WO2004017939A1 - Medical instrument to be implanted in the body - Google Patents

Medical instrument to be implanted in the body Download PDF

Info

Publication number
WO2004017939A1
WO2004017939A1 PCT/JP2003/010510 JP0310510W WO2004017939A1 WO 2004017939 A1 WO2004017939 A1 WO 2004017939A1 JP 0310510 W JP0310510 W JP 0310510W WO 2004017939 A1 WO2004017939 A1 WO 2004017939A1
Authority
WO
WIPO (PCT)
Prior art keywords
medical device
smooth muscle
implantable medical
vascular endothelial
vascular
Prior art date
Application number
PCT/JP2003/010510
Other languages
French (fr)
Japanese (ja)
Inventor
Ichiro Hirahara
Ryota Sugimoto
Kenichi Yasuda
Original Assignee
Terumo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Kabushiki Kaisha filed Critical Terumo Kabushiki Kaisha
Priority to AU2003257624A priority Critical patent/AU2003257624A1/en
Publication of WO2004017939A1 publication Critical patent/WO2004017939A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/35Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
    • A61K31/351Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom not condensed with another ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/436Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a six-membered ring having oxygen as a ring hetero atom, e.g. rapamycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
    • A61F2/91Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/10Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
    • A61L2300/114Nitric oxide, i.e. NO

Definitions

  • the present invention relates to an implantable medical device used for improving a stenosis in a lumen in a living body such as a blood vessel, a bile duct, a trachea, an esophagus, and a urethra.
  • Stents are tubular devices that maintain the stenosis of a blood vessel or other body lumen in a living body in an expanded state.
  • a stent is used to improve stenosis after percutaneous coronary angioplasty (PTCA).
  • PTCA percutaneous coronary angioplasty
  • PTC A is an extremely effective treatment for ischemic heart disease, but has the problem that within a few months after PTCA, restenosis occurs at a rate of 40% to 50% ( popma JJ, To po 1 EJ. Am J Med 88: 1N-16N, 1990).
  • the causes of restenosis after PTCA are mainly 1 thrombotic occlusion, 2 elastin of the blood vessel wall after balloon dilatation, narrowing of the lumen by recoil, and 3 neovascularization due to restoration of coronary artery wall injury caused by PTCA. Excessive thickening of the membrane is considered.
  • stent therapy has been attempted to minimize elastin rec 0 i 1 by expanding the vascular stenosis with a balloon and placing a metal mesh stent after PTCA. (Fischman DL, Leon MBeta 1.N Engl J Med 331: 496—501, 1994).
  • thrombotic occlusion In the case of thrombotic occlusion, there is a problem that more invasive thrombus is formed when a stent is used than when it is not used, and subacute thrombotic occlusion occurs one to two weeks after stent implantation.
  • the combined use of ticlovidine and aspirin prevented thrombus formation.
  • restenosis rate is lower than when using PTC A alone, restenosis is observed at a rate of about 20 to 30%, mainly due to intimal hyperplasia. Still not resolved. Intimal thickening, which is the main cause of restenosis after stent placement, is thought to occur by the following mechanisms.
  • VCAM-1 vascular cell adhesion on leucle-1
  • IAM-1 intercellular adhesion on mo lecu 1 e-1
  • a stent loaded with sirolimus has also been reported.
  • these drugs have no effect on the repair or repair of damaged or degraded intima of the blood vessel, and only directly inhibit the proliferation and migration of vascular smooth muscle cells. When the drug concentration decreases, restenosis may occur. In addition, these drugs may inhibit the function of vascular endothelial cells, which is essential during the process of vascular healing. Disclosure of the invention
  • An object of the present invention is to apply directly and locally to a lumen in a living body, and to suppress endothelialization of blood vessels by suppressing the proliferation of vascular smooth muscle cells and improving the function of vascular endothelial cells.
  • An object of the present invention is to provide an implantable medical device that promotes and reliably suppresses restenosis.
  • An in vivo living body comprising: a medical device main body; and a vascular smooth muscle cell proliferation inhibitor and a vascular endothelial cell function improving agent mounted on the medical device main body.
  • Implantable medical device to be placed in the lumen of a patient.
  • vascular endothelial cell function improving agent is an HMG-CoA reductase inhibitor.
  • the aforementioned HMG-CoA reductase inhibitor is Simbus Yutin, Celivas Yutin Sodium, Pipa Pastin, Oral Bath Yutin, Atorbas Yutin, Full Bath Yutin Sodium, Prabas Yutin Sodium, Ross Bath
  • the implantable medical device according to the above (2) which is any one of evening chin.
  • vascular endothelial cell function improving agent is any one of an ACE inhibitor, an angiotensin II receptor antagonist, and a calcium antagonist.
  • vascular smooth muscle cell proliferation inhibitor is any one of an immunosuppressant, an anticancer agent, an antibiotic, genistein, tilphosphine, and cytochalasin. Medical instruments.
  • the vascular smooth muscle cell proliferation inhibitor is sirolimus (rapamycin), evening crolimus hydrate, everolimus, everolimus plus, paclitaxel (evening sol), docetaxel hydrate, actinonomycin D, mitomycin C, Admriamycin. Medical instruments.
  • the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent are provided on the surface of the medical device body, and the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent are formed outside the vascular smooth muscle cell growth inhibitor.
  • the biodegradable polymer is polylactic acid, polydalicholic acid, polylactic acid-polyglycolic acid copolymer, polyhydroxybutyric acid, polymalic acid, polyamino acid, collagen, laminin, heparan sulfate, fibronectin, vitronone Any of cutin, chondroitin sulfate, and hyaluronic acid, wherein the biocompatible polymer is silicone, a blend or block copolymer of polyether polyurethane and dimethyl silicon, polyurethane, polyacrylamide, polyethylene oxide,
  • the implantable medical device according to the above (9) or (10), wherein the medical device is any one of poly-polyponate.
  • the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent are contained in a polymer layer composed of a biodegradable polymer or a biocompatible polymer.
  • the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent are directly mounted on the surface of the medical device body, and the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent are The implantable medical device according to any one of the above (1) to (8), wherein the outside is covered with a polymer layer made of a biodegradable polymer or a biocompatible polymer.
  • FIG. 1 is a side view showing one embodiment of a stent.
  • FIG. 2 is an enlarged cross-sectional view taken along line A_A in FIG.
  • FIG. 3 is a view similar to FIG. 2, showing an embodiment in which the form of the coat of the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent is different.
  • FIG. 4 is a view similar to FIG. 2, showing an embodiment in which the form of the coat of the vascular smooth muscle cell proliferation inhibitor and the vascular endothelial cell function improving agent is different.
  • FIG. 5 is a view similar to FIG. 2, showing an embodiment in which the form of the coat of the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent is different.
  • FIG. 6 is a view similar to FIG. 2, showing an embodiment in which the form of the coat of the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent is different.
  • the implantable medical device of the present invention comprises a medical device main body, a vascular smooth muscle cell proliferation inhibitor and a vascular endothelial cell function improving agent.
  • the vascular smooth muscle cell proliferation inhibitor and the vascular endothelial cell function improving agent may be coated on the surface of the medical device body, or may be contained in the medical device body itself.
  • Medical device bodies include, for example, stents, catheters, balloons, vascular prostheses, and artificial blood vessels. Especially, in order to expand a stenosis in a lumen in a living body and secure the expanded lumen.
  • a preferred embodiment is a stent that can be indwelled for a long period of time.
  • the medical device body is a stent will be described in more detail based on a preferred embodiment shown in the accompanying drawings.
  • FIG. 1 is a side view showing one embodiment of a stent
  • FIG. 2 is an enlarged cross-sectional view taken along line A--A in FIG. 1
  • FIGS. 3 to 6 are views similar to FIG. An aspect in which the form of the coat of the smooth muscle cell proliferation inhibitor and the vascular endothelial cell function improving agent is different will be described.
  • the material, shape, size, and the like of the stent are not particularly limited as long as the stent can expand a stenosis formed in a lumen in a living body such as a blood vessel, a bile duct, a trachea, an esophagus, and a urethra and can be placed there.
  • the material for forming the stent may be appropriately selected according to the application site, and examples thereof include metal materials, polymer materials, and ceramics.
  • the metal material has excellent strength, so that the stent can be securely placed in the stenosis.
  • the polymer material is excellent in flexibility, and thus has an excellent effect in terms of reachability (delivery property) to the stenotic portion of the stent.
  • the metal material include stainless steel, Ni—Ti alloy, tantalum, titanium, gold, platinum, inconel, iridium, tungsten, and cobalt alloy. And among stainless steels, SUS316L, which has good corrosion resistance, is preferable.
  • polymer material examples include polytetrafluoroethylene, polyethylene, polypropylene, polyethylene terephthalate, cellulose acetate and cellulose nitrate.
  • the shape of the stent is not particularly limited as long as it is strong enough to be stably placed in a stenotic part formed in a lumen in a living body.
  • a wire made of a metal material or a fiber made of a polymer material is used as a net.
  • An arbitrary shape such as a cylindrical body formed by shaping, or a cylindrical body made of a metal material or a polymer material provided with pores as shown in FIG. 1 is preferably used.
  • the stent 10 is composed of a linear member 11 and has, as a basic unit, a substantially rhombic element 12 having a notch therein.
  • a plurality of substantially rhombic elements 12 are arranged continuously in the short axis direction and connected to form an annular unit 13.
  • the annular unit 13 is connected to an adjacent annular unit via a linear connecting member 14.
  • the plurality of annular units 13 are continuously arranged in the axial direction in a state where the annular units 13 are joined.
  • the stent may be any of a ball-expandable double type and a self-expandable double type.
  • the size of the stent may be appropriately selected according to the application site.
  • the outer diameter before expansion is preferably 1.0 to 3.0 mm, and the length is preferably 5 to 5 Omm.
  • the surface of the stent is coated with a vascular smooth muscle cell growth inhibitor and a vascular endothelial cell function improving agent.
  • vascular smooth muscle cell proliferation inhibitor also inhibits the function and proliferation of vascular endothelial cells. Therefore, when a stent is coated with only a vascular smooth muscle cell proliferation inhibitor, the function and proliferation of vascular endothelial cells may be suppressed. However, by coating the stent with both a vascular smooth muscle cell proliferating agent and a vascular endothelial cell function improving agent so that they are released locally, the vascular smooth muscle cell proliferation inhibitor can increase the vascular smooth muscle cell proliferation.
  • vascular endothelial cell function-improving drugs improve the proliferation and function of vascular endothelial cells, so that the intima is improved and repaired more completely. Therefore, even after the release of the vascular smooth muscle cell growth inhibitor has been completed, intimal hyperplasia is suppressed by the endothelial cells with improved functions, so that restenosis (rebound) after a long period of time is unlikely to occur.
  • Methods for evaluating the degree of improvement in the function of vascular endothelial cells include, for example, immunostaining with anti-von Willebrand factor-1 antibody (Dako, CA, USA).
  • Anti-von Willebrand factor-1 antibody Dako, CA, USA.
  • intimal repair and function improvement are confirmed.
  • intimal repair is performed. Not being recognized, intimal thickening occurs and the likelihood of stenosis increases.
  • Vascular smooth muscle cell proliferation inhibitors include, for example, sirolimus (rapamycin), tacroli Immunosuppressants such as Mus hydrate, everolimus, everolimus plus, etc .; anti-cancer drugs such as paclitaxel (taxol) and docetaxel hydrate; antibiotics such as actinomycin D, mitomachine C, adriamycin; Can be
  • the vascular endothelial cell function improving agent preferably promotes NO production, and includes, for example, an HMG-CoA reductase inhibitor, an ACE inhibitor, an angiotensin II receptor antagonist, a calcium antagonist, and an NO donor.
  • HMG-CoA reductase inhibitors have traditionally been used as a therapeutic agent for hyperlipidemia because they block cholesterol synthesis in the liver. It has been reported that there is an effect related to suppression of membrane thickening. Specifically, inhibition of LDL oxidation (Massy Ziad A., eta 1., Biochem Biophys Res Comm Ren 26 7 536-540 (2000)), suppression of inflammatory response (Sakai M., etal., A therosclerosis 133 5 1-59 (1997)), suppression of foaming of smooth muscle cells and macrophagy (Be 1 1 osta S., eta 1., Atherosclerosis 137 S ⁇ p 1 S 101-109 (1998)).
  • ACE inhibitors inhibit vasoconstriction and suppress sympathetic nerve enhancement by inhibiting the production of angiotensin II from angiotensin I in the renin-angiotensin system, a powerful pressor system in vivo.
  • it acts on the anti-hypertensive system of calclein-kinin-prostaglandin to suppress the degradation of bradykinin and dilate blood vessels, and also promotes the production of prostaglandin to relax the blood vessels and increase blood pressure. Has the function of lowering.
  • this ACE inhibitor also acts on endothelial cells and promotes NO production via bradykinin.
  • Angiotensin II receptor antagonists lower blood pressure by inhibiting the binding of angiotensin II, produced in the renin-angiotensin system, to its main receptor, angiotensin II-I type I receptor. Having. It has been reported that this angiotensin II receptor antagonist also acts on endothelial cells and upregulates angiotensin II type II receptor to promote NO production.
  • Calcium antagonists bind to and inhibit calcium channels on cell membranes, thereby inhibiting the influx of calcium ions into cells, suppressing vasoconstriction and lowering blood pressure. It has been reported that amlodipine besylate, a type of calcium antagonist, also acts on endothelial cells and promotes NO production (Kob ay ashi N, ramaka H, Tojo A, Kob ay ashi K , Matsuoka H. J Car r di ov asc Phar rm 34: 173-181, 1999).
  • HMG-CoA reductase inhibitor angiotensin converting enzyme inhibitor
  • angiotensin II receptor antagonists Some of the harmful drugs, angiotensin II receptor antagonists, and calcium antagonists promote the endothelialization of blood vessels by improving the function of vascular endothelial cells and promoting NO production in addition to the previously known efficacy It is expected to be.
  • HMG-Co A reductase inhibitors include, for example, simpastatin, ceribas quintin sodium, pibus quintin, mouth bath chin, atorbas quintin, full bath quintin sodium, pravath quintin sodium and rosuvastin .
  • ACE inhibitors examples include ramiprilat, captopril, alacepril, enalapril maleate, delapril hydrochloride, cilazapril, ricinoburil, benazepril hydrochloride, imidabril hydrochloride, temocapril hydrochloride, quinapril hydrochloride, trandolapril and perindopril elpermine.
  • Angiotensin II receptor antagonists include, for example, oral sultanate potassium, candesalen cilexetil, and valsalen.
  • Potassium antagonists include, for example, amphidipine besylate.
  • NO donors include, for example, S_Nitr0so—N_accetyl—DL—penicini 11 amine (SNAP) and arginine.
  • the amount of the vascular endothelial cell function improving agent coated on the surface of the stent is not particularly limited as long as it is an amount that promotes NO production without killing vascular endothelial cells.
  • the amount of the vascular smooth muscle cell proliferation inhibitor coated on the surface of the stent is not particularly limited as long as the amount of vascular smooth muscle cell proliferation is suppressed.
  • the form of the coating of the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent on the stent is not particularly limited.
  • a polymer composed of a biodegradable polymer or a biocompatible polymer is used.
  • vascular smooth muscle cell growth inhibitor 22 Alternatively, the surface of the stent may be coated in a form containing (mixed with) the vascular endothelial cell function improving agent 23.
  • a vascular smooth muscle cell growth inhibitor 22 and a vascular endothelial cell function improving agent 23 are directly coated on the surface of the stent to form a drug layer (drug layer 31).
  • the outside may be covered with a polymer layer 32 made of a biodegradable polymer or a biocompatible polymer.
  • a polymer layer 42 composed of a biodegradable polymer or a biocompatible polymer containing either a vascular smooth muscle cell proliferation inhibitor or a vascular endothelial cell function improving agent 41 on the surface of the stent is provided.
  • a polymer layer 44 of a biodegradable polymer or a biocompatible polymer containing the other of a vascular smooth muscle cell proliferation inhibitor or a vascular endothelial cell function improving agent 43 may be provided on the outside thereof, The outside may be covered with a polymer layer 45 of a biodegradable or biocompatible polymer.
  • the polymer layers 42, 44, 45 made of these biodegradable polymers or biocompatible polymers may be the same or different.
  • a drug layer 51 comprising one of a vascular smooth muscle cell growth inhibitor or a vascular endothelial cell function improving agent is provided on the surface of the stent, and a vascular smooth muscle cell growth inhibitor or vascular
  • a drug layer 52 composed of the other of the endothelial cell function improving drug may be provided, and the outside thereof may be covered with a polymer layer 53 composed of a biodegradable polymer or a biocompatible polymer.
  • a drug layer 61 made of one of a vascular smooth muscle cell growth inhibitor or a vascular endothelial cell function improving agent is provided on the surface of the stent, and a biodegradable polymer or a biocompatible polymer is further provided outside the drug layer 61.
  • a barrier layer 62 made of Outside the barrier layer 62 of the vascular smooth muscle cell growth inhibitor or the vascular endothelial cell function improving agent, and a biodegradable polymer or biocompatible May be covered with a polymer layer 64 made of a conductive polymer.
  • the barrier layer 62 made of biodegradable polymer or biocompatible polymer and the polymer layer 64 may be the same or different.
  • vascular smooth muscle cell growth inhibitor and a vascular endothelial cell function improver are contained in a polymer layer composed of a biodegradable polymer, or a vascular smooth muscle cell growth inhibitor and a vascular endothelial cell function improver (drug layer) If the outside of the stent is covered with a polymer layer composed of a biodegradable polymer, the biodegradable polymer is degraded, and the vascular smooth muscle cell growth inhibitor and vascular endothelial cell function improver are placed on the stent placement site and its Released directly into surrounding tissues.
  • the biodegradable polymer is one that is degraded enzymatically or non-enzymatically in vivo, the degradation product does not show toxicity, and can release the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent.
  • polylactic acid capable of releasing a vascular smooth muscle cell proliferation inhibitor and a vascular endothelial cell function improving agent over a long period of time is preferable.
  • vascular smooth muscle cell growth inhibitor and a vascular endothelial cell function improving agent are contained in a polymer layer composed of a biocompatible polymer, or a vascular smooth muscle cell growth inhibitor and a vascular endothelial cell function improving agent (drug layer) Outside is biocompatible
  • a polymer layer composed of a polymer the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent leach onto the outer surface of the biocompatible polymer, thereby causing the vascular smooth muscle cell growth inhibitor and The vascular endothelial cell function-improving drug is released directly to the stent placement site and the surrounding tissue.
  • the biocompatible polymer is essentially a substance to which platelets are hardly adhered, does not show irritation to tissues, and is capable of leaching the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent.
  • Various synthetic polymers are included.
  • the mode of inclusion is not particularly limited.
  • the inhibitor and the vascular endothelial cell function improving agent may be present uniformly or heterogeneously in the polymer layer, or may be present locally.
  • the method for producing the implantable medical device of the present invention is not particularly limited.
  • rapamycin is used as a vascular smooth muscle cell growth inhibitor
  • simvastatin is used as a vascular endothelial cell function improving agent
  • polylactic acid is used as a biodegradable polymer.
  • a solution in which rapamycin is dissolved in dichloromethane and a solution in which polylactic acid is dissolved in dichloroethane are mixed, and the mixed solution is sprayed on a stent to produce a solution of simvacin and rapamycin.
  • a method in which a polylactic acid layer (polymer layer) containing mycin is provided on the surface of the stent.
  • the thus-obtained implantable medical device of the present invention can be used by directly placing it in a lumen in a living body.
  • the vascular smooth muscle cell proliferation inhibitor and vascular endothelial cell function improver are released into the stent placement site and the surrounding tissue, and the vascular smooth muscle cell proliferation inhibitor suppresses the proliferation of vascular smooth muscle cells.
  • the function of vascular endothelial cells improves the function of vascular endothelial cells. Therefore, even after the release of the vascular smooth muscle cell growth inhibitor has been completed, the intimal hyperplasia is suppressed by the improved endothelial cells, so that restenosis can be reliably suppressed.
  • a solution prepared by dissolving 2 O mg of Simvathine and 2 O mg of rapamycin in 1 ml of dichloromethane was mixed with a solution of 4 O mg of polylactic acid dissolved in 4 ml of dichloromethane.
  • the mixed solution was sprayed onto a 15 mm long stent made by processing a 2 mm diameter stainless steel pipe to form a polylactic acid layer (polymer layer) containing simvastatin and rapamycin. ) was provided on the surface of the stent to produce the implantable medical device of the present invention.
  • a solution was prepared by dissolving 40 mg of polylactic acid in 4 ml of dichloride. This solution is sprayed onto a 15 mm long stent made by processing a stainless steel pipe with a diameter of 2 mm to provide a polylactic acid layer (polymer layer) on the surface of the stent to produce an implantable medical device. did.
  • Kanemin (30 mgZkg) and xylazine (SmgZkg) were intramuscularly administered to the heron muscle and anesthetized.
  • the right common carotid artery was dissected from the tissue.
  • a sheath introducer was introduced by a predetermined method.
  • a PTCA balloon pre-loaded with a guidewire was inserted into the blood vessel and carried to the distal part of the iliac artery. With the balloon inflated to the specified pressure, the balloon was pulled to the proximal part of the iliac artery and the blood vessel was scraped. This balloon rub was repeated three times.
  • the implantable medical device prepared in Example 1, the implantable medical device prepared in Comparative Example 1, and the implantable medical device prepared in Comparative Example 2 were respectively introduced into the right iliac artery. Then, it was expanded and detained at the specified pressure. After removing the balloon, the common carotid artery was ligated, sutured in three layers, and left in place for a predetermined period. The detention period was 4 weeks and 8 weeks.
  • the fixed sample was resin-embedded according to a standard method to prepare a pathological section, and hematoxylin and eosin staining was performed. This was subjected to observation with an optical microscope, and the intima thickness was measured.
  • Example Three cases were measured for each of the implantable medical devices of Comparative Example 1 and Comparative Example 2. Table 1 shows the average of these measurement results.
  • immunostaining with anti-vonville brand factor-1 antibody (Dako, CA, USA) was performed on the cells left in place for 4 weeks to identify endothelial cells. As a result, the intima of the right iliac artery in which the implantable medical device prepared in Example 1 was placed was covered with von Willebrand factor 1-positive vascular endothelial cells.
  • Example 1 showed a significant (p ⁇ 0.05: p is a criterion of statistical processing) thickening inhibitory effect of Comparative Example 2 after 4 weeks and 8 weeks. Weeks later and 8 weeks No change was found in the inner film thickness even after comparison.
  • Comparative Example 1 although the effect of suppressing thickening was observed after 4 weeks, the inner thickness was increased after 8 weeks, and rebound of thickening was observed. This is because, as described above, in Comparative Example 1 in which only rapamycin was loaded, almost no intimal repair was observed at the time point of 4 weeks later. It is considered that the cell growth inhibitory effect was lost and the inner layer thickness increased.
  • Example 1 which was equipped with simvastatin and ravamycin, the intima was repaired 4 weeks later, so the function was improved and repaired even after simpastatin and rapamycin were released from the implantable medical device. It is considered that the intimal hyperplasia was suppressed by the endothelial cells.
  • a solution prepared by dissolving 2 mg of arginine and 2 mg of paclitaxel in 1 ml of ethanol and a solution obtained by dissolving 4 mg of polylactic acid in 4 ml of acetone were mixed.
  • the mixed solution was sprayed onto a 15 mm long stent made by processing a 2 mm diameter stainless steel pipe to form a polylactic acid layer (polymer layer) containing arginine and paclitaxel.
  • the medical device to be implanted in the body of the present invention was prepared on the surface of the stent.
  • a solution prepared by dissolving 2 O mg of paclitaxel in ethanol lm 1 and a solution obtained by dissolving 4 O mg of polylactic acid in 4 ml of acetone were mixed. This mixed solution was sprayed onto a 15 mm long stent made by processing a 2 mm diameter stainless steel pipe to form a polylactic acid layer (polymer layer) containing paclitaxel. An implantable medical device was prepared on the surface. (Comparative Example 4)
  • a solution was prepared by dissolving 4 mg of polylactic acid in 4 ml of acetone. This solution was sprayed onto a 15 mm long stent made by processing a 2 mm diameter stainless steel pipe to provide a polylactic acid layer (polymer layer) on the surface of the stent.
  • This solution was sprayed onto a 15 mm long stent made by processing a 2 mm diameter stainless steel pipe to provide a polylactic acid layer (polymer layer) on the surface of the stent.
  • azaperone and atosulfate pin were intramuscularly administered to eight females.
  • the implantable medical device manufactured in Example 2, the implantable medical device manufactured in Comparative Example 3, and the implantable medical device manufactured in Comparative Example 4 were placed in the three branches of the porcine coronary artery, respectively, according to a standard method. . This was carried out on eight buses. The detention period was 4 weeks and 12 weeks.
  • Example 2 showed a significant (p ⁇ 0.05) suppression effect on hyperplasia at 4 weeks and at 12 weeks compared to Comparative Example 4. No significant change was found in the intimal cross-sectional area in comparison.
  • Comparative Example 3 although the effect of suppressing thickening was observed after 4 weeks, the intimal cross-sectional area was increased after 12 weeks, and rebound of thickening was observed. This is because, in Comparative Example 3, in which only paclitaxel was mounted, pakurimixel was released from the implantable medical device because intimal repair was not recognized much after 4 weeks as described above. Later, the effect of inhibiting the growth of vascular smooth muscle cells was lost, and the intimal cross-sectional area seems to have increased.
  • Example 2 equipped with arginine and paclitaxel, the intima was repaired after 4 weeks, so the function was improved and repaired even after arginine and paclitaxel were released from the implantable medical device. It is considered that the intimal hyperplasia was suppressed by the endothelial cells.
  • the present invention relates to an implantable medical device for indwelling in a lumen in a living body, comprising: a medical device main body; a vascular smooth muscle cell proliferation inhibitor mounted on the medical device main body; Since it is characterized by being composed of an endothelial cell function improving drug, it can be applied directly and locally to a lumen in a living body.
  • the release of a vascular smooth muscle cell growth inhibitor suppresses the growth of vascular smooth muscle cells, and releases a vascular endothelial cell function improving agent to improve the function of vascular endothelial cells. Therefore, even after the release of the vascular smooth muscle cell proliferation inhibitor is terminated, the intimal hyperplasia is suppressed by the improved endothelial cells, so that restenosis can be surely suppressed.
  • the medical device body is a stent
  • the stenosis formed in a lumen in a living body is expanded, and the stenosis is left there for a long time to secure the expanded lumen. Is possible.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Vascular Medicine (AREA)
  • Surgery (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Materials For Medical Uses (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

It is intended to provide a medical instrument to be implanted in the body which can be directly and topically applied to a hollow structure in the body, inhibits the proliferation of vascular smooth muscle cells, improves the functions of vascular endothelial cells to thereby promote the endothelialization of vessels and thus surely inhibits restenosis. Namely, a medical instrument to be implanted in the body which comprises the main unit, a vascular smooth muscle cell proliferation inhibitor and a vascular endothelial cell function improving agent loaded on the main unit and from which the a vascular smooth muscle cell proliferation inhibitor and the vascular endothelial cell function improving agent are released into a hollow structure in the body.

Description

明 細 書 体内埋込医療器具 技術分野  Description Implantable medical device Technical field
本発明は、 血管、 胆管、 気管、 食道、 尿道などの生体内の管腔に生じた狭窄部 の改善に使用される体内埋込医療器具に関する。 背景技術  The present invention relates to an implantable medical device used for improving a stenosis in a lumen in a living body such as a blood vessel, a bile duct, a trachea, an esophagus, and a urethra. Background art
ステントは、 血管あるいはその他の生体内の管腔に生じた狭窄部を拡張 させた状態に維持するための管状の器具であり、 例えば経皮的冠動脈形成 術 (PTCA) 後の狭窄部の改善に用いられている。 PTC Aは虚血性心疾患の 極めて有効な治療法であるが、 PTCA施行後数ケ月以内に 40〜50%の割合 で再狭窄がおきるという問題点がある( p o pma J J, To p o 1 E J . Am J Me d 88 : 1 N- 16N, 1990 ) 。 P T C A後の再狭窄の原 因は主として①血栓性閉塞、 ②バルーンによる拡張後の血管壁のエラスチン r e c o i lによる内腔の狭小化、 ③ P TC Aによって生じた冠動脈壁の傷害修 復に伴う新生内膜の過剰肥厚、 等が考えられる。 そこで再狭窄を防止するため、 PTCA後に、 バルーンで血管狭窄部を拡張させ、 金属製のメッシュ構造 からなるステントを留置することでエラスチン r e c 0 i 1を最小限に抑え るというステント療法が試みられてきた( F i s c hman DL, Le on MB e t a 1. N En g l J Me d 33 1 : 496— 501, 1994) 。 また、 血栓性閉塞に対しては、 ステント使用の場合は未使用の場合 よりも多くの蔓延化した血栓が形成され、 ステント揷入 1〜 2週間後に亜急性血 栓性閉塞が生じるといった問題が生じたが、 チクロビジン、 アスピリンの併用に より血栓形成の防止が可能になった。 しかし、 ステントを使用した場合、 PTC Aのみの場合と比べて再狭窄率は低いものの、 主に内膜肥厚が原因で、 約 20〜 30 %の割合で再狭窄が認められ、 .この問題は依然として解決していない。 ステン卜留置後の再狭窄の主な原因である内膜肥厚は、 以下のようなメカニズ ムで起きると考えられている。 PTCAゃステント留置時に生じた内膜障害によ り、 ステントワイヤ一周囲に血小板が凝集して血栓が形成され、 そこから P 1 a t e l e t De r i ve d Gr owt h F ac t o r (PDGF) や Tr an s f o rm i n g G r owt h F a c t o r (TGF) 等のサイト カインゃ 12— hy d r o xy e i c o s a t e t r a e n o i c (1 2— HETE) 等の物質が放出される。 一方、 内膜障害部位では単球等の炎症細 胞が、 v a s c u l a r c e l l adhe s i on mo l e c u l e— 1 (VCAM— 1) 、 i n t e r c e l l u l a r adh e s i on mo l e c u 1 e-1 (I CAM- 1) ゃセレクチン等の接着分子を介して血管壁に接着 し、 ステントワイヤ一周辺部に集積するのと同時に血管壁内に侵入しながら、 P DGF等の様々な生理活性物質を放出する。 さらに血管平滑筋細胞の活性化を制 御していた内皮細胞が内膜障害により脱落もしくは機能低下することに加え、 P DGF等の様々な生理活性物質の刺激、 あるいは血管拡張時に生じた血管壁の機 械的破壊が引き金となり、 血管中膜の平滑筋細胞が活性化されて、 収縮型から合 成型に形質転換される。 そして、 合成型平滑筋細胞は血管内膜へ遊走するととも に過剰増殖することによって内膜肥厚が生じる。 Stents are tubular devices that maintain the stenosis of a blood vessel or other body lumen in a living body in an expanded state. For example, a stent is used to improve stenosis after percutaneous coronary angioplasty (PTCA). Used. PTC A is an extremely effective treatment for ischemic heart disease, but has the problem that within a few months after PTCA, restenosis occurs at a rate of 40% to 50% ( popma JJ, To po 1 EJ. Am J Med 88: 1N-16N, 1990). The causes of restenosis after PTCA are mainly ① thrombotic occlusion, ② elastin of the blood vessel wall after balloon dilatation, narrowing of the lumen by recoil, and ③ neovascularization due to restoration of coronary artery wall injury caused by PTCA. Excessive thickening of the membrane is considered. In order to prevent restenosis, stent therapy has been attempted to minimize elastin rec 0 i 1 by expanding the vascular stenosis with a balloon and placing a metal mesh stent after PTCA. (Fischman DL, Leon MBeta 1.N Engl J Med 331: 496—501, 1994). In the case of thrombotic occlusion, there is a problem that more invasive thrombus is formed when a stent is used than when it is not used, and subacute thrombotic occlusion occurs one to two weeks after stent implantation. However, the combined use of ticlovidine and aspirin prevented thrombus formation. However, when using a stent, although the restenosis rate is lower than when using PTC A alone, restenosis is observed at a rate of about 20 to 30%, mainly due to intimal hyperplasia. Still not resolved. Intimal thickening, which is the main cause of restenosis after stent placement, is thought to occur by the following mechanisms. Platelet aggregates around the stent wire due to intimal damage caused during PTCA ゃ stent placement, forming a thrombus, from which P 1 atelet Derived d Growth h F ac tor (PDGF) or Tran Cytokines such as sfo rming Group F actor (TGF) are released. Substances such as 12-hydro xy eicosatetraenoic (12-HETE) are released. On the other hand, at sites of intimal injury, inflammatory cells such as monocytes are found to contain vascular cell adhesion on leucle-1 (VCAM-1) and intercellular adhesion on mo lecu 1 e-1 (ICAM-1) ゃ selectin. It adheres to the vascular wall via the adhesive molecule and accumulates around the stent wire, and at the same time penetrates into the vascular wall and releases various physiologically active substances such as PDGF. In addition, endothelial cells, which controlled the activation of vascular smooth muscle cells, are shed or deteriorated due to intimal damage, as well as stimulation of various physiologically active substances such as PDGF, or vascular The mechanical destruction of this triggers the activation of smooth muscle cells in the media of the vasculature, transforming them from contracted to molded. And the synthetic smooth muscle cells migrate to the vascular intima and Overgrowth results in intimal hyperplasia.
そこで内膜肥厚の直接の原因である血管平滑筋細胞の遊走 ·増殖を抑制し得る 薬剤をステントに搭載して、 ステント留置部位で放出することにより、 再狭窄を 予防する検討が種々なされている。 このような薬剤の具体的な例としては、 特表 平 9 _ 5 0 3 4 8 8号公報にタキソ一ル (パクリ夕キセル) が、 特開平 9— 5 6 8 0 7号公報にマイトマシン C、 アドリアマイシン、 ゲニスティン、 チルフォス チンが、 また、 特表平 1 1— 5 0 0 6 3 5号公報にサイトカラシンが、 それぞれ 開示されている。 また、 最近ではシロリムス (ラパマイシン) を搭載したステン トも報告されている。 しかし、 これらの薬剤は障害もしくは機能低下した血管内 膜の改善 · 修復作用を有さず、 血管平滑筋細胞の増殖 · 遊走を直接抑えているだ けなので、 薬剤が放出されてステント留置部における薬剤の濃度が低下した時に 再狭窄の発症が危惧される。 また、 これらの薬剤は、 血管の治癒過程で必要不可 欠な血管内皮細胞の機能まで抑制してしまう可能性もある。 発明の開示  Therefore, various studies have been made to prevent restenosis by mounting a drug that can suppress the migration and proliferation of vascular smooth muscle cells, which is a direct cause of intimal hyperplasia, on a stent and releasing it at the stent placement site. . Specific examples of such a drug include Taxol (Pacli-Nixel) in Japanese Patent Application Laid-Open No. 9-503488, and Mite Machine in Japanese Patent Application Laid-Open No. 9-56807. C, adriamycin, genistein, and tilphosphin are disclosed, and cytochalasin is disclosed in Japanese Patent Application Laid-Open No. 11-500635. Recently, a stent loaded with sirolimus (rapamycin) has also been reported. However, these drugs have no effect on the repair or repair of damaged or degraded intima of the blood vessel, and only directly inhibit the proliferation and migration of vascular smooth muscle cells. When the drug concentration decreases, restenosis may occur. In addition, these drugs may inhibit the function of vascular endothelial cells, which is essential during the process of vascular healing. Disclosure of the invention
本発明の目的は、 生体内の管腔に直接、 局所的に適用することが可能であり、 なおかつ血管平滑筋細胞の増殖を抑制すると共に血管内皮細胞の機能を改善させ て血管の内皮化を促進し、 再狭窄を確実に抑制する体内埋込医療器具を提供する ことにある。  An object of the present invention is to apply directly and locally to a lumen in a living body, and to suppress endothelialization of blood vessels by suppressing the proliferation of vascular smooth muscle cells and improving the function of vascular endothelial cells. An object of the present invention is to provide an implantable medical device that promotes and reliably suppresses restenosis.
このような目的は、 下記 (1 ) 〜 (1 4 ) の本発明により達成される。  Such an object is achieved by the present invention described in the following (1) to (14).
( 1 ) 医療器具本体と、 前記医療器具本体に搭載された血管平滑筋細胞増殖抑 制薬および血管内皮細胞機能改善薬から構成されていることを特徴とする生体内 の管腔に留置するための体内埋込医療器具。 (1) An in vivo living body comprising: a medical device main body; and a vascular smooth muscle cell proliferation inhibitor and a vascular endothelial cell function improving agent mounted on the medical device main body. Implantable medical device to be placed in the lumen of a patient.
(2) 前記血管内皮細胞機能改善薬が、 HMG— Co A還元酵素阻害薬である ことを特徴とする上記 (1) に記載の体内埋込医療器具。  (2) The implantable medical device according to the above (1), wherein the vascular endothelial cell function improving agent is an HMG-CoA reductase inhibitor.
(3) 前記 HMG—C o A還元酵素阻害薬が、 シンバス夕チン、 セリバ ス夕チンナトリウム、 ピ夕パスタチン、 口バス夕チン、 アトルバス夕チン、 フル バス夕チンナトリウム、 プラバス夕チンナトリウム、 ロスバス夕チンのいずれか であることを特徴とする上記 (2) に記載の体内埋込医療器具。  (3) The aforementioned HMG-CoA reductase inhibitor is Simbus Yutin, Celivas Yutin Sodium, Pipa Pastin, Oral Bath Yutin, Atorbas Yutin, Full Bath Yutin Sodium, Prabas Yutin Sodium, Ross Bath The implantable medical device according to the above (2), which is any one of evening chin.
(4) 前記血管内皮細胞機能改善薬が、 AC E阻害薬、 アンギオテンシン II受 容体拮抗薬、 カルシウム拮抗薬のいずれかであることを特徴とする上記 (1) に 記載の体内埋込医療器具。  (4) The implantable medical device according to (1), wherein the vascular endothelial cell function improving agent is any one of an ACE inhibitor, an angiotensin II receptor antagonist, and a calcium antagonist.
(5) 前記血管内皮細胞機能改善薬が、 NO供与体であることを特徴とする上 記 (1) に記載の体内埋込医療器具。  (5) The implantable medical device according to the above (1), wherein the vascular endothelial cell function improving agent is a NO donor.
(6) 前記 NO供与体が、 S_N i t r o s o-N- a c e t y 1 -DL-p e n i c i 1 1 am i n e (SNAP) またはアルギニンであることを特徴とす る上記 (5) に記載の体内埋込医療器具。  (6) The implantable medical device according to the above (5), wherein the NO donor is S_N i tros o-N-ac e ty 1 -DL-p e n c i 11 am i n e (SNAP) or arginine.
(7) 前記血管平滑筋細胞増殖抑制薬が、 免疫抑制剤、 抗癌剤、 抗生物質、 ゲ ニスティン、 チルフォスチン、 サイトカラシンのいずれかであることを特徴とす る上記 (1) に記載の体内埋込医療器具。  (7) The implant according to (1), wherein the vascular smooth muscle cell proliferation inhibitor is any one of an immunosuppressant, an anticancer agent, an antibiotic, genistein, tilphosphine, and cytochalasin. Medical instruments.
(8) 前記血管平滑筋細胞増殖抑制薬が、 シロリムス (ラパマイシン) 、 夕クロリムス水和物、 エベロリムス、 エベロリムスプラス、 パクリ夕キセル (夕 キソ一ル) 、 ドセタキセル水和物、 ァクチノマイシン D、 マイトマイシン C、 ァ ドリアマイシンのいずれかであることを特徴とする上記 (1) に記載の体内埋込 医療器具。 (8) The vascular smooth muscle cell proliferation inhibitor is sirolimus (rapamycin), evening crolimus hydrate, everolimus, everolimus plus, paclitaxel (evening sol), docetaxel hydrate, actinonomycin D, mitomycin C, Admriamycin. Medical instruments.
(9) 前記医療器具本体の表面に、 前記血管平滑筋細胞増殖抑制薬および血管 内皮細胞機能改善薬を内部に含有する生分解性ポリマーもしくは生体適合適合性 ポリマ一からなるポリマー層を有することを特徴とする上記 (1) 〜 (8) のい ずれかに記載の体内埋込医療器具。  (9) On the surface of the medical device body, having a polymer layer made of a biodegradable polymer or a biocompatible polymer containing the vascular smooth muscle cell proliferation inhibitor and the vascular endothelial cell function improving agent therein. The implantable medical device according to any one of the above (1) to (8), which is characterized by the following.
(10) 前記医療器具本体の表面に、 前記血管平滑筋細胞増殖抑制薬および血 管内皮細胞機能改善薬を有し、 該血管平滑筋細胞増殖抑制薬および血管内皮細胞 機能改善薬の外側に生分解性ポリマーまたは生体適合性ポリマーからなる ポリマー層を有することを特徴とする上記 (1) 〜 (8) のいずれかに記載の体 内埋込医療器具。  (10) The vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent are provided on the surface of the medical device body, and the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent are formed outside the vascular smooth muscle cell growth inhibitor. The implantable medical device according to any one of the above (1) to (8), further comprising a polymer layer made of a degradable polymer or a biocompatible polymer.
(1 1) 前記生分解性ポリマーが、 ポリ乳酸、 ポリダリコール酸、 ポリ乳酸一 ポリグリコール酸共重合体、 ポリヒドロキシ酪酸、 ポリリンゴ酸、 ポリひ一 アミノ酸、 コラーゲン、 ラミニン、 へパラン硫酸、 フイブロネクチン、 ビトロネ クチン、 コンドロイチン硫酸、 ヒアルロン酸のいずれかであり、 前記生体適合性 ポリマーが、 シリコーン、 ポリエーテル型ポリウレタンとジメチルシリコンとの ブレンドまたはブロック共重合体、 ポリウレタン、 ポリアクリルアミ ド、 ポリエチレンォキサイド、 ポリ力一ポネートのいずれかであることを特徴とする 上記 (9) または (10) に記載の体内埋込医療器具。  (1 1) The biodegradable polymer is polylactic acid, polydalicholic acid, polylactic acid-polyglycolic acid copolymer, polyhydroxybutyric acid, polymalic acid, polyamino acid, collagen, laminin, heparan sulfate, fibronectin, vitronone Any of cutin, chondroitin sulfate, and hyaluronic acid, wherein the biocompatible polymer is silicone, a blend or block copolymer of polyether polyurethane and dimethyl silicon, polyurethane, polyacrylamide, polyethylene oxide, The implantable medical device according to the above (9) or (10), wherein the medical device is any one of poly-polyponate.
(12) 前記医療器具本体が、 ステントであることを特徴とする上記 (1) 〜 (1 1) のいずれかに記載の体内埋込医療器具。  (12) The implantable medical device according to any one of the above (1) to (11), wherein the medical device main body is a stent.
(13) 前記血管平滑筋細胞増殖抑制薬および血管内皮細胞機能改善薬を、 生 分解性ポリマ一または生体適合適合性ポリマーからなるポリマ一層中に含有させ た形態にして前記医療器具本体に搭載したことを特徴とする上記 (1 ) 〜 (8 ) のいずれかに記載の体内埋込医療器具。 (13) The vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent are contained in a polymer layer composed of a biodegradable polymer or a biocompatible polymer. The implantable medical device according to any one of the above (1) to (8), wherein the medical device is mounted on the medical device main body in a modified form.
( 1 4 ) 前記血管平滑筋細胞増殖抑制薬および血管内皮細胞機能改善薬を、 前 記医療器具本体の表面に直接搭載し、 かつ前記血管平滑筋細胞増殖抑制薬および 血管内皮細胞機能改善薬の外側を生分解性ポリマーもしくは生体適合性ポリマ一 からなるポリマー層で被覆したことを特徴とする上記 (1 ) 〜 (8 ) のいずれか に記載の体内埋込医療器具。 図面の簡単な説明  (14) The vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent are directly mounted on the surface of the medical device body, and the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent are The implantable medical device according to any one of the above (1) to (8), wherein the outside is covered with a polymer layer made of a biodegradable polymer or a biocompatible polymer. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 ステントの一態様を示す側面図である。  FIG. 1 is a side view showing one embodiment of a stent.
図 2は、 図 1の線 A_ Aに沿って切断した拡大横断面図である。  FIG. 2 is an enlarged cross-sectional view taken along line A_A in FIG.
図 3は、 図 2と同様の図であって、 血管平滑筋細胞増殖抑制薬および血管内皮 細胞機能改善薬のコートの形態が異なる態様を示す。  FIG. 3 is a view similar to FIG. 2, showing an embodiment in which the form of the coat of the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent is different.
図 4は、 図 2と同様の図であって、 血管平滑筋細胞増殖抑制薬および血管内皮 細胞機能改善薬のコートの形態が異なる態様を示す。  FIG. 4 is a view similar to FIG. 2, showing an embodiment in which the form of the coat of the vascular smooth muscle cell proliferation inhibitor and the vascular endothelial cell function improving agent is different.
図 5は、 図 2と同様の図であって、 血管平滑筋細胞増殖抑制薬および血管内皮 細胞機能改善薬のコートの形態が異なる態様を示す。  FIG. 5 is a view similar to FIG. 2, showing an embodiment in which the form of the coat of the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent is different.
図 6は、 図 2と同様の図であって、 血管平滑筋細胞増殖抑制薬および血管内皮 細胞機能改善薬のコートの形態が異なる態様を示す。 発明を実施するための最良の形態  FIG. 6 is a view similar to FIG. 2, showing an embodiment in which the form of the coat of the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent is different. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の体内埋込医療器具について詳細に説明する。 本発明の体内埋込医療器具は、 医療器具本体と、 血管平滑筋細胞増殖抑制薬お よび血管内皮細胞機能改善薬で構成されている。 Hereinafter, the implantable medical device of the present invention will be described in detail. The implantable medical device of the present invention comprises a medical device main body, a vascular smooth muscle cell proliferation inhibitor and a vascular endothelial cell function improving agent.
血管平滑筋細胞増殖抑制薬および血管内皮細胞機能改善薬は、 医療器具本体の 表面にコートされていても良く、 また医療器具本体自体に含有されていても 良い。  The vascular smooth muscle cell proliferation inhibitor and the vascular endothelial cell function improving agent may be coated on the surface of the medical device body, or may be contained in the medical device body itself.
医療器具本体は、 例えばステント、 カテーテル、 バルーン、 血管補綴材、 人工 血管等が挙げられ、 中でも生体内の管腔に生じた狭窄部を拡張し、 その拡張され た内腔を確保するためにそこに長期間留置することが可能であるステントが好ま しい態様である。 以下、 医療器具本体がステントである場合について添付図面に 示す好適な実施の形態に基づいてより詳細に説明する。  Medical device bodies include, for example, stents, catheters, balloons, vascular prostheses, and artificial blood vessels.Especially, in order to expand a stenosis in a lumen in a living body and secure the expanded lumen. A preferred embodiment is a stent that can be indwelled for a long period of time. Hereinafter, a case where the medical device body is a stent will be described in more detail based on a preferred embodiment shown in the accompanying drawings.
図 1はステントの一態様を示す側面図、 図 2は図 1の線 A— Aに沿って切断し た拡大横断面図、 図 3〜図 6は図 2と同様の図であって、 血管平滑筋細胞増殖抑 制薬および血管内皮細胞機能改善薬のコートの形態が異なる態様を示す。  FIG. 1 is a side view showing one embodiment of a stent, FIG. 2 is an enlarged cross-sectional view taken along line A--A in FIG. 1, and FIGS. 3 to 6 are views similar to FIG. An aspect in which the form of the coat of the smooth muscle cell proliferation inhibitor and the vascular endothelial cell function improving agent is different will be described.
ステントは、 血管、 胆管、 気管、 食道、 尿道などの生体内の管腔に生じた狭窄 部を拡張し、 かつそこに留置することができれば、 その材料、 形状、 大きさ等は 特に限定されない。  The material, shape, size, and the like of the stent are not particularly limited as long as the stent can expand a stenosis formed in a lumen in a living body such as a blood vessel, a bile duct, a trachea, an esophagus, and a urethra and can be placed there.
ステントを形成する材料は、 適用箇所に応じて適宜選択すれば良く、 例えば金 属材料、 高分子材料、 セラミックス等が挙げられる。 ステントを金属材料で形成 した場合、 金属材料は強度に優れているため、 ステントを狭窄部に確実に留置す ることが可能である。 また、 ステントを高分子材料で形成した場合、 高分子材料 は柔軟性に優れているため、 ステントの狭窄部への到達性 (デリバリ一性) とい う点で優れた効果を発揮する。 金属材料としては、 例えばステンレス鋼、 N i— T i合金、 タンタル、 チタン、 金、 プラチナ、 インコネル、 イリジウム、 タングステン、 コバルト系合 金等が挙げられる。 そしてステンレス鋼の中では、 耐食性が良好である S U S 3 1 6 Lが好適である。 The material for forming the stent may be appropriately selected according to the application site, and examples thereof include metal materials, polymer materials, and ceramics. When the stent is formed of a metal material, the metal material has excellent strength, so that the stent can be securely placed in the stenosis. In addition, when the stent is formed of a polymer material, the polymer material is excellent in flexibility, and thus has an excellent effect in terms of reachability (delivery property) to the stenotic portion of the stent. Examples of the metal material include stainless steel, Ni—Ti alloy, tantalum, titanium, gold, platinum, inconel, iridium, tungsten, and cobalt alloy. And among stainless steels, SUS316L, which has good corrosion resistance, is preferable.
高分子材料としては、 例えばポリテトラフルォロエチレン、 ポリエチレン、 ポ リプロピレン、 ポリエチレンテレフ夕レート、 セルロースアセテート、 セル ロースナイトレート等が挙げられる。  Examples of the polymer material include polytetrafluoroethylene, polyethylene, polypropylene, polyethylene terephthalate, cellulose acetate and cellulose nitrate.
ステントの形状は、 生体内の管腔に生じた狭窄部に安定して留置するに足る強 度を有するものであれば特に限定されず、 例えば、 金属材料のワイヤーや高分子 材料の繊維をネット状にすることにより構成される円筒体等の任意の形状体や、 図 1に示すような金属材料や高分子材料で構成される円筒体に細孔を設けたもの が好適に挙げられる。  The shape of the stent is not particularly limited as long as it is strong enough to be stably placed in a stenotic part formed in a lumen in a living body. For example, a wire made of a metal material or a fiber made of a polymer material is used as a net. An arbitrary shape such as a cylindrical body formed by shaping, or a cylindrical body made of a metal material or a polymer material provided with pores as shown in FIG. 1 is preferably used.
図 1に示す態様において、 ステント 1 0は、 線状部材 1 1からなり、 内部に切 り欠き部を有する略菱形の要素 1 2を基本単位とする。 複数の略菱形の要素 1 2 が、 その短軸方向に連続して配置され結合することで環状ユニット 1 3をなして いる。 環状ュニット 1 3は、 隣接する環状ユニットと線状の連結部材 1 4を介し て接続されている。 これにより複数の環状ュニット 1 3がー部結合した状態でそ の軸方向に連続して配置される。  In the embodiment shown in FIG. 1, the stent 10 is composed of a linear member 11 and has, as a basic unit, a substantially rhombic element 12 having a notch therein. A plurality of substantially rhombic elements 12 are arranged continuously in the short axis direction and connected to form an annular unit 13. The annular unit 13 is connected to an adjacent annular unit via a linear connecting member 14. As a result, the plurality of annular units 13 are continuously arranged in the axial direction in a state where the annular units 13 are joined.
ステントは、 バル一ンェクスパンダブルタイプ、 セルフェクスパンダブルタイ プのいずれであってもよい。 また、 ステントの大きさは適用箇所に応じて適宜選 択すれば良い。 例えば、 心臓の冠状動脈に用いる場合は、 通常拡張前における外 径は 1 . 0〜3 . 0 mm、 長さは 5〜 5 O mmが好ましい。 ステントの表面には血管平滑筋細胞増殖抑制薬および血管内皮細胞機能改善薬 がコートされており、 ステントを生体内の管腔の狭窄部に留置した際に、 血管平 滑筋細胞増殖抑制薬および血管内皮細胞機能改善薬はステントの留置部位および その周辺組織内に放出される。 The stent may be any of a ball-expandable double type and a self-expandable double type. In addition, the size of the stent may be appropriately selected according to the application site. For example, when used for the coronary artery of the heart, the outer diameter before expansion is preferably 1.0 to 3.0 mm, and the length is preferably 5 to 5 Omm. The surface of the stent is coated with a vascular smooth muscle cell growth inhibitor and a vascular endothelial cell function improving agent. When the stent is placed in a stenosis of a lumen in a living body, the vascular smooth muscle cell growth inhibitor and The vascular endothelial cell function improving drug is released into the stent placement site and the surrounding tissue.
血管平滑筋細胞増殖抑制薬と血管内皮細胞機能改善薬を両方コートすることに より以下の効果を有する。 一般的に、 血管平滑筋細胞増殖抑制薬は、 血管内皮細 胞の機能 · 増殖も抑制する。 したがって、 血管平滑筋細胞増殖抑制薬のみを ステントにコートした場合、 血管内皮細胞の機能 · 増殖も抑制してしまう可能性 がある。 しかしながら、 ステントに血管平滑筋細胞増殖薬と血管内皮細胞機能改 善薬を両方コートし、 局所で放出されるようにすることによって、 血管平滑筋細 胞増殖抑制薬が血管平滑筋細胞の増殖を抑制すると共に、 血管内皮細胞機能改善 薬が血管内皮細胞の増殖および機能を改善するため、 血管内膜の改善 ·修復がよ り完全に行われる。 したがって、 血管平滑筋細胞増殖抑制薬の放出が終了した後 でも、 機能改善された内皮細胞により内膜肥厚が抑制されるため、 長期間後での 再狭窄 (リバウンド) も起こり難くなる。  Coating both a vascular smooth muscle cell growth inhibitor and a vascular endothelial cell function improving agent has the following effects. Generally, a vascular smooth muscle cell proliferation inhibitor also inhibits the function and proliferation of vascular endothelial cells. Therefore, when a stent is coated with only a vascular smooth muscle cell proliferation inhibitor, the function and proliferation of vascular endothelial cells may be suppressed. However, by coating the stent with both a vascular smooth muscle cell proliferating agent and a vascular endothelial cell function improving agent so that they are released locally, the vascular smooth muscle cell proliferation inhibitor can increase the vascular smooth muscle cell proliferation. In addition to the suppression, vascular endothelial cell function-improving drugs improve the proliferation and function of vascular endothelial cells, so that the intima is improved and repaired more completely. Therefore, even after the release of the vascular smooth muscle cell growth inhibitor has been completed, intimal hyperplasia is suppressed by the endothelial cells with improved functions, so that restenosis (rebound) after a long period of time is unlikely to occur.
血管内皮細胞の機能改善の程度を評価する方法としては、 例えば、 抗フォンビ ルブランドファクタ一抗体 (D a k o、 C A、 U S A) による免疫染色が挙げら れる。 その結果、 患部がフォンビルブランドファクター陽性の血管内皮細胞 で覆われている場合、 内膜修復 ·機能改善が確認され、 一方、 フォンビル ブランドファクター陽性の血管内皮細胞が確認できない場合、 内膜修復は認めら れないため、 内膜肥厚が起こり、 狭窄する可能性が高くなる。  Methods for evaluating the degree of improvement in the function of vascular endothelial cells include, for example, immunostaining with anti-von Willebrand factor-1 antibody (Dako, CA, USA). As a result, when the affected area is covered with von Wille brand factor-positive vascular endothelial cells, intimal repair and function improvement are confirmed. On the other hand, when von Wille brand factor-positive vascular endothelial cells cannot be confirmed, intimal repair is performed. Not being recognized, intimal thickening occurs and the likelihood of stenosis increases.
血管平滑筋細胞増殖抑制薬は、 例えばシロリムス (ラパマイシン) 、 タクロリ ムス水和物、 エベロリムス、 エベロリムスプラス等の免疫抑制剤、 パクリタキセ ル (タキソール) 、 ドセタキセル水和物等の抗癌剤、 ァクチノマイシン D、 マイ トマシン C、 アドリアマイシン等の抗生物質、 ゲニスティン、 チルフォスチン、 サイトカラシンが挙げられる。 Vascular smooth muscle cell proliferation inhibitors include, for example, sirolimus (rapamycin), tacroli Immunosuppressants such as Mus hydrate, everolimus, everolimus plus, etc .; anti-cancer drugs such as paclitaxel (taxol) and docetaxel hydrate; antibiotics such as actinomycin D, mitomachine C, adriamycin; Can be
血管内皮細胞機能改善薬は、 NO産生を促進するものが好ましく、 例えば HM G— Co A還元酵素阻害薬、 ACE阻害薬、 アンギオテンシン II受容体拮抗薬、 カルシウム拮抗薬、 NO供与体が挙げられる。  The vascular endothelial cell function improving agent preferably promotes NO production, and includes, for example, an HMG-CoA reductase inhibitor, an ACE inhibitor, an angiotensin II receptor antagonist, a calcium antagonist, and an NO donor.
HMG— C o A還元酵素阻害薬は、 従来、 肝臓でのコレステロール合成を ブロックすることから、 高脂血症治療薬として使用されているが、 最近、 血管壁 に直接適用することによって、 血管内膜の肥厚抑制に関係する効果がある事が報 告されている。 具体的には、 LDLの酸化抑制 (Ma s s y Z i a d A. , e t a 1. , B i o c h e m B i ophy s Re s Co mm υ n 26 7 536- 540 (2000) ) , 炎症反応の抑制 ( S a k a i M. , e t a l . , A t h e r o s c l e r o s i s 1 33 5 1 - 59 ( 1997) ) 、 平滑筋細胞 ·マクロファジーの泡沫化抑制 (Be 1 1 o s t a S . , e t a 1. , A t he r o s c l e r o s i s 137 S υ p 1. S 101 - 109 (1998) ) 等の効果が、 それぞれ報告されている。  HMG-CoA reductase inhibitors have traditionally been used as a therapeutic agent for hyperlipidemia because they block cholesterol synthesis in the liver. It has been reported that there is an effect related to suppression of membrane thickening. Specifically, inhibition of LDL oxidation (Massy Ziad A., eta 1., Biochem Biophys Res Comm Ren 26 7 536-540 (2000)), suppression of inflammatory response (Sakai M., etal., A therosclerosis 133 5 1-59 (1997)), suppression of foaming of smooth muscle cells and macrophagy (Be 1 1 osta S., eta 1., Atherosclerosis 137 S υ p 1 S 101-109 (1998)).
そして、 最近では HMG— Co A還元酵素阻害薬の NO産性作用 (Lau f s U e t a C i r c u l a t i on (97) 1129— 1135 1998) が注目されている。 血管内皮細胞の機能が改善、 NO産生が促進され ることにより血管の内皮化が促進すると考えられている。 そして、 血管の内皮化 促進により、 平滑筋細胞の内膜側への遊走 ·増殖が抑制されると考えられて いる。 Recently, attention has been focused on the NO-producing effect of HMG-CoA reductase inhibitors (Laufs Ueta Circulation (97) 1129-1135 1998). It is thought that the endothelialization of blood vessels is promoted by improving the function of vascular endothelial cells and promoting NO production. It is thought that the promotion of endothelialization of blood vessels suppresses the migration and proliferation of smooth muscle cells to the intima side. I have.
ACE阻害薬は、 生体内の強力な昇圧系であるレニンーアンギオテンシン系に おけるアンギオテンシン I からアンギオテンシン IIの産生を阻害すること により、 血管収縮を阻害したり、 交感神経の亢進を抑制する。 さらに、 降圧系の カルクレイン一キニン一プロスタグランジン系に作用してブラジキニンの分解を 抑制して血管を拡張させるだけでなく、 プロスタグランジンの産生を促進するこ とで血管を弛緩させ、 血圧を下げる働きを有する。 近年、 この ACE阻害薬も、 内皮細胞に作用し、 ブラジキニンを介して NO産生を促進することが報告されて いる。 アンギオテンシン II受容体拮抗薬は、 レニン一アンギオテンシン系にお いて生成されたアンギオテンシン IIが、 その主たる受容体であるアンギオ テンシン II一 I 型受容体に結合するのを阻害することにより、 血圧を下げる働き を有する。 このアンギオテンシン II受容体拮抗薬も内皮細胞に作用し、 アンギオ テンシン II_ II型受容体をアップレギユレ一トして NO産生を促進すること が報告されている。  ACE inhibitors inhibit vasoconstriction and suppress sympathetic nerve enhancement by inhibiting the production of angiotensin II from angiotensin I in the renin-angiotensin system, a powerful pressor system in vivo. In addition, it acts on the anti-hypertensive system of calclein-kinin-prostaglandin to suppress the degradation of bradykinin and dilate blood vessels, and also promotes the production of prostaglandin to relax the blood vessels and increase blood pressure. Has the function of lowering. Recently, it has been reported that this ACE inhibitor also acts on endothelial cells and promotes NO production via bradykinin. Angiotensin II receptor antagonists lower blood pressure by inhibiting the binding of angiotensin II, produced in the renin-angiotensin system, to its main receptor, angiotensin II-I type I receptor. Having. It has been reported that this angiotensin II receptor antagonist also acts on endothelial cells and upregulates angiotensin II type II receptor to promote NO production.
カルシウム拮抗薬は細胞膜上のカルシウムチャンネルと結合し阻害することに より、 細胞内へのカルシウムイオンの流入を阻害し、 血管収縮を抑制して血圧を 降下させる。 そして、 このカルシウム拮抗薬の一種であるべシル酸アムロジピン も、 内皮細胞に作用し、 NO産生を促進することが報告されている (Kob ay a s h i N, y a n a k a H, T o j o A, Kob ay a s h i K, M a t s u o k a H. J Ca r'd i ov a s c Pha rm 34 : 173— 181, 1999) 。  Calcium antagonists bind to and inhibit calcium channels on cell membranes, thereby inhibiting the influx of calcium ions into cells, suppressing vasoconstriction and lowering blood pressure. It has been reported that amlodipine besylate, a type of calcium antagonist, also acts on endothelial cells and promotes NO production (Kob ay ashi N, yanaka H, Tojo A, Kob ay ashi K , Matsuoka H. J Car r di ov asc Phar rm 34: 173-181, 1999).
以上より、 HMG—C o A還元酵素阻害薬、 アンギオテンシン変換酵素阻 害薬、 アンギオテンシン II受容体拮抗薬、 カルシウム拮抗薬の一部は、 従来知ら れていた効能に加えて、 血管内皮細胞の機能が改善、 NO産生が促進されること により血管の内皮化が促進することが期待される。 Based on the above, HMG-CoA reductase inhibitor, angiotensin converting enzyme inhibitor Some of the harmful drugs, angiotensin II receptor antagonists, and calcium antagonists promote the endothelialization of blood vessels by improving the function of vascular endothelial cells and promoting NO production in addition to the previously known efficacy It is expected to be.
HMG— Co A還元酵素阻害薬は、 例えばシンパスタチン、 セリバス夕チンナ トリウム、 ピ夕バス夕チン、 口バス夕チン、 アトルバス夕チン、 フルバス夕チン ナトリウム、 プラバス夕チンナトリウム、 ロスバス夕チンが挙げられる。  HMG-Co A reductase inhibitors include, for example, simpastatin, ceribas quintin sodium, pibus quintin, mouth bath chin, atorbas quintin, full bath quintin sodium, pravath quintin sodium and rosuvastin .
ACE阻害薬は、 例えばラミプリラット、 カプトプリル、 ァラセプリル、 マレ イン酸ェナラプリル、 塩酸デラプリル、 シラザプリル、 リシノブリル、 塩酸べナ ゼプリル、 塩酸イミダブリル、 塩酸テモカプリル、 塩酸キナプリル、 トランドラ プリル、 ペリンドプリルエルプミンが'挙げられる。  Examples of ACE inhibitors include ramiprilat, captopril, alacepril, enalapril maleate, delapril hydrochloride, cilazapril, ricinoburil, benazepril hydrochloride, imidabril hydrochloride, temocapril hydrochloride, quinapril hydrochloride, trandolapril and perindopril elpermine.
アンギオテンシン II受容体拮抗薬は、 例えば口サルタンカリウム、 カンデサル 夕ンシレキセチル、 バルサル夕ンが挙げられる。  Angiotensin II receptor antagonists include, for example, oral sultanate potassium, candesalen cilexetil, and valsalen.
力ルシゥム拮抗薬は、 例えばべシル酸アム口ジピンが挙げられる。  Potassium antagonists include, for example, amphidipine besylate.
NO供与体は、 例えば S_N i t r 0 s o— N_ a c e t y l— DL— p e n i c i 1 1 am i n e (SNAP) 、 アルギニンが挙げられる。  NO donors include, for example, S_Nitr0so—N_accetyl—DL—penicini 11 amine (SNAP) and arginine.
ステントの表面にコートされる血管内皮細胞機能改善薬の量は、 血管内皮細胞 が死滅することなく、 NO産生が促進される量であれば特に限定されない。 また、 ステントの表面にコートされる血管平滑筋細胞増殖抑制薬の量は、 血管平 滑筋細胞の増殖が抑制される量であれば特に限定されない。  The amount of the vascular endothelial cell function improving agent coated on the surface of the stent is not particularly limited as long as it is an amount that promotes NO production without killing vascular endothelial cells. In addition, the amount of the vascular smooth muscle cell proliferation inhibitor coated on the surface of the stent is not particularly limited as long as the amount of vascular smooth muscle cell proliferation is suppressed.
血管平滑筋細胞増殖抑制薬および血管内皮細胞機能改善薬のステン卜へのコ一 トの形態は特に限定されず、 例えば、 図 2のように生分解性ポリマーもしくは生 体適合性ポリマーからなるポリマー層 21中に、 血管平滑筋細胞増殖抑制薬 22 および血管内皮細胞機能改善薬 2 3を含有 (混合) させた形態にしてステントの 表面にコートしてもよい。 The form of the coating of the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent on the stent is not particularly limited. For example, as shown in FIG. 2, a polymer composed of a biodegradable polymer or a biocompatible polymer is used. In layer 21, vascular smooth muscle cell growth inhibitor 22 Alternatively, the surface of the stent may be coated in a form containing (mixed with) the vascular endothelial cell function improving agent 23.
また、 図 3のようにステントの表面に血管平滑筋細胞増殖抑制薬 2 2および血 管内皮細胞機能改善薬 2 3を直接コートして薬剤からなる層 (薬剤層 3 1 ) を設 け、 さらにその外側を、 生分解性ポリマーもしくは生体適合性ポリマーからなる ポリマー層 3 2で覆ってもよい。  In addition, as shown in Fig. 3, a vascular smooth muscle cell growth inhibitor 22 and a vascular endothelial cell function improving agent 23 are directly coated on the surface of the stent to form a drug layer (drug layer 31). The outside may be covered with a polymer layer 32 made of a biodegradable polymer or a biocompatible polymer.
また、 図 4のようにステントの表面に血管平滑筋細胞増殖抑制薬または血管内 皮細胞機能改善薬の一方 4 1を含有させた生分解性ポリマーもしくは生体適合性 ポリマーからなるポリマー層 4 2を設け、 さらにその外側に血管平滑筋細胞増殖 抑制薬または血管内皮細胞機能改善薬の他方 4 3を含有させた生分解性ポリマー もしくは生体適合性ポリマーからなるポリマー層 4 4を設けてもよく、 さらにそ の外側を生分解性ポリマーもしくは生体適合性ポリマーからなるポリマ一層 4 5 で覆ってもよい。 これらの生分解性ポリマ一もしくは生体適合性ポリマーからな るポリマ一層 4 2、 4 4、 4 5はそれぞれ同じであっても別であってもよい。 また、 図 5のようにステントの表面に血管平滑筋細胞増殖抑制薬または血管内 皮細胞機能改善薬の一方からなる薬剤層 5 1を設け、 さらにその外側に血管平滑 筋細胞増殖抑制薬または血管内皮細胞機能改善薬の他方からなる薬剤層 5 2を設 けてもよく、 さらにその外側を生分解性ポリマーもしくは生体適合性ポリマーか らなるポリマー層 5 3で覆ってもよい。  In addition, as shown in Fig. 4, a polymer layer 42 composed of a biodegradable polymer or a biocompatible polymer containing either a vascular smooth muscle cell proliferation inhibitor or a vascular endothelial cell function improving agent 41 on the surface of the stent is provided. Further, a polymer layer 44 of a biodegradable polymer or a biocompatible polymer containing the other of a vascular smooth muscle cell proliferation inhibitor or a vascular endothelial cell function improving agent 43 may be provided on the outside thereof, The outside may be covered with a polymer layer 45 of a biodegradable or biocompatible polymer. The polymer layers 42, 44, 45 made of these biodegradable polymers or biocompatible polymers may be the same or different. Also, as shown in Fig. 5, a drug layer 51 comprising one of a vascular smooth muscle cell growth inhibitor or a vascular endothelial cell function improving agent is provided on the surface of the stent, and a vascular smooth muscle cell growth inhibitor or vascular A drug layer 52 composed of the other of the endothelial cell function improving drug may be provided, and the outside thereof may be covered with a polymer layer 53 composed of a biodegradable polymer or a biocompatible polymer.
また、 図 6のようにステントの表面に血管平滑筋細胞増殖抑制薬または血管内 皮細胞機能改善薬の一方からなる薬剤層 6 1を設け、 さらにその外側に生分解性 ポリマーもしくは生体適合性ポリマーからなるバリヤー層 6 2を設け、 さらにそ のバリヤー層 6 2の外側に血管平滑筋細胞増殖抑制薬または血管内皮細胞機能改 善薬の他方からなる薬剤層 6 3を有してもよく、 さらにその外側を生分解性ポリ マーもしくは生体適合性ポリマーからなるポリマー層 6 4で覆ってもよい。 生分 解性ポリマーもしくは生体適合性ポリマ一からなるバリヤー層 6 2とポリマー層 6 4は、 同じであっても別であってもよい。 In addition, as shown in Fig. 6, a drug layer 61 made of one of a vascular smooth muscle cell growth inhibitor or a vascular endothelial cell function improving agent is provided on the surface of the stent, and a biodegradable polymer or a biocompatible polymer is further provided outside the drug layer 61. A barrier layer 62 made of Outside the barrier layer 62 of the vascular smooth muscle cell growth inhibitor or the vascular endothelial cell function improving agent, and a biodegradable polymer or biocompatible May be covered with a polymer layer 64 made of a conductive polymer. The barrier layer 62 made of biodegradable polymer or biocompatible polymer and the polymer layer 64 may be the same or different.
血管平滑筋細胞増殖抑制薬および血管内皮細胞機能改善薬が生分解性ポリマー からなるポリマー層中に含有されている場合、 あるいは血管平滑筋細胞増殖抑制 薬および血管内皮細胞機能改善薬 (薬剤層) の外側が生分解性ポリマーからなる ポリマー層で覆われている場合は、 生分解性ポリマーが分解することによって、 血管平滑筋細胞増殖抑制薬および血管内皮細胞機能改善薬がステントの留置部位 およびその周辺組織内に直接放出される。  When a vascular smooth muscle cell growth inhibitor and a vascular endothelial cell function improver are contained in a polymer layer composed of a biodegradable polymer, or a vascular smooth muscle cell growth inhibitor and a vascular endothelial cell function improver (drug layer) If the outside of the stent is covered with a polymer layer composed of a biodegradable polymer, the biodegradable polymer is degraded, and the vascular smooth muscle cell growth inhibitor and vascular endothelial cell function improver are placed on the stent placement site and its Released directly into surrounding tissues.
生分解性ポリマーは、 生体内で酵素的、 非酵素的に分解され、 分解産物が毒性 を示さず、 前記血管平滑筋細胞増殖抑制薬および血管内皮細胞機能改善薬の放出 が可能なものであれば特に限定されないが、 例えば、 ポリ乳酸、 ポリダリコール 酸、 ポリ乳酸—ポリグリコール酸共重合体、 ポリヒドロキシ酪酸、 ポリリン ゴ酸、 ポリひ一アミノ酸、 コラーゲン、 ラミニン、 へパラン硫酸、 フイブロネク チン、 ビトロネクチン、 コンドロイチン硫酸、 ヒアルロン酸などが挙げられる。 中でも長期間にわたって血管平滑筋細胞増殖抑制薬および血管内皮細胞機能改善 薬を放出することが可能であるポリ乳酸が好ましい。  The biodegradable polymer is one that is degraded enzymatically or non-enzymatically in vivo, the degradation product does not show toxicity, and can release the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent. Although not particularly limited, for example, polylactic acid, polydalicholic acid, polylactic acid-polyglycolic acid copolymer, polyhydroxybutyric acid, polymalic acid, polyamino acid, collagen, laminin, heparan sulfate, fibronectin, vitronectin, Chondroitin sulfate, hyaluronic acid and the like. Among them, polylactic acid capable of releasing a vascular smooth muscle cell proliferation inhibitor and a vascular endothelial cell function improving agent over a long period of time is preferable.
血管平滑筋細胞増殖抑制薬および血管内皮細胞機能改善薬が生体適合性 ポリマーからなるポリマー層中に含有されている場合、 あるいは血管平滑筋細胞 増殖抑制薬および血管内皮細胞機能改善薬 (薬剤層) の外側が生体適合性 ポリマーからなるポリマー層で覆われている場合は、 血管平滑筋細胞増殖抑制薬 および血管内皮細胞機能改善薬が生体適合性ポリマーの外表面に浸出することに よって、 血管平滑筋細胞増殖抑制薬および血管内皮細胞機能改善薬がステントの 留置部位およびその周辺組織に直接放出される。 When a vascular smooth muscle cell growth inhibitor and a vascular endothelial cell function improving agent are contained in a polymer layer composed of a biocompatible polymer, or a vascular smooth muscle cell growth inhibitor and a vascular endothelial cell function improving agent (drug layer) Outside is biocompatible When covered with a polymer layer composed of a polymer, the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent leach onto the outer surface of the biocompatible polymer, thereby causing the vascular smooth muscle cell growth inhibitor and The vascular endothelial cell function-improving drug is released directly to the stent placement site and the surrounding tissue.
生体適合性ポリマーは、 本質的に血小板が付着し難く、 組織に対しても刺激性 を示さず、 前記血管平滑筋細胞増殖抑制薬および血管内皮細胞機能改善薬の浸出 が可能なものであれば特に限定されないが、 例えば、 シリコーン、 ポリエーテル 型ポリゥレタンとジメチルシリコンのブレンドもしくはブロック共重合体、 セグ メント化ポリウレタン等のポリウレタン、 ポリアクリルアミド、 ポリエチレンォ キサイ ド、 ポリエチレンカーボネート、 ポリプロピレンカーボネート等の ポリカーボネート等、 各種合成ポリマーが挙げられる。  The biocompatible polymer is essentially a substance to which platelets are hardly adhered, does not show irritation to tissues, and is capable of leaching the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent. Although not particularly limited, for example, silicones, blends or block copolymers of polyether-polyurethane and dimethylsilicon, polyurethanes such as segmented polyurethanes, polycarbonates such as polyacrylamide, polyethylene oxide, polyethylene carbonate, polypropylene carbonate, etc. Various synthetic polymers are included.
血管平滑筋細胞増殖抑制薬および血管内皮細胞機能改善薬が生分解性ポリマー もしくは生体適合性ポリマーからなるポリマー層中に含有されている場合、 含有 の態様は特に限定されず、 血管平滑筋細胞増殖抑制薬および血管内皮細胞機能改 善薬がポリマ一層中に均一または不均一に存在していてもよく、 また局所的に存 在していても良い。  When the vascular smooth muscle cell proliferation inhibitor and the vascular endothelial cell function improving agent are contained in a polymer layer composed of a biodegradable polymer or a biocompatible polymer, the mode of inclusion is not particularly limited. The inhibitor and the vascular endothelial cell function improving agent may be present uniformly or heterogeneously in the polymer layer, or may be present locally.
本発明の体内埋込医療器具を製造する方法は特に限定されない。 例えば、 医療 器具本体としてステントを、 血管平滑筋細胞増殖抑制薬としてラパマイシンを、 血管内皮細胞機能改善薬としてシンバス夕チンを、 生分解性ポリマーとしてポリ 乳酸を、 それぞれ用いる場合は、 シンバス夕チンとラパマイシンをジクロ口 ェタンに溶解した溶液とポリ乳酸をジクロロェタンに溶解した溶液を混合し、 こ の混合した溶液を、 ステントにスプレーすることにより、 シンバス夕チンとラパ マイシンを含有させたポリ乳酸層 (ポリマー層) をステント表面に設ける方法等 が挙げられる。 The method for producing the implantable medical device of the present invention is not particularly limited. For example, when a stent is used as a medical device body, rapamycin is used as a vascular smooth muscle cell growth inhibitor, simvastatin is used as a vascular endothelial cell function improving agent, and polylactic acid is used as a biodegradable polymer. A solution in which rapamycin is dissolved in dichloromethane and a solution in which polylactic acid is dissolved in dichloroethane are mixed, and the mixed solution is sprayed on a stent to produce a solution of simvacin and rapamycin. A method in which a polylactic acid layer (polymer layer) containing mycin is provided on the surface of the stent.
このようにして得られた本発明の体内埋込医療器具は、 生体内の管腔に直接、 留置して用いることができる。 そして、 血管平滑筋細胞増殖抑制薬と血管内皮細 胞機能.改善薬はステントの留置部位およびその周辺組織内に放出され、 血管平滑 筋細胞増殖抑制薬により血管平滑筋細胞の増殖を抑制すると共に、 血管内皮細胞 機能改善薬によって血管内皮細胞の機能を改善させる。 したがって、 血管平滑筋 細胞増殖抑制薬の放出が終了した後でも、 機能改善された内皮細胞により内膜肥 厚が抑制されるため、 再狭窄を確実に抑制することが可能である  The thus-obtained implantable medical device of the present invention can be used by directly placing it in a lumen in a living body. The vascular smooth muscle cell proliferation inhibitor and vascular endothelial cell function improver are released into the stent placement site and the surrounding tissue, and the vascular smooth muscle cell proliferation inhibitor suppresses the proliferation of vascular smooth muscle cells. The function of vascular endothelial cells improves the function of vascular endothelial cells. Therefore, even after the release of the vascular smooth muscle cell growth inhibitor has been completed, the intimal hyperplasia is suppressed by the improved endothelial cells, so that restenosis can be reliably suppressed.
以下、 本発明を実施例によりさらに具体的に説明する。 なお、 本発明は下記の 実施例に限定されるものではない。  Hereinafter, the present invention will be described more specifically with reference to examples. Note that the present invention is not limited to the following examples.
(実施例 1 )  (Example 1)
シンバス夕チン 2 O m gとラパマイシン 2 O m gをジクロ口ェ夕ン l m 1に溶 解した溶液とポリ乳酸 4 O m gをジクロ口ェ夕ン 4 m 1に溶解した溶液を混合し た。 そして、 この混合した溶液を、 直径 2 mmのステンレスパイプを加工して作 製した長さ 1 5 mmのステントにスプレーすることにより、 シンバス夕チンとラ パマイシンを含有させたポリ乳酸層 (ポリマ一層) をステントの表面に設けて、 本発明の体内埋込医療器具を作製した。  A solution prepared by dissolving 2 O mg of Simvathine and 2 O mg of rapamycin in 1 ml of dichloromethane was mixed with a solution of 4 O mg of polylactic acid dissolved in 4 ml of dichloromethane. The mixed solution was sprayed onto a 15 mm long stent made by processing a 2 mm diameter stainless steel pipe to form a polylactic acid layer (polymer layer) containing simvastatin and rapamycin. ) Was provided on the surface of the stent to produce the implantable medical device of the present invention.
(比較例 1 )  (Comparative Example 1)
ラパマイシン 2 O m gをジクロ口ェ夕ン 1 m 1に溶解した溶液とポリ乳酸 4 O m gをジクロ口ェ夕ン 4 m 1に溶解した溶液を混合した。 そして、 この混合 した溶液を、 直径 2 mmのステンレスパイプを加工して作製した長さ 1 5 mmの ステントにスプレーすることにより、 ラパマイシンを含有させたポリ乳酸層 (ポ リマ一層) をステント表面に設けて、 体内埋込医療器具を作製した。 A solution in which rapamycin 2 O mg was dissolved in dichloride 1 ml and a solution in which polylactic acid 4 O mg was dissolved in dichloride 4 ml were mixed. Then, the mixed solution was processed into a stainless steel pipe with a diameter of 2 mm and a length of 15 mm. By spraying the stent, a polylactic acid layer (layer of polymer) containing rapamycin was provided on the stent surface to produce an implantable medical device.
(比較例 2)  (Comparative Example 2)
ポリ乳酸 40mgをジクロ口ェ夕ン 4m lに溶解した溶液を作製した。 そして、 この溶液を、 直径 2mmのステンレスパイプを加工して作製した 長さ 15 mmのステントにスプレーすることにより、 ポリ乳酸層 (ポリマー層) をステント表面に設けて、 体内埋込医療器具を作製した。  A solution was prepared by dissolving 40 mg of polylactic acid in 4 ml of dichloride. This solution is sprayed onto a 15 mm long stent made by processing a stainless steel pipe with a diameter of 2 mm to provide a polylactic acid layer (polymer layer) on the surface of the stent to produce an implantable medical device. did.
(評価 1)  (Evaluation 1)
くゥサギ腸骨動脈バルーン擦過による血管傷害モデルを用いた治療効果比較試 験 >  Comparative study of therapeutic effects using a vascular injury model caused by rubbing the spider iliac artery balloon>
ゥサギの筋肉内にケ夕ミン (30mgZkg) およびキシラジン (SmgZk g) を投与し麻酔した。 右総頸動脈を組織より剥離した。 耳介静脈よりへパリン を約 150 U/k g導入後、 所定の方法でシースイントロデューサ一を導入 した。 予めガイドワイヤ一を装填した PTCAバルーンを血管内に挿入し、 腸骨 動脈遠位部まで運んだ。 バルーンを規定圧まで拡張した状態で腸骨動脈近位部ま でバルーンを引き血管を擦過した。 このバルーン擦過を 3回繰り返し実施した。 続いて、 実施例 1にて作製した体内埋込医療器具、 比較例 1にて作製した体内埋 込医療器具、 比較例 2にて作製した体内埋込医療器具をそれぞれ右腸骨動脈に導 入し、 規定圧で拡張留置した。 バルーンを抜去後、 総頸動脈を結紮し、 3層縫合 し、 所定期間留置した。 なお、 留置期間は 4週間および 8週間とした。  (4) Kanemin (30 mgZkg) and xylazine (SmgZkg) were intramuscularly administered to the heron muscle and anesthetized. The right common carotid artery was dissected from the tissue. After introducing about 150 U / kg of heparin from the pinna vein, a sheath introducer was introduced by a predetermined method. A PTCA balloon pre-loaded with a guidewire was inserted into the blood vessel and carried to the distal part of the iliac artery. With the balloon inflated to the specified pressure, the balloon was pulled to the proximal part of the iliac artery and the blood vessel was scraped. This balloon rub was repeated three times. Subsequently, the implantable medical device prepared in Example 1, the implantable medical device prepared in Comparative Example 1, and the implantable medical device prepared in Comparative Example 2 were respectively introduced into the right iliac artery. Then, it was expanded and detained at the specified pressure. After removing the balloon, the common carotid artery was ligated, sutured in three layers, and left in place for a predetermined period. The detention period was 4 weeks and 8 weeks.
所定期間 (4週間および 8週間) 留置後、 体内埋込医療器具留置時と同様の方 法で、 左頸動脈から血管へアプローチし、 左右腸骨動脈を造影後、 開腹して腹部 大静脈を露出した。 頸動脈シースラインより 2 UZm 1のへパリン加生理食塩水 による灌流を開始し、 同時に腹部大静脈を切除し脱血死させた。 へパリン加生理 食塩水による全身灌流後、 1 0 %中性緩衝ホルマリン液にて全身灌流し、 標的血 管を固定した。 固定した試料を定法に従い樹脂包埋し病理切片を作製し、 へマト キシリン 'ェォジン染色を実施した。 これを光学顕微鏡による観察に供し、 内膜 厚を測定した。 実施例 比較例 1および比較例 2の体内埋込医療器具について それぞれ 3例ずつ測定を行つた。 これらの測定結果の平均値を表 1に示す。 また、 4週間留置したものについては、 内皮細胞を同定するべく抗フォンビル ブランドファクタ一抗体 (D a k o、 C A、 U S A) による免疫染色を行った。 その結果、 実施例 1にて作製した体内埋込医療器具を留置した右腸骨動脈の血管 内膜はフォンビルブランドファクタ一陽性の血管内皮細胞で覆われており、 内膜 修復 ·機能改善が確認されたのに対し、 比較例 1および比較例 2の体内埋込医療 器具を留置したものでは、 フォンビルブランドファクター陽性の血管内皮細胞は ほとんど確認できず、 内膜修復は殆ど認められなかつた。 表 1 Prescribed period (4 weeks and 8 weeks) After implantation, approach the blood vessel from the left carotid artery in the same way as when placing an implantable medical device, and after imaging the left and right iliac arteries, open the abdomen and open the abdomen The vena cava was exposed. Perfusion with 2 UZm 1 of heparinized saline was started from the carotid sheath line, and at the same time the abdominal vena cava was excised and exsanguinated. After systemic perfusion with heparinized saline, systemic perfusion was performed with 10% neutral buffered formalin solution to fix the target blood vessel. The fixed sample was resin-embedded according to a standard method to prepare a pathological section, and hematoxylin and eosin staining was performed. This was subjected to observation with an optical microscope, and the intima thickness was measured. Example Three cases were measured for each of the implantable medical devices of Comparative Example 1 and Comparative Example 2. Table 1 shows the average of these measurement results. In addition, immunostaining with anti-vonville brand factor-1 antibody (Dako, CA, USA) was performed on the cells left in place for 4 weeks to identify endothelial cells. As a result, the intima of the right iliac artery in which the implantable medical device prepared in Example 1 was placed was covered with von Willebrand factor 1-positive vascular endothelial cells. In contrast, in the cases where the implantable medical devices of Comparative Example 1 and Comparative Example 2 were indwelled, von Willebrand factor-positive vascular endothelial cells could hardly be confirmed, and almost no intimal repair was observed. . table 1
Figure imgf000019_0001
表 1より、 実施例 1は、 4週間後も 8週間後も比較例 2と比較して有意 (p < 0 . 0 5 : pは統計処理の判定値) に肥厚抑制効果が確認され、 4週間後と 8週 間後を比較しても内膜厚に変化は見られなかった。 これに対して比較例 1は、 4 週間後は肥厚抑制効果が見られるものの、 8週間後の内膜厚が増大しており、 肥 厚のリバウンドが見られた。 これは、 ラパマイシンのみを搭載した比較例 1は、 前述のように 4週間後の時点で内膜修復が殆ど認められていないため、 体内埋込 医療器具からラバマイシンが放出された後、 血管平滑筋細胞の増殖抑制効果が無 くなり、 内膜厚が増大したものと思われる。 一方、 シンバス夕チンとラバ マイシンを搭載した実施例 1は 4週間後の時点で内膜が修復されていたため、 体 内埋込医療器具からシンパスタチンとラパマイシンが放出された後も機能改善 · 修復された内皮細胞により内膜肥厚が抑制されたと考えられる。
Figure imgf000019_0001
From Table 1, it can be seen that Example 1 showed a significant (p <0.05: p is a criterion of statistical processing) thickening inhibitory effect of Comparative Example 2 after 4 weeks and 8 weeks. Weeks later and 8 weeks No change was found in the inner film thickness even after comparison. On the other hand, in Comparative Example 1, although the effect of suppressing thickening was observed after 4 weeks, the inner thickness was increased after 8 weeks, and rebound of thickening was observed. This is because, as described above, in Comparative Example 1 in which only rapamycin was loaded, almost no intimal repair was observed at the time point of 4 weeks later. It is considered that the cell growth inhibitory effect was lost and the inner layer thickness increased. On the other hand, in Example 1, which was equipped with simvastatin and ravamycin, the intima was repaired 4 weeks later, so the function was improved and repaired even after simpastatin and rapamycin were released from the implantable medical device. It is considered that the intimal hyperplasia was suppressed by the endothelial cells.
(実施例 2 )  (Example 2)
アルギニン 2 O m gとパクリタキセル 2 O m gをエタノール l m 1に溶解した 溶液とポリ乳酸 4 O m gをアセトン 4 m 1に溶解した溶液を混合した。 そして、 この混合した溶液を、 直径 2 mmのステンレスパイプを加工して作製した長 さ 1 5 mmのステントにスプレーすることにより、 アルギニンとパクリ夕キセル を含有させたポリ乳酸層 (ポリマー層) をステント表面に設けて、 本発明の体内 埋込医療器具を作製した。  A solution prepared by dissolving 2 mg of arginine and 2 mg of paclitaxel in 1 ml of ethanol and a solution obtained by dissolving 4 mg of polylactic acid in 4 ml of acetone were mixed. The mixed solution was sprayed onto a 15 mm long stent made by processing a 2 mm diameter stainless steel pipe to form a polylactic acid layer (polymer layer) containing arginine and paclitaxel. The medical device to be implanted in the body of the present invention was prepared on the surface of the stent.
(比較例 3 )  (Comparative Example 3)
パクリ夕キセル 2 O m gをエタノール l m 1 に溶解した溶液とポリ乳酸 4 O m gをアセトン 4 m 1に溶解した溶液を混合した。 そして、 この混合した溶 液を、 直径 2 mmのステンレスパイプを加工して作製した長さ 1 5 mmの ステントにスプレーすることにより、 パクリ夕キセルを含有させたポリ乳酸層 ( ポリマー層) をステント表面に設けて、 体内埋込医療器具を作製した。 (比較例 4 ) A solution prepared by dissolving 2 O mg of paclitaxel in ethanol lm 1 and a solution obtained by dissolving 4 O mg of polylactic acid in 4 ml of acetone were mixed. This mixed solution was sprayed onto a 15 mm long stent made by processing a 2 mm diameter stainless steel pipe to form a polylactic acid layer (polymer layer) containing paclitaxel. An implantable medical device was prepared on the surface. (Comparative Example 4)
ポリ乳酸 4 O m gをアセトン 4 m 1に溶解した溶液を作製した。 そして、 この 溶液を、 直径 2 mmのステンレスパイプを加工して作製した長さ 1 5 mmの ステントにスプレーすることにより、 ポリ乳酸層 (ポリマー層) をステント表面 に設けて、 体内埋込医療器具を作製した。  A solution was prepared by dissolving 4 mg of polylactic acid in 4 ml of acetone. This solution was sprayed onto a 15 mm long stent made by processing a 2 mm diameter stainless steel pipe to provide a polylactic acid layer (polymer layer) on the surface of the stent. Was prepared.
(評価 2 )  (Evaluation 2)
<ブ夕冠動脈血管傷害モデルを用いた治療効果比較試験 >  <Therapeutic effect comparison test using a model of coronary artery vascular injury>
ブ夕 8頭に前麻酔としてァザペロンと硫酸ァト口ピンを筋肉内投与した。 塩酸 ケ夕ミンの筋肉内投与で麻酔し、 空気:酸素 = 1 : 1と 2 %セボフルレンの混合 ガスで麻酔を維持した。  As a pre-anesthetic, azaperone and atosulfate pin were intramuscularly administered to eight females. Anesthesia was performed by intramuscular administration of keyumin hydrochloride, and the anesthesia was maintained with a gas mixture of air: oxygen = 1: 1 and 2% sevoflurane.
ブタ冠動脈 3枝内にそれぞれ、 定法に従い実施例 2で作製した体内埋込医療器 具、 比較例 3で作製した体内埋込医療器具、 比較例 4で作製した体内埋込医療器 具を留置した。 これをブ夕 8頭に実施した。 なお、 留置期間は 4週間および 1 2 週間とした。  The implantable medical device manufactured in Example 2, the implantable medical device manufactured in Comparative Example 3, and the implantable medical device manufactured in Comparative Example 4 were placed in the three branches of the porcine coronary artery, respectively, according to a standard method. . This was carried out on eight buses. The detention period was 4 weeks and 12 weeks.
所定期間 (4週間および 1 2週間) 留置後、 体内埋込医療器具留置時と同様に 麻酔をし、 冠動脈を血管造影した後、 脱血死させ、 心臓を取り出した。 心臓より 体内埋込医療器具を取り出し、 1 0 %中性緩衝ホルマリン液にて固定した。 固定 した試料を定法に従い樹脂包埋し病理切片を作製し、 へマトキシリン ·ェォジン 染色を実施した。 これを光学顕微鏡による観察に供し、 内膜断面積を測定した。 実施例 2、 比較例 3および比較例 4の体内埋込医療器具についての測定結果の平 均値を表 2に示す。  After indwelling for a predetermined period (4 weeks and 12 weeks), anesthesia was performed as in the case of placing an implantable medical device, coronary angiography was performed, blood was killed, and the heart was removed. The implantable medical device was removed from the heart and fixed with a 10% neutral buffered formalin solution. The fixed sample was embedded in resin according to a standard method to prepare a pathological section and stained with hematoxylin and eosin. This was subjected to observation with an optical microscope, and the intimal cross-sectional area was measured. Table 2 shows the average values of the measurement results of the implantable medical devices of Example 2, Comparative Example 3 and Comparative Example 4.
また、 4週間留置したものについては、 内皮細胞を同定するべく抗フォンビル ブランドファクター抗体による免疫染色を行った。 その結果、 実施例 2にて 作製した体内埋込医療器具を留置した右腸骨動脈の血管内膜はフォンビル ブランドファクタ一陽性の血管内皮細胞で全面覆われており、 内膜修復が確認さ れたのに対し、 比較例 3および比較例 4の体内埋込医療器具を留置したもの では、 フォンビルブランドファクター陽性の血管内皮細胞は一部しか確認 できず、 内膜修復があまり進んでいないことが確認された。 表 2 For those indwelling for 4 weeks, anti-fonnville was used to identify endothelial cells. Immunostaining with a brand factor antibody was performed. As a result, the intima of the right iliac artery in which the implantable medical device prepared in Example 2 was indwelled was completely covered with von Wille brand factor 1-positive vascular endothelial cells, confirming intimal repair. In contrast, in the implanted medical devices of Comparative Examples 3 and 4, only a part of the von Willebrand factor-positive vascular endothelial cells could be confirmed, and the repair of the intima was not so advanced. Was confirmed. Table 2
Figure imgf000022_0001
表 2より、 実施例 2は 4週間後も 1 2週間後も比較例 4と比較して有意 (p < 0 . 0 5 ) に肥厚抑制効果が確認され、 4週間後と 1 2週間後を比較しても内膜 断面積に有意な変化は見られなかった。 これに対して比較例 3は、 4週間後は肥 厚抑制効果が見られるものの、 1 2週間後の内膜断面積が増大しており、 肥厚の リバウンドが見られた。 これは、 パクリ夕キセルのみを搭載した比較例 3は、 前 述のように 4週間後の時点で内膜修復があまり認められていないため、 体内埋込 医療器具からパクリ夕キセルが放出された後、 血管平滑筋細胞の増殖抑制効果が 無くなり、 内膜断面積が増大したものと思われる。 一方、 アルギニンとパクリタ キセルを搭載した実施例 2は 4週間後の時点で内膜が修復されていたため、 体内 埋込医療器具からアルギニンとパクリタキセルが放出された後も機能改善 ·修復 された内皮細胞により内膜肥厚が抑制されたと考えられる。 産業上の利用可能性
Figure imgf000022_0001
From Table 2, it can be seen that Example 2 showed a significant (p <0.05) suppression effect on hyperplasia at 4 weeks and at 12 weeks compared to Comparative Example 4. No significant change was found in the intimal cross-sectional area in comparison. On the other hand, in Comparative Example 3, although the effect of suppressing thickening was observed after 4 weeks, the intimal cross-sectional area was increased after 12 weeks, and rebound of thickening was observed. This is because, in Comparative Example 3, in which only paclitaxel was mounted, pakurimixel was released from the implantable medical device because intimal repair was not recognized much after 4 weeks as described above. Later, the effect of inhibiting the growth of vascular smooth muscle cells was lost, and the intimal cross-sectional area seems to have increased. On the other hand, in Example 2 equipped with arginine and paclitaxel, the intima was repaired after 4 weeks, so the function was improved and repaired even after arginine and paclitaxel were released from the implantable medical device. It is considered that the intimal hyperplasia was suppressed by the endothelial cells. Industrial applicability
以上述べたように本発明は、 生体内の管腔に留置するための体内埋込医療器具 であって、 医療器具本体と、 前記医療器具本体に搭載された血管平滑筋細胞増殖 抑制薬および血管内皮細胞機能改善薬から構成されていることを特徴とする ため、 生体内の管腔に直接、 局所的に適用することが可能である。 そして、 血管 平滑筋細胞増殖抑制薬の放出により血管平滑筋細胞の増殖を抑制すると共に、 血 管内皮細胞機能改善薬を放出して血管内皮細胞の機能を改善させる。 した がって、 血管平滑筋細胞増殖抑制薬の放出が終了した後でも、 機能改善された内 皮細胞により内膜肥厚が抑制されるため、 再狭窄を確実に抑制することが可能で ある。  As described above, the present invention relates to an implantable medical device for indwelling in a lumen in a living body, comprising: a medical device main body; a vascular smooth muscle cell proliferation inhibitor mounted on the medical device main body; Since it is characterized by being composed of an endothelial cell function improving drug, it can be applied directly and locally to a lumen in a living body. The release of a vascular smooth muscle cell growth inhibitor suppresses the growth of vascular smooth muscle cells, and releases a vascular endothelial cell function improving agent to improve the function of vascular endothelial cells. Therefore, even after the release of the vascular smooth muscle cell proliferation inhibitor is terminated, the intimal hyperplasia is suppressed by the improved endothelial cells, so that restenosis can be surely suppressed.
また、 前記医療器具本体が、 ステントであることを特徴とする場合、 生体内の 管腔に生じた狭窄部を拡張し、 その拡張された内腔を確保するためにそこに長期 間留置することが可能である。  When the medical device body is a stent, the stenosis formed in a lumen in a living body is expanded, and the stenosis is left there for a long time to secure the expanded lumen. Is possible.

Claims

請 求 の 範 囲 The scope of the claims
1. 医療器具本体と、 前記医療器具本体に搭載された血管平滑筋細胞増殖抑制 薬および血管内皮細胞機能改善薬から構成されていることを特徴とする生体内の 管腔に留置するための体内埋込医療器具。 1. A body for indwelling in a lumen in a living body, comprising: a medical device main body; and a vascular smooth muscle cell proliferation inhibitor and a vascular endothelial cell function improving agent mounted on the medical device main body. Implantable medical device.
2. 前記血管内皮細胞機能改善薬が、 HMG— Co A還元酵素阻害薬であるこ とを特徴とする請求項 1に記載の体内埋込医療器具。  2. The implantable medical device according to claim 1, wherein the vascular endothelial cell function improving agent is an HMG-CoA reductase inhibitor.
3. 前記 HMG— Co A還元酵素阻害薬が、 シンバス夕チン、 セリバス夕チン ナトリウム、 ピ夕バス夕チン、 口バス夕チン、 アトルバスタチン、 フルバ スタチンナトリウム、 プラバス夕チンナトリウム、 ロスバス夕チンのいずれかで あることを特徴とする請求項 2に記載の体内埋込医療器具。  3. The HMG-CoA reductase inhibitor is one of simvasin, ceribas sodium, pivasin, mouth bath, atorvastatin, fluvastatin sodium, pravastin, sodium and rosuvastin The implantable medical device according to claim 2, wherein:
4. 前記血管内皮細胞機能改善薬が、 ACE阻害薬、 アンギオテンシン II受容 体拮抗薬、 カルシウム拮抗薬のいずれかであることを特徴とする請求項 1に記載 の体内埋込医療器具。  4. The implantable medical device according to claim 1, wherein the vascular endothelial cell function improving agent is any of an ACE inhibitor, an angiotensin II receptor antagonist, and a calcium antagonist.
5. 前記血管内皮細胞機能改善薬が、 NO供与体であることを特徴とする請求 項 1に記載の体内埋込医療器具。  5. The implantable medical device according to claim 1, wherein the vascular endothelial cell function improving agent is a NO donor.
6. 前記 NO供与体が、 S_N i t r o s o-N-ac e t y 1 -DL-p e n i c i 1 1 am i n e (SNAP) またはアルギニンであることを特徴とする 請求項 5に記載の体内埋込医療器具。  6. The implantable medical device according to claim 5, wherein the NO donor is S_Nitroso-N-acety1-DL-penici11amine (SNAP) or arginine.
7. 前記血管平滑筋細胞増殖抑制薬が、 免疫抑制剤、 抗癌剤、 抗生物質、 ゲニ スティン、 チルフォスチン、 サイトカラシンのいずれかであることを特徴とする 請求項 1に記載の体内埋込医療器具。 7. The implantable medical device according to claim 1, wherein the vascular smooth muscle cell proliferation inhibitor is any one of an immunosuppressant, an anticancer agent, an antibiotic, genistein, tilphosphine, and cytochalasin.
8 . 前記血管平滑筋細胞増殖抑制薬が、 シロリムス (ラバマイシン) 、 タク口 リムス水和物、 エベロリムス、 エベロリムスプラス、 パクリ夕キセル (タキソ一 )V) 、 ドセタキセル水和物、 ァクチノマイシン D、 マイトマイシン C、 アドリア マイシンのいずれかであることを特徴とする請求項 1に記載の体内埋込医療 器具。 8. The vascular smooth muscle cell proliferation inhibitor is sirolimus (rabamycin), tactose limus hydrate, everolimus, everolimus plus, paclitaxel (Taxo-1) V), docetaxel hydrate, actinomycin D, mitomycin C, 2. The implantable medical device according to claim 1, wherein the device is one of adriamycin.
9 . 前記医療器具本体の表面に、 前記血管平滑筋細胞増殖抑制薬および血管内 皮細胞機能改善薬を内部に含有する生分解性ポリマーもしくは生体適合性 ポリマーからなるポリマー層を有することを特徴とする請求項 1〜8のいずれか に記載の体内埋込医療器具。  9. On the surface of the medical device main body, there is provided a polymer layer made of a biodegradable polymer or a biocompatible polymer containing the vascular smooth muscle cell proliferation inhibitor and the vascular endothelial cell function improving agent therein. The implantable medical device according to claim 1.
1 0 . 前記医療器具本体の表面に、 前記血管平滑筋細胞増殖抑制薬および血管 内皮細胞機能改善薬を有し、 該血管平滑筋細胞増殖抑制薬および血管内皮細胞機 能改善薬の外側に生分解性ポリマ一または生体適合性ポリマーからなるポリマ一 層を有することを特徴とする請求項 1〜 8のいずれかに記載の体内埋込医療 器具。  10. The surface of the medical device main body has the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent, and is formed outside the vascular smooth muscle cell growth inhibitor and the vascular endothelial cell function improving agent. The implantable medical device according to any one of claims 1 to 8, further comprising a polymer layer made of a degradable polymer or a biocompatible polymer.
1 1 . 前記生分解性ポリマーが、 ポリ乳酸、 ポリダリコール酸、 ポリ乳酸—ポ リグリコール酸共重合体、 ポリヒドロキシ酪酸、 ポリリンゴ酸、 ポリひ一ァミノ 酸、 コラーゲン、 ラミニン、 へパラン硫酸、 フイブロネクチン、 ビトロネク チン、 コンドロイチン硫酸、 ヒアルロン酸のいずれかであり、  1 1. The biodegradable polymer is polylactic acid, polydalicholic acid, polylactic acid-polyglycolic acid copolymer, polyhydroxybutyric acid, polymalic acid, polyhydroxyamino acid, collagen, laminin, heparan sulfate, fibronectin, One of vitronectin, chondroitin sulfate, or hyaluronic acid
前記生体適合性ポリマーが、 シリコーン、 ポリエーテル型ポリウレタンとジメ チルシリコンとのブレンドまたはブロック共重合体、 ポリウレタン、 ポリアクリ ルアミド、 ポリエチレンオキサイド、 ポリカーボネートのいずれかであることを 特徴とする請求項 9または 1 0に記載の体内埋込医療器具。 The biocompatible polymer is any one of silicone, a blend or block copolymer of polyether polyurethane and dimethyl silicone, polyurethane, polyacrylamide, polyethylene oxide, and polycarbonate. The implantable medical device according to 0.
12. 前記医療器具本体が、 ステントであることを特徴とする請求項 1〜1 のいずれかに記載の体内埋込医療器具。 12. The medical device according to claim 1, wherein the medical device main body is a stent.
PCT/JP2003/010510 2002-08-20 2003-08-20 Medical instrument to be implanted in the body WO2004017939A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003257624A AU2003257624A1 (en) 2002-08-20 2003-08-20 Medical instrument to be implanted in the body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002/238730 2002-08-20
JP2002238730 2002-08-20

Publications (1)

Publication Number Publication Date
WO2004017939A1 true WO2004017939A1 (en) 2004-03-04

Family

ID=31943845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010510 WO2004017939A1 (en) 2002-08-20 2003-08-20 Medical instrument to be implanted in the body

Country Status (3)

Country Link
JP (1) JP2010155095A (en)
AU (1) AU2003257624A1 (en)
WO (1) WO2004017939A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155095A (en) * 2002-08-20 2010-07-15 Terumo Corp Medical instrument to be implanted in the body

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3673928B1 (en) 2013-02-07 2021-06-30 The Regents Of The University Of Michigan Thromboresistant/bactericidal s-nitroso-n-acetylpenicillamine (snap)-doped nitric oxide release polymers with enhanced stability
CN117427227B (en) * 2023-10-25 2024-06-11 中国人民解放军北部战区总医院 Epsin1-Epsin2-shRNA functional gene coating stent and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995012394A1 (en) * 1993-11-02 1995-05-11 The United States Of America, Represented By The Secretary, Department Of Health And Human Services Use of nitric oxide releasing compounds as protective agents in ischemia reperfusion injury
JPH0956807A (en) * 1995-08-22 1997-03-04 Kanegafuchi Chem Ind Co Ltd Stent adhered and coated with medicine and its production
JP2001198209A (en) * 2000-01-18 2001-07-24 Terumo Corp Material and instrument for intravascular treatment
EP1159934A2 (en) * 2000-06-01 2001-12-05 Terumo Kabushiki Kaisha Implantable tubular device (stent)
JP2002193838A (en) * 2000-12-27 2002-07-10 Terumo Corp Medical material for implantation and medical appliance for implantation

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029561B1 (en) * 2000-05-12 2011-10-04 Cordis Corporation Drug combination useful for prevention of restenosis
US6153252A (en) * 1998-06-30 2000-11-28 Ethicon, Inc. Process for coating stents
WO2002026281A1 (en) * 2000-09-29 2002-04-04 Cordis Corporation Coated medical devices
JP4588986B2 (en) * 2002-08-20 2010-12-01 テルモ株式会社 Implantable medical device
WO2004017939A1 (en) * 2002-08-20 2004-03-04 Terumo Kabushiki Kaisha Medical instrument to be implanted in the body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995012394A1 (en) * 1993-11-02 1995-05-11 The United States Of America, Represented By The Secretary, Department Of Health And Human Services Use of nitric oxide releasing compounds as protective agents in ischemia reperfusion injury
JPH0956807A (en) * 1995-08-22 1997-03-04 Kanegafuchi Chem Ind Co Ltd Stent adhered and coated with medicine and its production
JP2001198209A (en) * 2000-01-18 2001-07-24 Terumo Corp Material and instrument for intravascular treatment
EP1159934A2 (en) * 2000-06-01 2001-12-05 Terumo Kabushiki Kaisha Implantable tubular device (stent)
JP2002193838A (en) * 2000-12-27 2002-07-10 Terumo Corp Medical material for implantation and medical appliance for implantation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010155095A (en) * 2002-08-20 2010-07-15 Terumo Corp Medical instrument to be implanted in the body

Also Published As

Publication number Publication date
AU2003257624A1 (en) 2004-03-11
JP2010155095A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP5932073B2 (en) Absorbable stent with coating to control stent degradation and maintain pH neutral
ES2451653T3 (en) Implantable medical device with surface erosion polyester drug supply coating
JP4796506B2 (en) Pharmaceutical composition
JP4588986B2 (en) Implantable medical device
JP4371653B2 (en) Implantable medical device
JP2009508644A (en) Graft with bioabsorbable support frame
MX2010007571A (en) Rapamycin reservoir eluting stent.
JP2004222953A (en) Indwelling stent
JP5102200B2 (en) In vivo indwelling
CN101239216A (en) Novel sacculus dilating catheter
JP2005168937A (en) Stent
US20120239140A1 (en) Medical product comprising an active coating
JP2010155095A (en) Medical instrument to be implanted in the body
JPWO2007116646A1 (en) In vivo indwelling
JP2004267283A (en) In vivo embedding medical material and in vivo embedding medical instrument
JP2002193838A (en) Medical material for implantation and medical appliance for implantation
JP2003024430A (en) Self-contained medical material and self-contained medical apparatus
JP2004041331A (en) Intracorporeal embedded medical appliance
JP2008119199A (en) Stent coated with medicine for suppressing production enhancement of calcineurin
MXPA06007319A (en) Parmaceutical compositions
WO2007132801A1 (en) Stent
JP2010166935A (en) Stent

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase