WO2007148714A1 - Implant using rifamycin derivative - Google Patents
Implant using rifamycin derivative Download PDFInfo
- Publication number
- WO2007148714A1 WO2007148714A1 PCT/JP2007/062385 JP2007062385W WO2007148714A1 WO 2007148714 A1 WO2007148714 A1 WO 2007148714A1 JP 2007062385 W JP2007062385 W JP 2007062385W WO 2007148714 A1 WO2007148714 A1 WO 2007148714A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- formula
- implant
- rifamycin derivative
- chemical
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/535—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with at least one nitrogen and one oxygen as the ring hetero atoms, e.g. 1,2-oxazines
- A61K31/5375—1,4-Oxazines, e.g. morpholine
- A61K31/5383—1,4-Oxazines, e.g. morpholine ortho- or peri-condensed with heterocyclic ring systems
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5146—Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
- A61K9/5153—Polyesters, e.g. poly(lactide-co-glycolide)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L31/00—Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
- A61L31/14—Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
- A61L31/16—Biologically active materials, e.g. therapeutic substances
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L33/00—Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
- A61L33/0005—Use of materials characterised by their function or physical properties
- A61L33/0011—Anticoagulant, e.g. heparin, platelet aggregation inhibitor, fibrinolytic agent, other than enzymes, attached to the substrate
- A61L33/0017—Anticoagulant, e.g. heparin, platelet aggregation inhibitor, fibrinolytic agent, other than enzymes, attached to the substrate using a surface active agent
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P41/00—Drugs used in surgical methods, e.g. surgery adjuvants for preventing adhesion or for vitreum substitution
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/82—Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/86—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
- A61F2/90—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure
- A61F2/91—Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure made from perforated sheet material or tubes, e.g. perforated by laser cuts or etched holes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
- A61K9/0024—Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/416—Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
Definitions
- the present invention relates to an implant that has excellent antithrombogenicity and tissue compatibility and suppresses stenosis.
- These medical devices are required to be compatible with body fluids such as blood, tissue fluid, and lymph fluid, as well as organs to be implanted and biological tissues of the site, while placed in the implanted site.
- body fluids such as blood, tissue fluid, and lymph fluid
- organs to be implanted and biological tissues of the site while placed in the implanted site.
- a medical device that is implanted in a site that is in contact with blood flow such as a stent, an artificial blood vessel, or a catheter that is placed for a long time
- blood adheres to the surface or blood clots and does not inhibit the blood flow.
- It is required to have excellent antithrombogenicity and tissue compatibility so that it does not become incompatible with living tissue and does not cause stenosis due to the formation of neointimal or phenotypic changes of fibroblasts.
- Similar characteristics are also required for medical devices embedded in ureters, urethra, lymphatic vessels, and the like.
- a drug-coated stent holds a drug that limits vascular restenosis and exerts its effect by the sustained release of the drug over time.
- various drug coated stents have been developed, and attempts to reduce the restenosis rate have been reported (see Patent Document 1 and Non-Patent Document 1). Restenosis involves factors such as thrombus formation, inflammation, endothelial injury, and vascular smooth muscle cell migration and proliferation starting from vascular disorders, and many drugs (anticoagulants, antiplatelet substances) that target each factor.
- Antispasmodic agents, antibacterial agents, antitumor agents, antimicrobial agents, anti-inflammatory agents, antimetabolite agents, immunosuppressive agents, etc. are being studied.
- Patent Document 1 Japanese Patent Publication No. 5-502179
- Non-Patent Document 1 Toru Yamaro et al. Drug-Eluting Stent Medical School January 1, 2004 Disclosure of Invention
- the above-mentioned problems related to antithrombogenicity, tissue compatibility and stenosis are not limited to stents, but are common to various medical devices implanted in the body.
- medical devices such as stents that are implanted in the body for a long period of time after being implanted in the body are required to continuously and stably exhibit their antithrombogenicity, tissue compatibility, and restenosis suppressing action. Therefore, there is a need for a drug-coated stent that maintains superior antithrombogenicity and tissue compatibility and suppresses vascular restenosis compared to conventional drug-coated stents.
- rifamycin derivatives are known to be antibiotics that are extremely strong against pneumonia chlamydia and have antibacterial activity (JP-A-9-216824, Patricia M. Robhn, et al. al. Antimicrobial Agents and Chemotherapy, 2003, 47 (3), 1135- 11-6).
- a rifamycin derivative inhibits the proliferation of vascular smooth muscle cells without strongly inhibiting the proliferation of vascular endothelial cells, and by coating the rifamycin derivative, We have developed an implant that has excellent antithrombogenicity and tissue compatibility and can suppress stenosis.
- the present invention relates to an implant including a rifamycin derivative.
- Another aspect of the present invention is an implant comprising a vascular disease treatment agent containing a rifamycin derivative as an active ingredient.
- Another aspect of the present invention provides a cell growth regulator comprising a rifamycin derivative as an active ingredient. It is an implant characterized by including.
- the rifamycin derivative is an implant that exhibits a strong growth inhibitory action on vascular smooth muscle cells compared to vascular endothelial cells.
- an implant characterized by exhibiting a non-cell growth inhibitory effect on vascular endothelial cells and a cell growth inhibitory effect on vascular smooth muscle cells by using the rifamycin derivative as an active ingredient is more preferable. .
- the rifamycin derivative may be rifalazil ⁇ Rifalazil, 3'-Hydro xy-o— (4—isobutyl— 1— piperazmyl) benzoxazinorifamycin, KRMl648 ⁇ , KRMl 5 /, KRM1671, KRM1689
- the power of KRM1690 or their physiologically acceptable salts is preferred.
- the chemical formulas of KRM1648, KRM1657, KRM1671, KRM1689, and KR M1690 will be described in the later-described embodiment items.
- the rifamycin derivative is preferably an implant present in a biocompatible polymer or biodegradable polymer.
- the biodegradable polymer is preferably a lactic acid-glycolic acid copolymer!
- the rifamycin derivative may be filled in a vesicle.
- the vesicles are preferably in the form of microparticles, nanoparticles or ribosomes.
- Another embodiment of the present invention includes one in which the implant is a stent.
- Another aspect of the present invention includes a step of preparing a solution containing a biocompatible polymer or biodegradable polymer and a rifamycin derivative, and a step of applying or holding the solution to an implant.
- the manufacturing method of the characteristic implant is mentioned.
- Another embodiment of the present invention includes a method for treating a vascular disease using the implant.
- the rifamycin derivative used in the implant or the like of the present invention strongly suppresses the proliferation of vascular smooth muscle cells as compared with vascular endothelial cells. Therefore, the rifamycin induction of the present invention
- An implant including a conductor is excellent in antithrombogenicity and tissue compatibility, and can effectively suppress stenosis or restenosis of blood vessels.
- FIG. 1 is a development view of a stent according to an embodiment.
- FIG. 2 is a schematic view of a stent as an embodiment.
- FIG. 3 is a graph showing the relationship between each concentration of rifalazil and the growth inhibitory effect of CASMC.
- FIG. 4 is a graph showing the relationship between each concentration of rifalazil and the growth inhibitory action of CAEC.
- FIG. 5 is a graph showing the relationship between each concentration of ravamycin and the growth inhibitory effect of CASMC.
- FIG. 6 is a graph showing the relationship between each concentration of rabamycin and the growth inhibitory action of CAEC.
- FIG. 7 is an SEM image of a stent surface coated with rifalazil.
- FIG. 8 is a graph showing the relationship between each concentration of KRM1657 and the growth inhibitory action of CASMC and CAEC.
- FIG. 9 is a graph showing the relationship between each concentration of KRM1671 and the growth inhibitory action of CASMC and CAEC.
- FIG. 10 is a graph showing the relationship between each concentration of KRM1689 and the growth inhibitory action of CASMC and CAEC.
- FIG. 11 is a graph showing the relationship between each concentration of KRM1690 and the growth inhibitory action of CASMC and CAEC.
- X 1 represents an oxygen atom or a sulfur atom
- R 1 represents a acetyl group or a hydrogen atom
- R 2 represents a methyl group or a hydroxymethyl group
- R 4 is the same or different and represents a hydroxyl group, a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a group represented by the formula (II), or a group represented by the following formula (IV). Or a physiologically acceptable salt thereof.
- R 5 and R 6 are the same or different and represent an alkyl group having 1 to 3 carbon atoms or a group represented by formula (III).
- R 7 and R 8 are the same or different and represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms
- X 2 represents an oxygen atom, a sulfur atom, a carbonyl group
- a group represented by (V) or a group represented by the following formula (IV) is shown.
- R 9 and R 1Q are the same or different, and are represented by the following formula by combining a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or R 9 and R 1Q. Indicates a group.
- k represents an integer of 1 to 4.
- m represents 0 or 1
- R 11 represents a hydrogen atom, an alkyl group having 1 to 7 carbon atoms, or a group represented by the following formula.
- n represents an integer of 1 to 4
- X 3 represents an alkoxy group having 1 to 3 carbon atoms, a vinyl group, an ethynyl group, or a group represented by the following formula (VII).
- R 3 , R 4 , R 5 , R 6 examples of the alkyl group having 1 to 3 carbon atoms of R 9 and R 1Q include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a cycloalkyl group, and an alkyl group having 1 to 6 carbon atoms in R 11
- methyl group Group, propyl group, isopropyl group, cyclopropyl group, butyl group, isobutyl group, sec butyl group, tert butyl group, cyclobutyl group, cyclopropylmethyl group, pentyl group, isopentyl group, sec pentyl group, tert pentyl group, cyclopentyl group
- a chain or cyclic alkyl group such as a group, a cyclobutylmethyl group, a hexyl group, a 4-methylpentyl
- Examples of the alkoxy group having 1 to 3 carbon atoms of X 3 include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, and a cyclopropoxy group.
- X 1 in the above formula (I) is an oxygen atom
- R 1 represents a acetyl group or a hydrogen atom
- R 2 represents a methyl group or a hydroxymethyl group
- R 4 is the same or different and is a hydroxyl group, a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or formula (VIII):
- R 12 represents a hydrogen atom or an alkyl group having 1 to 7 carbon atoms) or a physiologically acceptable salt thereof.
- alkyl group having 1 to 7 carbon atoms of R 12 examples include methyl group, ethyl group, propyl group, isopropyl group, cyclopropyl group, butyl group, isobutyl group, sec butyl group, tert butyl group, cyclobutyl Group, cyclopropylmethyl group, pentyl group, isopentyl group, sec pentyl group, tert pentyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, cyclopentyl group, cyclobutylmethyl group, hexyl group, 4-methylpentyl group, cyclo Examples thereof include a linear or cyclic alkyl group such as a hexyl group, a 3-methylcyclopentyl group, a heptyl group, and an isoheptyl group.
- X 1 in the formula (I) is an oxygen atom
- R 2 is a methyl group
- R 3 is a hydroxyl group
- R 4 is a compound represented by the formula (IX):
- X 1 in the formula (I) is an oxygen atom
- R 1 is a acetyl group
- R 2 is a methyl group
- R 3 is a hydroxyl group
- R 4 is the formula (X):
- KRM1657 represented by or a physiologically acceptable salt thereof.
- X 1 in the formula (I) is an oxygen atom
- R 1 is a hydroxyl group
- R 2 cate group is a hydroxyl group
- R 3 is a hydroxyl group
- R 4 is formula (IX):
- KRM1671 represented by or a physiologically acceptable salt thereof.
- X 1 in the formula (I) is an oxygen atom
- R is a acetyl group
- R 2 force S methyl group
- R 3 and R 4 is the formula (IX):
- KRM1689 represented by or a physiologically acceptable salt thereof.
- An exemplary rifamycin derivative has the formula (I) in which X 1 is an oxygen atom, R is a acetyl group, R 2 is a hydroxymethyl group, and R 3 is a hydroxyl group.
- R 4 is the formula (IX) [0058] [Chemical 26] One NN CH.CH (CH,). (IX)
- KRM1690 or a physiologically acceptable salt thereof are provided.
- an implant containing a rifamycin derivative is used, and at this time, it has a strong antiproliferative action on vascular smooth muscle cells compared to vascular endothelial cells.
- the rifamycin derivative has been used at a very low concentration in the past when it was known to be an antibiotic having an extremely strong antibacterial activity against pneumonia chlamydia.
- the present invention was made when the present inventors found for the first time an unexpected effect unrelated to the antibacterial activity, that the “rifamycin derivative” has the above-described cell growth inhibitory action. Is.
- an implant containing a rifamycin derivative can be expected to have an antibacterial effect that is conventionally known in addition to the above-mentioned cell growth inhibitory action. .
- “Strongly suppresses proliferation of vascular smooth muscle cells compared to endothelial cells” means “does not exhibit cytostatic activity of vascular endothelial cells and proliferates to vascular smooth muscle cells. Including the case of “inhibiting action”. For example, rifamycin derivatives can be adjusted so as to show growth inhibitory activity against vascular smooth muscle cells but not against vascular endothelial cells by adjusting the concentration. . In addition, since the appropriate amount varies depending on the form of the vascular disease treatment agent or the cell growth inhibitor, it is necessary to appropriately adjust the amount depending on the form.
- Show cell growth suppression refers to a case where the cell growth is statistically significantly suppressed.
- does not exhibit a cell growth inhibitory effect means a case where it is not statistically significant.
- the rifamycin derivative is a vascular disease (for example, arteriosclerosis (atherosclerosis, medial calcification sclerosis, microarteriosclerosis), aneurysm, pseudoaneurysm, arterial dissection, Nature including inflammatory arterial disease, non-inflammatory arterial disease, or dialysis shunt It is used for the prevention or treatment of developmental vascular diseases, non-natural vascular diseases including vascular restenosis or reocclusion after percutaneous angioplasty. Examples of angioplasty include balloon dilation, stent placement, atherectomy, and laser angioplasty.
- a vascular disease treatment agent comprising a rifamycin derivative as an active ingredient is a concept including a composition or preparation (medicine) for treating a vascular disease comprising a rifamycin derivative as an active ingredient.
- the “cell growth regulator containing a rifamycin derivative as an active ingredient” is a concept including a cell growth regulating composition or preparation (medicine) containing a rifamycin derivative as an active ingredient.
- therapeutic agent for vascular diseases or cell growth regulator based on rifamycin derivative as an active ingredient based on low cell growth inhibitory action on vascular endothelial cells and high cell growth inhibitory action on vascular smooth muscle cells” I like it.
- Treatment of vascular disease is a concept of treating vascular disease or reducing its progression
- anticoagulants In the preparation of preparations for the prevention or treatment of vascular diseases, other drugs (anticoagulants, antiplatelet substances, antispasmodics, antibacterial drugs, antitumor drugs, antimicrobial drugs, anti-inflammatory drugs, It may be combined with an anti-metabolite, an immunosuppressant, etc.
- the rifamycin derivative is used to suppress proliferation more strongly against vascular smooth muscle cells than vascular endothelial cells. Thereby, smooth muscle hypertrophy is suppressed without inhibiting vascular endothelium regeneration, and vascular stenosis or restenosis is prevented.
- the material, shape, dimensions, form, etc. of the main body of the “implant” as an embodiment are not particularly limited, and are appropriately determined according to the size, compliance, tissue, cell type, etc. of the site where the medical device is placed. .
- the implant is hereinafter also referred to as “medical implant”, “implantable implant”, “medical device”, or “in-vivo device” as appropriate.
- the material may have a required characteristic depending on a portion where the metal material or the polymer material is placed, that is, a blood vessel, a urinary tract, a lymphatic vessel, or a tissue such as a muscle. However, it is preferably a material having biocompatibility and biodegradability.
- metal material examples include stainless steel, titanium or titanium alloy, tantalum or tantalum alloy, platinum or platinum alloy, gold or gold alloy, correlate base alloy, magnesium or magnesium alloy, and the like.
- stainless steel SUS316L, which has the best corrosion resistance, is suitable.
- biocompatible polymer used for implants, any biocompatible polymer can be used as long as it does not show any irritation to tissues to which platelets hardly adhere and can dissolve drugs.
- synthetic polymers included in “biocompatible polymers” include polyether polyurethane and dimethyl silicone blends or block copolymers, polyurethanes such as segmented polyurethane, polyacrylamide, polyethylene oxide, polyethylene carbonate, polypropylene.
- Polycarbonates such as carbonates can be used, and fibrin, gelatin, collagen and the like can be used as natural biocompatible polymers. These polymers can be used alone or in appropriate combination.
- Biodegradable polymer refers to any biodegradable polymer as long as it is enzymatically and non-enzymatically degraded in vivo, the degradation product does not exhibit toxicity, and the drug can be released. Can also be used.
- Implant examples examples of implants that can be placed in the body and exhibit desired medical effects include stents, stent grafts, artificial blood vessels, catheters (including balloon catheters), artificial heart valves, pacemaker leads, bone screws, artificial bones, artificial tracheas And sutures.
- a stent used to secure a sufficient lumen by being placed in a blood vessel, ureter, urethra, lymphatic vessel, or the like that causes stenosis of a living body is a specific example of the implant of the present invention. It is suitable as a mode.
- the rifamycin derivative as an embodiment is not limited to a stent but can be applied to implants well known to those skilled in the art.
- methods known to those skilled in the art disclosed in JP-A-9-38195 and JP-A-2003-24452 can be employed.
- FIG. 1 is a developed view of the stent
- FIG. Fig. 2 is a schematic view.
- a method for producing a stent and a method for fixing a drug to the stent which will be described later, for example, methods known to those skilled in the art disclosed in JP 2005-65981 A and JP 2004-222953 A may be employed. it can.
- stents are used to expand the stenosis or occlusion site and reduce the lumen size. It is a medical device that is placed there for maintenance.
- a stent is typically inserted into a blood vessel by a catheter and expanded to contact an unhealthy part of the arterial wall to provide mechanical support for the blood vessel lumen.
- stent expansion is performed by either self-expansion due to its own physical characteristics (shape memory property, superelasticity, etc.) or forced expansion due to the expansion force of the balloon catheter.
- the stent used as the base for coating the drug layer can be made of metallic forces such as stainless steel, Ni-Ti alloy, Cu-Al-Mn alloy, Co-Cr alloy, magnesium alloy, iridium, iridium oxide, and niobium. is there.
- the stent can be manufactured by cutting a cylindrical metal material tube into a stent design by laser cutting and performing electropolishing in the same manner as a method normally manufactured by those skilled in the art.
- the manufacturing method is It is not limited to the above methods, but it is also possible to use a processing method by etching, a method in which a flat metal is laser cut and then rolled and welded, or a method in which a metal wire is knitted.
- the polymer is not limited to a metal material, but is a high molecule such as polyolefin, polyolefin elastomer, polyamide, polyamide elastomer, polyurethane, polyurethane elastomer, polyester, polyester elastomer, polyimide, polyamideimide, polyetheretherketone.
- Inorganic materials such as materials, ceramics, hydroxyapatite can also be used.
- a polymer layer may be provided on the stent surface for the purpose of fixing a drug or the like. Because it is used in living organisms, it is preferable to use biocompatible polymers or biodegradable polymers as the polymer.
- a method for providing a polymer layer on the stent surface a method such as a method of dying a stent into a polymer solution or a method of spraying a polymer solution onto a stent by spraying can be used.
- the above-described methods are all coating methods, but a separately prepared polymer sheet may be attached to the stent surface.
- an arbitrary solvent having a polymer solubility can be selected as the solvent used in preparing the polymer solution.
- a mixed solvent using two or more solvents may be used.
- the concentration of the polymer solution is not particularly limited, and can be set to any concentration in consideration of the surface properties of the polymer layer, the required amount of drug retained, the release behavior of the retained drug, and the like.
- the polymer solution prepared using such a solvent is applied to the stent and dried, or the operation of immersing the stent in the solution and drying it is repeated at least once, thereby forming the polymer layer on the stent.
- the distance between the spray nozzle and the stent is preferably 50 cm or less in order to make the surface of the polymer layer uniform, more preferably 10 cm or more and 30 cm or less. Also, 50rpm or more is preferred to make the surface of the polymer layer even when the stent is rotated when spray coating or dating.
- Extra polymer solution may be removed during and after z or after application.
- Examples of the removing means include vibration, rotation, and decompression, and a plurality of these may be combined.
- a drug (rifamycin derivative) layer is provided on the stent surface.
- the drug can be attached to the stent by removing the solvent after adding the drug to the stent in a solution state. It is also possible to attach the drug to the stent using the aforementioned biocompatible polymer or biodegradable polymer.
- a biocompatible polymer and Z or biodegradable polymer together with a drug can be used in a liquid or suitable solvent, such as water, buffer, acetic acid, hydrochloric acid, methanol, ethanol, acetone, acetonitrile,
- a stent using a biocompatible polymer or a biodegradable polymer can be prepared by contacting the stent as a solution of methylene chloride, chloroform, tetrahydrofuran, etc. and then removing the solvent.
- a stent is coated with a solution obtained by dissolving or suspending a drug in a solution prepared by dissolving a biocompatible polymer and Z or a biodegradable polymer in a low boiling point solvent.
- a coating method a method of dating a stent into a solution or a method of spraying with a spray can be used.
- the thickness of the coating layer when the coating layer is thickened, there is a possibility that the formation of a thrombus may be promoted due to unevenness in the blood vessel, and the restenosis rate may be increased. However, a certain amount of thickness is required to coat the sufficient dose required for treatment. From this viewpoint, the thickness of the coating layer is preferably 1 m or more and 10 ⁇ m or less, more preferably 3 ⁇ m or more and 5 ⁇ m or less.
- the base stent was manufactured by cutting a stainless steel cylindrical tube into a stent design by laser cutting and performing electropolishing, in the same manner as a method usually produced by those skilled in the art.
- the developed view of the stent used is shown in Fig. 1, and the schematic diagram is shown in Fig. 2.
- the structure of this stent was a balloon etaspan double type, which is a type in which the stent is expanded and indwelled using a none catheter equipped with a balloon near the tip of the catheter.
- the stent is set in a deflated state on the balloon portion of the balloon catheter. After delivery to the target site using the balloon catheter, the stent is expanded and placed by expanding the balloon.
- a stent obtained by coating rifalazil on the above-described stent as a base using the polyether-type polyurethane resin is referred to as Production Example 1.
- the coating procedure is as follows. First, the urethane solution is sprayed onto the base stent using an airbrush, followed by drying at 60 ° C for 10 minutes. The spraying and drying are repeated 5 times, and finally 100 g of the urethane per stent is coated on the stent. Next, the urethane-coated stent is immersed in a rifalazil solution for 1 hour and dried.
- a stainless steel (SUS316L) cylindrical tube with an inner diameter of 1.50 mm and an outer diameter of 1.80 mm is cut into a stent design by laser cutting and electropolished in the same manner as those usually produced by those skilled in the art.
- the design is such that the length of the stent is 13 mm, the thickness is 120 mm, and the nominal diameter after expansion is 3.5 mm.
- Inner surface, an outer surface of the stent base material, the total surface area of the combined side surface is 88. 5 mm 2.
- lactic acid Z glycolic acid 85 mol% Zl5 mol%
- drug concentration Z biodegradable polymer concentration 0.
- a stainless steel (SUS316L) cylindrical tube with an inner diameter of 1.50 mm and an outer diameter of 1.80 mm is cut into a stent design by laser cutting and electropolished in the same manner as those usually produced by those skilled in the art. It was produced by.
- the stent was designed to have a length of 18 mm, a thickness of 120 mm, and a nominal diameter of 3.5 mm after expansion.
- coating solutions with weight ratios of 40Z60, 30/70, 20/80, and 10Z90 were prepared.
- the coating solution prepared using an airbrush was sprayed onto the stent to attach the coating solution to the stent.
- the air pressure at the time of spraying was 2 kgZcm2, and the weight of biodegradable polymer and drug per stent was adjusted by adjusting the spray time.
- FIG. 7 is an SEM image of the surface of a stent coated with a coating solution having a rifalazil Z lactic acid-glycolic acid copolymer weight ratio of 20Z80. As shown in Fig. 7, the coating surface was smooth both before and after the stent expansion, and no cracks, delamination or cracks were found. In addition, the same surface properties were exhibited even when the coating weight was increased to 810 g / stent with the same solution composition.
- rifamycin induction as an embodiment of the present invention is performed using a cytostatic test of human coronary artery smooth muscle cells (CASMC) and human coronary artery endothelial cells (CAEC).
- CASMC human coronary artery smooth muscle cells
- CAEC human coronary artery endothelial cells
- CAEC manufactured by Takara Bio Inc.
- EMM-2 MV BulletKit
- CASMC and CAEC that reached 70 80% confluence were collected from a 100 mm dish using a subculture reagent set (manufactured by Takara Bio Inc.). The obtained cells were seeded in a 96-well plate and cultured for 24 hours at 37 ° C in 5% CO. Next, 24 hours
- BrdU uptake ability represents DNA synthesis ability, which is a parameter of cell proliferation.
- FIG. 3 and FIG. 46 which will be described later, are graphs showing the relationship between each concentration of the drug and the growth inhibitory action of both cells.
- the vertical axis represents the absorbance representing the BrdU uptake ability, and the value at each concentration relative to the absorbance in the non-drug-added group (control) was graphed. Also, in the graph
- rifalazil showed statistically significant inhibition of CASMC growth at 100 and 1, OOOnM, compared to the group without rifalazil.
- Example 4 CASMC and CAEC growth inhibition tests were performed in the same manner as in Example 3 above, except that KRM1657, KRM1671, KRM1 689, and KRM1690 were used instead of rifalazil and the incubation time after addition of the test substance was 72 hours. I went.
- FIGS. 8 to 11 are graphs showing the relationship between each concentration of the drug and the growth inhibitory action of both cells.
- the solid line indicates CASMC and the broken line indicates CAEC.
- the vertical axis represents the absorbance representing the BrdU uptake ability, and the value at each concentration relative to the absorbance in the rifalazil non-added group (control) was graphed.
- Dunnett's test was performed as an example.
- Fig. 8 ⁇ As shown in L 1, as with rifalazil, the four rifamycin derivatives tested tested strongly inhibited proliferation against CASMC compared to CAEC.
- Comparative Example 1 CASMC and CAEC growth inhibition tests were conducted in the same manner as in Example 3 except that the test substance was changed to rifalazil and changed to rapamycin.
- rapamycin was statistically significant at all concentrations (1, 10, 100, 1, OOOnM) in which the growth of CASMC was compared to the group without addition of rapamycin. Inhibited growth.
- rapamycin is statistically significant at all concentrations (1, 10, 100, 1, OOOnM) at which CAEC growth was performed compared to the group without rapamycin. Intentionally, growth suppression was shown.
- implants coated with rifalazil, KRM1657, KRM1671, KRM1689, and KRM1690 undergo endothelial regeneration. It is presumed to suppress the proliferation of vascular smooth muscle cells while not inhibiting the above.
- the implant for example, the stent of Preparation Example 1, Preparation Example 2, or Preparation Example 3 is excellent in antithrombogenicity and tissue compatibility and is considered to be able to suppress stenosis.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pharmacology & Pharmacy (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Epidemiology (AREA)
- Heart & Thoracic Surgery (AREA)
- Surgery (AREA)
- Cardiology (AREA)
- Biomedical Technology (AREA)
- Vascular Medicine (AREA)
- Molecular Biology (AREA)
- Optics & Photonics (AREA)
- Nanotechnology (AREA)
- Materials Engineering (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Physics & Mathematics (AREA)
- Communicable Diseases (AREA)
- Oncology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
It is intended to provide an implant which is excellent in antithrombogenicity and tissue compatibility and can inhibits stenosis. This problem can be solved by an implant containing a Rifamycin derivative as the active ingredient. In a preferable case, this implant contains a drug for treating a vascular disease or a drug for controlling cell proliferation comprising as the active ingredient the Rifamycin derivative. This Rifamycin derivative strongly inhibits the proliferation of vascular smooth muscle cells compared with vascular endothelial cells. Thus, the implant containing the Rifamycin derivative as described above is excellent in antithrombogenicity and tissue compatibility and can inhibits stenosis.
Description
明 細 書 Specification
リファマイシン誘導体を用いたインプラント Implants using rifamycin derivatives
技術分野 Technical field
[0001] 本発明は、抗血栓性及び組織適合性に優れ、狭窄を抑制するインプラントに関す る。 The present invention relates to an implant that has excellent antithrombogenicity and tissue compatibility and suppresses stenosis.
背景技術 Background
[0002] 近年の医療手術においては、機能不全を起こした器官の代替器官として、あるいは 術後の部位を保護したり、その機能を維持するために、体内に各種の医療器具を埋 め込むことが行われて 、る。 [0002] In recent medical surgery, various medical devices are embedded in the body as an alternative organ to a malfunctioning organ, or to protect or maintain the function after surgery. Is done.
[0003] これらの医療器具にお!、ては、埋め込まれた部位に留置される間、血液、組織液、 リンパ液等の体液、さらに埋め込まれる器官、部位の生体組織との適合性が要求さ れる。例えば、ステント、人工血管、長期に留置されるカテーテル等の血流と接する 部位に埋め込まれる医療器具においては、その表面に血液が付着あるいは血液が 凝固して血流を阻害しない、また、周囲の生体組織と不適合となり、新生内膜の生成 による狭窄、繊維芽細胞等の形質変化などを生じないように、抗血栓性および組織 適合性に優れることが求められる。また、尿管、尿道、リンパ管等に埋め込まれる医療 器具においても同様の特性が求められる。 [0003] These medical devices are required to be compatible with body fluids such as blood, tissue fluid, and lymph fluid, as well as organs to be implanted and biological tissues of the site, while placed in the implanted site. . For example, in a medical device that is implanted in a site that is in contact with blood flow, such as a stent, an artificial blood vessel, or a catheter that is placed for a long time, blood adheres to the surface or blood clots and does not inhibit the blood flow. It is required to have excellent antithrombogenicity and tissue compatibility so that it does not become incompatible with living tissue and does not cause stenosis due to the formation of neointimal or phenotypic changes of fibroblasts. Similar characteristics are also required for medical devices embedded in ureters, urethra, lymphatic vessels, and the like.
[0004] さらに、体内に留置して薬剤を徐放する医療器具においても、抗血栓性および組 織適合性を有し、しカゝもその特性を、安定的に持続して示すことが求められる。例え ば、薬剤コーティングステントは血管再狭窄を制限する薬剤を保持し、薬剤が経時的 に徐放されることによってその効果を発揮する。現在までに、種々の薬剤コーティン ダステントが開発され、再狭窄率を低減する試みが報告されている (特許文献 1、非 特許文献 1参照)。再狭窄は、血管障害から始まる血栓形成、炎症、内皮傷害、血管 平滑筋細胞の遊走と増殖が因子として関与しており、それぞれの因子をターゲットに した多数の薬剤 (抗凝固薬、抗血小板物質、抗痙薬、抗菌薬、抗腫瘍薬、抗微生物 剤、抗炎症剤、抗物質代謝剤、免疫抑制剤等)が検討されている。 [0004] Furthermore, even medical devices that are placed in the body to release a drug slowly have antithrombogenicity and tissue compatibility, and shika must exhibit its characteristics stably and continuously. It is done. For example, a drug-coated stent holds a drug that limits vascular restenosis and exerts its effect by the sustained release of the drug over time. To date, various drug coated stents have been developed, and attempts to reduce the restenosis rate have been reported (see Patent Document 1 and Non-Patent Document 1). Restenosis involves factors such as thrombus formation, inflammation, endothelial injury, and vascular smooth muscle cell migration and proliferation starting from vascular disorders, and many drugs (anticoagulants, antiplatelet substances) that target each factor. Antispasmodic agents, antibacterial agents, antitumor agents, antimicrobial agents, anti-inflammatory agents, antimetabolite agents, immunosuppressive agents, etc.) are being studied.
特許文献 1:特表平 5— 502179号公報
非特許文献 1 :山ロ徹他 Drug-Eluting Stent 医学書院 2004年 1月 1日 発明の開示 Patent Document 1: Japanese Patent Publication No. 5-502179 Non-Patent Document 1: Toru Yamaro et al. Drug-Eluting Stent Medical School January 1, 2004 Disclosure of Invention
発明が解決しょうとする課題 Problems to be solved by the invention
[0005] 上記のような抗血栓性、組織適合性及び狭窄に関する問題は、ステントに限らず、 体内に埋め込まれる各種医療器具に共通する問題である。特に、体内に埋め込まれ た後、長期間留置されるステント等の医療器具においては、その抗血栓性、組織適 合性及び再狭窄抑制作用を持続して安定的に発揮することが求められており、従来 の薬剤コーティングステントよりも、優れた抗血栓性及び組織適合性を持続し、血管 再狭窄を抑制する薬剤コーティングステントが求められている。 [0005] The above-mentioned problems related to antithrombogenicity, tissue compatibility and stenosis are not limited to stents, but are common to various medical devices implanted in the body. In particular, medical devices such as stents that are implanted in the body for a long period of time after being implanted in the body are required to continuously and stably exhibit their antithrombogenicity, tissue compatibility, and restenosis suppressing action. Therefore, there is a need for a drug-coated stent that maintains superior antithrombogenicity and tissue compatibility and suppresses vascular restenosis compared to conventional drug-coated stents.
[0006] 近年、血管の狭窄と微生物感染の関連性が指摘されている。特に、肺炎クラミジァ ( Chlamydia pnuemoniae)の関与が強く示唆されており、心疾患患者への肺炎クラミジ ァに有効な抗菌薬の予防投与が実施されている。しかし、効果については十分に確 認されていない(尾内一信 臨床とウイノレス 2003 31 (5) 358— 365)。 [0006] In recent years, the relationship between stenosis of blood vessels and microbial infection has been pointed out. In particular, the involvement of Chlamydia pnuemoniae is strongly suggested, and prophylactic administration of antibacterial drugs effective for pneumonia chlamydia is being implemented in patients with heart disease. However, the effect has not been fully confirmed (Kazunobu Onuchi Clinical and Winores 2003 31 (5) 358-365).
[0007] ここで、リファマイシン誘導体は、肺炎クラミジァに対して極めて強 、抗菌活性を有 する抗生物質であることが知られている(特開平 9— 216824号公報、 Patricia M. Ro bhn, et al. Antimicrobial Agents and Chemotherapy, 2003, 47(3), 1135- 11ύ6)。 [0007] Here, rifamycin derivatives are known to be antibiotics that are extremely strong against pneumonia chlamydia and have antibacterial activity (JP-A-9-216824, Patricia M. Robhn, et al. al. Antimicrobial Agents and Chemotherapy, 2003, 47 (3), 1135- 11-6).
[0008] そこで、本発明者らは、血管狭窄の原因の 1つとされる肺炎クラミジァに対して優れ た抗菌作用を示すリファマイシン誘導体をインプラントに適用することを試みた。 [0008] Therefore, the present inventors tried to apply to the implant a rifamycin derivative exhibiting an excellent antibacterial action against pneumonia chlamydia which is one of the causes of vascular stenosis.
課題を解決するための手段 Means for solving the problem
[0009] 本発明者は鋭意研究した結果、リファマイシン誘導体が血管内皮細胞の増殖を強 く抑制することなぐ血管平滑筋細胞の増殖を抑制することを見出し、リファマイシン 誘導体をコーティングすることにより、抗血栓性及び組織適合性に優れ、狭窄を抑制 し得るインプラントを開発した。 [0009] As a result of intensive research, the present inventors have found that a rifamycin derivative inhibits the proliferation of vascular smooth muscle cells without strongly inhibiting the proliferation of vascular endothelial cells, and by coating the rifamycin derivative, We have developed an implant that has excellent antithrombogenicity and tissue compatibility and can suppress stenosis.
[0010] すなわち、本発明は、リファマイシン誘導体を含むことを特徴とするインプラントに関 する。 [0010] That is, the present invention relates to an implant including a rifamycin derivative.
[0011] 本発明の別の態様は、リファマイシン誘導体を有効成分とする血管性疾患処置剤 を含むことを特徴とするインプラントである。 [0011] Another aspect of the present invention is an implant comprising a vascular disease treatment agent containing a rifamycin derivative as an active ingredient.
[0012] 本発明の別の態様は、リファマイシン誘導体を有効成分とする細胞増殖調節剤を
含むことを特徴とするインプラントである。 [0012] Another aspect of the present invention provides a cell growth regulator comprising a rifamycin derivative as an active ingredient. It is an implant characterized by including.
[0013] 上記発明において、リファマイシン誘導体が、血管内皮細胞に比べ、血管平滑筋 細胞に対して強く増殖抑制作用を示すインプラントであるのが好ましい。このうち、前 記リファマイシン誘導体を有効成分とすることにより、血管内皮細胞に対する非細胞 増殖抑制作用と血管平滑筋細胞に対する細胞増殖抑制作用とを奏することを特徴と するインプラントであるのがより好ましい。 [0013] In the above invention, it is preferable that the rifamycin derivative is an implant that exhibits a strong growth inhibitory action on vascular smooth muscle cells compared to vascular endothelial cells. Of these, an implant characterized by exhibiting a non-cell growth inhibitory effect on vascular endothelial cells and a cell growth inhibitory effect on vascular smooth muscle cells by using the rifamycin derivative as an active ingredient is more preferable. .
[0014] 本発明の別の態様は、前記リファマイシン誘導体がリファラジル {Rifalazil、 3'-Hydro xy-o— (4— isobutyl— 1— piperazmyl)benzoxazinorifamycin、 KRMl648}、 KRMlり 5 /、 KRM1671、 KRM1689、 KRM1690またはそれらの生理学的に許容される塩で あるの力 S好まし ヽ。なお、 KRM1648, KRM1657, KRM1671, KRM1689, KR M1690の化学式は、後述の実施形態の項目で説明する。 [0014] In another embodiment of the present invention, the rifamycin derivative may be rifalazil {Rifalazil, 3'-Hydro xy-o— (4—isobutyl— 1— piperazmyl) benzoxazinorifamycin, KRMl648}, KRMl 5 /, KRM1671, KRM1689 The power of KRM1690 or their physiologically acceptable salts is preferred. The chemical formulas of KRM1648, KRM1657, KRM1671, KRM1689, and KR M1690 will be described in the later-described embodiment items.
[0015] 上記発明にお 、て、前記リファマイシン誘導体が、生体適合性ポリマー若しくは生 分解性ポリマー中に存在するインプラントであるのが好ましい。このうち、前記生分解 性ポリマーが乳酸ーグリコ一ル酸共重合体であるのが好まし!/、。 [0015] In the above invention, the rifamycin derivative is preferably an implant present in a biocompatible polymer or biodegradable polymer. Of these, the biodegradable polymer is preferably a lactic acid-glycolic acid copolymer!
[0016] また、上記発明において、前記リファマイシン誘導体は小胞内に充填されていても よい。このうち、前記小胞がマイクロ粒子、ナノ粒子またはリボソームの形態であるの が好ましい。 [0016] In the above invention, the rifamycin derivative may be filled in a vesicle. Of these, the vesicles are preferably in the form of microparticles, nanoparticles or ribosomes.
[0017] 本発明の別の態様としては、前記インプラントがステントであるものが挙げられる。 [0017] Another embodiment of the present invention includes one in which the implant is a stent.
[0018] 本発明の別の態様としては、生体適合性ポリマー若しくは生分解性ポリマーとリファ マイシン誘導体とを含む溶液を作製する工程、前記溶液をインプラントに塗布若しく は保持する工程を含むことを特徴とするインプラントの製法が挙げられる。 [0018] Another aspect of the present invention includes a step of preparing a solution containing a biocompatible polymer or biodegradable polymer and a rifamycin derivative, and a step of applying or holding the solution to an implant. The manufacturing method of the characteristic implant is mentioned.
[0019] 本発明の別の態様としては、前記インプラントを用いた血管性疾患の治療方法が 挙げられる。 [0019] Another embodiment of the present invention includes a method for treating a vascular disease using the implant.
[0020] 本発明のその他の態様およびそれらの効果は、以下の明細書の記載および図面 によって明らかにされる。 [0020] Other aspects of the present invention and their effects will become apparent from the following description and drawings.
発明の効果 The invention's effect
[0021] 本発明のインプラント等で用いられるリファマイシン誘導体は、血管内皮細胞に比 ベ、血管平滑筋細胞の増殖を強く抑制する。したがって、本発明のリファマイシン誘
導体を含むインプラントは、抗血栓性及び組織適合性に優れ、血管の狭窄または再 狭窄を効果的に抑制することが可能である。 [0021] The rifamycin derivative used in the implant or the like of the present invention strongly suppresses the proliferation of vascular smooth muscle cells as compared with vascular endothelial cells. Therefore, the rifamycin induction of the present invention An implant including a conductor is excellent in antithrombogenicity and tissue compatibility, and can effectively suppress stenosis or restenosis of blood vessels.
図面の簡単な説明 Brief Description of Drawings
[0022] [図 1]図 1は、実施形態としてのステントの展開図である。 FIG. 1 is a development view of a stent according to an embodiment.
[図 2]図 2は、実施形態としてのステントの模式図である。 FIG. 2 is a schematic view of a stent as an embodiment.
[図 3]図 3は、リファラジルの各濃度と CASMCの増殖抑制作用との関係を示すグラフ である。 FIG. 3 is a graph showing the relationship between each concentration of rifalazil and the growth inhibitory effect of CASMC.
[図 4]図 4は、リファラジルの各濃度と CAECの増殖抑制作用との関係を示すグラフで ある。 FIG. 4 is a graph showing the relationship between each concentration of rifalazil and the growth inhibitory action of CAEC.
[図 5]図 5、ラバマイシンの各濃度と CASMCの増殖抑制作用との関係を示すグラフ である。 FIG. 5 is a graph showing the relationship between each concentration of ravamycin and the growth inhibitory effect of CASMC.
[図 6]図 6は、ラバマイシンの各濃度と CAECの増殖抑制作用との関係を示すグラフ である。 FIG. 6 is a graph showing the relationship between each concentration of rabamycin and the growth inhibitory action of CAEC.
[図 7]図 7は、リファラジルをコーティングしたステント表面の SEM画像である。 FIG. 7 is an SEM image of a stent surface coated with rifalazil.
[図 8]図 8は、 KRM1657の各濃度と CASMCおよび CAECの増殖抑制作用との関 係を示すグラフである。 FIG. 8 is a graph showing the relationship between each concentration of KRM1657 and the growth inhibitory action of CASMC and CAEC.
[図 9]図 9は、 KRM1671の各濃度と CASMCおよび CAECの増殖抑制作用との関 係を示すグラフである。 FIG. 9 is a graph showing the relationship between each concentration of KRM1671 and the growth inhibitory action of CASMC and CAEC.
[図 10]図 10は、 KRM1689の各濃度と CASMCおよび CAECの増殖抑制作用との 関係を示すグラフである。 FIG. 10 is a graph showing the relationship between each concentration of KRM1689 and the growth inhibitory action of CASMC and CAEC.
[図 11]図 11は、 KRM1690の各濃度と CASMCおよび CAECの増殖抑制作用との 関係を示すグラフである。 FIG. 11 is a graph showing the relationship between each concentration of KRM1690 and the growth inhibitory action of CASMC and CAEC.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
[0023] 以下、本発明の実施形態としてのインプラントについて詳細に説明する力 本発明 はこれらに制限されるものではない。 [0023] Hereinafter, the force for explaining the implant as an embodiment of the present invention in detail. The present invention is not limited to these.
[0024] 1.リファマイシン誘導体 [0024] 1. Rifamycin derivative
(1)本願で用いられるリファマイシン誘導体は、以下の式 (I): (1) The rifamycin derivative used in the present application has the following formula (I):
[0026] (式 (I)中、 X1は酸素原子または硫黄原子を示し、 R1はァセチル基または水素原子を 示し、 R2はメチル基またはヒドロキシメチル基を示し、
R4は同一または相異なり、 水酸基、水素原子、炭素数 1から 3のアルキル基、式 (II)で表される基、または、下記 式 (IV)で表される基を示す。 )で表される化合物またはその生理学的に許容される塩 であるのが好ましい。 (In Formula (I), X 1 represents an oxygen atom or a sulfur atom, R 1 represents a acetyl group or a hydrogen atom, R 2 represents a methyl group or a hydroxymethyl group, R 4 is the same or different and represents a hydroxyl group, a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a group represented by the formula (II), or a group represented by the following formula (IV). Or a physiologically acceptable salt thereof.
[0027] [化 15] [0027] [Chemical 15]
, R5 , R5
(II) (II)
■R6 ■ R6
[0028] [化 16] [0028] [Chemical 16]
R7 R8 R 7 R 8
N, X2 (IV) N, X 2 (IV)
[0029] 上記式 (II)中、 R5、 R6は同一または相異なり、炭素数 1から 3のアルキル基、または 式 (III)で表される基を示す。 In the above formula (II), R 5 and R 6 are the same or different and represent an alkyl group having 1 to 3 carbon atoms or a group represented by formula (III).
[0030] [化 17]
[0031] (式 (ΠΙ)中、 jは 1から 3の整数を示す。 ) [0030] [Chemical 17] [0031] (In the formula (ΠΙ), j represents an integer of 1 to 3.)
[0032] 上記式 (IV)中、 R7、 R8は同一または相異なり、水素原子または炭素数 1から 3のァ ルキル基を示し、 X2は酸素原子、硫黄原子、カルボニル基、下記式 (V)で表される基 、または、下記式 (IV)で表される基を示す。 In the above formula (IV), R 7 and R 8 are the same or different and represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, X 2 represents an oxygen atom, a sulfur atom, a carbonyl group, A group represented by (V) or a group represented by the following formula (IV) is shown.
[0035] 上記式 (V)中、 R9、 R1Qは同一または相異なり、水素原子、炭素数 1から 3のアルキ ル基、または R9と R1Qが結合して下記式で表される基を示す。 [0035] In the above formula (V), R 9 and R 1Q are the same or different, and are represented by the following formula by combining a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or R 9 and R 1Q. Indicates a group.
(CH ) — (CH) —
2 k 2k
(式中、 kは 1から 4の整数を示す。) (In the formula, k represents an integer of 1 to 4.)
[0036] 上記式 (VI)中、 mは 0または 1を示し、 R11は水素原子、炭素数 1から 7のアルキル基 、または下記式で表される基を示す。 In the above formula (VI), m represents 0 or 1, and R 11 represents a hydrogen atom, an alkyl group having 1 to 7 carbon atoms, or a group represented by the following formula.
(CH ) X3 (CH) X 3
2 n 2 n
(式中、 nは 1から 4の整数を示し、 X3は炭素数 1から 3のアルコキシ基、ビニル基、ェ チニル基、または下記式 (VII)で表される基を示す。 ) (In the formula, n represents an integer of 1 to 4, and X 3 represents an alkoxy group having 1 to 3 carbon atoms, a vinyl group, an ethynyl group, or a group represented by the following formula (VII).)
[0038] 前記式(I)において、 R3、 R4、 R5、 R6、
R9および R1Qの炭素数 1から 3のアル キル基としては、メチル基、ェチル基、プロピル基、イソプロピル基およびシクロプロピ ル基が挙げることができ、 R11の炭素数 1から 6のアルキル基としては、メチル基、ェチ
ル基、プロピル基、イソプロピル基、シクロプロピル基、ブチル基、イソブチル基、 sec ブチル基、 tert ブチル基、シクロブチル基、シクロプロピルメチル基、ペンチル 基、イソペンチル基、 sec ペンチル基、 tert ペンチル基、シクロペンチル基、シク ロブチルメチル基、へキシル基、 4ーメチルペンチル基、シクロへキシル基、 3—メチ ルシクロペンチル基、ヘプチル基、イソへプチル基などの鎖状または環状アルキル 基を挙げることができる。 In the above formula (I), R 3 , R 4 , R 5 , R 6 , Examples of the alkyl group having 1 to 3 carbon atoms of R 9 and R 1Q include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a cycloalkyl group, and an alkyl group having 1 to 6 carbon atoms in R 11 As methyl group, Group, propyl group, isopropyl group, cyclopropyl group, butyl group, isobutyl group, sec butyl group, tert butyl group, cyclobutyl group, cyclopropylmethyl group, pentyl group, isopentyl group, sec pentyl group, tert pentyl group, cyclopentyl group And a chain or cyclic alkyl group such as a group, a cyclobutylmethyl group, a hexyl group, a 4-methylpentyl group, a cyclohexyl group, a 3-methylcyclopentyl group, a heptyl group, and an isoheptyl group.
[0039] X3の炭素数 1から 3のアルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、 イソプロポキシ基およびシクロプロポキシ基を挙げることができる。 [0039] Examples of the alkoxy group having 1 to 3 carbon atoms of X 3 include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, and a cyclopropoxy group.
[0040] (2)好ましくは、リファマイシン誘導体は、前記式前記式 (I)の X1が酸素原子であり、 R1がァセチル基または水素原子を示し、 R2はメチル基またはヒドロキシメチル基を示 し、 R4は同一または相異なり、水酸基、水素原子、炭素数 1から 3のアルキル基、 または式 (VIII): (2) Preferably, in the rifamycin derivative, X 1 in the above formula (I) is an oxygen atom, R 1 represents a acetyl group or a hydrogen atom, and R 2 represents a methyl group or a hydroxymethyl group. R 4 is the same or different and is a hydroxyl group, a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or formula (VIII):
[0041] [化 21] [0041] [Chemical 21]
—— N N R12 (VIII) —— NNR 12 (VIII)
[0042] (式 (VIII)中、 R12は水素原子、または炭素数 1から 7のアルキル基を示す)で表される リファマイシン誘導体またはその生理学的に許容される塩である。 [0042] (In formula (VIII), R 12 represents a hydrogen atom or an alkyl group having 1 to 7 carbon atoms) or a physiologically acceptable salt thereof.
[0043] R12の炭素数 1から 7のアルキル基としては、メチル基、ェチル基、プロピル基、イソ プロピル基、シクロプロピル基、ブチル基、イソブチル基、 sec ブチル基、 tert ブ チル基、シクロブチル基、シクロプロピルメチル基、ペンチル基、イソペンチル基、 sec ペンチル基、 tert ペンチル基、 1, 2—ジメチルプロピル基、 1 ェチルプロピル 基、シクロペンチル基、シクロブチルメチル基、へキシル基、 4ーメチルペンチル基、 シクロへキシキル基、 3—メチルシクロペンチル基、ヘプチル基、イソへプチル基など の鎖状または環状のアルキル基を挙げることができる。 [0043] Examples of the alkyl group having 1 to 7 carbon atoms of R 12 include methyl group, ethyl group, propyl group, isopropyl group, cyclopropyl group, butyl group, isobutyl group, sec butyl group, tert butyl group, cyclobutyl Group, cyclopropylmethyl group, pentyl group, isopentyl group, sec pentyl group, tert pentyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, cyclopentyl group, cyclobutylmethyl group, hexyl group, 4-methylpentyl group, cyclo Examples thereof include a linear or cyclic alkyl group such as a hexyl group, a 3-methylcyclopentyl group, a heptyl group, and an isoheptyl group.
[0044] (3)以下、上記リファマイシン誘導体の例示として、 5つの具体的な化合物を説明す る。本発明に係るリファマイシン誘導体は、これらの化合物に限定されるものではない [0044] (3) Hereinafter, five specific compounds will be described as examples of the rifamycin derivative. The rifamycin derivative according to the present invention is not limited to these compounds
[0045] (3— 1)例示としてのリファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R1
がァセチル基であり、 R2力メチル基であり、 R3が水酸基であり、 R4が式 (IX): (3-1) As an illustrative rifamycin derivative, X 1 in the formula (I) is an oxygen atom, and R 1 Is a acetyl group, R 2 is a methyl group, R 3 is a hydroxyl group, and R 4 is a compound represented by the formula (IX):
[0046] [化 22] 一 N N CH.CH (CH,) . (IX) [0046] [Chemical 22] One N N CH.CH (CH,). (IX)
[0047」 で表されるリファラジル {Rifalazil、 3'- Hydroxy- 5'- (4- isobuty卜 1- piperazinyl)benzoxaz inorifamycin, KRM 1648 }またはその生理学的に許容される塩である。 [0047] Rifalazil {Rifalazil, 3'-Hydroxy-5 '-(4-isobuty 卜 1- piperazinyl) benzoxaz inorifamycin, KRM 1648} or a physiologically acceptable salt thereof.
[0048] (3— 2)例示としてのリファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R1 がァセチル基であり、 R2力メチル基であり、 R3が水酸基であり、 R4が式 (X): (3-2) As an illustrative rifamycin derivative, X 1 in the formula (I) is an oxygen atom, R 1 is a acetyl group, R 2 is a methyl group, and R 3 is a hydroxyl group And R 4 is the formula (X):
[0049] [化 23] [0049] [Chemical 23]
— N CH H.CH. (X) — N CH H.CH. (X)
v_ 2 2 3 v_ 2 2 3
[0050] で表される KRM1657またはその生理学的に許容される塩である。 [0050] KRM1657 represented by or a physiologically acceptable salt thereof.
[0051] (3— 3)例示としてのリファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R1 が水酸基であり、 R2カ チル基であり、 R3が水酸基であり、 R4が式 (IX): (3-3) As an illustrative rifamycin derivative, X 1 in the formula (I) is an oxygen atom, R 1 is a hydroxyl group, R 2 cate group, and R 3 is a hydroxyl group. Yes, R 4 is formula (IX):
[0052] [化 24] 一 N N CH„CH (CH,) , (IX) [0052] [Chem. 24] One N N CH „CH (CH,), (IX)
2 3 22 3 2
[0053] で表される KRM1671またはその生理学的に許容される塩である。 [0053] KRM1671 represented by or a physiologically acceptable salt thereof.
[0054] (3— 4)例示としてのリファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R がァセチル基であり、 R2力 Sメチル基であり、 R3および R4が式 (IX): (3-4) In the exemplary rifamycin derivative, X 1 in the formula (I) is an oxygen atom, R is a acetyl group, R 2 force S methyl group, R 3 and R 4 is the formula (IX):
[0055] [化 25] 一 N N CH„CH (CH,) , (IX) [0055] [Chemical 25] One N N CH „CH (CH,), (IX)
2 3 22 3 2
[0056] で表される KRM1689またはその生理学的に許容される塩である。 [0056] KRM1689 represented by or a physiologically acceptable salt thereof.
[0057] (3— 5)例示としてのリファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R がァセチル基であり、 R2がヒドロキシメチル基であり、 R3が水酸基であり、 R4が式 (IX)
[0058] [化 26] 一 N N CH.CH (CH,) . (IX) [0057] (3-5) An exemplary rifamycin derivative has the formula (I) in which X 1 is an oxygen atom, R is a acetyl group, R 2 is a hydroxymethyl group, and R 3 is a hydroxyl group. R 4 is the formula (IX) [0058] [Chemical 26] One NN CH.CH (CH,). (IX)
[0059] で表される KRM1690またはその生理学的に許容される塩である。 [0059] KRM1690 or a physiologically acceptable salt thereof.
[0060] 2.リファマイシン誘導体による作用 [0060] 2. Action by rifamycin derivatives
本願では、リファマイシン誘導体を含有するインプラントとし、この際、血管内皮細胞 に比べ、血管平滑筋細胞に対して強く増殖抑制作用を示すようにする。リファマイシ ン誘導体は、従来、肺炎クラミジァに対して極めて強い抗菌活性を有する抗生物質 であることが知られていた力 使用の際は、極めて低濃度で用いられていた。本願発 明は、本発明者らが、「リファマイシン誘導体」が上記のような細胞増殖抑制作用を有 するという、上記抗菌活性とは関連のない意外な効果を初めて見出したことによりな されたものである。また、肺炎クラミジァと血管狭窄との関連性が指摘されていること から、リファマイシン誘導体を含むインプラントは、上記細胞増殖抑制作用に加え、従 来カゝら知られて ヽる抗菌作用も期待できる。 In the present application, an implant containing a rifamycin derivative is used, and at this time, it has a strong antiproliferative action on vascular smooth muscle cells compared to vascular endothelial cells. The rifamycin derivative has been used at a very low concentration in the past when it was known to be an antibiotic having an extremely strong antibacterial activity against pneumonia chlamydia. The present invention was made when the present inventors found for the first time an unexpected effect unrelated to the antibacterial activity, that the “rifamycin derivative” has the above-described cell growth inhibitory action. Is. In addition, since the relationship between pneumonia chlamydia and vascular stenosis has been pointed out, an implant containing a rifamycin derivative can be expected to have an antibacterial effect that is conventionally known in addition to the above-mentioned cell growth inhibitory action. .
[0061] 「内皮細胞に比べ、血管平滑筋細胞に対して強く増殖抑制作用を示す」とは、「血 管内皮細胞に対しては細胞増殖抑制作用を示さず、血管平滑筋細胞に対する細胞 増殖抑制作用を示す」場合を含む。例えば、リファマイシン誘導体は、濃度を調節す る等により、血管平滑筋細胞に対して増殖抑制活性を示すが、血管内皮細胞に対し て増殖抑制活性を示さないように調節することが可能である。なお、血管性疾患処置 剤や細胞増殖抑制剤の形態によって適切な量が変化するため、その形態に応じて 適宜その量を調節する必要がある。 [0061] “Strongly suppresses proliferation of vascular smooth muscle cells compared to endothelial cells” means “does not exhibit cytostatic activity of vascular endothelial cells and proliferates to vascular smooth muscle cells. Including the case of “inhibiting action”. For example, rifamycin derivatives can be adjusted so as to show growth inhibitory activity against vascular smooth muscle cells but not against vascular endothelial cells by adjusting the concentration. . In addition, since the appropriate amount varies depending on the form of the vascular disease treatment agent or the cell growth inhibitor, it is necessary to appropriately adjust the amount depending on the form.
[0062] 「細胞増殖抑制を示す」とは統計学的に有意に増殖抑制を示す場合をいう。一方、 「細胞増殖抑制作用を示さない」とは、統計学的に有意でない場合をいう。 [0062] "Show cell growth suppression" refers to a case where the cell growth is statistically significantly suppressed. On the other hand, “does not exhibit a cell growth inhibitory effect” means a case where it is not statistically significant.
[0063] 3.血管性疾患の例 [0063] 3. Examples of vascular diseases
本発明においては、リファマイシン誘導体は、血管性疾患 {例えば、動脈硬化症 (ァ テローム性動脈硬化症、中膜石灰化硬化症、細小動脈硬化症)、動脈瘤、仮性瘤、 動脈解離症、炎症性動脈疾患、非炎症性動脈疾患、または透析シャントを含む自然
発生的血管性疾患、経皮的血管形成術後の血管再狭窄または再閉塞を含む非自 然発生的血管性疾患 }の予防または治療のために利用される。血管形成術としては 、例えば、バルーン拡張術、ステント留置術、ァテレクトミー、レーザー血管形成術が 挙げられる。 In the present invention, the rifamycin derivative is a vascular disease (for example, arteriosclerosis (atherosclerosis, medial calcification sclerosis, microarteriosclerosis), aneurysm, pseudoaneurysm, arterial dissection, Nature including inflammatory arterial disease, non-inflammatory arterial disease, or dialysis shunt It is used for the prevention or treatment of developmental vascular diseases, non-natural vascular diseases including vascular restenosis or reocclusion after percutaneous angioplasty. Examples of angioplasty include balloon dilation, stent placement, atherectomy, and laser angioplasty.
[0064] 4.血管性疾患処置剤または細胞増殖調節剤 [0064] 4. Vascular disease treatment agent or cell growth regulator
「リファマイシン誘導体を有効成分とする血管性疾患処置剤」とは、リファマイシン誘 導体を有効成分とする血管性疾患治療用組成物または製剤(医薬品)を含む概念で ある。「リファマイシン誘導体を有効成分とする細胞増殖調節剤」とは、リファマイシン 誘導体を有効成分とする細胞増殖調節用組成物または製剤(医薬品)を含む概念で ある。このうち、「リファマイシン誘導体を有効成分とする、血管内皮細胞に対する低 い細胞増殖抑制作用と血管平滑筋細胞に対する高い細胞増殖抑制作用とに基づく 血管性疾患処置剤または細胞増殖調節剤」であるのが好ま 、。 “A vascular disease treatment agent comprising a rifamycin derivative as an active ingredient” is a concept including a composition or preparation (medicine) for treating a vascular disease comprising a rifamycin derivative as an active ingredient. The “cell growth regulator containing a rifamycin derivative as an active ingredient” is a concept including a cell growth regulating composition or preparation (medicine) containing a rifamycin derivative as an active ingredient. Among these, “therapeutic agent for vascular diseases or cell growth regulator based on rifamycin derivative as an active ingredient based on low cell growth inhibitory action on vascular endothelial cells and high cell growth inhibitory action on vascular smooth muscle cells” I like it.
[0065] 「血管性疾患処置」とは、血管性疾患を治療する、またはその進行を軽減する概念 [0065] "Treatment of vascular disease" is a concept of treating vascular disease or reducing its progression
(血管性疾患治療剤)のほか、その血管性疾患を治療するための作用と同様の作用 を利用することにより、その血管性疾患を予防する概念 (血管性疾患予防剤)を含む In addition to (therapeutic agent for vascular disease), the concept of preventing the vascular disease by using the same action as that for treating the vascular disease (preventive agent for vascular disease) is included.
[0066] (4 1)他の薬剤を含む実施形態 [0066] (4 1) Embodiments containing other drugs
血管性疾患の予防または治療を目的とした製剤を製造する際に、他の薬剤 (抗凝 固薬、抗血小板物質、抗痙薬、抗菌薬、抗腫瘍薬、抗微生物剤、抗炎症剤、抗物質 代謝剤、免疫抑制剤等)と組み合わせてもよい。 In the preparation of preparations for the prevention or treatment of vascular diseases, other drugs (anticoagulants, antiplatelet substances, antispasmodics, antibacterial drugs, antitumor drugs, antimicrobial drugs, anti-inflammatory drugs, It may be combined with an anti-metabolite, an immunosuppressant, etc.
[0067] 本実施態様においても、リファマイシン誘導体は、血管内皮細胞に比べ、血管平滑 筋細胞に対してより強く増殖を抑制するように用いる。これにより、血管の内皮再生を 阻害することなく平滑筋の肥大が抑制され、血管の狭窄または再狭窄が防止される。 [0067] Also in this embodiment, the rifamycin derivative is used to suppress proliferation more strongly against vascular smooth muscle cells than vascular endothelial cells. Thereby, smooth muscle hypertrophy is suppressed without inhibiting vascular endothelium regeneration, and vascular stenosis or restenosis is prevented.
[0068] 5.インプラント本体 [0068] 5. Implant body
実施形態としての「インプラント」の本体の材質、形状、寸法、形態等は、特に制限 されず、医療器具が留置される部位の大きさ、コンプライアンス、組織、細胞種等に 応じて適宜決定される。インプラントは、以下、適宜「医療用インプラント」、「体内埋め 込みインプラント」、「医療器具」、または「生体内留置器具」とも表現する。
[0069] 例えば、材質は、金属材料または高分子材料のいずれでもよぐ留置される部位、 すなわち、血管、尿管、リンパ管等の脈管、筋肉等の組織などに応じて、所要の特性 を有するものであれば特に制限されないが、生体適合性および生分解性を有する材 料であることが好ましい。 The material, shape, dimensions, form, etc. of the main body of the “implant” as an embodiment are not particularly limited, and are appropriately determined according to the size, compliance, tissue, cell type, etc. of the site where the medical device is placed. . The implant is hereinafter also referred to as “medical implant”, “implantable implant”, “medical device”, or “in-vivo device” as appropriate. [0069] For example, the material may have a required characteristic depending on a portion where the metal material or the polymer material is placed, that is, a blood vessel, a urinary tract, a lymphatic vessel, or a tissue such as a muscle. However, it is preferably a material having biocompatibility and biodegradability.
[0070] 6.金属材料 [0070] 6. Metallic materials
上記金属材料としては、例えば、ステンレス鋼、チタンもしくはチタン合金、タンタル もしくはタンタル合金、プラチナもしくはプラチナ合金、金もしくは金合金、コノ レトべ ース合金、マグネシウムもしくはマグネシウム合金等が挙げられる。ステンレス鋼とし ては、最も耐食性が良好である SUS316Lが好適である。 Examples of the metal material include stainless steel, titanium or titanium alloy, tantalum or tantalum alloy, platinum or platinum alloy, gold or gold alloy, correlate base alloy, magnesium or magnesium alloy, and the like. As stainless steel, SUS316L, which has the best corrosion resistance, is suitable.
[0071] 7.生体適合性ポリマー [0071] 7. Biocompatible polymer
インプラントに用いられる「生体適合性ポリマー」としては、本質的に血小板が付着 し難ぐ組織に対しても刺激性を示さず、薬剤の溶出が可能なものであれば何れの 生体適合性ポリマーでも利用し得る。例えば、「生体適合性ポリマー」に含まれる合成 ポリマーとしては、ポリエーテル型ポリウレタンとジメチルシリコンのブレンド或いはブ ロック共重合体、セグメントィ匕ポリウレタン等のポリウレタン、ポリアクリルアミド、ポリエ チレンォキシド、ポリエチレンカーボネート、ポリプロピレンカーボネート等のポリカー ボネート等が、また天然生体適合性ポリマーとしてはフイブリン、ゼラチン、コラーゲン 等が利用し得る。これらのポリマーは単独でも、適宜組み合わせても利用し得る。 As the “biocompatible polymer” used for implants, any biocompatible polymer can be used as long as it does not show any irritation to tissues to which platelets hardly adhere and can dissolve drugs. Can be used. For example, synthetic polymers included in “biocompatible polymers” include polyether polyurethane and dimethyl silicone blends or block copolymers, polyurethanes such as segmented polyurethane, polyacrylamide, polyethylene oxide, polyethylene carbonate, polypropylene. Polycarbonates such as carbonates can be used, and fibrin, gelatin, collagen and the like can be used as natural biocompatible polymers. These polymers can be used alone or in appropriate combination.
[0072] 「生分解性ポリマー」としては、生体内で酵素的、非酵素的に分解され、分解産物 が毒性を示さず、薬物の放出が可能なものであれば、何れの生分解性ポリマーも利 用可能である。例えば、ポリ乳酸、ポリダリコール酸、ポリ乳酸とポリダリコール酸との 共重合体、コラーゲン、ゼラチン、キチン、キトサン、ヒアルロン酸、ポリ L ダルタミ ン酸、ポリ一 L リジン等のポリアミノ酸、澱粉、ポリ一 ε—力プロラタトン、ポリエチレ ンサクシネート、ポリ一 j8—ヒドロキシアルカノエート等カも適宜選択された物を使用 し得る。これらのポリマーは単独でも、適宜組み合わせても利用し得る。尚、生体適 合性ポリマーと生分解性ポリマーの両方を適宜組み合わせて利用することも可能で ある。 [0072] "Biodegradable polymer" refers to any biodegradable polymer as long as it is enzymatically and non-enzymatically degraded in vivo, the degradation product does not exhibit toxicity, and the drug can be released. Can also be used. For example, polylactic acid, polydaricholic acid, copolymers of polylactic acid and polydaricholic acid, collagen, gelatin, chitin, chitosan, hyaluronic acid, poly (L-dartamic acid), poly (L) lysine and other polyamino acids, starch, poly (ε) -Force prolatatanes, polyethylene succinates, poly (mono-e8-hydroxyalkanoates), etc. may be used as appropriate. These polymers can be used alone or in appropriate combination. It is also possible to use a combination of both a biocompatible polymer and a biodegradable polymer as appropriate.
[0073] 8.インプラントの例示
体内に留置して所望の医療効果を発揮するインプラントとしては、例えば、ステント 、ステントグラフト、人工血管、カテーテル (バルーンカテーテルも含む)、人工心弁、 ペースメーカーのリード線、骨ネジ、人工骨、人工気管、縫合糸等が挙げられる。中 でも、生体の狭窄が起こるような血管、尿管、尿道、リンパ管等の脈管に留置して、十 分に内腔を確保するために使用されるステントは、本発明のインプラントの具体的態 様として好適である。ただし、実施形態としてのリファマイシン誘導体は、ステントに限 らず、当業者に周知のインプラントに適用可能である。そのようなインプラントの作成 方法等として、例えば、特開平 9— 38195号公報、特開 2003— 24452号公報に開 示されて!/、る当業者に公知の方法を採用することができる。 [0073] 8. Implant examples Examples of implants that can be placed in the body and exhibit desired medical effects include stents, stent grafts, artificial blood vessels, catheters (including balloon catheters), artificial heart valves, pacemaker leads, bone screws, artificial bones, artificial tracheas And sutures. Among them, a stent used to secure a sufficient lumen by being placed in a blood vessel, ureter, urethra, lymphatic vessel, or the like that causes stenosis of a living body is a specific example of the implant of the present invention. It is suitable as a mode. However, the rifamycin derivative as an embodiment is not limited to a stent but can be applied to implants well known to those skilled in the art. As a method for producing such an implant, for example, methods known to those skilled in the art disclosed in JP-A-9-38195 and JP-A-2003-24452 can be employed.
[0074] 9.実施形態としてのステント [0074] 9. Stent as an embodiment
以下、本発明の実施形態としての生体留置用ステントの全体的な構造の一例を図 1および図 2を参照して説明する。図 1はステントの展開図、図 2は模式図である。後 述するステントの作製方法およびステントに薬剤を固定する方法等として、例えば特 開 2005— 65981号公報、特開 2004— 222953号公報に開示されている当業者に 公知の方法を採用することができる。 Hereinafter, an example of the overall structure of a living indwelling stent as an embodiment of the present invention will be described with reference to FIG. 1 and FIG. Fig. 1 is a developed view of the stent, and Fig. 2 is a schematic view. As a method for producing a stent and a method for fixing a drug to the stent, which will be described later, for example, methods known to those skilled in the art disclosed in JP 2005-65981 A and JP 2004-222953 A may be employed. it can.
[0075] ステントとは、血管あるいは他の生体内管腔が狭窄もしくは閉塞することによって生 じる様々な疾患を治療するために、その狭窄もしくは閉塞部位を拡張し、その管腔サ ィズを維持するためにそこに留置する医療用具である。ステントは一般的には、血管 内にカテーテルによって挿入され、血管内腔の機械的支持を行なうために動脈壁の 不健全な部分と接触するように拡張される。また、ステントの拡張は、自身の物理的 特性 (形状記憶性、超弾性等)による自己拡張か、バルーンカテーテルの拡張力に よる強制的拡張か、いずれかの方法で拡張される。 [0075] In order to treat various diseases caused by stenosis or occlusion of blood vessels or other in-vivo lumens, stents are used to expand the stenosis or occlusion site and reduce the lumen size. It is a medical device that is placed there for maintenance. A stent is typically inserted into a blood vessel by a catheter and expanded to contact an unhealthy part of the arterial wall to provide mechanical support for the blood vessel lumen. In addition, stent expansion is performed by either self-expansion due to its own physical characteristics (shape memory property, superelasticity, etc.) or forced expansion due to the expansion force of the balloon catheter.
[0076] (9 1)材料 [0076] (9 1) Material
薬剤層をコーティングするためのベースとなるステントは、ステンレス鋼、 Ni— Ti合 金、 Cu—Al—Mn合金、 Co— Cr合金、マグネシウム合金、イリジウム、イリジウムォキ サイド、ニオブ等の金属力 作製可能である。ステントの作製は、当業者が通常作製 する方法と同様に、筒状の金属材料チューブをレーザーカットによりステントデザイン にカットし、電解研磨を施すことで作製することが可能である。しかし、作製方法はこ
の方法に限定されず、エッチングによる加工方法や、平板金属をレーザーカットして から丸めて溶接する方法、金属ワイヤーを編みこむ加工方法等の手法も可能である The stent used as the base for coating the drug layer can be made of metallic forces such as stainless steel, Ni-Ti alloy, Cu-Al-Mn alloy, Co-Cr alloy, magnesium alloy, iridium, iridium oxide, and niobium. is there. The stent can be manufactured by cutting a cylindrical metal material tube into a stent design by laser cutting and performing electropolishing in the same manner as a method normally manufactured by those skilled in the art. However, the manufacturing method is It is not limited to the above methods, but it is also possible to use a processing method by etching, a method in which a flat metal is laser cut and then rolled and welded, or a method in which a metal wire is knitted.
[0077] また、金属材料に限定されず、ポリオレフイン、ポリオレフインエラストマ一、ポリアミド 、ポリアミドエラストマ一、ポリウレタン、ポリウレタンエラストマ一、ポリエステル、ポリエ ステルエラストマー、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトンのような高 分子材料、セラミック、ハイドロキシアパタイト等の無機材料も使用され得る。 [0077] Further, the polymer is not limited to a metal material, but is a high molecule such as polyolefin, polyolefin elastomer, polyamide, polyamide elastomer, polyurethane, polyurethane elastomer, polyester, polyester elastomer, polyimide, polyamideimide, polyetheretherketone. Inorganic materials such as materials, ceramics, hydroxyapatite can also be used.
[0078] (9 2)ポリマー層 [0078] (9 2) Polymer layer
ステント表面には、薬剤を固定する等の目的のためにポリマー層を設けてもよい。 生体に用いられるものであるため、ポリマーとしては、生体適合性ポリマーや生分解 性ポリマーを用いるのが好まし 、。 A polymer layer may be provided on the stent surface for the purpose of fixing a drug or the like. Because it is used in living organisms, it is preferable to use biocompatible polymers or biodegradable polymers as the polymer.
[0079] ステント表面にポリマー層を設ける方法としては、ステントをポリマー溶液にディツビ ングする方法、ポリマー溶液をスプレーによりステントに噴霧する方法等の方法が使 用可能である。上述した方法はいずれもコーティングによる方法であるが、別途作製 したポリマーのシートをステント表面に貼り付けても構わない。コーティングによる場合 、ポリマー溶液を作製する際に使用する溶媒はポリマーの溶解性を有する任意の溶 媒を選択することができる。溶媒の揮発性等を調整するために 2つ以上の溶媒を用 いた混合溶媒としてもよい。ポリマー溶液の濃度は特に制限されず、ポリマー層の表 面性、必要となる薬剤保持量、保持させた薬剤の放出挙動等を勘案して任意の濃度 とすることができる。 [0079] As a method for providing a polymer layer on the stent surface, a method such as a method of dying a stent into a polymer solution or a method of spraying a polymer solution onto a stent by spraying can be used. The above-described methods are all coating methods, but a separately prepared polymer sheet may be attached to the stent surface. In the case of coating, an arbitrary solvent having a polymer solubility can be selected as the solvent used in preparing the polymer solution. In order to adjust the volatility of the solvent, a mixed solvent using two or more solvents may be used. The concentration of the polymer solution is not particularly limited, and can be set to any concentration in consideration of the surface properties of the polymer layer, the required amount of drug retained, the release behavior of the retained drug, and the like.
[0080] このような溶媒を用いて作製したポリマー溶液をステントに塗布し乾燥させる操作、 または、当該液にステントを浸漬し、乾燥させる操作を少なくとも 1回以上繰り返すこと により、ステントへポリマー層を設けることができる。スプレーによりコーティングを行う 際、ポリマー層の表面を均一化するためスプレーノズルとステントとの距離を 50cm以 下とすることが好ましぐ 10cm以上、 30cm以下がより好ましい。また、スプレーコー ティングまたはデイツビングを行う際ステントを回転させてもよぐポリマー層の表面を 均一化するためには 50rpm以上が好まし 、。 [0080] The polymer solution prepared using such a solvent is applied to the stent and dried, or the operation of immersing the stent in the solution and drying it is repeated at least once, thereby forming the polymer layer on the stent. Can be provided. When the coating is performed by spraying, the distance between the spray nozzle and the stent is preferably 50 cm or less in order to make the surface of the polymer layer uniform, more preferably 10 cm or more and 30 cm or less. Also, 50rpm or more is preferred to make the surface of the polymer layer even when the stent is rotated when spray coating or dating.
[0081] さらに、ポリマー層の表面性を制御するために、ステントにポリマー溶液を塗布する
途中および zまたは塗布した後に余分なポリマー溶液を除去してもよい。除去する 手段としては、振動、回転、減圧等が挙げられ、これらを複数組み合わせてもよい。 [0081] Further, in order to control the surface property of the polymer layer, a polymer solution is applied to the stent. Extra polymer solution may be removed during and after z or after application. Examples of the removing means include vibration, rotation, and decompression, and a plurality of these may be combined.
[0082] (9- 3)薬剤(リファマイシン誘導体)のコーティング [0082] (9-3) Coating of drug (rifamycin derivative)
ステント表面には、薬剤(リファマイシン誘導体)層が設けられる。 A drug (rifamycin derivative) layer is provided on the stent surface.
[0083] ステントに薬剤(リファマイシン誘導体)をコーティングする方法としては、薬剤を溶 液状態でステントに添加した後、溶媒を除去することによってステントに付着させるこ とができる。また、上述の生体適合性ポリマーもしくは、生分解性ポリマーを用いて、 薬剤をステントに付着させることも可能である。例えば、薬剤(リファマイシン誘導体)と 共に生体適合性ポリマーおよび Zまたは生分解性ポリマーを、液状または適切な溶 媒、例えば、水、緩衝液、酢酸、塩酸、メタノール、エタノール、アセトン、ァセトニトリ ル、塩化メチレン、クロ口ホルム、テトラヒドロフラン等の溶液としてステントに接触させ た後、溶媒を除去することにより生体適合性ポリマーもしくは、生分解性ポリマーを用 Vヽたステントを作製することができる。 [0083] As a method of coating a stent with a drug (rifamycin derivative), the drug can be attached to the stent by removing the solvent after adding the drug to the stent in a solution state. It is also possible to attach the drug to the stent using the aforementioned biocompatible polymer or biodegradable polymer. For example, a biocompatible polymer and Z or biodegradable polymer together with a drug (rifamycin derivative) can be used in a liquid or suitable solvent, such as water, buffer, acetic acid, hydrochloric acid, methanol, ethanol, acetone, acetonitrile, A stent using a biocompatible polymer or a biodegradable polymer can be prepared by contacting the stent as a solution of methylene chloride, chloroform, tetrahydrofuran, etc. and then removing the solvent.
[0084] より具体的な例としては、生体適合性ポリマーおよび Zまたは生分解性ポリマーを 低沸点溶媒に溶解して調製した溶液に薬剤を溶解または懸濁して得られる液でステ ントをコーティングし、乾燥させる操作または当該液にステントを浸漬し乾燥させる操 作を少なくとも 1回以上繰り返すことにより、ステントへの薬剤の付着および生体適合 性ポリマーおよび Zまたは生分解性ポリマーによるコーティングをすることができる。 コーティングの方法としては、ステントを溶液にデイツビングする方法、もしくはスプレ 一により噴霧する方法などが実施可能である。 [0084] As a more specific example, a stent is coated with a solution obtained by dissolving or suspending a drug in a solution prepared by dissolving a biocompatible polymer and Z or a biodegradable polymer in a low boiling point solvent. By repeating the operation of drying or dipping the stent in the liquid and drying it at least once, the drug can be attached to the stent and coated with a biocompatible polymer and Z or biodegradable polymer. . As a coating method, a method of dating a stent into a solution or a method of spraying with a spray can be used.
[0085] コーティング層の厚みに関しては、コーティング層を厚くすると血管内での凹凸から 、血栓の生成を促進してしまう可能性があり、再狭窄率を上昇させてしまう可能性が 存在する。しかし、治療に必要な十分な薬量をコーティングするためにはある程度の 厚みを必要とすることになる。この観点から、コーティング層の厚みは 1 m以上、 10 μ m以下、更には 3 μ m以上、 5 μ m以下であることが好ましい。 [0085] Regarding the thickness of the coating layer, when the coating layer is thickened, there is a possibility that the formation of a thrombus may be promoted due to unevenness in the blood vessel, and the restenosis rate may be increased. However, a certain amount of thickness is required to coat the sufficient dose required for treatment. From this viewpoint, the thickness of the coating layer is preferably 1 m or more and 10 μm or less, more preferably 3 μm or more and 5 μm or less.
実施例 Example
[0086] 以下、インプラントの作成例として、ステントを例示して具体的に説明するが、本発 明はこれに限定されるものではない。
[0087] ベースとなるステントは、当業者が通常作製する方法と同様に、ステンレス鋼の筒状 チューブをレーザーカットによりステントデザインにカットし、電解研磨を施すことで作 製した。使用したステントの展開図を図 1に、模式図を図 2に示した。本ステントの構 造は、バルーンエタスパンダブルタイプと言われる、カテーテルの先端部付近にバル ーンを備えたノ レーンカテーテルを使ってステントを拡張'留置するタイプのものとし た。ステントは、バルーンカテーテルのバルーン部分に収縮された状態でセットされ、 バルーンカテーテルを用いて目的個所までデリバリーさせた後、バルーンを拡張する ことでステントを拡張 ·留置する。 [0086] Hereinafter, a stent will be specifically described as an example of producing an implant, but the present invention is not limited to this. [0087] The base stent was manufactured by cutting a stainless steel cylindrical tube into a stent design by laser cutting and performing electropolishing, in the same manner as a method usually produced by those skilled in the art. The developed view of the stent used is shown in Fig. 1, and the schematic diagram is shown in Fig. 2. The structure of this stent was a balloon etaspan double type, which is a type in which the stent is expanded and indwelled using a none catheter equipped with a balloon near the tip of the catheter. The stent is set in a deflated state on the balloon portion of the balloon catheter. After delivery to the target site using the balloon catheter, the stent is expanded and placed by expanding the balloon.
[0088] 以下、ステントの作製例として 3つの実施形態を説明する。 [0088] Hereinafter, three embodiments will be described as examples of manufacturing a stent.
[0089] (ステント作製例 1) [0089] (Stent production example 1)
ベースとなる上記のステントに前記ポリエーテル型ポリウレタン榭脂を用いてリファラ ジルをコ一ティングしたものを作製例 1とする。 A stent obtained by coating rifalazil on the above-described stent as a base using the polyether-type polyurethane resin is referred to as Production Example 1.
[0090] コーティングの手順は、まず、ベースとなるステントにエアブラシを使用してウレタン 溶液を吹き付け、その後 60°C、 10分間の乾燥を行う。前記、吹き付け '乾燥を 5回繰 り返し、最終的にステント 1個あたり 100 gの前記ウレタンをステントにコーティング する。次に、前記ウレタンコーティング後のステントをリファラジル溶液に 1時間浸漬し 、乾燥させる。 [0090] The coating procedure is as follows. First, the urethane solution is sprayed onto the base stent using an airbrush, followed by drying at 60 ° C for 10 minutes. The spraying and drying are repeated 5 times, and finally 100 g of the urethane per stent is coated on the stent. Next, the urethane-coated stent is immersed in a rifalazil solution for 1 hour and dried.
[0091] (ステント作製例 2) [0091] (Stent production example 2)
ステント基材は、当業者が通常作製する方法と同様に、ステンレス鋼 (SUS316L) の内径 1. 50mm,外径 1. 80mmの筒状チューブをレーザーカットによりステントデ ザインにカットし、電解研磨を施すことで作製する。ステントの長さが 13mm、厚みが 1 20 ^ m,拡張後の公称径が 3. 5mmとなるデザインとする。ステント基材の内表面、 外表面、側表面を合わせた全表面積は 88. 5mm2である。 For the stent base material, a stainless steel (SUS316L) cylindrical tube with an inner diameter of 1.50 mm and an outer diameter of 1.80 mm is cut into a stent design by laser cutting and electropolished in the same manner as those usually produced by those skilled in the art. To make. The design is such that the length of the stent is 13 mm, the thickness is 120 mm, and the nominal diameter after expansion is 3.5 mm. Inner surface, an outer surface of the stent base material, the total surface area of the combined side surface is 88. 5 mm 2.
[0092] 生分解性ポリマーとして乳酸ーグリコール酸共重合体 (乳酸 Zグリコール酸 =85m ol%Zl5mol%)、薬剤としてリファラジルをクロ口ホルムに溶解させ、薬剤濃度 Z生 分解性高分子濃度 =0. 50wt%/0. 50wt%である溶液を作製する。直径 100 mのステンレス製ワイヤーをステントの一端に固定し、他端を直径 2mmのステンレス 棒に固定する。ステントを接続していない側のステント棒端部をモーター攪拌機に接
続することでステントを長さ方向に鉛直に保持する。モーター攪拌機を用いてステント を lOOrpmで回転させながら、ノズル径 0. 3mmのスプレーガンを用いて作製した溶 液をステントに吹き付け、溶液をステントに付着させる。スプレーガンのノズルからステ ントまでの距離は 75mm、吹きつけ時のエアー圧力は 0. 15MPaとする。吹きつけ後 に室温で 1時間真空乾燥する。スプレー時間を調整することにより、ステント 1個あたり の生分解性ポリマー及び薬剤の重量を調整する。 [0092] Lactic acid-glycolic acid copolymer (lactic acid Z glycolic acid = 85 mol% Zl5 mol%) as biodegradable polymer, rifalazil as drug is dissolved in black mouth form, drug concentration Z biodegradable polymer concentration = 0. Make a solution that is 50wt% / 0.50wt%. Secure a 100 m diameter stainless steel wire to one end of the stent and the other end to a 2 mm diameter stainless steel rod. Connect the end of the stent bar to which the stent is not connected to the motor agitator. By continuing, the stent is held vertically in the length direction. While rotating the stent at lOOrpm using a motor agitator, spray the solution prepared using a spray gun with a nozzle diameter of 0.3 mm onto the stent, and attach the solution to the stent. The distance from the spray gun nozzle to the stent is 75 mm, and the air pressure when spraying is 0.15 MPa. After spraying, vacuum dry at room temperature for 1 hour. Adjust the spray time to adjust the weight of biodegradable polymer and drug per stent.
[0093] (ステント作製例 3) [0093] (Stent production example 3)
ステント基材は、当業者が通常作製する方法と同様に、ステンレス鋼 (SUS316L) の内径 1. 50mm,外径 1. 80mmの筒状チューブをレーザーカットによりステントデ ザインにカットし、電解研磨を施すことで作製した。ステントの長さが 18mm、厚みが 1 20 ^ m,拡張後の公称径が 3. 5mmとなるデザインとした。生分解性ポリマーとして 乳酸 グリコール酸共重合体(乳酸 Zグリコール酸 = 85mol%/l 5mol%、分子量 84, 000)、薬剤としてリファラジルをアセトンに溶解させ、リファラジル Z乳酸一グリコ 一ル酸共重合体重量比が 40Z60、 30/70, 20/80, 10Z90の 4種類の塗布溶 液を作製した。エアブラシを用いて作製した塗布溶液をステントに吹き付け、塗布溶 液をステントに付着させた。この時、吹きつけ時のエアー圧力は 2kgZcm2とし、スプ レー時間を調整することにより、ステント 1個あたりの生分解性ポリマー及び薬剤の重 量を調整した。吹きつけ後、室温で 3時間真空乾燥した。作成したコーティングステン トの外観を走査型電子顕微鏡 (SEM)で観察した。また、ステントにバルーンを挿入 し、 8atmの圧力で外径 3. 5mmとなるように拡張した後、 SEMにて外観を観察した For the stent base material, a stainless steel (SUS316L) cylindrical tube with an inner diameter of 1.50 mm and an outer diameter of 1.80 mm is cut into a stent design by laser cutting and electropolished in the same manner as those usually produced by those skilled in the art. It was produced by. The stent was designed to have a length of 18 mm, a thickness of 120 mm, and a nominal diameter of 3.5 mm after expansion. Lactic acid glycolic acid copolymer (lactic acid Z glycolic acid = 85mol% / l 5mol%, molecular weight 84,000) as biodegradable polymer, rifalazil dissolved in acetone as drug, rifalazil Z lactic acid monoglycolic acid copolymer Four coating solutions with weight ratios of 40Z60, 30/70, 20/80, and 10Z90 were prepared. The coating solution prepared using an airbrush was sprayed onto the stent to attach the coating solution to the stent. At this time, the air pressure at the time of spraying was 2 kgZcm2, and the weight of biodegradable polymer and drug per stent was adjusted by adjusting the spray time. After spraying, it was vacuum dried at room temperature for 3 hours. The appearance of the prepared coating stent was observed with a scanning electron microscope (SEM). In addition, a balloon was inserted into the stent and expanded to an outer diameter of 3.5 mm at a pressure of 8 atm.
[0094] 図 7は、リファラジル Z乳酸ーグリコール酸共重合体重量比が 20Z80の塗布溶液 を用いてコーティングしたステント表面の SEM画像である。図 7に示すとおり、ステン ト拡張前後ともに、コーティング表面は滑らかで欠落 ·剥離 ·亀裂部位などは認められ なかった。また、同じ溶解液組成で、コーティング重量を 810 g/ステントまで増加さ せても同様の表面性を示した。 [0094] FIG. 7 is an SEM image of the surface of a stent coated with a coating solution having a rifalazil Z lactic acid-glycolic acid copolymer weight ratio of 20Z80. As shown in Fig. 7, the coating surface was smooth both before and after the stent expansion, and no cracks, delamination or cracks were found. In addition, the same surface properties were exhibited even when the coating weight was increased to 810 g / stent with the same solution composition.
[0095] 以下の実施例ではヒト冠動脈平滑筋細胞 (CASMC)及びヒト冠動脈内皮細胞 (C AEC)の細胞増殖抑制試験を利用して、本発明の実施形態としてのリファマイシン誘
導体が血管内皮細胞に比べ血管平滑筋細胞に対して強い増殖抑制作用を示すこと を説明する。 [0095] In the following examples, rifamycin induction as an embodiment of the present invention is performed using a cytostatic test of human coronary artery smooth muscle cells (CASMC) and human coronary artery endothelial cells (CAEC). Explain that the conductor has a stronger inhibitory effect on vascular smooth muscle cells than vascular endothelial cells.
[0096] (実施例 1) CASMCの培養 [0096] (Example 1) CASMC culture
CASMC (タカラバイオ社製)、付属の培地(SmGM— 2 BulletKit)を用いて、 1 OOmmディッシュにて 37°Cの 5%CO条件下で 70 80%コンフルェントに達するま Using CASMC (manufactured by Takara Bio Inc.) and the attached medium (SmGM—2 BulletKit), 70 80% confluence at 37 ° C in 5% CO using 1 OOmm dish.
2 2
·¾ ' し/ c> · ¾ 'and c>
[0097] (実施例 2) CAECの培養 [Example 2] CAEC culture
CAEC (タカラバイオ社製)、付属の培地(EGM— 2— MV BulletKit)を用いて、 100mmディッシュにて 37°Cの 5%CO条件下で 70 80%コンフルェントに達する CAEC (manufactured by Takara Bio Inc.), using the attached medium (EGM-2—MV BulletKit), reaches 70 80% confluence in 5% CO at 37 ° C in a 100mm dish
2 2
. ί·口 し/こ o .
[0098] (実施例 3) CASMC及び CAEC増殖抑制試験 [0098] (Example 3) CASMC and CAEC growth inhibition test
上記 70 80%コンフルェントに達した CASMC及び CAECを、サブカルチャー試 薬セット (タカラバイオ社製)を用いて 100mmディッシュより回収した。得られた細胞 を 96穴プレートに播種し、 37°Cの 5%CO条件下で 24時間培養した。次に、 24時間 CASMC and CAEC that reached 70 80% confluence were collected from a 100 mm dish using a subculture reagent set (manufactured by Takara Bio Inc.). The obtained cells were seeded in a 96-well plate and cultured for 24 hours at 37 ° C in 5% CO. Next, 24 hours
2 2
の血清非存在条件下による細胞の栄養枯渴状態を設定した後、種々の濃度(10 1 00 1, OOOnM)のリファラジルを含む上述の培地で 48時間培養を行った。培養を 行った後、ロシュ'ダイァグノスティック社の細胞増殖 ELISA(BrdU) (発色)を用いて BrdU取り込み能を測定した。 BrdU取り込み能は、細胞増殖のパラメーターである D NA合成能を表す。 After setting the state of nutrient depletion of cells under the absence of serum, the cells were cultured for 48 hours in the above-mentioned medium containing various concentrations (10 1 00 1, OOOnM) of rifalazil. After culturing, the BrdU uptake ability was measured using a cell growth ELISA (BrdU) (color development) manufactured by Roche Diagnostics. BrdU uptake ability represents DNA synthesis ability, which is a parameter of cell proliferation.
[0099] 図 3および後述する図 4 6は、薬剤の各濃度と両細胞の増殖抑制作用との関係を 示すグラフである。縦軸は BrdU取り込み能を表す吸光度であり、薬剤非添加群 (コ ントロール)での吸光度に対する各濃度における値をグラフにした。また、グラフ中の [0099] FIG. 3 and FIG. 46, which will be described later, are graphs showing the relationship between each concentration of the drug and the growth inhibitory action of both cells. The vertical axis represents the absorbance representing the BrdU uptake ability, and the value at each concentration relative to the absorbance in the non-drug-added group (control) was graphed. Also, in the graph
、 * *は統計学的に有意であることを示す。統計処理は、例示としてダネット検定を 行った。 , ** indicates statistical significance. For statistical processing, Dunnett's test was performed as an example.
[0100] 図 3に示されるように、リファラジルは、リファラジル非添加群と比べて、 100および 1 , OOOnMにおいて、統計学的に有意に CASMCの増殖抑制を示した。 [0100] As shown in FIG. 3, rifalazil showed statistically significant inhibition of CASMC growth at 100 and 1, OOOnM, compared to the group without rifalazil.
[0101] 一方、図 4に示されるように、リファラジルは、リファラジル非添加群と比べて、統計 学的に有意に CAECの増殖抑制を示さな力つた。
[0102] これらのこと力ら、 100および 1, OOOnM〖こおいて、リファラジルは CAECに対して 全く増殖を抑制しないが、 CASMCに対しては増殖を抑制することが示された。 [0101] On the other hand, as shown in FIG. 4, rifalazil was statistically significantly stronger than the rifalazil non-added group and showed no CAEC growth inhibition. [0102] In view of these facts, it was shown that rifalazil did not inhibit growth at all for CAEC, but inhibited growth for CASMC in 100 and 1, OOOnM.
[0103] (実施例 4) [0103] (Example 4)
実施例 4では、被験物質をリファラジルに替えて KRM1657、 KRM1671, KRM1 689、 KRM1690とし、被験物質添加後の培養時間を 72時間とした他は上記実施 例 3と同じ方法で CASMC及び CAEC増殖抑制試験を行つた。 In Example 4, CASMC and CAEC growth inhibition tests were performed in the same manner as in Example 3 above, except that KRM1657, KRM1671, KRM1 689, and KRM1690 were used instead of rifalazil and the incubation time after addition of the test substance was 72 hours. I went.
[0104] 図 8〜11は、薬剤の各濃度と両細胞の増殖抑制作用との関係を示すグラフである 。実線が CASMC、破線が CAECを示す。縦軸は BrdU取り込み能を表す吸光度で あり、リファラジル非添加群 (コントロール)での吸光度に対する各濃度における値を グラフにした。また、グラフ中の、 * *は統計学的に有意であることを示す。統計処理 は、例示としてダネット検定を行った。 FIGS. 8 to 11 are graphs showing the relationship between each concentration of the drug and the growth inhibitory action of both cells. The solid line indicates CASMC and the broken line indicates CAEC. The vertical axis represents the absorbance representing the BrdU uptake ability, and the value at each concentration relative to the absorbance in the rifalazil non-added group (control) was graphed. In the graph, ** indicates statistical significance. For statistical processing, Dunnett's test was performed as an example.
[0105] 図 8〜: L 1〖こ示されるよう〖こ、リファラジル同様、試験を実施した 4種類のリファマイシ ン誘導体は CAECに比べ CASMCに対して強く増殖を抑制した。 [0105] Fig. 8 ~: As shown in L 1, as with rifalazil, the four rifamycin derivatives tested tested strongly inhibited proliferation against CASMC compared to CAEC.
[0106] (比較例 1) [0106] (Comparative Example 1)
比較例 1では、被験物質をリファラジルに替えてラパマイシン (Rapamycin)とした 他は、上記実施例 3と同じ方法で CASMC及び CAEC増殖抑制試験を行った。 In Comparative Example 1, CASMC and CAEC growth inhibition tests were conducted in the same manner as in Example 3 except that the test substance was changed to rifalazil and changed to rapamycin.
[0107] 図 5からわ力るように、ラパマイシンは CASMCの増殖をラパマイシン非添加群と比 ベて実施した全ての濃度(1、 10、 100、 1, OOOnM)において、統計学的に有意に 増殖抑制を示した。 [0107] As can be seen from Fig. 5, rapamycin was statistically significant at all concentrations (1, 10, 100, 1, OOOnM) in which the growth of CASMC was compared to the group without addition of rapamycin. Inhibited growth.
[0108] また、図 6からわ力るように、ラパマイシンは CAECの増殖をラパマイシン非添加群 と比べて実施した全ての濃度(1、 10、 100、 1, OOOnM)において、統計学的に有 意に増殖抑制を示した。 [0108] In addition, as can be seen from Fig. 6, rapamycin is statistically significant at all concentrations (1, 10, 100, 1, OOOnM) at which CAEC growth was performed compared to the group without rapamycin. Intentionally, growth suppression was shown.
[0109] これらのことから、ラパマイシンは CAEC及び CASMCのいずれの細胞の増殖も抑 制することが示された。 [0109] These results indicate that rapamycin inhibits the growth of both CAEC and CASMC cells.
[0110] 以上より、ジファラジル、 KRM1657, KRM1671, KRM1689, KRM1690は CA ECに比べ CASMCに対して強く細胞増殖を抑制することがわ力つた。 [0110] From the above, difaradil, KRM1657, KRM1671, KRM1689, and KRM1690 were more potent than CAS to suppress cell proliferation compared to CASMC.
[0111] 従って、リファラジル、 KRM1657, KRM1671, KRM1689、 KRM1690をコー ティングしたインプラント(例えば、上記作製例 1〜3のステントを含む)は、内皮再生
を阻害しない一方で血管平滑筋細胞の増殖を抑制することが推測される。つまり、ィ ンプラント(例えば、上記作製例 1、作製例 2または作成例 3のステント)は抗血栓性及 び組織適合性に優れ、狭窄を抑制することが可能であると考えられる。
[0111] Therefore, implants coated with rifalazil, KRM1657, KRM1671, KRM1689, and KRM1690 (for example, including the stents of Preparation Examples 1 to 3 above) undergo endothelial regeneration. It is presumed to suppress the proliferation of vascular smooth muscle cells while not inhibiting the above. In other words, the implant (for example, the stent of Preparation Example 1, Preparation Example 2, or Preparation Example 3) is excellent in antithrombogenicity and tissue compatibility and is considered to be able to suppress stenosis.
Claims
[化 1] [Chemical 1]
(式 (I)中、 X1は酸素原子または硫黄原子を示し、 R1はァセチル基または水素原子を 示し、 R2はメチル基またはヒドロキシメチル基を示し、
R4は同一または相異なり、 水酸基、水素原子、炭素数 1から 3のアルキル基、下記式 (II)で表される基、または、 下記式 (IV)で表される基を示す。 )で表される化合物またはその生理学的に許容さ
れる塩であることを特徴とする請求項 1から 5のいずれかに記載のインプラント。 (In Formula (I), X 1 represents an oxygen atom or a sulfur atom, R 1 represents a acetyl group or a hydrogen atom, R 2 represents a methyl group or a hydroxymethyl group, R 4 is the same or different and represents a hydroxyl group, a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, a group represented by the following formula (II), or a group represented by the following formula (IV). ) Or a physiologically acceptable compound thereof The implant according to any one of claims 1 to 5, wherein the implant is a salt.
[化 3] [Chemical 3]
R7 R8 R 7 R 8
— 」X2 (IV) 上記式 (II)中、 R5、 R6は同一または相異なり、炭素数 1から 3のアルキル基、または 下記式 (ΠΙ)で表される基を示す。 — “X 2 (IV) In the above formula (II), R 5 and R 6 are the same or different and represent an alkyl group having 1 to 3 carbon atoms or a group represented by the following formula (ΠΙ).
(式 (m)中、 jは 1から 3の整数を示す。 ) (In the formula (m), j represents an integer of 1 to 3.)
上記式 (IV)中、 R7、 R8は同一または相異なり、水素原子または炭素数 1から 3のァ ルキル基を示し、 X2は酸素原子、硫黄原子、カルボニル基、下記式 (V)で表される基 、または、下記式 (IV)で表される基を示す。 In the above formula (IV), R 7 and R 8 are the same or different and represent a hydrogen atom or an alkyl group having 1 to 3 carbon atoms, X 2 represents an oxygen atom, a sulfur atom, a carbonyl group, and the following formula (V) Or a group represented by the following formula (IV).
[化 6] [Chemical 6]
(0) , (0),
(VI) (VI)
: N R" 上記式 (V)中、 R9、 R1Qは同一または相異なり、水素原子、炭素数 1から 3のアルキ
ル基、または R9と R1Qが結合して下記式で表される基を示す。 : NR "In the above formula (V), R 9 and R 1Q are the same or different and are a hydrogen atom, an alkyl having 1 to 3 carbon atoms. Or a group represented by the following formula, wherein R 9 and R 1Q are bonded.
(CH ) — (CH) —
2 k 2k
(式中、 kは 1から 4の整数を示す。) (In the formula, k represents an integer of 1 to 4.)
上記式 (VI)中、 mは 0または 1を示し、 R11は水素原子、炭素数 1から 7のアルキル基 、または下記式で表される基を示す。 In the above formula (VI), m represents 0 or 1, R 11 represents a hydrogen atom, an alkyl group having 1 to 7 carbon atoms, or a group represented by the following formula.
(CH ) X3 (CH) X 3
2 n 2 n
(式中、 nは 1から 4の整数を示し、 X3は炭素数 1から 3のアルコキシ基、ビニル基、ェ チュル基、または下記式 (VII)で表される基を示す。 (In the formula, n represents an integer of 1 to 4, X 3 represents an alkoxy group having 1 to 3 carbon atoms, a vinyl group, an ethyl group, or a group represented by the following formula (VII).
[7] 前記リファマイシン誘導体は、前記式前記式 (I)の X1が酸素原子であり、 R1がァセチ ル基または水素原子を示し、 R2はメチル基またはヒドロキシメチル基を示し、
R4は 同一または相異なり、水酸基、水素原子、炭素数 1から 3のアルキル基、または式 (VI II) : [7] In the rifamycin derivative, X 1 in the formula (I) is an oxygen atom, R 1 represents an acetyl group or a hydrogen atom, R 2 represents a methyl group or a hydroxymethyl group, R 4 may be the same or different and is a hydroxyl group, a hydrogen atom, an alkyl group having 1 to 3 carbon atoms, or a formula (VI II):
[化 8] [Chemical 8]
— N R12 (VIII) — NR 12 (VIII)
(式 (VIII)中、 R12は水素原子、または炭素数 1から 7のアルキル基を示す)で表される リファマイシン誘導体またはその生理学的に許容される塩であることを特徴とする請 求項 6に記載のインプラント。 (In formula (VIII), R 12 represents a hydrogen atom or an alkyl group having 1 to 7 carbon atoms), or a physiologically acceptable salt thereof. Item 6. The implant according to Item 6.
[8] 前記リファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R1がァセチル基で あり、 R2力メチル基であり、 R3が水酸基であり、 R4が式 (IX): [8] In the rifamycin derivative, X 1 in the formula (I) is an oxygen atom, R 1 is a acetyl group, R 2 is a methyl group, R 3 is a hydroxyl group, and R 4 is a formula (IX):
[化 9] CH2CH (CH3) 2 [Chemical 9] CH 2 CH (CH 3 ) 2
で表されるリファフンノレ {Rifalazil、 3'— Hydroxy— 5'— (4— isobutyl—l—piperazinyl)benzoxaz inorifamycin, KRM 1648 }またはその生理学的に許容される塩であることを特徴とす る請求項 7に記載のインプラント。 Claims characterized in that it is a rifafunnel {Rifalazil, 3'— Hydroxy— 5′— (4—isobutyl—l—piperazinyl) benzoxaz inorifamycin, KRM 1648} or a physiologically acceptable salt thereof The implant according to 7.
前記リファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R1がァセチル基で あり、 R メチル基であり、 R3が水酸基であり、 R4が式 (X): In the rifamycin derivative, X 1 in the formula (I) is an oxygen atom, R 1 is a acetyl group, R is a methyl group, R 3 is a hydroxyl group, and R 4 is a formula (X):
[化 10] [Chemical 10]
—— N CH,CH„CH, (X) —— N CH, CH „CH, (X)
2 2 3 で表される KRM1657またはその生理学的に許容される塩であることを特徴とする請 求項 7に記載のインプラント。 The implant according to claim 7, which is KRM1657 represented by 2 2 3 or a physiologically acceptable salt thereof.
前記リファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R1が水酸基であり、 R2力メチル基であり、 R3が水酸基であり、 R4が式 (IX): In the rifamycin derivative, X 1 in the formula (I) is an oxygen atom, R 1 is a hydroxyl group, R 2 force methyl group, R 3 is a hydroxyl group, and R 4 is a formula (IX):
[化 11]
で表される KRM1671またはその生理学的に許容される塩であることを特徴とする請 求項 7に記載のインプラント。 [Chemical 11] The implant according to claim 7, wherein the implant is KRM1671 or a physiologically acceptable salt thereof.
前記リファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R1がァセチル基で あり、 R2力 Sメチル基であり、 R3および R4が式 (IX): In the rifamycin derivative, X 1 in the formula (I) is an oxygen atom, R 1 is a acetyl group, R 2 force S methyl group, R 3 and R 4 are represented by formula (IX):
[12] 前記リファマイシン誘導体は、前記式 (I)の X1が酸素原子であり、 R1がァセチル基で あり、 R2がヒドロキシメチル基であり、 R3が水酸基であり、 R4が式 (IX):
[化 13]
で表される KRM1690またはその生理学的に許容される塩であることを特徴とする請 求項 7に記載のインプラント。 [12] In the rifamycin derivative, X 1 in the formula (I) is an oxygen atom, R 1 is a acetyl group, R 2 is a hydroxymethyl group, R 3 is a hydroxyl group, and R 4 is Formula (IX): [Chemical 13] The implant according to claim 7, wherein the implant is KRM1690 or a physiologically acceptable salt thereof.
[13] 前記リファマイシン誘導体が、生体適合性ポリマー若しくは生分解性ポリマー中に存 在することを特徴とする請求項 1から 12のいずれかに記載のインプラント。 13. The implant according to any one of claims 1 to 12, wherein the rifamycin derivative is present in a biocompatible polymer or a biodegradable polymer.
[14] 前記生分解性ポリマーが乳酸ーグリコール酸共重合体であることを特徴とする請求 項 13に記載のインプラント。 14. The implant according to claim 13, wherein the biodegradable polymer is a lactic acid-glycolic acid copolymer.
[15] 前記リファマイシン誘導体が小胞内に充填されていることを特徴とする請求項 1から 1[15] The rifamycin derivative is filled in a vesicle.
4の!、ずれかに記載のインプラント。 4! Implants listed in the gap.
[16] 前記小胞がマイクロ粒子、ナノ粒子またはリボソームの形態であることを特徴とする請 求項 15に記載のインプラント。 [16] The implant according to claim 15, wherein the vesicle is in the form of a microparticle, a nanoparticle or a ribosome.
[17] 前記インプラントがステントである請求項 1から 16のいずれかに記載のインプラント。 17. The implant according to any one of claims 1 to 16, wherein the implant is a stent.
[18] 生体適合性ポリマー若しくは生分解性ポリマーとリファマイシン誘導体とを含む溶液 を作製する工程、該溶液をインプラントに塗布若しくは保持する工程を含むことを特 徴とするインプラントの製法。 [18] A method for producing an implant, comprising a step of preparing a solution containing a biocompatible polymer or biodegradable polymer and a rifamycin derivative, and a step of applying or holding the solution to the implant.
[19] 請求項 1〜18のいずれかの前記インプラントを用いた血管性疾患の治療方法。
[19] A method for treating a vascular disease using the implant according to any one of claims 1 to 18.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006-171655 | 2006-06-21 | ||
JP2006171655 | 2006-06-21 | ||
JP2006321177 | 2006-11-29 | ||
JP2006-321177 | 2006-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2007148714A1 true WO2007148714A1 (en) | 2007-12-27 |
Family
ID=38833454
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2007/062385 WO2007148714A1 (en) | 2006-06-21 | 2007-06-20 | Implant using rifamycin derivative |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2007148714A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010101072A1 (en) * | 2009-03-02 | 2010-09-10 | 株式会社日本ステントテクノロジー | Drug releasing stent |
US8641756B2 (en) | 2007-09-04 | 2014-02-04 | Japan Stent Technology Co., Ltd. | Sustained drug-releasing stent |
WO2019103097A1 (en) * | 2017-11-22 | 2019-05-31 | テルモ株式会社 | Drug transfer device and drug layer formation method |
WO2019103098A1 (en) * | 2017-11-22 | 2019-05-31 | テルモ株式会社 | Drug loading instrument and drug layer formation method |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05502179A (en) * | 1990-02-28 | 1993-04-22 | メドトロニック インコーポレーテッド | Tubular organ drug elution device |
JPH09216824A (en) * | 1995-12-08 | 1997-08-19 | Kanegafuchi Chem Ind Co Ltd | Therapeutic agent for chlamydia infectious disease |
JP2004075665A (en) * | 2002-06-21 | 2004-03-11 | Japan Science & Technology Corp | New use of ansamycin-based antibiotic substance and method for screening new angiogenesis-inhibiting agent |
JP2006507021A (en) * | 2002-03-18 | 2006-03-02 | メドトロニック・エイヴイイー・インコーポレーテッド | A medical device for delivering an antiproliferative composition to an anatomical site at risk of restenosis |
JP2006515294A (en) * | 2002-12-12 | 2006-05-25 | アクティブバイオティクス インコーポレイティッド | Methods and reagents for treating or preventing atherosclerosis and related diseases |
WO2007044435A2 (en) * | 2005-10-06 | 2007-04-19 | Activbiotics, Incorporated | Treatment of peripheral arterial occlusive disease |
-
2007
- 2007-06-20 WO PCT/JP2007/062385 patent/WO2007148714A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05502179A (en) * | 1990-02-28 | 1993-04-22 | メドトロニック インコーポレーテッド | Tubular organ drug elution device |
JPH09216824A (en) * | 1995-12-08 | 1997-08-19 | Kanegafuchi Chem Ind Co Ltd | Therapeutic agent for chlamydia infectious disease |
JP2006507021A (en) * | 2002-03-18 | 2006-03-02 | メドトロニック・エイヴイイー・インコーポレーテッド | A medical device for delivering an antiproliferative composition to an anatomical site at risk of restenosis |
JP2004075665A (en) * | 2002-06-21 | 2004-03-11 | Japan Science & Technology Corp | New use of ansamycin-based antibiotic substance and method for screening new angiogenesis-inhibiting agent |
JP2006515294A (en) * | 2002-12-12 | 2006-05-25 | アクティブバイオティクス インコーポレイティッド | Methods and reagents for treating or preventing atherosclerosis and related diseases |
WO2007044435A2 (en) * | 2005-10-06 | 2007-04-19 | Activbiotics, Incorporated | Treatment of peripheral arterial occlusive disease |
Non-Patent Citations (5)
Title |
---|
CAMPBELL L.A. ET AL.: "Chlamydia pneumoniae - An infectious risk factor for atherosclerosis?", NATURE REVIEWS MICROBIOLOGY, vol. 2, no. 1, January 2004 (2004-01-01), pages 23 - 32, XP003020236 * |
HAMMERSCHLAG M.R.: "Advances in the management of Chlamydia pneumoniae infections", EXPERT REVIEW OF ANTI-INFECTIVE THERAPY, vol. 1, no. 3, 2003, pages 493 - 503, XP003020238 * |
OBATA S. ET AL.: "Gegyo Daidomyakuryu ni Taisuru Stent-graft Naisojutsu 2 Nengo ni Stent-graft Kansen o Hassho shita 1 Rei", OFFICIAL PUBLICATION OF THE JAPANESE SOCIETY FOR CARDIOVASCULAR SURGERY, vol. 35, no. 1, pages 33 - 36, XP003020235 * |
RUPP J. ET AL.: "Rifalazil, a novel benzoxazinorifamycin, is active against Chlamydia pneumoniae and reduces transmission of chlamydial infection from monocytes to endothelium", ABSTRACTS OF THE INTERSCIENCE CONFERENCE ON ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, vol. 43, 2003, pages 208 + ABSTR. NO. E-1710, XP003020237 * |
SANDERSON S. ET AL.: "Benzoquinone ansamycin heat shock protein 90 inhibitors modulate multiple functions required for tumor angiogenesis", MOL. CANCER THER., vol. 5, no. 3, March 2006 (2006-03-01), pages 522 - 532, XP003020239 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8641756B2 (en) | 2007-09-04 | 2014-02-04 | Japan Stent Technology Co., Ltd. | Sustained drug-releasing stent |
US8968392B2 (en) | 2007-09-04 | 2015-03-03 | Japan Stent Technology Co., Ltd. | Method of inhibiting vascular intimal hyperplasia using stent |
US9040111B2 (en) | 2007-09-04 | 2015-05-26 | Japan Stent Technology Co., Ltd. | Method of making a stent |
WO2010101072A1 (en) * | 2009-03-02 | 2010-09-10 | 株式会社日本ステントテクノロジー | Drug releasing stent |
US8591571B2 (en) | 2009-03-02 | 2013-11-26 | Japan Stent Technology Co., Ltd. | Drug-eluting stent |
JP5597625B2 (en) * | 2009-03-02 | 2014-10-01 | 株式会社日本ステントテクノロジー | Drug eluting stent |
WO2019103097A1 (en) * | 2017-11-22 | 2019-05-31 | テルモ株式会社 | Drug transfer device and drug layer formation method |
WO2019103098A1 (en) * | 2017-11-22 | 2019-05-31 | テルモ株式会社 | Drug loading instrument and drug layer formation method |
CN111372645A (en) * | 2017-11-22 | 2020-07-03 | 泰尔茂株式会社 | Drug application device and method for forming drug layer |
JPWO2019103098A1 (en) * | 2017-11-22 | 2020-11-19 | テルモ株式会社 | Method of forming drug application device and drug layer |
JPWO2019103097A1 (en) * | 2017-11-22 | 2020-11-19 | テルモ株式会社 | Method for forming drug transfer device and drug layer |
JP7110229B2 (en) | 2017-11-22 | 2022-08-01 | テルモ株式会社 | Drug transfer device and method of forming drug layer |
JP7198218B2 (en) | 2017-11-22 | 2022-12-28 | テルモ株式会社 | Drug application device and method for forming drug layer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4371653B2 (en) | Implantable medical device | |
JP4894519B2 (en) | Indwelling stent | |
JP5056013B2 (en) | Indwelling stent | |
EP1838362B1 (en) | Use of supercritical fluids to incorporate biologically active agents into nanoporous medical articles | |
US8257729B2 (en) | Implants with membrane diffusion-controlled release of active ingredient | |
EP1652550A1 (en) | Stent to be placed in vivo | |
US20050137683A1 (en) | Medical devices to treat or inhibit restenosis | |
EP2012844A2 (en) | Durable biocompatible controlled drug release polymeric coatings for medical devices | |
US20120027819A1 (en) | Medical Devices Incorporating a Bioactive and Methods of Preparing Such Devices | |
JP2009505726A (en) | Medical devices and coatings with improved functionality by including biodegradable polymers | |
JP2005530561A (en) | Silicone mixtures and composites for drug delivery | |
US9056153B2 (en) | Biocompatible polymers for coating or fabricating implantable medical devices | |
JP2004222953A (en) | Indwelling stent | |
WO2007148714A1 (en) | Implant using rifamycin derivative | |
WO2009076272A2 (en) | Drug coated stent with endosome-disrupting conjugate | |
US20120239140A1 (en) | Medical product comprising an active coating | |
JP2005168937A (en) | Stent | |
JPWO2007116646A1 (en) | In vivo indwelling | |
US20070160640A1 (en) | Halofuginone delivering vascular medical devices | |
JP4379044B2 (en) | Indwelling stent | |
JP2015154921A (en) | drug sustained-release stent | |
WO2007148713A1 (en) | Drug for treating vascular disease or drug for controlling cell proliferation comprising rifamycin derivative as the active ingredient | |
JP2007312987A (en) | Stent | |
JP2004267283A (en) | In vivo embedding medical material and in vivo embedding medical instrument | |
JP2002085549A (en) | Material for intravascular treatment and appliance for intravascular treatment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 07767224 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 07767224 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |