JP4371653B2 - Implantable medical device - Google Patents

Implantable medical device Download PDF

Info

Publication number
JP4371653B2
JP4371653B2 JP2002341014A JP2002341014A JP4371653B2 JP 4371653 B2 JP4371653 B2 JP 4371653B2 JP 2002341014 A JP2002341014 A JP 2002341014A JP 2002341014 A JP2002341014 A JP 2002341014A JP 4371653 B2 JP4371653 B2 JP 4371653B2
Authority
JP
Japan
Prior art keywords
simvastatin
stent
medical device
implantable medical
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002341014A
Other languages
Japanese (ja)
Other versions
JP2004173770A (en
Inventor
裕晶 名倉
秀幸 外川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TRUMO KABUSHIKI KAISHA
Original Assignee
TRUMO KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TRUMO KABUSHIKI KAISHA filed Critical TRUMO KABUSHIKI KAISHA
Priority to JP2002341014A priority Critical patent/JP4371653B2/en
Publication of JP2004173770A publication Critical patent/JP2004173770A/en
Application granted granted Critical
Publication of JP4371653B2 publication Critical patent/JP4371653B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、血管、胆管、気管、食道、腸管、尿道などの生体内の管腔に生じた狭窄部の改善に使用される体内埋込医療器具に関する。
【0002】
【従来の技術】
近年、生体内の管腔に生じた狭窄部を改善するためにステントが多く使用されている。ステントは、血管あるいはその他の生体内の管腔に生じた狭窄部を拡張させた状態に維持するための管状の器具であり、例えば心臓の冠状動脈においては、経皮的冠動脈形成術(PTCA)後の再狭窄防止に用いられている。そして、PTCAにより狭窄部を拡張させた後、金属製のメッシュ構造からなるステントを留置することによって再狭窄率を低下させることに成功したが、ステント留置後も、20%前後の割合で再狭窄が認められ、再狭窄の問題は依然として解決していない。
【0003】
再狭窄が起こる原因は、これまで様々な説が考えられているが、現在はステントを留置することによりステント周囲の平滑筋細胞のフェノタイプが収縮型から合成型へと変化し、ステント内腔側へ遊走・増殖することにより内膜肥厚が起こり、その結果再狭窄現象が起こるという考え方が主流になっている。
【0004】
そこでこの平滑筋細胞の遊走・増殖を抑制し得る薬剤をステントに担持することにより、再狭窄を予防する検討が種々なされている。このような薬剤の具体的な例としては、タキソール(特許文献1参照)、マイトマシンC、アドリアマイシン、ゲニステイン、チルフォスチン(特許文献2参照)、サイトカラシン(特許文献3参照)、HMG−CoA還元酵素阻害薬(特許文献4参照)などが挙げられている。
【0005】
特に、HMG−CoA還元酵素阻害薬は、従来、肝臓でのコレステロール合成をブロックすることから、高脂血症治療薬として使用されているが、最近、血管壁に直接適用することによって、血管内膜の肥厚抑制に関係する効果がある事が報告されている。具体的には、LDLの酸化抑制(非特許文献1参照)、炎症反応の抑制(非特許文献2参照)、平滑筋細胞・マクロファジーの泡沫化抑制(非特許文献3参照)等の効果が、それぞれ報告されている。
【0006】
そして、最近ではHMG−CoA還元酵素阻害薬のNO産性作用が注目されている(非特許文献4参照)。血管内皮細胞においてNO産生が促進することにより、内皮細胞の機能が改善し、血管の内皮化が促進すると考えられている。そして、血管の内皮化促進により、平滑筋細胞の内膜側への遊走が抑制されると考えられている。
【0007】
これらの薬剤をステントに担持させるには、一般にそれぞれの溶媒に薬剤を溶解し、単独もしくは高分子材料などとともに噴霧もしくは浸漬などの方法によりステントの表面にコーティングされるが、その際、溶媒または薬剤単体により当初の血漿状態が損なわれ、一部もしくはほとんどが非晶質の状態となるのが現状である。そして、この非晶質状態部分は化学的に不安定であり、経時的に分解・劣化が起こりやすく、その薬剤が本来持っている効果が損なわれる傾向にある。
【0008】
したがって、これらの薬剤をコートしたステントを生体内に留置した際に、薬剤が分解を起して、その薬剤が本来持っている効果が低下することになる。この傾向は、これらの薬剤全てにあり、特にHMG−CoA還元酵素阻害薬、とりわけシンバスタチンはその可能性が高い。
【0009】
【特許文献1】
特表平9−503488号公報
【特許文献2】
特開平9−56807号公報
【特許文献3】
特表平11−500635号公報
【特許文献4】
特願2002−200712
【非特許文献1】
Massy Ziad A.,et al.,Biochem Biophys Res Commun 267 536−540(2000)
【非特許文献2】
Sakai M.,et al.,Atherosclerosis 133 51−59(1997)
【非特許文献3】
Bellosta S.,et al.,Atherosclerosis137 Suppl. S101−109(1998)
【非特許文献4】
Laufs U et al、Circulation (97) 1129−1135(1998)
【0010】
【発明が解決しようとする課題】
そこで、本発明の目的は、生物学的生理活性物質の経時的な分解・劣化が防止され、生物学的生理活性物質を安定的に保持することが可能な体内埋込医療器具を提供することにある。
【0011】
【課題を解決するための手段】
このような目的は、下記(1)〜(3)の本発明により達成される。
【0012】
(1)医療器具本体と、前記医療器具本体に搭載された再結晶化された生物学的生理活性物質から構成されていることを特徴とする生体内の管腔に留置するための体内埋込医療器具であって、
前記生物学的生理活性物質が、HMG−CoA還元酵素阻害薬であり、
前記HMG−CoA還元酵素阻害薬が、シンバスタチンであることを特徴とする体内埋込医療用具。
【0013】
(2)前記シンバスタチンが、40〜60℃の温度範囲で再結晶化されたことを特徴とする(1)に記載の体内埋込医療用具。
【0014】
(3)前記医療器具本体が、ステントであることを特徴とする(1)ないし(2)に記載の体内埋込医療器具。
【0019】
【発明の実施の形態】
以下、本発明の体内埋込医療器具について詳細に説明する。
【0020】
本発明の体内埋込医療器具は、医療器具本体と、医療器具本体に搭載された再結晶化された生物学的生理活性物質で構成されている。
【0021】
再結晶化された生物学的生理活性物質の医療器具本体への搭載の形態は、特に限定されず、例えば医療器具本体の表面に再結晶化された生物学的生理活性物質をコートしても良く、また医療器具本体の内側に再結晶化された生物学的生理活性物質を含有させても良い。
【0022】
医療器具本体は、例えばステント、カテーテル、バルーン、血管補綴材、人工血管等が挙げられ、中でも生体内の管腔に生じた狭窄部を拡張し、その拡張された内腔を確保するためにそこに長期間留置することが可能であるステントが好ましい様態である。以下、医療器具本体がステントである場合について添付図面に示す好適な実施の形態に基づいてより詳細に説明する。
【0023】
図1はステントの一様態を示す側面図、図2は図1の線A−Aに沿って切断した拡大横断面図、図3は図2と同様の図であって、再結晶化された生物学的生理活性物質のコートの形態が異なる様態を示す。
【0024】
ステントは、血管、胆管、気管、食道、腸管、尿道などの生体内の管腔に生じた狭窄部を拡張し、かつそこに留置することができれば、その材料、形状、大きさ等は特に限定されない。
【0025】
ステントを形成する材料は、適用箇所に応じて適宜選択すれば良く、例えば金属材料、高分子材料、セラミックス等が挙げられる。ステントを金属材料で形成した場合、金属材料は強度に優れているため、ステントを狭窄部に確実に留置することが可能である。また、ステントを高分子材料で形成した場合、高分子材料は柔軟性に優れているため、ステントの狭窄部への到達性(デリバリー性)という点で優れた効果を発揮する。
【0026】
金属材料としては、例えばステンレス鋼、Ni−Ti合金、タンタル、チタン、金、プラチナ、インコネル、イリジウム、タングステン、コバルト系合金等が挙げられる。そしてステンレス鋼の中では、耐食性が良好であるSUS316Lが好適である。
【0027】
高分子材料としては、例えばポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、セルロースアセテート、セルロースナイトレート等が挙げられる。
【0028】
ステントの形状は、生体内の管腔に生じた狭窄部に安定して留置するに足る強度を有するものであれば特に限定されず、例えば、金属材料のワイヤーや高分子材料の繊維をネット状にすることにより構成される円筒体等の任意の形状体や、図1に示すような金属材料や高分子材料で構成される円筒体に細孔を設けたものが好適に挙げられる。
【0029】
ステントは、バルーンエクスパンダブルタイプ、セルフエクスパンダブルタイプのいずれであってもよい。また、ステントの大きさは適用箇所に応じて適宜選択すれば良い。例えば、心臓の冠状動脈に用いる場合は、通常拡張前における外径は1.0〜3.0mm、長さは5〜50mmが好ましい。
【0030】
ステントの表面には再結晶化された生物学的生理活性物質がコートされている。生物学的生理活性物質は再結晶化されているため、経時的な分解・劣化が防止され、安定的な状態でステントの表面に保持される。この再結晶化された生物学的生理活性物質は、ステントを生体内の管腔の狭窄部に留置した際に、ステントの留置部位およびその周辺組織内に放出される。
【0031】
生物学的生理活性物質は、予め再結晶化処理を施したものをステントの表面にコートしても良く、またステントの表面にコートした後に再結晶化処理を施しても良い。
【0032】
生物学的生理活性物質は、再結晶化されたものであれば特に限定されないが、例えばNO産生作用を有するHMG−CoA還元酵素阻害薬が挙げられ、さらにHMG−CoA還元酵素阻害薬の中では、入手が比較的容易であるシンバスタチンが特に好ましい。
【0033】
ステントの表面にコートされる生物学的生理活性物質の量は、その生物学的生理活性物質が本来持っている効果を発揮し得る量、すなわち血管内の再狭窄を抑制できる量であれば特に限定されない。
【0034】
生物学的生理活性物質のステントへのコートの形態は特に限定されず、例えば図2に示すように生分解性ポリマーもしくは生体適合性ポリマーからなるポリマー層中に生物学的生理活性物質を含有(混合)させた形態にしてステントにコートしても良く、また図3に示すようにステントの表面に生物学的生理活性物質を直接コートして生物学的生理活性物質単独の層を設け、さらにその外側を、生分解性ポリマーもしくは生体適合性ポリマーからなるポリマー層で覆っても良い。
【0035】
生物学的生理活性物質が生分解性ポリマーからなるポリマー層中に含有されている場合、あるいは生物学的生理活性物質の外側が生分解性ポリマーからなるポリマー層で覆われている場合は、生分解性ポリマーが分解することによって、生物学的生理活性物質がステントの留置部位およびその周辺組織内に直接放出される。
【0036】
生分解性ポリマーは、生体内で酵素的、非酵素的に分解され、分解産物が毒性を示さず、生物学的生理活性物質の放出が可能なものであれば特に限定されず、例えば、ポリ乳酸、ポリグリコール酸、ポリ乳酸−ポリグリコール酸共重合体、ポリヒドロキシ酪酸、ポリリンゴ酸、ポリα−アミノ酸、コラーゲン、ラミニン、ヘパラン硫酸、フィブロネクチン、ビトロネクチン、コンドロイチン硫酸、ヒアルロン酸、キトサンセルロース、セルロースアセテートなどが挙げられ、中でも長期間にわたって生物学的生理活性物質を放出することが可能であるポリ乳酸が特に好ましい。
【0037】
生物学的生理活性物質が生体適合性ポリマーからなるポリマー層中に含有されている場合、あるいは生物学的生理活性物質の外側が生体適合性ポリマーからなるポリマー層で覆われている場合は、生物学的生理活性物質が生体適合性ポリマーの外表面に浸出することによって、生物学的生理活性物質がステントの留置部位およびその周辺組織に直接放出される。
【0038】
生体適合性ポリマーは、本質的に血小板が付着し難く、組織に対しても刺激性を示さず、生物学的生理活性物質の浸出が可能なものであれば特に限定されず、例えば、ポリエチレンブチルアセテート共重合体(PEVA)、ポリブチルメチルアクリレート(PBMA)などのアクリレート類、ポリアクリルアミド(PA)などのアクリルアミド類、シリコーン、ポリエーテル型ポリウレタンとジメチルシリコーンのブレンドもしくはブロック共重合体、セグメント化ポリウレタン等のポリウレタン、ポリエチレンオキサイド、ポリエチレンカーボネート、ポリプロピレンカーボネートなどのポリカーボネート等、各種合成ポリマーが挙げられる。
【0039】
生物学的生理活性物質が生分解性ポリマーもしくは生体適合性ポリマーからなるポリマー層中に含有されている場合、含有の様態は特に限定されず、生物学的生理活性物質がポリマー層中に均一または不均一に存在していてもよく、また局所的に存在していても良い。
【0040】
本発明の体内埋込医療器具を製造する方法は特に限定されず。例えば、医療器具本体としてステントを、生物学的生理活性物質としてシンバスタチンを、生体適合性ポリマーとしてポリエチレンブチルアセテート共重合体(PEVA)を、それぞれ用いた場合、シンバスタチンとPEVAをテトラヒドロフランに溶解した溶液をステントにスプレーして、図2に示すようなシンバスタチンを含有させたPEVA層(ポリマー層)をステント表面に設けたものを作製し、さらにこのPEVA層を設けたステントを密閉空間内に設置して、好適な温度・圧力を加えることによってシンバスタチンを再結晶化する方法や、シンバスタチンをテトラヒドロフランに溶解した溶液をステントにスプレーして、ステント表面にシンバスタチンの層を設けた後、そのシンバスタチン層の表面にPEVAをテトラヒドロフランに溶解した溶液をスプレーして、図3に示すようなシンバスタチン層の外側にPEVA層(ポリマー層)を設けたものを作製し、さらにこのPEVA層を設けたものを密閉空間内に設置して、好適な温度・圧力を加えることによってシンバスタチンを再結晶化する方法等が挙げられる。
【0041】
シンバスタチンを再結晶化する際の温度は、40〜60℃が好ましい。温度が40℃未満であると、シンバスタチンの分解を防止することができなくなる。また温度が60℃を超えると、図3に示すようなコートの形態にした場合に、シンバスタチン層の膜厚が厚くなる。
【0042】
シンバスタチンを再結晶化する際の圧力は、特に限定されないが、真空度1000パスカル以下が好ましく、100パスカル以下が特に好ましい。圧力を100パスカル以下にすることにより、より容易に再結晶化が促進される。
【0043】
このようにして得られた本発明の体内埋込医療器具は、生体内の管腔に直接、留置して用いることができる。そして、再結晶化された生物学的生理活性物質がステントの留置部位およびその周辺組織内に放出される。このような生物学的生理活性物質は経時的な分解・劣化が防止されているため、その生物学的生理活性物質が本来持っている効果を発揮することができ、その結果、血管等の再狭窄を確実に抑制することが可能である。
【0044】
【実施例】
以下、本発明を実施例によりさらに具体的に説明する。なお、本発明は下記の実施例に限定されるものではない。
【0045】
(実施例1)
シンバスタチン100mgをテトラヒドロフラン1mlに溶解した溶液を、直径2mmのステンレスパイプを加工して作製した長さ15mmのステントにスプレーして、ステント表面にシンバスタチンの層を設けた。そして、このシンバスタチン層を設けたステントを加熱真空乾燥装置に入れて不活性ガスであるアルゴン(Ar)で3回置換した後、真空ポンプで真空度100パスカル(Pa)以下になるまで吸引し、60℃で72時間加熱してシンバスタチンを再結晶化させて、本発明の体内埋込医療器具を作製した。
次に、本発明の体内埋込医療器具を加速試験(80℃、1時間、大気圧)で処理して、アセトニトリル1mlに溶解して、高速液体クロマトグラフ(HPLC)を用いてシンバスタチンの分解率(%)を測定した。測定の結果、シンバスタチンは2%のみの分解であった。
【0046】
(比較例1)
シンバスタチン100mgをテトラヒドロフラン1mlに溶解した溶液を、直径2mmのステンレスパイプを加工して作製した長さ15mmのステントにスプレーして、ステント表面にシンバスタチンの層を設けて、体内埋込医療器具を作製した。
次に、この体内埋込医療器具について実施例1と同様の方法でシンバスタチンの分解率(%)を測定した。測定の結果、シンバスタチンは30%分解されていた。
【0047】
(実施例2)
シンバスタチン100mgとポリエチレンブチルアセテート共重合体(PEVA)200mgをテトラヒドロフラン1mlに溶解した溶液を、直径2mmのステンレスパイプを加工して作製した長さ15mmのステントにスプレーして、シンバスタチンを含有させたPEVA層(ポリマー層)をステント表面に設けた。そして、このPEVA層を設けたステントを加熱真空乾燥装置に入れて不活性ガスであるアルゴン(Ar)で3回置換した後、真空ポンプで真空度100パスカル(Pa)以下になるまで吸引し、60℃で72時間加熱してシンバスタチンを再結晶化させて、本発明の体内埋込医療器具を作製した。
次に、この体内埋込医療器具について実施例1と同様の方法でシンバスタチンの分解率(%)を測定した。測定の結果、シンバスタチンは2%のみの分解であった。
【0048】
(比較例2)
シンバスタチン100mgとポリエチレンブチルアセテート共重合体(PEVA)200mgをテトラヒドロフラン1mlに溶解した溶液を、直径2mmのステンレスパイプを加工して作製した長さ15mmのステントにスプレーして、シンバスタチンを含有させたPEVA層(ポリマー層)をステント表面に設けて、体内埋込医療器具を作製した。
次に、この体内埋込医療器具について実施例1と同様の方法でシンバスタチンの分解率(%)を測定した。測定の結果、シンバスタチンは30%分解されていた。
【0049】
(実施例3)
シンバスタチン100mgをテトラヒドロフラン1mlに溶解した溶液を、直径2mmのステンレスパイプを加工して作製した長さ15mmのステントにスプレーして、ステント表面にシンバスタチンの層を設けた後、そのシンバスタチン層の表面にポリエチレンブチルアセテート共重合体(PEVA)200mgをテトラヒドロフラン1mlに溶解した溶液をスプレーして、PEVA層(ポリマー層)を設けた。そして、このPEVA層を設けたステントを加熱真空乾燥装置に入れて不活性ガスであるアルゴン(Ar)で3回置換した後、真空ポンプで真空度100パスカル(Pa)以下になるまで吸引し、60℃で72時間加熱してシンバスタチンを再結晶化させて、本発明の体内埋込医療器具を作製した。
次に、この体内埋込医療器具について実施例1と同様の方法でシンバスタチンの分解率(%)を測定した。測定の結果、シンバスタチンは2%のみの分解であった。
【0050】
(比較例3)
シンバスタチン100mgをテトラヒドロフラン1mlに溶解した溶液を、直径2mmのステンレスパイプを加工して作製した長さ15mmのステントにスプレーして、ステント表面にシンバスタチンの層を設けた後、そのシンバスタチンの表面にポリエチレンブチルアセテート共重合体(PEVA)200mgをテトラヒドロフラン1mlに溶解した溶液をスプレーして、PEVA層(ポリマー層)を設けて、体内埋込医療器具を作製した。
次に、この体内埋込医療器具について実施例1と同様の方法でシンバスタチンの分解率(%)を測定した。測定の結果、シンバスタチンは30%分解されていた。
【0051】
実施例1〜3より、シンバスタチンのステントへのコートの形態に関らず、シンバスタチンが再結晶化されて分解が防止されることが確認された。
【0052】
(実施例4)
シンバスタチン100mgをテトラヒドロフラン1mlに溶解した溶液を、直径2mmのステンレスパイプを加工して作製した長さ15mmのステントにスプレーすることにより、ステント表面にシンバスタチンの層を設けた。そして、このシンバスタチン層を設けたステントを加熱真空乾燥装置に入れて不活性ガスであるアルゴン(Ar)で3回置換した後、真空ポンプで真空度100パスカル(Pa)以下になるまで吸引し、60℃で72時間加熱してシンバスタチンを再結晶化させて、本発明の体内埋込医療器具を作製した。
次に、本発明の体内埋込医療器具を室温(25℃、大気圧)に放置して、1日後、5日後、10日後、20日後、30日後のシンバスタチンの分解率(%)を、それぞれ高速液体クロマトグラフ(HPLC)を用いて測定した。結果を表1に示す。
【0053】
(比較例4)
シンバスタチン100mgをテトラヒドロフラン1mlに溶解した溶液を、直径2mmのステンレスパイプを加工して作製した長さ15mmのステントにスプレーすることにより、ステント表面にシンバスタチンの層を設けて、体内埋込医療器具を作製した。
次に、体内埋込医療器具を室温(25℃、大気圧)に放置して、1日後、5日後、10日後、20日後、30日後のシンバスタチンの分解率(%)を、それぞれ高速液体クロマトグラフ(HPLC)を用いて測定した。結果を表1に示す。
【0054】
【表1】

Figure 0004371653
【0055】
表1より、シンバスタチンを再結晶化させない場合、1日あたり平均1%ずつシンバスタチンが分解することが確認された。また、シンバスタチンを再結晶化させた場合、30日経過後もシンバスタチンの分解が抑制されていることが確認された。
【0056】
(実施例5)
シンバスタチン100mgをテトラヒドロフラン1mlに溶解した溶液を、直径2mmのステンレスパイプを加工して作製した長さ15mmのステントにスプレーして、ステント表面にシンバスタチンの層を設けた後、そのシンバスタチン層の外側にポリエチレンブチルアセテート共重合体(PEVA)200mgをテトラヒドロフラン1mlに溶解した溶液をスプレーして、PEVA層(ポリマー層)を設けた。そして、このPEVA層を設けたステントを加熱真空乾燥装置に入れて不活性ガスであるアルゴン(Ar)で3回置換した後、真空ポンプで真空度100パスカル(Pa)以下になるまで吸引し、30℃、40℃、50℃、60℃、70℃でそれぞれ72時間加熱してシンバスタチンを再結晶化させて、本発明の体内埋込医療器具を作製した。そして、これらの体内埋込医療器具について、シンバスタチン層の膜厚を測定した。結果を表2に示す。
【0057】
(実施例6)
実施例5で作製した体内埋込医療器具について、実施例1と同様の方法でシンバスタチンの分解率(%)を測定した。結果を表2に示す。
【0058】
【表2】
Figure 0004371653
【0059】
表2より、再結晶化温度30℃の時はシンバスタチンが55%分解したため再結晶化条件として不適合であった。また、再結晶化温度70℃の場合はシンバスタチンの分解率が3%と少ないが、シンバスタチン層の膜厚が15μmとかなり厚くなるため再結晶条件として不適合であった。したがって、良好な再結晶化温度は40〜60℃の範囲であった。
【0060】
【発明の効果】
以上述べたように本発明は、生体内の管腔に留置するための体内埋込医療器具であって、医療器具本体と、前記医療器具本体に搭載された再結晶化された生物学的生理活性物質から構成されていることを特徴とするため、生物学的生理活性物質の経時的な分解・劣化が防止され、生物学的生理活性物質を安定的に保持することが可能である。
【0061】
また、前記医療器具本体が、ステントであることを特徴とする場合、生体内の管腔に生じた狭窄部を拡張し、その拡張された内腔を確保するためにそこに長期間留置することが可能である。
【図面の簡単な説明】
【図1】 ステントの一様態を示す側面図である。
【図2】 図1の線A−Aに沿って切断した拡大横断面図である。
【図3】 図2と同様の図であって、生物学的生理活性物質のコートの形態が異なる様態を示す。
【符号の説明】
1 ステント
2 ポリマー層(PEVA層)
3 生物学的生理活性物質(シンバスタチン)
4 ポリマー層(PEVA層)
5 生物学的生理活性物質(シンバスタチン)[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an in-vivo medical device used for improving a stenosis occurring in a body lumen such as a blood vessel, a bile duct, a trachea, an esophagus, an intestine, and a urethra.
[0002]
[Prior art]
In recent years, many stents have been used to improve stenosis in a lumen in a living body. A stent is a tubular instrument for maintaining an expanded state of a stenosis in a blood vessel or other in-vivo lumen. For example, in the coronary artery of the heart, percutaneous coronary angioplasty (PTCA). Used to prevent restenosis later. And after expanding the stenosis part with PTCA, we succeeded in reducing the restenosis rate by placing a stent made of a metal mesh structure. And the problem of restenosis remains unresolved.
[0003]
There are various theories for the cause of restenosis, but now the placement of the stent changes the phenotype of the smooth muscle cells around the stent from the contracted type to the synthetic type, and the stent lumen. The idea that intimal thickening occurs due to migration and proliferation to the side, resulting in restenosis, has become the mainstream.
[0004]
Therefore, various studies have been made to prevent restenosis by carrying a drug capable of suppressing smooth muscle cell migration / proliferation on a stent. Specific examples of such drugs include taxol (see Patent Document 1), mitomacin C, adriamycin, genistein, tyrphostin (see Patent Document 2), cytochalasin (see Patent Document 3), and HMG-CoA reductase. Inhibitors (see Patent Document 4) and the like are mentioned.
[0005]
In particular, HMG-CoA reductase inhibitors have been conventionally used as therapeutic drugs for hyperlipidemia because they block cholesterol synthesis in the liver. It has been reported that there is an effect related to suppression of membrane thickening. Specifically, there are effects such as inhibition of oxidation of LDL (see Non-Patent Document 1), suppression of inflammatory reaction (see Non-Patent Document 2), suppression of foaming of smooth muscle cells / macrophagy (see Non-Patent Document 3), and the like. , Each has been reported.
[0006]
And recently, NO-producing effects of HMG-CoA reductase inhibitors have attracted attention (see Non-Patent Document 4). By promoting NO production in vascular endothelial cells, it is considered that the function of endothelial cells is improved and the endothelialization of blood vessels is promoted. And, it is thought that migration of smooth muscle cells to the intima side is suppressed by promoting endothelialization of blood vessels.
[0007]
In order to carry these drugs on the stent, the drug is generally dissolved in each solvent and coated on the surface of the stent by a method such as spraying or dipping alone or together with a polymer material. The current state is that the initial plasma state is impaired by the simple substance, and a part or most of it becomes an amorphous state. And this amorphous state part is chemically unstable, it is easy to decompose | disassemble and degrade with time, and there exists a tendency for the effect which the chemical | medical agent has originally to be impaired.
[0008]
Therefore, when a stent coated with these drugs is placed in the living body, the drugs are decomposed, and the inherent effects of the drugs are reduced. This trend is present in all of these drugs, especially HMG-CoA reductase inhibitors, especially simvastatin.
[0009]
[Patent Document 1]
Japanese Patent Publication No. 9-503488 [Patent Document 2]
JP-A-9-56807 [Patent Document 3]
Japanese National Patent Publication No. 11-500355 [Patent Document 4]
Japanese Patent Application No. 2002-200712
[Non-Patent Document 1]
Massy Ziad A. , Et al. , Biochem Biophys Res Commun 267 536-540 (2000)
[Non-Patent Document 2]
Sakai M. et al. , Et al. , Atherosclerosis 133 51-59 (1997).
[Non-Patent Document 3]
Bellosta S.M. , Et al. , Atherosclerosis 137 Suppl. S101-109 (1998)
[Non-Patent Document 4]
Laufs U et al, Circulation (97) 1129-1135 (1998)
[0010]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide an implantable medical device that can prevent biological biologically active substance from being decomposed and deteriorated over time and can stably hold the biologically physiologically active substance. It is in.
[0011]
[Means for Solving the Problems]
Such an object is achieved by the present inventions (1) to (3) below.
[0012]
(1) An in-vivo implant for indwelling in a body lumen characterized by comprising a medical device body and a recrystallized biological physiologically active substance mounted on the medical device body A medical device ,
The biologically physiologically active substance is an HMG-CoA reductase inhibitor;
The implantable medical device, wherein the HMG-CoA reductase inhibitor is simvastatin.
[0013]
(2) The implantable medical device according to (1), wherein the simvastatin is recrystallized in a temperature range of 40 to 60 ° C.
[0014]
(3) The implantable medical device according to (1) or (2), wherein the medical device body is a stent.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the implantable medical device of the present invention will be described in detail.
[0020]
The implantable medical device of the present invention includes a medical device body and a recrystallized biological and physiologically active substance mounted on the medical device body.
[0021]
The form of mounting the recrystallized biological physiologically active substance on the medical device body is not particularly limited. For example, the surface of the medical device body may be coated with the recrystallized biological physiologically active substance. Alternatively, the biologically physiologically active substance recrystallized may be contained inside the medical device body.
[0022]
Examples of the medical device main body include a stent, a catheter, a balloon, a vascular prosthesis material, and an artificial blood vessel. Among them, there is a portion for expanding a stenosis portion generated in a lumen in a living body and securing the expanded lumen. A stent that can be indwelled for a long period of time is a preferred embodiment. Hereinafter, the case where the medical device body is a stent will be described in more detail based on a preferred embodiment shown in the accompanying drawings.
[0023]
FIG. 1 is a side view showing an embodiment of a stent, FIG. 2 is an enlarged cross-sectional view taken along line AA of FIG. 1, and FIG. 3 is a view similar to FIG. The form of the coat of the biological physiologically active substance is different.
[0024]
Stents are not particularly limited in material, shape, size, etc., as long as they can expand and place stenosis in living body lumens such as blood vessels, bile ducts, trachea, esophagus, intestinal tract, and urethra. Not.
[0025]
The material for forming the stent may be appropriately selected depending on the application location, and examples thereof include metal materials, polymer materials, ceramics, and the like. When the stent is formed of a metal material, the metal material is excellent in strength, so that the stent can be reliably placed in the stenosis. In addition, when the stent is formed of a polymer material, the polymer material is excellent in flexibility, and thus exhibits an excellent effect in terms of reachability (delivery property) to the narrowed portion of the stent.
[0026]
Examples of the metal material include stainless steel, Ni—Ti alloy, tantalum, titanium, gold, platinum, inconel, iridium, tungsten, cobalt-based alloy, and the like. And among stainless steel, SUS316L with favorable corrosion resistance is suitable.
[0027]
Examples of the polymer material include polytetrafluoroethylene, polyethylene, polypropylene, polyethylene terephthalate, cellulose acetate, and cellulose nitrate.
[0028]
The shape of the stent is not particularly limited as long as it has sufficient strength to be stably placed in a stenosis portion formed in a lumen in a living body. For example, a wire of a metal material or a fiber of a polymer material is formed in a net shape. Preferred examples include any shape body such as a cylindrical body constituted by the above, or a cylindrical body made of a metal material or a polymer material as shown in FIG.
[0029]
The stent may be either a balloon expandable type or a self-expandable type. Further, the size of the stent may be appropriately selected according to the application location. For example, when used for the coronary artery of the heart, the outer diameter before expansion is usually 1.0 to 3.0 mm, and the length is preferably 5 to 50 mm.
[0030]
The surface of the stent is coated with a recrystallized biological physiologically active substance. Since the biological physiologically active substance is recrystallized, it is prevented from being decomposed / deteriorated over time and is held on the surface of the stent in a stable state. The recrystallized biological physiologically active substance is released into the placement site of the stent and its surrounding tissue when the stent is placed in the stenosis portion of the lumen in the living body.
[0031]
The biologically physiologically active substance may be coated on the surface of the stent that has been recrystallized in advance, or may be recrystallized after coating on the surface of the stent.
[0032]
The biologically physiologically active substance is not particularly limited as long as it is recrystallized, and examples thereof include HMG-CoA reductase inhibitors having NO production action, and among the HMG-CoA reductase inhibitors, Simvastatin, which is relatively easy to obtain, is particularly preferred.
[0033]
The amount of the biological physiologically active substance coated on the surface of the stent is particularly an amount that can exert the inherent effect of the biological physiologically active substance, that is, an amount that can suppress restenosis in the blood vessel. It is not limited.
[0034]
The form of the coating of the biological physiologically active substance on the stent is not particularly limited. For example, as shown in FIG. 2, the biologically physiologically active substance is contained in a polymer layer composed of a biodegradable polymer or a biocompatible polymer ( The stent may be coated in a mixed state, or as shown in FIG. 3, the biological bioactive substance is directly coated on the surface of the stent to provide a layer of the biological bioactive substance alone. The outside may be covered with a polymer layer made of biodegradable polymer or biocompatible polymer.
[0035]
If the biological bioactive substance is contained in a polymer layer made of a biodegradable polymer, or if the outside of the biological bioactive substance is covered with a polymer layer made of a biodegradable polymer, As the degradable polymer degrades, the biological bioactive substance is released directly into the stent placement site and surrounding tissue.
[0036]
The biodegradable polymer is not particularly limited as long as it is enzymatically or non-enzymatically degraded in the living body, the degradation product does not exhibit toxicity, and can release biologically bioactive substances. Lactic acid, polyglycolic acid, polylactic acid-polyglycolic acid copolymer, polyhydroxybutyric acid, polymalic acid, poly α-amino acid, collagen, laminin, heparan sulfate, fibronectin, vitronectin, chondroitin sulfate, hyaluronic acid, chitosan cellulose, cellulose acetate Among them, polylactic acid capable of releasing a biological physiologically active substance over a long period of time is particularly preferable.
[0037]
When the biological bioactive substance is contained in a polymer layer made of a biocompatible polymer, or when the outside of the biological bioactive substance is covered with a polymer layer made of a biocompatible polymer, The biological bioactive substance is released directly to the stent placement site and the surrounding tissue by leaching the biological bioactive substance to the outer surface of the biocompatible polymer.
[0038]
The biocompatible polymer is not particularly limited as long as it does not inherently adhere to platelets, exhibits no irritation to tissues, and can leach biologically bioactive substances. For example, polyethylene butyl Acetate copolymer (PEVA), acrylates such as polybutylmethyl acrylate (PBMA), acrylamides such as polyacrylamide (PA), silicone, blends or block copolymers of polyether type polyurethane and dimethyl silicone, segmented polyurethane And various synthetic polymers such as polyurethane such as polyethylene oxide, polycarbonate such as polyethylene carbonate and polypropylene carbonate.
[0039]
When the biological physiologically active substance is contained in a polymer layer composed of a biodegradable polymer or a biocompatible polymer, the manner of inclusion is not particularly limited, and the biological physiologically active substance is homogeneous in the polymer layer or It may exist nonuniformly or may exist locally.
[0040]
The method for producing the implantable medical device of the present invention is not particularly limited. For example, when a stent is used as the medical device body, simvastatin is used as the biological physiologically active substance, and a polyethylene butyl acetate copolymer (PEVA) is used as the biocompatible polymer, a solution of simvastatin and PEVA dissolved in tetrahydrofuran is used. A stent is sprayed to prepare a PEVA layer (polymer layer) containing simvastatin as shown in FIG. 2 on the stent surface, and the stent provided with this PEVA layer is placed in a sealed space. A method of recrystallizing simvastatin by applying a suitable temperature and pressure, or spraying a solution of simvastatin in tetrahydrofuran on a stent to form a simvastatin layer on the stent surface, PEVA to tetrahydrof A solution in which the PEVA layer (polymer layer) is provided on the outside of the simvastatin layer as shown in FIG. 3 is prepared, and the PEVA layer is further provided in a sealed space. And a method of recrystallizing simvastatin by applying a suitable temperature and pressure.
[0041]
The temperature at which simvastatin is recrystallized is preferably 40 to 60 ° C. If the temperature is lower than 40 ° C., simvastatin cannot be prevented from being decomposed. On the other hand, if the temperature exceeds 60 ° C., the simvastatin layer becomes thicker when the coating is formed as shown in FIG.
[0042]
The pressure at which simvastatin is recrystallized is not particularly limited, but the degree of vacuum is preferably 1000 Pascals or less, particularly preferably 100 Pascals or less. By making the pressure 100 Pascal or less, recrystallization is promoted more easily.
[0043]
The implantable medical device of the present invention thus obtained can be used by being directly placed in a lumen in a living body. Then, the recrystallized biological physiologically active substance is released into the indwelling site of the stent and the surrounding tissue. Since such biological physiologically active substances are prevented from being decomposed and deteriorated over time, the biological physiologically active substances can exert their original effects. It is possible to reliably suppress stenosis.
[0044]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, this invention is not limited to the following Example.
[0045]
Example 1
A solution prepared by dissolving 100 mg of simvastatin in 1 ml of tetrahydrofuran was sprayed onto a stent having a length of 15 mm prepared by processing a stainless steel pipe having a diameter of 2 mm to provide a simvastatin layer on the surface of the stent. And after putting the stent provided with this simvastatin layer into a heating vacuum drying device and replacing it with argon (Ar) which is an inert gas three times, it is sucked with a vacuum pump until the degree of vacuum becomes 100 Pascal (Pa) or less, Simvastatin was recrystallized by heating at 60 ° C. for 72 hours to produce the implantable medical device of the present invention.
Next, the implantable medical device of the present invention is treated in an accelerated test (80 ° C., 1 hour, atmospheric pressure), dissolved in 1 ml of acetonitrile, and the decomposition rate of simvastatin using high performance liquid chromatograph (HPLC). (%) Was measured. As a result of the measurement, simvastatin was decomposed only by 2%.
[0046]
(Comparative Example 1)
A solution prepared by dissolving 100 mg of simvastatin in 1 ml of tetrahydrofuran was sprayed onto a stent having a length of 15 mm prepared by processing a stainless steel pipe having a diameter of 2 mm, and a simvastatin layer was provided on the surface of the stent to prepare an implantable medical device. .
Next, the degradation rate (%) of simvastatin was measured for this implantable medical device in the same manner as in Example 1. As a result of the measurement, simvastatin was degraded by 30%.
[0047]
(Example 2)
A PEVA layer containing simvastatin was sprayed on a 15 mm long stent prepared by processing a 2 mm diameter stainless steel pipe with a solution of 100 mg of simvastatin and 200 mg of polyethylene butyl acetate copolymer (PEVA) in 1 ml of tetrahydrofuran. (Polymer layer) was provided on the stent surface. And after putting the stent provided with this PEVA layer into a heating vacuum drying device and replacing it with argon (Ar) which is an inert gas three times, it is sucked with a vacuum pump until the degree of vacuum becomes 100 Pascals (Pa) or less, Simvastatin was recrystallized by heating at 60 ° C. for 72 hours to produce the implantable medical device of the present invention.
Next, the degradation rate (%) of simvastatin was measured for this implantable medical device in the same manner as in Example 1. As a result of the measurement, simvastatin was decomposed only by 2%.
[0048]
(Comparative Example 2)
A PEVA layer containing simvastatin was sprayed on a 15 mm long stent prepared by processing a 2 mm diameter stainless steel pipe with a solution of 100 mg simvastatin and 200 mg polyethylene butyl acetate copolymer (PEVA) in 1 ml tetrahydrofuran. (Polymer layer) was provided on the stent surface to produce an implantable medical device.
Next, the degradation rate (%) of simvastatin was measured for this implantable medical device in the same manner as in Example 1. As a result of the measurement, simvastatin was degraded by 30%.
[0049]
(Example 3)
A solution of 100 mg of simvastatin dissolved in 1 ml of tetrahydrofuran is sprayed onto a 15 mm long stent made by processing a stainless steel pipe with a diameter of 2 mm. After a simvastatin layer is provided on the stent surface, polyethylene is applied to the surface of the simvastatin layer. A solution of 200 mg of butyl acetate copolymer (PEVA) dissolved in 1 ml of tetrahydrofuran was sprayed to provide a PEVA layer (polymer layer). And after putting the stent provided with this PEVA layer into a heating vacuum drying device and replacing it with argon (Ar) which is an inert gas three times, it is sucked with a vacuum pump until the degree of vacuum becomes 100 Pascals (Pa) or less, Simvastatin was recrystallized by heating at 60 ° C. for 72 hours to produce the implantable medical device of the present invention.
Next, the degradation rate (%) of simvastatin was measured for this implantable medical device in the same manner as in Example 1. As a result of the measurement, simvastatin was decomposed only by 2%.
[0050]
(Comparative Example 3)
A solution of 100 mg of simvastatin dissolved in 1 ml of tetrahydrofuran is sprayed onto a 15 mm long stent made by processing a stainless steel pipe with a diameter of 2 mm. After a simvastatin layer is provided on the stent surface, polyethylene butyl is applied to the simvastatin surface. A solution in which 200 mg of acetate copolymer (PEVA) was dissolved in 1 ml of tetrahydrofuran was sprayed to provide a PEVA layer (polymer layer) to produce an implantable medical device.
Next, the degradation rate (%) of simvastatin was measured for this implantable medical device in the same manner as in Example 1. As a result of the measurement, simvastatin was degraded by 30%.
[0051]
From Examples 1 to 3, it was confirmed that simvastatin was recrystallized to prevent degradation regardless of the form of the simvastatin coating on the stent.
[0052]
(Example 4)
A solution of 100 mg of simvastatin dissolved in 1 ml of tetrahydrofuran was sprayed onto a stent having a length of 15 mm prepared by processing a stainless steel pipe having a diameter of 2 mm, thereby providing a simvastatin layer on the stent surface. And after putting the stent provided with this simvastatin layer into a heating vacuum drying device and replacing it with argon (Ar) which is an inert gas three times, it is sucked with a vacuum pump until the degree of vacuum becomes 100 Pascal (Pa) or less, Simvastatin was recrystallized by heating at 60 ° C. for 72 hours to produce the implantable medical device of the present invention.
Next, the implantable medical device of the present invention was allowed to stand at room temperature (25 ° C., atmospheric pressure), and the degradation rate (%) of simvastatin after 1 day, 5 days, 10 days, 20 days, and 30 days, respectively. It measured using the high performance liquid chromatograph (HPLC). The results are shown in Table 1.
[0053]
(Comparative Example 4)
A solution of 100 mg of simvastatin dissolved in 1 ml of tetrahydrofuran is sprayed onto a 15 mm long stent made by processing a stainless steel pipe with a diameter of 2 mm, thereby providing a simvastatin layer on the stent surface to produce an implantable medical device. did.
Next, the implantable medical device was allowed to stand at room temperature (25 ° C., atmospheric pressure), and the decomposition rate (%) of simvastatin after 1 day, 5 days, 10 days, 20 days, and 30 days was measured by high performance liquid chromatography. It measured using the graph (HPLC). The results are shown in Table 1.
[0054]
[Table 1]
Figure 0004371653
[0055]
From Table 1, it was confirmed that when simvastatin was not recrystallized, simvastatin was degraded by an average of 1% per day. In addition, when simvastatin was recrystallized, it was confirmed that degradation of simvastatin was suppressed even after 30 days.
[0056]
(Example 5)
A solution of 100 mg of simvastatin dissolved in 1 ml of tetrahydrofuran is sprayed on a 15 mm long stent produced by processing a stainless steel pipe with a diameter of 2 mm, and a simvastatin layer is provided on the stent surface. A solution of 200 mg of butyl acetate copolymer (PEVA) dissolved in 1 ml of tetrahydrofuran was sprayed to provide a PEVA layer (polymer layer). And after putting the stent provided with this PEVA layer into a heating vacuum drying device and replacing it with argon (Ar) which is an inert gas three times, it is sucked with a vacuum pump until the degree of vacuum becomes 100 Pascals (Pa) or less, Simvastatin was recrystallized by heating at 30 ° C., 40 ° C., 50 ° C., 60 ° C., and 70 ° C. for 72 hours, respectively, thereby producing the implantable medical device of the present invention. And about these implantable medical devices, the film thickness of the simvastatin layer was measured. The results are shown in Table 2.
[0057]
(Example 6)
About the implantable medical device produced in Example 5, the degradation rate (%) of simvastatin was measured in the same manner as in Example 1. The results are shown in Table 2.
[0058]
[Table 2]
Figure 0004371653
[0059]
From Table 2, when the recrystallization temperature was 30 ° C., simvastatin was decomposed by 55%, which was incompatible with the recrystallization conditions. In addition, when the recrystallization temperature was 70 ° C., the decomposition rate of simvastatin was as low as 3%, but the simvastatin layer was considerably thick as 15 μm, which was incompatible with the recrystallization conditions. Therefore, a good recrystallization temperature was in the range of 40-60 ° C.
[0060]
【The invention's effect】
As described above, the present invention relates to an implantable medical device for placement in a lumen in a living body, the medical device main body, and the recrystallized biological physiology mounted on the medical device main body. Since it is composed of an active substance, it is possible to prevent the biological physiologically active substance from being decomposed and deteriorated over time, and to stably hold the biologically physiologically active substance.
[0061]
Further, in the case where the medical device body is a stent, the narrowed portion generated in the lumen in the living body is expanded, and in order to secure the expanded lumen, the medical device body is placed therein for a long period of time. Is possible.
[Brief description of the drawings]
FIG. 1 is a side view showing an aspect of a stent.
FIG. 2 is an enlarged cross-sectional view taken along line AA in FIG.
FIG. 3 is a view similar to FIG. 2, showing a mode in which the form of the biologically physiologically active substance coat is different.
[Explanation of symbols]
1 Stent 2 Polymer layer (PEVA layer)
3 Biologically bioactive substance (simvastatin)
4 Polymer layer (PEVA layer)
5 Biologically bioactive substance (simvastatin)

Claims (3)

医療器具本体と、前記医療器具本体に搭載された再結晶化された生物学的生理活性物質から構成されていることを特徴とする生体内の管腔に留置するための体内埋込医療器具であって、
前記生物学的生理活性物質が、HMG−CoA還元酵素阻害薬であり、
前記HMG−CoA還元酵素阻害薬が、シンバスタチンであることを特徴とする体内埋込医療用具。
In Implantable medical device for placement and the medical device body, the lumen of a living body, characterized in that the is composed of the medical device body biologically physiologically active substance which is recrystallized mounted on There,
The biologically physiologically active substance is an HMG-CoA reductase inhibitor;
The implantable medical device, wherein the HMG-CoA reductase inhibitor is simvastatin.
前記シンバスタチンが、40〜60℃の温度範囲で再結晶化されたことを特徴とする請求項1に記載の体内埋込医療用具。The implantable medical device according to claim 1, wherein the simvastatin is recrystallized in a temperature range of 40 to 60 ° C. 前記医療器具本体が、ステントであることを特徴とする請求項1ないし2に記載の体内埋込医療器具。The implantable medical device according to claim 1, wherein the medical device body is a stent.
JP2002341014A 2002-11-25 2002-11-25 Implantable medical device Expired - Fee Related JP4371653B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002341014A JP4371653B2 (en) 2002-11-25 2002-11-25 Implantable medical device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002341014A JP4371653B2 (en) 2002-11-25 2002-11-25 Implantable medical device

Publications (2)

Publication Number Publication Date
JP2004173770A JP2004173770A (en) 2004-06-24
JP4371653B2 true JP4371653B2 (en) 2009-11-25

Family

ID=32703499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002341014A Expired - Fee Related JP4371653B2 (en) 2002-11-25 2002-11-25 Implantable medical device

Country Status (1)

Country Link
JP (1) JP4371653B2 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5028605B2 (en) 2004-11-22 2012-09-19 国立大学法人九州大学 Biofilm formation inhibitor and therapeutic device
US8298565B2 (en) * 2005-07-15 2012-10-30 Micell Technologies, Inc. Polymer coatings containing drug powder of controlled morphology
KR101492545B1 (en) * 2005-07-15 2015-02-12 미셀 테크놀로지즈, 인코포레이티드 Polymer coatings containing drug powder of controlled morphology
US20090062909A1 (en) 2005-07-15 2009-03-05 Micell Technologies, Inc. Stent with polymer coating containing amorphous rapamycin
US20100268321A1 (en) * 2005-09-06 2010-10-21 C R Bard, Inc. Drug-releasing graft
ES2540059T3 (en) 2006-04-26 2015-07-08 Micell Technologies, Inc. Coatings containing multiple drugs
WO2008052000A2 (en) 2006-10-23 2008-05-02 Micell Technologies, Inc. Holder for electrically charging a substrate during coating
US11426494B2 (en) 2007-01-08 2022-08-30 MT Acquisition Holdings LLC Stents having biodegradable layers
US9737642B2 (en) 2007-01-08 2017-08-22 Micell Technologies, Inc. Stents having biodegradable layers
WO2008148013A1 (en) 2007-05-25 2008-12-04 Micell Technologies, Inc. Polymer films for medical device coating
SG192524A1 (en) 2008-04-17 2013-08-30 Micell Technologies Inc Stents having bioabsorbable layers
WO2010009335A1 (en) 2008-07-17 2010-01-21 Micell Technologies, Inc. Drug delivery medical device
US9510856B2 (en) 2008-07-17 2016-12-06 Micell Technologies, Inc. Drug delivery medical device
US8834913B2 (en) 2008-12-26 2014-09-16 Battelle Memorial Institute Medical implants and methods of making medical implants
US9981072B2 (en) 2009-04-01 2018-05-29 Micell Technologies, Inc. Coated stents
CA2759015C (en) 2009-04-17 2017-06-20 James B. Mcclain Stents having controlled elution
JP5933434B2 (en) * 2009-07-17 2016-06-08 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Method for producing drug delivery balloon
WO2011097103A1 (en) 2010-02-02 2011-08-11 Micell Technologies, Inc. Stent and stent delivery system with improved deliverability
US8795762B2 (en) 2010-03-26 2014-08-05 Battelle Memorial Institute System and method for enhanced electrostatic deposition and surface coatings
EP2560576B1 (en) 2010-04-22 2018-07-18 Micell Technologies, Inc. Stents and other devices having extracellular matrix coating
CA2805631C (en) 2010-07-16 2018-07-31 Micell Technologies, Inc. Drug delivery medical device
US10464100B2 (en) 2011-05-31 2019-11-05 Micell Technologies, Inc. System and process for formation of a time-released, drug-eluting transferable coating
WO2013012689A1 (en) 2011-07-15 2013-01-24 Micell Technologies, Inc. Drug delivery medical device
US10188772B2 (en) 2011-10-18 2019-01-29 Micell Technologies, Inc. Drug delivery medical device
WO2014165264A1 (en) 2013-03-12 2014-10-09 Micell Technologies, Inc. Bioabsorbable biomedical implants
EP2996629B1 (en) 2013-05-15 2021-09-22 Micell Technologies, Inc. Bioabsorbable biomedical implants

Also Published As

Publication number Publication date
JP2004173770A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
JP4371653B2 (en) Implantable medical device
JP4894519B2 (en) Indwelling stent
EP1652550A1 (en) Stent to be placed in vivo
US20080051872A1 (en) Biocorrodible metallic implant having a coating or cavity filling made of a peg/plga copolymer
US8257729B2 (en) Implants with membrane diffusion-controlled release of active ingredient
US20040024450A1 (en) Drug-delivery endovascular stent and method for treating restenosis
EP2113230A2 (en) Drug-Delivery Endovascular Stent and Method for Treating Restenosis
EP2111818B1 (en) Intracoronary stent with asymmetric drug releasing controlled coating
CN105833358B (en) Intracranial drug eluting stent system and preparation method thereof
JP2004097810A (en) Medical appliance embedded into living body
JP2004222953A (en) Indwelling stent
JP2008253707A (en) Drug-eluting stent
US20120150282A1 (en) Implant having a paclitaxel-releasing coating
JP2005168937A (en) Stent
JP2015154925A (en) Stent excellent in corrosion resistance
JP5102200B2 (en) In vivo indwelling
US20120239140A1 (en) Medical product comprising an active coating
WO2007148714A1 (en) Implant using rifamycin derivative
JPWO2007116646A1 (en) In vivo indwelling
WO2006027994A1 (en) Indwelling stent
JP4379044B2 (en) Indwelling stent
CN101836910A (en) Biodegradable rapamycin-prednisone composite medicinal coat metal stent
EP2554140B1 (en) Stent
JP4886939B2 (en) Iodine-releasing therapeutic material and stent for in-vivo placement
JP2002193838A (en) Medical material for implantation and medical appliance for implantation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090707

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090825

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090901

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees