WO2004019519A1 - 通信端末装置、基地局装置、および送信電力制御方法 - Google Patents

通信端末装置、基地局装置、および送信電力制御方法 Download PDF

Info

Publication number
WO2004019519A1
WO2004019519A1 PCT/JP2003/010368 JP0310368W WO2004019519A1 WO 2004019519 A1 WO2004019519 A1 WO 2004019519A1 JP 0310368 W JP0310368 W JP 0310368W WO 2004019519 A1 WO2004019519 A1 WO 2004019519A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission power
dedicated channel
offset
dpch
base station
Prior art date
Application number
PCT/JP2003/010368
Other languages
English (en)
French (fr)
Inventor
Akihiko Nishio
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to US10/511,727 priority Critical patent/US7206596B2/en
Priority to AU2003255042A priority patent/AU2003255042A1/en
Priority to EP03792689A priority patent/EP1494371A1/en
Priority to CA002483186A priority patent/CA2483186A1/en
Priority to KR10-2004-7016449A priority patent/KR20040097359A/ko
Publication of WO2004019519A1 publication Critical patent/WO2004019519A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/286TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission during data packet transmission, e.g. high speed packet access [HSPA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff

Definitions

  • the present invention relates to a communication terminal device, a base station device, and a transmission power control method.
  • HSDPA High Speed Downlink Packet Access
  • a technology for increasing the packet transmission speed of the uplink (this technology is hereinafter referred to as Fast-UL (Fast-Uplink) in this specification) is being studied.
  • H SD PA uses multiple channels such as HS-PD SCH (High Speed-Physical Downlink Shared Channel), A-DPCH (Associated-Dedicated Physical Channel), HS-DPCCH (High Speed-Dedicated Physical Control Channel).
  • HS-PD SCH High Speed-Physical Downlink Shared Channel
  • A-DPCH Associated-Dedicated Physical Channel
  • HS-DPCCH High Speed-Dedicated Physical Control Channel
  • Fast-UL is considered to use a plurality of channels such as HS-PUSCH (High Speed-Physical Uplink Shared Channel), A-DPCH, and HS-DP CCH.
  • HS—PD SCH is a downlink shared channel used for bucket transmission.
  • HS—PUSCH is an uplink shared channel used for packet transmission.
  • A—DPCH is a dedicated channel associated with the shared channel in the uplink or downlink direction, in which pilot signals, TPC (Transmission Power Control) commands, and control signals for maintaining communication are transmitted.
  • HS—DPCCH is an individual control channel for uplink or downlink, and includes ACK signal or NACK signal, CQI A signal for controlling a shared channel, such as a (Channel Quality Indicator) signal, is transmitted.
  • the ACK signal is a signal indicating that the high-speed packet transmitted from the base station or the communication terminal has been successfully demodulated in the communication terminal or the base station, and the NACK signal is transmitted from the base station or the communication terminal. This signal indicates that the high-speed packet could not be demodulated correctly by the communication terminal or base station.
  • the CQI is a signal created based on the channel quality, for example, a signal indicating a combination of a packet modulation method, a block size, a transmission power adjustment value, and the like.
  • a communication terminal uses the CQI to notify a communication partner of a modulation scheme, a block size, a transmission power adjustment value, and the like desired by the communication terminal.
  • the CQI at UL is also a signal created based on line quality, but its specific content has not been determined.
  • both A-DPCH and HS-DP CCH have both uplink and downlink directions, and CQI is transmitted via HS-DP CCH in uplink and HS-DP in downlink.
  • An ACK signal / NACK signal is transmitted via DP CCH.
  • A-DPCH has both uplink and downlink directions, but HS-DPCCH exists only in uplink direction, and CQI and ACK signal / NA signal are transmitted through HS-DPCCH in uplink direction.
  • the CK signal is transmitted.
  • Soft handover (SH 0) is applied to A-DP CH.
  • HS-PDSCH, HS-PUSCH and HS-DP CCH are subject to hard handover (HHO), while HS-PD SCH, HS-PUSCH and HS-DP CCH always have only one base station.
  • HHO hard handover
  • HS-PD SCH, HS-PUSCH and HS-DP CCH always have only one base station.
  • the timing at which the HS-PD SCH or HS-PUS CH performs HHO is the same as the timing at which the HS-DP CCH performs HHO.
  • the Fast-UL will be described as an example, and the transmission power control of the HS-DPCCH will be described with reference to FIGS.
  • FIG. 1 shows a case where A-DPCH is not in the SH ⁇ state
  • FIGS. 2 and 3 show a case where A-DPCH is in the SHO state.
  • A—DP CH when A—DP CH is not in SHO state, one communication terminal A-DPCH is connected only to the base station of the same mobile station.
  • A-DPCH is in the SHO state when the communication terminal is connected to multiple base stations at the same time. — When the DP CH is connected.
  • the transmission power of the A-DPCH is controlled by the well-known closed-loop transmission power control so that the reception SIR of the A-DPCH becomes the target SIR according to the TPC command. Controlled.
  • transmission power control similar to that for A-DPCH is performed according to the TPC command of A-DPCH.
  • the communication terminal moves from the base station 1 to the base station 2, the communication terminal connects the A—DP CH to both the base station 1 and the base station 2, and the A—DP CH is set to SH ⁇ . State.
  • the A-DPCH is in the SHO state, the transmission power control of the HS-DPCCH to which HH0 is applied is performed as follows.
  • both the base station 1 and the base station 2 receive the A-DPCH signal transmitted from the communication terminal.
  • Base station 1 creates a TPC command so that the received SIR at base station 1 becomes the target SIR, and transmits it to the communication terminal.
  • base station 2 creates a TPC command so that the received SIR at base station 2 becomes the target SIR, and transmits it to the communication terminal.
  • the communication terminal increases the transmit power of the DPCH and transmits at least one of the received TPC commands if all of the received TPC commands are TPC commands instructing to increase the transmission power.
  • the command is a TPC command to lower the power
  • A—Reduce the transmission power of the DPCH when a TPC command instructing to increase transmission power is transmitted from base station 1 and a TPC command instructing to decrease transmission power is transmitted from base station 2
  • the communication terminal lowers the transmission power of the A-DPCH signal. Since the transmission power of the HS—DPCCH is controlled in the same way as the transmission power of the A—DP CH, the transmission power of the A—DP CH signal is reduced, and as shown in FIG. 2, the HS—DP CCH The transmission power of the signal is also reduced.
  • the A-DPCH signal received by the base station 1 and the A-DPCH signal received by the base station 2 are selectively combined at the control station. Therefore, as described above, even when the transmission power of the A-DPCH is reduced, the control station satisfies the required SIR up to the S-IU of the uplink A-DPCH, so there is no particular problem.
  • HS-DP CCH to which HHO is applied is connected only to any one base station even when -0 ⁇ 11 is in 3HO state.
  • the communication terminal receives the A-DPCH signal transmitted from both the base station 1 and the base station 2.
  • the communication terminal combines the A-DPCH signal transmitted from the base station 1 and the A-DPCH signal transmitted from the base station 2, and issues a TPC command so that the received SIR of the combined signal becomes the target SIR. create. Then, the same TPC command is transmitted to both base station 1 and base station 2.
  • the communication terminal even if the received SIR is less than the target S with only the A-DPCH signal transmitted from the base station 1, if the received SIR of the combined signal is greater than or equal to the target SIR, As shown in FIG. 3, a TPC command instructing to reduce the transmission power is transmitted. Since the transmission power of HS—DPCCH is controlled in the same way as the transmission power of A—DPCH, base station 1 Then, as the transmission power of the A-DPCH signal is reduced according to the TPC command, as shown in Fig. 3, the transmission power of the HS-DPCCH signal is also reduced.
  • the HS-DP CCH to which HH ⁇ is applied is connected to only one of the base stations even when the A-DPCH is in the SH0 state. For this reason, as described above, if the transmission power of the downlink HS—DPC CH is also reduced along with the reduction of the transmission power of the downlink A—DP CH, the communication terminal performs The DPCCH SIR may not meet the required SIR.
  • An object of the present invention is to perform appropriate transmission power control on HS-DPCC H in a wireless communication system in which A-DP CH to which SHO is applied and HS-DP C CH to which HHO is applied. , 113_00 0 (11) to provide a communication terminal device, a base station device, and a transmission power control method capable of keeping the 3 IRs received at a required SIR.
  • the present invention provides a wireless communication system in which A-DPCH to which SHO is applied and HS-DPCCH to which HHO is applied, wherein A-DPCH If is not in SHO state, set HS—DP CCH transmit power equal to A—DP CH transmit power while A—DP CH is in SHO state and transmit HS—DP CCH The power is set to the power obtained by adding the offset notified via the HS-DPC CH to the transmission power of the A-DP CH.
  • FIG. 1 is a diagram for explaining conventional transmission power control when A-DPCH is not in the SHO state.
  • FIG. 2 is a diagram for explaining conventional transmission power control of the HS-DP CCH in the uplink direction.
  • FIG. 3 is a diagram for explaining conventional transmission power control of the HS-DPCCH in the downlink direction.
  • FIG. 4 is a block diagram showing the configuration of the communication terminal device according to one embodiment of the present invention.
  • FIG. 5 is a diagram showing how the required offset amount of the downlink changes according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing a configuration of the base station apparatus according to one embodiment of the present invention.
  • FIG. 7 is a diagram showing how the required offset amount of the uplink changes according to an embodiment of the present invention.
  • FIG. 8 is a diagram for explaining uplink transmission power control of HS-DP CCH according to one embodiment of the present invention.
  • FIG. 9 is a diagram for explaining downlink transmission power control of the HS-DPCCH according to one embodiment of the present invention.
  • FIG. 10 is a diagram for explaining the transmission start Z end timing of the offset for HS-DPCCH according to one embodiment of the present invention.
  • FIG. 4 shows an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration of a communication terminal device according to the embodiment. This communication terminal device is used in a mobile communication system in which Fast-UL and HSD PA are performed.
  • Receiving section 100 includes receiving radio section 14, despreading section 16, demodulating section 18, and decoding section 20.
  • the reception radio unit 14 performs processing such as down-comparison, AGC (Auto Gain Control), and A / D conversion on the signal received via the antenna 12.
  • This received signal includes the TPC command for the uplink A-DPCH and the offset of the transmission power of the uplink HS-DPCCH with respect to the transmission power of the uplink A-DPCH. .
  • This TPC command is received from the base station via the downlink A-DPCH, and the offset is received from the base station via the downlink HS-DPCCH.
  • the despreading unit 16 performs a despreading process on the received signal using a spreading code assigned to each channel.
  • the demodulation unit 18 demodulates the despread signal such as QPSK.
  • the demodulated signal is input to decoding section 20 and SIR measuring section 24.
  • the decoding unit 20 performs error correction decoding and CRC (Cyclic Redundancy Check) on the demodulated received signal to decode the received signal.
  • CRC Cyclic Redundancy Check
  • A- TP C commands c extracted to extract the TP C command for uplink A- DP CH stored in Taimusurodzu bets received de Isseki of the DPCH is transmitted wirelessly Entered in part 42.
  • the communication terminal transmits a CP I CH (Common Pilot Channel) signal (CP I CH 1) transmitted from the base station 1 at a constant power and a CP I CH signal (CP I CH 2) transmitted from the base station 2 at a constant power And always receive. Therefore, the pilot port measuring unit 28 measures the reception power of CPICH 1 and the reception power of CPICH 2. The measured received power is calculated by the HO determination unit 30 and offset calculation. Entered in part 32.
  • CP I CH Common Pilot Channel
  • the HO (handover) determination unit 30 determines whether or not the A-DPCH is in the SHO state, and inputs the determination result to the offset calculation unit 32 and the transmission radio unit 42.
  • A—DP CH goes to SH ⁇ state.
  • the HO determination unit 30 detects the start of the SHO and the end of the SHO by observing the difference between the received power of the CP I CH 1 and the received power of the CP I CH 2, and Can be determined whether or not is in the SHO state.
  • the pilot measurement unit 28 measures the received SIR of the CP I CH signal, and the HO determination unit 30 observes the difference between the received SIR of the CP I CH 1 and the received SIR of the CP I CH2. Similarly, it can be determined whether or not the A-DP CH is in the SHO state. Also, it is possible to determine whether or not the A-DPCH is in the SHO state based on a control signal transmitted from an upper layer, that is, a notification from the control station.
  • the offset calculator 32 operates only when the A-DPCH is in the SHO state, and calculates the offset of the downlink HS-DPCCH with respect to the transmission power of the downlink A-DPCH with the offset used in the base station. Calculate the offset of the transmission power. Then, the calculated offset is input to encoding section 36 in order to notify it via the HS-DPCCH in the uplink direction. Therefore, the offset calculated by offset calculating section 32 is transmitted to the base station via the uplink HS-DPCCH only when A-DPCH is in the SHO state.
  • the offset calculator 32 calculates the offset as follows. If the received power of CP I CH 1 is P 1 and the received power of CP I CH 2 is P 2, the offset ⁇ Pdown is
  • the (P1 + P2) ZP is 1 times the A-DPCH signal. Is required.
  • Figure 5 shows the transition of the required offset for the downlink.
  • the pilot measurement unit 28 measures the reception SIR of the CP I CH signal
  • the offset calculation unit 32 calculates the reception SIR of the CP I CH 1 as P 1 and the reception SIR of the CP I CH 2 as P 2 using the above equation.
  • the offset amount APdown may be calculated by (1).
  • the SIR measuring unit 24 measures the SIR of the received signal of the A-DPCH.
  • the measured SIR is input to the TPC command creation unit 26.
  • the TPC command creation unit 26 compares the received SIR of the A-DPCH with the target SIR, and creates a TPC command for the downlink A-DPCH based on the comparison result. If the measured SIR is equal to or higher than the target SIR, a TPC command is created to instruct the transmission power to decrease (Down). If the measured SIR is less than the target SIR, the transmission power is increased (Up). Is created. The created TPC command is input to the encoding unit 36.
  • the offset extracting unit 34 extracts an offset (offset of the uplink HS-DPCCH transmission power with respect to the uplink A-DPCH transmission power) stored in the HS-DPCCH reception data.
  • the extracted offset is input to the transmission radio unit 42.
  • the transmitting section 200 includes an encoding section 36, a modulating section 38, a spreading section 40, a transmitting radio section 4 Consists of two.
  • the encoding unit 36 performs convolutional encoding and CRC encoding on the transmission data (bit string) to encode the transmission data, thereby forming a transmission frame composed of a plurality of time slots.
  • the downlink TPC command for the A-DP CH is embedded in the time slot of the A-DP CH
  • the offset for the downlink HS-DP CCH is embedded in the time slot of the HS-DPCCH.
  • the modulator 38 performs modulation processing such as QP SK on the transmission data.
  • Spreading section 40 performs spreading processing on the modulated transmission signal using a spreading code assigned to each channel.
  • the transmission radio section 42 performs processing such as DZA conversion, transmission power control, and up-conversion on the spread transmission signal, and then transmits the transmission signal via the antenna 12. At this time, the transmission radio unit 42 performs transmission power control based on the determination result of the HO determination unit 30.
  • the transmission radio unit 42 controls the uplink A-DPCH transmission power in accordance with the A-DPCH TPC command. At the same time, set the transmission power of the HS-DP CCH in the uplink to the same power as the transmission power of the A-DP CH in the uplink c. In this case, the transmission radio unit 42 controls the transmission power of the uplink A—DPCH according to the TPC command for the A—DPCH, and also controls the transmission power of the uplink HS—D PCCH in the uplink. A—Set to the power obtained by adding the offset extracted by the offset extraction unit 34 to the transmission power of the DP CH.
  • FIG. 6 is a block diagram showing the configuration of the base station apparatus according to one embodiment of the present invention.
  • This base station apparatus is used in a mobile communication system in which Fast UL and HSDPA are performed.
  • the receiving unit 300 includes a receiving radio unit 54, a despreading unit 56, a demodulating unit 58, and a decoding unit 6. Consists of 0.
  • the reception radio section 54 performs processing such as down conversion, AGC (Auto Gain Control), and A / D conversion on the signal received via the antenna 52.
  • This received signal includes the TPC command for the downlink A-DP CH and the offset of the transmission power of the downlink HS-DP CCH with respect to the transmission power of the downlink A-DP CH. .
  • the TPC command is received from the communication terminal via the uplink A-DPCH, and the offset is received from the communication terminal via the uplink HS-DPCCH.
  • the despreading unit 56 performs a despreading process on the received signal with a spreading code assigned to each channel.
  • the demodulation unit 58 demodulates the despread signal such as QPSK.
  • the demodulated signal is input to decoding section 60 and SIR measuring section 64.
  • the decoding unit 60 decodes the received signal by performing CRC and error correction decoding on the demodulated received signal. As a result, received data (bit string) is obtained.
  • the received data is input to the TPC command extraction unit 62 and the offset extraction unit 68.
  • the TPC command extracting unit 62 extracts the TPC command for the downlink A—DPCH stored in the time slot of the reception data of the A—DPCH. C The extracted TPC command is transmitted. It is input to the radio unit 80.
  • the offset extracting unit 68 is configured to perform the offset stored in the time slot of the received data of the HS—DPC CH (the offset of the transmission power of the downlink HS—DP CCH with respect to the transmission power of the downlink A—DP CH). Is extracted. The extracted offset is input to transmission radio section 80.
  • the SIR measuring section 64 measures the SIR of the received signal of A—DPCH.
  • the measured SIR is input to the TPC command creation unit 66 and the offset calculation unit 72.
  • the TPC command creation unit 66 compares the A—DPCH reception S 111 with the target 311, and based on the comparison result, determines the uplink T—PCH TPC frame for the A—DPCH. Create a command. If the measured SIR is equal to or higher than the target SI; R, a TPC command is created to instruct that the transmission power be reduced (Down). If the measured SIR is less than the target SIR, the transmission power is increased. A TPC command is created to indicate this (Up). The created TPC command is input to the encoding unit 74.
  • H ⁇ determination section 70 determines whether or not the A-DPCH is in the SHO state, and inputs the determination result to offset calculation section 72 and transmission radio section 80.
  • the HO determination unit 70 receives information (HO information) indicating whether or not the A-DP CH is in the SHO state, which is information notified from the control station, and uses the HO information to set the A-DP CH in the SHO state. Can be determined.
  • the determination result is input to the offset calculation unit 72.
  • the offset calculator 72 operates only when the A-DPCH is in the SHO state, and transmits the uplink HS-DPCCH with respect to the transmission power of the uplink A-DPCH with the offset used in the communication terminal. Calculate the power offset. Then, the calculated offset is input to encoding section 74 in order to notify it via the downlink HS-DPCCH. Therefore, the offset calculated by offset calculating section 72 is transmitted to the communication terminal via downlink HS-DP CCH only when A-DP CH is in the SHO state.
  • the offset calculator 72 calculates the offset as follows. A—If the reception SIR of the DPCH is SIR1 and the target SIR is SIR2, the offset ⁇ Pup is
  • the transmission section 400 includes an encoding section 74, a modulation section 76, a spreading section 78, and a transmission radio section 80.
  • the encoding unit 74 encodes the transmission data by performing CRC coding and convolutional coding on the transmission data (bit string) to form a transmission frame composed of a plurality of time slots.
  • a TPC command for the upstream A-DPCH is embedded in the A-DPCH time slot
  • an offset for the upstream HS-DP CCH is embedded in the HS-DPCCH time slot.
  • the transmission data is subjected to modulation processing such as QP SK.
  • Spreading section 78 performs spreading processing on the modulated transmission signal using a spreading code assigned to each channel.
  • Transmission radio section 80 performs processing such as DZA conversion, transmission power control, and up-conversion on the spread transmission signal, and then transmits the transmission signal via antenna 52. At this time, transmission radio section 80 performs transmission power control based on the determination result in HO determination section 70.
  • the transmission radio unit 80 controls the downlink A-DPCH transmission power according to the A-DPCH TPC command.
  • the transmission power downlink downlink HS- DP CC H A- whereas c is set to the power equal to the transmit power of the DPCH, the H 0 determination unit 70 A- DPCH is in SH_ ⁇ state determination
  • the transmission radio unit 80 controls the transmission power of the downlink A-DPCH according to the TPC command for the A-DPCH, and also decreases the transmission power of the downlink HS-D PCCH.
  • Direction A—Offset extraction to transmit power of DP CH The power is set to the sum of the offset extracted at the output unit 68.
  • transmission power control of HS-DPCCH in the present embodiment will be described using Fast-UL as an example. Note that the transmission power control of A-DPCH is the same as the conventional one, and a description thereof will be omitted.
  • the transmission power of the HS-DPCCH is controlled to the same power as the transmission power of the A-DPCH.
  • FIGS. 8 and 9 show the case where A-DPCH is in the SHO state.
  • the base station 1 starts transmitting the uplink AP-offset for the uplink HS-DPCCH to the communication terminal via the downlink HS-DPCCH.
  • the communication terminal controls the transmission power of the uplink HS-DPCCH to the transmission power of the uplink A-DPCH plus offset Pup.
  • a base station 1 transmits a TPC command to increase transmission power, and a base station 2 transmits a TPC command to decrease transmission power. If so, the communication terminal lowers the transmission power of the A-DPC H signal.
  • the base station 1 transmits an offset ⁇ Pup to the communication terminal in addition to the A—DP CH TPC command. Therefore, the communication terminal controls the transmission power of the HS-DPCCH signal to be transmitted to the base station 1 to the power obtained by adding the offset power Pup to the transmission power of the A-DPCH signal.
  • the communication terminal starts transmitting an offset APdown for the downlink HS-DPCCH to the base station 1 via the uplink HS-DPCCH.
  • the base station 1 controls the transmission power of the downlink HS-DPCCH to the transmission power of the downlink A-DPCH plus an offset Pdown.
  • the communication terminal combines the A-DPCH signal transmitted from the base station 1 and the A-DPCH signal transmitted from the base station 2 for the A-DPCH, and Create a TPC command so that the received SIR becomes the target SIR. Then, the same TPC command is transmitted to both base station 1 and base station 2. In the example of FIG. 9, a TPC command instructing both sides to reduce the transmission power is transmitted. In accordance with this TPC command, base station 1 and base station 2 lower the transmission power of downlink A-DPCH.
  • the communication terminal sends A — T for the DP CH
  • base station 1 controls the transmission power of the HS-DP CCH signal to be transmitted to the communication terminal to the power obtained by adding an offset ⁇ CH ⁇ to the transmission power of the A-DP CH signal to be transmitted to the communication terminal. In this way, even when the A-DPCH is in the SHO state, the transmission power of the HS-DPCCH is appropriately controlled, and the reception SIR of the HS-DPCCH can be maintained at the required SIR in the communication terminal. .
  • the TPC command used for uplink A-DPCH transmission power control and Downlink A— SI on DP CH The pilot used for R measurement is transmitted from the base station to the communication terminal.
  • the uplink A-DPCH it is used for the transmission power control of the downlink A-DPCH for every one slot, regardless of whether the A-DPCH is in the SHO state.
  • a TPC command and a pilot used for uplink A-DPCH SIR measurement are transmitted from the communication terminal to the base station.
  • the offset APup used for the transmission power control of the uplink HS-DPCCH is set for each time slot only when 8-0? ⁇ 1 ⁇ is in the 3110 state. Sent from base station to communication terminal.
  • the offset APdown used for the transmission power control of the downlink HS-DP CCH is set for each time slot only when the A-DP CH is in the SHO state. It is transmitted from the communication terminal to the base station together with the CQI. The CQI is transmitted in the data section.
  • the notification of the offset for HS-DPCCH starts when the SHO of the A-DPCH starts, and the notification of the offset for HS-DP CCH ends when the SHO of the A-DPCH ends.
  • data, pilot, TPC command, and offset are time-multiplexed, but these may be IQ-multiplexed.
  • Fast-UL has been described as an example.
  • the present invention is not limited to this, and the present invention is applied to individual channels to which soft handover is applied and hard handover.
  • Wireless communication system in which individual channels to which hard handover is applied Everything is applicable to the system.
  • the reception SIR of the HS-DP CCH can be maintained at the required SIR.
  • the present invention can be used for a wireless communication terminal device and a wireless communication base station device used in a mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

ソフトハンドオーバが適用されるA−DPCH(Associated - Dedicated Physical Channel)とハードハンドオーバが適用されるHS−DPCCH(High Speed - Dedicated Physical Control Channel)とが混在する無線通信システムにおいて、HS−DPCCHに対して適切な送信電力制御を行って、HS−DPCCHの受信SIRを所要SIRに保つために、HO判定部30は、A−DPCHがソフトハンドオーバ状態にあるか否かを判定し、送信無線部42は、A−DPCHがソフトハンドオーバ状態にない場合は、HS−DPCCHの送信電力をA−DPCHの送信電力と等しい電力に設定する一方、A−DPCHがソフトハンドオーバ状態にある場合は、HS−DPCCHの送信電力をA−DPCHの送信電力にオフセットを加えた電力に設定する。

Description

明 細 書 通信端末装置、 基地局装置、 および送信電力制御方法 技術分野
本発明は、 通信端末装置、 基地局装置、 および送信電力制御方法に関する 背景技術
無線通信システムの分野において、 高速大容量な下りチャネルを複数の通 信端末が共有し、 下り回線で高速パケット伝送を行う HSDPA (High Speed Downlink Packet Access) が提案されている。 また、 最近、 上り回 線のパケット伝送速度を高速化するための技術 (この技術を、 以下、 本明細 書中では Fast— UL (Fast - Uplink) という) が検討されている。 H SD PAでは、 HS— PD S CH (High Speed - Physical Downlink Shared Channel )、 A— D P C H ( Associated - Dedicated Physical Channel), HS-DPCCH (High Speed - Dedicated Physical Control Channel) 等の複数のチャネルが用いられる。 また、 Fas t— ULでも同 様に、 HS— PUSCH (High Speed - Physical Uplink Shared Channel), A— DP CH、 HS— DP CCH等の複数のチャネルが用いられると考えら れる。 -
HS— PD S CHは、 バケツトの伝送に使用される下り方向の共有チヤネ ルである。 HS— PUSCHは、 パケットの伝送に使用される上り方向の共 有チャネルである。 A— DPCHは、 共有チャネルに付随する、 上り方向ま たは下り方向の個別付随チャネルであり、 パイロッ ト信号や T P C (Transmission Power Control) コマンドおよび通信を維持するための制 御信号等が伝送される。 HS— DPCCHは、 上り方向または下り方向の個 別制御チャネルであり、 A C K信号あるいは N A C K信号、 C Q I (Channel Quality Indicator)信号等、 共有チャネルを制御するための信 号が伝送される。 なお、 ACK信号とは、 基地局また通信端末から送信され た高速パケットが、 通信端末または基地局において正しく復調できたことを 示す信号であり、 NACK信号とは、 基地局また通信端末から送信された高 速パケットが、 通信端末または基地局において正しく復調できなかったこと を示す信号である。 また、 CQIは、 回線品質に基づいて作成される信号で あり、 例えば、 パケットの変調方式、 ブロックサイズ、 送信電力調節値等の 組み合わせを示す信号である。 HSDPAでは、 通信端末は、 この CQIを 使用して、 自分が望む変調方式、 ブロックサイズ、 送信電力調節値等を通信 相手に通知する。 Fast— ULでの CQIも回線品質に基づいて作成され る信号ではあるが、 その具体的な内容については決まっていない。
なお、 Fas t— ULでは、 A— DPCH、 HS— DP CCH共に、 上り 方向および下り方向の双方が存在し、 上り方向の HS— DP CCHを介して CQ Iが伝送され、 下り方向の HS— DP CCHを介して ACK信号/ NA CK信号が伝送される。 これに対し、 HSDPAでは、 A— DPCHは上り 方向および下り方向の双方が存在するが、 HS— DPCCHは上り方向しか 存在せず、 上り方向の HS— DPCCHを介して CQ Iと ACK信号 /NA CK信号が伝送される。 また、 A— DP CHにはソフトハンドオーバ (SH 0) が適用される。 これに対し、 HS— PDSCH、 HS— PUSCHおよ び H S— DP C CHにはハードハンドオーバ (HHO) が適用され、 HS— PD SCH、 H S—PUSCHおよび HS— DP CCHは常に 1つの基地局 だけと接続される。 また、 HS— PD S CHや HS— PUS CHが HHOす るタイミングと、 HS— DP CCHが HHOする夕ィミングは同じである。 以下、 F a s t—ULを例に挙げ、 HS— DPCCHの送信電力制御につ いて図 1〜図 3を用いて説明する。 図 1は、 A— DP CHが SH〇状態にな い場合を示し、 図 2およぴ図 3は、 A— DPCHが SHO状態にある場合を 示す。 ここで、 A— DP CHが SHO状態にない場合とは、 通信端末が 1つ の基地局との間だけで A— DP CHを接続している状態にある場合であり、 A— DP CHが SHO状態にある場合とは、 通信端末が複数の基地局との間 で同時に A— D P CHを接続している状態にある場合である。
図 1に示すように、 A— DP CHの送信電力は、 一般的に良く知られてい るクローズドループ送信電力制御によって、 TPCコマンドに従って、 A— DPCHの受信 S IRが目標 S IRとなるように制御される。 一方、 H S— DPCCHについては、 A— DP CHの TP Cコマンドに従って、 A— DP CHと同様の送信電力制御がなされる。 これにより、 A— DPCHが SHO 状態にない場合には、 HS— DPCCHの受信 S IRは所要 S IRを満たす ことができる。
通信端末が基地局 1から基地局 2の方へ移動すると、 通信端末は基地局 1 との間および基地局 2との間の双方で A— DP CHを接続し、 A— DP CH が SH〇状態になる。 そして、 A— DP CHが SHO状態にあるとき、 HH 0が適用される H S— DP C CHの送信電力制御は以下のようにして行われ る。
まず、 図 2を用いて、 HS— DPCCHの上り方向の送信電力制御につい て説明する。 A— DP CHが SHO状態になると、 基地局 1および基地局 2 の双方が、 通信端末から送信された A— DP CH信号を受信する。 基地局 1 は、 基地局 1での受信 S IRが目標 S IRになるように TPCコマンドを作 成して通信端末へ送信する。 また、 基地局 2は、 基地局 2での受信 S IRが 目標 S I Rになるように TP Cコマンドを作成して通信端末へ送信する。 通 信端末は、 受信した複数の TPCコマンドのすべてが送信電力を上げること を指示する TPCコマンドであれば、 A— DPCHの送信電力を上げ、 受信 した複数の TP Cコマンドのうち 1つでも送信電力を下げることを指示する TPCコマンドであれば、 A— DPCHの送信電力を下げる。 よって、 基地 局 1から送信電力を上げることを指示する T P Cコマンドが送信され、 基地 局 2から送信電力を下げることを指示する T P Cコマンドが送信された場合 は、 通信端末は、 A— DP CH信号の送信電力を下げる。 HS— DPCCH の送信電力は A— DP CHの送信電力と同じように制御されるため、 A— D P CH信号の送信電力が下げられたことに伴い、 図 2に示すように、 HS— DP CCH信号の送信電力も下げられる。
ここで、 上り方向の A— DP CHについては、 A— DPCHが SHO状態 にある場合は、 基地局 1で受信された A— D P C H信号と基地局 2で受信さ れた A— DP CH信号とが制御局において選択合成される。 このため、 上記 のように、 A— DPCHの送信電力が下げられた場合でも、 制御局では上り 方向の A— DP CHの S I IUま所要 S I Rを満たすため、 特に問題ない。 これに対し、 HHOが適用される HS— DP CCHは、 ー0 〇11が3 HO状態にある場合でも、 いずれか 1つの基地局との間でしか接続されない c このため、 上記のように、 上り方向の A— DP CHの送信電力が下げられた ことに伴い上り方向の HS— DP C CHの送信電力も下げられると、 上り方 向の HS— DPCCHの S I Rが所要 S I Rを満たさなくなってしまうこと がある。
次に、 図 3を用いて、 HS— DPCCHの下り方向の送信電力制御につい て説明する。 A— DP CHが SHO状態になると、 通信端末は、 基地局 1お よび基地局 2の双方から送信された A— DP CH信号を受信する。 通信端末 は、 基地局 1から送信された A— D P C H信号と基地局 2から送信された A 一 DPCH信号とを合成し、 その合成した信号の受信 S I Rが目標 S I Rに なるように TP Cコマンドを作成する。 そして、 同一の TP Cコマンドを基 地局 1およぴ基地局 2の双方へ送信する。
ここで、 通信端末において、 基地局 1から送信された A— DPCH信号だ けでは受信 S IRが目標 S 未満となる場合であっても、 合成した信号の 受信 S I Rが目標 S I R以上となる場合には、 図 3に示すように、 送信電力 を下げることを指示する TP Cコマンドが送信される。 HS— DPCCHの 送信電力は A— DPCHの送信電力と同じように制御されるため、 基地局 1 では、 TP Cコマンドに従って A— DP CH信号の送信電力が下げられたこ とに伴い、 図 3に示すように、 HS— DPCCH信号の送信電力も下げられ る。
HH〇が適用される H S— DP CCHは、 A— D P C Hが S H 0状態にあ る場合でも、 いずれか 1つの基地局との間でしか接続されない。 このため、 上記のように、 下り方向の A— DP CHの送信電力が下げられたことに伴い 下り方向の HS— DP C CHの送信電力も下げられると、 通信端末において、 下り方向の HS— DPCCHの S IRが所要 S I Rを満たさなくなってしま うことがある。
なお、 この課題は、 F a s t— ULでだけではなく、 HSDPAにおいて も同様に生じる課題である。 発明の開示
本発明の目的は、 SHOが適用される A— DP CHと HHOが適用される HS— DP C CHとが混在する無線通信システムにおいて、 HS— DPCC Hに対して適切な送信電力制御を行って、 113_0 0( 11の受信3 IRを 所要 S I Rに保つことができる通信端末装置、 基地局装置、 および送信電力 制御方法を提供することである。
本発明は、 上記課題を解決し、 目的を達成するために、 SHOが適用され る A— DP CHと HHOが適用される H S— DP C CHとが混在する無線通 信システムにおいて、 A— DPCHが SHO状態にない場合は、 HS— DP C CHの送信電力を A— DP CHの送信電力と等しい電力に設定する一方、 A— DP CHが SHO状態にある場合は、 HS— DP CCHの送信電力を A — DP CHの送信電力に HS— DPC CHを介して通知されるオフセットを 加えた電力に設定することを特徴とする。
この特徴により、 SHOが適用される A— DP CHと HHOが適用される HS— DP CCHとが混在する無線通信システムにおいて、 A— DP CHが S H◦状態にある場合でも、 HS— DP CCHに対して適切な送信電力制御 を行うことができる。 図面の簡単な説明
図 1は、 A— DPCHが SHO状態にない場合の従来の送信電力制御を説 明するための図である。
図 2は、 従来の HS— DP C CHの上り方向の送信電力制御について説明 するための図である。
図 3は、 従来の H S— DPCCHの下り方向の送信電力制御について説明 するための図である。
図 4は、 本発明の一実施の形態に係る通信端末装置の構成を示すプロック 図である。
図 5は、 本発明の一実施の形態に係る下り回線の所要オフセット量の推移 の様子を示す図である。
図 6は、 本発明の一実施の形態に係る基地局装置の構成を示すブロック図 である。
図 7は、 本発明の一実施の形態に係る上り回線の所要オフセット量の推移 の様子を示す図である。
図 8は、 本発明の一実施の形態に係る H S— DP CCHの上り方向の送信 電力制御について説明するための図である。
図 9は、 本発明の一実施の形態に係る H S— DPCCHの下り方向の送信 電力制御について説明するための図である。
図 10は、 本発明の一実施の形態に係る HS— DPCCH用のオフセヅト の送信開始 Z終了夕ィミングを説明するための図である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について説明する。 図 4は、 本発明の一実施の 形態に係る通信端末装置の構成を示すプロック図である。 この通信端末装置 は、 Fas t—ULや HSD PAが行われる移動体通信システムにおいて使 用されるものである。
受信部 100は、 受信無線部 14、 逆拡散部 16、 復調部 18、 復号部 2 0から構成される。
受信無線部 14は、 アンテナ 12を介して受信された信号に対してダウン コンパ一ト、 AGC (Auto Gain Control), A/D変換等の処理を施す。 この受信信号には、 上り方向の A— DP CH用の TP Cコマンド、 および、 上り方向の A— DP CHの送信電力に対する上り方向の H S— DP C CHの 送信電力のオフセヅトが含まれている。 また、 この TP Cコマンドは下り方 向の A— DP CHを介して基地局から受信され、 また、 このオフセットは下 り方向の H S— DP C CHを介して基地局から受信される。
逆拡散部 16は、 受信信号に対して、 それそれのチャネルに割り当てられ ている拡散コードで逆拡散処理を施す。 復調部 18は、 逆拡散後の QPSK 等の信号を復調する。 復調された信号は、 復号部 20および S I R測定部 2 4に入力される。 復号部 20は、 復調された受信信号に対して誤り訂正復号 や C R C ( Cyclic Redundancy Check) を行って受信信号を復号する。 これ により受信データ (ビット列) が得られる。 受信データは、 TP Cコマンド 抽出部 22およびオフセヅト抽出部 34に入力される。
TP Cコマンド抽出部 22は、 A— DPCHの受信デ一夕のタイムスロヅ トに格納されている上り方向の A— DP CH用の TP Cコマンドを抽出する c 抽出された TP Cコマンドは、 送信無線部 42に入力される。
通信端末は、 基地局 1から一定電力で送信される CP I CH (Common Pilot Channel) 信号 (CP I CH 1) と、 基地局 2から一定電力で送信さ れる CP I CH信号 (CP I CH2) とを常に受信している。 そこで、 パイ 口ヅト測定部 28は、 C P I C H 1の受信電力と、 C P I C H 2の受信電力 を測定する。 測定された受信電力は、 HO判定部 30およびオフセット算出 部 32に入力される。
HO (ハンドオーバ) 判定部 30は、 A— DPCHが SHO状態にあるか 否か判定し、 判定結果をオフセット算出部 32および送信無線部 42に入力 する。 通信端末が基地局 1から基地局 2の方へ移動していき、 通信端末にお いて、 CP I CH 1の受信電力と CPェ CH2の受信電力との差が例えば 3 dB になった時点で、 A— DP CHは SH〇状態となる。 このように、 HO 判定部 30は、 CP I CH 1の受信電力と CP I CH 2の受信電力との差を 観測することにより、 SHOの開始と SHOの終了を検出して、 A—DPC Hが SHO状態にあるか否かを判定することができる。 なお、 パイロット測 定部 28が CP I CH信号の受信 S IRを測定し、 HO判定部 30が、 CP I CH 1の受信 S IRと CP I CH2の受信 S I Rとの差を観測することに より、 同様にして、 A— DP CHが SHO状態にあるか否かを判定すること ができる。 また、 上位レイヤから送られる制御信号、 すなわち、 制御局から の通知により、 A— DPCHが SHO状態にあるか否かを判定することもで ぎる。
オフセヅト算出部 32は、 A— DP CHが SHO状態にある場合だけ動作 し、 基地局において使用されるオフセットで、 下り方向の A— DP CHの送 信電力に対する下り方向の HS— DP C CHの送信電力のオフセヅトを算出 する。 そして、 算出したオフセットを上り方向の HS— DPCCHを介して 通知するために符号化部 36に入力する。 よって、 オフセッ ト算出部 32に より算出されたオフセヅトは、 A— DP CHが SHO状態にある場合だけ、 上り方向の HS— DP C CHを介して基地局へ送信される。
オフセヅト算出部 32では、 オフセヅトは以下のようにして算出される。 CP I CH 1の受信電力を P 1、 CP I CH2の受信電力を P 2とすると、 オフセット△ Pdownは、
APdown= (P 1 + P 2) /P I - (1)
として算出される。 Ρ 1、 Ρ2、 Δ P down は真値であり、 単位は dBであ る。 このオフセット APdown が、 A— DP CHが SHO状態にある場合に、 HS—DP C CHが接続されている基地局へ上り方向の HS— DP C CHを 介して通知される。 このようにしてオフセット APdown を求めるのは、 以 下の理由による。 すなわち、 A— DP CHが SHO状態にある場合で、 HS — DPCCHが HHO前の状態では、 A— D P CHが基地局 1および基地局 2の双方と接続されているのに対し、 HS— DP C CHは基地局 1とだけ接 続されている。 このとき、 基地局 1からだけ送信される HS— DPCCH信 号が P 1 +P 2の電力で通信端末に受信されるためには、 A— DP CH信号 の (P 1+P2) ZP 1倍の電力が必要であるからである。 なお、 下り回線 の所要オフセット量の推移の様子を図 5に示す。 また、 パイロット測定部 2 8が CP I CH信号の受信 S I Rを測定し、 オフセット算出部 32が、 CP I CH 1の受信 S I Rを P 1、 CP I CH 2の受信 S I Rを P 2として、 上 式 (1) によりオフセヅト量 APdownを算出してもよい。
S IR測定部 24は、 A— DPCHの受信信号の S IRを測定する。 測定 された S IRは、 TP Cコマンド作成部 26に入力される。
TPCコマンド作成部 26は、 A— DP CHの受信 S I Rと目標 S I Rと を比較し、 その比較結果に基づいて下り方向の A— DP CH用の TP Cコマ ンドを作成する。 測定された S I Rが目標 S I R以上であれば送信電力を下 げること (Down) を指示する TP Cコマンドが作成され、 測定された S I Rが目標 S I R未満であれば送信電力を上げること (Up) を指示する T PCコマンドが作成される。 作成された TPCコマンドは、 符号化部 36に 入力される。
オフセット抽出部 34は、 HS— DPCCHの受信デ一夕に格納されてい るオフセット (上り方向の A— DPCHの送信電力に対する上り方向の HS — DP C CHの送信電力のオフセット) を抽出する。 抽出されたオフセット は、 送信無線部 42に入力される。
送信部 200は、 符号化部 36、 変調部 38、 拡散部 40、 送信無線部 4 2から構成される。
符号化部 36は、 送信データ (ビット列) に対して畳み込み符号化、 CR C符号化を行って送信デ一夕を符号化し、 複数のタイムスロットから構成さ れる送信フレームを構成する。 このとき、 A— DP CHのタイムスロットに 下り方向の A—DP CH用の TP Cコマンドを埋め込み、 HS— DPCCH のタイムスロヅトに下り方向の HS— DP CCH用のオフセットを埋め込む。 変調部 38は、 送信データに対して QP SK等の変調処理を施す。 拡散部 40は、 変調後の送信信号に対して、 それそれのチャネルに割り当てられて いる拡散コードで拡散処理を施す。
送信無線部 42は、 拡散後の送信信号に対して DZA変換、 送信電力制御、 アップコンバート等の処理を施した後、 送信信号をアンテナ 12を介して送 信する。 この際、 送信無線部 42は、 HO判定部 30での判定結果に基づい て、 送信電力制御を行う。
HO判定部 30によって A— DP CHが SHO状態にないと判定された場 合は、 送信無線部 42は、 上り方向の A— DPCHの送信電力を A— DPC H用の TP Cコマンドに従って制御すると共に、 上り方向の HS— DP C C Hの送信電力を上り方向の A— DP CHの送信電力と等しい電力に設定する c 一方、 HO判定部.30によって A— DP CHが SHO状態にあると判定さ れた場合は、 送信無線部 42は、 上り方向の A— DPCHの送信電力を A— DP CH用の TP Cコマンドに従って制御すると共に、 上り方向の HS— D PCCHの送信電力を、 上り方向の A— DP CHの送信電力にオフセヅト抽 出部 34で抽出されたオフセットを加えた電力に設定する。
次に、 上記通信端末装置と無線通信する基地局装置について説明する。 図 6は、 本発明の一実施の形態に係る基地局装置の構成を示すプロック図であ る。 この基地局装置は、 F a s t— ULや HSDPAが行われる移動体通信 システムにおいて使用されるものである。
受信部 300は、 受信無線部 54、 逆拡散部 56、 復調部 58、 復号部 6 0から構成される。
受信無線部 54は、 アンテナ 52を介して受信された信号に対してダウン コンバート、 AGC (Auto Gain Control), A/D変換等の処理を施す。 この受信信号には、 下り方向の A— DP CH用の TP Cコマンド、 および、 下り方向の A— DP CHの送信電力に対する下り方向の HS— DP C CHの 送信電力のオフセットが含まれている。 また、 この TP Cコマンドは上り方 向の A— DP CHを介して通信端末から受信され、 また、 このオフセットは 上り方向の H S— DP C CHを介して通信端末から受信される。
逆拡散部 56は、 受信信号に対して、 それそれのチャネルに割り当てられ ている拡散コードで逆拡散処理を施す。 復調部 58は、 逆拡散後の QPSK 等の信号を復調する。 復調された信号は、 復号部 60および S I R測定部 6 4に入力される。 復号部 60は、 復調された受信信号に対して CRCや誤り 訂正復号を行って受信信号を復号する。 これにより受信データ (ビット列) が得られる。 受信データは、 TP Cコマンド抽出部 62およびオフセヅト抽 出部 68に入力される。
T PCコマンド抽出部 62は、 A— DP CHの受信デ一夕のタイムスロッ トに格納されている下り方向の A— DP CH用の TP Cコマンドを抽出する c 抽出された TP Cコマンドは、 送信無線部 80に入力される。
オフセヅト抽出部 68は、 H S— D P C CHの受信データのタイムスロヅ トに格納されているオフセヅト (下り方向の A— DP CHの送信電力に対す る下り方向の HS— DP CCHの送信電力のオフセヅ ト) を抽出する。 抽出 されたオフセッ トは、 送信無線部 80に入力される。
S I R測定部 64は、 A— D P C Hの受信信号の S IRを測定する。 測定 された S I Rは、 TP Cコマンド作成部 66およびオフセヅト算出部 72に 入力される。
T PCコマンド作成部 66は、 A— DPCHの受信 S 111と目標311 と を比較し、 その比較結果に基づいて上り方向の A— DP CH用の TP Cコマ ンドを作成する。 測定された S I Rが目標 S I; R以上であれば送信電力を下 げること (Down) を指示する TP Cコマンドが作成され、 測定された S IRが目標 S IR未満であれば送信電力を上げること (Up) を指示する T P Cコマンドが作成される。 作成された TPCコマンドは、 符号化部 74に 入力される。
H〇判定部 70は、 A— DPCHがSHO状態にぁるか否か判定し、 判定 結果をオフセット算出部 72および送信無線部 80に入力する。 HO判定部 70は、 制御局から通知される情報で、 A— DP CHが SHO状態にあるか 否かを示す情報 (HO情報) が入力され、 この HO情報によって、 A— DP CHが SHO状態にあるか否かを判定することができる。 判定結果は、 オフ セット算出部 72に入力される。
オフセヅト算出部 72は、 A— DP CHが SHO状態にある場合だけ動作 し、 通信端末において使用されるオフセットで、 上り方向の A— DP CHの 送信電力に対する上り方向の HS— DP C CHの送信電力のオフセットを算 出する。 そして、 算出したオフセットを下り方向の HS— DPCCHを介し て通知するために符号化部 74に入力する。 よって、 オフセット算出部 72 により算出されたオフセットは、 A— DP CHが SHO状態にある場合だけ、 下り方向の HS— DP CCHを介して通信端末へ送信される。
オフセット算出部 72では、 オフセットは以下のようにして算出される。 A— DP CHの受信 S I Rを S I R 1、 目標 S I Rを S I R 2とすると、 ォ フセヅト Δ Pupは、
厶 Pup二 S IR2-S IR 1 ··· (2)
として算出される。 S IR 1、 S IR2、 APup の単位は dBである。 こ のオフセッ ト ΔΡΐφ が、 A— DP CHが SHO状態にある場合に、 通信端 末へ下り方向の HS— DP CCHを介して通知される。 このようにしてオフ セット ΔΡιιρ を求めるのは、 以下の理由による。 すなわち、 A— DPCH が SHO状態にある場合で、 HS— DPCCHが ΗΗΟ前の状態では、 Α— DP CHが基地局 1および基地局 2の双方と接続されているのに対し、 H S 一 DP C CHは基地局 1とだけ接続されている。 このとき、 オフセット ΔΡ up は、 1つの基地局でしか受信されない HS— DPCCHにとつて、 所要 S I Rを満たすために必要となる不足分の電力を表すからである。 なお、 上 り回線の所要オフセット量の推移の様子を図 7に示す。
送信部 400は、 符号化部 74、 変調部 76、 拡散部 78、 送信無線部 8 0から構成される。
符号化部 74は、 送信デ一夕 (ビット列) に対して CRC符号化、 畳み込 み符号化を行って送信デ一夕を符号化し、 複数のタイムスロッ卜から構成さ れる送信フレームを構成する。 .このとき、 A— DP CHのタイムスロットに 上り方向の A— DP CH用の TP Cコマンドを埋め込み、 HS— DPCCH のタイムスロヅトに上り方向の HS— DP CCH用のオフセヅトを埋め込む c 変調部 76は、 送信データに対して QP SK等の変調処理を施す。 拡散部 78は、 変調後の送信信号に対して、 それそれのチャネルに割り当てられて いる拡散コ一ドで拡散処理を施す。
送信無線部 80は、 拡散後の送信信号に対して DZA変換、 送信電力制御、 アップコンバート等の処理を施した後、 送信信号をアンテナ 52を介して送 信する。 この際、 送信無線部 80は、 HO判定部 70での判定結果に基づい て、 送信電力制御を行う。
HO判定部 70によって A— DP CHが SHO状態にないと判定された場 合は、 送信無線部 80は、 下り方向の A— DPCHの送信電力を A— DPC H用の TP Cコマンドに従って制御すると共に、 下り方向の HS— DP CC Hの送信電力を下り方向の A—: DPCHの送信電力と等しい電力に設定する c 一方、 H 0判定部 70によって A— DPCHが SH〇状態にあると判定さ れた場合は、 送信無線部 80は、 下り方向の A— DP CHの送信電力を A— DP CH用の TP Cコマンドに従って制御すると共に、 下り方向の HS— D PCCHの送信電力を、 下り方向の A— DP CHの送信電力にオフセット抽 出部 68で抽出されたオフセットを加えた電力に設定する。
次に、 F a s t— ULを例に挙げ、 本実施の形態での HS— DPCCHの 送信電力制御について説明する。 なお、 A— DP CHの送信電力制御につい ては従来と同様のため説明を省略する。
A— DPCHが SHO状態にない場合は、 H S— D P C C Hの送信電力は、 A— DP CHの送信電力と同じ電力に制御される。 これにより、 A— DPC Hが SHO状態にない場合には、 HS— DPCCHの受信 S IRは所要 S I Rを満たすことができる。
一方、 A— DP CHが SH〇状態にあるとき、 11110が適用される113— DPCCHの送信電力は、 A— DP CHの送信電力にオフセットを加えた電 力に制御される。 図 8および図 9は、 A— DP CHが SHO状態にある場合 を示す。
まず、 図 8を用いて、 HS— DPCCHの上り方向の送信電力制御につい て説明する。 A— DPCHが SHO状態になると、 基地局 1は通信端末に対 して、 下り方向の HS— DP C CHを介して、 上り方向の HS— DPCCH 用のオフセット APup の送信を開始する。 通信端末は、 上り方向の HS— DPCCHの送信電力を、 上り方向の A— DPCHの送信電力にオフセヅト △ Pupを加えた電力に制御する。
例えば、 図 8のように、 A— DPCHについて、 基地局 1から送信電力を 上げることを指示する TPCコマンドが送信され、 基地局 2から送信電力を 下げることを指示する TP Cコマンドが送信された場合は、 通信端末は、 A -DPC H信号の送信電力を下げる。 A— DPCHが SH 0状態である場合 は、 基地局 1からは A— DP CH用の TP Cコマンドの他に、 オフセット Δ Pup が通信端末へ送信される。 そこで、 通信端末は、 基地局 1へ送信する HS— DPCCH信号の送信電力を、 A— D P C H信号の送信電力にオフセ ヅト厶 Pup を加えた電力に制 ¾1する。 このようにすることで、 A— DPC Hが S H 0状態にある場合でも、 HS— DPCCHの送信電力が適切に制御 され、 HS— DP CCHが接続されている基地局において HS— DP CCH の受信 S I Rを所要 S I IUこ保つことができる。
次に、 図 9を用いて、 HS— DP CCHの下り方向の送信電力制御につい て説明する。 A— DP CHが SHO状態になると、 通信端末は基地局 1に対 して、 上り方向の HS— DP C CHを介して、 下り方向の HS— DPCCH 用のオフセット APdown の送信を開始する。 基地局 1は、 下り方向の HS — DP C CHの送信電力を、 下り方向の A— DP CHの送信電力にオフセヅ ト△ P downを加えた電力に制御する。
例えば、 図 9のように、 通信端末は、 A— DPCHについて、 基地局 1か ら送信された A— D P C H信号と基地局 2から送信された A— D P C H信号 とを合成し、 その合成した信号の受信 S I Rが目標 S I Rになるように TP Cコマンドを作成する。 そして、 同一の TP Cコマンドを基地局 1および基 地局 2の双方へ送信する。 図 9の例では、 双方へ送信電力を下げることを指 示する TP Cコマンドが送信されている。 この TP Cコマンドに従って、 基 地局 1および基地局 2は、 下り方向の A— DPCHの送信電力を下げる。 A — DP CHが SHO状態である場合は、 通信端末からは A— DP CH用の T
PCコマンドの他に、 オフセヅト APdwnが基地局 1へ送信される。 そこで、 基地局 1は、 通信端末へ送信する HS— DP CCH信号の送信電力を、 通信 端末へ送信する A— DP CH信号の送信電力にオフセット ΔΡ<ι を加えた 電力に制御する。 このようにすることで、 A— DP CHが SHO状態にある 場合でも、 HS— DPCCHの送信電力が適切に制御され、 通信端末におい て HS— DPCCHの受信 S IRを所要 S I Rに保っことができる。
次に、 HS— DPCCH用のオフセットの送信開始タイミングおよび送信 終了タイミングについて図 10を用いて説明する。
下り方向の A— DP CHについては、 A— DPCHが SHO状態にあるか 否かにかかわらず、 1夕ィムスロヅト毎に、 上り方向の A— DP CHの送信 電力制御に使用される TP Cコマンドおよび下り方向の A— DP CHの S I R測定に使用されるパイロットが、 基地局から通信端末へ送信される。 同様 に、 上り方向の A— DP CHについては、 A— DP CHが SHO状態にある か否かにかかわらず、 1夕ィムスロヅト毎に、 下り方向の A— DPCHの送 信電力制御に使用される TP Cコマンドおよび上り方向の A— DP CHの S I R測定に使用されるパイロットが、 通信端末から基地局へ送信される。 一方、 下り方向の HS— DPCCHについては、 八ー0?〇1¾が3110状 態にある場合だけ、 1タイムスロット毎に、 上り方向の HS—DPCCHの 送信電力制御に使用されるオフセット APup が、 基地局から通信端末へ送 信される。 また、 上り方向の H S— D P C CHについては、 A— DP CHが SHO状態にある場合だけ、 1タイムスロット毎に、 下り方向の HS— DP C CHの送信電力制御に使用されるオフセット APdown が、 C Q Iと共に、 通信端末から基地局へ送信される。 なお、 CQ Iは、 データ部に含めて送信 される。 つまり、 HS— DPCCHについては、 A— DPCHの SHOが開 始すると HS— DPCCH用のオフセヅトの通知を開始し、 A— DPCHの S HOが終了すると HS—DP CCH用のオフセヅトの通知を終了する。 なお、 図 10においては、 デ一夕、 パイロット、 T P Cコマンド、 オフセ ットが時間多重されているが、 これらは I Q多重されても構わない。
このように、 A— DP CHの SHO開始 Z終了タイミングと、 HS— DP CCH用のオフセットの送信開始ノ終了タイミングとを合わせることにより、 A— DP CHが SHO状態にない場合には、 H S— D P C C H用の不要なォ フセットを送信しなくて済むため、 HS— DPCCHが他のチャネルに与え る干渉を軽減することができる。 また、 通信端末のバッテリー消費を抑える ことができる。
なお、 本実施の形態では F a s t—ULを例に挙げて説明したが、 これに 限られるものではなく、 本発明は、 ソフ トハンドオーバが適用される個別チ ャネルとハ一ドハンドオーバが適用される個別チャネルとが混在し、 ハード ハンドオーバが適用される個別チャネルが上下方向に存在する無線通信シス テムにはすべて適用可能である。
以上説明したように、 本発明によれば、 SHOが適用される A— DPCH と H H 0が適用される HS— DPCCHとが混在する無線通信システムにお いて、 HS— DP CCHに対して適切な送信電力制御を行って、 HS— DP CCHの受信 S I Rを所要 S I Rに保つことができる。
本明細書は、 2002年 8月 20日出願の特願 2002— 239744に 基づくものである。 この内容はすべてここに含めておく。 産業上の利用可能性
本発明は、 移動体通信システムにおいて使用される無線通信端末装置や無 線通信基地局装置に利用することが可能である。

Claims

請求の範囲
1 . ソフトハンドオーバが適用される第 1個別チャネルと、 ハードハンドォ ―ノ が適用される第 2個別チャネルと、 が混在する無線通信システムにおい て使用される通信端末装置であって、
第 1個別チャネルがソフトハンドオーバ状態にあるか否か判定する判定手 段と、
前記判定手段によって第 1個別チャネルがソフトハンドオーバ状態にない と判定された場合は、 上り方向の第 2個別チャネルの送信電力を、 上り方向 の第 1個別チャネルの送信電力と等しい電力に設定する一方、
前記判定手段によって第 1個別チャネルがソフトハンドオーバ状態にある と判定された場合は、 上り方向の第 2個別チャネルの送信電力を、 上り方向 め第 1個別チャネルの送信電力にオフセットを加えた電力に設定する制御手 段と、
を具備する通信端末装置。
2 . 前記オフセットを下り方向の第 2個別チャネルを介して基地局装置から 受信する受信手段、
をさらに具備する請求項 1記載の通信端末装置。
3 . 基地局装置において使用される送信電力のオフセットを、 複数のパイ口 ットチャネルの受信 S I Rに基づいて算出する算出手段と、
前記算出手段によって算出されたオフセットを上り方向の第 2個別チヤネ ルを介して前記基地局装置へ送信する送信手段と、
をさらに具備する請求項 1記載の通信端末装置。
4 . ソフトハンドオーバが適用される第 1個別チャネルと、 ハードハンドォ —バが適用される第 2個別チャネルと、 が混在する無線通信システムにおい て使用される基地局装置であって、
第 1個別チャネルがソフトハンドオーバ状態にあるか否か判定する判定手 段と、 前記判定手段によって第 1個別チャネルがソフトハンドオーバ状態にない と判定された場合は、 下り方向の第 2個別チャネルの送信電力を、 下り方向 の第 1個別チャネルの送信電力と等しい電力に設定する一方、
前記判定手段によって第 1個別チャネルがソフトハンドオーバ状態にある と判定された場合は、 下り方向の第 2個別チャネルの送信電力を、 下り方向 の第 1個別チャネルの送信電力にオフセットを加えた電力に設定する制御手 段と、
を具備する基地局装置。
5 . 前記オフセットを上り方向の第 2個別チャネルを介して通信端末装置か ら受信する受信手段、
をさらに具備する請求項 4記載の基地局装置。
6 . 通信端末装置において使用される送信電力のオフセットを、 上り方向の 第 1個別チャネルの S I Rと第 1個別チャネルの目標 S I Rとの差に基づい て算出する算出手段と、
前記算出手段によって算出されたオフセットを下り方向の第 2個別チヤネ ルを介して前記通信端末装置へ送信する送信手段と、
をさらに具備する請求項 4記載の基地局装置。
7 . ソフトハンドオーバが適用される第 1個別チャネルと、 ハードハンドォ 一ノ が適用される第 2個別チャネルと、 が混在する無線通信システムにおい て使用される送信電力制御方法であって、
第 1個別チャネルがソフトハンドオーバ状態にない場合は、 第 2個別チヤ ネルの送信電力を、 第 1個別チャネルの送信電力と等しい電力に設定する一 方、
第 1個別チャネルがソフトハンドオーバ状態にある場合は、 第 2個別チヤ ネルの送信電力を、 第 1個別チャネルの送信電力に第 2個別チャネルを介し て通知されるオフセットを加えた電力に設定する、
送信電力制御方法。
8 . 第 1個別チャネルのソフトハンドオーバ開始後に、 前記オフセットの通 知を開始する、
請求項 7記載の送信電力制御方法。
PCT/JP2003/010368 2002-08-20 2003-08-15 通信端末装置、基地局装置、および送信電力制御方法 WO2004019519A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/511,727 US7206596B2 (en) 2002-08-20 2003-08-15 Communication terminal apparatus, base station apparatus, and transmission power control method
AU2003255042A AU2003255042A1 (en) 2002-08-20 2003-08-15 Communication terminal device, base station device, and transmission power control method
EP03792689A EP1494371A1 (en) 2002-08-20 2003-08-15 Communication terminal device, base station device, and transmission power control method
CA002483186A CA2483186A1 (en) 2002-08-20 2003-08-15 Communication terminal device, base station device, and transmission power control method
KR10-2004-7016449A KR20040097359A (ko) 2002-08-20 2003-08-15 통신 단말장치, 기지국 장치, 및 송신 전력 제어 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002239744A JP3574443B2 (ja) 2002-08-20 2002-08-20 通信端末装置、基地局装置、および送信電力制御方法
JP2002-239744 2002-08-20

Publications (1)

Publication Number Publication Date
WO2004019519A1 true WO2004019519A1 (ja) 2004-03-04

Family

ID=31943872

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010368 WO2004019519A1 (ja) 2002-08-20 2003-08-15 通信端末装置、基地局装置、および送信電力制御方法

Country Status (8)

Country Link
US (1) US7206596B2 (ja)
EP (1) EP1494371A1 (ja)
JP (1) JP3574443B2 (ja)
KR (1) KR20040097359A (ja)
CN (1) CN100438376C (ja)
AU (1) AU2003255042A1 (ja)
CA (1) CA2483186A1 (ja)
WO (1) WO2004019519A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1624629A3 (en) * 2004-08-07 2006-03-22 Samsung Electronics Co., Ltd. Method and apparatus for signaling user equipment status information for uplink packet transmission in a soft handover region
US7818022B2 (en) 2005-12-28 2010-10-19 Canon Kabushiki Kaisha Communication apparatus and electric power control method
US7873381B2 (en) 2005-04-14 2011-01-18 Ntt Docomo, Inc. Wireless communication control system, radio base station, and wireless communication control method
US8010146B2 (en) 2006-04-21 2011-08-30 Canon Kabushiki Kaisha Communication apparatus and transmission power control method thereof
US8238957B2 (en) 2005-06-17 2012-08-07 Nec Corporation Communication control method, communication control system and its control program

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8018902B2 (en) * 2003-06-06 2011-09-13 Telefonaktiebolaget L M Ericsson (Publ) Methods and apparatus for channel quality indicator determination
EP1760927B1 (en) * 2003-08-14 2020-04-08 Panasonic Corporation Time monitoring of packet retransmissions during soft handover
KR100964684B1 (ko) * 2003-09-29 2010-06-21 엘지전자 주식회사 이동통신 시스템의 방송 및 멀티캐스트 서비스 제공방법
WO2005081439A1 (en) * 2004-02-13 2005-09-01 Neocific, Inc. Methods and apparatus for multi-carrier communication systems with adaptive transmission and feedback
JP4623978B2 (ja) * 2004-02-18 2011-02-02 日本電気株式会社 移動通信システム及びその通信制御方法並びにそれに用いる無線回線制御装置及び基地局
JP2005277612A (ja) * 2004-03-24 2005-10-06 Nec Corp 移動通信システム、無線基地局及びそれらに用いる送信電力制御方法
US7437175B2 (en) * 2004-05-06 2008-10-14 Telefonaktiebolaget L M Ericsson (Publ) Synchronization detection methods and apparatus
EP1790088B1 (en) * 2004-08-17 2015-09-30 LG Electronics Inc. A method for establishing fast feedback channel and transmitting information in a wireless communication system
FI20055009A0 (fi) * 2005-01-05 2005-01-05 Nokia Corp Datan lähettäminen matkaviestinjärjestelmässä
CN100386975C (zh) * 2005-04-21 2008-05-07 上海华为技术有限公司 用于宽带码分多址系统软切换的功率控制方法
US8965440B2 (en) * 2005-05-31 2015-02-24 Alcatel Lucent Method of estimating a current channel condition in a wireless communications network
JP4636981B2 (ja) * 2005-08-23 2011-02-23 株式会社エヌ・ティ・ティ・ドコモ 送信電力制御方法及び移動通信システム
JP4636982B2 (ja) * 2005-08-23 2011-02-23 株式会社エヌ・ティ・ティ・ドコモ 送信電力制御方法及び移動通信システム
JP4592548B2 (ja) * 2005-08-24 2010-12-01 株式会社エヌ・ティ・ティ・ドコモ 送信電力制御方法及び移動通信システム
JP4592546B2 (ja) * 2005-08-24 2010-12-01 株式会社エヌ・ティ・ティ・ドコモ 送信電力制御方法及び無線回線制御局
JP4592545B2 (ja) * 2005-08-24 2010-12-01 株式会社エヌ・ティ・ティ・ドコモ 送信電力制御方法及び移動通信システム
JP4592547B2 (ja) * 2005-08-24 2010-12-01 株式会社エヌ・ティ・ティ・ドコモ 送信電力制御方法及び移動通信システム
US8942706B2 (en) * 2005-08-30 2015-01-27 Telefonaktiebolaget Lm Ericsson (Publ) Robust radio resource control signaling for HSDPA
ZA200801931B (en) * 2005-08-30 2009-08-26 Ericsson Telefon Ab L M Robust radio resource control signaling for HSDPA
TW200729786A (en) * 2005-11-11 2007-08-01 Ntt Docomo Inc Mobile communication system, mobile station, base stations and control channel allocation method
US7647050B2 (en) * 2005-12-28 2010-01-12 Alcatel-Lucent Usa Inc. Method of adjusting a power level of communications over a channel in a wirelss communications network
US7613476B2 (en) * 2006-06-02 2009-11-03 Alcatel-Lucent Usa Inc. Method and apparatus for path imbalance reduction in networks using high speed data packet access (HSDPA)
JP4805047B2 (ja) * 2006-07-20 2011-11-02 株式会社エヌ・ティ・ティ・ドコモ 移動局及びハンドオーバ制御方法
US8315660B2 (en) * 2007-02-14 2012-11-20 Qualcomm Incorporated User power offset estimation using dedicated pilot tones for OFDMA
US8437792B2 (en) * 2007-02-14 2013-05-07 Qualcomm Incorporated Uplink power control for LTE
US7986959B2 (en) 2007-02-14 2011-07-26 Qualcomm Incorporated Preamble based uplink power control for LTE
JP4485547B2 (ja) * 2007-06-21 2010-06-23 株式会社エヌ・ティ・ティ・ドコモ 移動局、および、移動局における送信電力制御方法
ES2545581T3 (es) * 2007-10-09 2015-09-14 Telefonaktiebolaget Lm Ericsson (Publ) Método de control de la potencia del enlace ascendente en un sistema de redes de telecomunicaciones que soporta órdenes de TPC tanto comunes como separadas
WO2009072945A1 (en) * 2007-12-06 2009-06-11 Telefonaktiebolaget Lm Ericsson (Publ) Method and arrangement for power control during soft handover
CN101919193B (zh) * 2008-01-02 2018-08-10 交互数字专利控股公司 用于lte中的cqi报告的配置
JP4598866B2 (ja) * 2009-03-12 2010-12-15 株式会社エヌ・ティ・ティ・ドコモ 送信電力制御方法及び移動通信システム
AR077108A1 (es) * 2009-06-16 2011-08-03 Interdigital Patent Holdings Metodo y aparato para una operacion harq sincronizada y evitar interferencia
JP2011055363A (ja) * 2009-09-03 2011-03-17 Fujitsu Ltd 無線通信方法、移動端末、及び無線ネットワーク制御装置
CN102111818A (zh) * 2009-12-29 2011-06-29 中兴通讯股份有限公司 一种无线接入网的切换控制方法和接入网
US20140029582A1 (en) * 2012-07-27 2014-01-30 Qualcomm Incorporated Method and apparatus for a power control mechanism

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198903A (ja) * 2000-11-18 2002-07-12 Lg Electronics Inc 移動通信システムでダウンリンク共有チャンネルに対するtfciフィールドの電力制御方法及びシグナリング方法
JP2002325063A (ja) * 2001-02-21 2002-11-08 Nec Corp セルラシステム、基地局、移動局並びに通信制御方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6603751B1 (en) * 1998-02-13 2003-08-05 Qualcomm Incorporated Method and system for performing a handoff in a wireless communication system, such as a hard handoff
EP0940930B1 (en) * 1998-03-03 2012-09-26 NEC Corporation Method of controlling transmission power in a cellular type mobile communication system
JP3956479B2 (ja) * 1998-04-27 2007-08-08 ソニー株式会社 移動通信システム、移動局及び基地局
JP3499466B2 (ja) * 1999-07-09 2004-02-23 松下電器産業株式会社 通信端末装置及び送信電力制御方法
KR100504464B1 (ko) * 1999-09-02 2005-08-03 엘지전자 주식회사 기지국 전력 제어 방법
EP1113694A1 (en) * 1999-12-31 2001-07-04 Mitsubishi Electric Information Technology Centre Europe B.V. Method of reducing base station overloading
JP2001238252A (ja) * 2000-02-25 2001-08-31 Matsushita Electric Ind Co Ltd 移動局装置、基地局装置および無線通信チャネル割り当て方法
JP4453168B2 (ja) * 2000-06-23 2010-04-21 日本電気株式会社 移動通信制御方法、セルラシステム、移動局、基地局及び基地局制御装置
JP3426218B2 (ja) * 2001-01-19 2003-07-14 松下電器産業株式会社 基地局装置及び符号化/変調方法
US6760587B2 (en) * 2001-02-23 2004-07-06 Qualcomm Incorporated Forward-link scheduling in a wireless communication system during soft and softer handoff
US7058035B2 (en) * 2001-06-29 2006-06-06 Qualcomm, Indorporated Communication system employing multiple handoff criteria
US6961582B2 (en) * 2002-02-13 2005-11-01 Accton Technology Corporation Transmission power control method and system for CDMA communication system
JP4423836B2 (ja) * 2002-04-03 2010-03-03 日本電気株式会社 セルラシステム、通信制御方法及び移動局
US7177658B2 (en) * 2002-05-06 2007-02-13 Qualcomm, Incorporated Multi-media broadcast and multicast service (MBMS) in a wireless communications system
KR100566208B1 (ko) * 2002-06-14 2006-03-29 삼성전자주식회사 부호분할다중접속 이동통신시스템에서 멀티캐스트 멀티미디어 방송 서비스 데이터를 소프트 컴바이닝하는 방법 및 장치
JP2004080235A (ja) * 2002-08-14 2004-03-11 Nec Corp セルラシステム、移動局、基地局及びそれに用いる送信電力制御方法並びにそのプログラム
JP3629017B2 (ja) * 2002-08-20 2005-03-16 松下電器産業株式会社 アウターループ送信電力制御方法および無線通信装置
KR101055730B1 (ko) * 2004-08-11 2011-08-11 엘지전자 주식회사 상향링크 전송 전력 스케줄링 방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198903A (ja) * 2000-11-18 2002-07-12 Lg Electronics Inc 移動通信システムでダウンリンク共有チャンネルに対するtfciフィールドの電力制御方法及びシグナリング方法
JP2002325063A (ja) * 2001-02-21 2002-11-08 Nec Corp セルラシステム、基地局、移動局並びに通信制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
3GPP TR 25.841. V4.1.0, 4 April 2001 (2001-04-04), pages 1 - 13, XP002973827 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1624629A3 (en) * 2004-08-07 2006-03-22 Samsung Electronics Co., Ltd. Method and apparatus for signaling user equipment status information for uplink packet transmission in a soft handover region
US7769351B2 (en) 2004-08-07 2010-08-03 Samsung Electronics Co., Ltd. Method and apparatus for signaling user equipment status information for uplink packet transmission in a soft handover region
US8204449B2 (en) 2004-08-07 2012-06-19 Samsung Electronics Co., Ltd. Method and apparatus for signaling user equipment status information for uplink packet transmission in a soft handover region
US7873381B2 (en) 2005-04-14 2011-01-18 Ntt Docomo, Inc. Wireless communication control system, radio base station, and wireless communication control method
US8238957B2 (en) 2005-06-17 2012-08-07 Nec Corporation Communication control method, communication control system and its control program
CN102883422A (zh) * 2005-06-17 2013-01-16 日本电气株式会社 通信控制方法、通信控制系统及其控制程序
US7818022B2 (en) 2005-12-28 2010-10-19 Canon Kabushiki Kaisha Communication apparatus and electric power control method
US8010146B2 (en) 2006-04-21 2011-08-30 Canon Kabushiki Kaisha Communication apparatus and transmission power control method thereof

Also Published As

Publication number Publication date
JP3574443B2 (ja) 2004-10-06
CN1656715A (zh) 2005-08-17
US20050239467A1 (en) 2005-10-27
CA2483186A1 (en) 2004-03-04
AU2003255042A1 (en) 2004-03-11
JP2004080530A (ja) 2004-03-11
KR20040097359A (ko) 2004-11-17
EP1494371A1 (en) 2005-01-05
CN100438376C (zh) 2008-11-26
US7206596B2 (en) 2007-04-17

Similar Documents

Publication Publication Date Title
WO2004019519A1 (ja) 通信端末装置、基地局装置、および送信電力制御方法
JP3629017B2 (ja) アウターループ送信電力制御方法および無線通信装置
USRE46027E1 (en) Method and apparatus for transmit power control
EP2628341B1 (en) Uplink power control
EP2290835B1 (en) Method and apparatus for power control of multiple channels in a wireless communication system
US7725121B2 (en) Mobile communication system, wireless base station, radio network controller, and power control method
EP1901451B1 (en) Uplink communication method and radio terminal in radio communication system
US7801547B2 (en) System and method for determining downlink signaling power in a radio communication network
US7702354B2 (en) Transmission power control method and mobile terminal apparatus
JP3574442B2 (ja) 送信電力制御方法および無線通信装置
US8050683B2 (en) Method of determining when a mobile station is ready to be served during a handoff in a wireless communications network
US20070173280A1 (en) Transmission power control apparatus and control method thereof
US7738910B2 (en) Transmission power control method and apparatus
JP2005006190A (ja) 送信電力制御方法
JP2004140876A (ja) 通信端末装置、基地局装置、および送信電力制御方法
JP4105920B2 (ja) アウターループ送信電力制御の目標sir設定方法
JP2003152639A (ja) 移動体通信機器及び基地局及び通信システム及び移動体通信方法及び移動体通信プログラム及び基地局通信方法及び基地局通信プログラム
JP4785899B2 (ja) 送信電力制御方法
JP2002300107A (ja) 無線通信機の送信電力指示方法
JP4192572B2 (ja) 携帯情報端末

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1521/KOLNP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2003792689

Country of ref document: EP

Ref document number: 1020047016449

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10511727

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2483186

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1020047016449

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038116952

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003792689

Country of ref document: EP