WO2004024317A1 - Sistema ultrasónico de desespumación mediante emisores con placa vibrante escalonada - Google Patents

Sistema ultrasónico de desespumación mediante emisores con placa vibrante escalonada Download PDF

Info

Publication number
WO2004024317A1
WO2004024317A1 PCT/ES2003/000465 ES0300465W WO2004024317A1 WO 2004024317 A1 WO2004024317 A1 WO 2004024317A1 ES 0300465 W ES0300465 W ES 0300465W WO 2004024317 A1 WO2004024317 A1 WO 2004024317A1
Authority
WO
WIPO (PCT)
Prior art keywords
foam
emitters
acoustic
emitter
ultrasonic
Prior art date
Application number
PCT/ES2003/000465
Other languages
English (en)
French (fr)
Inventor
Juan Antonio Gallego Juarez
Germán RODRÍGUEZ CORRAL
Victor Manuel Acosta Aparicio
Eduardo ANDRÉS GALLEGO
Alfonso Blanco Blanco
Fausto Montoya Vitini
Original Assignee
Consejo Superior De Investigaciones Científicas
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas filed Critical Consejo Superior De Investigaciones Científicas
Priority to AU2003267461A priority Critical patent/AU2003267461A1/en
Publication of WO2004024317A1 publication Critical patent/WO2004024317A1/es

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/02Foam dispersion or prevention
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • B01D19/0073Degasification of liquids by a method not covered by groups B01D19/0005 - B01D19/0042
    • B01D19/0078Degasification of liquids by a method not covered by groups B01D19/0005 - B01D19/0042 by vibration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/002Avoiding undesirable reactions or side-effects, e.g. avoiding explosions, or improving the yield by suppressing side-reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/10Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing sonic or ultrasonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00245Avoiding undesirable reactions or side-effects
    • B01J2219/0025Foam formation

Definitions

  • the object of this patent application is an ultrasonic device that eliminates foams and controls their growth in large containers.
  • the device uses sonic and / or ultrasonic emitters of the stepped vibrating plate type, special to radiate high acoustic intensities in gases, which, when suspended on a rotating support with controlled variable rotation, in which they can be balanced, create when moving a complex path or of the emitted acoustic beams that allows sweeping the entire surface on which the foam is formed.
  • the high acoustic intensity > 1 70 dB ref. 2. 1 0 "4 ⁇ b
  • a large part of the foam bubbles are almost instantaneously broken by the passage of the ultrasonic beam.
  • PROBLEMS CAUSED BY FOAM Reduction of deposit capacity, deficiencies in processes and reactions, spills and loss of products, Difficulties in dosing, packaging, filling and emptying, contamination, harmful effects on machinery and equipment, etc.
  • Reactors fermenters, mixers, storage tanks, distillers, evaporators, washing machines, evacuation channels, packaging machines, etc.
  • Some devices have been patented, to eliminate foams, which use ultrasonic vibrators. One of them, places the vibrator very close to a small inclined channel through which the foam flows; There are levels of 1 000 Pa (1 54 dB) in a small sector where, when passing, the bubbles (3) are eliminated.
  • Another device uses a 20 KHz piezoelectric vibrator, terminated in a set of mechanical amplifiers that, placed very close to a filling line, vibrating with 60 ⁇ of maximum vibratory displacement, eliminate foam from the carton packs (at 0, 2 seconds), before going through the sealing point (4). In general, these systems are very limited and only serve to act on very small surfaces.
  • the emitters of stepped vibrating pl essentially consist of a vibrator and a plate of variable thickness to achieve a directive or focused emission.
  • the first prototype with 1 50 W of power, managed to concentrate most of the energy emitted in a volume of 3 cm in diameter by 6 cm long and obtain acoustic levels close to 1 70 dB. This type of issuer is used as a fixed installation in high-speed filling lines, to avoid spillage of the containers (5).
  • Electroacoustics unit for generating high sonic and ultrasonic intensities in gases and interphases.
  • the object device of the invention is based on the use of ultrasonic emitters of stepped / grooved profile plate. These emitters properly suspended with a rocking device in a variable rotation system can cover a large area with their narrow but intense beam.
  • the emitters that are used are of the type of vibrating plate with bending with a stepped / grooved profile (6). Depending on the geometry of this plate, a directive or focused emission is obtained at a certain distance from the plate. The power capacity depends on the form of vibration, the distribution of mechanical stresses and the dimensions. With this type of emitter it is possible to concentrate the emission in a small volume (some cm 3 ) and obtain, at a frequency of 20 KHz with 350 W, levels higher than 1 70 dB. This high sound pressure level allows the foam to break in very short times (10-20 milliseconds normally), depending on the type of foam.
  • the main mechanisms that act in the ultrasonic foam rupture are the high acoustic pressures, the radiation pressure (local and continuous crushing of the bubbles), the resonance of the bubbles, the acoustic wind, the cavitation in the liquid layer (which produces an atomization of this), local whirlpools, etc.
  • the types of foam it should be noted that there is a wide degree of difficulty for its removal despite the fact that the bubbles are 95% air.
  • a foam can be "wet”, when the liquid layer of the bubbles is thick which allows spherical bubbles to form (form for which the energy in the bubble is minimal); These bubbles, when small, are difficult to break.
  • the foam can also be "dry”, with a thin liquid layer in the bubbles, of polyhedral shapes. Is Foam is usually formed by draining the liquid, after a while and, in general, it is easy to break.
  • the foam can be: unstable (progress continuously), metastable (that progress stops), transient (the foam has a very short life), persistent (life of hours or days).
  • the stability of the bubbles depends on their ability to deform without breaking (Gibbs elasticity) which is linked to the amount of surfactant (surfactant that lowered the surface tension) in the liquid layer and its thickness. Also important are the viscosity of the liquid (the higher the viscosity of the liquid, the more stable is the foam) and the size of bubbles (the smallest are the most stable).
  • Foaming (ability to generate foam) is another important characteristic, which depends essentially on the activity of the surfactant and its concentration. They also influence the impurities present in the liquid (colloids, proteins, salts, etc.)
  • the patented device allows a certain treatment time (t t ) to be combined in the area covered by the acoustic beam (1 0-
  • the simplest scan that has been found to cover a circular surface is through a variable rotation of the emitter or the ultrasonic emitters. If the emitter (or emitters) is freely suspended from an arm perpendicular to the rotation arm at a distance r therefrom, when the rotation speed varies, the angle formed by the transmitter arm with the restraint bar varies due to to the centrifugal force (see fig. 1). The emitter beam will describe foam by progressively varying the rotation speed then on the surface of a spiral curve (Fig. 2) that will clearly differ from the circumference that it would describe in case of constant rotation speed.
  • the centrifugal force is:
  • v 2 ⁇ rn the tangential speed, r the radius of rotation and n the angular speed of rotation.
  • the tangential speed is limited by the minimum treatment time (t t ) necessary to break the foam. This time is determined experimentally for each type of foam.
  • the scanning angle is not sufficient to cover most of the surface to be treated, two or more emitters can be placed, located in different positions with respect to the rotation e.
  • the arm should be balanced if necessary with additional masses.
  • the spiral type sweep of the emitter or emitters can be controlled electronically in such a way that the minimum treatment time of the peripheral ring is compensated, where the maximum tangential speed is had, with a greater number of turns in that position.
  • the control curves of the rotation system presented in Fig. 3 qualitatively indicate the time schedule that would be required.
  • the patented device consists essentially of the following parts (see fig. 4):
  • a rotor system (1) composed of a motor (2) (usually direct current) with a reducer capable of varying the number of revolutions per minute. It must also provide sufficient torque to drag and stop the weight of the emitters located in the respective arms.
  • the power supply connections to the emitters (6) are located.
  • the system rotation is controlled directly by an electronic speed controller (10) that generates different speed profiles acting on the motor supply voltage.
  • This controller which consists of a power supply, a power exciter and a microprocessor, has a program with different speed profiles stored. These profiles (velocity curves) have as variable the rotation speed and the scan time.
  • a prototype similar to the one described above has been built and tested in a cylindrical tank of 1.5 m in diameter and 1.2 m high where various types of foams were generated for experimentation. This device controlled flows of fine foams (bubbles 1 - 10 mm in diameter) of the order of
  • Fig. 1 Effect of the change of orientation of the ultrasonic emitter by the action of the centrifugal force by varying the rotation speed of the clamping arm Fig. 2.
  • a rotor system (1) composed of a motor (2) (usually direct current) with a reducer capable of varying the number of revolutions per minute. It must also provide sufficient torque to drag and stop the weight of the emitters located in the respective arms.
  • the power supply connections to the emitters (6) are located.
  • the system rotation is controlled directly by an electronic speed controller (10) that generates different speed profiles acting on the motor supply voltage.
  • This controller which consists of a power supply, a power exciter and a microprocessor, carries Stored a program with different speed profiles. These profiles (velocity curves) have as variable the rotation speed and the scan time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Dispersion Chemistry (AREA)
  • Degasification And Air Bubble Elimination (AREA)

Abstract

El objeto de esta solicitud de patente es un dispositivo ultrasónico que permite eliminar espumas y controlar su crecimiento en grandes contenedores. El dispositivo emplea emisores sónicos y/o ultrasónicos del tipo placa vibrante escalonada, especiales para radiar altas intensidades acústicas en gases, los cuales, al estar suspendidos en un soporte rotatorio con rotación variable controlada, en el que pueden balancearse, crean al desplazarse un recorrido complejo de los haces acústicos emitidos que permite barrer toda la superficie sobre la que se forma la espuma. Por efecto de la alta intensidad acústica (>170 dB ref. 2.10-4 µb) gran parte de las burbujas de la espuma se van rompiendo casi instantáneamente al paso del haz ultrasónico.

Description

TITULO :
SISTEMA ULTRAS ÓNICO DE DESESPUMACION MEDIANTE EMISORES CON PLACA VIBRANTE ESCALONADA
OBJETO
El obj eto de esta solicitud de patente es un dispositivo ultrasónico que permite eliminar espumas y controlar su crecimiento en grandes contenedores . El dispositivo emplea emisores sónicos y/o ultrasónicos del tipo placa vibrante escalonada, especiales para radiar altas intensidades acústicas en gases, los cuales, al estar suspendidos en un soporte rotatorio con rotación vari able controlada, en el que pueden balancearse, crean al desplazarse un recorrido complej o de los haces acústicos emitidos que permite barrer toda la superficie sobre la que se forma la espuma. Por efecto de la alta intensidad acústica (> 1 70 dB ref. 2. 1 0"4 μb) gran parte de las burbuj as de la espuma se van rompiendo casi instantáneamente al paso del haz ultrasónico.
ESTADO DE LA TÉCNICA
• SECTORES INDUSTRIALES AFECTADOS POR PROBLEMAS DE ESPUMAS .
Los problemas ocasionados por el exceso de espuma en los procesos, afectan a un gran número de sectores industriales : farmacia y bioquímica, papeleras, detergentes, pinturas esmaltes y barnices, minería, textiles, cervezas y bebidas gaseosas, alimentación en general, plásticos, etc .
• PROBLEMAS OCASIONADOS POR LA ESPUMA. Disminución de la capacidad de depósitos, defici encias en los procesos y reacciones, derrames y pérdida de productos, di ficultades en la dosificación , envasado, llenado y vaciado, contaminación, efectos perj udiciales en maquinaria y equipos, etc .
• INSTALACIONES INDUSTRIALES DONDE OCURREN PROBLEMAS DE ESPUMAS .
Reactores, fermentadores, mezcladores, tanques de almacenamiento, destiladores, evaporadores, lavadoras, canales de evacuación, máquinas de envasado, etc .
• SISTEMAS COMERCIALES PARA ELIMINACIÓN DE ESPUMAS .
Actualmente los sistemas más comúnmente empleados son: antiespumantes químicos, sistemas mecánicos, si stemas de vacío, chorro o spray de agua, métodos térmicos. Los antiespumantes químicos tienen el problema de su costo, interfieren en los procesos y agregan un elemento al producto que puede ser contaminante y, en todo caso no deseado particularmente en industrias como la alimentaria y farmacéutica. Los sistemas mecánicos tienen el problema de su costo de operaci ón y de resultados escasamente satisfactorios, en muchos casos, sobre todo para eliminar la espuma más fina. Sin embargo en la actualidad siguen desarrollándose nuevos sistemas mecánicos o modificando los existentes para hacerlos mas viables. Los métodos térmicos que consisten en calentar y enfriar las espumas son caros y di fíciles de aplicar.
( 1 )
• SISTEMAS SÓNICOS Y ULTRASÓNICOS PARA ELIMINAR ESPUMAS . S e desarrollaron experimentalmente entre los años 1950- 1 970 utilizando sirenas dinámicas y estáticas, con aire a presión. S e trataron espumas procedentes de fermentación y procesos de minería. Se intentaron comercializar sistemas de este tipo para eliminar espumas en sistemas de llenado .
El problema de estos sistemas era su limitado nivel de emisión acústica ( 144- 1 54 dB) y su baj o rendimiento especialmente a frecuencias ultrasónicas (20 KHz) . Además el coste de operación era elevado debido a la necesidad de emplear aire comprimido para las sirenas y, por otra parte, la introducción de aire externo suponía una limitación para muchas aplicaciones (2) . En la actualidad no tenemos noticia de sistemas comerciales de este tipo .
S e han patentado algunos dispositivos, para eliminar espumas, que emplean vibradores ultrasónicos . Uno de el los, sitúa el vibrador muy cerca de un pequeño canal inclinado por donde fluye la espuma; se tienen niveles de 1 000 Pa ( 1 54 dB) en un pequeño sector por donde, al pasar, se eliminan las burbuj as (3). Otro di spositivo emplea un vibrador piezoeléctrico de 20 KHz, terminado en un conj unto de amplificadores mecánicos que, puestos muy cerca de una línea de llenado, vibrando con 60μ de desplazamiento máximo vibratorio, eliminan la espuma de los envases de cartón (en 0,2 segundos), antes de pasar por el punto de sellado (4) . En general estos sistemas son muy limitados y sólo sirven para actuar sobre superficies muy pequeñas .
DESARROLLO DE EMIS ORES CON PLACA VIBRANTE, FOCALIZADOS . USO COMO SISTEMA PARA ELIMINAR
ESPUMAS .
Los emisores de pl aca vibrante escalonada, esenci almente constan de un vibrador y una placa de espesor variable para lograr una emi sión directiva o focalizada. El primer prototipo con 1 50 W de potencia, lograba concentrar la mayor parte de la energía emitida en un volumen de 3 cm de diámetro por 6 cm de largo y obtener niveles acústicos cercanos a 1 70 dB . Este tipo de emisor se empleó como instalación fija en líneas de llenado de alta velocidad, para evitar derrames de los envases (5).
REFERENCIAS
1. Foam control in Submerged Fermentation: State of the Art. N.P. Ghildyal, B.K. Lonsane, and N.G. Karanth. Advances in Applied Microbiology, Volume 33, 1988 pp. 173-222.
2. Foam control by acoustics and aerodynamic means R.M. Boucher and A.L.Weiner. British Chemical engineering, Vol.8, N° 12, Dec 01-1963 pp.808-812.
3. Apparatus for liquefying bubbles using ultrasonic wave. Iwatani, Toshiyuki, c/o Kawasaki steel Co.
European Patent Application N° 94102291.5, 04-01-1995
4. Method and apparatus for removing froth on a liquid. Erwin Matzner. UK. Patent application N° 8002292, 23 Jan 1980
5. High power ultrasonic equipment for industrial defoaming.
G. Rodríguez, J. A. Gallego, A. Ramos, E. Andrés, J. L. San
Emeterio, F. Montoya.
Ultrasonics International 85, Conf. Proc. pp.506-511.
6. Electroacoustics unit for generating high sonic and ultrasonic intensities in gases and interphases.
J. A. Gallego Juárez, G. Rodríguez Corral, J. L. San Emeterio and F.
Montoya Vitini.
USA Patent n° 5299175 (1994). DESCRIPCIÓN DE LA INVENCIÓN
El dispositivo obj eto de la invención se basa en la utilización de emisores ultrasónicos de placa de perfil escalonado/acanalado . Estos emisores adecuadamente suspendidos con un di spositivo de balancín en un sistema de rotación variable, pueden cubrir con su estrecho pero intenso haz de emisión una superficie de gran área.
Los emisores que se emplean son del tipo de placa vibrante a flexión con perfil escalonado/acanalado (6) . Según la geometría de esta placa se obtiene una emisión directiva o focalizada a una cierta distancia de la placa. La capacidad de potencia, depende de la forma de vibración, de la distribución de tensiones mecánicas y de las dimensiones . Con este tipo de emisor es posible concentrar la emisión en un pequeño volumen (algunos cm3) y obtener, a una frecuencia de 20 KHz con 350 W, niveles superiores a 1 70 dB . Este nivel de presión acústica tan alto permite romper la espuma en tiempos muy cortos ( 10-20 milisegundos normalmente), dependiendo del tipo de espuma. Los mecanismos principales que actúan en la rotura ultrasónica de espuma son las altas presiones acústica, la presión de radiación (aplastamiento local y continuo de las burbuj as), la resonancia de las burbuj as, el viento acústico, la cavitación en la capa líquida (que produce una atomización de esta), torbellinos locales, etc . Respecto a los tipos de espuma, cabe destacar que existe un amplio grado de dificultad para su eliminación a pesar de que las burbuj as sean un 95 % aire. Según su "estructura" una espuma puede ser "húmeda", cuando la capa líquida de las burbuj as es gruesa lo que permite formar burbuj as esféricas (forma para la cual la energía en la burbuj a es mínima); estas burbuj as, cuando son de tamaño pequeño, son difíciles de romper. También la espuma puede ser "seca", con una delgada capa líquida en las burbuj as, de formas poliédricas. Esta espuma se forma normalmente al drenar el líquido, después de un tiempo y, en general, es fácil de romper.
S egún su "estabi lidad" la espuma puede ser: inestable (progresan continuamente), metaestable (se detiene ese progreso), transitoria (la espuma tiene una vida muy corta), persistente (vida de horas o días) . La estabilidad de las burbuj as depende de su capacidad para deformarse sin romperse (elasticidad de Gibbs) lo que va ligado a la cantidad de surfactante (tensioactivo que baj a la tensión superficial) en la capa líquida y al espesor de esta. También son factores importantes la viscosidad del líquido (a mayor viscosidad del líquido mas estable es la espuma) y el tamaño de burbuj as (las más pequeñas son las mas estables) .
La "espumosidad" (capacidad para generar espuma) es otra característica importante, que depende esencialmente de la actividad del surfactante y de su concentración. También influyen las impurezas presentes en el líquido (coloides, proteínas, sales, etc .)
Para destruir una espuma por ondas ultrasónicas se requiere una alta intensidad acústica y un cierto tiempo de tratamiento. Además para reducir un flujo de espuma que cubre una superficie amplia es necesario radiar casi continuamente con alta intensidad acústica varios puntos. Esto obligaría a di sponer muchas fuentes acústicas de alta intensidad o a efectuar un barrido, desplazando el foco de un único emi sor ultrasónico de forma adecuada en rapidez y distribución, sobre la superficie de la espuma.
El dispositivo que se patenta permite compaginar un determinado tiempo de tratamiento (tt) en el área cubierta por el haz acústico ( 1 0-
20 milisegundos, dependiendo del tipo de espuma y de la presión acústica aplicada), con un tiempo de barrido del haz (tb), de varios segundos, sobre el área total a tratar.
El barrido más sencillo que se ha encontrado, para cubrir una superficie circular es mediante una rotación variable del emisor o de los emisores ultrasónicos . Si el emisor (o emisores) se suspende libremente de un brazo perpendicular al ej e de rotación a una distancia r del mismo, al variar la velocidad de rotación n el ángulo que forma el ej e del emisor con la barra de suj eción varía debido a la fuerza centrífuga (ver fig. 1 ) . El haz del emisor describirá espuma al variar progresivamente la velocidad de rotación entonces sobre la superficie de la una curva tipo espiral (Fig. 2) que diferirá claramente de la circunferencia que describiría en caso de velocidad de rotación constante. S i esa variación de velocidad se repite periódicamente, se tiene un movimiento "rotatorio" y "pendular" del emisor sobre la superficie de la espuma que permite de forma sencilla recorrer una buena parte de la superficie a tratar. Se hace así que el haz de alta intensidad acústica actúe sobre las zonas donde la espuma es más persistente.
Ej emplo de aplicación. La fuerza centrífuga es :
mv
S iendo m la masa, v=2πrn la velocidad tangencial, r el radio de giro y n la velocidad angular de rotación. La velocidad tangencial queda limitada por el tiempo mínimo de tratamiento (tt) necesario para romper la espuma. Este tiempo se determina experimentalmente para cada tipo de espuma. Si, por ejemplo, este tiempo tt = 1 5 ms y el haz cubre una superficie de diámetro (d) 6 cm, resultará que la velocidad lineal máxima con la que podemos efectuar el tratamiento será vmá x ι ma = él t„= 0,06/0,015 = 4 m/s Si el contenedor donde se produce la espuma tiene un diámetro de 3m (r= l ,5m); la velocidad angular de rotación máxima será
Figure imgf000010_0001
25 r.p .m. El ángulo máximo que barre el haz del emisor por el efecto de la fuerza centrífuga variable será:
Figure imgf000010_0002
(P=peso del emisor)=(2πn)2r/g 1 ,06, es decir, cimax 47° para el caso considerado .
Si el ángulo de barrido no es suficiente para abarcar la mayor parte de la superficie a tratar, se pueden poner dos o más emisores, situados en distintas posiciones respecto al ej e de rotación. El brazo debe equilibrarse si es necesario con masas adicionales .
Por otra parte el barrido tipo espiral del emisor o emisores se puede controlar electrónicamente de tal forma que se compense el tiempo mínimo de tratamiento del anillo periférico, donde se tiene la máxima velocidad tangencial, con un mayor número de vueltas en esa posición. Las curvas de control del sistema de rotación presentadas en Fig. 3 indican de forma cualitativa la programación de tiempos que sería requerida. En general el barrido con la variación n=f(t) se puede programar y ajustar al problema específico de cada tipo de espuma.
El dispositivo que se patenta consta esencialmente de las siguientes partes (ver fig. 4) :
Un sistema rotor ( 1 ) compuesto de un motor (2) (normalmente de corriente continua) con un reductor capaz de poder variar el número de revoluciones por minuto . Además debe proporcionar un par suficiente para arrastrar y detener el peso de los emisores situados en los respectivos brazos.
Un conector rotativo (3) con dos o más circuitos independientes, que conecten mediante escobi llas la alimentación de los generadores electrónicos (4) a los emisores ultrasónicos a través del ej e de rotación (5) que es hueco en su interior y cuya longitud puede ser variada para que el foco de los emi sores esté situado a la distancia adecuada de la superficie de la espuma. En este ej e vertical se sitúan las conexiones eléctricas de alimentación a los emisores(6) . Al ej e vertical se acopla perpendicularmente un brazo extensible (7) donde se sitúan uno, dos o más emisores tipo placa vibrante (8) . Estos emisores se fij an al brazo horizontal mediante un soporte sobre un ej e (9) que permite desplazamientos angulares de los mismos cuando actúa la fuerza centrí fuga al rotar el conj unto del sistema. La rotación del sistema se controla directamente mediante un controlador electrónico de velocidad ( 10) que genera distintos perfiles de velocidad actuando sobre la tensión de alimentación del motor. Este controlador, que está constituido por una fuente de alimentación, un excitador de potencia y un microprocesador, lleva almacenado un programa con diferentes perfiles de velocidad . Estos perfiles (curvas de velocidad) tienen como variable la velocidad de rotación y el tiempo de barrido . Un prototipo similar al descrito anteriormente ha sido construido y probado en un tanque cilindrico de 1 ,5 m de diámetro y 1 ,2 m de altura donde se generaron diversos tipos de espumas para experimentación. Mediante este dispositivo se controlaron fluj os de espumas finas (burbuj as de 1 - 10 mm de diámetro) del orden de
20m'/hora.
Explicación de las Figuras.
Fig. 1 . Efecto del cambio de orientación del emisor ultrasónico por la acción de la fuerza centrífuga al variar la velocidad de rotación del brazo de suj eción Fig. 2. Curva del tipo espiral que describe el haz ultrasónico sobre la superficie a desespumar, al variar progresivamente la velocidad de rotación del ej e que soporta al emisor.
Fig. 3. Ej emplo de curva de control del sistema de rotación en la que se indica de forma cualitativa la variación de la velocidad de rotación (n) con el tiempo (t)
Fig. 4. Esquema general del dispositivo que se patenta que consta esencialmente de :
Un sistema rotor ( 1 ) compuesto de un motor (2) (normalmente de corriente continua) con un reductor capaz de poder variar el número de revoluciones por minuto . Además debe proporcionar un par suficiente para arrastrar y detener el peso de los emisores situados en los respectivos brazos.
Un conector rotativo (3) con dos o más circuitos independientes, que conecten mediante escobillas la alimentación de los generadores electrónicos (4) a los emisores ultrasónicos a través del ej e de rotación (5) que es hueco en su interior y cuya longitud puede ser variada para que el foco de los emisores esté situado a la distancia adecuada de la superficie de la espuma. En este ej e vertical se sitúan las conexiones eléctricas de alimentación a los emisores(6). Al ej e vertical se acopla perpendicularmente un brazo extensible (7) donde se sitúan uno, dos o más emisores tipo pl aca vibrante (8) . Estos emisores se fij an al brazo horizontal mediante un soporte sobre un ej e (9) que permite desplazamientos angulares de los mismos cuando actúa la fuerza centrífuga al rotar el conjunto del sistema. La rotación del sistema se controla directamente mediante un controlador electrónico de velocidad ( 10) que genera distintos perfiles de velocidad actuando sobre la tensión de alimentación del motor. Este controlador, que está constituido por una fuente de alimentación, un excitador de potencia y un microprocesador, lleva almacenado un programa con diferentes perfiles de velocidad. Estos perfiles (curvas de velocidad) tienen como variable la velocidad de rotación y el tiempo de barrido .

Claims

REIVINDICACIONES
1 . Un dispositivo para eliminar espuma y limitar su crecimiento en contenedores y reactores, medi ante ondas sónicas o ultrasónicas de alta intensidad emitidas a través del aire.
2. Un dispositivo según reivindicación 1 y caracterizado porque el emi sor (o emisores) acústico es de tipo placa vibrante escalonada, que permite obtener haces sónicos o ultrasónicos de muy alta intensidades acústicas (superiores a 1 70 dB, ref. 2 1 0"4 μbar) .
3. Un dispositivo según reivindicaciones 1 , 2, y caracterizado porque el emisor o emisores que generan una alta intensidad acústica se desplazan en forma rotatoria sobre la superficie a tratar, a una cierta di stancia de la mi sma.
4. Un dispositivo según reivindicaciones 1 , 2 , 3 y caracterizado porque la velocidad máxima del desplazamiento del emisor, debe permitir un tiempo mínimo de tratamiento que reduzca efectivamente el nivel de espuma.
5. Un dispositivo según reivindicaciones 1 , 2, 3 y 4 caracterizado el barrido efectuado por el haz acústico al desplazarse sobre la espuma, debe cubrir una parte importante de la superficie a tratar. Para el caso de superficie circular, el barrido mas simple es de tipo espiral.
6. Un dispositivo según reivindicaciones 1 , 2 , 3 , 4, 5 y caracterizado porque mediante una rotación variab le de un ej e en el que se suspenden libremente uno o varios emisores acústicos de alta intensidad, se hace combinar un movimiento rotatorio del emisor con un movimiento "pendular" del mismo generando un barrido complej o del haz de radiación sobre la superficie a desespumar. Para el caso de superficie circular el barrido más simple es de tipo espiral .
7. Un dispositivo según reivindicaciones 1 , 2, 3 , 4, 5 y 6 y caracterizado porque la rotación del ej e en función del tiempo puede ser de cualquier forma, con el obj eto de obtener un movimiento del haz acústico adecuado a las necesidades específicas de control del crecimiento de la espuma.
8. Un dispositivo según reivindicaciones 1 , 2, 3 , 4, 5 , 6 y 7 y caracterizado porque el ej e rotatorio lleva acoplado perpendicularmente un brazo en el que se suspenden uno o varios emisores acústicos, para efectuar un movimiento alrededor de su posición, con distinta amplitud de desplazamiento y tal que el movimiento de cada emisor, alrededor de su posición puede proceder no solo del movimiento rotatorio, sino que además puede ser auxiliado por otro sistema ya sea mecánico, neumático , magnético o de cualquier otro tipo.
9. Un dispositivo, de acuerdo a 1 , 2 , 3 , 4, 5 , 6, 7 y 8 y caracterizado porque los emisores acústicos van montados en el brazo soporte mediante una rótula o rodamiento, que les permite oscilar libremente.
10. Un dispositivo según reivindicaciones 1 , 2 , 3 , 4, 5 , 6, 7, 8 y 9 y caracterizado porque en el ej e rotatorio va adaptado un conector rotativo para conectar los generadores electrónicos a los emisores acústicos .
1 1 . Un dispositivo según reivindicaciones 1 , 2, 3 , 4, 5 , 6, 7, 8 , 9 y 1 0 y caracterizado porque el ej e de rotación es movido por un motor con control de velocidad realizado mediante un circuito electrónico específico .
12. Un dispositivo, según reivindicaciones 1 , 2, 3 , 4, 5 , 6, 7, 8 , 9, 10 y 1 1 y caracterizado porque la longitud de los brazos soporte de los emisores acústicos puede ser cualquiera, dependiendo de las dimensiones del contenedor y del tiempo de tratamiento necesario para eliminar un volumen de espuma. Donde el ej e rotatorio puede tener cualquier largo para que el foco del emisor, o de los emisores, pueda situarse en la superficie de la espuma. Donde la velocidad de rotación del motor pueda ser cualquiera, en cualquier momento, para tener una velocidad de barrido adecuada a una eliminación eficaz de espuma. Donde el desplazamiento que experimenten los emisores : el ángulo respecto a la vertical y el desplazamiento circular, puedan ser de cualquier magnitud dependiendo del espacio disponible y las condiciones del proceso de generación de espumas.
PCT/ES2003/000465 2002-09-13 2003-09-12 Sistema ultrasónico de desespumación mediante emisores con placa vibrante escalonada WO2004024317A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003267461A AU2003267461A1 (en) 2002-09-13 2003-09-12 Ultrasonic defoaming system using emitters comprising a stepped vibrating plate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200202113 2002-09-13
ES200202113A ES2212896B1 (es) 2002-09-13 2002-09-13 Procedimiento y sistema ultrasonico de desespumacion mediante emisorescon placa vibrante escalonada.

Publications (1)

Publication Number Publication Date
WO2004024317A1 true WO2004024317A1 (es) 2004-03-25

Family

ID=31985215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2003/000465 WO2004024317A1 (es) 2002-09-13 2003-09-12 Sistema ultrasónico de desespumación mediante emisores con placa vibrante escalonada

Country Status (3)

Country Link
AU (1) AU2003267461A1 (es)
ES (1) ES2212896B1 (es)
WO (1) WO2004024317A1 (es)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007121958A1 (de) * 2006-04-22 2007-11-01 Bayer Technology Services Gmbh Reaktor
EP2591864A1 (en) 2011-11-14 2013-05-15 Telsonic Holding AG Sonotrode and device for reducing and eliminating foaming of liquid products
CN104147813A (zh) * 2014-08-13 2014-11-19 昆明理工大学 一种自适应式浮选泡沫消泡装置及其消泡方法
RU2591986C1 (ru) * 2015-04-16 2016-07-20 Общество с ограниченной ответственностью "Промышленные инновационные технологии Национальной коксохимической ассоциации" Способ гашения пены и установка для гашения пены
CN109019735A (zh) * 2018-07-10 2018-12-18 马鞍山市润启新材料科技有限公司 一种消泡装置
WO2019060376A1 (en) * 2017-09-20 2019-03-28 Chemfree Defoam Llc SYSTEM AND METHOD FOR FOAM REDUCTION WITHOUT CHEMICALS
CN112916333A (zh) * 2019-12-06 2021-06-08 长鑫存储技术有限公司 储液设备、晶圆处理装置以及供液方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2330595B1 (es) * 2006-03-10 2010-09-21 Consejo Superior Investig. Cientificas Procedimiento y dispositivo ultrasonico para la eliminacion de burbujas ocluidas en recubrimientos con pinturas y/o barnices aplicados a alta velocidad.
CN111558471A (zh) * 2018-11-08 2020-08-21 范骏群 用于钼矿石浮选过程中的自适应式泡沫消泡装置及方法
CN112620614A (zh) * 2021-01-08 2021-04-09 浙江铂动工贸有限公司 一种具有消泡功能的轮毂铸造设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1075100A (en) * 1965-01-25 1967-07-12 Fuji Photo Film Co Ltd Apparatus for defoaming liquids
US3596881A (en) * 1967-08-14 1971-08-03 Fuji Photo Film Co Ltd Ultrasonic defoaming apparatus
US3761732A (en) * 1972-09-15 1973-09-25 Bendix Corp Rotating sonic energy wave
US5299175A (en) * 1989-10-06 1994-03-29 Consejo Superior De Investigaciones Cientificas Electroacoustic unit for generating high sonic and ultra-sonic intensities in gases and interphases
JPH0796103A (ja) * 1993-09-28 1995-04-11 Kawasaki Steel Corp 超音波破泡装置
JPH09192407A (ja) * 1996-01-12 1997-07-29 Konica Corp 超音波脱泡方法及び装置
JPH11197406A (ja) * 1998-01-17 1999-07-27 Horiba Ltd 超音波脱泡槽
US6106590A (en) * 1997-06-17 2000-08-22 Konica Corporation Method of ultrasonic waves degassing and device using the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1075100A (en) * 1965-01-25 1967-07-12 Fuji Photo Film Co Ltd Apparatus for defoaming liquids
US3596881A (en) * 1967-08-14 1971-08-03 Fuji Photo Film Co Ltd Ultrasonic defoaming apparatus
US3761732A (en) * 1972-09-15 1973-09-25 Bendix Corp Rotating sonic energy wave
US5299175A (en) * 1989-10-06 1994-03-29 Consejo Superior De Investigaciones Cientificas Electroacoustic unit for generating high sonic and ultra-sonic intensities in gases and interphases
JPH0796103A (ja) * 1993-09-28 1995-04-11 Kawasaki Steel Corp 超音波破泡装置
JPH09192407A (ja) * 1996-01-12 1997-07-29 Konica Corp 超音波脱泡方法及び装置
US6106590A (en) * 1997-06-17 2000-08-22 Konica Corporation Method of ultrasonic waves degassing and device using the same
JPH11197406A (ja) * 1998-01-17 1999-07-27 Horiba Ltd 超音波脱泡槽

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007121958A1 (de) * 2006-04-22 2007-11-01 Bayer Technology Services Gmbh Reaktor
US8602636B2 (en) 2006-04-22 2013-12-10 Bayer Intellectual Property Gmbh Eccentrically-rotating reactor
EP2591864A1 (en) 2011-11-14 2013-05-15 Telsonic Holding AG Sonotrode and device for reducing and eliminating foaming of liquid products
WO2013072296A1 (en) 2011-11-14 2013-05-23 Telsonic Holding Ag Sonotrode and device for reducing and eliminating foaming of liquid products
US8758492B2 (en) 2011-11-14 2014-06-24 Telsonic Holding Ag Sonotrode and device for reducing and eliminating foaming of liquid products
CN104147813A (zh) * 2014-08-13 2014-11-19 昆明理工大学 一种自适应式浮选泡沫消泡装置及其消泡方法
CN104147813B (zh) * 2014-08-13 2015-11-18 昆明理工大学 一种自适应式浮选泡沫消泡装置及其消泡方法
RU2591986C1 (ru) * 2015-04-16 2016-07-20 Общество с ограниченной ответственностью "Промышленные инновационные технологии Национальной коксохимической ассоциации" Способ гашения пены и установка для гашения пены
WO2019060376A1 (en) * 2017-09-20 2019-03-28 Chemfree Defoam Llc SYSTEM AND METHOD FOR FOAM REDUCTION WITHOUT CHEMICALS
CN109019735A (zh) * 2018-07-10 2018-12-18 马鞍山市润启新材料科技有限公司 一种消泡装置
CN112916333A (zh) * 2019-12-06 2021-06-08 长鑫存储技术有限公司 储液设备、晶圆处理装置以及供液方法

Also Published As

Publication number Publication date
ES2212896B1 (es) 2005-10-01
AU2003267461A1 (en) 2004-04-30
ES2212896A1 (es) 2004-08-01

Similar Documents

Publication Publication Date Title
WO2004024317A1 (es) Sistema ultrasónico de desespumación mediante emisores con placa vibrante escalonada
JP4442383B2 (ja) 超音波洗浄装置
Gallego-Juárez Some applications of air-borne power ultrasound to food processing
KR101364137B1 (ko) 디스크상 기판의 습식처리 장치 및 방법
US2876083A (en) Process of producing crystals from particles of crystallizable substance distributedin a liquid
ES2906337T3 (es) Mezclado resonante-vibratorio
ES2527092T3 (es) Aparato de procesado megasónico con barrido de frecuencia de transductores de modo de espesor
KR101317736B1 (ko) 탄성 표면파를 사용하는 미스트 또는 미세 기포의 발생 방법 및 미스트 또는 미세 기포 발생 장치
CA2331245A1 (en) Vibrationally stirring apparatus for sterilization, sterilizing apparatus and sterilizing method
US5585044A (en) Liquid treating method and liquid treating apparatus
JP2990273B1 (ja) 複数音源を用いた超音波非接触マイクロマニピュレーション方法および装置
JP2008200660A (ja) 洗浄治具および洗浄装置
US7195179B2 (en) Piezoelectric mist generation device
JP3092396U (ja) 交差超音波破砕器
JP2005351900A (ja) アナライトを検出する方法及び装置
DE3871922D1 (de) Echographische vorrichtung zur entdeckung von struktur und anomalien des untergrundes und/oder des seebodens und dergleichen.
JPH11197406A (ja) 超音波脱泡槽
JP3115852B2 (ja) 超音波放射装置
JP4247150B2 (ja) 超音波殺菌分解装置
JP2005254043A (ja) 気体中に含まれるガス状物質の除去方法及び装置
JP2913031B1 (ja) 2音源を用いた非接触マイクロマニピュレーション方法および装置
US20150076245A1 (en) Device for nebulizing a liquid
US2832572A (en) Wave energy coupling device for ultrasonic energy
Madanshetty A conceptual model for acoustic microcavitation
JPS6171950A (ja) 超音波振動フロ−ト研摩装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP