WO2004018680A1 - 腫瘍抗原のスクリーニング方法 - Google Patents

腫瘍抗原のスクリーニング方法 Download PDF

Info

Publication number
WO2004018680A1
WO2004018680A1 PCT/JP2003/008981 JP0308981W WO2004018680A1 WO 2004018680 A1 WO2004018680 A1 WO 2004018680A1 JP 0308981 W JP0308981 W JP 0308981W WO 2004018680 A1 WO2004018680 A1 WO 2004018680A1
Authority
WO
WIPO (PCT)
Prior art keywords
tumor
tumor antigen
protein
peptide
seq
Prior art date
Application number
PCT/JP2003/008981
Other languages
English (en)
French (fr)
Inventor
Masahiro Toda
Yutaka Kawakami
Yukihiko Iizuka
Original Assignee
Institute Of Gene And Brain Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute Of Gene And Brain Science filed Critical Institute Of Gene And Brain Science
Priority to AU2003290625A priority Critical patent/AU2003290625A1/en
Publication of WO2004018680A1 publication Critical patent/WO2004018680A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/0005Vertebrate antigens
    • A61K39/0011Cancer antigens
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/574Immunoassay; Biospecific binding assay; Materials therefor for cancer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2710/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
    • C12N2710/00011Details
    • C12N2710/16011Herpesviridae
    • C12N2710/16611Simplexvirus, e.g. human herpesvirus 1, 2
    • C12N2710/16632Use of virus as therapeutic agent, other than vaccine, e.g. as cytolytic agent

Definitions

  • the present invention relates to a method for screening a tumor antigen using simple herpes virus (HSV) or HSV glycoprotein, a tumor antigen obtained by the screening method, and a use of the tumor tumor tumor antigen.
  • HSV herpes virus
  • Induction of tumor-specific immunity can prevent tumor recurrence in the long term, but such immunotherapy basically involves the presence or absence of tumor-specific antigens and cytotoxicity that presents antigens and recognizes tumor cells. It depends on whether a sexual immune response can be induced.
  • Cytotoxic T lymphocytes CTLs
  • CTLs Cytotoxic T lymphocytes
  • Tumor-specific antigens have been detected in various human tumors (Annu. Rev. Immunol. 12, 337-365, 1994, Adv. Immunol. 57, 281-351, 1994).
  • Treatment with cancer vaccines has focused on the use of inactivated tumor cells, or lysates thereof, administered in combination with adjuvants or cytokines. Recently, it has been reported that the transduction of various site-in, MHC molecules, costimulatory molecules or tumor antigens into tumor cells enhances the visibility of tumor cells to immune effector cells. (Adv. Immunol. 58, 417-454, 1995).
  • HSV in situ cancer vaccine
  • HSV is a double-stranded DNA virus that has the longest genome (153 kb) among DNA viruses that grow in the nucleus and encodes 84 open reading frames.
  • the genome is composed of an L (long) region and an S (short) region, and each unique sequence exists with inverted repeats flanked on both sides.
  • the entire nucleotide sequence of the viral genome has been determined, and the functions of most viral genes have been elucidated. Martuza et al. Reported that a deletion in the 34.5 gene and insertion of the 1 ac Z gene into the ICP6 gene resulted in a mutant herpes simplex virus type 1 (HSV-1) mutant.
  • Virus G207 was developed (Nat. Med. 1938, 1995).
  • G207 is superior in therapeutic terms to other viral vectors. G207 is replicated in dividing cells, resulting in the lysis and death of infected cells, while the proliferation of non-dividing cells is significantly diminished. Inoculation of G207 into a tumor established in an athymic mouse suppressed tumor growth by tumor-selective replication and prolonged the life of the mouse (Cancer Res. 55, 4752, 1995). In sexual mice, inoculation of G207 intratumorally induces a tumor-specific immune response and also suppresses the growth of tumors not inoculated with G207 (Hum. Gene Ther., 9, 2177). -85, 1999). In this case, G207 functions as an in situ cancer vaccine.
  • CD8 + T cell recognition antigens can be isolated by the SEREX method. You.
  • Cancer metastasis is an extremely difficult disease to treat, and there is no effective treatment to date and some chemotherapeutic agents have been reported to be effective, but their side effects are problematic. .
  • gene therapy technology using virus vectors has been dramatically developed, but there remains a major problem in terms of safety.
  • An object of the present invention is to provide a method for screening a tumor antigen capable of inducing an anti-tumor immune response capable of immunotherapy against cancer, such as a method for exhibiting an anti-tumor effect even on a distant human tumor such as a metastatic tumor,
  • An object of the present invention is to provide a tumor antigen obtained by the Ning method and a gene encoding the same.
  • Type HSV is subjected to ultraviolet irradiation and heat treatment to prepare inactivated HSV in which infectivity is completely lost and virus DNA is destroyed, and the inactivated HSV is used as an in situ cancer vaccine for tumor cells.
  • Direct inoculation of malignant tumor tissue with strain CT26 induces a tumor-specific immune response and regresses the malignant tumor, and can also suppress the growth of distant malignant tumors that were not directly inoculated (Japanese Patent Application No. 2002-2013).
  • Darioma malignant glioma
  • Darioma malignant glioma
  • CTLs are induced, and the induced CTLs are induced.
  • s and a tumor-derived cDNA library were used to screen for tumor antigens, and new tumor antigens were found.
  • tumor antigens were screened using sera of animals to which HSV was directly administered to glioma tumor tissues and a testis-derived cDNA library, and new tumor antigens were found.
  • the present invention has been completed based on such findings. Disclosure of the invention
  • the present invention provides a simple herpesvirus or simple herpesvirus glycoprotein which is directly administered to tumor tissue to produce tumor-specific cytotoxic T cells.
  • a method for screening a tumor antigen which comprises inducing lymphocytes (CTLs) and using the induced tumor-specific CTLs and a cDNA library derived from a tumor and Z or testis (claim) Item 1), or simple herpesvirus or simple herpesvirus daricoprotein is directly administered to tumor tissue to induce tumor-specific IgG, and the induced tumor-specific I a method for screening tumor antigens using a serum containing gG and a cDNA library derived from tumor and Z or testis (Claim 2); 3.
  • the method for screening a tumor antigen according to claim 1 or 2 wherein the simple herpes virus is a treated simple herpes virus, and the simple herpes virus glycoprotein is a simple herpes virus.
  • Swirlsdariko Screening method for tumor antigen according to claim 1 or 2 characterized in that the Rotein D related (claim 4).
  • the present invention also provides a tumor antigen (claim 5), which is obtained by the method for screening a tumor antigen according to any one of claims 1 to 4, and a tumor antigen gene M1G41, M1G60, M1G2, M1G35, M1G103, or MIG169 are proteins or / and peptides encoded by any of them, or human tumor antigen gene genes.
  • a DNA comprising an amino acid sequence in which several amino acids have been deleted, substituted or added, and which encodes a protein and Z or peptide having immunity inducing activity (Claim 11), SEQ ID NO: 1
  • DNAs containing part or all of the nucleotide sequence shown in SEQ ID NO: 3 or its complementary sequence, or a part or all of these sequences (Claim 12), and DNAs described in Claim 12 and hybridized under stringent end conditions Soybean, and relates DN A that encodes a protein and Z or base peptide having an immunity-inducing activity (claim 1 3).
  • the present invention provides a tumor antigen according to any one of claims 5 to 9, or an antibody that specifically binds to a protein and Z or a peptide (claim 14), or any one of claims 5 to 9.
  • a host cell comprising an expression system capable of expressing a tumor antigen or a protein and / or a peptide (Claim 15), or a tumor antigen or a protein according to any one of Claims 5 to 9
  • Non-human animal (claim 16), characterized in that the quality and function of the gene encoding Z or peptide are deficient on the chromosome or the gene is overexpressed, or any of claims 5 to 9
  • By in vitro Induced activated T cells by stimulation (claims 1-8) and, according to claim 5 tumor antigen according to any one
  • FIG. 1 is a diagram showing that the established CTL specifically reacts with GL261 to release INF-IT.
  • FIG. 2 shows that the established CTLs react specifically with GL2661 to release INF, and the release is suppressed by antibodies blocking H-2Db. .
  • FIG. 3 is a view showing that the isolated gene is the Mm. 12864 RIKEN cDNA 1190002L16 gene in mouse UniGene.
  • FIG. 4 is a diagram showing that the isolated gene is a small homologue of Hs. 618 Chromosome 15 open reading frame 12 in human UniGene.
  • FIG. 5 shows that the isolated gene has mutations in several places with the gene registered in UniGene, and a mutation that substitutes asparagine for the 81st aspartic acid at the amino acid level was observed.
  • FIG. 6 shows the results of analysis of the gene expression of the gene GARC-1 in normal tissue cells, Darioma tissue and glioma cell lines by RT-PCR.
  • FIG. 7 is a diagram showing the production of a clone having a deletion mutation from the 3 ′ end of the isolated gene (Deletion mutant) and a clone having no mutation at a portion of 2273 bp from the 5 ′ end.
  • FIG. 8 shows the deletion mutant clone from the 3 ′ end of the isolated gene and 27
  • FIG. 9 is a view showing the results of narrowing down the epitope portion by preparing a clone having no mutation in the portion 3b and measuring the amount of IFL- ⁇ released using the ELISA method.
  • FIG. 9 is a diagram showing that the H-2Db-restricted peptide recognized by the GL266-reactive CTL is AAL LNKLYA.
  • FIG. 10 shows that intratumoral inoculation of HSV with GL266 significantly suppressed the growth of distant tumors (left tumor: Lt) compared to the mock-inoculated control group.
  • FIG. shows that inoculation of HSV with GL266 intratumoral compared with mock-inoculated control group
  • Right tumor It is a figure showing that proliferation of R t) is significantly suppressed.
  • FIG. shows that tumor volume, horizontal axis: days after initiation of cancer treatment,: HSV inoculation date
  • FIG. 11 shows the results of RT-PCR analysis of the expression distribution of the human gene Hs.2 25674; Wd-repeat protein-9 in normal tissues, tumor cell lines and tumor tissues. .
  • FIG. 12 is a diagram showing the results of analyzing the expression distribution of the human gene Hs. 27 0845; mitotic kinesin-like protein in normal tissues, tumor cell lines and tumor tissues by the RT_PCR method.
  • FIG. 13 shows the results of analysis of the expression distribution of the human gene Hs.158213; SPAG6 in normal tissues, tumor cell lines and tumor tissues by the RT-PCR method.
  • FIG. 14 is a diagram showing the results of analyzing the expression distribution of the human gene Hs. 2909; Protamine 1 in normal tissues, tumor cell lines and tumor tissues by the RT-PCR method.
  • Fig. 15 shows the expression distribution of the human gene Hs.349695; Tublin alpha 2 in normal tissues, tumor cell lines and tumor tissues by RT-PCR. It is a figure showing the result of having analyzed more.
  • FIG. 16 shows the results of analysis of the expression distribution of the human gene Hs.50758; SMC4L1 in normal tissues, tumor cell lines and tumor tissues by the RT-PCR method.
  • the screening method of the tumor antigen of the present invention includes the steps of directly administering HSV or HSV glycoprotein to tumor tissue to induce CTLs, and using the induced CTLs and tumor and / or testis-derived CTLs.
  • Library, or HSV or HSV glycoprotein is directly administered to tumor tissue to induce tumor-specific IgG, and the induced tumor-specific IgG is
  • the method is not particularly limited as long as it is a method using a serum containing the DNA and a cDNA library derived from a tumor and / or testis.
  • As the HSV, wild-type HSV, inactivated HSV, or the like can be used.
  • inactivation treatment examples include known virus inactivation treatments, for example, heat treatment, ultraviolet irradiation, and T-ray irradiation.
  • Physical inactivation methods such as irradiation, electron beam irradiation, pressure treatment, and energization treatment, and chemical inactivation treatments such as sterilization treatment of phenol, formalin, alcohol, etc., alkali treatment, and DNase treatment
  • chemical inactivation treatments such as sterilization treatment of phenol, formalin, alcohol, etc., alkali treatment, and DNase treatment
  • examples thereof include a method and a method in which these physical inactivation treatment methods and the chemical inactivation treatment method are used in combination, such as a heat treatment in the presence of a surfactant.
  • an inactivation treatment using a combination of a treatment that destroys viral DNA such as ultraviolet treatment and a denaturation treatment of a protein that loses infectivity, such as heat treatment is a cancer protein. It is particularly preferable from the viewpoint of safety.
  • Such ultraviolet radiation treatment includes far ultraviolet light having a wavelength of 190 to 300 nm, which has the effect of inducing damage to biological genes, and in particular, is absorbed by the bases of DNA and RNA, and is absorbed by the photon energy.
  • a dimer such as thymine-thymine, thymine-cytosine, cytosine-cytosine, peracyl-peracyl, etc. formed by Rugii stops replication during cell division.
  • irradiation treatment for 5 to 60 minutes, preferably 30 minutes, and heat treatment is preferably 45 to 80 ° (5 to 80 °).
  • heat treatment for up to 10 hours, preferably a heat treatment at 56 ° C. for 30 minutes can be suitably exemplified.
  • HSV include the wild type strain of HSV-1 and HSV-1 such as KOS strain and G207 strain, and the inactive herpes virus type 2 (HSV-2) such as 169 strain.
  • HSV glycoproteins include gD (glycoprotein D), g derived from mutant strains inactivated by genetic manipulation and inactivated strains in addition to the wild-type strains of 113 ⁇ -1 and 11 SV-2.
  • HSV glycoproteins such as B (glycoprotein B) and g C (glycoprotein C) can be mentioned, and among these, g D can be preferably exemplified.
  • These HSV glycoproteins can be suitably produced as recombinant proteins using bacteria such as Escherichia coli, yeast, insect cells, mammalian cells and the like as host cells.
  • the tumor antigen of the present invention is not particularly limited as long as it is a tumor antigen obtained by the above-described screening method of the present invention.
  • M1G41, M1G listed in Table 1 Proteins or peptides encoded by mouse tumor antigen genes such as 60, M1G2, M1G35, M1G103, M1G169, Hs.225 Mitotic kinesin-like protein, Hs. 158 213; SP AG 6, Hs. 290; Protamine l, 674; Wd-repeat protein_9, Hs. Hs. 3 4 9 6 9 5; Tubulin alpha 2, Hs.
  • a human protein or peptide encoded by a human homolog of the mouse tumor antigen gene such as (SMC4L1) can be mentioned.
  • a protein or a peptide comprising the amino acid sequence shown in SEQ ID NO: 2 or SEQ ID NO: 4 in the sequence listing can also be specifically exemplified.
  • the origin of the tumor antigen of the present invention is not limited to human.
  • the tumor antigens targeted by the present invention include the protein or peptide represented by SEQ ID NO: 2 or SEQ ID NO: 4, or the amino acid sequence represented by SEQ ID NO: 2 or SEQ ID NO: 4, in which one or several amino acids are deleted.
  • the immunity-inducing activity include antibody production, cell-mediated immunity, and immune tolerance.
  • those having a T-cell-inducing activity to increase the frequency of peripheral blood CTLs progenitor cells are particularly preferable.
  • the origin of the proteins and peptides of the present invention is not limited to humans.
  • Examples of the DNA to be used in the present invention include M1G41, M1G60, M1G2, M1G35, M1G103, MIG169 shown in Table 1.
  • Tumor antigen gene, human homologue of the tumor antigen gene, DNA encoding a protein or peptide that hybridizes with these DNAs under stringent conditions and has immunity-inducing activity and SEQ ID NO: 2 and SEQ ID NO: 4 DNA encoding a protein or peptide consisting of the amino acid sequence shown in SEQ ID NO: 2, or amino acid having one or several amino acids deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 or SEQ ID NO: 4.
  • DNA comprising an acid sequence and encoding a protein or peptide having immunity-inducing activity, the base sequence shown in SEQ ID NO: 1 or SEQ ID NO: 3, or its complementary sequence, and D containing a part or all of these sequences NA, some And High Priestess soybean with said DNA under stringent conditions and is not particularly limited as long as it is a DN A that co one de protein or base peptide having immunity-inducing activity.
  • the method for preparing the cDNA encoding the tumor antigen of the present invention is not particularly limited. For example, cDNA amplified by RT-PCR using mRNA obtained from a tumor cell line may be used.
  • the prepared tumor cell cDNA library is screened using the serum of a cancer patient, and reacts only with the serum of the cancer patient, does not react with the serum of a healthy subject, and expresses an antigen expressed in cancer cells including cancer. It can be obtained by screening.
  • nucleotide sequence shown in SEQ ID NO: 1 or SEQ ID NO: 3 or a sequence complementary thereto and a part or all of these sequences are used as a probe under stringent conditions for various tumors and DNA libraries derived from them.
  • hybridization conditions for obtaining such DNA include, for example, hybridization at 42 ° C. and washing at 42 ° C. with a buffer containing 1 ⁇ SSC, 0.1% 303.
  • the tumor antigen of the present invention can also be used by binding to a marker protein and / or a peptide tag.
  • the protein is not particularly limited as long as it is a conventionally known marker protein. Examples include, but are not limited to, alkaline phosphatase, the Fc region of an antibody, HRP, GFP, and the like.
  • the peptide tags of the present invention include Myc tag, His tag, and FLAG tag. , GST tag, etc.
  • the example of the peptide group that has been set can be specifically exemplified.
  • Such a fusion protein can be prepared by a conventional method, and purifies a tumor antigen or the like utilizing the affinity of Ni-NTA and His tag, detects a protein having T cell inducing activity, It is useful as an antibody quantification marker for cancer diagnosis and as a research reagent in this field.
  • Examples of the antibody that specifically binds to the tumor antigen of the present invention include immunospecific antibodies such as monoclonal antibodies, polyclonal antibodies, chimeric antibodies, single-chain antibodies, and humanized antibodies.
  • the tumor antigen of the present invention or a part thereof can be prepared by an ordinary method using the antigen as a antigen.
  • a monoclonal antibody is more preferred in terms of its specificity.
  • Such an antibody such as a monoclonal antibody is useful, for example, in diagnosing dariomas and the like, treatment such as missile therapy, and elucidating the onset mechanism of malignant tumors such as dariomas.
  • the antibody of the present invention is obtained by expressing a tumor antigen or a fragment thereof containing the tumor antigen of the present invention in an animal (preferably other than a human) using a conventional protocol, or expressing the tumor antigen on the membrane surface.
  • monoclonal antibodies can be prepared using the hybridoma method (Nature 256, 495-497, 1975), the Trioma method, which results in antibodies produced by continuous cell line cultures. , Human B cell hybridoma method (Immunology Today 4, 72, 1983) and EBV-hybridoma method (MONOCLONAL ANTIBODIES AND CANCER THERAPY, 77-96, Alan R. Liss, Inc., 1985). Can be used.
  • the method for preparing a single-chain antibody (US Pat. No. 4,946,778) can be applied. Further, in order to express a humanized antibody, transgenic mice or other mammals are used, or a clone expressing the tumor antigen of the present invention is isolated using the above antibody.
  • the polypeptides of the invention can also be identified and purified by affinity chromatography.
  • the antibodies against the tumor antigens and the peptides containing the antigen epitopes of the present invention may be used for the diagnosis and treatment of Dario magoma and the like. Recombinant proteins or peptides to which these antibodies specifically bind are also included in the tumor antigen of the present invention.
  • the present invention also relates to a host cell comprising an expression system capable of expressing the tumor antigen of the present invention.
  • a gene encoding the tumor antigen of the present invention is introduced into host cells by Davis et al. (BASIC METHODS IN MOLECULAR BIOLOGY, 1986) and Sambrook et al. (MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1989) and methods described in many standard laboratory manuals, such as calcium phosphate transfection, DEAE-dextran mediated transfection, transvection, micro Injection, force-mediated lipid-mediated transfection, electrolysis, morphology introduction, scrape loading, ballistic introduction infection, etc.
  • host cells include bacterial prokaryotic cells such as Escherichia coli, Streptomyces, Bacillus subtilis, Streptococcus and Staphylococcus, fungal cells such as yeast and Aspergillus, Drosophila S2, Spodoptera Sf9, and the like.
  • Insect cells L cells, CH0 cells, COS cells, HeLa cells, C127 cells, BALB / c3T3 cells (including mutants deficient in dihydrofolate reductase-zethymidine kinase, etc. ), ⁇ ⁇ 21 cells, ⁇ ⁇ 293 cells, Bowes melanoma cells and other animal cells, and plant cells.
  • the expression system may be any expression system capable of expressing the above-mentioned tumor antigen of the present invention in host cells.
  • Expression systems derived from pisomes and viruses for example, bacterial plasmid, yeast plasmid, papovavirus such as SV40, vaccinia virus, adenovirus, fowlpox virus, pseudorabies virus, vector derived from retrovirus, bacterio Examples include vectors derived from phage, transposons, and combinations thereof, such as those derived from plasmids such as cosmid phagemid and genetic elements of bacteriophage.
  • the expression system may contain a control sequence that regulates expression as well as causes expression.
  • the non-human animal in which the function of the gene encoding the tumor antigen of the present invention is deficient on the chromosome is defined as a part or all of the gene encoding the tumor antigen of the present invention on the chromosome is disrupted.
  • the expressing non-human animal refers to a non-human animal that produces such a tumor antigen of the present invention in a larger amount than a wild-type non-human animal. Examples of the non-human animal in the present invention include, but are not limited to, non-human animals such as rodents such as mice and rats.
  • homozygous non-human animals born according to Mendel's law include the tumor antigen-deficient type or over-expressed type of the present invention and its littermate wild type.
  • a wild-type non-human animal that is, a gene encoding the tumor antigen of the present invention
  • the use of an animal of the same species as that of a non-human animal whose function is deficient or overexpressed on the chromosome, or an animal of the same litter is preferable in conducting comparative experiments and the like.
  • Such a tumor antigen of the present invention is encoded.
  • a method for producing a non-human animal in which the function of a gene is deficient or over-expressed on the chromosome will be described below using a knockout mouse or transgenic mouse of the tumor antigen of the present invention as an example.
  • a mouse in which the function of the gene encoding the tumor antigen of the present invention is deficient on the chromosome that is, a knockout mouse of the tumor antigen of the present invention is obtained by using a gene fragment obtained from a mouse gene library by a method such as PCR.
  • a method such as PCR To screen for the gene encoding the tumor antigen of the present invention, subclone the screened gene encoding the tumor antigen of the present invention using a virus vector or the like, and identify it by DNA sequencing. I do.
  • All or part of the gene encoding the tumor antigen of the present invention in this clone is replaced with a pMC1 neo gene cassette or the like, and a diphtheria toxin A fragment (DT-A) gene or A targeting vector is prepared by introducing a gene such as the virus thymidine kinase (HSV-tk) gene.
  • a gene such as the virus thymidine kinase (HSV-tk) gene.
  • the thus prepared evening vector was linearized, introduced into ES cells by electroporation (electroporation), etc., and homologous recombination was performed.
  • 8 Select ES cells that have undergone homologous recombination with an antibiotic such as ganciclovir (GANC).
  • GANC ganciclovir
  • the confirmed ES cell clone is microinjected into a mouse blastocyst, and the blastocyst is returned to a foster mother mouse to produce a chimeric mouse.
  • a heterozygous mouse When this chimeric mouse is crossed with a wild-type mouse, a heterozygous mouse can be obtained, and the heterozygous mouse can be intercrossed to knock out the tumor antigen of the present invention. A mouse can be produced. In addition, in the knockout mouse, the tumor antigen of the present invention
  • RNA is isolated from a mouse obtained by the above method and examined by the northern blot method, etc., and expression in this mouse is determined by the Western blot method. There is a method to check by the method.
  • the transgenic mouse of the tumor antigen of the present invention comprises a cDNA encoding the tumor antigen of the present invention, a promoter such as chicken iS-actin, mouse neurofilament, SV40, and rabbit-globin, SV40.
  • a transgene is constructed by fusing such a poly or intron, and the transgene is microinjected into the pronucleus of a mouse fertilized egg, and the obtained oocytes are cultured, and then transplanted into the oviduct of a foster parent mouse.
  • Such transgenic mice can be created by breeding the recipient animal and selecting pups having the cDNA from the pups born.
  • selection of pups having cDNA can be performed by extracting the crude DNA from the tail of the mouse and the like, using the dot hybridization method using the gene encoding the introduced tumor antigen of the present invention as a probe, or the specific primer method. This can be performed by a PCR method or the like using
  • the gene or DNA encoding the tumor antigen of the present invention, the tumor antigen of the present invention, a fusion protein in which the tumor antigen of the present invention is bound to a marker protein and / or a peptide tag, and the tumor antigen of the present invention Host cells comprising an antibody and an expression system capable of expressing the tumor antigen of the present invention are useful for the treatment and diagnosis of malignant tumors such as Dario, Teng, esophagus, colorectal and breast cancers. Yes, induction of activated T cells (including all T cells such as CD4 antigen-positive T cells, CD8 antigen-positive T cells, helper T cells, killer T cells, and subpressor T cells) It can also be used to elucidate the mechanism.
  • activated T cells including all T cells such as CD4 antigen-positive T cells, CD8 antigen-positive T cells, helper T cells, killer T cells, and subpressor T cells
  • a set containing the tumor antigen of the present invention or an antibody thereto as an active ingredient is useful as an antitumor agent.
  • an antitumor effect due to an increase in the activity of inducing T cells such as CTLs in vivo can be expected.
  • the above antibody can be used for missile therapy.
  • the present invention also relates to activated T cells induced by in vitro stimulation with the tumor antigens of the present invention.
  • tumor-reactive activated T cells are induced, and the activated T cells are effectively used for adoptive immunotherapy. Can be used.
  • the present invention provides a diagnostic probe for cancer comprising all or a part of the antisense strand of DNA or RNA encoding the tumor antigen of the present invention, a diagnostic probe for this cancer, and a specific antigen for the tumor antigen of the present invention.
  • the present invention relates to a diagnostic agent for malignant tumors such as Darioma, esophageal cancer, colorectal cancer, and breast cancer, which contains an antibody that binds specifically.
  • the diagnostic probe is all or a part of the antisense strand of DNA (cDNA) or RNA (cRNA) encoding the tumor antigen of the present invention, and is long enough to be established as a probe. (At least 20 bases or more) is preferable.
  • a gene obtained from a sample with a DNA sequence encoding the tumor antigen of the present invention diagnosis of a disease such as Dalioma can be performed. It becomes possible.
  • Specific examples of the sample used for such detection include genomic DNA, RNA or cDNA obtained from a biopsy of a subject's cells, such as blood, urine, saliva, and tissue. The use of such specimens is not limited to
  • Amplified by CR or the like may be used.
  • C57BLZ was used as a Dario-ma (malignant glioma) cell line.
  • Example 1 Sorting of tumor antigen peptide recognized by CTLs
  • HSV-1 G207 strain After transplantation of 1, 1 ⁇ 107 pfu of HSV-1 G207 strain was administered directly into the right tumor 5 days after tumor engraftment (7 to 10 days after transplantation) every 3 days for a total of 5 times Was conducted. Seven days after the last administration (day 19 from the start of HSV administration), the spleen was removed. Plates per well, in 2 0 0 M g / m 1 of mitomycin C 3 X 1 0 5 amino GL 2 6 1 strain was treated with (Kyowa ⁇ Kogyo), 2 X
  • the culture solution was 10% FCS, 50 M 2-mercaptoethanol and 2.
  • T cell growth factor TCGF
  • Stimulation was repeated every 2 weeks with the GL266 strain treated with mitomycin C.
  • the culture medium was replaced by half each day until day 4 after stimulation.
  • collect the T cells by well pipetting, centrifuge at 1200 rpm for 5 minutes to suspend the pellet in 2 ml, and then add 2 ml of lymphosepar (IBL). After centrifugation at 400 ⁇ g for 30 minutes, the intermediate layer was recovered. Furthermore,
  • GL266-reactive CTLs (GCL-1) were prepared.
  • MHC mouse major histocompatibility complex
  • H—2b [GL261 (positive control), B16 (melanoma), MC38 (colorectal cancer), MCA2 0 7 (sarcoma)]
  • a tumor line expressing H-2d [A20 (lymphoma), CT26 (colorectal cancer), YAC-1 (lymphoma)]
  • mouse C5 as a negative control. 7
  • the released interferon-a was assayed by ELISA (INF-r). All ELISA antibodies for measurement were measured by ENDOGEN).
  • cDNA synthesis was performed as follows. After ethanol handle mR NA sample 5 zg, centrifuged 2 5 min 1 2 0 0 0 rp, washed with 70% ethanol, and dissolved in 6 1 of DEPC-H 2 0. Next, add NotI primer 2 n 1 and react at 70 for 10 minutes.After cooling on ice, 5 X First strand buffer 4 l, 0.1 M DTT 2 zl, 10 mM d NTPM ix 11 was added, and the mixture was reacted at 37 t for 2 minutes. 51 Superscript II was added and the mixture was reacted at 37 for 1 minute to prepare a first strand of a plasmid library.
  • the plasmid library one first 1 strand and ⁇ , DEPC- H 2 0 9 1 il , 5 X 2 nd strand buffer 4 ⁇ 1, 10 mM d NTPM ix 31, DNA ligase 1/1 from E.Coli, DNA polymerase I 4 from E.Coli I4 and E.Coli After adding the DNA RNase 11 and vortexing gently, react with 161: for 2 hours, add T4 polymerase 2 ⁇ 1, and react at 16 ° C for 5 minutes.
  • the second strand of the plasmid library was prepared.
  • the stump treatment of cDNA and the purification of the long size cDNA insert were performed as follows.
  • the synthesized double-stranded c DN A, DEPC- H 2 0 2 5 I, 5 XT 4 DNA ligase buffer 1 0 1, Sal I adaptor 1 0 II were T 4 DNA ligase 5 n 1
  • 1 6 ° C Well we have activated the adapter. Phenol 'black hole Holm treated supernatant 4 5 1 to 7.
  • Ligation and transformation between the expression plasmid and the cDNA insert were performed as follows to construct a final cDNA library.
  • Add eukaryotic cell expression plasmid vector pCMV-SPORT6 1/1, insert 2.51 or 51 Ligation was performed at 4 ° C.
  • add 5 l of tRNA, 7.5 M NH 4 OAc 12.5 / 1, and ethanol 701 centrifuge at 1300 rpm for 20 minutes, and then add 70% ethanol 0.5 m Washed with 1 and dissolved in H 2 O 5 / z 1 to obtain a ligation mixture.
  • Example 14 (Screening of Daloma antigen gene by CTLs) 100 / well in 96-well plate containing LB medium containing 1501 ampicillin per well After adjusting the cDNA library as described above, culture at 37 ° C and 180 rpm overnight, and culture the E. coli 31 in 250 1 TYGPN medium per well (bacter in 1 liter of medium). trypton 20 g, yeast extract 10 g, 100% glycerol 8 ml, Na 2 Contains HP O4 5 g, KN 0 3 lg. ) Was added to a 96-well plate, and cultured at 37 ° C for 24 hours for amplification. Plasmid DNA was extracted by a conventional method.
  • cDNA is expressed by Lipofectamine (manufactured by GIBCO BRL) on a 96-well plate by 1 ⁇ 104 MHC class I Kb and Db by lipofection. After introduction into 293 Kb Db cells, the cells were incubated overnight at 37 ° C. in DMEM medium containing 10% inactivated FCS. After removing the medium from the 96-well plate, 1 ⁇ 104 GCL-1 was added to the plate and incubated at 37 ° C. for 24 hours. The culture supernatant was collected, and the amount of interferon- ⁇ (INF- ⁇ ) released from GCL-1 was measured by ELISA.
  • GIBCO BRL Lipofectamine
  • Example 15 Determining the nucleotide sequence of the isolated antigen gene and searching for homology
  • the nucleotide sequence of the cDNA insert in the plasmid obtained above was determined (SEQ ID NO: 1; GL266 antigen gene (GAR C-1)) and a database search (UniGene; National Biotechnology Information Center, USA).
  • GAR C-1 GL266 antigen gene
  • a database search UniGene; National Biotechnology Information Center, USA.
  • the gene that matches the 16 gene (Fig. 3) is a homologue of human Hs. 6 18 Chromosome 5 openreading fr am e 12 (Fig. 4), and it is a mitochondrial ribosome protein.
  • Example 11-6 Analysis of gene expression
  • the gene expression of the gene GAR C-11 identified above in each normal tissue cell, darioma tissue, and darioma cell line was analyzed by the RT-PCR method.
  • the cDNA used was 14 normal fetal brain, brain, heart, lung, stomach, small intestine, liver, spleen, kidney, testis, placenta, skeletal muscle, large intestine, fibroblast, and GB13, GB Four types of Dariomagma tissues of 17, GB16, and GB4, and GI-1, U251, U87MG, and A172 (Dariocell) were used.
  • PCR was performed under the following conditions.
  • the above cDNA (GAR C-1; SEQ ID NO: 1) or the registered Mm. 12864 gene is designated as type III, and the T7 primer (5'-GTAATACGACTCACTATAGGGC-3 '; SEQ ID NO: 5) and various antisense primers shown in FIG. 5 [783A—primer: 5′-ACATTCCTGCTTCTACACCA-3 ′; SEQ ID NOs: 6, 49 OA—primer: 5′-GTGACAAAGTCCTCCATGCT— 3 '; SEQ ID NO: 7, GAR C—2 7 3 A derived from the gene—primer: 5'-CCCATAGCGTACAGCTTGTT -3'; SEQ ID NO: 8, Mm.
  • Each of the above cDNA inserts was incorporated into pcDNA3 vector (Invitrogen Corporation) (Fig. 7) and transferred to 293 Kb Db cells, which are cells that express Mb class I Kb and Db.
  • the T cell recognition site of GARC-11 antigen was analyzed by measuring the INF- ⁇ released by co-culture with GCL-11.
  • GCL-1 reacted to the shortest clone, 273m (86 amino acid residues), and release of INF-a was observed. (86 amino acid residues), a clear decrease in the amount of released INF-a was observed ( Figure 8).
  • HLA Peptide Binding Predictions program (HYPERLINK http-7 / bimas.dcrt.nih.gov / molbio /) of the search site on the Web (Biolnformatics & Molecular Analysis Section (BIMAS)) hla
  • a mutant peptide expected to have high affinity and a peptide without mutation at the same site were synthesized as a control, and purified by high-performance liquid chromatography and confirmed by mass spectrometry. Thereafter, peptides of various concentrations were pulsed into 293 Kb Db cells, contacted with GCL-1, and the amount of released INF-a was measured. As a result, it was revealed that the mutant peptide strongly stimulates GCL-1 even at a low concentration, as compared with the control peptide AAL L DKL YA (FIG. 9). Therefore, GCL-1 specifically recognizes a mutant peptide (AAL L NKLYA; SEQ ID NO: 4) that binds to H-2Db derived from the amino acid encoded by the GARC-1 gene. It became clear that.
  • Example 2 [Screening of tumor antigen recognized by IgG]
  • Example 2-1 in situ cancer vaccine
  • Example 2-2 Serum 2001 collected from GL266-inoculated mouse was subjected to 5% skimming. It was diluted 100-fold with luk-containing TBST (50 mM Tris-HC1 (pH 8.0), 150 mM NaCl, 0.05% Tween 20). In addition, 2 x 104 negative phages per plate were infected with E. coli (XL1-B1ue) 5001 per plate and plated, and 2 OmM IPTG (isopropyl) was used.
  • luk-containing TBST 50 mM Tris-HC1 (pH 8.0), 150 mM NaCl, 0.05% Tween 20.
  • 2 x 104 negative phages per plate were infected with E. coli (XL1-B1ue) 5001 per plate and plated, and 2 OmM IPTG (isopropyl) was used.
  • -beta-D-thiogalactopyranoside (Hybond-c; manufactured by Amersham) was placed on a plate, cultured at 37 ° C for 4 hours, and the expressed protein was transferred to the membrane.
  • % Blocking was performed using TBST containing skim milk at a rate of%.
  • 10 membranes were soaked at room temperature for 3 hours per 25 ml of the serum diluted 100-fold for 3 hours, and then the serum was collected.
  • three-hundred-fold dilutions of the serum were mixed, and the final dilution was set to 300-fold.
  • the membrane was immersed in 100 ml of a secondary antibody (alkaline phosphatase-labeled anti-mouse IgG antibody; ICN) diluted 400-fold at room temperature for 1 hour at room temperature. And TBS (50 mM Tris-HC1 (pH 8.0), 150 mM NaC1) for 5 minutes X 2 times, then rinsed twice with Reaction buffer, Coloring agent (Reaction buffer 30 m 1, NBT (Nitro blue tetrazolium) 1 3 5 1 and BCIP By color development (5-Bromo-4-Chloro -3-indolyl) 1 0 5 1], was detected 2 9 4 positive clones from 5 X 1 0 5 clones.
  • a secondary antibody alkaline phosphatase-labeled anti-mouse IgG antibody
  • TBS 50 mM Tris-HC1 (pH 8.0), 150 mM NaC1
  • Coloring agent Reaction buffer 30 m 1, NBT (Nitro blue t
  • the insert DNA was amplified from the 26 phage clones obtained above by the PCR method and used for the subsequent analysis.
  • Use ExTaq (TaKaRa) as a DNA polymerase, T 3 (5'-AATTAACCCTCACTAAAGGG-3 '; SEQ ID NO: 10) as a sense primer, and T 7 (SEQ ID NO: 10) as an antisense primer.
  • T 3 5'-AATTAACCCTCACTAAAGGG-3 '; SEQ ID NO: 10
  • T 7 SEQ ID NO: 10
  • M1G41 Hs. 22 5674; Wd-repeat protein-9)> M1G60 (Hs. 27 0845; mitotic kinesin-like protein), M 1 G 1 17 M 1 G 16 9 (Hs. 5 0 7 5 8; SMC 4 L 1), a gene with limited tissue expression on a database.
  • M1G2 Hs.158213; SPAG6), M1G35 (Hs.2909; Protamine 1), M1G103 (HS.3) 496995; Tubulin alpha 2).
  • RT-PCR was carried out using cDNA derived from tissue cells, tumor cell lines, and tumor tissues as type III.
  • the cDNA used was normal tissues of the brain, heart, lung, stomach, small intestine, colon, liver, spleen, kidney, testis, placenta, and skeletal muscle, and 12 types of GB13, GB17, GB16, Four types of GB4 glioma tissue, U87MG, T98G, GI-1 and U251 (glioma cells), SK-MEL23, 624MEL ( Malignant melanoma), RC C 7, Saito (kidney cancer), LU 99, EBC 1 (lung cancer), TE 10 (esophageal cancer), PK 59 (9cancer), KU 7 (bladder cancer), PC 3 (prostate cancer), HL 60, MOL T 4 (lymphoma) tumor culture cells
  • Wd-repeat protein-9 has a sense primer (5'-GGTTACAAGTCCCATACTCC-3; SEQ ID NO: 11) and an antisense primer (5'-TCACTGGAACAGACCCTT-3 ' Mitotic kinesin-like protein, as a sense primer (5'-GATTTCCAACGGCCAGCAAC-3 '; SEQ ID NO: 13); and as an antisense primer (5' -TCGTCTGTGTCGGAGACGAA-3 '; SEQ ID NO: 14) was added to SPAG 6 as a sense primer (5'-TACCCCGAGGAAATAGTGAG-3'; SEQ ID NO: 15), and as an antisense primer (5 '-CCTTAAGGCCCTTTAACGTG-3'; SEQ ID NO: 16) was added to Protamine 1 as a sense primer (5'-ATTCAGGCCAAGCCCATCCT-3 '; SEQ ID NO: 17), and as an antisense primer ( 5′-TTGACAGGCGGCATT
  • TTCTGACT-3 SEQ ID NO: 19
  • an antisense primer 5'-CCCCTCAGTATTCTTCACCT-3 '; SEQ ID NO: 20
  • SMC4L1 as a sense primer
  • PCR products obtained from these PCRs were run on a 1.5% agarose gel. After performing electrophoresis and staining with EtBr, bands were detected by irradiation with ultraviolet light at 254 nm (FIGS. 11 to 16).
  • Wd-i'epeat protein-9 was found to be weakly expressed in the brain and testis in normal tissues, but highly expressed in brain tumor cell lines, brain tumor tissues, and various other tumor cell lines.
  • the mitotic kinesin-like protein was expressed only in testis in normal tissues, and was highly expressed in various tumor cell lines including brain tumors and brain tumor tissues (Fig. 12). SPAG 6 was weakly expressed in brain and lung in normal tissues, and was highly expressed in testis.
  • a method for screening a tumor antigen capable of inducing an antitumor immune response capable of immunotherapy against cancer, such as exhibiting an antitumor effect even on a human distant tumor such as a metastatic tumor and a screening method thereof It is possible to provide a tumor antigen and an antigen peptide obtained by the method, a gene encoding the same, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Oncology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Microbiology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Epidemiology (AREA)
  • Mycology (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Cell Biology (AREA)
  • Biotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Hospice & Palliative Care (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Description

腫瘍抗原のスクリ一二ング方法 技術分野
本発明は、 単純へルぺスウィルス (H S V ) 又は H S Vグリコプロテ ィンを用いた腫瘍抗原のスクリ一ニング方法や該スクリーニング方法に より得られる腫瘍抗原や、 該腫明瘍抗原の利用などに関する。 田
背景技術
腫瘍特異的免疫誘導は、腫瘍再発を長期的に予防することができるが、 このような免疫療法は、 基本的に腫瘍特異的抗原の有無と、 抗原を提示 して腫瘍細胞を認識する細胞障害性免疫応答を誘導できるか否かに左右 される。 細胞障害性 Tリンパ球 (C T L s ) は、 共刺激分子と共に細胞 表面に提示される細胞質夕ンパク質に由来するべプチドと複合する M H Cクラス I分子を認識する (Annu. Rev. Immunol. 7, 445-480, 1989)。 腫瘍特異的抗原は、 種々のヒ ト腫瘍から検出されている (Annu. Rev. Immunol. 12, 337-365, 1994, Adv. Immunol. 57, 281-351, 1994)。 癌 ワクチンによる治療は、 アジュバンド又はサイ トカインと結合させて投 与される不活性化させた腫瘍細胞、 又はその溶解物の使用に焦点があて られてきた。 最近、 種々のサイ ト力イン、 M H C分子、 共刺激分子又は 腫瘍抗原を腫瘍細胞へ遺伝子導入することにより、 免疫エフェクタ一細 胞に対する腫瘍細胞の視覚感度 (visibility) が向上することが報告され ている (Adv. Immunol. 58, 417-454, 1995)。 H S V等の腫瘍内への直 接接種 (インサイチュー癌ワクチン) により抗腫瘍免疫の誘導が可能に なると、 癌ワクチンを治療目的に使用する上での主要な問題点が克服さ れる。 すなわち、 癌ワクチン作製のための患者の自家腫瘍細胞の採取、 培養及び放射線照射などのィンビトロ操作、 或いは特異的腫瘍抗原の同 定などの必要性が克服される。
H S Vは 2本鎖 D N Aウィルスで、 核内で増殖する D N Aウィルスの 中で最大長のゲノム ( 1 5 3 k b ) を有し、 8 4種のオープンリーディ ングフレームをコードする。 ゲノムは L (long) 領域と S ( short) 領域 から構成され、 各ユニーク配列をその両側に倒置反復配列が挟む形で存 在する。 ウィルスゲノムの全塩基配列が決定され、 ほとんどのウィルス 遺伝子の機能は解明されている。 Martuzaらは、 ァ 3 4 . 5遺伝子にお ける欠失及び I C P 6遺伝子への 1 a c Z遺伝子挿入により、 単純ヘル ぺスウィルス 1型 (H S V— 1 ) の多重遺伝子の変異体である変異ヘル ぺスウィルス G 2 0 7を開発した (Nat. Med. 1 938, 1995)。 G 2 0 7 は他のウィルスベクタ一類よりも治療上の観点において優れている。 G 2 0 7は分裂細胞において複製され、 その結果感染細胞は溶解して死に 至るが、 非分裂細胞ではその増殖は顕著に弱まっている。 無胸腺症マウ スに榭立された腫瘍内に G 2 0 7を接種すると腫瘍選択的複製によって 腫瘍増殖が抑制され、 マウスが延命された (Cancer Res. 55, 4752, 1995) また、 免疫応答性マウスにおいては G 2 0 7を腫瘍内接種する ことにより腫瘍特異的免疫応答が誘導され、 G 2 0 7を接種しなかった 腫瘍の増殖をも抑制する (Hum. Gene Ther., 9, 2177-85, 1999)。 この場 合、 G 2 0 7がインサイチュー癌ワクチンとして機能している。 現在ま で、 脳腫瘍を中心に変異へルぺスウィルス G 2 0 7を用いた遺伝子治療 が行われ、米国で臨床応用も開始された(Gene Ther., 7, 867-874, 2000) < また、 ウィルスの不活性化方法として、 加熱処理 ( Thrombosis Research, 22, 233-238, 1981)、 紫外線照射(特公昭 4 5— 9 5 5 6号公 報)、 ァ線照射 (特開平 2— 9 3 6 7号公報)、 電子線照射 (特開平 4一 2 0 0 3 5 3号公報, 特開平 4— 9 2 6 7 1号公報)、 加圧処理 (特開平 6 - 1 4 2 1 9 7号公報)、 通電処理(特開 2 0 0 0 — 1 7 5 6 8 2号公 報) などの物理的不活性化処理方法や、 フエノール、 ホルマリン、 アル コールなどによる殺菌処理、 アル力リ処理 (特開平 9一 1 8 7 2 7 3号 公報)、通常の酸素分子が電子的に励起されてエネルギー的に高い状態に なった一重項酸素との接触(特開平 1 1一 1 9 9 4 9 0号公報)、 DNA 分解酵素処理などの化学的不活性化処理方法や、 これら物理的不活性化 処理方法と化学的不活性化処理方法を併用する方法 (特開平 6— 3 2 1 9 9 4号公報, 特表平 8— 5 0 44 0 7号公報) が知られている。
一方、 ドイツの Pfreundschuh, Old らのグループにより、 担癌患者 の腫瘍細胞の mRN Aから作製した蛋白質を患者の自己血清でスクリ― ニングする S E R E X法(Proc. Natl. Acad. Sci. USA 92, 11810-11813, 1995 serological identification of antigens by recombinant expression cloning") が報告されており、 その他、 メラノ一マ、腎癌、 食道癌、 大腸癌、 肺癌等において I g G抗体が認識する癌抗原を、 上記 S E R EX法により単離した報告もなされている (Int. J. Cancer 72, 965-971, 1997, Cancer Res. 58, 1034-1041, 1998, Int. J. Cancer 29, 652-658, 1998, Int. J. Oncol. 14, 703-708, 1999, Cancer Res. 56, 4766-4772, 1996, Hum. Mol. Genet 6, 33-39, 1997)。 これらの抗原の 中には C D 8 + T細胞に認識されるものも報告されており (J. Exp. Med. 187(2), 265-270, 1998)、 S E R E X法により C D 8 + T細胞認識 抗原が単離できる可能性が示されている。
癌の転移は極めて治療困難な病態であり、 現在まで有効な治療法はな く、 限られた一部の化学療法剤に有効なものも報告されているが、 その 副作用が問題視されている。 近年、 ウィルスベクタ一を用いた遺伝子治 療技術が飛躍的に発展したが、 現在なお安全性の面では大きな問題を残 1
している。 本発明の課題は、 転移性腫瘍等ヒトの遠隔腫瘍に対しても抗 腫瘍効果を示すなど、 癌に対する免疫療法が可能な抗腫瘍免疫反応を誘 導できる腫瘍抗原のスクリーニング方法や、 該スクリ一二ング方法によ り得られる腫瘍抗原や、 それをコードする遺伝子等を提供することにあ る。
本発明者らは、 上記課題を解決するために鋭意研究し、 ウィルスべク 夕一による癌治療の実用化においては、 その使用上の安全性が基本的な 前提条件であることに鑑み、 野生型 H S Vに対して紫外線照射処理と熱 処理を施し、 完全に感染力が失われかつウィルス DN Aも破壊された不 活化 H S Vを調製し、 かかる不活化した H S Vをインサイチュ一癌ワク チンとして腫瘍細胞株 C T 2 6による悪性腫瘍組織に直接接種したとこ ろ腫瘍特異的免疫応答が誘導され悪性腫瘍が退縮し、 また、 直接接種し なかった遠隔悪性腫瘍に対してもその増殖を抑制することができること を見い出している (特願 2 0 0 2— 1 3 0 2 9 4)。 そこで、 現在治療が 困難とされているダリオ一マ (悪性神経膠腫) を標的として、 ダリオ一 マ腫瘍組織に H S Vを直接投与することにより C TL sを誘導し、 かか る誘導された C T L s と、 腫瘍由来の c DNAライブラリ一とを用いて 腫瘍抗原をスクリーニングし、 新規の腫瘍抗原を見い出した。 また、 グ リォ一マ腫瘍組織に H S Vを直接投与した動物の血清と、 精巣由来の c DNAライブラリーとを用いて腫瘍抗原をスクリーニングし、 新たな腫 瘍抗原を見い出した。 本発明はかかる知見に基づいて完成するに至つた ものである。 発明の開示
すなわち本発明は、 単純へルぺスウィルス又は単純へルぺスウィルス グリコプロテインを、 腫瘍組織に直接投与して腫瘍特異的細胞障害性 T リンパ球 (C TL s ) を誘導し、 かかる誘導された腫瘍特異的 CTL s と、 腫瘍及び Z又は精巣に由来する c DNAライブラリーとを用いるこ とを特徴とする腫瘍抗原のスクリーニング方法 (請求項 1 ) や、 単純へ ルぺスウィルス又は単純へルぺスウィルスダリコプロテインを、 腫瘍組 織に直接投与して腫瘍特異的 I g Gを誘導し、 かかる誘導された腫瘍特 異的 I g Gを含む血清と、 腫瘍及び Z又は精巣に由来する c DNAライ ブラリーとを用いることを特徴とする腫瘍抗原のスクリーニング方法 (請求項 2) や、 単純へルぺスウィルスが、 不活性化処理を施した単純 ヘルぺスウィルスであることを特徴とする請求項 1又は 2記載の腫瘍抗 原のスクリーニング方法 (請求項 3) や、 単純へルぺスウィルスグリコ プロティンが、 単純へルぺスウィルスダリコプロテイン Dであることを 特徴とする請求項 1又は 2記載の腫瘍抗原のスクリーニング方法 (請求 項 4) に関する。
また本発明は、 請求項 1〜 4のいずれか記載の腫瘍抗原のスクリ一二 ング方法により得られることを特徴とする腫瘍抗原 (請求項 5) や、 腫 瘍抗原遺伝子 M 1 G 4 1 , M 1 G 6 0 , M 1 G 2 , M 1 G 3 5 , M 1 G 1 0 3 , M I G 1 6 9のいずれかがコ一ドするタンパク質及び/又はぺ プチド、 若しくはこれら腫瘍抗原遺伝子のヒ トホモログがコードする W -repeat protem-9 , mitotic kinesm-ΐικβ protein , o P A G Ό , Protamine 1, Tublin alpha 2 , S M C 4 L 1からなることを特徴とす る請求項 5記載の腫瘍抗原 (請求項 6) や、 配列番号 2に示されるアミ ノ酸配列からなるタンパク質 (請求項 7 ) や、 配列番号 4に示されるァ ミノ酸配列からなるペプチド (請求項 8) や、 配列番号 2又は配列番号 4に示されるアミノ酸配列において、 1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列からなり、 かつ免疫誘導活性を有 するタンパク質及び/又はペプチド (請求項 9 ) や、 請求項 5記載の腫 瘍抗原をコ一ドする DNA、 又は該 DN Aとストリンジェン卜な条件下 でハイプリダイズし、 かつ免疫誘導活性を有するタンパク質及び Z又は ペプチドをコードする DNA (請求項 1 0 ) や、 (a)配列番号 2に示さ れるアミノ酸配列からなるタンパク質や、 (b)配列番号 4に示されるァ ミノ酸配列からなるペプチドや、 (c)配列番号 2又は配列番号 4に示さ れるアミノ酸配列において、 1若しくは数個のアミノ酸が欠失、 置換若 しくは付加されたアミノ酸配列からなり、 かつ免疫誘導活性を有する夕 ンパク質及び Z又はペプチドをコードする DNA (請求項 1 1 ) や、 配 列番号 1又は配列番号 3に示される塩基配列又はその相補的配列並びに これらの配列の一部又は全部を含む DNA (請求項 1 2) や、 請求項 1 2記載の DN Aとストリンジエンドな条件下でハイプリダイズし、 かつ 免疫誘導活性を有するタンパク質及び Z又はべプチドをコードする DN A (請求項 1 3 ) に関する。
さらに本発明は、 請求項 5〜 9のいずれか記載の腫瘍抗原、 又はタン パク質及び Z若しくはペプチドに特異的に結合する抗体 (請求項 1 4) や、 請求項 5〜 9のいずれか記載の腫瘍抗原、 又はタンパク質及び/若 しくはペプチドを発現することができる発現系を含んでなる宿主細胞 (請求項 1 5 ) や、 請求項 5〜 9のいずれか記載の腫瘍抗原、 又はタン パク質及び Z若しくはべプチドをコードする遺伝子の機能が染色体上で 欠損し又は前記遺伝子が過剰発現することを特徴とする非ヒト動物 (請 求項 1 6) や、 請求項 5〜 9のいずれか記載の腫瘍抗原、 又はタンパク 質及び/若しくはべプチドを有効成分として含有する抗腫瘍剤 (請求項 1 7 ) や、 請求項 5〜 9のいずれか記載の腫瘍抗原、 又はタンパク質及 び 若しくはべプチドによるインビトロ剌激により誘導された活性化 T 細胞 (請求項 1 8 ) や、 請求項 5〜 9のいずれか記載の腫瘍抗原、 又は タンパク質及び Z若しくはペプチドをコードする DNA又は RNAのァ ンチセンス鎖の全部又は一部からなる癌の診断用プローブ(請求項 1 9 ) や、 請求項 1 9記載の癌の診断用プローブ及び/又は請求項 1 4記載の 抗体を含有することを特徴とする癌の診断薬 (請求項 2 0) に関する。 図面の簡単な説明
第 1図は、 樹立された C T Lが G L 2 6 1に特異的に反応して I N F 一 Tを放出することを示す図である。
第 2図は、 樹立された CTLが GL 2 6 1に特異的に反応して I N F 一ァを放出し、 その放出は H— 2 D bをブロックする抗体により抑制さ れることを示す図である。
第 3図は、 単離した遺伝子がマウス UniGene において Mm. 1 2 8 6 4 R I KEN c DNA 1190002L16 遺伝子であることを示す図で ある。
第 4図は、 単離した遺伝子がヒト UniGene において H s . 6 1 1 8 Chromosome 15 open reading frame 12の小'モログ t、あるしと 図である。
第 5図は、 単離した遺伝子には、 UniGeneに登録されている遺伝子と 数力所の変異が存在し、 またアミノ酸レベルでは 8 1番目のァスパラギ ン酸からァスパラギンへ置換する変異が認められたことを示す図である, 第 6図は、 遺伝子 GAR C— 1の正常組織細胞、 ダリオ一マ組織、 グ リォーマ細胞株における遺伝子発現を R T— P C R法により解析した結 果を示す図である。
第 7図は、 単離した遺伝子の 3 '末端から欠失変異(Deletion mutant) クローン及び 5 '末端から 2 7 3 b pの部分で変異をもたないクローン の作製を示す図である。
第 8図は、単離した遺伝子の 3 '末端からの欠失変異クローン及び 2 7 3 b の部分で変異をもたないクローンを作製し、 E L I S A法を用い て I F L—ァの放出量を測定することによりェピトープ部分の絞り込み を行った結果を示す図である。
第 9図は、 G L 2 6 1反応性 C T Lが認識する H— 2 D b拘束性のぺ プチドが、 AAL LNKLYAであることを示す図である。
第 1 0図左図は、 HS Vの GL 2 6 1腫瘍内接種により、 m o c k接 種の対照群と比較して、 遠隔腫瘍 (左側腫瘍: L t ) の増殖が有意に抑 制されることを示す図である。 (縦軸:腫瘍体積、 横軸: ワクチン治療開 始後の日数) 第 1 0図右図は HS Vの GL 2 6 1腫瘍内接種により、 m o c k接種の対照群と比較して、 接種腫瘍 (右側腫瘍 : R t ) の増殖が 有意に抑制されることを示す図である。 (縦軸:腫瘍体積、 横軸: ヮクチ ン治療開始後の日数、 : H S V接種日)
第 1 1図は、ヒト遺伝子 H s . 2 2 5 6 74; Wd-repeat protein-9 の 正常組織、 腫瘍細胞株及び腫瘍組織における発現分布を RT— P C R法 により解析した結果を示す図である。
第 1 2図は、 ヒト遺伝子 H s . 2 7 0 84 5 ; mitotic kinesin-like protein の正常組織、 腫瘍細胞株及び腫瘍組織における発現分布を R T _ P C R法により解析した結果を示す図である。
第 1 3図は、 ヒト遺伝子 H s . 1 5 8 2 1 3 ; S PAG 6の正常組織、 腫瘍細胞株及び腫瘍組織における発現分布を RT— P C R法により解析 した結果を示す図である。
第 1 4図は、 ヒト遺伝子 H s . 2 9 0 9 ; Protamine 1 の正常組織、 腫瘍細胞株及び腫瘍組織における発現分布を RT— P C R法により解析 した結果を示す図である。
第 1 5図は、 ヒト遺伝子 H s . 34 9 6 9 5 ; Tublin alpha 2 の正 常組織、 腫瘍細胞株及び腫瘍組織における発現分布を RT— P C R法に より解析した結果を示す図である。
第 1 6図は、 ヒト遺伝子 H s . 5 0 7 5 8 ; SMC 4 L 1 の正常組 織、 腫瘍細胞株及び腫瘍組織における発現分布を RT— P C R法により 解析した結果を示す図である。 発明を実施するための最良の形態
本発明の腫瘍抗原のスクリ一ニング方法としては、 H S V又は H S V グリコプロテインを、 腫瘍組織に直接投与して CTL sを誘導し、 かか る誘導された C T L s と、 腫瘍及び/又は精巣に由来する c DN Aライ ブラリーとを用いる方法、或は、 HS V又は HS Vグリコプロテインを、 腫瘍組織に直接投与して腫瘍特異的 I g Gを誘導し、 かかる誘導された 腫瘍特異的 I g Gを含む血清と、 腫瘍及び/又は精巣に由来する c DN Aライブラリーとを用いる方法であれば特に制限されるものではない。 上記 HS Vとしては、 野生型の H S V、 不活性化処理された H S V等 を用いることができ、 不活性化処理としては、 公知のウィルス不活性化 処理、 例えば、 加熱処理、 紫外線照射、 T線照射、 電子線照射、 加圧処 理、 通電処理などの物理的不活性化処理方法や、 フエノール、 ホルマリ ン、 アルコールなどの殺菌処理、 アルカリ処理、 DNA分解酵素処理な どの化学的不活性化処理方法や、界面活性剤の存在下での加熱処理など、 これら物理的不活性化処理方法と化学的不活性化処理方法を併用する方 法を挙げることができる。 これらウィルスの不活性化処理の中でも、 紫 外線処理等のウィルス D N Aを破壊する処理と、 熱処理等の'感染力を喪 失させるタンパク質の変性処理とを併用した不活性化処理が、 癌ヮクチ ンの安全性の面からして特に好ましい。 かかる紫外線処理としては、 生 物の遺伝子に損傷を誘発する効果がある波長 1 9 0〜 3 0 0 nm遠紫外 線、 中でも D N A及び R N Aの塩基に吸収され、 吸収された光量子エネ ルギ一により形成された、 チミン―チミン、 チミンーシトシン、 シトシ ンーシトシン、 ゥラシル―ゥラシル等の二量体により、 細胞分裂の際の 複製を停止させる 2 5 4 nmの紫外線を用い、 1〜 1 0 J Zm2、 好まし くは 4 J /m2、 5〜 6 0分間、 好ましくは 3 0分間の照射処理を好適に 例示することができ、 また、 熱処理としては、 4 5〜 8 0°( で 5〜 1 0 時間の加熱処理、 好ましくは 5 6 °C、 3 0分間の加熱処理を好適に例示 することができる。
H S Vとして、 具体的には、 KO S株, G 2 0 7株等の H S V— 1及 び 1 6 9株等の単純へルぺスウィルス 2型 (H S V— 2 ) の野生株、 不 活性化処理株、 遺伝子操作により変異処理を受けた変異株を挙げること ができる。 また、 H S Vグリコプロテインとしては、 113 ¥— 1及び11 S V— 2の野生株の他、 遺伝子操作により変異処理を受けた変異株、 不 活性化処理株に由来する g D (glycoprotein D) , g B (glycoprotein B) , g C (glycoprotein C) 等の H S Vグリコプロテインを挙げることがで きるが、 これらのなかでも g Dを好適に例示することができる。 これら H S Vグリコプロテインは、 大腸菌等の細菌や酵母、 昆虫細胞、 哺乳類 細胞などを宿主細胞として用い、 リコンビナント蛋白として好適に作製 することができる。
本発明の腫瘍抗原としては、 上記の本発明のスクリ一ニング方法によ り得られる腫瘍抗原であれば特に制限されないが、 具体的には、 表 1に 掲げる M 1 G 4 1 , M 1 G 6 0 , M 1 G 2, M 1 G 3 5, M 1 G 1 0 3, M 1 G 1 6 9等のマウス腫瘍抗原遺伝子がコ一ドするタンパク質又はべ プチドゃ、 H s . 2 2 5 6 7 4 ; Wd-repeat protein_9、 H s . 2 7 0 8 4 5 ; mitotic kinesin-like protein, H s . 1 5 8 2 1 3 ; S P AG 6、 H s . 2 9 0 9 ; Protamine l、 H s . 3 4 9 6 9 5 ; Tubulin alpha 2、 H s . 5 0 7 5 8 ; Structural maintenance of chromosomes 4~like 1 ( S M C 4 L 1 ) 等の上記マウス腫瘍抗原遺伝子のヒトホモログがコ一 ドするヒトタンパク質又はペプチドを挙げることができる。 また、 本発 明の腫瘍抗原として、 配列表の配列番号 2や配列番号 4に示されるアミ ノ酸配列からなるタンパク質又はべプチドも具体的に例示することがで きる。なお、本発明の腫瘍抗原の由来はヒトに限定されるものではない。
Figure imgf000014_0001
本発明の対象となる腫瘍抗原としては、 上記配列番号 2や配列番号 4 に示されるタンパク質又はペプチドや、 配列番号 2や配列番号 4に示さ れるアミノ酸配列において、 1若しくは数個のアミノ酸が欠失、 置換若 しくは付加されたアミノ酸配列からなり、 かつ免疫誘導活性を有する夕 ンパク質又はべプチドを例示することができ、ここで免疫誘導活性とは、 抗体産生、 細胞性免疫、 免疫寛容等の免疫反応を誘導する活性をいい、 かかる免疫誘導活性の中でも、 末梢血の C TL s前駆細胞の頻度を上昇 させる T細胞誘導活性を有するものが特に好ましい。 なお、 本発明の夕 ンパク質及びべプチドの由来はヒトに限定されるものではない。
本発明の対象となる DNAとしては、 表 1に示される M 1 G 4 1 , M 1 G 6 0 , M 1 G 2 , M 1 G 3 5 , M 1 G 1 0 3 , M I G 1 6 9等の腫 瘍抗原遺伝子ゃ該腫瘍抗原遺伝子のヒトホモログ、 及びこれら DNAと ストリンジェントな条件下でハイブリダィズし、 かつ免疫誘導活性を有 するタンパク質又はべプチドをコードする DNA、 並びに配列番号 2や 配列番号 4に示されるアミノ酸配列からなるタンパク質又はペプチドを コ一ドする DNA、 配列番号 2や配列番号 4に示されるアミノ酸配列に おいて、 1若しくは数個のアミノ酸が欠失、 置換若しくは付加されたァ ミノ酸配列からなり、 かつ免疫誘導活性を有するタンパク質又はべプチ ドをコードする DNA、 配列番号 1又は配列番号 3に示される塩基配列 又はその相補的配列並びにこれらの配列の一部又は全部を含む D NA、 或は該 DNAとストリンジェントな条件下でハイプリダイズし、 かつ免 疫誘導活性を有するタンパク質又はべプチドをコ一ドする DN Aであれ ば特に制限されるものではない。 かかる本発明の腫瘍抗原をコードする c D N Aの調製方法としては特に制限されるものではないが、 例えば、 腫瘍細胞株から得られた mRN Aを用いて R T— P C R法により増幅し た c D N Aをえファ一ジベクターに導入して大腸菌に感染させることに よって作製した腫瘍細胞 c DNAライブラリーを、 癌患者血清を用いて スクリ一二ングし、癌患者血清のみに反応し、健常人血清とは反応せず、 癌を含む癌細胞に発現する抗原をスクリーニングすることにより得るこ とができる。
また、 配列番号 1又は配列番号 3に示される塩基配列又はその相補的 配列並びにこれらの配列の一部又は全部をプロ一プとして、 各種腫瘍や 由来の DNAライブラリ一に対してストリンジェントな条件下でハイブ リダイゼーションを行い、 該プローブにハイブリダイズする DN Aを単 離することにより、 同効な目的とする免疫誘導活性を有するタンパク質 及び 又はペプチドをコードする D N Aを得ることもできる。 かかる D N Aを取得するためのハイブリダィゼ一シヨンの条件としては、例えば、 42 °Cでのハイブリダィゼ一シヨン及び 1 X S S C、 0. 1 %の 303 を含む緩衝液による 4 2°Cでの洗浄処理を挙げることができ、 6 5°Cで のハイブリダィゼ一シヨン及び 0. 1 X S S C, 0. 1 %の30 を含 む緩衝液による 6 5 °Cでの洗浄処理をより好ましく挙げることができる < なお、 ハイブリダィゼーシヨンのストリンジェンシ一に影響を与える要 素としては、 上記温度条件以外に種々の要素があり、 当業者であれば、 種々の要素を適宜組み合わせて、 上記例示したハイプリダイゼーション のストリンジエンシーと同等のストリンジエンシーを実現することが可 能である。
本発明の腫瘍抗原は、 マーカ一夕ンパク質及び/又はべプチドタグと 結合して用いることもでき、 マ一力一タンパク質としては、 従来知られ ているマーカ一タンパク質であれば特に制限されるものではなく、 例え ば、 アルカリフォスファターゼ、 抗体の F c領域、 HR P、 GF Pなど を具体的に挙げることができ、 また本発明におけるペプチドタグとして は、 My cタグ、 H i sタグ、 F LAGタグ、 G S Tタグなどの従来知 られているぺプチド夕グを具体的に例示することができる。 かかる融合 タンパク質は、 常法により作製することができ、 N i — N T Aと H i s タグの親和性を利用した腫瘍抗原等の精製や、 T細胞誘導活性を有する タンパク質の検出や、 腫瘍抗原等に対する抗体の定量、 癌の診断用マー カーなどとして、 また当該分野の研究用試薬としても有用である。
本発明の腫瘍抗原に特異的に結合する抗体としては、 モノクローナル 抗体、 ポリクローナル抗体、 キメラ抗体、 一本鎖抗体、 ヒト化抗体等の 免疫特異的な抗体を具体的に挙げることができ、 これらは上記本発明の 腫瘍抗原又はその一部を抗原として用いて常法により作製することがで きるが、 その中でもモノクローナル抗体がその特異性の点でより好まし い。 かかるモノクローナル抗体等の抗体は、 例えば、 ダリオ一マ等の診 断、 ミサイル療法等の治療ばかりでなく、 ダリオ一マ等の悪性腫瘍の発 症機構を明らかにする上で有用である。
また、 本発明の抗体は、 慣用のプロトコ一ルを用いて、 動物 (好まし くはヒト以外)に本発明の腫瘍抗原若しくはェピト一プを含むその断片、 又は該腫瘍抗原を膜表面に発現した細胞を投与することにより産生され、 例えばモノクローナル抗体の調製には、 連続細胞系の培養物により産生 される抗体をもたらす、ハイプリ ドーマ法(Nature 256, 495-497, 1975) , トリオ一マ法、 ヒト B細胞ハイブリ ド一マ法(Immunology Today 4, 72, 1983) 及び E B V—ハイブリ ドーマ法 (MONOCLONAL ANTIBODIES AND CANCER THERAPY, 77-96, Alan R.Liss, Inc., 1985) など任意の 方法を用いることができる。
上記一本鎖抗体をつくるために、 一本鎖抗体の調製法 (米国特許第 4 9 4 6 7 7 8号) を適用することができる。 また、 ヒト化抗体を発現さ せるために、 トランスジエニックマウス又は他の哺乳動物等を利用した り、 上記抗体を用いて、 本発明の腫瘍抗原を発現するクローンを単離 - 同定したり、 ァフィ二ティークロマトグラフィーで本発明のポリべプチ ドを精製することもできる。 本発明の腫瘍抗原やその抗原ェピトープを 含むぺプチドに対する抗体は、 ダリオ一マ等の診断や治療に使用できる 可能性がある。 そして、 これら抗体が特異的に結合する組換えタンパク 質又はペプチドも、 本発明の腫瘍抗原に包含される。
本発明はまた、 上記本発明の腫瘍抗原を発現することができる発現系 を含んでなる宿主細胞に関する。 かかる本発明の腫瘍抗原をコードする 遺伝子の宿主細胞への導入は、 Davis ら (BASIC METHODS IN MOLECULAR BIOLOGY, 1986) 及び Sambrook ら (MOLECULAR CLONING: A LABORATORY MANUAL, 2nd Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989) などの多くの標準 的な実験室マニュアルに記載される方法、 例えば、 リン酸カルシウムト ランスフエクシヨン、 D E A E—デキストラン媒介トランスフエクショ ン、 トランスべクシヨン(transvection)、 マイクロインジェクション、 力 チオン性脂質媒介トランスフエクシヨン、 エレクトロボレ一シヨン、 形 質導入、 スクレープ口一ティング (scrape loading), 弾丸導入 (ballistic introduction) 感染等により行うことができる。 そして、 宿主細胞とし ては、 大腸菌、 ストレプトミセス、 枯草菌、 ス トレプトコッカス、 スタ フイロコッカス等の細菌原核細胞や、 酵母、 ァスペルギルス等の真菌細 胞ゃ、 ドロソフイラ S 2、スポドプテラ S f 9等の昆虫細胞や、 L細胞、 C H 0細胞、 C O S細胞、 H e L a細胞、 C 1 2 7細胞、 B A L B / c 3 T 3細胞 (ジヒドロ葉酸レダクタ一ゼゃチミジンキナーゼなどを欠損 した変異株を含む)、 Β Η Κ 2 1細胞、 Η Ε Κ 2 9 3細胞、 B o w e sメ ラノーマ細胞等の動物細胞や、 植物細胞等を挙げることができる。
また、 発現系としては、 上記本発明の腫瘍抗原を宿主細胞内で発現さ せることができる発現系であればどのようなものでもよく、 染色体、 ェ ピソーム及びウィルスに由来する発現系、例えば、細菌プラスミ ド由来、 酵母プラスミ ド由来、 S V 4 0のようなパポバウィルス、 ワクシニアゥ ィルス、 アデノウイルス、 鶏痘ウィルス、 仮性狂犬病ウィルス、 レトロ ウィルス由来のベクター、 バクテリオファージ由来、 トランスポゾン由 来及びこれらの組合せに由来するベクター、 例えば、 コスミ ドゃファー ジミ ドのようなプラスミ ドとバクテリオファージの遺伝的要素に由来す るものを挙げることができる。 この発現系は発現を起こさせるだけでな く発現を調節する制御配列を含んでいてもよい。
本発明において、 上記本発明の腫瘍抗原をコードする遺伝子の機能が 染色体上で欠損した非ヒト動物とは、 染色体上の本発明の腫瘍抗原をコ 一ドする遺伝子の一部若しくは全部が破壊 ·欠損 ·置換等の遺伝子変異 により不活性化され、 本発明の腫瘍抗原を発現する機能を失った非ヒト 動物をいい、 また、 本発明の腫瘍抗原をコードする遺伝子の機能が染色 体上で過剰発現する非ヒト動物とは、 野生型非ヒト動物に比べてかかる 本発明の腫瘍抗原を大量に産生する非ヒト動物をいう。 そして、 本発明 における非ヒト動物としては、 マウス、 ラッ ト等の齧歯目動物などの非 ヒト動物を具体的に挙げることができるが、 これらに限定されるもので はない。
ところで、 メンデルの法則に従い出生してくるホモ接合体非ヒト動物 には、 本発明の腫瘍抗原欠損型又は過剰発現型とその同腹の野生型とが 含まれ、 これらホモ接合体非ヒト動物における欠損型又は過剰発現型と その同腹の野生型を同時に用いることによって個体レベルで正確な比較 実験をすることができることから、 野生型の非ヒト動物、 すなわち本発 明の腫瘍抗原をコ一ドする遺伝子の機能が染色体上で欠損又は過剰発現 する非ヒト動物と同種の動物、 さらには同腹の動物を併用することが比 較実験等を実施する上で好ましい。 かかる本発明の腫瘍抗原をコードす る遺伝子の機能が染色体上で欠損又は過剰発現する非ヒト動物の作製方 法を、 本発明腫瘍抗原のノックアウトマウスやトランスジエニックマウ スを例にとって以下説明する。
例えば、 本発明の腫瘍抗原をコードする遺伝子の機能が染色体上で欠 損したマウス、 すなわち本発明の腫瘍抗原のノックアウトマウスは、 マ ウス遺伝子ライブラリ一から P C R等の方法により得られた遺伝子断片 を用いて、 本発明の腫瘍抗原をコードする遺伝子をスクリーニングし、 スクリ一ニングされた本発明の腫瘍抗原をコードする遺伝子を、 ウィル スベクター等を用いてサブクローンし、 D N Aシ一ケンシングにより特 定する。 このクローンの本発明の腫瘍抗原をコードする遺伝子の全部又 は一部を p M C 1ネオ遺伝子カセッ ト等に置換し、 3 '末端側にジフテリ ァトキシン Aフラグメント (D T— A ) 遺伝子や単純へルぺスウィルス のチミジンキナーゼ (H S V— t k ) 遺伝子等の遺伝子を導入すること によって、 ターゲッティングベクタ一を作製する。
この作製された夕一ゲティングベクターを線状化し、 エレクトロボレ —シヨン (電気穿孔) 法等によって E S細胞に導入し、 相同的組換えを 行い、 その相同的組換え体の中から、 G 4 1 8やガンシクロビア ( G A N C )等の抗生物質により相同的組換えを起こした E S細胞を選択する。 また、 この選択された E S細胞が目的とする組換え体かどうかをサザン プロッ ト法等により確認することが好ましい。 その確認された E S細胞 のクローンをマウスの胚盤胞中にマイクロインジェクションし、 かかる 胚盤胞を仮親のマウスに戻し、 キメラマウスを作製する。 このキメラマ ウスを野生型のマウスとィン夕一クロスさせると、 ヘテロ接合体マウス を得ることができ、 また、 このへテロ接合体マウスをインタークロスさ せることによって、 本発明の腫瘍抗原のノックアウトマウスを作製する ことができる。 また、 ノックアウトマウスにおいて本発明の腫瘍抗原が
8 生起しているかどうかを確認する方法としては、 例えば、 上記の方法に より得られたマウスから R N Aを単離してノーザンプロッ ト法等により 調べたり、 またこのマウスでの発現をウェス夕ンブロッ ト法等により調 ベる方法がある。
本発明の腫瘍抗原のトランスジエニックマウスは、 本発明の腫瘍抗原 をコードする c D N AにチキンiS—ァクチン、 マウスニューロフィラメ ント、 S V 4 0等のプロモータ一、 及びラビッ ト —グロビン、 S V 4 0等のポリ Α又はイントロンを融合させて導入遺伝子を構築し、 該導入 遺伝子をマゥス受精卵の前核にマイクロインジェクションし、 得られた 卵細胞を培養した後、 仮親のマウスの輸卵管に移植し、 その後被移植動 物を飼育し、 産まれた仔マウスから前記 c D N Aを有する仔マウスを選 択することによりかかるトランスジエニックマウスを創製することがで きる。 また、 c D N Aを有する仔マウスの選択は、 マウスの尻尾等より 粗 D N Aを抽出し、 導入した本発明の腫瘍抗原をコードする遺伝子をプ ローブとするドッ トハイブリダィゼ一シヨン法や、 特異的プライマ一を 用いた P C R法等により行うことができる。
また、 上記本発明の腫瘍抗原をコ一ドする遺伝子若しくは D N A、 本 発明の腫瘍抗原、 本発明の腫瘍抗原とマーカ一タンパク質及び 又はべ プチドタグとを結合させた融合タンパク質、 本発明の腫瘍抗原に対する 抗体、 本発明の腫瘍抗原を発現することができる発現系を含んでなる宿 主細胞等は、 ダリオ一マ、 滕癌、 食道癌、 大腸癌、 乳癌等の悪性腫瘍の 治療や診断に有用であり、 活性化 T細胞 (C D 4抗原陽性 T細胞、 C D 8抗原陽性 T細胞、 ヘルパー T細胞、 キラ一 T細胞、 サブレッサー T細 胞等の全ての T細胞を含む) の誘導等免疫応答のメカニズムの解明にも 使用することができる。
本発明の腫瘍抗原又はこれに対する抗体を有効成分として含有する組 成物は抗腫瘍剤として有用である。 例えば、 本発明の腫瘍抗原を経口、 静脈注射等により投与すると、 インビボにおける C TL s等の T細胞の 誘導活性が増大することによる抗腫瘍効果が期待できる。 また上記抗体 はミサイル療法に用いることができる。 本発明はまた、 本発明の腫瘍抗 原とのインビトロ刺激により誘導された活性化 T細胞に関する。例えば、 末梢血リンパ球や腫瘍浸潤リンパ球に I L _ 2とともに本発明の腫瘍抗 原で刺激すると腫瘍反応性活性化 T細胞が誘導され、 この活性化された T細胞は養子免疫療法に有効に用いることができる。
さらに本発明は、 本発明の腫瘍抗原をコ一ドする DNA又は RNAの アンチセンス鎖の全部又は一部からなる癌の診断用プローブや、 この癌 の診断用プローブや本発明の腫瘍抗原に特異的に結合する抗体を含有す るダリオ一マ、 食道癌、 大腸癌、 乳癌等の悪性腫瘍の診断薬に関する。 上記診断用プローブとしては、本発明の腫瘍抗原をコ一ドする D NA( c DNA) 又は RNA (c RNA) のアンチセンス鎖の全部又は一部であ り、 プローブとして成立する程度の長さ (少なくとも 2 0ベース以上) を有するものが好ましく、 例えば、 検体から得られた遺伝子と、 本発明 の腫瘍抗原をコードする DN A配列とを比較することにより、 ダリオ一 マ等の疾病の診断が可能となる。かかる検出に用いられる検体としては、 被験者の細胞、 例えば血液、 尿、 唾液、 組織等の生検から得ることがで きるゲノム DNAや、 RNA又は c DNAを具体的に挙げることができ るがこれらに限定されるものではなく、 かかる検体を使用する場合、 P
C R等により増幅したものを用いてもよい。
以下、 実施例により本発明をより具体的に説明するが、 本発明の技術 的範囲はこれらの例示に限定されるものではない。 なお、 以下の実施例 においては、 ダリオ一マ (悪性神経膠腫) 細胞株として、 C 5 7 B LZ
6マウスの頭蓋内に化学発ガン物質である methylcholanthrene を投与 して誘発させた、 N I Hの Akbasak A らによって樹立された G L 2 6 1株( J Neurosurg, Dec; 75(6): 922-9, 1991) を用い、 H S Vとしては、 H S V— 1の G 2 0 7株を用いた。 H S Vの増殖には、 アフリカミ ドリ ザル腎細胞株 V e 1- 0細胞(AT C C社製)を用いた。 V e r o細胞は、 1 0 % 非働化牛胎児血清( I F C S ) を添加したダルベッコ変法ィ一グ ル培地 (DM EM) にて培養し、 ウィルス増殖時は 1 % I F C S添加 D MEMを用いて培養した。 ウィルスは、 V e r o細胞よりウィルスバッ ファ一 ( 1 5 0 mM N a C l 、 2 0 mM T r i s 、 p H 7. 5 ) 中で 凍結融解を繰り返し、 超音波破砕後にバッファー上清より回収した。 実施例 1 [ C T L sによって認識される腫瘍抗原ペプチドのスクリ一二 ング]
実施例 1 — 1 (ダリオ一マ反応性 C T L sの調製)
C 5 7 B L/ 6マウスの両側皮下に片側あたり 1 1 06個の。1^ 2
6 1を移植し、 腫瘍生着後 (移植後 7〜 1 0日) に右側腫瘍内に直接 1 X 1 07p f uの H S V— 1の G 2 0 7株を 3 日ごとに計 5回の投与を 行った。 最終投与から 7日後 (H S V投与開始から 1 9 日目) に脾臓を 摘出した。 プレート 1穴あたり、 2 0 0 M g /m 1のマイ トマイシン C (協和醱酵工業社製) で処理をした 3 X 1 05個の G L 2 6 1株に、 2 X
1 06個の脾細胞を加えて、 3 7 °Cで 1時間の共培養を行った。 なお、 培養液は 1 0 % F C S、 5 0 Mの 2—メルカプトエタノール及び 2.
5 % T細胞増殖因子 (T C G F) を含む R P M I培地を用いた。 2週間 ごとにマイ トマイシン C処理をした G L 2 6 1株により刺激を繰り返し. 刺激後 4日目まで毎日培養液を半量ずつ交換した。 4日目に T細胞をよ くピベッティングしながら回収し、 1 2 0 0 r pmで 5分間遠心してぺ レッ トを 2 m 1 に懸濁した後、 リンホセパ一ル ( I B L社製) 2 m l に 重層し、 4 0 0 X gで 3 0分間遠心した後、中間層を回収した。さらに、
2 1 0 % F C Sを含む R P M I培地 1 0 m lで洗浄し、細胞数が 1穴あた り 1 X 1 06個以上になるように再度 2 4穴のプレートにプレ一ティ ン グして増殖させることにより、 GL 2 6 1反応性 C T L s (G C L— 1 ) を調製した。
実施例 1一 2 (H— 2 b拘束性の検討)
マウス主要組織適合性抗原 (MHC) である H— 2 bを発現する腫瘍 株 [GL 2 6 1 (ポジティブコントロール)、 B 1 6 (悪性黒色腫)、 M C 3 8 (大腸癌)、 MC A 2 0 7 (肉腫)]、 H— 2 dを発現する腫瘍株 [A 2 0 (リンパ腫)、 CT 2 6 (大腸癌)、 YAC— 1 (リンパ腫)] 及びネ ガティブコント口一ルとしてマウス C 5 7 B L/ 6系 S P C (脾細胞) を、上記調製した GC L - 1の存在下、若しくは非存在下で培養した後、 放出されるインターフェロンー ァ ( I N F - r ) を E L I S A法 ( I N F - r測定用 E L I S A抗体は全て ENDOGEN社製) により測定した 結果、 GC L— 1は GL 2 6 1にのみ特異的に反応して I N F—ァを放 出することが明らかになった (図 1 )。 また、 その放出は H— 2 D bをブ ロックする抗 H— 2 D b抗体により抑制されることから、 G C L _ 1は H— 2 b拘束性に GL 2 6 1を認識することが示された (図 2 )。
実施例 1一 3 (腫瘍抗原の同定用 c DNAライブラリ一の作製)
培養 G L 2 6 1細胞をグァニジンイソシァネート ( G T C ) 溶液 7 m 1 に溶解して、 2 2 Gの注射針をつけた 1 0 m 1 シリンジで懸濁し、 グ ァニジン—塩化セシゥム超遠心 ( 3 5 0 0 0 r p m、 1 8時間、 1 8 °C ) を行った後、 ペレッ トを T E S 1 8 0 1で洗浄後、 T E S 3 6 0 1で溶解し、 フエノール'クロ口ホルム処理( 1 2 0 0 0 r pm、 5分、 室温)、 エタノール処理 ( 1 2 0 0 0 r pm、 2 0分、 4°C) し、 7 0 % エタノールで洗浄後、 L ow T E 1 0 0 ί 1で溶解して全 RN Aの抽 出を行った ( 7 0 8. 5 g/ 1 0 0 l )。 RNAの精製は、 以下のように行った。 前記の抽出した全 RN A 1 0 0 1 に 4 0 0 / l の 1. 2 5倍濃縮 T N E S buffer と 1 0 1 の 1 0 m g/m 1 の Proteinase K を添加し、 3 7 で 1時間反応後、 フエ ノール ' クロ口ホルム処理 ( 5 0 0 1、 6 0 °C、 1 5分; 3分ごとに ポルテックス)、エタノール処理( 1 2 0 0 0 r pm、 1 5分) し、 7 0 % エタノールで洗浄後、 6 0 0 ^ 1 の D E P C— H20に溶解し、 オリゴテ ックス(Oligotex-dT30 super;第一化学薬品社製) 1 5 0 1 を加え、 よくピペッティングした( 7 0°C、 1 0分)。次いで、 5 Mの N a C 1 3 7 1 を加えてよくピペッティングし ( 3 7 °C、 1 0分)、 1 3 2 0 0 r pmで 5分間遠心し、 5 0 0 1 の Wash bufferで洗浄した。 1 3 2 0 O r pmで 5分間遠心し、 1 0 0 ^ 1 の D E P C— H 2〇に溶解後、 6 5 °Cで 5分間保持し、 1 3 2 0 0 r p mで 5分間遠心し、 上清を New tubeへ移す操作を 2回繰り返し、 吸光度を測定し、 得られた mRNAを 5 g/tubeに分注した。
c D N Aの合成は、 以下のように行った。 mR N A試料 5 z gをエタ ノール処理後、 1 2 0 0 0 r p で 2 5分間遠心し、 7 0 % エタノール で洗浄後、 6 1の D E P C— H20に溶解した。 次いで、 N o t I プ ライマー 2 n 1 を加え、 7 0 で 1 0分間反応させ、氷冷後、 5 X First strand buffer 4 l、 0. 1 MのDTT 2 z l、 1 0mM d N T P M i x 1 1 を加えて 3 7 tで 2分間反応させ、 5 1の Superscript II を加えて 3 7 で 1分間反応させ、 プラスミ ドライブラリ一第 1 strand を調製した。 (なお、 ライブラリ一作製試薬は、 Super Script Plasmid System: GIBCO BRL社製を用いた。) このプラスミ ドライブラリ一第 1 strand を铸型とし、 D E P C— H20 9 1 i l 、 5 X 2 nd strand buffer 4 ^ 1、 1 0 mM d N T P M i x 3 1、 E.Coli由来 D N A リガ一ゼ 1 / 1 、 E.Coli由来 DNAポリメラ一ゼ I 4 し E.Coli由 来 DNA R N a s e 1 1 を加え、 軽くポルテックスし、 1 61:で 2 時間反応後、 T 4ポリメラーゼ 2 ^ 1 を加え、 1 6 °Cで 5分間反応させ、
0. 5 Mの E D TA I O I を加えた後、 フエノール 'クロ口ホルム処 理し、 上清 1 5 0 1 に 7. 5 Mの NH4OA c 7 5 1 を加え、 エタ ノール 5 0 0 1 を添加して 1 3 2 0 0 r p mで 2 0分間遠心し、 7
0 % ェ夕ノ一ルで洗浄しプラスミ ドライブラリー第 2 strand を調製し た。
c DN Aの断端処理と、 長いサイズの c DNAィンサートの精製は、 以下のように行った。 合成した二本鎖 c DN Aに、 D E P C— H20 2 5 I , 5 X T 4 DNA ligase buffer 1 0 1、 Sal I adaptor 1 0 II し T 4 DNAリガーゼ 5 n 1 を加え、 1 6 °Cでー晚、 アダプタをラ ィゲ一ションした。 フエノール ' クロ口ホルム処理した上清 4 5 1 に 7. 5 Mの NH4OA c 2 5 1、 エタノール 1 5 0 1 を加え 1 3 2 0 0 r p mで 2 0分間遠心し、 7 0 % ェタノ一ルで洗浄し、 D E P C— H20 4 1 〃 1、 R EAC T 3 buffer 5 1 , N o t I 4 1 を加 え、 3 7 °Cで 2 0時間反応させた後、 フエノール · クロロホルム処理し た上清 5 0 x l に 7. 5 Mの NH4OA c 2 5 1、 エタノール 1 5 0 H 1 を加え 1 3 2 0 0 r p mで 2 0分間遠心し、 7 0 % エタノールで洗 浄し、 TEN 1 0 0 1 に溶解して、 サイズフラクションに供した。 T E N 0. 8 m 1 X 4をカラムにローデイングた後に試料 1 0 0 1 を力 ラムにローディングして画分 1を回収し、同様に T E N 1 0 0 1 を力 ラムにローディングして画分 2を回収した。 さらに、 TEN 1 0 0〃 1 をカラムにローデイングし、 1滴ずつ回収することにより、 画分 3〜 1 5を同様に回収した。 1 a gZm 1 のェチジゥムブ口マイ ド (E t B r ) 1 1 に試料 1 1 を加え、 各画分の DNA濃度を測定した結果、 高濃 度の D N Aを含む画分 8〜 1 3 (計 1 5 0 1 ) を回収し、 7. 5 Mの NH40 A c 7 5 1、エタノール 5 0 0 1 を加ぇ 1 3 2 0 0 :01 で 2 0分間遠心し、 7 0 % エタノールで洗浄し、 TEN 3 0 1 に溶 解した。
発現プラスミ ドと c DNAィンサー卜とのライゲーション及び形質転 換は次のように行い、 最終的な c D N Aライブラリ一を構築した。 D E P C - H20 1 2. 5 z l又は 1 0 i l、 5 XT4 DNA ligase buffer 4 し 真核細胞発現プラスミ ドベクター pCMV-SPORT6 1 / 1、 ィ ンサ一ト 2. 5 1又は 5 1 を加ぇ、 4°Cでー晚ライゲーシヨンを行 つた。次いで、 t RNA 5 l、 7. 5 MのNH4OA c 1 2. 5 / 1、 エタノール 7 0 1 を加え 1 3 2 0 0 r p m ? 2 0分間遠心し、 7 0 % エタノール 0. 5 m 1 で洗浄し、 H 2 O 5 /z 1 に溶解し、 ligation mixture とした。 大腸菌 DH 1 0 B 5 0 1 に ligation mixture 1 1 を加え、 氷冷 5分間の後、 エレク ト口ポレーシヨン ( 2. 5 k V) し、 S O C 1 m l を加えて 3 7 °Cで 1時間、 2 0 0 r p mで振盪した。 1 0 / 1 をアンピシリン含有 L Bプレート(培地 1 リツ トル中 bacto trypton 1 0 g、 yeast extract 5 g、 N a C 1 1 0 g、 アンピシリン 1 0 0 mgを含む。)上にプレーティングした。作製した c DNAライブラリ一 に含まれる c D NA数は、 3 X 1 05個 (モル比がベクタ一 : インサー ト = 1 : 1 ) 及び 4 X I 05個 (ベクタ一 : ィンサ一ト = 1 : 2 ) であ つた。
実施例 1一 4 (C T L s によるダリォ一マ抗原遺伝子のスクリ一ニング) 1穴あたり 1 5 0 1 のアンピシリン含有 L B培地の入つた 9 6穴プ レートに、 1穴あたり 1 0 0個になるように c DNAライブラリ一を調 整後、 3 7 °C、 1 8 0 r pmで一晩培養し、 培養した大腸菌 3 1 を 1 穴あたり 2 5 0 1 の T Y G P N培地(培地 1 リッ トル中 bacto trypton 2 0 g、 yeast extract 1 0 g、 1 0 0 % グリセロール 8 m l、 N a 2 HP O4 5 g、 KN 03 l gを含む。) の入った 9 6穴プレートに加えて 3 7 °Cで 2 4時間培養して増幅し、 常法によりプラスミ ド DNAの抽出 を行った。 さらに、 約 1 0 O n gの c DNAを、 Lipofectamine (GIBCO BRL社製) を用いて 9 6穴プレート上でリポフエクション法により 1 X 1 04個の MHCクラス I の Kbと D bを発現する 2 9 3 Kb D b細胞 に導入の後、 1 0 %の非働化 F C Sを含む D MEM培地中にて 3 7 °Cで 一晩インキュベートした。 9 6穴プレートから培地を取り除いた後、 G C L— 1を 1 X 1 04個 Z 2 0 0 a 1加え、 3 7 °Cで 2 4時間インキュ ペートした。 培養上清を回収し、 G C L— 1から放出されたインターフ エロン―ァ ( I NF—ァ) 量を E L I S A法により測定した。 3 X 1 04 個の c DNAクロ一ンを 1次スクリ一ニングした結果、 1穴のみ I N F 一 の放出が検出された。 さらに、 その穴の大腸菌をプレーティングし て 5 0 0個のコロニーを単離し、 上記と同様に 2次スクリーニングを行 つた結果、 2穴から I N F— rが検出された。 これらの穴からダリオ一 マ抗原をコ一ドする c D N Aを含むプラスミ ドを単離した。
実施例 1一 5 (単離抗原遺伝子の塩基配列の決定及び相同性検索) 上記で得られたプラスミ ド中の c DNAィンサートの塩基配列を決定 し (配列番号 1 ; G L 2 6 1抗原遺伝子 (GAR C— 1 ))、 データべ一 ス (UniGene; 米国国立生体工学情報セン夕一) により検索した結果、 マウス UniGeneの Mm. 1 2 8 6 4 R I KEN c DNA 1 1 9 0 0 0 2 L 1 6遺伝子に一致した (図 3) が、 ヒトの H s . 6 1 1 8 C h r omo s ome l 5 o p e n r e a d i n g f r am e 1 2のホモ ログであり (図 4 )、 ミトコンドリアのリボソームタンパクであることが 示唆された。 また、 G AR C— 1には数力所の遺伝子変異が存在し、 ま たアミノ酸レベルでは 8 1番目のァスパラギン酸からァスパラギンへ置 換する変異が認められた (図 5)。 実施例 1一 6 (遺伝子発現の解析)
上記で同定された遺伝子 GAR C一 1の各正常組織細胞、 ダリォーマ 組織、 ダリォーマ細胞株における遺伝子発現を RT— P C R法にて解析 した。 使用した c DNAは胎児脳、 脳、 心臓、 肺、 胃、 小腸、 肝臓、 脾 臓、 腎臓、 精巣、 胎盤、 骨格筋、 大腸、 線維芽細胞の正常細胞 1 4種と、 GB 1 3、 GB 1 7、 GB 1 6、 G B 4のダリオ一マ組織 4種と、 G I — 1、 U 2 5 1、 U 8 7 MG、 A 1 7 2 (ダリオ一マ細胞) を用いた。 また、 P C Rは以下の条件で行った。 センスプライマーとして (5'- ACGAGCAGAAGCTGCTGAA -3';配列番号 2 3)、 アンチセンスプライ マ一として (5'- AGTGACAAAGTCCTCCATGCT -3';配列番号 24 ) を 用い、 熱変性 9 4°Cで 1分間、 アニーリング 5 8°Cで 1分間、 伸長反応 7 2 °Cで 1分間の条件で 3 0サイクルの P C Rを行った。 これらの得ら れた産物を 2 %ァガロースで電気泳動を行って、 E t B rで染色した後、 2 5 4 nmの紫外線照射によりバンドを検出した。 その結果、 GAR C 一 1は正常組織では精巣で弱い発現が認められた。 一方、 ダリオ一マ組 織において正常組織と比較し高い発現が認められた(図 6)。
実施例 1一 7 (ダリォーマ抗原 GAR C— 1の T細胞に認識されるェピ トープ部位の決定)
上記 c DNA (GAR C— 1 ;配列番号 1 )、 若しくは登録されている Mm. 1 2 8 6 4遺伝子を铸型とし、 センスプライマ一として T 7プラ イマ一 (5'- GTAATACGACTCACTATAGGGC -3' ; 配列番号 5 )、 及び、 図 5に示される種々のアンチセンスプライマ一 [ 7 8 3 A—プライマー: 5'- ACATTCCTGCTTCTACACCA -3';配列番号 6、 4 9 O A—プライマ 一 : 5'- GTGACAAAGTCCTCCATGCT -3';配列番号 7、 GAR C— 1 遺 伝 子 由 来 の 2 7 3 A — プ ラ イ マ ー : 5'- CCCATAGCGTACAGCTTGTT -3';配列番号 8、 Mm. 1 2 8 6 4遺伝 子に由来する 2 7 3 A _プライマ一に対応する 2 7 3 wプライマ一: 5'- CCCATAGCGTACAGCTTGTC -3';配列番号 9 ] を用い、 3'末端を順次 欠失させた断片を P C Rにより増幅して GL 2 6 1抗原 c DNA配列に 由来する 3種類の欠失 '変異 c DNAクローン [ 1番目から 7 8 3番目 までの塩基配列 ( 7 8 3m ; 1 8 4アミノ酸残基)、 1番目から 4 9 0番 目までの塩基配列 (4 9 0 m ; 1 5 9アミノ酸残基) 及び 1番目から 2
7 3番目までの塩基配列 ( 2 7 3m ; 8 6アミノ酸残基)]、 及び Mm.
1 2 8 64遺伝子に由来する欠失 ·正常型 c DNAクローン( 2 7 3 w;
8 6アミノ酸残基) を作製した (図 7 )。
上記それぞれの c D N Aイ ンサー ト を p c D N A 3 ベクタ一 (Invitrogen Corporation) に組込んで (図 7 )、 MHCクラス Iの Kb と D bを発現する細胞である 2 9 3 K b D b細胞に導入した後、 G C L 一 1 と共培養して放出された I NF—ァを測定することにより、 GAR C一 1抗原の T細胞の認識部位について解析を行った。 その結果、 最も 短いクローンである上記 2 7 3m ( 8 6ァミノ酸残基) まで G C L— 1 は反応して I N F—ァの放出が認められたが、 変異をもたない上記 2 7 3 w ( 8 6アミノ酸残基) では明らかな I N F—ァの放出量の低下が認 められた (図 8)。
(G AR C— 1が認識する H— 2 D b拘束性のぺプチドの検索)
さらに、 ェピトープとなるペプチドを決定するため、 We b上の検索 サっ ト (Biolnformatics & Molecular Analysis Section ( B I M A S ) の HLA Peptide Binding Predictions program ( HYPERLINK http-7/bimas. dcrt.nih.gov/molbio/hla
http://bimas.dcrt.nih.gov/molbio/hla bind/) ) を用レ て、 G A R C— 1 が認識する MHCクラス I (H— 2 D b) に結合するペプチドを検索し た結果、 Mm. 1 2 8 64遺伝子から予想される配列には高いァフィ二 ティーを示すペプチドは認められなかった。 一方、 G AR C— 1遺伝子 から予想される配列のアミノ酸変異部分を含む 9残基 (AAL L NKL Y A;配列番号 4)のべプチドが高いァフィ二ティーを示した。そこで、 高いァフィ二ティーが予想される変異べプチドと、 コントロールとして 同部位の変異のないペプチド (AAL L DKL YA) を合成し、 高速液 体クロマトグラフィーによる精製及び質量分析器による確認を行つた後, それぞれ種々の濃度のぺプチドを 2 9 3 K b D b細胞にパルスし、 G C L— 1 と接触させ、 放出される I N F—ァ量を測定した。 その結果、 変 異ぺプチドは、 コントロールべプチド AAL L DKL YAと比較して、 低濃度でも G C L - 1を強く刺激することが明らかになった (図 9 )。 し たがって、 G C L— 1は、 GAR C— 1遺伝子がコ一ドするアミノ酸に 由来する H— 2 D bに結合する変異べプチド (AAL L NKLYA ; 配 列番号 4) を特異的に認識していることが明らかになった。
実施例 2 [ I g Gによって認識される腫瘍抗原のスクリ一ニング] 実施例 2— 1 (インサイチュー癌ワクチン)
C 5 7 B L / 6マウス両側皮下に片側あたり 1 X 1 06個の G L 2 6 1 を移植し、 腫瘍生着後 (移植後 7〜 1 0日)、 右側腫瘍内に直接 1 X 1 0 ?p f uの H S Vを 3日毎に計 5回投与 (図 1 0右の横軸に▲で表示) した。 H S Vを用いたィンサイチュー癌ワクチン投与による腫瘍抑制効 果を確認するために、腫瘍体積(mm3) を経時的に測定(n = 5 ) した。 その結果、 対照群 (M o c k) と比較して H S V投与群では、 接種腫瘍 (右側腫瘍: R t ) のみならず、 遠隔腫瘍 (左側腫瘍: L t ) の増殖も 有意に抑制されることが明らかになった (図 1 0)。 また、 最終投与から 7 日後 (H S V投与開始から 1 9日目) に血清の採取を行った。
実施例 2 — 2 (S E R E X法によるダリオ一マ抗原のスクリーニング) G L 2 6 1接種マウスから採取した血清 2 0 0 1 を 5 % スキムミ ルク含有 TB S T ( 5 0 mM T r i s— HC 1 ( p H 8. 0)、 1 5 0 mM N a C l、 0. 0 5 % Tw e e n 2 0 ) で 1 0 0倍希釈した。 ま た、 1プレートあたり 2 X 1 04個の陰性ファ一ジを、 1プレートあた り大腸菌(X L 1 - B 1 u e ) 5 0 0 1 に感染させプレーティングし、 2 OmMの I P TG (Isopropyl-beta-D-thiogalactopyranoside) を吸収 させたメンブレン (Hybond-c; Amersham 社製) を、 プレート上にの せて 3 7 °Cで 4時間培養した後、 発現したタンパク質をメンブレンに移 し、 5 %のスキムミルクを含む TB S Tでー晚ブロッキングを行った。 次に、 1 0 0倍希釈した上記血清 2 5 m 1 あたり、 1 0枚のメンブレン を室温で 3時間浸した後、 血清を回収した。 また、 1 0 0倍希釈した血 清を 3匹分混合し、 最終希釈倍率を 3 0 0倍とした。
( 1次スクリ一ニング)
1プレートあたり 1 X I 04個のマウス精巣 c D N Aファ一ジライブ ラリ一 (Stratagene社製) を大腸菌 (XL— b l u e) 5 0 0 i lに感 染させ、 N Z Yァガ一プレート 5 0枚にプレ一ティングし、 4 2 °Cで 4 〜 6時間インキュベートした後、 2 OmMの I P TGを吸収させたメン プレンをァガ一上にのせ、 発現したタンパク質をメンブレンに転写させ た。 次に、 メンプレンを 5 %のスキムミルクを含む TB S Tで一晚ブロ ッキングし、 メンブレンを 3 0 0倍希釈した血清に室温下で 1時間浸し た後、 丁83丁で 5分間 3回、 メンブレンの洗浄を行った。 さらに、 メンブレンを 40 0 0倍に希釈した 2次抗体 (アルカリフォスファタ一 ゼ標識抗マウス I g G抗体; I C N)液 1 0 0m l に室温で 1時間浸し、 T B S Tで 5分間 X 3回、 及び T B S ( 5 0 mM T r i s -H C 1 ( p H 8. 0 )、 1 5 0 mM N a C 1 ) で 5分間 X 2回の洗浄を行った後、 Reaction bufferでリンスを 2回行い、 発色剤 [Reaction buffer 3 0 m 1 、 N B T ( Nitro blue tetrazolium ) 1 3 5 1 及び B C I P ( 5-Bromo-4-Chloro-3-indolyl) 1 0 5 1 ]で発色させることにより、 5 X 1 05 クローンから 2 9 4個の陽性クローンを検出した。 最後に、 陽性クローンを回収し、 各々 SM buffer (0. 5 8 % N a C l、 0. 2 % M g S 04 * 7 H20、 5 0 mM T r i s —HC l、 0. 0 1 % ゼ ラチン ; p H 7. 5 ) 5 0 0 1 に懸濁した。
( 2次スクリーニング)
1次スクリ一ニングの陽性ファージを 1プレートあたり 2 0 0 1 の 大腸菌 (X L 1— B 1 u e ) に感染させ、 N Y Zァガープレートにプレ —ティングし、 4 2 °Cで 4〜 6時間インキュベートした後、 2 0mMの I P T Gを吸収させたメンブレンをァガー上にのせ、 合成したタンパク 質をメンブレンに転写させた。 次に、 メンブレンを 5 %のスキムミルク を含む T B S Tでー晚ブロッキングし、 3 0 0倍に希釈した血清に室温 で 3時間浸けた後、 TB S Tで 5分間 X 3回の洗浄を行った。 さらに、 メンブレンを 40 0 0倍に希釈した 2次抗体 ( I C N ) 液 1 0 0 m 1 に 室温で 1時間浸し、 丁83丁で 5分間 3回、 及び TB Sで 5分間 X 2 回の洗浄を行った後、 Reaction bufferでリンスを 2回行って発色剤で発 色させることにより、 血清 I g Gが反応する陽性クローンを検出して最 終的に 2 6個のクローンを単離し、各々 S M buffer 2 0 0 1 に懸濁し た。
実施例 2— 3 (単離されたダリオ一マ抗原遺伝子の塩基配列の決定及び 相同性検索)
上記得られた 2 6個のファージクローンから P C R法によりィンサ一 ト DNAを増幅し、 以後の解析に用いた。 D NAポリメラ一ゼとして ExTaq ( TaKaRa ) を 用 レ 、 セ ン ス プ ラ イ マ ー と し て T 3 (5'-AATTAACCCTCACTAAAGGG-3';配列番号 1 0)、 アンチセンスプ ライマ一として T 7 (5'-GTAATACGACTCACTATAGGGC-3';配列番号 5 ) を用いた。 なお、 P C R反応の条件は、 サーマルサイク ラ一 (Perkin-Elmer 社製) を用いて 9 4° ( 、 1分間の熱変性の後、 5 5 °C で 2分間のァニール及び 7 2 °Cで 2分間の伸長反応を 3 0サイクル繰り 返して行った。 得られた P C R産物を、 Big Dye DNA Sequencing Kit ( A B I ) 及び ABI3100 オートシークェンサ一を用いて DNAのシー クエンスを行った後、デ一夕ベース(B LA S T: Basic Local Alignment Search Tool) による検索を行い、 遺伝子を同定した (表 1 )。
これら 2 6種類の遺伝子のうち 2 0種類は米国国立生体工学情報セン 夕一の UniGene によって統合整理されており、 さらに血清反応の強い もの、 データべ一ス上で組織発現が限られているもの、 以前に腫瘍抗原 として同定されたもの、の計 3項目に分けて分類した(表 2 )。その結果、 血清反応の強い遺伝子として、 M 1 G 4 1 (H s . 2 2 5 6 7 4 ; Wd-repeat protein-9) > M 1 G 6 0 ( H s . 2 7 0 8 4 5 ; mitotic kinesin-like protein), M 1 G 1 1 7 M 1 G 1 6 9 (H s . 5 0 7 5 8 ; SMC 4 L 1 )、 デ一タベース上で組織発現が限られている遺伝子と して、 M 1 G 2 (H s . 1 5 8 2 1 3 ; S P AG 6)、 M 1 G 3 5 (H s . 2 9 0 9 ; Protamine 1)、 M 1 G 1 0 3 (H S . 3 4 9 6 9 5 ; Tubulin alpha 2) を挙げることができる。
(表 2)
強い血清反応を示したクローン
クローン マウスュニジーン
同定遺伝子 ヒ卜において相同な遺伝子 ナンノ ー (Mouse Unigene)
1G41 Mm.131039 WDR9 gene Hs.225674 IWd- repeat protein - 9 1G60 Mm.28386 RIKEN cDNA 3110001D19 Hs.270845 mitotic kinesin - like protein
1G117 Similar to hypothetical
protein FLJ10110
1G169 Hs.50758 Structural maintenance of chromosomes 4一 I ike 1 データベース上で組織発現が限られている遺伝子
1G2 Mm.31701 Spag6 Hs.158213 SPAG6
1G35 Mm.42733 Protamine 1 Hs.2909 Protamine 1
1G103 Mm.34312 Tubul in alpha 3 Hs.349695 Tubul in alpha 2 以前、 腫瘍抗原として同定されたもの
1G56 Mm.152589 Similar to DKFZp434G156 Hs.7973 Hypothetical Protein M1G38 Hs.300642 NY-CO— 8(1552bp) 1G134 Mm.4564 Synaptonemal complex Hs.112743 Synaptonemal complex protein 1 protein 1 実施例 2— 4 (RT— P C R法による単離されたグリォーマ抗原の mR NA発現の解析)
上記で同定された遺伝子のうち、 血清反応の強いもの、 デ一夕べ一ス 上で組織発現が限られているものに関してはヒ ト遺伝子との相同性を検 索し、 かかるヒト遺伝子について各正常組織細胞、 腫瘍細胞株、 腫瘍組 織由来 c DNAを铸型として RT— P CRを行った。 使用した c DNA は、 脳、 心臓、 肺、 胃、 小腸、 結腸、 肝臓、 脾臓、 腎臓、 精巣、 胎盤、 骨格筋の正常組織 1 2種と、 GB 1 3、 GB 1 7、 GB 1 6、 GB 4の グリォ一マ組織 4種と、 U 8 7 MG、 T 9 8 G、 G I — 1、 U 2 5 1 (グ リオ一マ細胞)、 S K-ME L 2 3 , 6 24 ME L (悪性黒色腫)、 RC C 7、 Saito (腎癌)、 L U 9 9、 E B C 1 (肺癌)、 T E 1 0 (食道癌)、 P K 5 9 (塍癌)、 KU 7 (膀胱癌)、 P C 3 (前立腺癌)、 HL 6 0、 M OL T 4 (リンパ腫) の腫瘍培養細胞を用いた。
また、 P C Rは以下の反応条件で行った。 Wd-repeat protein-9には、 センスプライマーとして (5'-GGTTACAAGTCCCATACTCC-3,; 配列番 号 1 1 ) 、 ア ン チ セ ン ス プ ラ イ マ 一 と し て ( 5'-TCACTGGAACAGACCCTT-3' ; 配列番号 1 2 ) を、 mitotic kinesin-like protein に は 、 セ ン ス プ ラ イ マ 一 と し て (5'-GATTTCCAACGGCCAGCAAC-3'; 配列番号 1 3)、 アンチセンス プライマ一として(5'-TCGTCTGTGTCGGAGACGAA-3';配列番号 1 4) を 、 S P A G 6 に は 、 セ ン ス プ ラ イ マ ー と し て (5'-TACCCCGAGGAAATAGTGAG-3'; 配列番号 1 5 )、 アンチセンス プライマーとして (5'-CCTTAAGGCCCTTTAACGTG-3';配列番号 1 6) を 、 Protamine 1 に は 、 セ ン ス プ ラ イ マ 一 と し て (5'-ATTCAGGCCAAGCCCATCCT-3';配列番号 1 7)、 アンチセンスプ ライマーとして (5'-TTGACAGGCGGCATTGTTCC-3';配列番号 1 8 ) を 、 Tubulin alpha 2 に は 、 セ ン ス プ ラ イ マ 一 と し て (5'-GACCCTGGAACATTCTGACT-3,;配列番号 1 9)、 アンチセンスプ ライマーとして (5'-CCCCTCAGTATTCTTCACCT-3'; 配列番号 2 0 )、 S M C 4 L 1 に は 、 セ ン ス プ ラ イ マ 一 と し て (5'-CTACAAGCCCACTCCCCTTT-3';配列番号 2 1 )、 アンチセンスプ ライマ一として (5'-CAGGCATTTCCAGTGTTGGT-3'; 配列番号 2 2 ) をそれぞれ用いて、 熱変性 9 4 °Cで 3 0秒間、 アニーリング 6 2 °Cで 3 0秒間、 伸長反応 7 2 °Cで 1分間の条件で 3 0サイクル (M 1 G 3 5及 び M 1 G 1 0 3は 3 5サイクル) の: P C Rを行った。
これらの P C Rにより得られた P C R産物を 1. 5 % ァガロースゲル で電気泳動を行って E t B rで染色した後、 2 5 4 n mの紫外線照射に よりバンドを検出した(図 1 1〜 1 6 )。その結果、 Wd-i'epeat protein-9 は、 正常組織では脳での弱い発現と精巣での発現が認められた一方、 脳 腫瘍の細胞株や脳腫瘍組織、 その他様々な腫瘍細胞株で高い発現が認め られた (図 1 1 )。 mitotic kinesin-like protein は、 正常組織では精巣 のみで、 脳腫瘍を含む様々な腫瘍細胞株及び脳腫瘍組織において高い発 現が認められた (図 1 2 )。 S P A G 6は、 正常組織において、 脳、 肺で 弱い発現があり、 精巣で高い発現を示した。 腫瘍組織ではほとんど発現 は認められなかった (図 1 3 )。 Protamine 1 は、 正常組織では肺、 精 巣における強い発現が認められた。 また、 脳を含む様々な組織で弱い発 現が認められた一方、 脳腫瘍細胞株、 メラノ一マ細胞では高い発現が認 められた (図 1 4 )。 Tubulin alpha 2 は、 正常組織では脳、 肺、 胃、 肝 臓で弱い発現があり、 心臓、 精巣、 胎盤で強い発現が認められ、 さらに 脳腫瘍細胞株、 脳腫瘍組織での高い発現が認められた (図 1 5 )。 S M C 4 L 1は、 正常組織では精巣における強い発現と、 脳、 胃、 小腸、 大腸 における弱い発現が認められ、 とりわけ脳腫瘍を含む脳腫瘍細胞株にお いて高い発現が認められた (図 1 6 )。 産業上の利用可能性
本発明によると、 転移性腫瘍等ヒトの遠隔腫瘍に対しても抗腫瘍効果 を示すなど、 癌に対する免疫療法が可能な抗腫瘍免疫反応を誘導できる 腫瘍抗原のスクリ一二ング方法や、 該スクリーニング方法により得られ る腫瘍抗原及び抗原べプチドゃ、 それをコードする遺伝子等を提供する ことができる。

Claims

請 求 の 範 囲
1. 単純へルぺスウィルス又は単純へルぺスウィルスダリコプロテイン を、 腫瘍組織に直接投与して腫瘍特異的細胞障害性 Tリンパ球 (C TL s ) を誘導し、 かかる誘導された腫瘍特異的 C TL s と、 腫瘍及び Z又 は精巣に由来する c DNAライブラリーとを用いることを特徴とする腫 瘍抗原のスクリ一ニング方法。
2. 単純へルぺスウィルス又は単純へルぺスウィルスダリコプロティン を、 腫瘍組織に直接投与して腫瘍特異的 I g Gを誘導し、 かかる誘導さ れた腫瘍特異的 I g Gを含む血清と、 腫瘍及び Z又は精巣に由来する c D N Aライブラリーとを用いることを特徴とする腫瘍抗原のスクリー二 ング方法。
3. 単純へルぺスウィルスが、 不活性化処理を施した単純へルぺスウイ ルスであることを特徴とする請求項 1又は 2記載の腫瘍抗原のスクリ一 ニング方法。
4. 単純へルぺスウィルスグリコプロテインが、 単純へルぺスウィルス グリコプロティン Dであることを特徴とする請求項 1又は 2記載の腫瘍 抗原のスクリ一二ング方法。
5. 請求項 1〜 4のいずれか記載の腫瘍抗原のスクリ一ニング方法によ り得られることを特徴とする腫瘍抗原。
6. 腫瘍抗原遺伝子 M 1 G 4 1 , M 1 G 6 0 , M 1 G 2 , M 1 G 3 5 , M 1 G 1 0 3 , M I G 1 6 9のいずれかがコ一ドする夕ンパク質及び/ 又はペプチド、 若しくはこれら腫瘍抗原遺伝子のヒ 卜ホモログがコード "9 る Wd-i'er>eat protem-9, mitotic kmesm-like protein, S P A 6, Protamine 1, Tublin alpha 2 , SMC 4 L 1からなることを特徴とす る請求項 5記載の腫瘍抗原。
7. 配列番号 2に示されるアミノ酸配列からなるタンパク質。
8. 配列番号 4に示されるアミノ酸配列からなるぺプチド。
9. 配列番号 2又は配列番号 4に示されるアミノ酸配列において、 1若 しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列か らなり、 かつ免疫誘導活性を有するタンパク質及びノ又はペプチド。
1 0. 請求項 5記載の腫瘍抗原をコードする DNA、 又は該 DNAとス トリンジェントな条件下でハイプリダイズし、 かつ免疫誘導活性を有す るタンパク質及び/又はぺプチドをコ一ドする DNA。
1 1.以下の(a )〜(c )のタンパク質及び/又はべプチドをコードする D N A。
(a)配列番号 2に示されるアミノ酸配列からなるタンパク質
(b)配列番号 4に示されるアミノ酸配列からなるぺプチド
(c)配列番号 2又は配列番号 4に示されるアミノ酸配列において、 1若 しくは数個のアミノ酸が欠失、 置換若しくは付加されたアミノ酸配列か らなり、 かつ免疫誘導活性を有するタンパク質及び/又はペプチド
1 2. 配列番号 1又は配列番号 3に示される塩基配列又はその相補的配 列並びにこれらの配列の一部又は全部を含む DNA。
1 3. 請求項 1 2記載の D N Aとストリンジェン卜な条件下でハイブリ ダイズし、 かつ免疫誘導活性を有するタンパク質及び/又はべプチドを コードする DNA。
1 4. 請求項 5〜 9のいずれか記載の腫瘍抗原、 又はタンパク質及び/ 若しくはべプチドに特異的に結合する抗体。
1 5. 請求項 5〜 9のいずれか記載の腫瘍抗原、 又はタンパク質及び Z 若しくはべプチドを発現することができる発現系を含んでなる宿主細胞,
1 6. 請求項 5〜 9のいずれか記載の腫瘍抗原、 又はタンパク質及び Z 若しくはべプチドをコ一ドする遺伝子の機能が染色体上で欠損し又は前 記遺伝子が過剰発現することを特徴とする非ヒト動物。
1 7. 請求項 5〜 9のいずれか記載の腫瘍抗原、 又はタンパク質及び Z 若しくはべプチドを有効成分として含有する抗腫瘍剤。
1 8. 請求項 5〜 9のいずれか記載の腫瘍抗原、 又はタンパク質及び/ 若しくはべプチドによるインビトロ刺激により誘導された活性化 T細胞 <
1 9. 請求項 5〜 9のいずれか記載の腫瘍抗原、 又はタンパク質及び/ 若しくはぺプチドをコードする DNA又は RNAのアンチセンス鎖の全 部又は一部からなる癌の診断用プローブ。
2 0. 請求項 1 9記載の癌の診断用プローブ及び/又は請求項 1 4記載 の抗体を含有することを特徴とする癌の診断薬。
PCT/JP2003/008981 2002-07-15 2003-07-15 腫瘍抗原のスクリーニング方法 WO2004018680A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003290625A AU2003290625A1 (en) 2002-07-15 2003-07-15 Method of screening tumor antigen

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-206339 2002-07-15
JP2002206339 2002-07-15
JP2002335382A JP2004097199A (ja) 2002-07-15 2002-11-19 腫瘍抗原のスクリーニング方法
JP2002-335382 2002-11-19

Publications (1)

Publication Number Publication Date
WO2004018680A1 true WO2004018680A1 (ja) 2004-03-04

Family

ID=31949483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008981 WO2004018680A1 (ja) 2002-07-15 2003-07-15 腫瘍抗原のスクリーニング方法

Country Status (3)

Country Link
JP (1) JP2004097199A (ja)
AU (1) AU2003290625A1 (ja)
WO (1) WO2004018680A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016141A1 (fr) * 2006-08-04 2008-02-07 Kurume University Peptide dérivé de kif capable de se lier à une molécule hla-a24
JP2017165734A (ja) * 2011-01-04 2017-09-21 シラジェン バイオセラピューティクス インコーポレイテッド 腫瘍溶解性ワクシニアウイルスの投与による腫瘍抗原に対する抗体の生成および腫瘍特異的補体依存性細胞傷害の生成

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018148A1 (en) * 1993-12-28 1995-07-06 Chiron Mimotopes Pty Ltd T-cell epitopes
EP1074617A2 (en) * 1999-07-29 2001-02-07 Helix Research Institute Primers for synthesising full-length cDNA and their use
WO2001012659A2 (en) * 1999-08-18 2001-02-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Human dna sequences
WO2001032862A1 (fr) * 1999-10-29 2001-05-10 Shanghai Bio Door Gene Technology Ltd. Nouveau polypeptide, proteine humaine 20 ribosome s4, et polynucleotide codant pour ce polypeptide
WO2001053312A1 (en) * 1999-12-23 2001-07-26 Hyseq, Inc. Novel nucleic acids and polypeptides

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995018148A1 (en) * 1993-12-28 1995-07-06 Chiron Mimotopes Pty Ltd T-cell epitopes
EP1074617A2 (en) * 1999-07-29 2001-02-07 Helix Research Institute Primers for synthesising full-length cDNA and their use
WO2001012659A2 (en) * 1999-08-18 2001-02-22 Fraunhofer-Gesellschaft Zur Foerderung Der Angewandten Forschung E.V. Human dna sequences
WO2001032862A1 (fr) * 1999-10-29 2001-05-10 Shanghai Bio Door Gene Technology Ltd. Nouveau polypeptide, proteine humaine 20 ribosome s4, et polynucleotide codant pour ce polypeptide
WO2001053312A1 (en) * 1999-12-23 2001-07-26 Hyseq, Inc. Novel nucleic acids and polypeptides

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
DATABASE GENBANK [online] Database accession no. (BC003363) *
DATABASE GENBANK [online] Database accession no. (NM002761) *
DATABASE GENBANK [online] Database accession no. (NM005496) *
DATABASE GENBANK [online] Database accession no. (NM006001) *
DATABASE GENBANK [online] Database accession no. (NM009446) *
DATABASE GENBANK [online] Database accession no. (NM012443) *
DATABASE GENBANK [online] Database accession no. (NM013637) *
DATABASE GENBANK [online] Database accession no. (NM015773) *
DATABASE GENBANK [online] Database accession no. (NM033656) *
DATABASE GENBANK [online] Database accession no. (NM145125) *
DATABASE GENBANK [online] Database accession no. (X67155) *
JAGER E. ET AL.: "Simultaneous humoral and cellular immune response against cancer-testis antigen NY-ESO-1: definition of human histocompatibility leukocyte antigen(HLA)-A2-binding peptide epitopes", J. EXP. MED., vol. 187, no. 2, January 1998 (1998-01-01), pages 265 - 270, XP002096011 *
MASAHIRO TODA ET AL.: "Hen'i herpes virus o mochiita shuyo tokuiteki na in situ gan vaccine ryoho no kaihatsu", NEUROIMMUNOLOGICAL RESEARCH, vol. 11, December 1998 (1998-12-01), pages 135 - 139, XP002974943 *
SAHIN U. ET AL.: "Human neoplasm elicit multiple specific immune responses in the autologous host", PROC. NATL. ACAD. SCI. USA, vol. 92, December 1995 (1995-12-01), pages 11810 - 11813, XP002948566 *
TODA M. ET AL.: "Herpes simplex virus as an in situ cancer vaccine for the induction of specific anti-tumor immunity", HUMAN GENE THERAPY, vol. 10, February 1999 (1999-02-01), pages 385 - 393, XP002974941 *
TODO T. ET AL.: "Systemic antitumor immunity in experimental brain tumor therapy using a multimatated, replication-competent herpes simplex virus", HUMAN GENE THERAPY, vol. 10, November 1999 (1999-11-01), pages 2741 - 2755, XP002974942 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008016141A1 (fr) * 2006-08-04 2008-02-07 Kurume University Peptide dérivé de kif capable de se lier à une molécule hla-a24
US7968098B2 (en) 2006-08-04 2011-06-28 Kurume University HLA-A24-binding KIF-derived peptide
JP5065273B2 (ja) * 2006-08-04 2012-10-31 学校法人 久留米大学 Hla−a24分子結合性kif由来ペプチド
JP2017165734A (ja) * 2011-01-04 2017-09-21 シラジェン バイオセラピューティクス インコーポレイテッド 腫瘍溶解性ワクシニアウイルスの投与による腫瘍抗原に対する抗体の生成および腫瘍特異的補体依存性細胞傷害の生成
US10434169B2 (en) 2011-01-04 2019-10-08 Sillajen, Inc Generation of antibodies to tumor antigens and generation of tumor specific complement dependent cytotoxicity by administration of oncolytic vaccinia virus

Also Published As

Publication number Publication date
JP2004097199A (ja) 2004-04-02
AU2003290625A1 (en) 2004-03-11

Similar Documents

Publication Publication Date Title
KR101050703B1 (ko) Hla-a24-구속성 암 항원 펩티드
TWI752930B (zh) 抗原特異性tcr的新生成
JP5291641B2 (ja) 癌抗原及びその利用
JP5363446B2 (ja) 癌の予防または治療のための腫瘍抗原
US20040241686A1 (en) Her2/neu target antigen and use of same to stimulate an immune response
Brändle et al. The shared tumor‐specific antigen encoded by mouse gene P1A is a target not only for cytolytic T lymphocytes but also for tumor rejection
JPWO2002047474A1 (ja) Hla−a24発現トランスジェニック動物及びその利用
WO2006063301A1 (en) Genetically modified tumor cells as cancer vaccines
JP2011067207A5 (ja)
KR20050059279A (ko) 항원에 대한 전달 시스템으로서 사용되는 항원 형질도입 t세포
KR100460583B1 (ko) 간세포 암의 예방 및 치료 방법
CA2621992C (en) Manipulation of regulatory t cell and dc function by targeting neuritin gene using antibodies, agonists and antagonists
JP2021502329A (ja) Rhoaドミナントネガティブフォームを使用して癌を治療するための組成物および方法
WO2021239020A1 (zh) 一种联合嵌合抗原受体和i型干扰素的免疫治疗方法及其应用
US20090221682A1 (en) DNA Vaccine for Cancer Therapy
KR100647847B1 (ko) 인간 전립선암 동물모델 및 이를 이용한 수지상세포-유래전립선암 면역치료제의 예방 및 치료 효능을 분석하는 방법
US7807784B2 (en) Increased T-cell tumor infiltration by mutant LIGHT
WO2004018680A1 (ja) 腫瘍抗原のスクリーニング方法
CN114907485A (zh) 一种以内源性蛋白质分子替代单结构域抗体的嵌合抗原受体
JP3749709B2 (ja) ヒトグリオーマ抗原及びその調製方法
JPWO2003046182A1 (ja) 精巣由来のヒトグリオーマ抗原
Fukui et al. Anti-tumor activity of dendritic cells transfected with mRNA for receptor for hyaluronan-mediated motility is mediated by CD4+ T cells
KR100647844B1 (ko) 인간 전립선암 동물모델 및 이를 이용한 수지상세포-유래전립선암 면역치료제의 예방 효능을 분석하는 방법
JP2002223765A (ja) ヒト悪性黒色腫抗原
JP2001333782A (ja) ヒト悪性黒色腫抗原

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase