WO2004018721A1 - Alliage al-cu de grande durete - Google Patents

Alliage al-cu de grande durete Download PDF

Info

Publication number
WO2004018721A1
WO2004018721A1 PCT/EP2003/009535 EP0309535W WO2004018721A1 WO 2004018721 A1 WO2004018721 A1 WO 2004018721A1 EP 0309535 W EP0309535 W EP 0309535W WO 2004018721 A1 WO2004018721 A1 WO 2004018721A1
Authority
WO
WIPO (PCT)
Prior art keywords
range
alloy
weight
rolled
product according
Prior art date
Application number
PCT/EP2003/009535
Other languages
English (en)
Inventor
Rinze Benedictus
Christian Joachim Keidel
Alfred Ludwig Heinz
Alfred Johann Peter Haszler
Hinrich Johannes Wilhelm Hargarter
Original Assignee
Corus Aluminium Walzprodukte Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corus Aluminium Walzprodukte Gmbh filed Critical Corus Aluminium Walzprodukte Gmbh
Priority to DE10393072T priority Critical patent/DE10393072T5/de
Priority to AU2003270117A priority patent/AU2003270117A1/en
Priority to CA2493399A priority patent/CA2493399C/fr
Priority to BR0313637-0A priority patent/BR0313637A/pt
Priority to GB0502073A priority patent/GB2406578B/en
Publication of WO2004018721A1 publication Critical patent/WO2004018721A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/057Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with copper as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/12Alloys based on aluminium with copper as the next major constituent
    • C22C21/16Alloys based on aluminium with copper as the next major constituent with magnesium

Definitions

  • the present invention relates to an aluminium-copper alloy having improved combinations of toughness and strength while maintaining good resistance to fatigue crack growth, a method for producing an copper-copper alloy with high toughness and an improved strength and to a rolled, forged or extruded copper-copper alloy sheet or plate product with high toughness and an improved strength for aeronautical applications. More specifically, the present invention relates to a high damage tolerant (“HDT") copper-copper alloy designated by the Aluminium Association (“AA”)2xxx- series for structural aeronautical applications with improved properties such as fatigue crack growth resistance, strength and fracture toughness.
  • the alloy according to the invention is preferably useful for aeronautical plate applications. More specifically, the invention relates to a rolled, forged or extruded alloy product suitable to be used as fuselage skin or lower wing skin of an aircraft.
  • Aluminium alloys AA2024, AA2324 and AA2524 are well known heat treatable aluminium alloys which have useful strength and toughness properties in T3, T39 and T351 tempers. Heat treatment is an important means for enhancing the strength of aluminium alloys. It is known in the art to vary the extent of enhancement by altering the type and amount of alloying constituents present. Copper and magnesium are two important alloying constituents. The design of a commercial aircraft requires various properties for different types of structures on the aircraft.
  • a rolled alloy product either used as a sheet or as a plate with an improved damage tolerance will improve the safety of the passengers, will reduce the weight of the aircraft and thereby improve the fuel economy which translates to a longer flight range, lower costs and less frequent maintenance intervals.
  • US-5,593,516 discloses a high damage tolerant Al-Cu alloy with a balanced chemistry comprising essentially the following composition (in weight %): Cu 2.5 - 5.5
  • Mn up to 0.8 balance aluminium and unavoidable impurities. It also discloses T6 and T8 tempers of such alloys which gives high strength to a rolled product made of such alloy.
  • EP-0473122 as well as US-5,213,639, disclose an aluminium base alloy comprising essentially the following composition (in weight %): Cu 3.8 - 4.5
  • US-5,213,639 discloses an inter-anneal treatment after hot rolling the cast ingot with a temperature between 479°C and 524°C and again hot rolling the inter-annealed alloy. Such alloy appear to show a 5% improvement over the above mentioned conventional 2024-alloy in T-L fracture toughness and an improved fatigue crack growth resistance at certain ⁇ K-levels.
  • EP-1045043 describes an copper-copper alloy of the general 2024-type which is highly deformable and which comprises essentially the following composition (in weight %):
  • Such alloy shows an enhanced combination of strength, fatigue crack growth resistance, toughness and corrosion resistance.
  • the alloy may be used for rolled, extruded or forged products wherein the addition of zirconium adds strength to the alloy composition (R m /R p (L) >
  • EP-A-1114877 discloses another aluminium alloy composition of the AA2xxx- type alloys for fuselage skin and lower wing applications having essentially the following composition (in weight %): Cu 4.6 - 5.3 Mg 0.1 - 0.5
  • the method includes a solution heat treatment, stretching and annealing.
  • Such alloy has been mentioned as being useful for thick plate applications such as wing structures of airplanes.
  • the levels of magnesium are below 0.5 weight % wherein it is disclosed that such low magnesium level is advantageous for age formability. However, it is believed that such low magnesium levels have a negative influence with regard to the alloy's resistance to corrosion, its response to natural aging and its strength level.
  • US-5,879,475 discloses an age-hardenable magnesium-copper-magnesium alloy suitable for aerospace applications.
  • Such alloy comprises essentially the following composition (in weight %): Cu 4.85 - 5.3 Mg 0.5 - 1.0 Mn 0.4 - 0.8 Ag 0.2 - 0.8
  • the alloy is substantially vanadium-free and lithium-free wherein the non-presence of vanadium has been reported as being advantageous for the observed typical strength values.
  • the addition of silver has been reported as to enhance the achievable strength levels of T6-type tempers.
  • such alloy has the disadvantage that it is quite expensive for applications such as structural members of an aircraft even though it is reported to be suitable for higher temperature applications such as aircraft disc rotors, calipers, brake drums or other high temperature vehicular applications.
  • FCGR fatigue crack growth rate
  • the present invention preferably solves one or more of the above-mentioned objects.
  • an copper-copper alloy rolled product with high toughness and an improved strength comprising the following composition (in weight %): Cu 4.5 - 5.5 Mg 0.5 - 1.6
  • the alloy is substantially Ag-free, and wherein b) the amount (in weight %) of magnesium is in a range of 1.0 to 1.6, or alternatively the amount (in weight %) of magnesium is in a range of 0.50 to 1.2 and the amount of dispersoid forming elements, such as Cr, Zr or Mn, is controlled and (in weight %) is in a range of 0.10 to 0.70.
  • the alloy product of the present invention has preferably one or more dispersoid forming elements wherein the amount of these dispersoid forming elements, and which are preferably selected from the group consisting of Cr, Zr and Mn, is controlled and are present in a range of (in weight %) 0.10 to 0.70.
  • dispersoid forming elements By controlling the amount of dispersoid forming elements and/or by selecting a specific amount of magnesium it is possible to obtain a very high toughness by using high levels of copper thereby maintaining good strength levels, a good fatigue crack growth resistance and maintaining the corrosion resistance of the alloy product.
  • the present invention either uses (i) an amount of magnesium which is above 1.0 (in weight %) but below 1.6 with or without dispersoid forming elements such as Cr, Zr and Mn, or alternatively (ii) the amount of magnesium is selected in range of below 1.2 while adding one or more dispersoid forming elements which are controlled in a specific range as described in more detail below.
  • the alloy of the present invention preferably comprises Mn-containing dispersoids wherein said Mn-containing dispersoids are in a more preferred embodiment at least partially replaced by Zr- containing dispersoids and/or by Cr-containing dispersoids. It has surprisingly been found that lower levels of manganese result in a higher toughness and an improved fatigue crack growth resistance. More specifically, the alloy product of the present invention has a significantly improved toughness while using low amounts of manganese and controlled amounts of magnesium. Hence, it is important to carefully control the chemistry of the alloy.
  • the amount (in weight %) of manganese is preferably in a range of 0.30 to 0.60, most preferably in a range of 0.45 to 0.55. The higher ranges are in particular preferred when no other dispersoid forming elements are present.
  • Manganese contributes to or aids in grain size control during operations that can cause the alloy microstructure to recrystallize. The preferred levels of manganese are lower than those conventionally used in AA2x24-type alloys while still resulting in sufficient strength and improved toughness. Here, it is important to control the amount of manganese also in relation to other dispersoid forming elements such as zirconium or chromium.
  • the amount (in weight %) of copper is preferably in a range of 4.6 to 5.1. Copper is an important element for adding strength to the alloy. It has been found that a copper content of above 4.5 adds strength and toughness to the alloy while the formability and corrosion performance may still be balanced with the level of magnesium and the dispersoid forming elements.
  • the preferred amount (in weight %) of magnesium is either (i) in a range of 1.0 to 1.5, more preferably in a range of 1.0 to 1.2, or alternatively (ii) in a preferred range of 0.9 to 1.2, most preferably in a range of 1 .0 to 1.2 when the amount of dispersoid forming elements such as Cr, Zr or Mn is controlled and (in weight %) in a range of 0.10 to 0.70.
  • Magnesium provides also strength to the alloy product.
  • the preferred amount (in weight %) of zirconium is in a range of 0.08 to 0.15, most preferably in a range of about 0.10.
  • the preferred amount (in weight %) of chromium is also in a range of 0.08 to 0.15, most preferably in a range of about 0.10.
  • Zirconium may at least partially be replaced by chromium with the preferred proviso that [Zr]+[Cr] ⁇ 0.30, and more preferably ⁇ 0.25.
  • more elongated grains may be obtained which also results in an improved fatigue crack growth resistance.
  • the balance of zirconium and chromium as well as the partial replacement of Mn-containing dispersoids and Zr-containing dispersoids result in an improved recrystallization behaviour.
  • the copper and magnesium window can be further extended to lower levels. While US-5, 593,516 is teaching to maintain the copper and magnesium level below the solubility limit it has surprisingly been found that it is possible to choose copper and magnesium levels above the solubility limit with controlling the dispersoid forming elements and hence obtaining very high values of toughness and maintaining good strength levels.
  • a preferred alloy composition of the present invention comprises the following composition (in weight %): Cu 4.6 - 4.9 Mn 0.48 - 0.52
  • Another preferred alloy according to the present invention comprises the following composition (in weight %): Cu about 4.2 Mn 0.45 - 0.65
  • an alloy according to the present invention comprises the following composition (in weight %): Cu: 4.0 - 4.2 Mn: 0.30 - 0.32 Mg: 1.12 - 1.16 Zr: about 0.10
  • each impurity element is present at 0.05% max., and the total of impurities should be below 0.20% max.
  • the alloy according to the present invention may further comprise one or more of the elements Zn, Hf, V, Sc, Ti or Li, the total amount less than 1.00 (in weight %), and preferably less than 0.50%. These additional elements may be added to further improve the balance of the chemistry and/or to enhance the forming of dispersoids.
  • the alloy rolled products have a recrystallized microstructure meaning that 75% or more, and preferably more than 80% of the grains in a T3 temper, e.g. T39 or T351 , are recrystallized.
  • the grains have an average length to width aspect ratio of smaller than about 4 to 1 , and typically smaller than about 3 to 1, and more preferably smaller than about 2 to 1. Observations of these grains may be done, for example, by optical microscopy at 50x to 100x in properly polished and etched samples observed through the thickness in the longitudinal orientation.
  • a method for producing an copper-copper alloy as set out above with high toughness and an improved strength according to the invention comprises the steps of: a) casting an ingot with the following composition (in weight percent): Cu: 4.5 - 5.5 Mg: 0.5 - 1.6
  • Mn ⁇ 0.80, and preferably ⁇ 0.60 Zr: ⁇ 0.18
  • Si ⁇ 0.15, and preferably ⁇ 0.10
  • Fe ⁇ 0.15, and preferably ⁇ 0.10, the balance essentially aluminium and incidental elements and impurities, wherein a1) the amount (in weight %) of magnesium is in a range of 1.0 to 1.6, or a2) the amount (in weight %) of magnesium is in a range of 0.50 to 1.2 and the amount of dispersoid forming elements such as Cr, Zr or Mn is controlled and (in weight %) in a range of 0.10 to 0.70, b) homogenizing and/or pre-heating the ingot after casting, c) hot rolling or hot deforming the ingot and optionally cold rolling into a rolled product, d) solution heat treating, e) optionally quenching the heat treated product, f) stretching the quenched product, and g) naturally ageing the rolled and heat-treated product.
  • the ingot After hot rolling the ingot it is possible to anneal and/or reheat the hot rolled ingot and again hot rolling the rolled ingot. It is believed that such re-heating or annealing enhances the fatigue crack growth resistance by producing elongated grains which - when recrystallized - maintain a high level of toughness and good strength. It is furthermore possible to conduct a solution heat treatment between hot rolling and cold rolling at the same temperatures and times as during homogenization, e.g. 1 to 5 hours at 460°C and about 24 hours at 490°C.
  • the hot rolled ingot is preferably inter- annealed before and/or during cold rolling to further enhance the ordering of the grains. Such inter-annealing is preferably done at a gauge of app.
  • the present invention provides also a rolled, forged or extruded copper-copper alloy sheet or plate product with a high toughness and an improved strength with an alloy composition as described above or which is produced in accordance with the method as described above.
  • the rolled alloy sheet product has preferably a gauge of around 2.0 mm to 12 mm for applications such as fuselage skin and about 25 mm to 50 mm for applications such as lower wing skin.
  • a rolled plate product according to the present invention from which aerospace structural parts may be machined.
  • the present invention also supplies an improved aircraft structural member produced from a rolled, forged or extruded copper-copper alloy plate or sheet with an alloy composition as described above and/or produced in accordance with a method as described above.
  • the alloys have been processed to a 2.0 mm sheet in the T351 temper.
  • the cast ingots were homogenized at about 490°C, and then hot rolled at 410°C. Alloys No. 5 and 6 hot deformed at about 460°C.
  • Table 3 shows that the Alloys 1 to 7 exhibit significantly higher toughness properties than the reference alloys AA2024 or AA2524. From alloys 6 and 7 it can be seen that lower levels of manganese and the replacement of Mn-forming dispersoids by Cr- forming dispersoids and/or Zr-forming dispersoids exhibit better properties than alloys with higher levels of manganese. At the same time it is possible to still maintain levels of manganese in a range of 0.50 to 0.55 when the levels of copper are above 4.5. In that case the toughness is as good as adding dispersoid forming elements and using lower levels of copper and manganese.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Metal Rolling (AREA)
  • Materials For Photolithography (AREA)
  • Complex Calculations (AREA)

Abstract

L'invention concerne un alliage AI-Cu des alliages de série AA2000 de grande dureté et de résistance améliorée. Cet alliage a la composition suivante (en pourcentages en poids) : Cu 4.5 - 5.5, Mg 0.5 - 1.6, Mn = 0.80, Zr = 0.18, Cr = 0.18, Si < 0.15, Fe = 0.15, le reste étant principalement de l'aluminium ainsi que des éléments incidents et des impuretés. La quantité ( % en poids) de magnésium est soit (a) dans une fourchette de 1.0 à 1.6 %, soit (b) dans une fourchette de 0.50 à 1.2 % lorsque la quantité d'éléments formant le dispersoïde est telle que Cr, Zr ou Mn est limité, dans une fourchette de 0.10 à 0.70 % ( % en poids).
PCT/EP2003/009535 2002-08-20 2003-08-19 Alliage al-cu de grande durete WO2004018721A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE10393072T DE10393072T5 (de) 2002-08-20 2003-08-19 Al-Cu-Legierung mit hoher Zähigkeit
AU2003270117A AU2003270117A1 (en) 2002-08-20 2003-08-19 Al-Cu ALLOY WITH HIGH TOUGHNESS
CA2493399A CA2493399C (fr) 2002-08-20 2003-08-19 Alliage al-cu de grande durete
BR0313637-0A BR0313637A (pt) 2002-08-20 2003-08-19 Liga de al-cu com alta dureza
GB0502073A GB2406578B (en) 2002-08-20 2003-08-19 Al-Cu alloy with high toughness

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP02078445 2002-08-20
EP02078445.0 2002-08-20

Publications (1)

Publication Number Publication Date
WO2004018721A1 true WO2004018721A1 (fr) 2004-03-04

Family

ID=31896920

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/009535 WO2004018721A1 (fr) 2002-08-20 2003-08-19 Alliage al-cu de grande durete

Country Status (8)

Country Link
US (1) US7494552B2 (fr)
CN (1) CN1325682C (fr)
AU (1) AU2003270117A1 (fr)
BR (1) BR0313637A (fr)
CA (1) CA2493399C (fr)
DE (1) DE10393072T5 (fr)
GB (1) GB2406578B (fr)
WO (1) WO2004018721A1 (fr)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2858984A1 (fr) * 2003-08-19 2005-02-25 Corus Aluminium Walzprod Gmbh Produit en alliage ai-cu a haute tenacite et son procede de production
US7494552B2 (en) 2002-08-20 2009-02-24 Aleris Aluminum Koblenz Gmbh Al-Cu alloy with high toughness
WO2010003349A1 (fr) * 2008-07-09 2010-01-14 贵州铝厂 Matière d'alliage d'aluminium de fonderie à haute résistance
WO2010085678A1 (fr) * 2009-01-22 2010-07-29 Alcoa Inc. Alliages améliorés d'aluminium-cuivre contenant du vanadium
CN102206794A (zh) * 2011-04-14 2011-10-05 中南大学 提高固溶冷变形后时效强化铝铜镁银合金力学性能的方法
WO2020123096A3 (fr) * 2018-11-16 2020-08-27 Arconic Inc. Alliages d'aluminium 2xxx
WO2020247178A1 (fr) * 2019-06-06 2020-12-10 Arconic Technologies Llc Alliages d'aluminium renfermant du silicium, du magnésium, du cuivre et du zinc

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7323068B2 (en) * 2002-08-20 2008-01-29 Aleris Aluminum Koblenz Gmbh High damage tolerant Al-Cu alloy
US7604704B2 (en) * 2002-08-20 2009-10-20 Aleris Aluminum Koblenz Gmbh Balanced Al-Cu-Mg-Si alloy product
US20070151637A1 (en) * 2005-10-28 2007-07-05 Aleris Aluminum Koblenz Gmbh Al-Cu-Mg ALLOY SUITABLE FOR AEROSPACE APPLICATION
US9163304B2 (en) * 2010-04-20 2015-10-20 Alcoa Inc. High strength forged aluminum alloy products
EP2559779B1 (fr) * 2011-08-17 2016-01-13 Otto Fuchs KG Alliage d'Al-Cu-Mg-Ag résistant à la chaleur et procédé de fabrication d'un demi-produit ou d'un produit à partir d'un tel alliage d'aluminium
CN102492902A (zh) * 2011-12-30 2012-06-13 西南铝业(集团)有限责任公司 一种铝合金板生产方法
CN102787263B (zh) * 2012-08-23 2014-06-04 东北轻合金有限责任公司 一种高抗剪强度和高断后伸长率的航天用铝合金铆钉棒材的制造方法
CN104233011B (zh) * 2014-10-11 2017-02-15 山东裕航特种合金装备有限公司 一种铸造铝合金
US10030294B2 (en) * 2015-02-16 2018-07-24 The Boeing Company Method for manufacturing anodized aluminum alloy parts without surface discoloration
CN104975213B (zh) * 2015-06-12 2017-04-12 浙江米皇铝业股份有限公司 一种环保高韧性硬铝合金型材生产工艺
CN105002408A (zh) * 2015-07-12 2015-10-28 河北钢研德凯科技有限公司 一种优质高强铸造铝合金材料及制备方法
CN105420569A (zh) * 2015-11-24 2016-03-23 中北大学 高强高韧新型Al-Cu合金
CN106834988B (zh) * 2017-01-24 2018-07-27 湖南人文科技学院 一种铝铜镁合金获得高综合性能的热机械处理工艺
WO2018157159A1 (fr) * 2017-02-27 2018-08-30 Arconic Inc. Compositions d'alliage d'aluminium, produits et leurs procédés de fabrication
CN107236917B (zh) * 2017-07-04 2019-02-19 江苏理工学院 一种铝合金形变热处理方法
CN110894580A (zh) * 2018-09-12 2020-03-20 中南大学 一种提高退火态铝铜合金板材强度和韧性的热处理方法
CN110423966B (zh) * 2019-07-29 2020-09-22 中国航发北京航空材料研究院 一种提高铝锂合金产品综合性能的制备工艺
CN110527883B (zh) * 2019-09-18 2021-06-29 江苏集萃精凯高端装备技术有限公司 一种含Cu-Mn-Mg的耐高温铸造铝合金及其制备方法
CN113073242B (zh) * 2021-03-26 2022-05-03 鹰潭市林兴建材有限公司 一种导电性能良好的铝合金材料的生产方法
CN113403514B (zh) * 2021-06-11 2022-07-01 南昌大学 一种高强铸造铝合金及制备方法
CN114752831B (zh) * 2022-03-24 2023-04-07 中南大学 一种高强度耐蚀铝合金及其制备方法和应用
CN114892053B (zh) * 2022-04-18 2023-07-21 中国兵器科学研究院宁波分院 一种用于增材制造的高强韧铝铜镁合金及其产品的热处理方法
CN115261752B (zh) * 2022-07-20 2023-07-18 重庆大学 一种高强2024铝合金加工工艺及高强2024铝合金

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4294625A (en) * 1978-12-29 1981-10-13 The Boeing Company Aluminum alloy products and methods
EP0731185A1 (fr) * 1995-03-10 1996-09-11 Pechiney Rhenalu TÔles en alliage Al-Cu-Mg à faible niveau de contraintes résiduelles
US5593516A (en) * 1992-08-28 1997-01-14 Reynolds Metals Company High strength, high toughness aluminum-copper-magnesium-type aluminum alloy
US5759302A (en) * 1995-04-14 1998-06-02 Kabushiki Kaisha Kobe Seiko Sho Heat treatable Al alloys excellent in fracture touchness, fatigue characteristic and formability
US5879475A (en) * 1995-03-22 1999-03-09 Aluminum Company Of America Vanadium-free, lithium-free aluminum alloy suitable for forged aerospace products
EP0989195A1 (fr) * 1998-09-25 2000-03-29 Alusuisse Technology &amp; Management AG Alliage à base d'alumium de type AlCuMg resistant à la chaleur
US20010006082A1 (en) * 1999-12-28 2001-07-05 Timothy Warner Aircraft structure element made of an Al-Cu-Mg alloy
EP1170394A2 (fr) * 2000-06-12 2002-01-09 Alcoa Inc. Tôles d'aluminium présentant une résistance en fatigue améliorée et leur méthode de production
US20020031681A1 (en) * 1998-12-22 2002-03-14 Heinz Alfred Ludwig Damage tolerant aluminum alloy product and method of its manufacture

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3826688A (en) * 1971-01-08 1974-07-30 Reynolds Metals Co Aluminum alloy system
US4336075A (en) * 1979-12-28 1982-06-22 The Boeing Company Aluminum alloy products and method of making same
JPS6067636A (ja) 1983-09-20 1985-04-18 Sumitomo Light Metal Ind Ltd Vtrシリンダ−用アルミニウム合金
JPS60251260A (ja) 1984-05-26 1985-12-11 Kobe Steel Ltd 超塑性アルミニウム合金の製造方法
BR9103666A (pt) 1990-08-27 1992-05-19 Aluminum Co Of America Metodo de producao de um produto de folha de liga a base de aluminio e produto feito pelo dito metodo
US5213639A (en) * 1990-08-27 1993-05-25 Aluminum Company Of America Damage tolerant aluminum alloy products useful for aircraft applications such as skin
CA2056750A1 (fr) 1990-12-03 1992-06-04 Delbert M. Naser Materiau en feuille pour aeronef
US6262022B1 (en) 1992-06-25 2001-07-17 Novartis Ag Pharmaceutical compositions containing cyclosporin as the active agent
JPH07252574A (ja) * 1994-03-17 1995-10-03 Kobe Steel Ltd 靭性に優れたAl−Cu−Mg系合金及びその製造方法
US5679564A (en) * 1994-10-05 1997-10-21 Antex Biologics, Inc. Methods for producing enhanced antigenic campylobacter bacteria and vaccines
EP0723033A1 (fr) 1995-01-19 1996-07-24 Hoogovens Aluminium Walzprodukte GmbH Procédé de fabrication d'une tÔle forte en alliage d'aluminium
US5897720A (en) * 1995-03-21 1999-04-27 Kaiser Aluminum & Chemical Corporation Aluminum-copper-magnesium-manganese alloy useful for aircraft applications
AU5422096A (en) * 1995-03-21 1996-10-08 Kaiser Aluminum & Chemical Corporation A method of manufacturing aluminum aircraft sheet
US5863359A (en) * 1995-06-09 1999-01-26 Aluminum Company Of America Aluminum alloy products suited for commercial jet aircraft wing members
US6077363A (en) * 1996-06-17 2000-06-20 Pechiney Rhenalu Al-Cu-Mg sheet metals with low levels of residual stress
JPH1017976A (ja) 1996-06-27 1998-01-20 Pechiney Rhenalu 残留応力レベルの低いAl−Cu−Mg合金鋼板
JP4781536B2 (ja) 1998-12-22 2011-09-28 アレリス、アルミナム、コブレンツ、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 損傷許容性アルミニウム合金製品およびその製造方法
US6277219B1 (en) * 1998-12-22 2001-08-21 Corus Aluminium Walzprodukte Gmbh Damage tolerant aluminum alloy product and method of its manufacture
US6325869B1 (en) * 1999-01-15 2001-12-04 Alcoa Inc. Aluminum alloy extrusions having a substantially unrecrystallized structure
FR2789405A1 (fr) 1999-02-04 2000-08-11 Pechiney Rhenalu PRODUIT EN ALLIAGE AlCuMg POUR ELEMENT DE STRUCTURE D'AVION
FR2789406B1 (fr) * 1999-02-04 2001-03-23 Pechiney Rhenalu PRODUIT EN ALLIAGE AlCuMg POUR ELEMENT DE STRUCTURE D'AVION
FR2792001B1 (fr) 1999-04-12 2001-05-18 Pechiney Rhenalu Procede de fabrication de pieces de forme en alliage d'aluminium type 2024
US20030226935A1 (en) * 2001-11-02 2003-12-11 Garratt Matthew D. Structural members having improved resistance to fatigue crack growth
WO2004005562A2 (fr) * 2002-07-09 2004-01-15 Pechiney Rhenalu Alliages a base d'aluminium, de cuivre et de magnesium (alcumg), hautement insensibles aux defaillances et utilisables comme elements de structure d'un aeronef
US7604704B2 (en) * 2002-08-20 2009-10-20 Aleris Aluminum Koblenz Gmbh Balanced Al-Cu-Mg-Si alloy product
US7323068B2 (en) * 2002-08-20 2008-01-29 Aleris Aluminum Koblenz Gmbh High damage tolerant Al-Cu alloy
US7494552B2 (en) 2002-08-20 2009-02-24 Aleris Aluminum Koblenz Gmbh Al-Cu alloy with high toughness

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4294625A (en) * 1978-12-29 1981-10-13 The Boeing Company Aluminum alloy products and methods
US5593516A (en) * 1992-08-28 1997-01-14 Reynolds Metals Company High strength, high toughness aluminum-copper-magnesium-type aluminum alloy
EP0731185A1 (fr) * 1995-03-10 1996-09-11 Pechiney Rhenalu TÔles en alliage Al-Cu-Mg à faible niveau de contraintes résiduelles
US5879475A (en) * 1995-03-22 1999-03-09 Aluminum Company Of America Vanadium-free, lithium-free aluminum alloy suitable for forged aerospace products
US5759302A (en) * 1995-04-14 1998-06-02 Kabushiki Kaisha Kobe Seiko Sho Heat treatable Al alloys excellent in fracture touchness, fatigue characteristic and formability
EP0989195A1 (fr) * 1998-09-25 2000-03-29 Alusuisse Technology &amp; Management AG Alliage à base d'alumium de type AlCuMg resistant à la chaleur
US20020031681A1 (en) * 1998-12-22 2002-03-14 Heinz Alfred Ludwig Damage tolerant aluminum alloy product and method of its manufacture
US20010006082A1 (en) * 1999-12-28 2001-07-05 Timothy Warner Aircraft structure element made of an Al-Cu-Mg alloy
EP1170394A2 (fr) * 2000-06-12 2002-01-09 Alcoa Inc. Tôles d'aluminium présentant une résistance en fatigue améliorée et leur méthode de production

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAVIS J.R.: "ASM Speciality Handbook - Aluminum and Aluminum Alloys", 1996, ASM, OHIO, USA, ISBN: 0-87170-496, XP002266795 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7494552B2 (en) 2002-08-20 2009-02-24 Aleris Aluminum Koblenz Gmbh Al-Cu alloy with high toughness
FR2858984A1 (fr) * 2003-08-19 2005-02-25 Corus Aluminium Walzprod Gmbh Produit en alliage ai-cu a haute tenacite et son procede de production
WO2010003349A1 (fr) * 2008-07-09 2010-01-14 贵州铝厂 Matière d'alliage d'aluminium de fonderie à haute résistance
WO2010085678A1 (fr) * 2009-01-22 2010-07-29 Alcoa Inc. Alliages améliorés d'aluminium-cuivre contenant du vanadium
US8287668B2 (en) 2009-01-22 2012-10-16 Alcoa, Inc. Aluminum-copper alloys containing vanadium
CN102206794A (zh) * 2011-04-14 2011-10-05 中南大学 提高固溶冷变形后时效强化铝铜镁银合金力学性能的方法
WO2020123096A3 (fr) * 2018-11-16 2020-08-27 Arconic Inc. Alliages d'aluminium 2xxx
WO2020247178A1 (fr) * 2019-06-06 2020-12-10 Arconic Technologies Llc Alliages d'aluminium renfermant du silicium, du magnésium, du cuivre et du zinc

Also Published As

Publication number Publication date
US20040060618A1 (en) 2004-04-01
GB2406578A (en) 2005-04-06
GB2406578B (en) 2006-04-26
CA2493399A1 (fr) 2004-03-04
AU2003270117A1 (en) 2004-03-11
BR0313637A (pt) 2005-09-27
CN1325682C (zh) 2007-07-11
CA2493399C (fr) 2010-04-13
CN1675389A (zh) 2005-09-28
US7494552B2 (en) 2009-02-24
GB0502073D0 (en) 2005-03-09
US20080060724A2 (en) 2008-03-13
DE10393072T5 (de) 2005-10-20

Similar Documents

Publication Publication Date Title
CA2493399C (fr) Alliage al-cu de grande durete
CA2493403C (fr) Alliage al-cu a haute resistance aux deteriorations
CA2493401C (fr) Alliage al-cu-mg-si et procede de production
US8043445B2 (en) High-damage tolerant alloy product in particular for aerospace applications
EP0656956B1 (fr) Alliage d&#39;aluminium resistant contenant du cuivre et du magnesium
EP1831415B2 (fr) Procédé de fabrication d&#39;un alliage de al-zn à haute résistance et de grande durete
CA2485524C (fr) Procede de production d&#39;un alliage al-zn-mg-cu a haute resistance
CA2539605C (fr) Methode de production d&#39;un alliage d&#39;aluminium hautement tolerant aux dommages
CA2880692A1 (fr) Alliages d&#39;aluminium lithium de serie 2xxx
US20060032560A1 (en) Method for producing a high damage tolerant aluminium alloy

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2493399

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 0502073

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20030819

WWE Wipo information: entry into national phase

Ref document number: 20038195852

Country of ref document: CN

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

ENP Entry into the national phase

Ref document number: PI0313637

Country of ref document: BR

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP