WO2004019402A1 - Elektrisches bauelement - Google Patents

Elektrisches bauelement Download PDF

Info

Publication number
WO2004019402A1
WO2004019402A1 PCT/DE2003/001637 DE0301637W WO2004019402A1 WO 2004019402 A1 WO2004019402 A1 WO 2004019402A1 DE 0301637 W DE0301637 W DE 0301637W WO 2004019402 A1 WO2004019402 A1 WO 2004019402A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon
layers
layer
laser
laser radiation
Prior art date
Application number
PCT/DE2003/001637
Other languages
English (en)
French (fr)
Inventor
Frieder Haag
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Publication of WO2004019402A1 publication Critical patent/WO2004019402A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00269Bonding of solid lids or wafers to the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81CPROCESSES OR APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OR TREATMENT OF MICROSTRUCTURAL DEVICES OR SYSTEMS
    • B81C1/00Manufacture or treatment of devices or systems in or on a substrate
    • B81C1/00015Manufacture or treatment of devices or systems in or on a substrate for manufacturing microsystems
    • B81C1/00261Processes for packaging MEMS devices
    • B81C1/00333Aspects relating to packaging of MEMS devices, not covered by groups B81C1/00269 - B81C1/00325
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/802Applying energy for connecting
    • H01L2224/8022Applying energy for connecting with energy being in the form of electromagnetic radiation
    • H01L2224/80224Applying energy for connecting with energy being in the form of electromagnetic radiation using a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/8036Bonding interfaces of the semiconductor or solid state body
    • H01L2224/80379Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/80001Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected by connecting a bonding area directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/8038Bonding interfaces outside the semiconductor or solid-state body
    • H01L2224/80399Material
    • H01L2224/804Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]

Definitions

  • the invention relates to an electrical component, preferably manufactured in silicon micromechanics, with a silicon layer and a further layer made of silicon or glass, which are joined together in a sandwich-like manner, a mechanically strong and permanent connection being established between the layers at at least one point.
  • the invention also relates to a method for producing silicon / material, in particular silicon / silicon or silicon / glass connections using laser radiation, in which silicon layers or glass and silicon layers are connected to one another at a flat joining zone. This method can be used in particular for the production of the named component.
  • silicon micromechanics Components of microelectronics, microsystem technology and modern sensors are mostly manufactured in silicon micromechanics. In many cases it is customary to apply a silicon cap to the silicon component for protection reasons. In other applications, the silicon component is to be connected to a glass base.
  • the silicon / silicon or silicon / glass connections required for this purpose between the wafers or in the component cannot easily be achieved in view of the required strength and durability.
  • Known silicon / glass connections are typically carried out by means of an anodic bonding process, in which, however, the whole area is exposed to considerable electrical voltages (approx. 500 V to 1000 V) and temperatures (approx. 500 ° C.). Silicon / silicon connections can also be produced by means of direct bonding processes, in particular fusion bonding, but this again requires complex or problematic process management.
  • silicon / silicon compounds are mostly made with the help of a joining layer, for example a sealing glass or an adhesive layer.
  • a joining layer for example a sealing glass or an adhesive layer.
  • process problems for example contamination in wafer production. Also in further processing
  • the method known from DE 42 19 132 AI mentioned above primarily uses high-temperature bonding in order to firmly bond the layers to one another. Only as part of the adjustment required for this purpose is a pre-fixation proposed, which, with the aid of an intense light radiation, for example given by a focused xenon lamp or a laser beam, brings about a local attachment of the two layers by their heating. If a laser beam is directed through a glass layer onto the boundary layer between glass and silicon, then laser radiation lying in the visible range can be used. Otherwise, ie in the case of silicon / silicon layers, according to the publication mentioned, the laser must have a wavelength greater than 1 ⁇ m, that is to say it must be in the so-called far infrared range.
  • the silicon which is opaque in this wavelength range in the layer facing the laser is accordingly in this case does not shine through, but from the surface towards NEN, warmed up to the joining level, ie up to the contact area with the second silicon layer. In any case, the final fastening must be guaranteed by a subsequent regular bonding process.
  • the present invention is based on the object of designing an electrical component or a method of the type mentioned at the outset such that the layers are firmly and permanently connected, in particular two silicon layers, without the use of an auxiliary layer and at the same time without global temperature stress of the component or the wafer is possible.
  • this object is achieved in the case of a component of the type mentioned at the outset in that the layers are connected without a layer by means of laser welding, at least one of the layers having such a high level of transparency that the layers use laser radiation, the power density of which is in the joining plane can be welded between the layers up to a power density which is sufficient there locally to melt the layer materials by absorption.
  • the invention is initially based on the idea of utilizing the property, in particular of silicon, of being largely transparent to laser radiation in the near infrared range.
  • laser welding using the transmission method would then presuppose that the absorption would be increased locally by introducing another material. Specifically, this would require an - undesirable - additional absorption layer at the joint level.
  • the further property is exploited according to the invention that - even with extensive transparency - a certain proportion of the radiation is also absorbed in the silicon itself. If the radiated power density is low, the radiation is essentially simply transmitted. tiert, there is thus only a slight heating in the silicon. Only when the power density is sufficiently high will the energy supplied be sufficient to melt the silicon or silicon and glass.
  • the focus of the laser radiation is set so that it lies in the welding plane.
  • the invention also provides a method of the type mentioned at the outset, which provides
  • laser radiation with a wavelength of the laser light which is predominantly transmitted and to a lesser extent absorbed in the first position facing the laser radiation
  • the focus of the laser radiation being set in the joining plane between the layers, and the power density of the laser radiation being selected such that only in focus is enough energy to melt the layers in places. Materials are made available by an absorbed portion of this energy, so that the layers are firmly connected to one another by laser welding, which is carried out at least in places.
  • the convergent laser radiation can be generated in an uncomplicated manner by means of a variant of the method in which the laser radiation before entering the first layer by means of an expansion lens to form a parallel beam with a larger one
  • Diameter and lower power density is expanded, and in which this laser beam is then focused on a point in the joining plane, so that the now convergent laser radiation only comes into effect in the joining plane with the maximum power density that is sufficient to melt the layer materials.
  • a second method variant is also possible, in which at least two laser beams converge from different directions to a focus in the joining plane, the power densities of the individual laser beams being designed such that only the total power density in the focus is sufficient for melting the layer materials.
  • FIGS. 1 to 3 each show a schematic lateral section of three successive stages in the manufacture of a component according to the invention in accordance with a first method variant, Figure 4, in the same representation, the process stage according to Figure 2, but according to a second process variant.
  • FIG. 1 shows an upper layer 1 made of silicon, on the underside of which a cavern structure 2 is open. Below that, still separate from the upper layer 1 in FIG. 1, a further, lower silicon layer 3 can be seen.
  • the upper layer 1 may be a wafer or a single 'are chips positioned above the second silicon layer 3 in the form, in each case, the cavity structure 2 of the sheet 1 comes to rest 3 of the layer over the preferably surface micromechanically produced structure. 4
  • FIG. 2 shows the two layers 1 and 3 in the assembled state with the joining plane 5.
  • the two layers 1 and 2 can be welded to the side of the cavern structure 2, simultaneously or in succession, with focused laser radiation 6.
  • the output beam can initially be widened by means of a beam expander known per se (not shown).
  • the resulting collimated beam can be focused on a location at a desired depth within layers 1 and 3 by focusing optics inserted into the beam path of the laser.
  • the focus 12 is placed in the joining plane 5 or in its immediate vicinity.
  • the silicon layer 3, that is to say the substrate of the component, has a thickness of approximately 0.6 mm.
  • the silicon / glass layers consist of the same or a very similar material, there are no problems with regard to the thermal expansion.
  • One of the two wafers or layers 1 and 3 can consist of, for example, glass or a material which is thermally bonded with silicon. is binding. Both layers 1 and 3 can have one or more structures 4 on the mutually facing surfaces, for example with silicon, oxide, nitride, metal, as are typically produced in the surface ikromechanics.
  • structures 4 on the mutually facing surfaces, for example with silicon, oxide, nitride, metal, as are typically produced in the surface ikromechanics.
  • the connection of pressure sensors manufactured in bulk micro-mechanics to glass bases is equally possible.
  • FIG. 3 shows the component which is completely connected by the two welding points 8 and 9.
  • the upper silicon layer 1 forms a tight cap on the structured silicon layer 3, the cap, unlike shown here, being able to cover only part of the surface of the lower silicon layer 3 without further notice. In any case, there must still be a contact area 7 outside the cavern structure 2, in which the welding can take place.
  • auxiliary or joining layer is required. Although some of the convergent laser radiation 6 is absorbed in the silicon cap 1, the power density is too low to cause significant heating of the silicon cap 1. Only in the welding plane, more precisely: in the joining plane 5, does the power density concentrated in focus 12 become so high that the layer material melts and a connection is formed between the layers or between the wafers.
  • Mask welding is also possible, in which the areas not to be welded are covered with a mask, which is positioned in the beam path of the laser in front of the component, ie outside the joining plane 5. The laser beam is guided over the mask, so that a connection 13 of the layers 1 and 3 is made in regions in the joining plane 5.
  • closed contours are not possible with mask welding.
  • the duration of the welding process depends on the doping of layers 1 and 3 and the required temperature and is of the order of a few seconds.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Laser Beam Processing (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

Elektrisches Bauelement, insbesondere mikromechanischer Sili­zium-Chip, mit Silizium/Silizium- oder Silizium/Glas Verbindungen und Verfahren zur Herstellung solcher Verbindun­gen Um Silizium/Silizium- oder Silizium/Glas-Lagen fest zu ver­binden, wird vorgeschlagen, dass die Lagen (1, 3) füge schichtfrei mittels einer Laserverschweissung verbunden sind Dabei weist mindestens eine der Lagen (1, 3) eine so hohe Transparenz auf, dass die Lagen (1, 3) mittels einer Laser­strahlung (6, 10, 11), deren Leistungsdichte in der Fügeebene (5) zwischen den Lagen (1, 3) bis zu einer dort zum Auf­ schmelzen der Lagen-Materialien durch Absorption ausreichen­den Leistungsdichte lokal erhöht ist, verschweissbar sind.

Description

Elektrisches Bauelement Beschreibung
Elektrisches Bauelement, insbesondere mikromechanischer Silizium-Chip, mit Silizium/Material, insbesondere Silizium/Si- lizium- oder Silizium/Glas-Verbindungen und Verfahren zur Herstellung solcher Verbindungen
Die Erfindung betrifft ein vorzugsweise in Silizium- Mikromechanik hergestelltes elektrisches Bauelement, mit ei- ner Siliziumlage und einer weiteren Lage aus Silizium oder Glas, die sandwichartig zusammengefügt sind, wobei zwischen den Lagen an mindestens einer Stelle eine mechanisch feste und dauerhafte Verbindung hergestellt ist.
Außerdem betrifft die Erfindung ein Verfahren zum Herstellen von Silizium/Material, insbesondere Silizium/Silizium- oder Silizium/Glas-Verbindungen unter Verwendung von Laserstrahlung, bei dem Siliziumlagen oder Glas- und Siliziumlagen an einer ebenen Fügezone miteinander verbunden werden. Dieses Verfahren ist insbesondere zur Herstellung des genannten Bauelementes einsetzbar.
Ein derartiges Verfahren ist bereits aus der DE 42 19 132 AI bekannt .
Bauelemente der Mikroelektronik, der Mikrosyste technik und moderne Sensoren werden meist in Siliziu -Mikromechanik hergestellt. In vielen Fällen ist es dabei üblich, aus Schutzgründen eine Siliziumkappe auf das Silizium-Bauelement aufzu- bringen. In anderen Anwendungen soll das Silizium-Bauelement mit einem Glassockel verbunden werden. Die dazu erforderlichen Silizium/Silizium- oder Silizium/Glas-Verbindungen zwischen den Wafern bzw. im Bauelement sind in Anbetracht der geforderten Festigkeit und Dauerhaftigkeit nicht ohne weite- res zu realisieren. Bekannte Silizium/Glas-Verbindungen werden typischerweise mittels eines anodischen Bondverfahrens durchgeführt, bei dem jedoch der ganze afer erheblichen elektrischen Spannungen (ca. 500 V bis 1000 V) und Temperaturen (ca.500 °C) ausge- setzt wird. Auch Silizium/Silizium-Verbindungen können mittels direkter Bondverfahren, insbesondere dem Fusionsbonden, erzeugt werden, wobei jedoch wiederum eine aufwendige bzw. problematische Verfahrensführung notwendig wird.
Silizium/Silizium-Verbindungen werden heute jedoch meist mit Hilfe einer Fügeschicht, beispielsweise einer Sealingglas- oder einer KleberSchicht, hergestellt. Neben dem generellen Nachteil einer zusätzlichen Hilfsschicht ergeben sich hierbei oft Prozessprobleme, beispielsweise eine Kontamination in der Waferfertigung. Auch in der weiteren Verarbeitung können
Probleme auftreten, wie zum Beispiel beim Sägen der Wafer o- der durch die von unterschiedlichen Ausdehnungskoeffizienten der Fügeschicht und der Lagen hervorgerufenen mechanischen Verspannungen.
Das aus der oben genannten DE 42 19 132 AI bekannte Verfahren setzt primär ein Hochtemperaturbonden ein, um die Lagen fest miteinander zu verbinden. Lediglich im Rahmen der dafür notwendigen Justierung wird eine Vorfixierung vorgeschlagen, die mit Hilfe einer beispielsweise durch eine fokussierte Xenonlampe oder einen Laserstrahl gegebenen intensiven Lichtstrahlung eine lokale Anheftung der beiden Lagen durch deren Erwärmung hervorbringt . Wenn mit einem durch eine Glasschicht auf die Grenzschicht zwischen Glas und Silizium gerichteten Laserstrahl gearbeitet wird, so kann im sichtbaren Bereich liegende LaserStrahlung eingesetzt werden. Ansonsten, also bei Silizium/Silizium-Lagen, muss gemäß der genannten Veröffentlichungsschrift der Laser eine Wellenlänge größer 1 jum aufweisen, also im so genannten fernen Infrarotbereich lie- gen. Das in diesem Wellenlängenbereich intransparente Silizium der dem Laser zugewandten Lage wird demnach in diesem Fall nicht durchstrahlt, sondern von der Oberfläche her nach in- nen, bis zur Fügeebene, d. h. bis zum Berührungsbereich mit der zweiten Silizium-Lage, durchgewärmt. In jedem Fall muss die endgültige Befestigung durch ein anschließendes reguläres Bondverfahfen gewährleistet werden.
Der vorliegenden Erfindung liegt die Aufgabe zu Grunde, ein elektrisches Bauelement bzw. ein Verfahren der eingangs genannten Art so zu gestalten, dass die feste und dauerhafte Verbindung der Lagen, insbesondere zweier Silizium-Lagen, oh- ne Verwendung einer Hilfsschicht und gleichzeitig ohne globale Temperaturbelastung des Bauelementes bzw. des Wafers möglich ist.
Erfindungsgemäß wird in diese Aufgabe bei einem Bauelement der eingangs genannten Art dadurch gelöst, dass die Lagen fü- geschichtfrei mittels einer Laserverschweißung verbunden sind, wobei mindestens eine der Lagen eine so hohe Transparenz aufweist, dass die Lagen mittels einer Laserstrahlung, deren Leistungsdichte in der Fügeebene zwischen den Lagen bis zu einer dort zum Aufschmelzen der Lagen-Materialien durch Absorption ausreichenden Leistungsdichte lokal erhöht ist, verschweißbar sind.
Die Erfindung beruht zunächst auf dem Gedanken, die Eigen- schaft insbesondere des Siliziums, für Laserstrahlung im nahen Infrarotbereich weitgehend durchsichtig zu sein, nutzbar zu machen., Ein Laserschweißen im Durchstrahlverfahren würde dann allerdings voraussetzen, dass die Absorption lokal durch Einbringen eines anderen Materials erhöht würde. Konkret wür- de dies eine — unerwünschte — zusätzliche Absorptionsschicht an der Fügeebene erfordern.
Demgegenüber wird erfindungsgemäß die weitere Eigenschaft ausgenutzt, dass — auch bei weitgehender Transparenz — ein gewisser Anteil der Strahlung auch im Silizium selbst absorbiert wird. Sofern die eingestrahlte Leistungsdichte gering ist, wird die Strahlung im Wesentlichen einfach transmit- tiert, es tritt somit nur eine geringe Erwärmung im Silizium auf. Erst bei hinreichend hoher Leistungsdichte wird die zugeführte Energie ausreichen, um das Silizium bzw. Silizium und Glas aufzuschmelzen.
Gemäß der Erfindung wird deshalb vorgeschlagen, die Leistungsdichte lokal zu erhöhen, indem mit konvergenter Strahlung gearbeitet wird. Der Fokus der Laserstrahlung wird dabei so gesetzt, dass er in der Schweißebene liegt.
Eine besonders vorteilhafte Ausgestaltung dieses Bauelementes sieht vor,
- dass in der Siliziumlage eine ober lächenmikromechani- scher Struktur hergestellt ist, - dass in der weiteren Lage eine dazu komplementäre Kavernenstruktur hergestellt ist, wobei die Lagen so zusammengefügt sind, das mindestens die oberflächenmikromechani- scher Struktur, jedoch nicht die vollständige Siliziumlage, von der Kavernenstruktur der weiteren Lage abgedeckt ist,
- und dass die Lagen auf gegenüberliegenden Seiten der Kavernenstruktur, im Berührungsbereich zwischen diesen Lagen, an jeweils mindestens einer Stelle miteinander verschweißt sind.
Die Erfindung schafft ferner ein Verfahren der eingangs genannten Art welches vorsieht,
- dass Laserstrahlung mit einer Wellenlänge des Laserlichtes verwendet wird, die in der ersten — der Laserstrah- lung zugewandten — Lage überwiegend transmittiert und zu einem geringeren Teil absorbiert wird,
- dass konvergente Laserstrahlung verwendet wird, wobei der Fokus der Laserstrahlung in die Fügeebene zwischen den Lagen gesetzt wird, und wobei die Leistungsdichte der La- serstrahlung so gewählt wird, dass nur im Fokus genügend Energie zum stellenweisen Aufschmelzen der Lagen- Materialien durch einen absorbierten Anteil dieser Energie zur Verfügung gestellt wird, - so dass die Lagen durch eine wenigstens stellenweise erfolgte Laserverschweißung fest miteinander verbunden wer- den.
Die konvergente Laserstrahlung kann dabei unkompliziert mittels einer Verf hrensvariante erzeugt werden, bei der die Laserstrahlung vor Eintritt in die erste Lage mittels einer Aufweitungsoptik zu einem parallelen Strahl mit größerem
Durchmesser und geringerer Leistungsdichte aufgeweitet wird, und bei der dieser Laserstrahl anschließend auf einen Punkt in der Fügeebene fokussiert wird, so dass die nunmehr konvergente Laserstrahlung erst in der Fügeebene mit maximaler, zum Aufschmelzen der Lagen-Materialien ausreichender, Leistungsdichte zur Wirkung kommt .
Ebenso möglich ist eine zweite Verfahrensvariante, bei der mindestens zwei Laserstrahlen aus verschiedenen Richtungen zu einem Fokus in der Fügeebene konvergieren, wobei die Leistungsdichten der einzelnen Laserstrahlen so ausgelegt sind, das erst die totale Leistungsdichte im Fokus zum Aufschmelzen der Lagen-Materialien ausreicht.
Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
Die Erfindung wird nachfolgend an Ausführungsbeispielen anhand der Figuren der Zeichnung näher erläutert. Es zeigt
Figur 1 bis 3 jeweils in einer schematischen seitlichen Schnittansieht drei aufeinander folgende Herstellungsstadien eines erfindungsgemäßen Bauelementes gemäß einer ersten Verfahrensvariante, Figur 4, in gleicher Darstellung, das Verfahrensstadium entsprechend Figur 2, jedoch gemäß einer zweiten Verfahrensvariante.
Figur 1 zeigt beispielshalber eine obere Lage 1 aus Silizium, an deren Unterseite eine Kavernenstruktur 2 geöffnet ist. Darunter, in Figur 1 noch getrennt von der oberen Lage 1, ist eine weitere, untere Siliziumlage 3 erkennbar.
Die obere Lage 1 kann in Form eines Wafers oder eines Einzel-' chips oberhalb der zweiten Siliziumlage 3 positioniert werden, wobei in jedem Fall die Kavernenstruktur 2 der Lage 1 über der vorzugsweise oberflächenmikromechanisch erzeugten Struktur 4 der Lage 3 zu liegen kommt.
Figur 2 zeigt die beiden Lagen 1 und 3 in zusammengefügtem Zustand mit der Fügeebene 5. In einer ersten Verfahrensvariante können die beiden Lagen 1 und 2 seitlich der Kavernenstruktur 2, gleichzeitig oder nacheinander, mit fokussierter LaserStrahlung 6 verschweißt werden.
Der Ausgangsstrahl kann dazu mittels eines an sich bekannten Strahlaufweiters (nicht dargestellt) zunächst aufgeweitet werden. Der resultierende, kollimierte Strahl kann durch eine in den Strahlengang des Lasers eingefügte fokussierende Optik auf einen Ort in einer gewünschten Tiefe innerhalb der Lagen 1 und 3 fokussiert werden. Zum Verschweißen wird der Fokus 12 in die Fügeebene 5 oder in deren unmittelbare Nähe gesetzt. Die Siliziumlage 3, also das Substrat des Bauelementes, be- sitzt eine Dicke von ca. 0,6 mm.
Da die Silizium/Glas-Lagen aus dem gleichen bzw. einem sehr ähnlichen Material bestehen, kommt es in Hinsicht auf die thermische Ausdehnung zu keinen Problemen.
Einer der beiden Wafer bzw. Lagen 1 und 3 kann aus z.B. Glas oder einem Material bestehen, das mit Silizium thermisch ver- bindbar ist, bestehen. Beide Lagen 1 und 3 können auf den einander zugewandten Flächen eine oder mehrere Strukturen 4 beispielsweise mit Silizium, Oxid, Nitrid, Metall aufweisen, wie sie typischerweise in der Oberflächen ikromechanik er- zeugt werden. Ebenso gut möglich ist aber auch die Verbindung von in Bulk-Mikro echanik hergestellten Drucksensoren zu Glassockeln.
Figur 3 zeigt das durch die zwei Schweißpunkte 8 und 9 fertig verbundene Bauelement. Die obere Siliziumlage 1 bildet dabei eine festsitzende Kappe auf der strukturierten Siliziumlage 3, wobei die Kappe, anders als hier dargestellt, ohne weiteres auch nur einen Teil der Oberfläche der unteren Siliziumlage 3 abdecken kann. Jedenfalls muss außerhalb der Kavernen- Struktur 2 noch ein Berührungsbereich 7 vorhanden sein, in dem die Verschweißung stattfinden kann.
Erfindungsgemäß ist keine Hilfs- bzw. Fügeschicht erforderlich. In der Siliziumkappe 1 wird zwar etwas von der konver- genten Laserεtrahlung 6 absorbiert, die Leistungsdichte ist aber zu gering, um eine signifikante Erwärmung der Siliziumkappe 1 zu bewirken. Erst in der Schweißebene, genauer: in der Fügeebene 5, wird die im Fokus 12 konzentrierte Leistungsdichte so hoch, dass das Lagen-Material aufschmilzt und eine Verbindung zwischen den Lagen bzw. zwischen den Wafern ausgebildet wird.
In einer zweiten Verfahrensvariante ist eine lokale Erhöhung der Leistungsdichte durch zwei Laserstrahlen 10 und 11, vgl. Figur 4, die sich in der Fügeebene 5 treffen, möglich.
Sollen nicht nur einzelne Schweißpunkte 8 und 9, sondern eine bereichsweise Verbindung 13, vgl. Figur 4, erzeugt werden, so sind von der Fügestrategie her verschiedene, an sich bekannte Varianten durchführbar: Möglich ist ein Konturschweißen, bei dem die Schweißbahn mit der konvergenten Laserstrahlung (einmal) langsam abgefahren wird, oder ein Quasi-Simultan-schweißen , bei dem der Laser beispielsweise über einen Scannerspiegel so schnell umläuft, dass die gesamte Schweißfläche quasi simultan erwärmt wird.
Ebenso möglich ist ein Maskenschweißen, bei dem die nicht zu schweißenden Bereiche mit einer Maske abgedeckt werden, die in den Strahlengang des Lasers vor das Bauelement, also au- ßerhalb der Fügeebene 5, positioniert wird. Der Laserstrahl wird dabei über die Maske geführt, so dass in der Fügeebene 5 eine bereichsweise Verbindung 13 der Lagen 1 und 3 hergestellt wird. Beim Maskenschweißen sind allerdings keine geschlossenen Konturen möglich.
Die Dauer des Schweißvorganges ist abhängig von der Dotierung der Lagen 1 und 3 und der erforderlichen Temperatur und bewegt sich in der Größenordnung von einigen Sekunden.

Claims

Patentansprüche
1. Elektrisches Bauelement, insbesondere mikromechanischer Silizium-Chip, mit einer Siliziumlage (3) und einer weiteren Lage (1) vorzugsweise aus Silizium oder Glas, die sandwichartig zusammengefügt sind, wobei zwischen den Lagen (1, 3) an mindestens einer Stelle eine mechanisch feste und dauerhafte Verbindung (8, 9) hergestellt ist, dadurch geken zeich et, dass die Lagen (1, 3) fügeschichtfrei mittels einer Laserver- schweißung verbunden sind, wobei mindestens eine der Lagen (1, 3) eine so hohe Transparenz aufweist, dass die Lagen (1, 3) mittels einer Laserstrahlung (6, 10, 11), deren Leistungsdichte in der Fügeebene (5) zwischen den Lagen (1, 3) bis zu einer dort zum Aufschmelzen der Lagen-Materialien durch Absorption ausreichenden Leistungsdichte lokal erhöht ist, verschweißbar sind.
2. Bauelement nach Anspruch 1 , dadurch gekennzeichnet,
- dass in der Siliziumlage (3) eine oberflächenmikromecha- nischer Struktur (4) hergestellt ist,
- dass in der weiteren Lage (1) eine dazu komplementäre Kavernenstruktur (2) hergestellt ist, wobei die Lagen (1, 3) so zusammengefügt sind, das mindestens die oberflä- chenmikromechanischer Struktur (4) , jedoch nicht die vollständige Siliziumlage (3) , von der Kavernenstruktur (2) der weiteren Lage (1) abgedeckt ist,
- und dass die Lagen (1, 3) auf gegenüberliegenden Seiten der Kavernenstruktur (2), im Berührungsbereich (7) zwischen diesen Lagen (1, 3) , an jeweils mindestens einer Stelle (8, 9) miteinander verschweißt sind.
3. Bauelement nach Anspruch 1, dadurch gekennzeichnet, das in der Siliziumlage (3) eine Drucksensorstruktur in Bulk-Mikromechanik hergestellt ist, und dass die weitere Lage (1) aus Glas besteht.
4. Verfahren zum Herstellen von Silizium/Material, insbesondere Silizium/Silizium- oder Silizium/Glas-Verbindungen unter Verwendung von Laserstrahlung, bei dem Siliziumlagen (1, 3) oder Glas- und Siliziumlagen (1, 3) an einer ebenen Fügezone (5) miteinander verbunden werden, dadurch gekennzeichnet,
- dass LaserStrahlung mit einer Wellenlänge des Laserlichtes verwendet wird, die in der ersten — der Laserstrah- lung zugewandten — Lage (1) überwiegend transmittiert und"" zu einem geringeren Teil absorbiert wird,
- dass konvergente Laserstrahlung (6, 10, 11) verwendet wird, wobei der Fokus (12) der Laserstrahlung (6, 10, 11) in die Fügeebene (5) zwischen den Lagen (1, 3) gesetzt wird, und wobei die Leistungsdichte der Laserstrahlung
(6, 10, .11) so gewählt wird, dass nur im Fokus (12) genügend Energie zum stellenweisen Aufschmelzen der Lagen- Materialien durch einen absorbierten Anteil dieser Energie zur Verfügung gestellt wird, - so dass die Lagen (1, 3) durch eine wenigstens stellenweise erfolgte Laserverschweißung (8, 9) fest miteinander verbunden werden.
5. Verfahren nach Anspruch 4 , dadurch gekennzeichnet, dass die Laserstrahlung vor Eintritt in die erste Lage (1) mittels einer Auf eitungsoptik zu einem parallelen Strahl mit größerem Durchmesser und geringerer Leistungsdichte aufgeweitet wird, und dass dieser Laserstrahl anschließend auf einen Punkt in der Fügeebene (5) fokussiert wird, so dass die nunmehr konvergente Laserstrahlung (6) erst in der Fügeebene (5) mit maximaler, zum Aufschmelzen der Lagen-Materialien ausreichender, Leistungsdichte zur Wirkung kommt.
6. Verfahren nach Anspruch 4, dadurch gekennzeichnet, das mindestens zwei Laserstrahlen (10, 11) aus verschiedenen Richtungen zu einem Fokus (12) in der Fügeebene (5) konvergieren, wobei die Leistungsdichten der einzelnen Laserstrahlen (10, 11) so ausgelegt sind, das erst die totale Leistungsdichte im Fokus (12) zum Aufschmelzen der Lagen-Materialien ausreicht.
7. Verfahren nach einem der Ansprüche 4, 5 oder 6, dadurch gekennzeichnet, dass LaserStrahlung (6, 10, 11) mit einer Wellenlänge des Laserlichtes im nahen Infrarotbereich verwendet wird.
8. Verfahren nach einem der Ansprüche 4 bis 7 , dadurch gekennzeichnet, dass mittels der Technik des Konturschweißens, des Quasi-Simultan-schweißens oder des Maskenschweißens der Laserstrahl (6, 10, 11) so geführt wird, dass eine bereichsweise Verbindung (13) der Lagen (1, 3) hergestellt wird.
PCT/DE2003/001637 2002-08-02 2003-05-20 Elektrisches bauelement WO2004019402A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10235372.7 2002-08-02
DE2002135372 DE10235372A1 (de) 2002-08-02 2002-08-02 Elektrisches Bauelement

Publications (1)

Publication Number Publication Date
WO2004019402A1 true WO2004019402A1 (de) 2004-03-04

Family

ID=30469360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/001637 WO2004019402A1 (de) 2002-08-02 2003-05-20 Elektrisches bauelement

Country Status (2)

Country Link
DE (1) DE10235372A1 (de)
WO (1) WO2004019402A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102893384A (zh) * 2010-05-18 2013-01-23 可利雷斯股份有限公司 使用激光来密封和接触基板的方法以及电子模块

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017223372A1 (de) * 2017-12-20 2019-06-27 Robert Bosch Gmbh Laserbondverfahren und mikromechanische Vorrichtung mit Laserbondverbindung
DE102019119195A1 (de) 2019-07-16 2021-01-21 Schott Ag Hermetisch verschlossene gehärtete Glasumhäusung und Verfahren zu deren Herstellung
DE102019121298A1 (de) * 2019-08-07 2021-02-11 Schott Ag Hermetisch verschlossene Glasumhäusung
DE102019125963A1 (de) * 2019-09-26 2021-04-01 Schott Ag Hermetisch verschlossene Glasumhäusung
DE102019218820A1 (de) * 2019-12-03 2021-06-10 Robert Bosch Gmbh Mikromechanisch-optisches Bauteil und Verfahren zur Herstellung eines Mikromechanisch-optischen Bauteils
DE102019218819A1 (de) * 2019-12-03 2021-06-10 Robert Bosch Gmbh Mikromechanisch-optisches Bauteil und Verfahren zur Herstellung eines mikromechanisch-optischen Bauteils
DE102020104613A1 (de) * 2020-02-21 2021-08-26 Schott Ag Hermetisch verschlossene Glasumhäusung
DE102020117194B4 (de) * 2020-06-30 2023-06-22 Schott Ag Hermetisch verschlossene Umhäusung und Verfahren zu deren Herstellung

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009689A (en) * 1986-01-30 1991-04-23 U.S. Philips Corporation Method of manufacturing a semiconductor device
EP0539741A1 (de) * 1991-09-30 1993-05-05 Canon Kabushiki Kaisha Verfahren für anodische Bindung mit Lichtstrahlung
US6195214B1 (en) * 1999-07-30 2001-02-27 Etec Systems, Inc. Microcolumn assembly using laser spot welding
EP1346949A2 (de) * 2002-03-06 2003-09-24 Robert Bosch Gmbh Verfahren zum Wafer Bonden eines Si-Waferdeckel durch Lokalverwendung von Laserenergie, durch das Verfahren hergestelltes Bauelement, und im Verfahren verwendetes System

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5009689A (en) * 1986-01-30 1991-04-23 U.S. Philips Corporation Method of manufacturing a semiconductor device
EP0539741A1 (de) * 1991-09-30 1993-05-05 Canon Kabushiki Kaisha Verfahren für anodische Bindung mit Lichtstrahlung
US6195214B1 (en) * 1999-07-30 2001-02-27 Etec Systems, Inc. Microcolumn assembly using laser spot welding
EP1346949A2 (de) * 2002-03-06 2003-09-24 Robert Bosch Gmbh Verfahren zum Wafer Bonden eines Si-Waferdeckel durch Lokalverwendung von Laserenergie, durch das Verfahren hergestelltes Bauelement, und im Verfahren verwendetes System

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BROWN J ET AL: "LASER WELDING: PROVIDING ALIGNMENT PRECISION AND ACCURACY TO SUBSTRATE LEVEL PACKAGING", PROCEEDINGS OF THE SPIE, SPIE, BELLINGHAM, VA, US, VOL. 3874, PAGE(S) 158-164, ISSN: 0277-786X, XP008021632 *
WILD M J ET AL: "Locally selective bonding of silicon and glass with laser", SENSORS AND ACTUATORS A, ELSEVIER SEQUOIA S.A., LAUSANNE, CH, vol. 93, no. 1, 25 August 2001 (2001-08-25), pages 63 - 69, XP004255508, ISSN: 0924-4247 *
WITTE R ET AL: "Laser joining of glass with silicon", PHOTON PROCESSING IN MICROELECTRONICS AND PHOTONICS, SAN JOSE, CA, USA, 21-24 JAN. 2002, PROCEEDINGS OF THE SPIE - THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING, 2002, SPIE-INT. SOC. OPT. ENG, USA, PAGE(S) 487 - 495, ISSN: 0277-786X, XP001156588 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102893384A (zh) * 2010-05-18 2013-01-23 可利雷斯股份有限公司 使用激光来密封和接触基板的方法以及电子模块
JP2013526029A (ja) * 2010-05-18 2013-06-20 コアレイズ オーワイ レーザ光を用いた基板の封止および接触の方法ならびに電子モジュール

Also Published As

Publication number Publication date
DE10235372A1 (de) 2004-02-19

Similar Documents

Publication Publication Date Title
EP2130213B1 (de) Verfahren zum laser-gestützten bonden, und deren verwendung
EP1758729B1 (de) Verfahren zum verbinden von werkstücken aus kunststoff
DE10149140A1 (de) Verfahren zur Verbindung einer Siliziumplatte mit einer weiteren Platte
DE10109594B4 (de) Verfahren zum Verbinden einer vorderen Lichtscheibe mit einem Leuchtenkörper einer Fahrzeugleuchteneinheit
DE102006052694A1 (de) Waferprodukt und Herstellungsverfahren dafür
DE102012212709A1 (de) Verfahren zum Herstellen einer Lichtemissions-Vorrichtung
DE3783117T2 (de) Verbindung eines elementes aus glass oder keramik und eines elementes aus metall.
DE19622684A1 (de) Verfahren zur Herstellung mechanisch fester Klebstoffverbindungen zwischen Oberflächen
WO2004019402A1 (de) Elektrisches bauelement
EP2768295A2 (de) Verfahren zum Verschließen eines Gehäuses mittels eines optischen Verbindungsverfahrens
DE19821558B4 (de) Maßstab und Verfahren zur Herstellung eines Maßstabes sowie Positionsmeßeinrichtung
WO2000041834A1 (de) Verfahren und vorrichtung zur thermischen verbindung von anschlussflächen zweier substrate
WO2009156505A1 (de) Verfahren und vorrichtung zum verbinden von bauteilen mittels laserstrahlung
DE1796038A1 (de) Verfahren zum Verschweissen von Werkstoffen mit Glas oder aehnlichen Stoffen
DE102006032488A1 (de) Vorrichtung und Verfahren zur Bearbeitung von Wafern
EP0999729A2 (de) Verfahren zum Laserlöten und zur Temperaturüberwachung von halbleiterchips sowie nach diesem Verfahren hergestellte Chipkarte
DE69419114T2 (de) Verfahren zur Herstellung einer Verbundglasscheibe mit in der thermoplastischen Zwischenschicht eingebetteten Metalldrähten
DE3626446C2 (de)
EP2210047A1 (de) Vorrichtung mit einer platte und einem montageelement
DE102018111898A1 (de) Gehäuse für ein optoelektronisches Bauelement sowie Verfahren zu dessen Herstellung und Deckel für ein Gehäuse
DE10359564B4 (de) Verfahren zum Verbinden von Bauteilen
EP1053576A1 (de) Verfahren zum aufbauen und verbinden von optischen komponenten, insbesondere von optischen komponenten in einem laserresonator und laserresonator
EP2922373B1 (de) Verfahren zum verbinden zweier elektrisch leitender bauteile mittels eines laserstrahls und bauteileverbund
EP0593986B1 (de) Verfahren zum Verlöten eines Halbleiterkörpers mit einem Trägerelement
WO2001039959A1 (de) Verfahren zum berührungslosen biegen von teilen aus einem thermosplastischen kunststoff und nach diesem verfahren gebogenes oder justiertes teil

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP