WO2004018723A1 - Alliage al-cu a haute resistance aux deteriorations - Google Patents

Alliage al-cu a haute resistance aux deteriorations Download PDF

Info

Publication number
WO2004018723A1
WO2004018723A1 PCT/EP2003/009539 EP0309539W WO2004018723A1 WO 2004018723 A1 WO2004018723 A1 WO 2004018723A1 EP 0309539 W EP0309539 W EP 0309539W WO 2004018723 A1 WO2004018723 A1 WO 2004018723A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
product
rolled
range
product according
Prior art date
Application number
PCT/EP2003/009539
Other languages
English (en)
Inventor
Rinze Benedictus
Alfred Ludwig Heinz
Christian Joachim Keidel
Alfred Johann Peter Haszler
Original Assignee
Corus Aluminium Walzprodukte Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corus Aluminium Walzprodukte Gmbh filed Critical Corus Aluminium Walzprodukte Gmbh
Priority to CA2493403A priority Critical patent/CA2493403C/fr
Priority to GB0502069A priority patent/GB2406576B/en
Priority to BRPI0313640-0A priority patent/BR0313640B1/pt
Priority to AU2003264120A priority patent/AU2003264120A1/en
Priority to DE10393144T priority patent/DE10393144T5/de
Publication of WO2004018723A1 publication Critical patent/WO2004018723A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/18Alloys based on aluminium with copper as the next major constituent with zinc
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent

Definitions

  • the present invention relates to a high damage tolerant AI-Cu alloy product having a high toughness and an improved fatigue crack growth resistance while maintaining good strength levels, to a method for producing such a rolled high damage tolerant AI-Cu alloy product having a high toughness and an improved fatigue crack growth resistance and further to a rolled alloy sheet product for aeronautical applications. More specifically, the present invention relates to a high damage tolerant Al-Cu-Mg alloy designated by the Aluminium Association ("AA”)2xxx-series for structural aeronautical applications with improved properties such as fatigue crack growth resistance, strength and fracture toughness. The invention also relates to a rolled alloy product which is suitable used as fuselage skin or lower wing skin of an aircraft.
  • AA Aluminium Association
  • aluminium alloys 2024, 2324 and 2524 are well known heat treatable aluminium alloys which have useful strength and toughness properties in T3, T39 and T351 tempers.
  • the design of a commercial aircraft requires various properties for different types of structures on the aircraft. Especially for fuselage skin or lower wing skin it is necessary to have properties such as good resistance to crack propagation either in the form of fracture toughness or fatigue crack growth. At the same time the strength of the alloy should not be reduced. A rolled alloy product either used as a sheet or as a plate with an improved damage tolerance will improve the safety of the passengers, will reduce the weight of the aircraft and thereby improve the fuel economy which translates to a longer flight range, lower costs and less frequent maintenance intervals.
  • US-5, 593,516 discloses a high damage tolerant AI-Cu alloy with a balanced chemistry comprising essentially the following composition (in weight %):
  • Mn up to 0.8 balance aluminium and unavoidable impurities. It also discloses T6 and T8 tempers of such alloys which gives high strength to a rolled product made of such alloy.
  • US-5,897,720 discloses a high damage tolerant AI-Cu alloy with a "2024"- chemistry comprising essentially the following composition (in weight %): Cu 3.8 - 4.9
  • the alloy is annealed after hot rolling at a temperature at which the intermetallics do not substantially dissolve.
  • the annealing temperature is between 398°C and 455°C.
  • US-5,938,867 discloses a high damage tolerant AI-Cu alloy with a "2024"- chemistry comprising essentially the following composition (in weight %):
  • EP-0473122 as well as US-5,213,639, disclose an aluminium base alloy comprising essentially the following composition (in weight %): Cu 3.8 - 4.5, preferably 4.0 - 4.5
  • Mg 1.2 - 1.8 preferably 1.2 -1.5 Mn 0.3 - 0.9, preferably 0.4 - 0.7
  • US-5,213,639 discloses an inter-anneal treatment after hot rolling the cast ingot with a temperature between 479°C and 524°C and again hot rolling the inter-annealed alloy wherein the alloy contains one or more elements from the group consisting of Cr, V, Hf, Cr, Ag and Sc, each within defined ranges.
  • Such alloy is reported to have a 5% improvement over the above mentioned conventional 2024-alloy in T-L fracture toughness and an improved fatigue crack growth resistance at certain ⁇ K-levels.
  • EP-1170394-A2 discloses an aluminium sheet product with improved fatigue crack growth resistance having an anisotropic microstructure defined by grains having an average length to width aspect ratio of greater than about 4 to 1 and comprising essentially the following composition, (in weight %):
  • Yet a further object of the present invention is to provide rolled aluminium alloy sheet products and a method for producing those products so as to provide structural members for aircrafts which have an increased resistance to fatigue crack growth and to provide an improved fracture toughness while still maintaining high levels of strength.
  • FCGR fatigue crack growth rate
  • Fig. 1 shows the fatigue crack growth properties versus a 2524 reference alloy
  • Fig. 2 shows the Kahn-tear versus yield strength properties compared to 2024-
  • Fig. 3 shows the Kahn-tear versus yield strength properties as shown in Fig. 2 but in average L-T and T-L direction.
  • a high damage tolerant AI-Cu alloy having a high toughness and an improved fatigue crack growth resistance by maintaining high levels of strength which comprises essentially the following composition (in weight %):
  • Mn >0 - 0.50, and preferably > 0.15 - 0.50 Cr ⁇ 0.15
  • Si ⁇ 0.15, preferably ⁇ 0.10, and Mn-containing dispersoids and Zr-containing dispersoids, the balance essentially aluminium and incidental elements and impurities, wherein the Mn- containing dispersoids are at least partially replaced by Zr-containing dispersoids.
  • the alloy contains Mn-containing dispersoids and Zr-containing dispersoids.
  • the alloy of the instant invention in a T3 temper has significant improved high damage tolerance properties by lowering the amount of manganese and by partially replacing manganese-containing dispersoids by zirconium containing dispersoids. At the same time it is important to carefully control the chemistry of the alloy.
  • the main improvement of the alloy according to the present invention is an improved fatigue crack growth resistance at the lower ⁇ K-values which leads to significant longer lifetimes.
  • the balance of high damage tolerance properties and mechanical properties of the alloy of the present invention is better than the balance of conventional 2024 or 2524-T3 alloys.
  • the toughness levels are equal or better to 2524 alloy levels. It has been found that the high damage tolerance properties such as fracture toughness or strength may be further improved by adding zirconium.
  • the amount (in weight %) of manganese is preferably in a range of 0.20 to
  • Mn contributes to or aids in grain size control during operations.
  • the preferred levels of manganese are lower than those conventionally used in conventional AA2x24 alloys while still resulting in sufficient strength and improved damage tolerance properties.
  • the chemical composition of the alloy of the present invention preferably meets the proviso that Zr > 0.09 when Mn ⁇ 0.45 and Cu > 4.0.
  • the amount (in weight %) of copper is in a range of 4.0 to 4.4, preferably in a range of 4.1 to 4.3. Copper is an important element for adding strength to the alloy rolled product. It has been found that a copper content of 4.1 or 4.2 results in a good compromise in strength, toughness, formability and corrosion performance while still resulting in sufficient damage tolerance properties.
  • the preferred amount (in weight %) of magnesium is in a range of 1.0 to 1.4, most preferably in a range of 1.1 to 1.3. Magnesium provides also strength to the alloy rolled product.
  • the preferred amount (in weight %) of zirconium is in a range of 0.09 to 0.15 thereby partially replacing Mn-containing dispersoids.
  • the balance of manganese and zirconium influences the recrystallisation behaviour. Throughout the addition of zirconium more elongated grains may be obtained which also results in an improved fatigue crack growth resistance.
  • Zirconium may also be at least partially replaced by chromium wherein [Zr] + [Cr] ⁇ 0.20.
  • Preferred amounts (in weight %) of chromium and zirconium are in a range of 0.05 to 0.15, preferably in a range of 0.10 to 0.13.
  • the balance of zirconium and chromium as well as the partial replacement of Mn- containing dispersoids and Zr-containing dispersoids result in an improved recrystallisation behaviour and more elongated grains.
  • a preferred alloy composition of the present invention comprises the following composition (in weight %):
  • Another preferred alloy according to the present invention consists of the following composition (in weight %):
  • an alloy according to the present invention consists of the following composition (in weight %):
  • the balance in the rolled alloy product according to the invention is aluminium and inevitable impurities and incidental elements. Typically, each impurity element is present at 0.05% maximum and the total of impurities is 0.20% maximum. Preferably the alloy product is substantially Ag-free.
  • the alloy rolled products have a recrystallised microstructure meaning that 75% or more, and preferably more than 80% of the grains in a T3 temper, e.g. T39 or T351 , are recrystallised.
  • the grains have an average length to width aspect ratio of smaller than about 4 to 1 , and typically smaller than about 3 to 1 , and more preferably smaller than about 2 to 1.
  • the alloy according to the present invention may further comprise one or more of the elements Zn, Hf, V, Sc, Ti or Li, the total amount less than 1.00 (in weight %). These additional elements may be added to further improve the balance of the chemistry and enhance the forming of dispersoids.
  • the invention provides a method for producing a rolled high damage tolerant AI-Cu alloy product having a composition as set out above and having a high toughness and an improved fatigue crack growth resistance according to the invention comprises the steps of: a) casting an ingot having a composition as set out above and set forth in the claims, b) homogenizing and/or pre-heating the ingot after casting, c) hot rolling the ingot and optionally cold rolling into a rolled product, d) solution heat treating, e) quenching the heat treated product, f) stretching the quenched product, and g) naturally ageing the rolled and heat-treated product.
  • the ingot After hot rolling the ingot it is possible to anneal and/or re-heat the hot rolled ingot and again hot rolling the rolled ingot. It is believed that such re-heating or annealing enhances the fatigue crack growth resistance by producing elongated grains which - when recrystallized - maintain a high level of toughness and good strength. It is furthermore possible to conduct a surface heat treatment between hot rolling and cold rolling at the same temperatures and times as during homogenisation, e.g. 1 to 5 hours at 460°C and about 24 hours at 490°C.
  • the hot rolled ingot is preferably inter-annealed before and/or during cold rolling to further enhance the ordering of the grains.
  • Such inter-annealing is preferably done at a gauge of about 4.0 mm for one hour at 350°C. Furthermore, it is advisable to stretch the rolled and heat- treated product in a range of 1 to 5%, preferably in a range of 1 to 3%, and then naturally aging the stretched product for more than 5 days, preferably about 10 to 20 days, and more preferably for 10 to 15 days, to provide a T3 temper condition, in particular a T351 temper condition.
  • the present invention provides a high damage tolerant rolled AI-Cu alloy sheet product which has high toughness and an improved fatigue crack growth resistance with the above described alloy composition which is preferably produced in accordance with the above described method.
  • Such rolled alloy sheet product has preferably a gauge of around 2.0 mm to 12 mm for applications such as fuselage skin and about 25 mm to 50 mm for applications such as lower-wing skin.
  • the present invention thereby provides an aircraft fuselage sheet or an aircraft lower-wing member sheet with improved high damage tolerance properties.
  • the sheet may be unclad or clad, with preferred cladding layer thickness of from about 1 to about 5 percent of the thickness of the sheet.
  • Fig. 1 shows the fatigue crack growth properties versus a 2524 reference alloy
  • Fig. 2 shows the Kahn-tear versus yield strength properties compared to 2024-
  • Fig. 3 shows the Kahn-tear versus yield strength properties as shown in Fig. 2 but in average L-T and T-L direction.
  • the alloys have been processed to a 2.0 mm sheet in the T351 temper.
  • the cast ingots were homogenized at about 490°C, and subsequently hot rolled at about 410°C.
  • the plates were further cold rolled, surface heat treated and stretched by about 1%. All alloys have been tested after at least 10 days of natural aging.
  • the Kahn-tear versus yield strength properties of the alloys according to the present invention are better than those of conventional 2024-T351 in commercially available form or pure form. Furthermore, the preferred minimum level of manganese is in between 0.21 and 0.31 while at a level of 0.21 the strength level is still good.
  • FCGR fatigue crack growth rate
  • the preferred amount of Mn is in a range of 0.25 to 0.45 (in weight %) and the preferred range of Zr is in between 0.09 and 0.15 (in weight %).
  • Copper is most preferably present in an amount below 4.3 and magnesium is preferably present in an amount below 1.3 (in weight %).
  • alloys 3 and 5 have a significantly improved lifetime over conventional AA2024 alloys preferably at ⁇ K-levels in a range of 5 to 15 MPa m. Hence, the fatigue crack growth resistance at those lower ⁇ K-values results in significant longer lifetimes of the alloy and enhances its usefulness for aeronautical applications.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Rolling (AREA)
  • Laminated Bodies (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

L'invention concerne un produit laminé en alliage Al-Cu à haute résistance aux détériorations de la série AA2000, qui est caractérisé par une grande ténacité et une meilleure résistance au développement de fissures. Cet alliage est composé (pourcentage en masse) de: Cu 3,8 4,7, Mg 1,0 1,6, Zr 0,06 0,18, Cr < 0,15, Mn > 0 0,50, Fe = 0,15, Si = 0,15, le reste étant principalement constitué d'aluminium ainsi que d'impuretés et d'éléments fortuits ; ce produit comprenant des dispersoïdes contenant du Mn et des dispersoïdes contenant du Zr. Par ailleurs, l'invention concerne un procédé d'obtention d'un produit laminé en alliage Al-Cu à haute résistance aux détériorations, qui est caractérisé par une grande ténacité et une meilleure résistance au développement de fissures. L'invention concerne en outre l'utilisation de ce produit comme élément structural dans un aéronef.
PCT/EP2003/009539 2002-08-20 2003-08-19 Alliage al-cu a haute resistance aux deteriorations WO2004018723A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2493403A CA2493403C (fr) 2002-08-20 2003-08-19 Alliage al-cu a haute resistance aux deteriorations
GB0502069A GB2406576B (en) 2002-08-20 2003-08-19 High damage tolerant Al-Cu alloy
BRPI0313640-0A BR0313640B1 (pt) 2002-08-20 2003-08-19 Processo para a produção de liga de Al-Cu de alta tolerância a dano
AU2003264120A AU2003264120A1 (en) 2002-08-20 2003-08-19 HIGH DAMAGE TOLERANT Al-Cu ALLOY
DE10393144T DE10393144T5 (de) 2002-08-20 2003-08-19 Al-Cu Legierung mit hoher Toleranz gegenüber Beschädigungen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP02078443 2002-08-20
EP02078443.5 2002-08-20

Publications (1)

Publication Number Publication Date
WO2004018723A1 true WO2004018723A1 (fr) 2004-03-04

Family

ID=31197925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/009539 WO2004018723A1 (fr) 2002-08-20 2003-08-19 Alliage al-cu a haute resistance aux deteriorations

Country Status (9)

Country Link
US (2) US7323068B2 (fr)
CN (1) CN100340687C (fr)
AU (1) AU2003264120A1 (fr)
BR (1) BR0313640B1 (fr)
CA (1) CA2493403C (fr)
DE (1) DE10393144T5 (fr)
FR (1) FR2843755B1 (fr)
GB (1) GB2406576B (fr)
WO (1) WO2004018723A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007048565A1 (fr) * 2005-10-25 2007-05-03 Aleris Aluminum Koblenz Gmbh Alliage al-cu-mg adapte a une application aerospatiale
US7323068B2 (en) 2002-08-20 2008-01-29 Aleris Aluminum Koblenz Gmbh High damage tolerant Al-Cu alloy
US7604704B2 (en) 2002-08-20 2009-10-20 Aleris Aluminum Koblenz Gmbh Balanced Al-Cu-Mg-Si alloy product
EP2458026A1 (fr) * 2004-07-15 2012-05-30 Alcoa Inc. Alliages de la série 2000 présentant une tolérance aux dommages accrus d'efficacité pour des applications aérospatiales
CN105239029A (zh) * 2015-10-23 2016-01-13 苏州有色金属研究院有限公司 控制Al-Cu-Mg-Mn合金中含Mn相均匀弥散析出的热处理方法
CN105463349A (zh) * 2015-11-24 2016-04-06 苏州有色金属研究院有限公司 改善2×××-t3板疲劳裂纹扩展速率的热处理方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004005562A2 (fr) * 2002-07-09 2004-01-15 Pechiney Rhenalu Alliages a base d'aluminium, de cuivre et de magnesium (alcumg), hautement insensibles aux defaillances et utilisables comme elements de structure d'un aeronef
US7494552B2 (en) * 2002-08-20 2009-02-24 Aleris Aluminum Koblenz Gmbh Al-Cu alloy with high toughness
US20070151637A1 (en) * 2005-10-28 2007-07-05 Aleris Aluminum Koblenz Gmbh Al-Cu-Mg ALLOY SUITABLE FOR AEROSPACE APPLICATION
US20110176957A1 (en) * 2008-07-09 2011-07-21 Yun Che High strength casting aluminum alloy material
CA2750394C (fr) * 2009-01-22 2015-12-08 Alcoa Inc. Alliages ameliores d'aluminium-cuivre contenant du vanadium
US9347558B2 (en) 2010-08-25 2016-05-24 Spirit Aerosystems, Inc. Wrought and cast aluminum alloy with improved resistance to mechanical property degradation
CN101967615B (zh) * 2010-10-27 2012-06-27 中国航空工业集团公司北京航空材料研究院 一种提高2000系铝合金板材损伤容限性能的方法
JP2013176782A (ja) * 2012-02-28 2013-09-09 Nissan Motor Co Ltd 金属材料の接合方法
US10266933B2 (en) 2012-08-27 2019-04-23 Spirit Aerosystems, Inc. Aluminum-copper alloys with improved strength
FR3011252B1 (fr) * 2013-09-30 2015-10-09 Constellium France Tole d'intrados a proprietes de tolerance aux dommages ameliorees
CN104711468B (zh) * 2013-12-16 2017-05-17 北京有色金属研究总院 一种高强高耐热性铝合金材料及其制备方法
CN104233011B (zh) * 2014-10-11 2017-02-15 山东裕航特种合金装备有限公司 一种铸造铝合金
CN104451296A (zh) * 2014-12-15 2015-03-25 西南铝业(集团)有限责任公司 一种2系铝合金的制备方法
GB201508278D0 (en) * 2015-05-14 2015-06-24 Hybond As Filler material
CN105002408A (zh) * 2015-07-12 2015-10-28 河北钢研德凯科技有限公司 一种优质高强铸造铝合金材料及制备方法
CN105441838B (zh) * 2015-11-24 2017-08-11 苏州有色金属研究院有限公司 改善2×××‑t3板疲劳裂纹扩展速率的热处理方法
CN105441839B (zh) * 2016-01-12 2017-08-08 苏州有色金属研究院有限公司 提高2×××系铝合金板材抗疲劳损伤性能的加工工艺
CN106435309B (zh) * 2016-08-24 2018-07-31 天长市正牧铝业科技有限公司 一种抗冲击防变形铝合金球棒及其制备方法
CN106756343A (zh) * 2017-02-27 2017-05-31 东莞市铝美铝型材有限公司 一种钻杆用高强耐热铝合金及其制备方法
CN107236917B (zh) * 2017-07-04 2019-02-19 江苏理工学院 一种铝合金形变热处理方法
US20190233921A1 (en) * 2018-02-01 2019-08-01 Kaiser Aluminum Fabricated Products, Llc Low Cost, Low Density, Substantially Ag-Free and Zn-Free Aluminum-Lithium Plate Alloy for Aerospace Application
JP7216200B2 (ja) * 2018-10-31 2023-01-31 ノベリス・コブレンツ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング 改善された疲労破壊抵抗性を有する2xxxシリーズアルミニウム合金プレート製品を製造する方法
DE102019202676B4 (de) * 2019-02-28 2020-10-01 Audi Ag Gussbauteile mit hoher Festigkeit und Duktilität und geringer Heißrissneigung
JP7313484B2 (ja) * 2019-05-28 2023-07-24 ノベリス・コブレンツ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング クラッド2xxxシリーズ航空宇宙用製品
PL3904073T3 (pl) * 2020-04-29 2023-08-14 Novelis Koblenz Gmbh Platerowany produkt lotniczy serii 2xxx
CN111690887A (zh) * 2020-06-28 2020-09-22 山东南山铝业股份有限公司 一种制备2系铝合金退火细晶薄板的制备方法
CN112281092B (zh) * 2020-11-09 2021-12-17 山东大学 一种Al-Cu-Li合金预时效重固溶再时效的热处理方法
US20220170138A1 (en) * 2020-12-02 2022-06-02 GM Global Technology Operations LLC Aluminum alloy for casting and additive manufacturing of engine components for high temperature applications
CN112646998B (zh) * 2020-12-16 2022-05-27 中国航发北京航空材料研究院 一种飞行器壁板用铝合金及板材制备方法
CN114480934B (zh) * 2022-01-25 2023-03-31 郑州轻研合金科技有限公司 一种高强高韧铝合金精薄板及其制备方法和应用
CN115466889B (zh) * 2022-09-02 2023-05-23 中国航发北京航空材料研究院 一种高强韧、高抗疲劳铝合金及其制备方法
CN115747593A (zh) * 2022-12-01 2023-03-07 西安交通大学 一种耐高温Al-Cu-Mg系铝合金及其制备方法
CN115874124A (zh) * 2022-12-07 2023-03-31 东北轻合金有限责任公司 一种提高2xxx板材耐损伤容限性能的形变热处理方法
CN117551950B (zh) * 2024-01-11 2024-04-09 中北大学 一种具有优异长期热稳定性的Al-Cu-Mg-Ag合金及其热处理工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473122A1 (fr) * 1990-08-27 1992-03-04 Aluminum Company Of America Tôle en alliage d'aluminium à bonne résistance aux dommages pour tôle de fuselage d'avion
US5213639A (en) * 1990-08-27 1993-05-25 Aluminum Company Of America Damage tolerant aluminum alloy products useful for aircraft applications such as skin
US5865914A (en) * 1995-06-09 1999-02-02 Aluminum Company Of America Method for making an aerospace structural member
US5897720A (en) * 1995-03-21 1999-04-27 Kaiser Aluminum & Chemical Corporation Aluminum-copper-magnesium-manganese alloy useful for aircraft applications
EP1045043A1 (fr) * 1999-04-12 2000-10-18 Pechiney Rhenalu Procédé de fabrication de pièces de forme en alliage d' aluminium type 2024
US6277219B1 (en) * 1998-12-22 2001-08-21 Corus Aluminium Walzprodukte Gmbh Damage tolerant aluminum alloy product and method of its manufacture
EP1170394A2 (fr) * 2000-06-12 2002-01-09 Alcoa Inc. Tôles d'aluminium présentant une résistance en fatigue améliorée et leur méthode de production

Family Cites Families (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US473122A (en) * 1892-04-19 leonard
US251260A (en) * 1881-12-20 David c
US18723A (en) * 1857-11-24 John hecker and william hotine
US17976A (en) * 1857-08-11 Improvement in the manufacture of sulphuric acid
US489408A (en) * 1893-01-03 Sprinkler
US67636A (en) * 1867-08-13 Charles crolet
US37702A (en) * 1863-02-17 Improvement in fliers of spinning-machines
US731185A (en) * 1902-10-09 1903-06-16 Harry Weaver Horst Window-operating device.
US723033A (en) * 1902-12-13 1903-03-17 Robert H Betts Hog-nose cutter.
US1045043A (en) * 1909-08-07 1912-11-19 William A Lacke Block-signal system.
US989195A (en) * 1910-06-04 1911-04-11 George Henery Sagar Suction-box.
US1114877A (en) * 1911-03-31 1914-10-27 Nelson G Goreau Controller for water-heaters, &c.
US1026270A (en) * 1911-09-05 1912-05-14 Wilber W Leonard Pipe-wrench.
US1170394A (en) * 1914-03-24 1916-02-01 Byron C Beamish Power-plowing machine.
US2352453A (en) * 1942-04-29 1944-06-27 Frank J Mccarron Well tool extracting device
US2789405A (en) * 1953-02-13 1957-04-23 Fort Orange Paper Company Method of packaging
US3826688A (en) 1971-01-08 1974-07-30 Reynolds Metals Co Aluminum alloy system
US4294625A (en) 1978-12-29 1981-10-13 The Boeing Company Aluminum alloy products and methods
US4336075A (en) 1979-12-28 1982-06-22 The Boeing Company Aluminum alloy products and method of making same
JPS6067636A (ja) 1983-09-20 1985-04-18 Sumitomo Light Metal Ind Ltd Vtrシリンダ−用アルミニウム合金
JPS60251260A (ja) 1984-05-26 1985-12-11 Kobe Steel Ltd 超塑性アルミニウム合金の製造方法
CA2056750A1 (fr) 1990-12-03 1992-06-04 Delbert M. Naser Materiau en feuille pour aeronef
US6262022B1 (en) 1992-06-25 2001-07-17 Novartis Ag Pharmaceutical compositions containing cyclosporin as the active agent
US5376192A (en) 1992-08-28 1994-12-27 Reynolds Metals Company High strength, high toughness aluminum-copper-magnesium-type aluminum alloy
JPH07252574A (ja) 1994-03-17 1995-10-03 Kobe Steel Ltd 靭性に優れたAl−Cu−Mg系合金及びその製造方法
US5597529A (en) * 1994-05-25 1997-01-28 Ashurst Technology Corporation (Ireland Limited) Aluminum-scandium alloys
EP0723033A1 (fr) 1995-01-19 1996-07-24 Hoogovens Aluminium Walzprodukte GmbH Procédé de fabrication d'une tÔle forte en alliage d'aluminium
FR2731440B1 (fr) 1995-03-10 1997-04-18 Pechiney Rhenalu Toles en alliage al-cu-mg a faible niveau de contraintes residuelles
EP0817870A4 (fr) 1995-03-21 1998-08-05 Kaiser Aluminium Chem Corp Procede de fabrication de toles d'aluminium pour l'aeronautique
US5879475A (en) 1995-03-22 1999-03-09 Aluminum Company Of America Vanadium-free, lithium-free aluminum alloy suitable for forged aerospace products
JP3053352B2 (ja) 1995-04-14 2000-06-19 株式会社神戸製鋼所 破壊靭性、疲労特性および成形性の優れた熱処理型Al合金
US6077363A (en) 1996-06-17 2000-06-20 Pechiney Rhenalu Al-Cu-Mg sheet metals with low levels of residual stress
JPH1017976A (ja) 1996-06-27 1998-01-20 Pechiney Rhenalu 残留応力レベルの低いAl−Cu−Mg合金鋼板
EP0989195B1 (fr) 1998-09-25 2002-04-24 Alcan Technology & Management AG Alliage à base d'alumium de type AlCuMg resistant à la chaleur
US20020031681A1 (en) 1998-12-22 2002-03-14 Heinz Alfred Ludwig Damage tolerant aluminum alloy product and method of its manufacture
ES2214907T3 (es) 1998-12-22 2004-09-16 Corus Aluminium Walzprodukte Gmbh Producto de aleacion de aluminio tolerante a daños y metodo de fabricacion.
US6325869B1 (en) 1999-01-15 2001-12-04 Alcoa Inc. Aluminum alloy extrusions having a substantially unrecrystallized structure
FR2789405A1 (fr) 1999-02-04 2000-08-11 Pechiney Rhenalu PRODUIT EN ALLIAGE AlCuMg POUR ELEMENT DE STRUCTURE D'AVION
FR2789406B1 (fr) 1999-02-04 2001-03-23 Pechiney Rhenalu PRODUIT EN ALLIAGE AlCuMg POUR ELEMENT DE STRUCTURE D'AVION
FR2802946B1 (fr) 1999-12-28 2002-02-15 Pechiney Rhenalu Element de structure d'avion en alliage al-cu-mg
US20030226935A1 (en) * 2001-11-02 2003-12-11 Garratt Matthew D. Structural members having improved resistance to fatigue crack growth
WO2004005562A2 (fr) * 2002-07-09 2004-01-15 Pechiney Rhenalu Alliages a base d'aluminium, de cuivre et de magnesium (alcumg), hautement insensibles aux defaillances et utilisables comme elements de structure d'un aeronef
US7604704B2 (en) 2002-08-20 2009-10-20 Aleris Aluminum Koblenz Gmbh Balanced Al-Cu-Mg-Si alloy product
US7494552B2 (en) 2002-08-20 2009-02-24 Aleris Aluminum Koblenz Gmbh Al-Cu alloy with high toughness
US7323068B2 (en) * 2002-08-20 2008-01-29 Aleris Aluminum Koblenz Gmbh High damage tolerant Al-Cu alloy
US7252574B2 (en) * 2005-01-14 2007-08-07 Chin Tang Chen Integral thermo-press molding complex brassiere cup structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0473122A1 (fr) * 1990-08-27 1992-03-04 Aluminum Company Of America Tôle en alliage d'aluminium à bonne résistance aux dommages pour tôle de fuselage d'avion
US5213639A (en) * 1990-08-27 1993-05-25 Aluminum Company Of America Damage tolerant aluminum alloy products useful for aircraft applications such as skin
US5897720A (en) * 1995-03-21 1999-04-27 Kaiser Aluminum & Chemical Corporation Aluminum-copper-magnesium-manganese alloy useful for aircraft applications
US5865914A (en) * 1995-06-09 1999-02-02 Aluminum Company Of America Method for making an aerospace structural member
US6277219B1 (en) * 1998-12-22 2001-08-21 Corus Aluminium Walzprodukte Gmbh Damage tolerant aluminum alloy product and method of its manufacture
EP1045043A1 (fr) * 1999-04-12 2000-10-18 Pechiney Rhenalu Procédé de fabrication de pièces de forme en alliage d' aluminium type 2024
EP1170394A2 (fr) * 2000-06-12 2002-01-09 Alcoa Inc. Tôles d'aluminium présentant une résistance en fatigue améliorée et leur méthode de production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J.R. DAVIS: "Metals Handbook - Desk Edition", 2000, ASM INTERNATIONAL, MATERIALS PARK, OHIO, XP002261407 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7323068B2 (en) 2002-08-20 2008-01-29 Aleris Aluminum Koblenz Gmbh High damage tolerant Al-Cu alloy
US7604704B2 (en) 2002-08-20 2009-10-20 Aleris Aluminum Koblenz Gmbh Balanced Al-Cu-Mg-Si alloy product
US7815758B2 (en) 2002-08-20 2010-10-19 Aleris Aluminum Koblenz Gmbh High damage tolerant Al-Cu alloy
EP2458026A1 (fr) * 2004-07-15 2012-05-30 Alcoa Inc. Alliages de la série 2000 présentant une tolérance aux dommages accrus d'efficacité pour des applications aérospatiales
WO2007048565A1 (fr) * 2005-10-25 2007-05-03 Aleris Aluminum Koblenz Gmbh Alliage al-cu-mg adapte a une application aerospatiale
CN105239029A (zh) * 2015-10-23 2016-01-13 苏州有色金属研究院有限公司 控制Al-Cu-Mg-Mn合金中含Mn相均匀弥散析出的热处理方法
CN105463349A (zh) * 2015-11-24 2016-04-06 苏州有色金属研究院有限公司 改善2×××-t3板疲劳裂纹扩展速率的热处理方法

Also Published As

Publication number Publication date
FR2843755B1 (fr) 2007-01-19
GB2406576B (en) 2006-03-22
DE10393144T5 (de) 2005-08-18
CA2493403A1 (fr) 2004-03-04
US20040099353A1 (en) 2004-05-27
CN100340687C (zh) 2007-10-03
US20080121317A1 (en) 2008-05-29
AU2003264120A1 (en) 2004-03-11
GB0502069D0 (en) 2005-03-09
CN1675390A (zh) 2005-09-28
FR2843755A1 (fr) 2004-02-27
BR0313640A (pt) 2005-06-21
US7323068B2 (en) 2008-01-29
US7815758B2 (en) 2010-10-19
BR0313640B1 (pt) 2014-06-10
CA2493403C (fr) 2012-11-27
GB2406576A (en) 2005-04-06

Similar Documents

Publication Publication Date Title
CA2493403C (fr) Alliage al-cu a haute resistance aux deteriorations
CA2493401C (fr) Alliage al-cu-mg-si et procede de production
US7494552B2 (en) Al-Cu alloy with high toughness
RU2404276C2 (ru) ПРОДУКТ ИЗ ВЫСОКОПРОЧНОГО, ВЫСОКОВЯЗКОГО Al-Zn СПЛАВА И СПОСОБ ИЗГОТОВЛЕНИЯ ТАКОГО ПРОДУКТА
JP4903039B2 (ja) 特に航空宇宙用途向けの、耐損傷性が高いアルミニウム合金製品
US10968501B2 (en) Transformation process of Al—Cu—Li alloy sheets
EP0656956B1 (fr) Alliage d&#39;aluminium resistant contenant du cuivre et du magnesium
JP5052895B2 (ja) 高耐損傷性アルミニウム合金の製造方法
US20060174980A1 (en) High-strength, high toughness Al-Zn alloy product and method for producing such product
JP2008516079A5 (fr)
US11174535B2 (en) Isotropic plates made from aluminum-copper-lithium alloy for manufacturing aircraft fuselages
US20190316232A1 (en) Lower wing skin metal with improved damage tolerance properties
US20060032560A1 (en) Method for producing a high damage tolerant aluminium alloy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2493403

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 0502069

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20030819

WWE Wipo information: entry into national phase

Ref document number: 20038195860

Country of ref document: CN

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP