To corresponding to the speed difference.
7 1はかご 2の起動に先立って端子 b、 cを接続し、 運転接点 6 2の閉成と共に 端子 a、 cを接続する切替器、 7 2は張力検出器 2 1で検出された起動直前の静止 状態における主索 1 3の張力から静止トルク T sを演算する静止トルク演算器、 7 3はトルク指令 T oに静止トルク T sを加算する加算器、 7 4は切替器 7 1を介し て主索 1 3の張力から負荷トルク Tmを演算する負荷トルク演算器、 7 5はトルク 指令 T oと静止トルク T sの加算値と負荷トルク Tmとのトルク差を演算する減算 器、 7 6はトルク差に見合った電流指令 I oを出力するトルク制御器、 7 7は電流 指令 I oと出力電流に基いて電動機 1 2に電力を供給する電力変換器、 7 8は電力 変換器 7 7からの出力電流を検出する変流器である。  7 1 is a switch that connects terminals b and c before the start of the car 2 and connects the terminals a and c together with the closing of the operating contact 6 2, 7 2 is a switch just before the start detected by the tension detector 2 1 The stationary torque calculator that calculates the static torque Ts from the tension of the main rope 13 in the stationary state of the motor, 73 is an adder that adds the static torque Ts to the torque command To, and 74 is through the switch 71. A load torque calculator that calculates the load torque Tm from the tension of the main rope 13, 75 is a subtractor that calculates the torque difference between the added value of the torque command To and the static torque Ts and the load torque Tm, 7 6 Is a torque controller that outputs a current command Io corresponding to the torque difference, 77 is a power converter that supplies electric power to the motor 12 based on the current command Io and the output current, and 78 is a power converter 77 This is a current transformer that detects the output current from
7 9は階床 1 8の上下に設定された床合せゾーン L Z U及び L Z Dが記録された 床合せゾーンメモリで、 床合せゾーン L Z U及び L Z Dの詳細は第 5図に示す。 8 0は光センサ 4 1のパルス信号を計数してかご位置 L Dmを演算するかご位置演算 器、 8 1は床合せゾーン L Z U又は L Z Dからかご位置 L Dmを減算して階床 1 8 までの残距離 L D rを演算する減算器、 8 2は残距離 L D rに見合った速度指令 L V oを出力する床合せ制御器で、 速度指令 L V oの詳細は第 9図に示す。  Reference numeral 79 denotes a floor-matching zone memory in which floor-matching zones LZU and LZD set above and below the floor 18 are recorded. Details of the floor-matching zones LZU and LZD are shown in FIG. 80 is a car position calculator that calculates the car position L Dm by counting the pulse signal of the optical sensor 41, and 81 is the car position calculator that subtracts the car position L Dm from the floor matching zone LZU or LZD to the floor 18 A subtractor that calculates the remaining distance LDr, 82 is a floor matching controller that outputs a speed command LVo corresponding to the remaining distance LDr, and details of the speed command LVo are shown in FIG.
8 5は左右の巻上機 9の昇降距離 Dmを比較する昇降距離比較器、 8 6は左右の 巻上機 9の電流値が各変流器 7 8を介して入力されて両電流値を比較する電流比較 器、 8 7は昇降距離比較器 8 5による昇降距離 Dmの較差が所定値を超えたとき、 又は電流比較器 8 6による電流値の較差が所定値を超えたときに左右の卷上機 9を 停止させる安全回路である。  8 5 is an elevating distance comparator for comparing the elevating distance Dm of the left and right hoisting machines 9, and 8 6 is a current value of the right and left hoisting machines 9 input through the respective current transformers 7 8 to calculate both current values. The current comparator for comparison, 87, is used when the range of the vertical distance Dm by the vertical distance comparator 85 exceeds the predetermined value, or when the range of the current value by the current comparator 86 exceeds the predetermined value. This is a safety circuit that stops the hoisting machine 9.
第 3図は張力検出器 2 1の要部を示す縦断面図である。 主索 1 3は、 通常左右そ れぞれ複数本が使用されるが、 ここでは 1本の主索 1 3の張力を検出するものとす る。 2 2はポビン、 2 3はポビン 2 2の中央部に券回された一次巻線、 2 4及び 2 5は一次巻線 2 3の両側でポビン 2 2に券回された二次巻線で、 互いに差動的に接 続されている。 2 6はポビン 2 2内に遊掙された可動鉄心で、 ブラケット 2 7を介 してシャツクルロッド 1 5に係止されており、 シャツクルばね 1 6の伸縮に伴って 上下動する。 即ち、 張力検出器 21は差動変圧器からなり、 一次巻線 23は電圧 e 1の交流電源 28に接続され、 二次巻線 24、 25にはそれぞれ電圧 e 2 a、 e 2 bが出力される。 出力端子 29には両者の差電圧 e o = e 2 a-e 2 bが出力され 、 可動鉄心 26がポビン 22の中心に位置するときは差電圧 e o = 0となる。 張力検出器 21の設定は、 まず、 かご 2を無負荷にした状態で左右の主索 13の 張力を計測する。 いずれか小さい方の張力が作用したときに出力 e oが 「0」 とな るように、 左右双方の張力検出器 21の可動鉄心の位置を設定する。 従って、 張力 検出器 21の出力 e oは、 無負荷時の左右の主索 13のいずれか小さい方の張力を 基準として、 その値との差に比例した値となる。 FIG. 3 is a longitudinal sectional view showing a main part of the tension detector 21. Usually, a plurality of main ropes 13 are used on each of the left and right sides. Here, the tension of one main rope 13 is detected. 22 is a pobin, 23 is a primary winding wound around the center of the pobin 22, 24 and 25 are secondary windings wound around the pobin 22 on both sides of the primary winding 23. Are differentially connected to each other. Reference numeral 26 denotes a movable iron core that is inserted into the pobin 22 and is locked to the shirt loop rod 15 via the bracket 27. Move up and down. That is, the tension detector 21 is composed of a differential transformer, the primary winding 23 is connected to an AC power supply 28 having a voltage e1, and the secondary windings 24 and 25 output voltages e2a and e2b, respectively. Is done. The difference voltage eo = e 2 ae 2b between the two is output to the output terminal 29. When the movable iron core 26 is located at the center of the pobin 22, the difference voltage eo = 0. In setting the tension detector 21, first, the tension of the left and right main ropes 13 is measured with the car 2 being unloaded. The positions of the movable iron cores of the left and right tension detectors 21 are set so that the output eo becomes “0” when the smaller one of the tensions acts. Therefore, the output eo of the tension detector 21 is a value proportional to the difference from the smaller tension of the left and right main ropes 13 when no load is applied.
第 4図は、 上記張力検出器 21の動作状態を示す。 即ち、 張力検出器 21はかご 2の左右に取り付けられており、 それぞれ独立に作動して出力 e oL、 e oRとな る。 かご 2が静止している場合は、 上記出力 e oL、 e oRに基いて各静止トルク 演算器 72L、 72Rによって静止トルク Ts L、 T s Rが演算される。  FIG. 4 shows an operation state of the tension detector 21. That is, the tension detectors 21 are attached to the left and right sides of the car 2 and operate independently to output eOL and eOR. When the car 2 is stationary, the static torques TsL and TsR are calculated by the static torque calculators 72L and 72R based on the outputs eOL and eOR.
図示のとおり乗客 2 aがお側に偏って乗車したとすると、 左側の主索 13Lより も右側の主索 13 Rの方が大きな張力となる。 このため、 お側のシャツクルばね 1 6 Rの方がより圧縮されるので出力 e oRは出力 e o Lよりも大きい値となり、 静 止トルク T s Rも同様である。  As shown in the figure, if the passenger 2a gets on the side of the vehicle, the right main rope 13R has a larger tension than the left main rope 13L. For this reason, since the shirt spring 16 R on the side is more compressed, the output e oR is larger than the output e o L, and the static torque T s R is also the same.
第 5図は、 格子板 35と光センサ 41からなるかご位置検出器を示す斜視図で、 長手を上下方向に向けた格子板 35には、 一定のピッチ dでスリット 36が打ち抜 かれていると共に、 一側には中心から上下に等寸法 LU、 LDだけ切り欠かれた着 床ゾーン用欠切部 37が形成されている。 38は格子板 35をかごガイドレール 7 に取り付けるブラケットである。  FIG. 5 is a perspective view showing a cage position detector composed of a lattice plate 35 and an optical sensor 41, and slits 36 are punched at a constant pitch d in the lattice plate 35 whose longitudinal direction is directed vertically. At the same time, a notch 37 for the landing zone is formed on one side, which is cut out from the center by equal dimensions LU and LD. Reference numeral 38 denotes a bracket for attaching the grid plate 35 to the car guide rail 7.
光センサ 41の本体の一方の腕の内側面には所定距離を隔てて上下に投光器 42 p、 43 pと、 奥行方向に投光器 44 pが取り付けられており、 他方には対向する 位置に受光器 42 r、 43 r、 44 rが取り付けられている。 受光器 42 r、 43 rは投光器 42 p、 43 pの光が格子板 35によって断続されることによってパル ス信号を出力するかご位置エンコーダとして機能するものである。 受光器 44 rは 格子板 35によつて投光器 44 pの光が遮断されされることによつて床合せゾーン LZU、 LZDを検出し、 光が透過することによって着床ゾーン LU、 LDを検出 する。 従って、 受光器 44 rは着床ゾーン検出器として機能するものである。 ここで、 格子板 35は、 かご床 3と階床 18がー致したときに格子板 35の中心 が下枠 4に取り付けられた光センサ 41の中心と一致するように、 ブラケット 38 を介してかごガイドレール 7に取り付けられる。 On the inner surface of one arm of the main body of the optical sensor 41, a projector 42p, 43p is mounted vertically at a predetermined distance, and a projector 44p is mounted in the depth direction, and the other is a receiver opposite to the other. 42 r, 43 r, 44 r are installed. The light receivers 42r and 43r function as car position encoders that output pulse signals when the light of the light emitters 42p and 43p is interrupted by the grid plate 35. The light receiver 44r detects the floor matching zones LZU and LZD when the light from the light emitter 44p is blocked by the grid plate 35, and detects the landing zones LU and LD when the light is transmitted. I do. Therefore, the light receiver 44r functions as a landing zone detector. Here, the lattice plate 35 is connected via the bracket 38 so that the center of the lattice plate 35 coincides with the center of the optical sensor 41 attached to the lower frame 4 when the car floor 3 and the floor 18 are aligned. It is attached to the car guide rail 7.
第 6図は、 着床時のかご 2を示す。 即ち、 光センサ 41及び格子板 35からなる かご位置検出器は、 かご 2の左右に取り付けられており、 それぞれ独立に作動して かご床 3の位置を検出する。 図示のとおり、 かご床 3が階床 18に対してひだけ左 方上りで傾斜しており、 右側の受光器 44 rRは着床ゾーン LU LD内にあるが 、 左側の受光器 44 r Lは着床ゾーン LUから外れて上位にあるとする。 床合せは 左側のみ行われ、 受光器 44 r Lが着床ゾ一ン L U L D内になるようかご 2の左 側のみ下降させて床合せを行う。  FIG. 6 shows the car 2 at the time of landing. That is, the car position detectors composed of the optical sensor 41 and the grid plate 35 are attached to the left and right of the car 2 and operate independently to detect the position of the car floor 3. As shown in the figure, the car floor 3 is inclined upward to the left with respect to the floor 18, and the right receiver 44 rR is in the landing zone LU LD, but the left receiver 44 r L is Suppose that it is out of the landing zone LU and is in the upper rank. Floor matching is performed only on the left side, and floor matching is performed by lowering only the left side of car 2 so that the receiver 44rL is within the landing zone LULD.
第 7図は、 同じく着床時のかご 2を示す。 即ち、 床合せは左右双方が床合せゾー ン LZU L ZD内にある場合のみ行われる。 図示のとおり、 かご床 3が階床 18 よりも上位に傾斜して停止し、 右側の受光器 44 r Rは床合せゾーン LZU内にあ るが、 左側の受光器 44 r Lは床合せゾーン L ZUから外れて上位にある場合は、 床合せは行われない。  Fig. 7 shows the car 2 at the time of landing. That is, floor matching is performed only when both the left and right are within the floor matching zone LZU L ZD. As shown in the figure, car floor 3 is inclined higher than floor 18 and stops, and the right receiver 44 r R is in the floor matching zone LZU, but the left receiver 44 r L is in the floor matching zone. If it is out of L ZU and above the floor, no floor matching will be performed.
第 8図は、 呼び応答運転において位置制御器 66から出力される速度指令 Voを 示す。 図は目的階までの残距離 D rに対して速度指令 Voが演算されるもので、 時 刻 t 0で運転指令が出されると、 初期値として速度指令 vo 1が出力される。 この 速度指令 V o 1に基いて昇降運転されて昇降距離演算器 64が距離 Dmlを出力す ると、 目的階までの残距離 D rは目標昇降距離 Doとして D r (Do-Dml) となる。 この残距離 D rに対して速度指令 vo 2が出力される。 同様にこの速度指 令 Vo 2に基いて出発階から距離 Dm 2だけ昇降すると残距離 D r (=Do— Dm 2) となり、 この残距離 D rに対して速度指令 vo 3が出力される。 速度指令 vo 3に基いて昇降して出発階から距離 Dm 3だけ昇降した時刻 t 3が、 かご 2の現在 位置とする。 この位置からの残距離 D r (=Do-Dm3) に対して新たな速度指 令 Voが出力され、 定格速度 Vm axに達すると一定値となる。  FIG. 8 shows a speed command Vo output from the position controller 66 in the call answering operation. In the figure, the speed command Vo is calculated for the remaining distance Dr to the destination floor. When the operation command is issued at time t0, the speed command vo1 is output as an initial value. When the ascent / descent distance calculator 64 outputs the distance Dml when the ascending / descending operation is performed based on the speed command Vo1, the remaining distance Dr to the destination floor becomes Dr (Do-Dml) as the target ascent / descent distance Do. . The speed command vo 2 is output for the remaining distance Dr. Similarly, when the vehicle travels up and down by a distance Dm2 from the departure floor based on the speed command Vo2, the remaining distance Dr (= Do—Dm2) is obtained, and the speed command vo3 is output for the remaining distance Dr. The time t3 when the vehicle moves up and down based on the speed command vo3 and moves up and down by a distance Dm3 from the departure floor is the current position of the car 2. A new speed command Vo is output for the remaining distance Dr (= Do-Dm3) from this position, and becomes constant when the rated speed Vmax is reached.
残距離 D rが減速距離に等しくなると、 以後減速した速度指令 V oが残距離 D r に対応させて出力され、 この速度指令 Voに従って目的階に着床する。 第 9図は、 床合せ運転における速度指令 LVoを示す。 床合せ運転の速度指令 L Voは床合せ制御器 82から出力され、 初期値 LVmaxを出力した後、 減算器 8 1からの残距離 LD rに従って段階的に減少する速度指令 LVoを出力する。 床合 せゾーン LZU及び LZD内では、 光センサ 41が格子板 35と係合する。 この係 合によってかご位置演算器 80は、 受光器 42 rと受光器 43 rの動作順序からか ご 2の運転方向を検知し、 上部基準位置 Pu又は下部基準位置 P dを起点とする受 光器 42 r又は受光器 43 rのパルス信号数からかご 2の位置 LDmを演算する。 従って、 下降運転の場合は上部基準位置 Puを起点として、 上昇運転の場合は下部 基準位置 Pdを起点として、 かご 2の位置 LDmが検知される。 かご床 3が着床ゾ ーン LU、 LDから外れて受光器 44 rへの光が遮断されると速度指令 LVoに従 つて床合せが行われる。 When the remaining distance Dr becomes equal to the deceleration distance, a decelerated speed command Vo is output in accordance with the remaining distance Dr, and the vehicle reaches the destination floor according to the speed command Vo. Fig. 9 shows the speed command LVo in floor matching operation. The floor command L Vo is output from the floor controller 82, outputs an initial value LVmax, and then outputs a speed command LVo that gradually decreases in accordance with the remaining distance LD r from the subtractor 81. In the flooring zones LZU and LZD, the optical sensor 41 engages with the grid plate 35. With this relationship, the car position calculator 80 detects the operating direction of the car 2 from the operation order of the receiver 42r and the receiver 43r, and receives light starting from the upper reference position Pu or the lower reference position Pd. The position LDm of car 2 is calculated from the number of pulse signals of the detector 42r or the receiver 43r. Accordingly, the position LDm of the car 2 is detected starting from the upper reference position Pu in the case of descending operation and starting from the lower reference position Pd in the case of ascending operation. When the car floor 3 is disengaged from the landing zones LU and LD and the light to the receiver 44r is cut off, floor matching is performed according to the speed command LVo.
第 10図に従って呼び応答運転の動作を説明する。 以下は、 左側の機器 61 L及 び右側の機器 61Rに共通する動作であり、 区別することなく説明する。  The operation of the call answering operation will be described with reference to FIG. The following is an operation common to the left device 61L and the right device 61R, and will be described without distinction.
呼び登録回路 60 aに乗場呼び又はかご呼びが登録されると、 手順 S 1 1から手 順 S 12へ移り、 運転指令回路 60 cから呼びに応答するための運転指令が出され る。 手順 S 13で昇降距離演算回路 60 bによって出発階から目的階までの昇降距 離が演算されて、 左側の機器 61 L及び右側の機器 61 Rに共通の目標昇降距離 D oとして出力される。 手順 S 14で切替器 71を端子 bへ接続して張力検出器 21 の出力を静止トルク演算器 72へ入力し、 起動前の静止状態における主索 13の張 力から静止トルク T sを演算して記憶した後、 切替器 71を端子 aへ接続する。 手 順 S 15で切替器 67も端子 aへ接続する。 手順 S 16で運転接点 62を閉成させ てブレーキ 1 1を開放し、 電動機 12へ電力を供給する。  When the hall call or the car call is registered in the call registration circuit 60a, the procedure shifts from the step S11 to the step S12, and an operation command for responding to the call is issued from the operation command circuit 60c. In step S13, the ascent / descent distance from the departure floor to the destination floor is calculated by the ascent / descent distance calculation circuit 60b, and is output as a target ascent / descent distance Do common to the left device 61L and the right device 61R. In step S14, connect the switch 71 to the terminal b, input the output of the tension detector 21 to the static torque calculator 72, and calculate the static torque Ts from the tension of the main rope 13 in the static state before starting. After that, the switch 71 is connected to the terminal a. In step S15, switch 67 is also connected to terminal a. In step S16, the operation contact 62 is closed, the brake 11 is released, and power is supplied to the motor 12.
手順 S 17でエンコーダ 53のパルス信号をかご速度演算手段 63へ入力してか ご速度 Vmを演算し、 更に昇降距離演算器 64によってかご速度 Vmを積分して出 発階からのかご 2の現在位置までの昇降距離 Dmを演算する。 S 18で減算器 65 によって目標昇降距離 D oから昇降距離 D mを減算して目的階までの残距離 D rが 演算される。 手順 S 19で位置制御器 66から残距離 D rに見合った速度指令 Vo が出力される。 手順 S 20で減算器 68によって速度指令 Voとかご速度 Vmとの 速度差 ΔΥが演算される。 手順 S 21で速度差 Δνに基いて速度制御器 69によつ てトルク指令 T oが演算される。 手順 S 2 2で加算器 7 3によってトルク指令 T o と静止トルク T sが加算される。 手順 S 2 3で減算器 7 5によってトルク指令 T o と静止トルク T sの加算値と負荷トルク Tmとのトルク差 Δ Τが演算される。 手順 S 2 4でトルク制御器 7 6によってトルク差 Δ Τに基いて電流指令 I oが演算され る。 手順 S 2 5で電流指令 I oに基いて電力変換器 7 7によって電動機 1 2へ電力 が供給される。 In step S17, the pulse signal of the encoder 53 is input to the car speed calculation means 63 to calculate the car speed Vm, and then the car speed Vm is integrated by the elevating distance calculator 64, and the current of the car 2 from the departure floor Calculate the vertical distance Dm to the position. In S18, the remaining distance Dr to the destination floor is calculated by subtracting the lifting distance Dm from the target lifting distance Do by the subtractor 65 in S18. In step S19, the position controller 66 outputs a speed command Vo corresponding to the remaining distance Dr. In step S20, the subtracter 68 calculates the speed difference ΔΥ between the speed command Vo and the car speed Vm. In step S21, the speed controller 69 is used based on the speed difference Δν. Thus, the torque command To is calculated. In step S22, the torque command To and the static torque Ts are added by the adder 73. In step S23, the subtractor 75 calculates the torque difference ΔΤ between the added value of the torque command To and the static torque Ts and the load torque Tm. In step S24, the torque controller 76 calculates the current command Io based on the torque difference ΔΤ. In step S25, power is supplied to the motor 12 by the power converter 77 based on the current command Io.
手順 S 2 6で格子板 3 5と光センサ 4 1からなるかご位置検出器によってかご 2 が目的階へ到着しことが検出されると手順 S 2 7へ移り、 運転接点 6 2を開放させ てブレーキ 1 1を作動させると共に電動機 1 2を消勢して手順 S 1 1へ戻り、 次の 呼び応答運転をする。 手順 S 2 6でかご 2が目的階へ到着していない場合は手順 S 1 7へ戻り、 以下手順 S 1 7力 ^ら手順 S 2 6迄の処理を繰り返してかご 2を目的階 まで運転する。  In step S26, when the car position detector consisting of the grid plate 3 5 and the optical sensor 4 1 detects that the car 2 has arrived at the destination floor, the operation proceeds to step S27, in which the operating contacts 62 are opened. Activate the brake 11 and deactivate the motor 12 to return to step S11 and perform the next call answering operation. If car 2 has not arrived at the destination floor in step S26, return to step S17, and repeat steps S17 to S26 to drive car 2 to the destination floor. .
第 1 1図に従って床合せ運転の動作を説明する。 以下は、 左側の機器 6 1 L及び 右側の機器 6 1 Rに共通する動作であり、 必要な場合を除き左右の別なく説明する 手順 S 3 1で左右の受光器 4 4 rが、 例えば第 6図のように、 共に床合せゾーン L Z U、 L Z Dを検出している場合に限り手順 S 3 2へ移る。 第 7図のように、 床 合せゾーン L Z U、 L Z Dを検出していない受光器 4 4 rがある場合は床合せ運転 は行われない。 階床 1 8とかご床 3の差が大きい場合の床合せ運転は不適切だから である。 手順 S 3 2で左右の光センサ 4 1の受光器 4 4 rが共に着床ゾーン L U、 L D内を検出している場合は床合せ運転は行われない。 床合せの必要がないからで ある。 第 6図の左側のように、 着床ゾーン L U、 L Dを検出していない受光器 4 4 rがある場合は、 手順 S 3 3で受光器 4 4 rが着床ゾーン L U、 L Dを検出してい ない側の床合せ指令回路 6 0 eが作動する。  The operation of the floor matching operation will be described with reference to FIG. The following is an operation common to the left device 61 L and the right device 61 R, and will be described separately for the left and right unless necessary. As shown in Fig. 6, move to step S32 only when both floor matching zones LZU and LZD are detected. As shown in Fig. 7, if there is a receiver 44r that has not detected the floor matching zones LZU and LZD, floor matching operation is not performed. This is because floor matching operation when the difference between floors 18 and 3 is large. If the receivers 4 4 r of the left and right optical sensors 41 in step S 32 detect both the landing zones L U and L D, floor matching operation is not performed. This is because there is no need for floor matching. As shown on the left side of Fig. 6, if there is a receiver 44r that has not detected the landing zone LU and LD, the receiver 44r detects the landing zone LU and LD in step S33. The floor alignment command circuit 60 e on the side that is not running operates.
手順 S 3 4で切替器 7 1を端子 bへ接続して張力検出器 2 1の出力を静止トルク 演算器 7 2へ入力し、 起動前の静止状態における主索 1 3の張力から静止トルク T sを演算して記憶した後、 切替器 7 1を端子 aへ接続する。 手順 S 3 5で切替器 6 7も端子 bへ接続する。 手順 S 3 6で運転接点 6 2を閉成させてブレーキ 1 1を開 放し、 電動機 1 2へ電力を供給する。 手順 S 3 7で床合せ制御器 8 2は床合せ運転 の速度指令 LVoとして初期値 LVmaxを出力する。 手順 S 38でかご位置演算 器 80からかご位置 LDmを読み取る。 このかご位置 LDmは、 呼び応答運転でか ご 2が目的階に着床する際に上部基準位置 P u又は下部基準位置 P dを起点とする 光センサ 41のパルス信号からかご位置演算器 80によって既に演算され、 記憶さ れているものである。 手順 S 39で床合せゾ一ンメモリ 79から床合せゾ一ン LZ U、 L ZDを読み取り、 減算器 81によって床合せゾ一ン LZU、 L ZDとかご位 置 LDmを減算して階床 18までの残距離 LD rを算出する。 手順 S 40で床合せ 制御器 82は、 第 9図に示したとおり、 残距離 LD rに従って段階的に減少する速 度指令 LVoを出力する。 手順 S41で減算器 68によって速度指令 LVoとかご 速度 Vmとの速度差 Δνが演算される。 Connect the switch 7 1 to the terminal b in step S 3 4 and input the output of the tension detector 2 1 to the static torque calculator 7 2, and calculate the static torque T based on the tension of the main rope 1 3 in the static state before starting. After calculating and storing s, connect switch 71 to terminal a. In step S35, switcher 67 is also connected to terminal b. In step S36, the operating contacts 62 are closed to release the brake 11, and power is supplied to the motor 12. Step S3 7 floor-matching controller 8 2 floor-matching operation Outputs the initial value LVmax as the speed command LVo. In step S38, the car position LDm is read from the car position calculator 80. The car position LDm is calculated by the car position calculator 80 from the pulse signal of the optical sensor 41 starting from the upper reference position Pu or the lower reference position Pd when the car 2 arrives at the destination floor in the call answering operation. It has already been calculated and stored. In step S39, the floor alignment zones LZU and LZD are read from the floor alignment zone memory 79, and the floor alignment zones LZU and LZD and the car position LDm are subtracted by the subtractor 81 to the floor 18. The remaining distance LDr is calculated. In step S40, the floor matching controller 82 outputs a speed command LVo that gradually decreases in accordance with the remaining distance LDr, as shown in FIG. In step S41, the speed difference Δν between the speed command LVo and the car speed Vm is calculated by the subtractor 68.
手順 S 42は第 10図の手順 S 21から手順 S 25までと同様の処理であって、 速度差 Δνに基いて速度制御器 69によってトルク指令 Toが演算され、 加算器 7 3によってトルク指令 T oと静止トルク T sが加算され、 減算器 75によってトル ク指令 Toと静止トルク T sの加算値と負荷トルク Tmとのトルク差 ΔΤが演算さ れ、 トルク制御器 76によってトルク差 ΔΤに基いて電流指令 I oが演算され、 電 流指令 I 0に基いて電力変換器 77によって電動機 12へ電力が供給されてかご 2 が昇降駆動される。  Step S42 is the same processing as steps S21 to S25 in FIG. 10, in which the torque controller To is calculated by the speed controller 69 based on the speed difference Δν, and the torque command T is calculated by the adder 73. o and the static torque T s are added, the subtractor 75 calculates the torque difference ΔΤ between the added value of the torque command To and the static torque T s and the load torque Tm, and the torque controller 76 calculates the torque difference ΔΤ based on the torque difference ΔΤ. A current command Io is calculated, and electric power is supplied to the motor 12 by the power converter 77 based on the current command I0 to drive the car 2 up and down.
手順 S43で受光器 44 rによってかご床 3が着床ゾーン LU、 LD内に入った ことが検出されると手順 S 44へ移り、 運転接点 62を開放させてブレーキ 11を 作動させると共に電動機 12を消勢して床合せ運転を終了する。 手順 S 43でかご 床 3が着床ゾーン LU、 LDに達していないとされた場合は手順 S 38へ戻り、 以 下手順 S 38から手順 S 43迄の処理を繰り返して床合せ運転をする。  When it is detected in step S43 that the car floor 3 has entered the landing zones LU and LD by the photodetector 44r, the process proceeds to step S44, in which the operation contact 62 is opened, the brake 11 is operated, and the motor 12 is turned on. Deenergize and end floor matching operation. If it is determined in step S43 that the car floor 3 has not reached the landing zones LU and LD, the procedure returns to step S38, and the steps from step S38 to step S43 are repeated to perform floor matching operation.
上記実施の形態 1によれば、 かご 2の左右にそれぞれ主索 13を係止して立ち上 げて対応して設置された巻上機 9にそれぞれ巻き掛けてかご 2を昇降駆動するよう にしたので、 何れか一方のブレーキ 11が作動しなかった場合でも他方のブレーキ 11で積載荷重 Wf のかご 2を静止させることができる。  According to the first embodiment, the car 2 is raised and lowered by locking the main ropes 13 on the left and right sides of the car 2, respectively, and winding the car 2 around the hoisting machines 9 installed correspondingly. Therefore, even if one of the brakes 11 does not operate, the other brake 11 can stop the car 2 having the loaded load Wf.
また、 かご 2を起動させる前の静止状態における各主索 13の張力を検出し、 対 応する巻上機 9のトルクを検出値に基いて個別に増減させてかご 2を昇降駆動する ようにしたので、 荷重が偏ってかご 2に積載されて各主索 13の張力が異なってい ても、 巻上機 9は応分のトルクでかご 2を駆動するので、 各主索 1 3の相対移動を 防止することができ、 かご床 3が異常に傾斜するのを避けることができる。 In addition, the tension of each main rope 13 in the stationary state before starting the car 2 is detected, and the torque of the corresponding hoist 9 is individually increased or decreased based on the detected value to drive the car 2 up and down. As a result, the load was biased and loaded on the car 2, and the tension of each main rope 13 was different. However, since the hoist 9 drives the car 2 with an appropriate torque, the relative movement of the main ropes 13 can be prevented, and the car floor 3 can be prevented from abnormally tilting.
更に、 主索 1 3ごとに張力検出器 2 1を設け、 起動前のかご 2の静止状態におけ る各張力検出器 2 1の出力の合算値をかご内の荷重とするかご内荷重検出回路 6 0 f を設けたので、 別に検出器を設置することなくかご 2内の荷重を検出して混雑度 等を算出することができる。  In addition, a tension detector 21 is provided for each main rope 13, and the sum of the outputs of the tension detectors 21 when the car 2 is not running before starting is used as the load in the car. Since 60 f is provided, the load in the car 2 can be detected and the degree of congestion can be calculated without separately installing a detector.
更にまた、 かご 2が目的階に着床したときの階床 1 8とかご床 3との差が上部着 床ゾーン L U又は下部着床ゾ一ン L Dを超えたとき対応する巻上機 9で個別に床合 せをするようにしたので、 仮に巻上機 9によって主索 1 3に相対移動が生じ、 かご 床 3が傾斜したとしても、 床合せによって修正されるので、 主索 1 3の相対移動が 累増することはない。  Furthermore, when the difference between the floor 18 and the floor 3 when the car 2 has landed on the destination floor exceeds the upper landing zone LU or the lower landing zone LD, the corresponding hoisting machine 9 Since the floors are individually laid, if the hoisting machine 9 causes the main ropes 13 to move relative to each other, and even if the car floor 3 is tilted, it will be corrected by the flooring, so that the main ropes 13 The relative movement does not increase.
更にまた、 巻上機 9ごとに昇降距離 Dmを演算して昇降距離比較器 8 5で比較し Furthermore, the lifting distance Dm is calculated for each of the hoisting machines 9 and compared with the lifting distance comparator 85.
、 その較差が所定値を超えたときに安全回路 8 7を作動させて巻上機 9を停止させ るようにしたので、 かご床 3が異常に傾斜するのを未然に阻止することができる。 特に、 エンコーダ 5 3によって巻上機 9の回動角速度 ωを計測し、 この計測値か ら上記昇降距離 Dmを演算するようにしたので、 現実に主索 1 3が相対移動した場 合に限らず、 巻上機 9の回動に不揃いが生じて昇降距離 Dmに差が生じた場合も巻 上機を停止させることができるので、 綱車 1 0の磨耗にばらつきが生じた場合も早 期に検知して対処することができる。 However, when the difference exceeds a predetermined value, the safety circuit 87 is actuated to stop the hoisting machine 9, so that the car floor 3 can be prevented from being abnormally inclined. In particular, since the rotational angular velocity ω of the hoisting machine 9 is measured by the encoder 53, and the above-described elevation distance Dm is calculated from the measured value, it is limited only when the main rope 13 actually moves relatively. The hoisting machine can also be stopped when the hoisting machine 9 has irregular rotation and a difference in the lifting distance Dm, so that even if the sheave 10 wears unevenly, And can take action.
更にまた、 各卷上機 9の電動機 1 2の電流を個別に計測して電流比較器 8 6で比 較し、 その較差が所定値を超えたときに安全回路 8 7を作動させて巻上機 9を停止 させるようにしたので、 一の電動機 1 2に極端に負荷が偏った状態、 例えば、 かご 2が異常に傾斜したような状態での運転を阻止することができる。  Furthermore, the current of the motor 12 of each hoisting machine 9 is individually measured and compared by the current comparator 86, and when the difference exceeds a predetermined value, the safety circuit 87 is operated to wind up. Since the motor 9 is stopped, it is possible to prevent the operation in a state in which the load on one motor 12 is extremely biased, for example, a state in which the car 2 is abnormally inclined.
更にまた、 出発階から目的階までの昇降距離を予め演算して各巻上機 9に共通の 目標昇降距離 D oとして与え、 現在位置から目的階までの残距離 D rを各巻上機 9 ごとに演算し、 この残距離 D rに見合った速度を速度指令 V oとして対応する各巻 上機 9を個別に制御するようにしたので、 目標昇降距離 D oに適した速度制御が可 能となり、 目的階に正確に着床させることができる。  Furthermore, the elevating distance from the departure floor to the destination floor is calculated in advance and given as a common target elevating distance D o for each hoist 9, and the remaining distance D r from the current position to the destination floor is provided for each hoist 9. Since the speed corresponding to the remaining distance Dr is calculated as a speed command Vo and the corresponding hoisting machines 9 are individually controlled, speed control suitable for the target elevating distance Do can be performed. You can land exactly on the floor.
なお、 上記実施の形態 1では、 巻上機 9にかかる負荷の偏倚を、 変流器 7 8を介 して電動機電流を検出して電流比較器 8 6で比較するようにしたが、 これに限られ るものではなく、 各巻上機 9にかかる負荷トルクを比較することにより負荷の偏倚 を検知するようにしてもよい。 In the first embodiment, the bias of the load applied to the hoist 9 is controlled by the current transformer 78. Although the motor current is detected and compared by the current comparator 86, the present invention is not limited to this. The load torque applied to each hoist 9 is compared to detect the deviation of the load. It may be.
実施の形態 2 . Embodiment 2
第 1 2図から第 1 5図は、 この発明に係る複数の卷上機を備えたエレべ一夕の制 御装置の実施の形態 2を示す。  FIGS. 12 to 15 show Embodiment 2 of the control device for an elevator equipped with a plurality of hoists according to the present invention.
この実施の形態 2は、 運転指令が発せられた当初は、 時間経過に伴って速度指令 を算出して卷上機を一括して制御し、 減速点から目的階までは残距離に見合った速 度指令で巻上機を個別に制御するようにしたものである。  In the second embodiment, when an operation command is issued, a speed command is calculated with the passage of time and the winding machine is controlled collectively, and a speed corresponding to the remaining distance from the deceleration point to the destination floor is obtained. The hoisting machine is individually controlled by the degree command.
第 1 2図は、 エレべ一夕の制御装置の電気回路を示すブロック図で、 9 1は長手 を上下方向へ向けてかごガイドレール 7に取り付けられた左右一対の格子板で、 詳 細を第 1 3図に示すとおり、 上下の減速点 P P u、 P P dから階床位置までスリツ ト 3 6が形成されている。 1 0 0は運転管理装置で、 呼び登録回路 6 0 aと、 運転 指令回路 6 0 cと、 床合せ指令回路 6 0 eと、 かご内荷重検出回路 6 0 f に加えて 、 光センサ 4 1が格子板 9 1に係合して目的階から所定距離手前に設定された減速 点を検出すると減速を指令する減速指令回路 6 0 dとからなる。 1 0 1は運転指令 回路 6 0 cから運転指令が発せられると時間経過に伴って速度指令 V a oを算出し て双方の巻上機 9を一括して制御する時間速度演算器である。  FIG. 12 is a block diagram showing an electric circuit of the control device of the elevator, and 91 is a pair of left and right lattice plates attached to the car guide rail 7 with the longitudinal direction of the control device being vertical. As shown in Fig. 13, a slit 36 is formed from the upper and lower deceleration points PPu, PPd to the floor position. 100 is an operation management device. In addition to the call registration circuit 60a, the operation command circuit 60c, the floor matching command circuit 60e, and the car load detection circuit 60f, the optical sensor 4 1 Is engaged with the lattice plate 91 and detects a deceleration point set a predetermined distance before the destination floor, and includes a deceleration command circuit 60d for instructing deceleration. Reference numeral 101 denotes a time speed calculator which calculates a speed command V ao with the passage of time when an operation command is issued from the operation command circuit 60 c and controls both the hoisting machines 9 collectively.
1 0 2 Lは図に鎖線で囲って示したとおり、 かご 2の左側の主索 1 3 Lの昇降に 係る機器を示し、 1 0 2 Rは同じくかご 2の右側の主索 1 3 Rの昇降に係る機器を 示す。 両機器 1 0 2 L、 1 0 2 Rは同一の機器構成であり、 以下、 両者を区別せず に一括して説明する。 1 0 3は減速点から目的階までは残距離 GD rに見合った速 度を各卷上機 9ごとに演算して第 1 4図に示す速度指令 V d oを発生する減速制御 器である。 1 0 4は運転指令回路 6 0 cの指令によって端子 a、 dが接続され、 減 速指令回路 6 0 dの指令によって端子 b、 dが接続され、 床合せ指令回路 6 0 eの 指令によって端子 c、 dが接続される切替器である。  102 L indicates equipment related to the ascending and descending of the main rope 13 L on the left side of the car 2 as indicated by the chain line in the figure, and 102 R indicates the equipment of the main rope 13 R on the right side of the car 2 as well. Shows equipment related to elevating. The two devices 102 L and 102 R have the same device configuration, and will be described collectively without distinguishing between them. Reference numeral 103 denotes a deceleration controller which calculates a speed corresponding to the remaining distance GDr from the deceleration point to the destination floor for each hoisting machine 9 to generate a speed command V do shown in FIG. 104 is connected to terminals a and d by the command of the operation command circuit 60c, terminals b and d are connected by the command of the deceleration command circuit 60d, and the terminals are connected by the command of the floor matching command circuit 60e. c and d are switches to be connected.
1 0 5は第 2図に符号 7 1から符号 7 7を付した要素と同一の要素で構成された 部分を示す。 1 0 6は光センサ 4 1のパルス信号を計数してかご位置 GDmを演算 するかご位置演算器、 1 0 7は減速点から階床 1 8までの減速距離 G Z U、 G Z D が記録された減速距離メモリである。 108は減速点を起点とするかご位置 GDm を減速距離 GZU又は GZDから減算して残距離 GD rを演算する減算器である。 第 13図は、 格子板 91と光センサ 41からなるかご位置検出器を示す斜視図で 、 長手を上下方向に向けた格子板 91には、 上下の減速点 PPu、 PPdから階床 18まで一定のピッチ dでスリット 36が打ち抜かれていると共に、 一側には階床 18を中心として上下に等寸法 LU、 LDだけ切り欠かれた着床ゾーン用欠切部 3 7が形成され、 更に階床 18を中心として上下に床合せゾーン LZU、 LZDを特 定する遮蔽部 92が着床ゾーン用欠切部 37の上下に形成されている。 Numeral 105 denotes a portion composed of the same elements as those denoted by reference numerals 71 to 77 in FIG. 106 is a car position calculator that calculates the car position GDm by counting the pulse signals of the optical sensor 41, and 107 is the deceleration distance GZU, GZD from the deceleration point to the floor 18 Is a deceleration distance memory recorded. Reference numeral 108 denotes a subtractor that calculates the remaining distance GDr by subtracting the car position GDm starting from the deceleration point from the deceleration distance GZU or GZD. FIG. 13 is a perspective view showing a car position detector composed of a lattice plate 91 and an optical sensor 41. The lattice plate 91 having its longitudinal direction directed upward and downward has a constant deceleration point from the upper and lower deceleration points PPu, PPd to the floor 18. A slit 36 is punched at a pitch d of the floor, and a notch 3 7 for the landing zone is formed on one side of the floor 18 with the same dimensions LU and LD cut out vertically above and below the floor 18. Shielding portions 92 for specifying floor matching zones LZU and LZD are formed above and below the flooring notch portion 37 with the floor 18 as the center.
即ち、 格子板 91は、 上部減速点 PPu又は下部減速点 PPdを起点として階床 In other words, the lattice plate 91 starts from the upper deceleration point PPu or the lower deceleration point PPd,
18までの減速距離 GZU、 GZDを特定すると共に、 上部基準位置 Pu又は下部 基準位置 Pdを起点とする床合せゾーン LZU、 LZDを特定し、 更に着床ゾーンIdentify the deceleration distances GZU and GZD up to 18, and specify the floor matching zones LZU and LZD starting from the upper reference position Pu or the lower reference position Pd, and furthermore, the landing zone
LU、 LDを特定するものである。 It specifies LU and LD.
第 14図は、 時間速度演算器 101から出力される速度指令 V a oと減速制御器 103から出力される速度指令 Vd oを示す。  FIG. 14 shows a speed command Vao output from the time speed calculator 101 and a speed command Vdo output from the deceleration controller 103.
速度指令 V a oは、 時刻 t 20で運転指令回路 60 aから運転指令が出されると 、 所定時間 Δ tが経過する毎に段階的に増速し、 定格速度 Vm axに達すると一定 値となる。  When the operation command is issued from the operation command circuit 60a at time t20, the speed command Vao increases stepwise every time a predetermined time Δt elapses, and becomes a constant value when the rated speed Vmax is reached. .
時刻 t 21で光センサ 41が格子板 91と係合したとすると、 減速指令回路 60 dの作動によって切替器 104は端子 b、 dが接続されて減速の速度指令 Vd 0が 出力される。 即ち、 かご位置演算器 106は、 下降運転では上部減速点 PPuを起 点として、 上昇運転では下部減速点 P P dを起点としてかご位置 G D mを演算する 。 減算器 108で減速距離 GZU又は GZDからかご位置 GDmを減算して残距離 GD rが演算されると、 減速制御器 103は残距離 GD rに見合った速度を演算す る。 この速度は切替器 104を介して速度指令 V doとして出力される。  Assuming that the optical sensor 41 is engaged with the lattice plate 91 at the time t21, the operation of the deceleration command circuit 60d causes the terminals b and d of the switch 104 to be connected to output the deceleration speed command Vd0. That is, the car position calculator 106 calculates the car position G Dm starting from the upper deceleration point PPu in the descending operation and starting from the lower deceleration point P Pd in the ascending operation. When the car position GDm is subtracted from the deceleration distance GZU or GZD by the subtracter 108 to calculate the remaining distance GDr, the deceleration controller 103 calculates a speed corresponding to the remaining distance GDr. This speed is output as a speed command V do via the switch 104.
第 15図に従ってこの発明の実施の形態 2における呼び応答運転の動作を説明す る。 以下は、 左側の機器 102 L及び右側の機器 102 Rに共通する動作であり、 区別することなく説明する。  The operation of the call answering operation according to the second embodiment of the present invention will be described with reference to FIG. The following is the operation common to the left device 102L and the right device 102R, and will be described without distinction.
呼び登録回路 60 aに乗場呼び又はかご呼びが登録されると、 手順 S 51から手 順 S 52へ移り、 運転指令回路 60 cから呼びに応答するための運転指令が出され る。 手順 S 53で切替器 71を端子 bへ接続して起動前の静止状態における主索 1 3の張力から静止トルク Tsを演算して記憶した後、 切替器 71を端子 aへ接続す る。 手順 S 54で切替器 104を端子 aへ接続する。 手順 S 55で運転接点 62を 閉成させてブレーキ 11を開放し、 電動機 12へ電力を供給する。 When a hall call or a car call is registered in the call registration circuit 60a, the procedure moves from step S51 to step S52, and an operation command for responding to the call is issued from the operation command circuit 60c. You. In step S53, the switch 71 is connected to the terminal b, and the static torque Ts is calculated from the tension of the main rope 13 in the stationary state before starting and stored, and then the switch 71 is connected to the terminal a. Connect the switch 104 to the terminal a in step S54. In step S55, the operation contact 62 is closed, the brake 11 is released, and power is supplied to the motor 12.
手順 S 56で運転指令回路 60 cの運転指令により時間速度演算器 101から速 度指令 V a oが出力される。 手順 S 57で減算器 68によって速度指令 V a oとか ご速度 Vmとの速度差 Δνが演算される。 手順 S 58は第 10図の手順 S 21から 手順 S 25迄と同様の処理であって、 速度差 Δνに基いてトルク指令 Toを算出し 、 このトルク指令 T oに静止トルク T sを加算したトルクを出力するように電動機 12を付勢してかご 2を昇降させる。 手順 S 59で、 光センサ 41が格子板 91と 係合して減速指令回路 60 dから減速指令が出力されたか調べる。 まだ減速指令が 出力されていない場合は手順 S 56へ戻り、 以下手順 S 56から手順 S 59までの 処理を繰り返す。  In step S56, the speed command V ao is output from the time speed calculator 101 according to the run command of the run command circuit 60c. In step S57, a speed difference Δν between the speed command V ao and the car speed Vm is calculated by the subtractor 68. Step S58 is a process similar to steps S21 to S25 in FIG. 10, in which the torque command To is calculated based on the speed difference Δν, and the static torque Ts is added to the torque command To. The electric motor 12 is energized so as to output a torque to move the car 2 up and down. In step S59, it is checked whether the optical sensor 41 is engaged with the lattice plate 91 and a deceleration command is output from the deceleration command circuit 60d. If the deceleration command has not been output yet, the process returns to step S56, and repeats the processes from step S56 to step S59.
手順 S 59で減速指令が出力された場合は、 手順 S 60で切替器 104の端子 b 、 dが接続される。 手順 S 61でかご位置演算器 106から減速点 PPu又は PP dを起点とするかご位置 GDmを読み取る。 手順 S 62で減速距離メモリ 107か ら減速距離 GZU又は GZDを読み取り、 減算器 108によって減速距離 GZU又 は GZDからかご位置 GDmを減算して階床 18までの残距離 GD rを算出する。 手順 S 63で減速制御器 103は、 第 14図に示したとおり、 残距離 GD rに従つ て段階的に減少する速度指令 V doを出力する。 手順 S 64で減算器 68によって 速度指令 Vd oとかご速度 Vmとの速度差 Δνが演算される。 手順 S 65は第 10 図の手順 S 21から手順 S 25迄と同様の処理であって、 速度差 Δνに基いてトル ク指令 Τ οを算出し、 このトルク指令 Τ 0に静止トルク T sを加算したトルクを出 力するように電動機 12を付勢して減速運転を行う。 手順 S 66で受光器 44 rに よってかご床 3が着床ゾーン LU、 LD内に入ったことが検出されると手順 S 67 へ移り、 運転接点 62を開放させてブレーキ 1 1を作動させると共に電動機 12を 消勢して呼び応答運転を終了する。 手順 S 66でかご床 3が着床ゾーン LU、 LD に達していないとされた場合は手順 S 61へ戻り、 以下手順 S 61カ ら手順 S 66 迄の処理を繰り返して呼び応答運転をする。 なお、 床合せ運転は第 1 1図と同様であり、 説明を省略する。 When the deceleration command is output in step S59, the terminals b and d of the switch 104 are connected in step S60. In step S61, the car position GDm starting from the deceleration point PPu or PPd is read from the car position calculator 106. In step S62, the deceleration distance GZU or GZD is read from the deceleration distance memory 107, and the car position GDm is subtracted from the deceleration distance GZU or GZD by the subtractor 108 to calculate the remaining distance GDr to the floor 18. In step S63, the deceleration controller 103 outputs a speed command Vdo that decreases stepwise according to the remaining distance GDr, as shown in FIG. In step S64, the speed difference Δν between the speed command Vd o and the car speed Vm is calculated by the subtractor 68. Step S65 is a process similar to steps S21 to S25 in FIG. 10, in which a torque command οο is calculated based on the speed difference Δν, and a static torque T s is added to the torque command Τ0. The motor 12 is energized so as to output the added torque to perform deceleration operation. If it is detected in step S66 that the car floor 3 has entered the landing zone LU or LD by the receiver 44r, the process proceeds to step S67, in which the operating contact 62 is opened and the brake 11 is operated. The motor 12 is deenergized to terminate the call answering operation. If it is determined in step S66 that the car floor 3 has not reached the landing zones LU and LD, the process returns to step S61, and repeats the processes from step S61 to step S66 to perform a call answering operation. The floor matching operation is the same as in Fig. 11, and the description is omitted.
上記実施の形態 2によれば、 出発階から減速点 P P u、 P P dまでは時間速度演 算器 1 0 1から時間経過に伴って速度指令 V a oを出力させるようにしたので、 速 度指令 V a oの算出が容易である。 しかも、 左右の卷上機 9 L、 9 Rを同一の速度 指令 V a oで一括して制御するようにしたので、 両者の昇降距離差は生じ難い。 また、 減速点 P P u、 P P dから目的階の階床 1 8迄は、 光センサ 4 1と格子板 9 1によって各主索 1 3によるかご 2の位置を直接検出するようにしたので、 正確 な位置制御が可能となる。  According to the second embodiment, the speed command V ao is output from the time speed calculator 101 as time elapses from the departure floor to the deceleration points PPu and PPd. Calculation of V ao is easy. In addition, since the left and right hoists 9L and 9R are controlled collectively by the same speed command V ao, there is little difference in the vertical distance between the two. In addition, from the deceleration points PPu and PPd to the floor 18 of the destination floor, the position of the car 2 by each main rope 13 is directly detected by the optical sensor 41 and the grid plate 91, so accurate Position control becomes possible.
実施の形態 3 . Embodiment 3.
第 1 6図は、 この発明に係るエレベータの制御装置の実施の形態 3を示す。 上記実施の形態 1及び 2では、 釣合錘 1 7は左右に個別に吊持されるものとした が、 この実施の形態 3は、 左右の主索 1 3 L及び 1 3 Rで共通の釣合錘を吊持する ようにしたものである。 即ち、 各主索 1 3 L及び 1 3 Rは、 両端が共通のかご 2と 共通の釣合錘 1 7 Aに係止されたものである。  FIG. 16 shows Embodiment 3 of the elevator control device according to the present invention. In the first and second embodiments, the counterweights 17 are individually suspended on the left and right. However, in the third embodiment, a common fishing line is used for the left and right main ropes 13L and 13R. The weight is suspended. That is, each of the main ropes 13L and 13R is locked at both ends by a common car 2 and a common counterweight 17A.
上記実施の形態 3によっても、 釣合錘 1 7 Aは実施の形態 1と同様に重量設定さ れるので、 何れか一方のブレーキ 1 1が作動しなかった場合も、 他方のブレーキ 1 1のみで積載荷重 W fのかご 2を静止させることができる。 特に、 この実施の形態 3では釣合錘 1 7 Aは左右の主索 1 3 L及び 1 3 Rに共通であるから、 錘ガイドレ ール 8は一対のみでよいため、 据付け工事が軽減される。 産業上の利用可能性  Also in the third embodiment, the counterweight 17A is set to the same weight as in the first embodiment. Therefore, even if one of the brakes 11 is not operated, only the other brake 11 is used. The car 2 with the loaded load W f can be stopped. In particular, in the third embodiment, since the counterweight 17A is common to the left and right main ropes 13L and 13R, only one pair of the weight guide rails 8 is required, so that installation work is reduced. . Industrial applicability
以上のように、 本発明にかかる複数の巻上機を備えたエレべ一夕の制御装置は、 狭小な場所に複数の巻上機を設置しなければならないエレべ一夕の制御装置に適し ている。 また、 据付けに当って重量物の揚重が制限されるエレべ一夕の制御装置に も適している。  INDUSTRIAL APPLICABILITY As described above, the elevator control apparatus including a plurality of hoists according to the present invention is suitable for the elevator control apparatus in which a plurality of hoists must be installed in a small place. ing. It is also suitable for a control device that controls the lifting of heavy objects during installation.

Claims

請求の範囲 The scope of the claims
1 . 昇降路内を昇降するかごの複数の部位に主索を個別に係止して立ち上げて対 応して設置された複数の巻上機に巻き掛けて上記かごを昇降駆動するようにしたェ レべ一夕の制御装置において、 上記かごの静止状態における上記主索ごとの張力を 張力検出器で個別に検出し、 この検出値に基いて対応する上記巻上機の出力をそれ ぞれ増減させて上記かごを昇降駆動するようにしたことを特徴とするエレべ一夕の 1. The main ropes are individually locked to a plurality of parts of the car that moves up and down the hoistway, and the car is started up and wound around a plurality of hoists installed correspondingly to drive the car up and down. In the control device at night, the tension of each of the main ropes in the stationary state of the car is individually detected by a tension detector, and the output of the corresponding hoist is individually detected based on the detected value. The elevator is driven up and down by increasing or decreasing
2 . 張力検出器によって主索ごとに検出された静止状態における張力を合算して かご内の荷重を検出するかご内荷重検出手段を設けたことを特徴とする請求の範囲 第 1項に記載のエレべ一夕の制御装置。 2. An in-car load detecting means for detecting a load in the car by adding a tension in a stationary state detected for each main rope by a tension detector and providing a load detecting means in the car. A control device for ELEBE.
3 . 昇降路内を昇降するかごの複数の部位に主索を個別に係止して立ち上げて対 応して設置された複数の巻上機に巻き掛けて上記かごを昇降駆動するようにしたェ レベータの制御装置において、 上記かごが目的階に着床したときの階床とかご床と の差を上記主索の係止部ごとに検出し、 この検出値が所定値を超えたとき、 上記差 を減少させるように対応する上記巻上機で上記主索係止部を個別に上下動させて床 合せをするようにしたことを特徴とするエレべ一夕の制御装置。  3. The main ropes are individually locked to a plurality of parts of the car that moves up and down the hoistway, and the car is started up and wound around a plurality of hoists installed correspondingly to drive the car up and down. The elevator control device detects the difference between the floor and the car floor when the car has landed on the destination floor for each locking part of the main rope, and when the detected value exceeds a predetermined value. A control device for an elevator, wherein the main hoist engaging portions are individually moved up and down by the corresponding hoisting machine so as to reduce the difference, thereby adjusting the floor.
4. 昇降路内を昇降するかごの複数の部位に主索を個別に係止して立ち上げて対 応して設置された複数の巻上機に巻き掛けて上記かごを昇降駆動するようにしたェ レべ一夕の制御装置において、 上記巻上機ごとに昇降距離を演算する昇降距離演算 器を設け、 上記演算値の較差が所定値を超えたときに上記巻上機を停止させる安全 回路を設けたことを特徴とするエレべ一夕の制御装置。  4. The main ropes are individually locked to multiple parts of the car that moves up and down the hoistway, and the car is raised and wound around a plurality of hoists installed correspondingly to drive the car up and down. In the control device of the present invention, a lifting / lowering distance calculator for calculating a lifting / lowering distance is provided for each of the hoisting machines, and a safety device for stopping the hoisting machine when the difference between the calculated values exceeds a predetermined value. A control device for an elevator, comprising a circuit.
5 . 昇降距離演算器を、 巻上機の回動角を計測する回動角計測器としたことを特 徴とする請求の範囲第 4項に記載のエレべ 夕の制御装置。  5. The control device for an elevator according to claim 4, wherein the lifting distance calculator is a rotation angle measuring device for measuring a rotation angle of the hoist.
6 . 昇降路内を昇降するかごの複数の部位に主索を個別に係止して立ち上げて対 応して設置された複数の巻上機に巻き掛けて上記かごを昇降駆動するようにしたェ レベータの制御装置において、 上記卷上機を駆動する電動機の動力を上記巻上機ご とに計測し、 この計測値の較差が所定値を超えたときに上記巻上機を停止させる安 全回路を設けたことを特徴とするエレべ一夕の制御装置。 6. The main ropes are individually locked to a plurality of parts of the car that moves up and down the hoistway, and the car is started up and wound around a plurality of hoists installed correspondingly to drive the car up and down. In the elevator control apparatus described above, the power of the motor driving the hoist is measured for each hoist, and when the difference between the measured values exceeds a predetermined value, the hoist is stopped. A control device for the elevator that features all circuits.
7 . 昇降路内を昇降するかごの複数の部位に主索を個別に係止して立ち上げて対 応して設置された複数の巻上機に巻き掛けて上記かごを昇降駆動するようにしたェ レべ一夕の制御装置において、 出発階から目的階までの昇降距離を予め演算して上 記卷上機に共通の目標昇降距離として与える目標昇降距離演算手段と、 上記出発階 から上記かごの現在位置までの昇降距離を上記主索係止部ごとに計測する昇降距離 計測手段と、 上記目標昇降距離から上記計測値を減算して上記目的階までの残距離 を上記主索係止部ごとに演算する残距離演算手段と、 上記残距離に見合つた速度を 対応する上記巻上機ごとに演算して速度指令として出力する昇降位置制御手段とを 設け、 上記速度指令によつて対応する上記巻上機を個別に制御するようにしたこと を特徴とするエレべ一夕の制御装置。 7. Main ropes are individually locked to a plurality of parts of a car that moves up and down the hoistway, and the car is started up and wound around a plurality of hoists installed correspondingly to drive the car up and down. In the control device of the night, the target elevating distance calculating means for calculating the elevating distance from the departure floor to the destination floor in advance and providing the same as the target elevating distance to the above-mentioned winding machine; Elevating distance measuring means for measuring the elevating distance of the car to the current position for each of the main rope anchoring portions, and subtracting the measured value from the target elevating distance to lock the remaining distance to the destination floor with the main rope locking And a lifting position control means for calculating a speed corresponding to the remaining distance for each of the hoists corresponding to the remaining distance and outputting the speed command as a speed command. The hoisting machine is controlled individually. Jer base Isseki control apparatus characterized by.
8 . 昇降路内を昇降するかごの複数の部位に主索を個別に係止して立ち上げて対 応して設置された複数の巻上機に巻き掛けて上記かごを昇降駆動するようにしたェ レベータの制御装置において、 時間経過に伴って速度指令を算出する時間速度演算 手段と、 目的階から所定距離手前に設定された減速点を上記主索係止部ごとに検出 する減速点検出手段と、 上記かごの現在位置から上記目的階までの残距離に見合つ た速度を上記主索係止部ごとに演算して速度指令として出力する距離速度演算手段 とを設け、 上記巻上機に運転指令が発せられると上記時間速度演算手段によつて演 算された速度指令によって上記巻上機を一括して制御し、 上記減速点検出手段が上 記減速点を検出すると対応する上記卷上機ごとに上記時間速度演算手段から上記距 離速度演算手段へ切り替えて上記減速点から上記目的階まで上記距離速度演算手段 によつて演算された速度指令によつて対応する上記卷上機を個別に制御するように したことを特徴とするエレベータの制御装置。  8. The main ropes are individually locked to a plurality of parts of the car that moves up and down the hoistway, and the car is started up and wound around a plurality of hoists installed correspondingly to drive the car up and down. Time control means for calculating a speed command as time passes, and deceleration point detection for detecting a deceleration point set a predetermined distance before the destination floor for each of the main rope anchoring portions in the elevator control device. Means for calculating the speed corresponding to the remaining distance from the current position of the car to the destination floor for each of the main rope locking portions and outputting the speed command as a speed command, wherein the hoisting machine is provided. When the operation command is issued to the hoisting machine, the hoisting machine is controlled collectively by the speed command calculated by the time speed calculating means. When the deceleration point detecting means detects the deceleration point, the corresponding winding From the time speed calculation means for each upper machine The above-mentioned hoisting machine is individually controlled by the speed command calculated by the distance speed calculating means from the deceleration point to the destination floor by switching to the distance recording speed calculating means. Elevator control device.
PCT/JP2002/009267 2002-09-11 2002-09-11 Elevator controller WO2004024609A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020047007099A KR100619616B1 (en) 2002-09-11 2002-09-11 Elevator controller
CNB028227816A CN100372752C (en) 2002-09-11 2002-09-11 Elevator control device
EP02765482A EP1538121B1 (en) 2002-09-11 2002-09-11 Elevator controller
JP2004535830A JP4288236B2 (en) 2002-09-11 2002-09-11 Elevator control device
PCT/JP2002/009267 WO2004024609A1 (en) 2002-09-11 2002-09-11 Elevator controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/009267 WO2004024609A1 (en) 2002-09-11 2002-09-11 Elevator controller

Publications (1)

Publication Number Publication Date
WO2004024609A1 true WO2004024609A1 (en) 2004-03-25

Family

ID=31986081

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/009267 WO2004024609A1 (en) 2002-09-11 2002-09-11 Elevator controller

Country Status (5)

Country Link
EP (1) EP1538121B1 (en)
JP (1) JP4288236B2 (en)
KR (1) KR100619616B1 (en)
CN (1) CN100372752C (en)
WO (1) WO2004024609A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005097651A2 (en) 2004-04-08 2005-10-20 Kone Corporation Method for detecting wear of the rope grooves of diverting pulleys and/or traction sheaves of an elevator, and elevator
WO2008117368A1 (en) 2007-03-23 2008-10-02 Mitsubishi Electric Corporation Elevator control system
JP4850708B2 (en) * 2004-07-12 2012-01-11 三菱電機株式会社 Elevator control system
WO2012023204A1 (en) * 2010-08-20 2012-02-23 三菱電機株式会社 Elevator device
JP4896973B2 (en) * 2006-05-29 2012-03-14 三菱電機株式会社 Elevator door equipment
US8162110B2 (en) 2008-06-19 2012-04-24 Thyssenkrupp Elevator Capital Corporation Rope tension equalizer and load monitor

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112006000500T5 (en) * 2005-03-01 2008-03-06 Mitsubishi Denki K.K. elevator system
CN101044081B (en) * 2005-08-25 2011-01-05 三菱电机株式会社 Elevator apparatus
FR2917375B1 (en) * 2007-06-15 2009-11-13 Airbus France AIRCRAFT HAVING A MOBILE PLATFORM BETWEEN TWO LEVELS OF THE AIRCRAFT
JP2013001474A (en) * 2011-06-14 2013-01-07 Hitachi Ltd Safety operation system and safety operation method of elevator
FI125200B (en) * 2013-07-04 2015-06-30 Kone Oyj Arrangement to reduce the displacement of the elevator car caused by the change in load
KR20180086785A (en) 2017-01-23 2018-08-01 주식회사 바이오넷 Fetal monitoring device and method
EP3456674B1 (en) 2017-09-15 2020-04-01 Otis Elevator Company Elevator tension member slack detection system and method of performing an emergency stop operation of an elevator system
EP3845480A1 (en) * 2019-12-31 2021-07-07 Inventio AG Method for moving an elevator car of an elevator for the evacuation of passengers and brake opening device for moving an elevator car of an elevator

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570057A (en) * 1991-09-17 1993-03-23 Hitachi Building Syst Eng & Service Co Ltd Elevator device
JPH0725553A (en) * 1993-07-09 1995-01-27 Mitsubishi Electric Corp Elevator control system
JPH08217378A (en) * 1995-02-08 1996-08-27 Mitsubishi Electric Corp Control device for crane
JPH08301539A (en) * 1995-05-01 1996-11-19 Hitachi Ltd Elevator control device and control method
JP2000086151A (en) * 1998-09-17 2000-03-28 Central Japan Railway Co Double crane suspension control method
JP2000272849A (en) * 1999-03-26 2000-10-03 Mitsui Miike Mach Co Ltd Operating and controlling method for elevating/lowering machine for carriage
JP2001233553A (en) * 2000-02-24 2001-08-28 Toshiba Corp Control device for double deck elevator
JP2001261257A (en) * 2000-03-23 2001-09-26 Mitsubishi Electric Corp Elevator apparatus

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1036080A (en) * 1976-02-13 1978-08-08 Canadian General Electric Company Limited Unit hoist
JPS60213676A (en) * 1984-04-05 1985-10-25 東芝昇降機サ−ビス株式会社 Balancer for working base of elevator
JPH0725499B2 (en) * 1986-10-20 1995-03-22 株式会社日立製作所 Elevator device and elevator start compensation method
JPH0570055A (en) * 1991-09-13 1993-03-23 Mitsubishi Electric Corp Installing lift base for elevator
JP2576808Y2 (en) * 1992-03-23 1998-07-16 新明和工業株式会社 Multi-level parking device
JP2707942B2 (en) * 1993-02-10 1998-02-04 三菱電機株式会社 Elevator rope tension balancer
JP2887861B2 (en) * 1994-07-13 1999-05-10 株式会社日立製作所 Elevator control device
JP3174475B2 (en) * 1995-03-30 2001-06-11 三菱電機株式会社 Control device for lifting and lowering transport device
JP3376477B2 (en) * 2000-08-01 2003-02-10 伊東電機株式会社 Method of synchronizing a plurality of brushless motors in a lifting device
KR100597941B1 (en) * 2002-03-15 2006-07-06 미쓰비시덴키 가부시키가이샤 Elevator winch and elevator device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0570057A (en) * 1991-09-17 1993-03-23 Hitachi Building Syst Eng & Service Co Ltd Elevator device
JPH0725553A (en) * 1993-07-09 1995-01-27 Mitsubishi Electric Corp Elevator control system
JPH08217378A (en) * 1995-02-08 1996-08-27 Mitsubishi Electric Corp Control device for crane
JPH08301539A (en) * 1995-05-01 1996-11-19 Hitachi Ltd Elevator control device and control method
JP2000086151A (en) * 1998-09-17 2000-03-28 Central Japan Railway Co Double crane suspension control method
JP2000272849A (en) * 1999-03-26 2000-10-03 Mitsui Miike Mach Co Ltd Operating and controlling method for elevating/lowering machine for carriage
JP2001233553A (en) * 2000-02-24 2001-08-28 Toshiba Corp Control device for double deck elevator
JP2001261257A (en) * 2000-03-23 2001-09-26 Mitsubishi Electric Corp Elevator apparatus

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005097651A2 (en) 2004-04-08 2005-10-20 Kone Corporation Method for detecting wear of the rope grooves of diverting pulleys and/or traction sheaves of an elevator, and elevator
WO2005097651A3 (en) * 2004-04-08 2006-03-02 Kone Corp Method for detecting wear of the rope grooves of diverting pulleys and/or traction sheaves of an elevator, and elevator
JP4850708B2 (en) * 2004-07-12 2012-01-11 三菱電機株式会社 Elevator control system
JP4896973B2 (en) * 2006-05-29 2012-03-14 三菱電機株式会社 Elevator door equipment
WO2008117368A1 (en) 2007-03-23 2008-10-02 Mitsubishi Electric Corporation Elevator control system
JPWO2008117368A1 (en) * 2007-03-23 2010-07-08 三菱電機株式会社 Elevator control system
US8162110B2 (en) 2008-06-19 2012-04-24 Thyssenkrupp Elevator Capital Corporation Rope tension equalizer and load monitor
WO2012023204A1 (en) * 2010-08-20 2012-02-23 三菱電機株式会社 Elevator device
CN103068712A (en) * 2010-08-20 2013-04-24 三菱电机株式会社 Elevator device
JP5570602B2 (en) * 2010-08-20 2014-08-13 三菱電機株式会社 Elevator equipment
CN103068712B (en) * 2010-08-20 2015-07-08 三菱电机株式会社 Elevator device

Also Published As

Publication number Publication date
KR100619616B1 (en) 2006-09-01
EP1538121B1 (en) 2012-12-05
CN100372752C (en) 2008-03-05
JPWO2004024609A1 (en) 2006-01-05
CN1589225A (en) 2005-03-02
JP4288236B2 (en) 2009-07-01
KR20040083056A (en) 2004-09-30
EP1538121A4 (en) 2011-03-30
EP1538121A1 (en) 2005-06-08

Similar Documents

Publication Publication Date Title
US6382361B2 (en) Elevator
US7575100B2 (en) Elevator apparatus that detects an accurate running speed of an elevator car that operates over speed
KR100994582B1 (en) Control device for elevator
KR100681078B1 (en) Elevator device
WO2004024609A1 (en) Elevator controller
JP2608951B2 (en) Rope weight correction device for linear motor driven elevator
JPH09175748A (en) Elevator car position compensating device
JPH08133630A (en) Linear motor elevator operating method and linear motor elevator device
US5777280A (en) Calibration routine with adaptive load compensation
JP3092456B2 (en) Temporary winch device for elevator installation
JPH09272671A (en) Elevator installation device and installation engineering method
JP2005280934A (en) Elevator device
JPH05155553A (en) Velocity monitoring device for elevator
KR102210831B1 (en) Apparatus for emergency stop of elevator
JPH06239566A (en) Rope tension balancing device for elevator
EP3730439B1 (en) A solution for operating an elevator
JP2894461B2 (en) Elevating control device of the elevating device
JP2541796Y2 (en) Elevator type parking system
JP2005145637A (en) Elevator driving system
JPH09208143A (en) Operation control method for elevator to be driven by linear motor
JP2002046949A (en) Landing controller for home elevator
JP4425716B2 (en) Elevator control device
KR100206988B1 (en) Method of automatically ballancing of an elevator
CN111348505A (en) Elevator and elevator control method
KR20210020389A (en) Forced deceleration control apparatus and method of variable speed elevator

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004535830

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

WWE Wipo information: entry into national phase

Ref document number: 2002765482

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047007099

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20028227816

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2002765482

Country of ref document: EP