WO2004017751A1 - Feed for fry young fishes and method of producing hydrolyzate of low-phytin vegetable protein to be used therein - Google Patents

Feed for fry young fishes and method of producing hydrolyzate of low-phytin vegetable protein to be used therein Download PDF

Info

Publication number
WO2004017751A1
WO2004017751A1 PCT/JP2003/009355 JP0309355W WO2004017751A1 WO 2004017751 A1 WO2004017751 A1 WO 2004017751A1 JP 0309355 W JP0309355 W JP 0309355W WO 2004017751 A1 WO2004017751 A1 WO 2004017751A1
Authority
WO
WIPO (PCT)
Prior art keywords
feed
phytic acid
low
protein hydrolyzate
protein
Prior art date
Application number
PCT/JP2003/009355
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihiro Nakamori
Hitoshi Furuta
Original Assignee
Fuji Oil Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Company, Limited filed Critical Fuji Oil Company, Limited
Priority to JP2005501227A priority Critical patent/JP4556868B2/en
Priority to AU2003248093A priority patent/AU2003248093A1/en
Publication of WO2004017751A1 publication Critical patent/WO2004017751A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K50/00Feeding-stuffs specially adapted for particular animals
    • A23K50/80Feeding-stuffs specially adapted for particular animals for aquatic animals, e.g. fish, crustaceans or molluscs
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • A23J3/16Vegetable proteins from soybean
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • A23J3/32Working-up of proteins for foodstuffs by hydrolysis using chemical agents
    • A23J3/34Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
    • A23J3/346Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes of vegetable proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K10/00Animal feeding-stuffs
    • A23K10/10Animal feeding-stuffs obtained by microbiological or biochemical processes
    • A23K10/14Pretreatment of feeding-stuffs with enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/142Amino acids; Derivatives thereof
    • A23K20/147Polymeric derivatives, e.g. peptides or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/153Nucleic acids; Hydrolysis products or derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K20/00Accessory food factors for animal feeding-stuffs
    • A23K20/10Organic substances
    • A23K20/189Enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23KFODDER
    • A23K40/00Shaping or working-up of animal feeding-stuffs
    • A23K40/30Shaping or working-up of animal feeding-stuffs by encapsulating; by coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/80Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in fisheries management
    • Y02A40/81Aquaculture, e.g. of fish
    • Y02A40/818Alternative feeds for fish, e.g. in aquacultures

Definitions

  • the present invention provides a feed for larvae and larvae using a low-phytin plant protein hydrolyzate with reduced phytic acid.
  • the present invention also relates to a method for producing a low-phytin vegetable protein hydrolyzate in which phytic acid is reduced. Background technology
  • soybean raw materials (soybean meal, soymilk, soybean protein, etc.) have been used as protein raw materials for fish farming feed.
  • Examples of the invention for removing or decomposing phytic acid include: (a) feed (JP-A-11-000164, JP-A-8-205785); and (b) soybean-derived feed such as defatted soybean and okara. Materials (Japanese Patent Application Laid-Open No. Hei 9-140334), (c) soy protein (Japanese Patent Application Laid-Open No. 2000-300185, Japanese Patent Application Laid-Open No. 4503002), and (d) soymilk (Japanese Patent Application Laid-open No. No. 166049, Japanese Patent Application Laid-Open No. 2000-245340 by the present applicant) and the like.
  • the present applicant has studied the use of a protein hydrolyzate obtained by hydrolyzing a soybean protein raw material using an enzyme as a feed for fish farming.
  • the invention described in JP-A-7-227223 and the invention described in JP-A-8-51937 have been made as baits for increasing the survival rate of larvae and fry.
  • soybean protein hydrolyzate obtained by removing phytic acid using a resin for patients with renal disease (Japanese Patent Application Laid-Open No. Hei 8-09921).
  • a protease is used in the same way as a protease because a crude enzyme is used when enzymatically treating a soybean protein raw material, or a combination of enzyme digestion and phytase treatment is used. It does not disclose or teach the use of degraded soy protein for fish farming (Japanese Patent Application Laid-Open Nos. 51-125300, 2002-51706, etc.).
  • soybean protein hydrolyzate As described above, the use of soybean protein hydrolyzate in fish feed has been studied by the present applicant, and low phytin soy protein hydrolyzate has also been studied. It is not known to be used for larvae or fry.
  • the method for removing phytic acid from soybeans is as follows: (1) A method for removing phytic acid during the aqueous extraction of soybean protein using a salt (JP-A-8-173052, JP-A-9-1212) 780), (2) a method of decomposing phytic acid with phytase or the like, and (3) a method of removing phytic acid by adsorbing it on a resin or the like (Japanese Patent Application Laid-Open No. 2001-163800).
  • the method (2) is industrially advantageous because the process is less complicated than the methods (3) and (3).
  • Japanese Patent Application Laid-Open No. 9-023822 discloses that isolated soybean protein is inoculated with a bacterium, fermented, and simultaneously subjected to enzymatic decomposition and phytase treatment to obtain a peptide product having a low phytic acid content. A method is disclosed.
  • an object of the present invention was to obtain a low-phytin plant protein hydrolyzate having a very low phytic acid content, and more preferably a low-phytin plant protein hydrolyzate having a phytic acid content below the detection limit.
  • the present invention aims at a feed for fry using such a low-phytin plant protein hydrolyzate.
  • the present inventors have conducted intensive studies and found that soy protein hydrolyzate used in feed By reducing the amount of phytic acid contained in the digest, the survival rate of the larvae and larvae was increased, and the present inventors obtained the knowledge of promoting the growth of the larvae and completed the present invention.
  • a low-phytin plant protein hydrolyzate was completed. That is, the present applicant has previously completed a low-phytic acid plant protein hydrolyzate (JP-A-8-092123) by resin treatment, but in order to reduce the phytic acid content below the detection limit, the resin treatment was carried out. Was complicated.
  • the present applicant produced a low phytic acid soybean protein by subjecting soybean protein to phytase treatment (Japanese Unexamined Patent Publication No. 2000-300185). It was difficult to obtain a soybean protein hydrolyzate with a very low phytic acid content below the detection limit.
  • soybean protein hydrolyzate with extremely low phytic acid (below the detection limit) was obtained by first enzymatically decomposing soybean protein to a specific molecular weight range and then subjecting it to lyase treatment.
  • phytic acid can be detected even if it is first treated with lyase and then enzymatically degraded. We have obtained information that can be removed below the limit.
  • soybean protein hydrolyzate having a very low phytic acid content below the detection limit has a better flavor than the soybean protein hydrolyzate obtained by simply enzymatic degradation.
  • the present invention has been completed based on these findings.
  • the present invention is a feed for larvae and juveniles, wherein the feed material contains a low-phytin plant protein hydrolyzate having a phytic acid content of 0.05% by weight or less (in dry solid content). .
  • a plant protein hydrolyzate having an average molecular weight of 200 to 10,000 is suitable.
  • the present invention also provides a low phytin characterized by comprising (a) a step of degrading a protein using a protease and (b) a step of decomposing phytic acid by using an enzyme that degrades phytic acid. This is a method for producing a plant protein hydrolyzate. After decomposing the protein using a protease, it is preferable to decompose phytic acid using an enzyme that decomposes phytic acid.
  • the enzyme that degrades phytic acid is preferably phytase.
  • the pH for phytase treatment is preferably 6-9.
  • the average molecular weight of the low phytin plant protein hydrolyzate is preferably from 200 to 100,000.
  • the content of phytic acid in the low-phytin vegetable protein hydrolyzate is such that phytic acid is not detected by vanadomolybdate spectrophotometry (detection limit: 5 mg / lOOg) per dry solid.
  • the low phytin plant protein hydrolyzate used in the feed for larvae and larvae of the present invention has a phytic acid content of 0.05% by weight or less, preferably 0.01% by weight or less, more preferably 0.01% by weight or less in dry solids. 0 4% by weight or less (below the detection limit) is appropriate.
  • the average molecular weight of the low phytin plant protein hydrolyzate used in the larvae and feeds of the present invention is 200 to 100,000 (preferably 300 to 5,000). Things are appropriate. If the molecular weight is large, the effect of promoting the growth and survival rate of larvae and larvae is inferior, and if the molecular weight is reduced to amino acid, the osmotic pressure of the feed increases, and it becomes easy to dissolve, etc. Disappears.
  • a soybean protein hydrolyzate with a relatively large molecular weight may be used for fish farming feeds alone, but it is preferable that the average molecular weight be smaller as the fish farming fish is a larva, especially a larva that has just hatched from an egg. Oligopeptide mixtures are preferred.
  • the feed of the present invention suitably contains 40 to 70% by weight, preferably about 50 to 60% by weight of a protein component as a composition.
  • the feed of the present invention contains 1% to 30% by weight, preferably 3 to 25% by weight of a low phytin plant protein hydrolyzate.
  • a low phytin plant protein hydrolyzate usually, 3% by weight or more, preferably 10% to 80% by weight, of the protein component in the feed of the present invention is suitably replaced with the low-phytin plant protein hydrolyzate described above.
  • the replacement ratio increases, it becomes difficult to granulate the feed.
  • the amount of low-phytin plant protein hydrolyzate in the feed of the present invention is low, the effect of increasing the survival rate of larvae and juveniles and the growth rate of juveniles is small. This is common to fish such as red sea bream and inoculated fish that are difficult to produce for aquaculture, and is different from other fish farming.
  • the protein components other than the low-phytin vegetable protein hydrolyzate include krill, fish meal, processed egg, processed milk, gelatin, fish meal, seafood extract, yeast extract, and fish egg extract. Can be.
  • the feed of the present invention contains carbohydrates, fats, vitamins, minerals, n-3 highly unsaturated fatty acids, and phospholipids such as soybean lecithin, in addition to the aforementioned low-phytin vegetable protein hydrolysates and other proteins. Can be contained.
  • n-3 polyunsaturated fatty acids are essential for saltwater fish
  • feed-based phospholipids such as soy lecithin can be included in the feed of the present invention since they are necessary components for larval and young fish culture.
  • the form of the feed of the present invention is preferably such that it has a particle size, buoyancy, sedimentation rate that is easy for fish to ingest, does not elute nutrients in water, and is digested and absorbed in the gastrointestinal tract. For larvae, it is preferable to prepare a fine particle feed by microencapsulation or the like.
  • a method for encapsulating a low-phytin plant protein hydrolyzate having an average molecular weight of 200 to 100,000 by micro-mouth for example, a method of spray-drying an aqueous solution of the hydrolyzate can be adopted.
  • fats and oils can be added before spraying to adjust the dissolution, floating and dispersibility in seawater, if necessary. Alternatively, it can be prepared.
  • the feed of the present invention can be used in combination with a biological feed alone or in an appropriate amount at intervals of 30 minutes to 1 hour during the larval stage depending on the age of the larva.
  • soy protein is one of the preferred protein raw materials since soy protein is industrially produced in large quantities. It is.
  • the soybean protein raw material used for producing the low-phytin vegetable protein hydrolyzate of the present invention is a soybean protein such as soymilk (including skim soybean milk; the same applies hereinafter), concentrated soymilk, concentrated soybean protein, isolated soybean protein, defatted soybean, and the like. It is possible if it includes. Defatted soybeans are processed with little or no protein denaturation So-called low-denatured defatted soybeans that have been treated are preferred, and are not limited to varieties, production areas, and the like.
  • defatted soybeans which have been subjected to low-temperature extraction using n-hexane as an extraction solvent are suitable as raw materials, and particularly low denaturing with an NSI (nitrogen solubility coefficient) of 60 or more, preferably 80 or more. Defatted soy is preferred.
  • NSI nitrogen solubility coefficient
  • Enzymatic degradation of soy protein can be obtained by hydrolyzing soy protein in an aqueous system (soy protein slurry or solution) using an enzyme.
  • the concentration of the soybean protein solution to be subjected to the enzyme treatment is 1% by weight to 30% by weight, preferably 5 to 15% by weight, and more preferably 8 to 12% by weight. Appropriate. Even if the concentration is low, there is no problem in enzymatic decomposition, but productivity is unfavorably reduced.
  • the proteolytic enzyme (protease) used in the present invention may be exoprotease or endprotease alone or in combination, and may be of animal, plant or microbial origin. Specifically, serine proteases (trypsin, chymotoribsin derived from animals, subtilisin derived from microorganisms, lipoxypeptidase, etc.), thiol proteases (papine, ficin, bromelain, etc. derived from plants) And carboxyprotease (such as animal-derived pepsin) can be used.
  • serine proteases trypsin, chymotoribsin derived from animals, subtilisin derived from microorganisms, lipoxypeptidase, etc.
  • thiol proteases papine, ficin, bromelain, etc. derived from plants
  • carboxyprotease such as animal-derived pepsin
  • Protin FN derived from Aspergillus oryzae (manufactured by Daiwa Kasei Co., Ltd.); “Alcalase” (manufactured by NOPO) and “Protin A” (manufactured by Daiwa Kasei Co., Ltd.) derived from Bacillus subtilis.
  • endoproteinase-containing enzymes include “Protease S j” and “Protin AC-10” manufactured by Amano Pharmaceutical Co., Ltd., and “Protin AC-10” Biopase (Nagase Seikagaku Corporation) ) And Amino Pharmaceutical Co., Ltd., as a proteolytic enzyme containing exo and endoprotease. Ze "can be exemplified.
  • hydrolysis conditions of the present invention vary somewhat depending on the type of protease used, but generally, hydrolysis of soybean protein is performed in the pH range, the temperature range, and the optimal reaction time of the protease. It is preferred to use a sufficient amount.
  • a salt-restricted diet for example, a tube feeding diet
  • the pH is 5 to 10, preferably 6 to 9, the salt by neutralization is used. It is preferable because the generation of can be reduced.
  • the degree of hydrolysis is suitably an average molecular weight of from 200 to 100,000, preferably from 300 to 500,000.
  • the degree of hydrolysis can be adjusted depending on the purpose and use. For example, in the case of feed or feed, there is no problem even with a relatively large molecular weight, but when used as a feed for fish farming, when used as a feed for larvae and larvae, a low molecular weight that is easy to digest is preferable, and the average molecular weight is It is suitably from 200 to 500, more preferably about 200 to 2000. (Phytic acid degradation by phytic acid degrading enzyme)
  • Examples of the enzyme for decomposing phytic acid used in the present invention include enzymes derived from plants such as wheat and potato or enzymes derived from animal organs such as intestinal tract, bacteria, yeast, mold, and enzymes derived from microorganisms such as actinomycetes. Enzymes such as phytase-phosphatase having phytic acid decomposition activity can be used.
  • phytophosphatase is suitable, but phytase is more preferable.
  • Fischerichia can be used from various strains having a phytase-producing ability, such as Aspergillus, Rhizopus, Saccharomyces, Mucor, and Geotricum.
  • it is derived from the genus Aspergillus, more preferably the genus Aspergillus: a phytase derived from Aspergillus ficuum and a phytase derived from Aspergillus niger.
  • Ze and Aspergillus Terreus The phytase from (Aspergillus terreus) can be selected from just the group. In order to decompose phytic acid in soybean into inositol, it is necessary to cleave the ester group, and the enzyme that does this is phytase.
  • a fungal acid phosphatase as the acid phosphatase. That is, it is selected from the group consisting of acid phosphatase derived from Aspergillus ficuum, acid phosphatase derived from Aspergillus niger, and acid phosphatase derived from Aspergillus terreus. I can do it.
  • the degradation of phytic acid by enzymatic treatment can be carried out under very mild conditions, and therefore has very little effect on proteins.
  • the enzyme reaction of the present invention may be performed at 30 to 60 ° C. for 0.1 to 30 hours.
  • the pH during the phytic acid decomposition reaction is particularly important, and the pH is preferably 6 to 9, preferably 6.2 to 8.5, more preferably 6.2 to 7 pH. Soy protein treated at a pH of less than 6.0 is not preferred because its solubility is reduced and the flavor becomes worse. Further, if the pH exceeds 9.0, the flavor deteriorates, which is not preferable.
  • decomposing phytic acid within the above pH range it is possible to produce a soybean protein with better reduced phytic acid.
  • the enzyme suitably used in the present invention is preferably an enzyme capable of decomposing phytic acid and phytate in a neutral to alkaline pH range of pH 6 or more, but the origin is not particularly limited and the above-mentioned enzymes are not limited. You can use enzymes.
  • the enzyme can be used irrespective of the form of powder or liquid.
  • the enzyme is used in an amount of about 0.01 to 10% by weight, preferably about 0.05 to 2% by weight, more preferably about 0.1 to 1% by weight based on the weight of the crude protein in the soybean protein.
  • the enzyme titer is 0.1 to 100 U / g crude soy protein, preferably 0.5 to 20 U / g crude soy protein, more preferably Preferably, phytase of about l to 10 U / g crude soybean protein is added.
  • the enzyme activity was determined by reacting a reaction mixture consisting of 0.4 ml of 0.2 M Tris-HCl buffer containing 4 mM sodium phytate (pH 6.5), 0.5 ml of distilled water, and 0.1 ml of enzyme solution at 37 ° C for 30 minutes. After the reaction, add 10% TCA 1. Oml to stop the reaction. The inorganic phosphoric acid content in this reaction solution was determined by the Fiske-Subbarow method. The amount of enzyme that releases 1 ⁇ 1 of inorganic phosphoric acid per minute under the above conditions was defined as 1 unit (U).
  • the order may be combined in any manner.
  • phytin can be reduced, that is, the phytic acid content in the plant protein hydrolyzate can be reduced to 0.5% or less and 0.2% or less per dry solid content.
  • the average molecular weight of the low phytin plant protein hydrolyzate obtained as described above is preferably from 200 to 100,000, and more preferably from 300 to 500,000.
  • the phytic acid content was determined by the vanadomolybdate spectrophotometry (detection limit: 5 mgZl 0 g) in the dry solid content of the low phytin vegetable protein hydrolyzate. 5% or less, preferably one in which phytic acid is not detected.
  • Water is added 7 times to 10 parts by weight of defatted soybeans, and extracted while stirring at 50 ° C and pH 7 for 30 minutes.Okara and soymilk are separated by a centrifugal separator, and the soymilk is adjusted to pH with sulfuric acid. After adjusting to 4.5, centrifuged and separated into isoelectric protein and whey protein.After adding 4 times water to isoelectric protein and adjusting to pH 6.0 with NaOH. Then, 50 parts by weight of an 8% concentration soybean protein solution was prepared.
  • This soybean protein solution was heated to 50 ° C., and 0.04 parts by weight of phytase-degrading enzyme “Sumiteam PHY” manufactured by Shin Nippon Chemical Co., Ltd. was added and reacted for 60 minutes.
  • the reaction solution was sterilized at 150 ° C for 7 seconds, cooled to 50 t, adjusted to pH 7.0 with Na ⁇ H, and proteases ”from Amano Pharmaceutical Co., Ltd. 0.16 Parts by weight were added and reacted for 5 hours.
  • the pH was adjusted to 6.5, sterilized at 150 ° C for 7 seconds, and immediately powder-dried with a spray dryer.
  • the content of phytic acid (mesoinositoxyhexalic acid) in this powder was not detected when measured by vanadomolybdic acid absorption spectrophotometry (detection limit: 5 mg Z100 g).
  • the average molecular weight measured by electrophoresis was about 500.
  • a low-phytin soybean protein hydrolyzate produced in the same manner as in Production Example 1 was used as an experimental feed in the aquaculture feed of Table 1 in an amount of 0, 2.5, 5.0, 10.0, and 20.0 parts by weight of casein. And added as shown in Table 1 to obtain a fine particle feed by a conventional method.
  • Table 1 shows the composition of the experimental feed. The unit is parts by weight.
  • Group 5 is the control.
  • the experiment was started at the age of 39 days, and the animals were fed eight times an hour from 9:00 am until 16 o'clock, and at 17 o'clock, fed Artemia as a biological feed at nine times a day.
  • the feed amount was 0.31 g-0.50 g / time for Z fish, and 55 to 80 animals / time for Artemia, as the age of day passed.
  • Table 2 shows the results of Example 1 and Comparative Example 1.
  • Example 1 From the results of Example 1, it was found that the growth of the 14 group to which the low-phytate soybean protein hydrolyzate was added was promoted as compared to the 5 group of the control, and a significant difference was observed particularly in the 13 group. . The survival rate was better in the 14 group than in the 5 group. The pigment abnormality rate did not differ between the groups, and no abnormality was observed in the group to which the soybean protein hydrolyzate was given.
  • An acrylic weakly basic anion exchange resin (“KA890” manufactured by Sumitomo Chemical Co., Ltd.) is packed into a column with a diameter of 1.4 cm to a height of 15 cm (resin volume 23 cm2), and 50 ml of a 5% sodium hydroxide solution and ion exchange. Washing was carried out by passing 500 ml of water.
  • the above-mentioned enzyme hydrolyzate (SH) was dissolved in ion-exchanged water, the pH was adjusted to 4.5 with 10% hydrochloric acid, and adjusted with ion-exchanged water so that the final protein concentration was 10%. .
  • the above-prepared solution was passed at 51 ml / hr from the top of the column which had been filled with KA890 and washed, and the treatment solution eluted from the bottom of the column was collected. Pass the enzymatic digestion solution through until the volume reaches 1219 ml (121.9 g protein, 5.3 g per ml resin), that is, phytic acid is completely converted to resin.
  • the eluate that had been adsorbed and removed was collected and freeze-dried to obtain a low phosphorus content enzyme digest (SHR).
  • Phytic acid content was measured by the method of Mohammed et al. (Cereal Chem. 63. 475.1986). As a result, phytic acid was not detected (detection limit: 0.005% by weight).
  • Feeding rate (mg feed / Larva / day)
  • nl, n2, n3, n4, n5, n6 and n7 are Zoea 1, Zoea2,
  • the experimental feed was prepared based on a commercially available flounder feed (EP feed manufactured by Higashimaru Co., Ltd., S-6 for seeds and seedlings). That is, a commercially available feed is heated, and the low-phytin soybean protein hydrolyzate produced in Production Example 1 and the unfiltered soybean protein hydrolyzate produced in Production Example 2 are attached thereto. After coating, it was dried and used as experimental feed. Table 6 shows the composition of commercial feed and the composition of experimental feed supplemented with soybean protein hydrolyzate.
  • the water temperature, feeding amount, and feeding status during the rearing period are described below.
  • Water is added seven times to 10 kg of defatted soybeans, extracted after stirring at 50 ° C and pH 7 for 30 minutes, and then separated from okara and soymilk by a centrifugal separator. After adjusting to 4.5, centrifuged and separated into isoelectric precipitate protein and whey protein.After adding 4 times water to the isoelectric precipitate protein, adjusting the pH to 7.0 with NaOH, 50 liters of an 8% protein solution was prepared.
  • proteolytic enzymes “proteases” and “protease MJ (manufactured by Amano Pharmaceutical Co., Ltd.) were added, reacted at 50 ° C. for 5 hours, and hydrolyzed (1). Then, the pH was adjusted to 6.0, and 40 g of phytate-degrading enzyme “Sumitim P HY” (manufactured by Shin Nippon Chemical Co., Ltd.) was added. After the addition, the mixture was reacted at 50 ° C for 60 minutes, adjusted to pH 6.5 with NaOH, sterilized at 150 ° C for 7 seconds, and immediately dried with a spray dryer.
  • Water is added 7-fold to 10 kg of defatted soybeans, extracted with stirring at 50 and pH 7 for 30 minutes, and then separated into okara and soymilk by a centrifugal separator. After adjusting to 5 and centrifuging to separate the isoelectric precipitate protein and whey protein, add 4 fold water to the isoelectric precipitate protein, adjust to pH 6.0 with Na ⁇ H, and adjust to 8% A concentration of 50 liters of protein solution was adjusted.
  • This protein solution was heated to 50 ° C., and lipase-degrading enzyme “Sumitim PHY” was added with 40 g from Shin Nippon Chemical Co., Ltd., and allowed to react for 60 minutes.
  • the pH was adjusted to 7.0 with H, and 160 g of “Proteases” (Amano Pharmaceutical Co., Ltd.) was added and reacted for 5 hours.
  • the pH was adjusted to 6.5, sterilized at 150 ° C for 7 seconds, and immediately dried with a spray drier.
  • the content of phytic acid (mesoinosittohexalic acid) in this powder was not detected by vanadomolybdic acid absorption spectrophotometry (detection limit: 5 mg / 100 g), reducing phytic acid extremely well did it.
  • Water is added 7-fold to 10 kg of defatted soybeans, extracted at 50 :, pH 7 with stirring for 30 minutes, separated into okara and soymilk by a centrifuge, and the soymilk is PH4 After adjusting the pH to 5, centrifuged and separated into isoelectric precipitate protein and whey protein.After adding 4 fold water to the isoelectric precipitate protein, adjusting the pH to 6.0 with NaOH, 8 50 liters of a 50% protein solution was adjusted and immediately powder-dried with a spray dryer.
  • This protein solution was adjusted to an 8% solution, heated to 50 ° C, added with 40 g of Sumitomo P HY, a protease degrading enzyme, manufactured by Shin Nippon Chemical Co., Ltd., and reacted for 60 minutes. After the reaction, the pH was adjusted to 7.0 with NaOH, and 160 g of "Proteases" (manufactured by Amano Pharmaceutical Co., Ltd.) was added, followed by reaction for 5 hours. The pH was adjusted to 6.5, sterilized at 150 ° C for 7 seconds, and immediately dried with a spray drier.
  • This protein solution was heated to 50 ° C, and the phytase-degrading enzyme “Sumitim PHY”, 40 g, manufactured by Shin Nippon Chemical Industry Co., Ltd. was added and reacted for 60 minutes. Was dried with a spray dryer.
  • the solution was adjusted to 8%, adjusted to pH 7.0 with NaOH, and added with 160 g of Proteaze M "Amano Pharmaceutical Co., Ltd., and allowed to react for 5 hours. After sterilization for 7 seconds, the powder was immediately dried with a spray dryer.
  • Water is added seven times to 10 kg of defatted soybeans, extracted after stirring at 50 ° C and pH 7 for 30 minutes, and then separated from okara and soymilk by a centrifugal separator. After adjusting to 4.5, centrifuged and separated into isoelectric precipitate protein and whey protein.After adding 4 times water to the isoelectric precipitate protein, adjusting the pH to 6.0 with NaOH, 50 liters of an 8% protein solution was prepared.
  • the content of phytic acid (mesoinosittohexalic acid) in this powder was measured by vanadomolybdic acid spectrophotometry, and it was found that phytic acid was reduced to 0.2% (detection limit: 5 mg / 1 0 0 g).
  • the decomposition solution was adjusted to a high-speed centrifugal separator capable of continuous processing at a feed speed of 100 liters, and the sedimentation component generated was separated and removed.
  • the obtained centrifugal supernatant (solid content: 70%) was adjusted to pH 6.5, sterilized at 150 ° C for 7 seconds, and immediately dried by a spray dryer.
  • the content of phytic acid (mesoinosittohexalic acid) in this powder was not detected by vanadomolybdic acid absorption spectrophotometry (detection limit: 5 mg / 100 g). Can be reduced.
  • the growth of larvae and larvae By feeding the feed of the present invention, the growth of larvae and larvae can be promoted, and the survival rate can be greatly increased.
  • the low-phytin vegetable protein hydrolyzate having an extremely low phytic acid content and being below the detection limit by vanadomolybdic acid absorption spectrophotometry has become possible.
  • the low-phytin vegetable protein hydrolyzate according to the method of the present invention has an excellent flavor (it is presumed to be due to the decomposition of phytic acid) as compared with the low-phytin soybean protein hydrolyzate obtained by the resin adsorption method.
  • the low-phytin plant protein hydrolyzate of the present invention has a small molecular weight and extremely low phytic acid, so that it can be digested and absorbed when used in fry with insufficient development of digestion and absorption functions or animal feeds immediately after birth. It is highly effective and promotes the absorption of trace metals such as calcium.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Zoology (AREA)
  • Animal Husbandry (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Physiology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Insects & Arthropods (AREA)
  • Birds (AREA)
  • Marine Sciences & Fisheries (AREA)
  • Nutrition Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fodder In General (AREA)
  • Feed For Specific Animals (AREA)

Abstract

It is intended to provide a feed which is appropriate for enhancing the survival rate of young fry fishes with underdeveloped digestion and absorption functions or promoting the growth of them. It is also intended to obtain a vegetable protein hydrolyzate to be used in this feed. To obtain a low-phytin vegetable protein hydrolyzate, a process for producing the low-phytin vegetable protein hydrolyzate which comprises (a) the step of digesting a protein with the use of a protease and (b) the step of digesting phytic acid with the use of an enzyme digesting phytic acid has been completed. In the case where the vegetable protein is soybean protein, for example, it is preferable that the low-phytin soybean protein hydrolyzate has an average molecular weight of from 200 to 10,000. It is also preferable that the phytic acid content is 0.05% by weight or less (based on dry solid matters). A feed for young fry fishes containing this low-phytin soybean protein hydrolyzate makes it possible to provide a feed for young fry fishes which promotes the growth of young fry fishes and enhances the survival rate.

Description

明 細 書  Specification
仔稚魚用飼料及びこれに用いる低フィチン植物蛋白加水分解物の製造法 技 術 分 野 Production method of feed for larvae and larvae and low phytin plant protein hydrolyzate used for the feed
本発明は、 フィチン酸を低減化した低フィチン植物蛋白加水分解物を 用いた仔稚魚用飼料を提供するものである。 また、 このフィチン酸を低 減化した低フィチン植物蛋白加水分解物の製造法に関するものである。 背 景 技 術  The present invention provides a feed for larvae and larvae using a low-phytin plant protein hydrolyzate with reduced phytic acid. The present invention also relates to a method for producing a low-phytin vegetable protein hydrolyzate in which phytic acid is reduced. Background technology
従来から、 養魚用飼料の蛋白原料として大豆原料 (大豆粕、 豆乳、 大 豆蛋白等) が利用されてきた。  Conventionally, soybean raw materials (soybean meal, soymilk, soybean protein, etc.) have been used as protein raw materials for fish farming feed.
そして、 大豆中に含まれるフィチン酸を除去すれば飼料効率が上がる ことが知られるようになつてきた。 .  It has become known that removing phytic acid contained in soybeans increases feed efficiency. .
フィチン酸を除去或いは分解する発明として、 例えば、 (a)飼料 (特開 平 1 1 - 0001 64号公報、 特開平 8-205785号公報) 、 (b)脱脂大豆、 おから などの大豆由来飼料材料 (特開平 9- 1 40334 号公報) 、 (c)大豆蛋白 (本 願出願人による特開 2000- 300 1 85 号公報、 特開 4503002 号公報) や(d) 豆乳 (特開昭 59- 166049 号公報、 本願出願人による特開 2000-245340号 公報) などが知られている。  Examples of the invention for removing or decomposing phytic acid include: (a) feed (JP-A-11-000164, JP-A-8-205785); and (b) soybean-derived feed such as defatted soybean and okara. Materials (Japanese Patent Application Laid-Open No. Hei 9-140334), (c) soy protein (Japanese Patent Application Laid-Open No. 2000-300185, Japanese Patent Application Laid-Open No. 4503002), and (d) soymilk (Japanese Patent Application Laid-open No. No. 166049, Japanese Patent Application Laid-Open No. 2000-245340 by the present applicant) and the like.
しかし、 低フィチン蛋白加水分解物を養魚用飼料に用いることは行わ れていない。  However, low phytin protein hydrolyzate has not been used in fish feed.
一方、 本出願人は、 大豆蛋白原料を酵素を用いて加水分解して得られ る蛋白加水分解物を養魚用飼料として用いることを研究してきた。 例え ば、仔稚魚の生残率を高める餌として特開平 7-227223号公報に記載の発 明、 特開平 8-51 937 号公報に記載の発明などをして来た。 そして、 更に 仔稚魚の生残率を高めるために大豆蛋白加水分解物の改良を研究したも のである。 On the other hand, the present applicant has studied the use of a protein hydrolyzate obtained by hydrolyzing a soybean protein raw material using an enzyme as a feed for fish farming. For example, the invention described in JP-A-7-227223 and the invention described in JP-A-8-51937 have been made as baits for increasing the survival rate of larvae and fry. In order to further improve the survival rate of larvae and fry, we studied the improvement of soybean protein hydrolyzate. It is.
一方、 大豆蛋白加水分解物に関して本願出願人は腎疾患患者用に樹脂 を利用してフィチン酸を除去した低フィチン植物蛋白加水分解物を開示 してきた (特開平 8- 092 1 23号公報) 。  On the other hand, regarding the soybean protein hydrolyzate, the present applicant has disclosed a low-phytin plant protein hydrolyzate obtained by removing phytic acid using a resin for patients with renal disease (Japanese Patent Application Laid-Open No. Hei 8-09921).
他方、 大豆蛋白に齄菌を接種して醌酵させ蛋白分解とフィ 夕一ゼ処理 を行って低フィチン植物蛋白加水分解物を製造することも知られている (特開平 9-023822号公報) 。  On the other hand, it is also known to produce a low-phytin plant protein hydrolyzate by inoculating a soybean protein with a bacterium, fermenting the protein, and subjecting it to proteolysis and lyase treatment (JP-A-9-023822). .
その他、 大豆蛋白原料を酵素処理する際に粗酵素を用いるため蛋白分 解酵素とフイ タ一ゼが同じに作用したり、 あるいは蛋白酵素分解とフィ タ一ゼ処理を組み合わせた発明もあるが酵素分解された大豆蛋白を養魚 用に用いることなど開示も教示もしていない (特開昭 5 1 - 1 25300号公報、 特開 2002-51 706号公報など) 。  In addition, there are inventions in which a protease is used in the same way as a protease because a crude enzyme is used when enzymatically treating a soybean protein raw material, or a combination of enzyme digestion and phytase treatment is used. It does not disclose or teach the use of degraded soy protein for fish farming (Japanese Patent Application Laid-Open Nos. 51-125300, 2002-51706, etc.).
以上のように養魚用飼料に大豆蛋白加水分解物を用いることは本出願 人が研究を重ねてきたところであり、 低フィチン大豆蛋白加水分解物も 研究されてきたが、 これらを養魚用飼料、 特に仔稚魚に用いることは知 られていない。  As described above, the use of soybean protein hydrolyzate in fish feed has been studied by the present applicant, and low phytin soy protein hydrolyzate has also been studied. It is not known to be used for larvae or fry.
ところで、大豆のフィ チン酸を除去する方法は(1 )塩を利用して大豆蛋 白の水抽出過程でフィチン酸を除去するもの (特開平 8-173052 号公報、 特開平 9- 1 2 1 780 号公報等) 、 (2)フイ ターゼ等でフィチン酸を分解する 方法、 (3)樹脂などに吸着させて除去する方法(特開 200 1 -1 63800号公報) などがあり、 (1 )や(3)の方法に比べて(2)の方法が工程が煩雑でなく工業 的に有利である。  By the way, the method for removing phytic acid from soybeans is as follows: (1) A method for removing phytic acid during the aqueous extraction of soybean protein using a salt (JP-A-8-173052, JP-A-9-1212) 780), (2) a method of decomposing phytic acid with phytase or the like, and (3) a method of removing phytic acid by adsorbing it on a resin or the like (Japanese Patent Application Laid-Open No. 2001-163800). The method (2) is industrially advantageous because the process is less complicated than the methods (3) and (3).
そして、 この(2)フィ 夕一ゼ等を用いてフィチン酸を分解する方法の対 象に関して、 (a)飼料などの用途としての大豆、 脱脂大豆などが多く知ら れ、 (b)や豆乳や分離大豆蛋白も幾つか知られているが、 (c)植物蛋白加 水分解物混合物に関してはあまり知られていない。 例えば、(a)飼料(特開平 1 1 - 0001 64号公報、特開平 8- 205785号公報、)、 (b)脱脂大豆、おからなどの大豆由来飼料材料(特開平 9- 140334号公報)、 大豆蛋白 (本願出願人による特開 2000- 3001 85 号公報、 特開 4503002 号 公報) や豆乳 (特開昭 59- 166049 号公報、 本願出願人によ る特開 2000-245340号公報) などが知られている。 Regarding (2) the method of decomposing phytic acid using fiuyase, etc., (a) many soybeans and defatted soybeans for use as feeds are known, and (b) Some isolated soy proteins are also known, but (c) little is known about plant protein hydrolyzate mixtures. For example, (a) feed (JP-A-11-000164, JP-A-8-205785), (b) soybean-derived feed material such as defatted soybean and okara (JP-A-9-140334) , Soybean protein (Japanese Patent Application Laid-Open Nos. 2000-300185 and 4503002 by the applicant of the present application) and soymilk (Japanese Patent Application Laid-Open No. 59-166049 and Japanese Patent Application Laid-Open No. 2000-245340 by the present applicant) It has been known.
しかし、 (C )低フィチン植物蛋白加水分解物に関してはあまり知られて おらず、 例えば、 本願出願人による特開平 8- 092 1 23号公報には、 樹脂を 利用する方法を開示している。  However, little is known about (C) a low-phytin plant protein hydrolyzate. For example, Japanese Patent Application Laid-Open No. H08-092123 by the present applicant discloses a method using a resin.
また、 特開平 9-023822号公報には、 分離大豆蛋白質に齄菌を接種して 醱酵させ酵素分解とフィ タ一ゼ処理を同時に行いフィ チン酸含有量の低 いペプチ ド生成物を得る方法が開示されている。  Japanese Patent Application Laid-Open No. 9-023822 discloses that isolated soybean protein is inoculated with a bacterium, fermented, and simultaneously subjected to enzymatic decomposition and phytase treatment to obtain a peptide product having a low phytic acid content. A method is disclosed.
しかし、 本願発明のようにフィチン酸を検出限界以下までする方法は 知られていない。 発 明 の 開 示  However, there is no known method for reducing phytic acid below the detection limit as in the present invention. Disclosure of the invention
本発明者らが研究を進めていくなかで、 消化吸収機能の発達が不充分 な仔魚や稚魚や生後生まれてすぐの魚用として植物蛋白加水分解物を利 用するには、 ペプチド生成物では不十分であり、 消化吸収性の優れた植 物蛋白加水分解物であってフィチン酸が極めて少ないものが要求されて いることがわかってきた。 そこで、 本発明は、 フィチン酸含有量が極め て少ない、 低フィチン植物蛋白加水分解物、 更に好ましく はフィチン酸 が検出限界以下の低フィチン植物蛋白加水分解物を得ることを目的とし た。  As the present inventors proceeded with their research, in order to use plant protein hydrolysates for larvae and fry with insufficient development of digestion and absorption functions, and for fish immediately after birth, peptide products must be used. It has been found that a plant protein hydrolyzate that is insufficient and has excellent digestibility and absorbability and that has extremely low phytic acid is required. Therefore, an object of the present invention was to obtain a low-phytin plant protein hydrolyzate having a very low phytic acid content, and more preferably a low-phytin plant protein hydrolyzate having a phytic acid content below the detection limit.
そして、 かかる低フィチン植物蛋白加水分解物を用いた稚魚用飼料を 目的とした。  Further, the present invention aims at a feed for fry using such a low-phytin plant protein hydrolyzate.
本発明者等は、 鋭意研究を重ねた結果、 飼料に用いる大豆蛋白加水分 解物に含まれるフィチン酸を少なくすることによ り仔稚魚の生残率を高 め、 稚魚の生育を促進する知見を得て本発明を完成するに到った。 The present inventors have conducted intensive studies and found that soy protein hydrolyzate used in feed By reducing the amount of phytic acid contained in the digest, the survival rate of the larvae and larvae was increased, and the present inventors obtained the knowledge of promoting the growth of the larvae and completed the present invention.
また、 次の知見を得て低フィチン植物蛋白加水分解物を完成した。 即ち、 本出願人は先に樹脂処理による低フィチン酸植物蛋白加水分解 物 (特開平 8- 092 1 23号公報) を完成したが、 フィチン酸含有量を検出限 界以下にするには樹脂処理が煩雑であった。  Based on the following findings, a low-phytin plant protein hydrolyzate was completed. That is, the present applicant has previously completed a low-phytic acid plant protein hydrolyzate (JP-A-8-092123) by resin treatment, but in order to reduce the phytic acid content below the detection limit, the resin treatment was carried out. Was complicated.
一方、 本出願人は大豆蛋白をフイ ターゼ処理して低フィチン酸大豆蛋 白を製造した (特開 2000- 300 1 85 号公報) が、 この低フィチン酸大豆蛋 白を単に酵素分解してもフィチン酸含有量が検出限界以下というきわめ て低い大豆蛋白加水分解物を得ることは困難であった。  On the other hand, the present applicant produced a low phytic acid soybean protein by subjecting soybean protein to phytase treatment (Japanese Unexamined Patent Publication No. 2000-300185). It was difficult to obtain a soybean protein hydrolyzate with a very low phytic acid content below the detection limit.
そこで、 更に鋭意研究の結果、 先に大豆蛋白を特定の分子量範囲に酵 素分解し、 その後でフイ タ一ゼ処理を行う ことにより極めてフィチン酸 の少ない(検出限界以下)の大豆蛋白加水分解物が得られる知見を得た。 また、 大豆蛋白を酵素分解するに際して、 大豆蛋白を大豆原料から水 抽出した後、乾燥しないで酵素分解処理すれば、先にフイ タ一ゼ処理し、 その後で酵素分解したものでもフィチン酸を検出限界以下まで除去でき る知見を得た。  Therefore, as a result of further intensive research, a soybean protein hydrolyzate with extremely low phytic acid (below the detection limit) was obtained by first enzymatically decomposing soybean protein to a specific molecular weight range and then subjecting it to lyase treatment. Was obtained. In addition, when enzymatically decomposing soybean protein, if soybean protein is extracted from the soybean material with water and then subjected to enzymatic digestion without drying, phytic acid can be detected even if it is first treated with lyase and then enzymatically degraded. We have obtained information that can be removed below the limit.
さ らに意外なことに、 これらフィチン酸含有量が検出限界以下という 極めて少ない大豆蛋白加水分解物が単に酵素分解した大豆蛋白加水分解 物に比べて風味に優れる知見を得た。  Surprisingly, it was found that the soybean protein hydrolyzate having a very low phytic acid content below the detection limit has a better flavor than the soybean protein hydrolyzate obtained by simply enzymatic degradation.
本発明はこれらの知見に基づいて完成されたものである。  The present invention has been completed based on these findings.
即ち、 本発明は、 フィチン酸含有量が 0 . 0 5重量%以下 (乾燥固形 分中) である低フィチン植物蛋白加水分解物を飼料原料に含有すること を特徴とする仔稚魚用飼料である。  That is, the present invention is a feed for larvae and juveniles, wherein the feed material contains a low-phytin plant protein hydrolyzate having a phytic acid content of 0.05% by weight or less (in dry solid content). .
低フィチン植物蛋白加水分解物は、 平均分子量 200〜 1 0, 000 の植物た ん白加水分解物が適当である。 また、 本発明は、 (a)蛋白分解酵素を用いて蛋白質を分解する工程及び (b)フィチン酸を分解する酵素を用いてフィ チン酸を分解する工程を含 むことを特徴とする低フィチン植物蛋白加水分解物の製造法である。 蛋白を蛋白分解酵素を用いて分解した後、 フィ チン酸を分解する酵素 を用いてフィチン酸を分解することが好ましい。 As the low phytin plant protein hydrolyzate, a plant protein hydrolyzate having an average molecular weight of 200 to 10,000 is suitable. The present invention also provides a low phytin characterized by comprising (a) a step of degrading a protein using a protease and (b) a step of decomposing phytic acid by using an enzyme that degrades phytic acid. This is a method for producing a plant protein hydrolyzate. After decomposing the protein using a protease, it is preferable to decompose phytic acid using an enzyme that decomposes phytic acid.
未乾燥蛋白をフィチン酸を分解する酵素を用いて分解した後、 蛋白分 解酵素を用いて蛋白質を分解することが好ましい。  After degrading the undried protein using an enzyme that degrades phytic acid, it is preferable to decompose the protein using a protease.
フィチン酸を分解する酵素はフイタ一ゼが好ましい。  The enzyme that degrades phytic acid is preferably phytase.
フイ ターゼ処理する p Hは 6 ~ 9が好ましい。  The pH for phytase treatment is preferably 6-9.
低フィチン植物蛋白加水分解物の平均分子量は 2 0 0〜 1 0 0 0 0が 好ましい。  The average molecular weight of the low phytin plant protein hydrolyzate is preferably from 200 to 100,000.
低フィチン植物蛋白加水分解物中のフィ チン酸の含量が乾燥固形分当 たりバナ ドモリブデン酸吸光光度法 (検出限界 5 mg/lOOg) でフィチン 酸が検出されないことが好ましい。 発明を実施するための最良の形態  It is preferable that the content of phytic acid in the low-phytin vegetable protein hydrolyzate is such that phytic acid is not detected by vanadomolybdate spectrophotometry (detection limit: 5 mg / lOOg) per dry solid. BEST MODE FOR CARRYING OUT THE INVENTION
まず、 仔稚魚用飼料について説明する。  First, the feed for larvae and fry will be described.
本発明の仔稚魚用飼料に用いる低フィチン植物蛋白加水分解物は乾燥 固形分中フィチン酸含有量が 0. 0 5重量%以下、 好ましくは 0 . 0 1 重量%以下、 更に好ましく は 0 . 0 0 4重量%以下 (検出限界以下) が 適当である。  The low phytin plant protein hydrolyzate used in the feed for larvae and larvae of the present invention has a phytic acid content of 0.05% by weight or less, preferably 0.01% by weight or less, more preferably 0.01% by weight or less in dry solids. 0 4% by weight or less (below the detection limit) is appropriate.
植物たん白加水分解物中に含まれるフィチン酸の量が少ないほど仔稚 魚の生残率が向上し好ましい。 また、 稚魚の成長を促進させ、 糞に粘り を与え、 水の糞による濁り を防止する効果がある。  The smaller the amount of phytic acid contained in the plant protein hydrolyzate, the better the survival rate of larvae and juveniles, and thus it is preferable. It also has the effect of promoting the growth of fry, giving the dung stickiness and preventing turbidity due to water dung.
本発明の仔稚魚用飼料に用いる低フィチン植物蛋白加水分解物の、 平 均分子量は 2 0 0〜 1 0, 0 0 0 (好ましくは 3 0 0〜 5 , 0 0 0 ) の ものが適当である。 分子量が大きいものでは仔稚魚の生育促進効果や生 存率を高める効果が劣り、 分子量が小さくなりアミ ノ酸までなると飼料 の浸透圧が上昇したり、 溶解しやすくなる等して飼料として適当でなく なる。 The average molecular weight of the low phytin plant protein hydrolyzate used in the larvae and feeds of the present invention is 200 to 100,000 (preferably 300 to 5,000). Things are appropriate. If the molecular weight is large, the effect of promoting the growth and survival rate of larvae and larvae is inferior, and if the molecular weight is reduced to amino acid, the osmotic pressure of the feed increases, and it becomes easy to dissolve, etc. Disappears.
養魚用飼料だけなら分子量は比較的大きな大豆蛋白加水分解物でもよ いが、養魚用魚が仔稚魚であるほど平均分子量が小さいものが好ましく、 とく に卵からふ化したばかりの仔魚では分子量の小さなオリ ゴペプチド 混合物が好ましい。  A soybean protein hydrolyzate with a relatively large molecular weight may be used for fish farming feeds alone, but it is preferable that the average molecular weight be smaller as the fish farming fish is a larva, especially a larva that has just hatched from an egg. Oligopeptide mixtures are preferred.
本発明の飼料は、 組成としてたん白成分を 4 0 〜 7 0重量%、 好まし くは約 5 0 ~ 6 0重量%を含有するものが適当である。  The feed of the present invention suitably contains 40 to 70% by weight, preferably about 50 to 60% by weight of a protein component as a composition.
本発明の飼料は、 低フィチン植物たん白加水分解物を 1重量%〜 3 0 重量%、 好ましく は 3 〜 2 5重量%含むことが適当である。 通常、 本発 明の飼料中のたん白成分の内の 3重量%以上、 好ましく は 1 0 〜 8 0重 量%を前述の低フィチン植物蛋白加水分解物で置換したものが適当であ る。 置換割合が多くなると該飼料を顆粒化することが困難となる。  Suitably, the feed of the present invention contains 1% to 30% by weight, preferably 3 to 25% by weight of a low phytin plant protein hydrolyzate. Usually, 3% by weight or more, preferably 10% to 80% by weight, of the protein component in the feed of the present invention is suitably replaced with the low-phytin plant protein hydrolyzate described above. When the replacement ratio increases, it becomes difficult to granulate the feed.
本発明の飼料中低フィチン植物蛋白加水分解物が少ないと仔稚魚の生 存率と稚魚の成長率を高める効果が少なく、 多過ぎるとむしろ生育阻害 を起こすので好ましく ない。 これは、 マダイ、 ひらめ等養殖種苗生産が 困難な魚に共通するものであり、 他の魚の養殖とは異なるものである。 尚、 低フィチン植物蛋白加水分解物以外のたん白質成分としてはォキ アミ、 魚類ミール類、 鶏卵加工品、 牛乳加工品、 ゼラチン、 魚粉、 魚介 類エキス、 酵母エキス、 魚卵エキスを併用することができる。  If the amount of low-phytin plant protein hydrolyzate in the feed of the present invention is low, the effect of increasing the survival rate of larvae and juveniles and the growth rate of juveniles is small. This is common to fish such as red sea bream and inoculated fish that are difficult to produce for aquaculture, and is different from other fish farming. The protein components other than the low-phytin vegetable protein hydrolyzate include krill, fish meal, processed egg, processed milk, gelatin, fish meal, seafood extract, yeast extract, and fish egg extract. Can be.
本発明の飼料には、 前述の低フィチン植物蛋白加水分解物、 その他の たん白質の他、 炭水化物、 脂肪、 ビタミ ン、 ミネラル、 n — 3高度不飽 和脂肪酸および大豆レシチン等のリ ン脂質を含有することができる。  The feed of the present invention contains carbohydrates, fats, vitamins, minerals, n-3 highly unsaturated fatty acids, and phospholipids such as soybean lecithin, in addition to the aforementioned low-phytin vegetable protein hydrolysates and other proteins. Can be contained.
n - 3高度不飽和脂肪酸はひらめのような海水魚に必須の脂肪酸であ り、 大豆レシチン等の飼料性リ ン脂質は仔稚魚の養殖に必要な成分であ るので本発明の飼料に含むことが出来る。 n-3 polyunsaturated fatty acids are essential for saltwater fish In addition, feed-based phospholipids such as soy lecithin can be included in the feed of the present invention since they are necessary components for larval and young fish culture.
本発明の飼料の形態は魚の摂取しやすい粒経、 浮遊性、 沈降速度を持 ちしかも水中で栄養素が溶出せず、 消化管で消化吸収されるようなもの が好ましく、 特にひらめゃェビなどの仔魚用にはマイクロカプセル化等 により微粒子飼料とすることが好ましい。  The form of the feed of the present invention is preferably such that it has a particle size, buoyancy, sedimentation rate that is easy for fish to ingest, does not elute nutrients in water, and is digested and absorbed in the gastrointestinal tract. For larvae, it is preferable to prepare a fine particle feed by microencapsulation or the like.
平均分子量 2 0 0 - 1 0, 0 0 0の低フィ チン植物蛋白加水分解物を マイク 口カプセル化する方法は、 例えば加水分解物の水溶液をスプレー 乾燥する方法が採用できる。 また、 必要に応じて海水への溶出性、 浮遊 性、 分散性を調整するために、 スプレー前に油脂を添加することもでき るし、 スプレー後に硬化油脂を添加後撹拌してコ一ティ ングするなどし て調製することもできる。  As a method for encapsulating a low-phytin plant protein hydrolyzate having an average molecular weight of 200 to 100,000 by micro-mouth, for example, a method of spray-drying an aqueous solution of the hydrolyzate can be adopted. In addition, fats and oils can be added before spraying to adjust the dissolution, floating and dispersibility in seawater, if necessary. Alternatively, it can be prepared.
本発明の飼料は仔稚魚の日齢により仔稚魚期に生物餌料と併用もしく は単独で適量を 3 0分〜 1時間間隔で給餌することが出来る。  The feed of the present invention can be used in combination with a biological feed alone or in an appropriate amount at intervals of 30 minutes to 1 hour during the larval stage depending on the age of the larva.
次に、 以上のような仔稚魚の飼料に用いる低フィチン植物蛋白加水分 解物の製造法のひとつを以下に記す。  Next, one of the methods for producing the low-phytin plant protein hydrolyzate used for the above larvae and fry feeds is described below.
(植物蛋白原料)  (Plant protein raw material)
本発明に用いる植物蛋白は公知の植物蛋白を利用することが出来るが. 穀類、 油糧趣旨蛋白が入手容易であり、 特に大豆蛋白は工業的に大量生 産されているので好ましい蛋白原料のひとつである。  Known plant proteins can be used as the plant protein used in the present invention. Grains and oils are easily available, and soy protein is one of the preferred protein raw materials since soy protein is industrially produced in large quantities. It is.
以下、 フィチン酸を若干含む大豆蛋白を用いる例を説明するが、 この 方法は他の植物蛋白にも応用できる方法である。  Hereinafter, an example using a soybean protein containing a small amount of phytic acid will be described, but this method can be applied to other plant proteins.
本発明の低フィ チン植物蛋白加水分解物の製造に用いる大豆蛋白原料 は、 豆乳 (脱脂豆乳も含む。 以下同じ。 ) 、 濃縮豆乳、 濃縮大豆蛋白、 分離大豆蛋白、 脱脂大豆等、 大豆蛋白を含むものであれば可能である。 脱脂大豆は蛋白変性を伴わない若しく は蛋白変性が軽度である加工処 理を行った所謂低変性脱脂大豆が好ましく、 品種、 産地等には限定され ない。 一般的には、 n—へキサンを抽出溶剤として低温抽出処理を行つ た脱脂大豆が原料として適当であり、 特に N S I (窒素可溶係数) が 6 0以上、 好ましく は 8 0以上の低変性脱脂大豆が好ましい。 The soybean protein raw material used for producing the low-phytin vegetable protein hydrolyzate of the present invention is a soybean protein such as soymilk (including skim soybean milk; the same applies hereinafter), concentrated soymilk, concentrated soybean protein, isolated soybean protein, defatted soybean, and the like. It is possible if it includes. Defatted soybeans are processed with little or no protein denaturation So-called low-denatured defatted soybeans that have been treated are preferred, and are not limited to varieties, production areas, and the like. In general, defatted soybeans which have been subjected to low-temperature extraction using n-hexane as an extraction solvent are suitable as raw materials, and particularly low denaturing with an NSI (nitrogen solubility coefficient) of 60 or more, preferably 80 or more. Defatted soy is preferred.
(大豆蛋白の酵素分解)  (Enzymatic degradation of soy protein)
大豆蛋白の酵素分解の方法は、 大豆蛋白を水系下 (大豆蛋白スラリー もしく は溶液) に酵素を用いて加水分解して得ることが出来る。  Enzymatic degradation of soy protein can be obtained by hydrolyzing soy protein in an aqueous system (soy protein slurry or solution) using an enzyme.
例えば、 低変成大豆蛋白を利用する場合、 酵素処理に供する大豆蛋白 溶液の濃度は 1重量%〜 3 0重量%、 好ましく は 5〜 1 5重量%、 よ り 好ましく は 8 ~ 1 2重量%が適当である。 この濃度が低くても酵素分解 に支障はないが、 生産性が落ちて好ましくない。  For example, when low-denatured soybean protein is used, the concentration of the soybean protein solution to be subjected to the enzyme treatment is 1% by weight to 30% by weight, preferably 5 to 15% by weight, and more preferably 8 to 12% by weight. Appropriate. Even if the concentration is low, there is no problem in enzymatic decomposition, but productivity is unfavorably reduced.
本発明に用いる蛋白分解酵素 (プロテアーゼ) は、 ェキソプロテア一 ゼ又はェン ドプロテア一ゼを単独又は併用することができ、 動物起源、 植物起源あるいは微生物起源は問わない。 具体的には、 セリ ンプロテア ーゼ (動物由来の ト リ プシン、 キモト リ ブシン、 微生物由来のズプチリ シン、 力ルポキシぺプチダーゼ等) 、 チオールプロテアーゼ (植物由来 のパパイ ン、 フィ シン、 ブロメライ ン等) 、 カルポキシプロテアーゼ (動 物由来のペプシン等) を用いる ことができる。 更に、 具体的にはァスぺ ルギルス · ォリゼ起源の 「プロチン F N」 (大和化成株製) 、 ス トレブ トマイセス · グリセウス起源の 「ァクチナ一ゼ」 (科研製薬株製) 、 バ チルス · リケホルミス由来の 「アルカラ一ゼ」 (ノポ社製) 、 バチルス · ズブチルス由来の 「プロチン A」 (大和化成株製) 。 また、 エンドプロ テアーゼを含有する酵素としては、 天野製薬 (株) 製、 「プロテアーゼ S j や大和化成 (株) 製、 「プロチン A C— 1 0」 ゃビオプラ-ゼ (ナガ ゼ生化学工業株式会社) 等を例示できるが、 ェキソおよびエン ドプロテ ァ一ゼを含有する蛋白分解酵素として天野製薬 (株) 製、 「プロテア一 ゼ 」 が例示できる。 The proteolytic enzyme (protease) used in the present invention may be exoprotease or endprotease alone or in combination, and may be of animal, plant or microbial origin. Specifically, serine proteases (trypsin, chymotoribsin derived from animals, subtilisin derived from microorganisms, lipoxypeptidase, etc.), thiol proteases (papine, ficin, bromelain, etc. derived from plants) And carboxyprotease (such as animal-derived pepsin) can be used. More specifically, “Protin FN” derived from Aspergillus oryzae (manufactured by Daiwa Kasei Co., Ltd.); “Alcalase” (manufactured by NOPO) and “Protin A” (manufactured by Daiwa Kasei Co., Ltd.) derived from Bacillus subtilis. Examples of endoproteinase-containing enzymes include “Protease S j” and “Protin AC-10” manufactured by Amano Pharmaceutical Co., Ltd., and “Protin AC-10” Biopase (Nagase Seikagaku Corporation) ) And Amino Pharmaceutical Co., Ltd., as a proteolytic enzyme containing exo and endoprotease. Ze "can be exemplified.
本発明の加水分解の条件は用いる蛋白分解酵素の種類によ り多少異な るが、 概してその蛋白分解酵素の作用 p H域、 作用温度域、 最適反応時 間で、 大豆蛋白を加水分解するに充分な量を用いることが好ましい。 脂 質代謝改善剤とともに塩分制限食 (例えば、 経管栄養食等) の用途を考 慮した場合は、 p Hが 5 ~ 1 0、 好ましく は p H 6〜 9であれば中和に よる塩の生成を軽減できて好ましい。  The hydrolysis conditions of the present invention vary somewhat depending on the type of protease used, but generally, hydrolysis of soybean protein is performed in the pH range, the temperature range, and the optimal reaction time of the protease. It is preferred to use a sufficient amount. When considering the use of a salt-restricted diet (for example, a tube feeding diet) together with the lipid metabolism improver, if the pH is 5 to 10, preferably 6 to 9, the salt by neutralization is used. It is preferable because the generation of can be reduced.
加水分解の程度は、 平均分子量 2 0 0〜 1 0 0 0 0、 好ましくは 3 0 0〜 5 0 0 0が適当である。 目的や用途により加水分解の程度を調整す ることができる。 例えば、 食餌や飼料の場合であれば比較的大きな分子 量でも支障はないが、 養魚用飼料として利用する場合で仔稚魚用飼料と して利用する場合は消化しやすい低い分子量が好ましく、 平均分子量 2 0 0〜 5 0 0 0、 よ り好ましくは 2 0 0〜 2 0 0 0程度が適当である。 (フィチン酸分解酵素によるフィチン酸分解)  The degree of hydrolysis is suitably an average molecular weight of from 200 to 100,000, preferably from 300 to 500,000. The degree of hydrolysis can be adjusted depending on the purpose and use. For example, in the case of feed or feed, there is no problem even with a relatively large molecular weight, but when used as a feed for fish farming, when used as a feed for larvae and larvae, a low molecular weight that is easy to digest is preferable, and the average molecular weight is It is suitably from 200 to 500, more preferably about 200 to 2000. (Phytic acid degradation by phytic acid degrading enzyme)
本発明に用いるフィチン酸を分解する酵素としては、 小麦や馬鈴薯等 の植物に由来する酵素あるいは腸管等の動物臓器に由来する酵素、細菌、 酵母、 かび、 放線菌等の微生物起源の酵素で、 フィチン酸分解活性を有 するフイ タ一ゼゃホスファタ一ゼ等の酵素を用いることができる。  Examples of the enzyme for decomposing phytic acid used in the present invention include enzymes derived from plants such as wheat and potato or enzymes derived from animal organs such as intestinal tract, bacteria, yeast, mold, and enzymes derived from microorganisms such as actinomycetes. Enzymes such as phytase-phosphatase having phytic acid decomposition activity can be used.
フィ チン酸を分解する酵素としては、 フイタ一ゼゃフォスファタ一ゼ が適当であるがフィ 夕一ゼがよ り好ましい。 フィ 夕一ゼは、 ァスペルギ ルス属、 リ ゾプス属、 サッカロミセス属、 ムコール属、 ゲォト リカム属 等の各種のフィ ターゼ生産能を有する菌株由来のものを利用することが できる。 好ましく はァスペルギルス属由来のものが適当であ り、 よ り好 ましく はァスペルギルス (Aspergillus) 属 : ァスペルギルス フィキュ —ム (Aspergillus ficuum) 由来のフイ ターゼ、 ァスペルギルス ニガ一 (Aspergillus niger) 由来のフイ タ一ゼ及ぴァスペルギルス テレウス (Aspergi llus terreus) 由来のフィ ターゼょ りなる群から選ぶことがで きる。 大豆中のフィチン酸をイノシ トールに分解するにはエステル基を 切断する必要があり、 それを行う酵素がフイ ターゼである。 As the enzyme for decomposing phytic acid, phytophosphatase is suitable, but phytase is more preferable. Fischerichia can be used from various strains having a phytase-producing ability, such as Aspergillus, Rhizopus, Saccharomyces, Mucor, and Geotricum. Preferably it is derived from the genus Aspergillus, more preferably the genus Aspergillus: a phytase derived from Aspergillus ficuum and a phytase derived from Aspergillus niger. Ze and Aspergillus Terreus The phytase from (Aspergillus terreus) can be selected from just the group. In order to decompose phytic acid in soybean into inositol, it is necessary to cleave the ester group, and the enzyme that does this is phytase.
また酸性ホスファタ一ゼとして真菌類由来の酸性ホスファタ一ゼを利 用する こ と も 可能であ る。 即ち 、 ァスペルギルス フ ィ キューム (Aspergi llus ficuum) 由来の酸性ホスファターゼ、 ァスペルギルス二 ガ一 (Aspergi 1 lus niger) 由来の酸性ホスファタ一ゼ及びァスペルギル ステレウス (Aspergillus terreus) 由来の酸性ホスファタ一ゼよりなる 群から選ばぶことができる。  It is also possible to use a fungal acid phosphatase as the acid phosphatase. That is, it is selected from the group consisting of acid phosphatase derived from Aspergillus ficuum, acid phosphatase derived from Aspergillus niger, and acid phosphatase derived from Aspergillus terreus. I can do it.
酵素処理によるフィチン酸の分解反応は非常に温和な条件下で実施で きるため蛋白質への影響は極めて少ない。例えば、本発明の酵素反応は、 3 0 ~ 6 0 °Cで 0. 1〜 3 0時間行えばよい。  The degradation of phytic acid by enzymatic treatment can be carried out under very mild conditions, and therefore has very little effect on proteins. For example, the enzyme reaction of the present invention may be performed at 30 to 60 ° C. for 0.1 to 30 hours.
本発明ではフィチン酸分解反応時の p Hが特に重要で、 p H 6 ~ 9、 好ましく は 6. 2 ~ 8. 5、 更に好ましく は p H 6. 2〜7で実施する のが良い。 p H 6. 0未満で処理された大豆蛋白は、 その溶解性が低下 し、 風味が悪く なり好ましくない。 また、 p Hが 9. 0を越えても風味 が悪くなり好ましくない。 上記 p H範囲内でフィチン酸を分解すること により、 よ り良好にフィチン酸が低減された大豆蛋白を製造することが 可能である。  In the present invention, the pH during the phytic acid decomposition reaction is particularly important, and the pH is preferably 6 to 9, preferably 6.2 to 8.5, more preferably 6.2 to 7 pH. Soy protein treated at a pH of less than 6.0 is not preferred because its solubility is reduced and the flavor becomes worse. Further, if the pH exceeds 9.0, the flavor deteriorates, which is not preferable. By decomposing phytic acid within the above pH range, it is possible to produce a soybean protein with better reduced phytic acid.
従って本発明で好適に用いられる酵素は p H 6以上の中性乃至アル力 リ性 p H域でフィチン酸及びフイチン酸塩を分解可能な酵素が好ましい が、 その起源は特に限定されず前述の酵素を用いることが出きる。  Therefore, the enzyme suitably used in the present invention is preferably an enzyme capable of decomposing phytic acid and phytate in a neutral to alkaline pH range of pH 6 or more, but the origin is not particularly limited and the above-mentioned enzymes are not limited. You can use enzymes.
酵素は粉末状や液体状の形態にかかわらず使用可能で、 大豆蛋白中の 粗蛋白重量に対して 0.01~10重量%、 好ましくは 0.05〜2重量%、 より 好ましく は、 0.1〜1重量%程度の添加にて実施されるが、 酵素力価とし て 0. l~100U/g粗大豆蛋白、 好ましく は 0.5〜20U/g粗大豆蛋白、 より好 ましく は l〜10U/g 粗大豆蛋白程度のフィ タ一ゼが添加されるのが好ま しい。 尚、 酵素活性は、 4mMフィチン酸ナ ト リ ウムを含む 0.2M Tris-HCl 緩衝液 (pH6.5) 0.5mK 蒸留水 0.4ml 及び酵素液 0. lml からなる反応液 を 37°Cで 30分間反応させ、 10%T CA 1. Oml を加え反応を停止する。 この反応液中の無機リ ン酸含量を Fiske- Subbarow方法により定量した。 上記条件にて 1分間に 1 μηιο 1 の無機リ ン酸を遊離させる酵素量を 1ュ ニッ ト (U) とした。 The enzyme can be used irrespective of the form of powder or liquid. The enzyme is used in an amount of about 0.01 to 10% by weight, preferably about 0.05 to 2% by weight, more preferably about 0.1 to 1% by weight based on the weight of the crude protein in the soybean protein. The enzyme titer is 0.1 to 100 U / g crude soy protein, preferably 0.5 to 20 U / g crude soy protein, more preferably Preferably, phytase of about l to 10 U / g crude soybean protein is added. The enzyme activity was determined by reacting a reaction mixture consisting of 0.4 ml of 0.2 M Tris-HCl buffer containing 4 mM sodium phytate (pH 6.5), 0.5 ml of distilled water, and 0.1 ml of enzyme solution at 37 ° C for 30 minutes. After the reaction, add 10% TCA 1. Oml to stop the reaction. The inorganic phosphoric acid content in this reaction solution was determined by the Fiske-Subbarow method. The amount of enzyme that releases 1 μηι 1 of inorganic phosphoric acid per minute under the above conditions was defined as 1 unit (U).
本発明においては、 蛋白分解酵素を用いて蛋白質を分解する工程と、 フィチン酸を分解する酵素を用いてフィチン酸を分解する工程を含んで いれば、 その順番はどのよう に組合せてもよく、 これらの工程を経るこ とによって、 低フィチン化、 すなわち植物蛋白加水分解物中のフィチン 酸含量が乾燥固形分当たり 0. 5 %以下、 0. 2 %以下とすることがで きる。 さ らに、 フィ チン酸含量を検出限界 5 mg/ 1 0 0 g以下とする には、 蛋白質の酵素分解蛋白質を酵素分解した後でフイ ターゼ処理を行 う ことが低フィチン植物蛋白加水分解物を製造する上でより好ましい。 一方、蛋白質にフィ ターゼ処理を行ったあとに蛋白質を酵素分解しても、 フィチン酸含量を検出限界 5 mgZ l 0 O g以下にすることは困難であ る。 しかし前述のように未変成大豆蛋白を用いる場合であれば、 該大豆 蛋白溶液 (粉末乾燥しない) に前述のようにフイ ターゼを作用させてフ イチン酸を分解した後で前述のように蛋白酵素分解してもフィチン酸含 量が検出限界以下の目的の低フィチン植物蛋白加水分解物を得ることが できる。  In the present invention, as long as the method includes a step of decomposing a protein using a protease and a step of decomposing phytic acid using an enzyme that decomposes phytic acid, the order may be combined in any manner. Through these steps, phytin can be reduced, that is, the phytic acid content in the plant protein hydrolyzate can be reduced to 0.5% or less and 0.2% or less per dry solid content. Furthermore, in order to reduce the phytic acid content to a detection limit of 5 mg / 100 g or less, it is necessary to subject the protein to a phytase treatment after enzymatic degradation of the protein. It is more preferable in the production of On the other hand, even if the protein is subjected to phytase treatment and then subjected to enzymatic decomposition, it is difficult to reduce the phytic acid content to a detection limit of 5 mgZ10Og or less. However, if undenatured soybean protein is used as described above, phytase is allowed to act on the soybean protein solution (not powder-dried) to decompose phytic acid as described above, and then, as described above, Even when decomposed, a target low-phytin plant protein hydrolyzate having a phytic acid content below the detection limit can be obtained.
以上のよう にして得られた低フィチン植物蛋白加水分解物の平均分子 量は 2 0 0 - 1 0 0 0 0、 好ましくは 3 0 0〜 5 0 0 0が適当である。 また、 フィチン酸含量は低フィチン植物蛋白加水分解物の乾燥固形分 中、 バナ ドモリブデン酸吸光光度法(検出限界 5 mgZ l 0 0 g)で 0. 5 %以下、 好ましくはフィチン酸が検出されないものである。 The average molecular weight of the low phytin plant protein hydrolyzate obtained as described above is preferably from 200 to 100,000, and more preferably from 300 to 500,000. The phytic acid content was determined by the vanadomolybdate spectrophotometry (detection limit: 5 mgZl 0 g) in the dry solid content of the low phytin vegetable protein hydrolyzate. 5% or less, preferably one in which phytic acid is not detected.
(実施例) (Example)
以下、 実施例により発明の実施態様を説明する。  Hereinafter, embodiments of the present invention will be described with reference to examples.
まず、 餌に関して説明する。  First, the bait is explained.
〔製造例 1〕 (低フィ チン酸大豆たん白加水分解物の製造) [Production Example 1] (Production of low phytic acid soybean protein hydrolyzate)
脱脂大豆 1 0重量部に 7倍加水し、 5 0 °C、 p H 7で 3 0分撹拌しな がら抽出した後、 遠心分離機にてオカラと豆乳を分離し、 豆乳を硫酸で p H 4. 5に調整後、 遠心分離し等電点沈殿たん白質とホェ一たん白に 分離後、 等電点沈殿たん白質に対して 4倍加水後、 N a OHで p H 6. 0に調整し、 8 %濃度の大豆たん白溶液 5 0重量部を調製した。  Water is added 7 times to 10 parts by weight of defatted soybeans, and extracted while stirring at 50 ° C and pH 7 for 30 minutes.Okara and soymilk are separated by a centrifugal separator, and the soymilk is adjusted to pH with sulfuric acid. After adjusting to 4.5, centrifuged and separated into isoelectric protein and whey protein.After adding 4 times water to isoelectric protein and adjusting to pH 6.0 with NaOH. Then, 50 parts by weight of an 8% concentration soybean protein solution was prepared.
この大豆たん白溶液を 5 0 °Cに加温し、 フィ ターゼ分解酵素 「スミチ ーム PHY」新日本化学工業(株)製 0.0 4重量部を添加して 6 0分反応 させた。 この反応液を 1 5 0 °Cで 7秒間殺菌後、 5 0 t に冷却し、 N a 〇Hで p H 7. 0に調整し、 プロテア一ゼ 」 天野製薬 (株) 製 0. 1 6 重量部を添加させ 5時間反応させた。 p H 6. 5に調整し、 1 5 0 °Cで 7秒間殺菌後、 ただちにスプレー ドライヤ一で粉末乾燥させた。  This soybean protein solution was heated to 50 ° C., and 0.04 parts by weight of phytase-degrading enzyme “Sumiteam PHY” manufactured by Shin Nippon Chemical Co., Ltd. was added and reacted for 60 minutes. The reaction solution was sterilized at 150 ° C for 7 seconds, cooled to 50 t, adjusted to pH 7.0 with Na〇H, and proteases ”from Amano Pharmaceutical Co., Ltd. 0.16 Parts by weight were added and reacted for 5 hours. The pH was adjusted to 6.5, sterilized at 150 ° C for 7 seconds, and immediately powder-dried with a spray dryer.
この粉末中のフイチン酸 (メソイノ シッ トへキサリ ン酸) 含量をバナ ドモリブデン酸吸光光度法で測定したところ検出されなかった (検出限 界 5 m g Z l 0 0 g ) 。 平均分子量は電気泳動法で測定した結果約 500 であった。  The content of phytic acid (mesoinositoxyhexalic acid) in this powder was not detected when measured by vanadomolybdic acid absorption spectrophotometry (detection limit: 5 mg Z100 g). The average molecular weight measured by electrophoresis was about 500.
〔製造例 2〕 (フィチン酸除去しない大豆たん白加水分解物の製造) 分離大豆たん白 (不二製油 (株) 製 「フジプロ— R」 ) 1 0 0重量部 (以下、 部) を P H 7の 5 %水溶液となし、 プロチン F N (大和化成 (株) 製 : ァスペルギルス属起源) 1部を用いて、 5 0 °Cで 5時間酵素分解し た後、 7 0 °Cで 3 0分間加熱して酵素を失活させ、 冷却後遠心分離して 得た上澄みを噴霧乾燥して大豆たん白加水分解物を製造した。 尚、 この ものは、 T CA (ト リ クロ口酢酸) 可溶率 ( 1 5 % T CA可溶窒素 Z全 窒素の価に 1 0 0を乗じた価) は 1 0 0で、 平均分子量は 6 7 6であつ た。 [Production Example 2] (Production of soybean protein hydrolyzate without phytic acid removal) Separate soybean protein (“Fujipro-R” manufactured by Fuji Oil Co., Ltd.) Protin FN (Daiwa Kasei Co., Ltd.) Manufactured by Aspergillus) One part was used to decompose the enzyme at 50 ° C for 5 hours, heated at 70 ° C for 30 minutes to deactivate the enzyme, cooled, and centrifuged. The supernatant was spray-dried to produce a soybean protein hydrolyzate. This product had a TCA (trichloromouth acetic acid) solubility (15% TCA soluble nitrogen Z total nitrogen value multiplied by 100) of 100 and an average molecular weight of 100%. 6 7 6
〔実施例 1および比較例 1〕 [Example 1 and Comparative Example 1]
• 実施例 1  • Example 1
3 8 日齢ひらめ仔稚魚を予備飼育水槽よ り 3 0 0尾宛 1 0 0 L実験水 槽に移したものを 5槽準備し、 実験水槽とした。 実験期間中海水の温度 は 1 7 °Cに保持した。  38 Five-day-old larvae and larvae were transferred from the preliminary breeding aquarium to a 300-liter, 100-L experimental aquarium. The temperature of the seawater was maintained at 17 ° C during the experiment.
実験飼料として前記製造例 1 と同様にして製造した低フィチン大豆た ん白加水分解物を表 1のひらめ養殖飼料に 0、 2. 5、 5.0、 1 0.0、 2 0. 0重量部をカゼイ ンと表 1に示すように置換して添加、 常法により 微粒子飼料とした。 表 1 に実験飼料組成を示す。 単位は重量部である。 A low-phytin soybean protein hydrolyzate produced in the same manner as in Production Example 1 was used as an experimental feed in the aquaculture feed of Table 1 in an amount of 0, 2.5, 5.0, 10.0, and 20.0 parts by weight of casein. And added as shown in Table 1 to obtain a fine particle feed by a conventional method. Table 1 shows the composition of the experimental feed. The unit is parts by weight.
5群はコン トロールである。 Group 5 is the control.
3 9 日齢よ り実験を開始し、 給餌は午前 9時よ り 1時間毎に 1 6時ま で 8回、 1 7時には生物餌料としてアルテミアを与え、 1 日 9回給餌し た。 飼料量は日齢が経つにつれて養殖飼料 0.3 1 g ~ 0.5 0 g /回 Z 魚、 アルテミアは 5 5〜 8 0匹/回ノ魚とした。  The experiment was started at the age of 39 days, and the animals were fed eight times an hour from 9:00 am until 16 o'clock, and at 17 o'clock, fed Artemia as a biological feed at nine times a day. The feed amount was 0.31 g-0.50 g / time for Z fish, and 55 to 80 animals / time for Artemia, as the age of day passed.
実験開始後 1 4 日、 5 2日齢時の仔稚魚約 5 0尾の体長、 生残尾数、 色素異常率を測定した。  On the 14th and 52th days after the start of the experiment, about 50 larvae and juveniles were measured for their length, number of surviving tails, and pigmentation rate.
• 比較例 1  • Comparative Example 1
実験飼料として前記製造例 2 と同様にして製造した、 フィ チン酸除去 をしていない大豆たん白加水分解物を用い、 実施例 1 と同じ方法により ひらめを養殖した As an experimental feed, a soybean protein hydrolyzate without phytic acid removal produced in the same manner as in Production Example 2 was used, and the same method as in Example 1 was used. Farmed inflammation
(表 1 )  (table 1 )
Figure imgf000016_0001
実施例 1 および比較例 1 の結果は表 2の通りであつた,
Figure imgf000016_0001
Table 2 shows the results of Example 1 and Comparative Example 1.
(表 2 ) 5 2 日齢測定結果 (Table 2) 52 days old results
Figure imgf000016_0002
実施例 1 の結果より、 低フィチン酸大豆たん白加水分解物を添加した 1 4群はコン トロールの 5群に比べていずれも生育が促進され、 とく に 1 3群では有意差が認められた。 生残数においても 5群に比べて 1 4群では良い傾向が見られた。 又、 色素異常率は各群に差なく、 大豆 たん白加水分解物を与えた群においても異常は認め れなかった。
Figure imgf000016_0002
From the results of Example 1, it was found that the growth of the 14 group to which the low-phytate soybean protein hydrolyzate was added was promoted as compared to the 5 group of the control, and a significant difference was observed particularly in the 13 group. . The survival rate was better in the 14 group than in the 5 group. The pigment abnormality rate did not differ between the groups, and no abnormality was observed in the group to which the soybean protein hydrolyzate was given.
また、 下記比較例 1 に比べてもフィチン酸含有量の低い大豆蛋白加水 分解物 (オリ ゴペプチド混合物) は生残率が大きく上昇した。 〔製造例 3〕 In addition, the survival rate of the soybean protein hydrolyzate (oligopeptide mixture) having a lower phytic acid content was significantly higher than that of Comparative Example 1 below. (Production Example 3)
分離大豆蛋白質 (不二製油(株)製 「ニューフジプロ一 R」 ) 1 0 0重 量部を水 9 0 0部に溶かし、 これに蛋白質分解酵素 (大和化成株式会社 製 「プロチン」 ) を 2部加え、 5 0でで 5時間イ ンキュベー トした後、 遠心分離 ( 5000rpmx3 0分) にて不溶物を除去し、 更に 8 0 °Cで 3 0分 加熱して酵素失活と殺菌を行い、 凍結乾燥して酵素分解物 ( S H) を得 た。  Separated soybean protein (Fuji Oil Co., Ltd. “New Fuji Pro-I”) 100 parts by weight was dissolved in 900 parts of water, and proteolytic enzyme (Dainkasei Co., Ltd. “Protin”) was added to 2 parts. After incubating at 50 ° C for 5 hours, insoluble materials were removed by centrifugation (5000 rpm × 30 minutes), and the mixture was heated at 80 ° C for 30 minutes to inactivate and sterilize the enzyme. Lyophilization yielded an enzyme digest (SH).
ァク リル系弱塩基性陰イオン交換樹脂(住友化学工業(株)製「KA890」 ) を直径 1.4cmのカラムに高さ 15cmまで充填 (樹脂容積 23cm2) し、 5 % カセィソーダ液 50ml 及びイオン交換水 500ml を通液し洗浄を行つた。 一方、 上述の酵素分解物 ( S H) をイオン交換水で溶解し、 1 0 %塩 酸にて pHを 4.5 に調整し、 最終蛋白濃度が 1 0 %になるようにイオン交 換水にて調整した。  An acrylic weakly basic anion exchange resin (“KA890” manufactured by Sumitomo Chemical Co., Ltd.) is packed into a column with a diameter of 1.4 cm to a height of 15 cm (resin volume 23 cm2), and 50 ml of a 5% sodium hydroxide solution and ion exchange. Washing was carried out by passing 500 ml of water. On the other hand, the above-mentioned enzyme hydrolyzate (SH) was dissolved in ion-exchanged water, the pH was adjusted to 4.5 with 10% hydrochloric acid, and adjusted with ion-exchanged water so that the final protein concentration was 10%. .
上記調製液を K A 8 9 0 を充填し洗浄しておいたカラムの上部よ り 51ml/hr にて通液し、 カラム下部より溶出される処理液を分取した。 酵素分解液を通液し、 その量が 1219ml (蛋白量として 1 2 1 . 9 g、 樹脂 l ml 当 り 5 . 3 g ) となるまでの酵素分解液、 即ちフィチン酸が完 全に樹脂に吸着除去されている溶出液を集め、 凍結乾燥し、 低リ ン含量 の酵素分解物 ( S H R) を得た。 モハメッ ドらの方法 (Cereal Chem.63. 475.1986) にてフィチン酸含量を測定した。 その結果フィチン酸は検出 されなかった (検出限界 0.005重量% ) 。  The above-prepared solution was passed at 51 ml / hr from the top of the column which had been filled with KA890 and washed, and the treatment solution eluted from the bottom of the column was collected. Pass the enzymatic digestion solution through until the volume reaches 1219 ml (121.9 g protein, 5.3 g per ml resin), that is, phytic acid is completely converted to resin. The eluate that had been adsorbed and removed was collected and freeze-dried to obtain a low phosphorus content enzyme digest (SHR). Phytic acid content was measured by the method of Mohammed et al. (Cereal Chem. 63. 475.1986). As a result, phytic acid was not detected (detection limit: 0.005% by weight).
〔実施例 2および比較例 2〕 (Example 2 and Comparative Example 2)
製造例 3で得られた低フィチン大豆たん白加水分解物および製造例 2 で得られたフィチン酸除去されていない大豆たん白加水分解物を用いて 親ェビから得た受精卵をふ化させ、 Zoea 1 ステージまで予備飼育したも のを用いて飼育実験を行った。 Using the low-phytin soybean protein hydrolyzate obtained in Production Example 3 and the soybean protein hydrolyzate from which Phytic acid has not been removed obtained in Production Example 2, the fertilized egg obtained from the parent shrimp is hatched. Pre-bred up to Zoea 1 stage A breeding experiment was performed using
飼育条件は表 3 に示したよう に 1 リ ッ トルのビーカーに Zoeal を 1 0 0尾収容し、 微粒子飼料を用いて室温で飼育した。 試験飼料の組成は 表 4に示した通りである。  As shown in Table 3, 100 zoos of Zoeal were housed in a 1 liter beaker and bred at room temperature using a particulate feed. The composition of the test feed is as shown in Table 4.
試験飼料として製造例 3および製造例 2 と同様にして製造した各大豆 たん白加水分解物をそれぞれ表 4のクルマエビ養殖飼料に 10.0 重量部 をカゼイ ン (コン トロール) と置換して添加、 常法により微粒子飼料と した。  As a test feed, 10.0 parts by weight of each soybean protein hydrolyzate produced in the same manner as in Production Example 3 and Production Example 2 was added to the prawn cultivated feed shown in Table 4 by replacing casein (control) with 10.0 parts by weight. This was used as a fine particle feed.
m  m
尚、 幼生の成長指数 (Growth index : 到達した成長ステージ) 及び 生残率で添加効果を判定した。 結果は表 5 に示す通りである。 ト  The effect of addition was determined based on the growth index of the larva (Growth index: reached growth stage) and the survival rate. The results are as shown in Table 5. G
(表 3 ) クルマエビ幼生の飼育条件  (Table 3) Rearing conditions of prawns
条 件 内 容  Condition Description
幼生 (飼育開始時) Zoea 1 のステージ  Larva (at the start of breeding) Stage of Zoea 1
飼育時間 Post-larvae に到達するまで 飼育密度 100尾/ tank(ll)  Rearing time Until the post-larvae is reached Rearing density 100 fish / tank (ll)
水温  Water temperature
飼育水 pH 8.4±0.2  Rearing water pH 8.4 ± 0.2
換水 100%/day  100% / day
給餌頻度 2回/ day  Feeding frequency 2 times / day
飼料の粒子サイズ  Feed particle size
Zoeal ステージ 53μΠ1  Zoeal stage 53μΠ1
Mys i s ステージ 125μΙ11  Mys s stage 125μΙ11
Pos t-larvae 250μηι  Pos t-larvae 250μηι
摂餌率 (mg飼料/ Larva/day)  Feeding rate (mg feed / Larva / day)
Zoeal ステージ 0.16  Zoeal stage 0.16
Mys i s ステージ 0.20  Mys is stage 0.20
Pos t-larvae 0.24 (表 4 ) 試験飼料組成 Pos t-larvae 0.24 (Table 4) Composition of test feed
Figure imgf000019_0001
Figure imgf000019_0001
1 ( 2 0 ω 3 ) ( 2 2 3 ) = 3  1 (2 0 ω 3) (2 2 3) = 3
(表 5 ) クルマエビ幼生の飼育実験の結果 (Table 5) Results of breeding experiments on prawns
Figure imgf000019_0002
Figure imgf000019_0002
成長指数 (Growth index) = (lnl + 2n2+ 3n3 + 4n4  Growth index = (lnl + 2n2 + 3n3 + 4n4
+ 5n5 + 6n6 + 7n7) / N (ただし、 N = nl+ n2  + 5n5 + 6n6 + 7n7) / N (where N = nl + n2
+ · · · - +n7 である。 )  + · · ·-+ N7. )
nl, n2 , n3 , n4, n5 , n6及び n7 は Zoea 1, Zoea2,  nl, n2, n3, n4, n5, n6 and n7 are Zoea 1, Zoea2,
Zoea 3, My sis 1 , My sis 2, My sis 3 及び Post larvae  Zoea 3, My sis 1, My sis 2, My sis 3 and Post larvae
1 幼生の匹数を示す。 この結果、 ボス トラ一バの体長 ( 1 1 日 目に測定) は製造例 3の低フ ィチン大豆蛋白加水分解物添加区が無添加区や製造例 2の大豆蛋白加水 分解物添加区との間に差が認められなかったが、 生残率、 成長指数には 低フィチン大豆蛋白加水分解物添加区が良い傾向が認められた。 1 Indicates the number of larvae. As a result, the body length (measured on the 11th day) of the bostora was different from that in the case where the low-fitin soybean protein hydrolyzate-added group in Production Example 3 was added or that in the case where the soybean protein hydrolyzate-added group in Production Example 2 was added. There was no difference between them, but the survival rate and growth index The low phytin soybean protein hydrolyzate-added group tended to be good.
〔実施例 3〕 (Example 3)
生後 7 0〜 8 0日 目のひらめ稚魚を 1区当たり 2 0尾を 2 0 L実験水 槽に移したものを 3槽準備し飼育実験を行なった。 実験期間中飼育水温 度は 1 8 :に保持した。  From 70 to 80 days after birth, three larvae were transferred to a 20-L experimental aquarium with 20 fish per larva per group, and breeding experiments were performed. The breeding water temperature was maintained at 18: during the experiment.
実験飼料としては、 市販のヒラメ飼料 ((株)ヒガシマル製 E P飼料、 種苗用 S— 6 ) をベースに調製した。 すなわち市販飼料を加温し、 これ に前記製造例 1で製造した低フィチン大豆たん白加水分解物および製造 例 2で製造したフイ タ一ゼ未処理の大豆たん白加水分解物を付着させる よう にコーティ ングしてから、 乾燥して実験飼料とした。 表 6に市販飼 料の組成と大豆蛋白加水分解物を付加した実験飼料の組成を示す。  The experimental feed was prepared based on a commercially available flounder feed (EP feed manufactured by Higashimaru Co., Ltd., S-6 for seeds and seedlings). That is, a commercially available feed is heated, and the low-phytin soybean protein hydrolyzate produced in Production Example 1 and the unfiltered soybean protein hydrolyzate produced in Production Example 2 are attached thereto. After coating, it was dried and used as experimental feed. Table 6 shows the composition of commercial feed and the composition of experimental feed supplemented with soybean protein hydrolyzate.
(表 6 ) (Table 6)
(市販飼料の組成)  (Composition of commercial feed)
7 5. 5 % 魚粉、 ォキアミミ一ル  7 5.5% fish meal, oak milk
1 2. 7 % 小麦粉、 でん粉、 とうもろこ し粉  1 2.7% flour, starch, corn flour
1 1. 8 % 飼料用酵母、 精製魚油、 大豆レシチン、 酵母エキス、 リ ン酸二水素カルシウム、 微量元素類、 ビタミン類 1 1.8% feed yeast, refined fish oil, soy lecithin, yeast extract, calcium dihydrogen phosphate, trace elements, vitamins
(大豆蛋白加水分解物付加飼料の組成) (Composition of soybean protein hydrolyzate supplemented feed)
6 7. 5 % 魚粉、 ォキアミ ミール  6 7.5% fish meal, krill meal
1 0 % 大豆蛋白加水分解物  10% soy protein hydrolyzate
1 1. 7 % 小麦粉、 でん粉、 とうもろこし粉  1 1.7% flour, starch, corn flour
1 0. 8 % 飼料用酵母、 精製魚油、 大豆レシチン、 酵母エキス、 リ ン酸二水素カルシウム、 微量元素類、 ビタミ ン類 1 0.8% feed yeast, refined fish oil, soy lecithin, yeast extract, calcium dihydrogen phosphate, trace elements, vitamins
(低フィチン大豆蛋白加水分解物付加飼料の組成) (Composition of low phytin soybean protein hydrolyzate supplemented feed)
6 7. 5 % 魚粉、 ォキアミ ミール  6 7.5% fish meal, krill meal
1 0 % 低フィチン大豆蛋白加水分解物  10% low phytin soy protein hydrolyzate
1 1. 7 % 小麦粉、 でん粉、 とう もろこし粉  1 1.7% flour, starch, corn flour
1 0. 8 % 飼料用酵母、 精製魚油、 大豆レシチン、 酵母エキス、 リ ン酸二水素カルシウム、 微量元素類、 ビタミン類 全長が平均で 8 0. 3 mm、 魚体重が 4. 4 g、 体重/全長 = 5 5 5 m g / m m の稚魚を用いて実験を開始し、 給餌は午前 9時より 6時 間毎に 1 日 4回給餌した。 実験開始後 1 0 日、 2 0 日経過後の仔稚魚 6 0尾の体長、 魚体重を測定し、 体重/全長を測定結果よ り算出した。 (表 7 ) 測定開始 0 日 目 (試験魚数 6 0匹) 10.8% feed yeast, refined fish oil, soy lecithin, yeast extract, calcium dihydrogen phosphate, trace elements, vitamins 80.3 mm in average length, 4.4 g fish weight, body weight / Total length = 5 5 The experiment was started using 5 mg / mm fry, and the animals were fed four times a day every 6 hours from 9 am. The body length and fish weight of the 60 larvae and larvae 10 days and 20 days after the start of the experiment were measured, and the weight / total length was calculated from the measurement results. (Table 7) Day 0 of measurement (60 fish tested)
Figure imgf000021_0001
Figure imgf000021_0001
備考 : ( ) 内は対照区に対する増減  Remarks: Changes in parentheses are for comparison
(表 8 ) 測定開始 1 0 日 目 (試験魚数 6 0匹、 生残数 6 0匹)  (Table 8) Day 10 of measurement start (60 test fish, 60 survivors)
Figure imgf000021_0002
Figure imgf000021_0002
備考 : ( ) 内は対照区に対する増減 (表 9 ) 測定開始 2 0 日 目 (試験魚数 6 0匹、 生残数 6 0匹) Remarks: Changes in parentheses are for comparison (Table 9) Day 20 of measurement start (60 test fish, 60 survivors)
Figure imgf000022_0001
Figure imgf000022_0001
備考 : ( ) 内は対照区に対する増減 この結果、 対照区、 大豆蛋白加水分解物添加に比べ、 低フィチン大豆蛋 白加水分解物添加区では 1 0 日 目で平均体重 Z体長 (m g Zmni) での 伸びが高く、 生育の促進効果が認められた。 さ らに 2 0 日 目では、 体重 /体長 (m g /mm) において、 最大の固体も観察された。 最小も対照 区、 大豆蛋白加水分解物添加に比べ、 高い値となったが、 固体も大きな 魚に餌が集中するせいか、 固体間のバラツキが多く、 平均では対照区と あま り変わらない結果となった。  Remarks: In parentheses, the increase / decrease from the control group. As a result, the average body weight Z-body length (mg Zmni) at day 10 was lower in the control group and in the group with low phytin soybean protein hydrolyzate than in the group with soybean protein hydrolyzate. The growth was high and the effect of promoting growth was recognized. In addition, on day 20 the largest individual in weight / length (mg / mm) was also observed. The minimum value was higher than that of the control group and the addition of soybean protein hydrolyzate, but the solids also varied widely due to the concentration of food in large fish. It became.
(飼育経過) (Breeding progress)
飼育期間の水温、 給餌量、 摂餌状況を下記に記載する。 The water temperature, feeding amount, and feeding status during the rearing period are described below.
糞便の状態が、 対照区は給餌後の糞便の状態が下痢便状態で水槽の水が 濁るのに対して、 大豆蛋白加水分解物および低フィチン大豆蛋白加水分 解物添加区では糞便は形を保った軟便状態で、 水槽の水はきれいなまま であった。 さ らに、 低フィチン大豆蛋白加水分解物の方が、 糞の粘りけ があり糞の量が多い傾向にあった。 (表 1 0 ) In the control group, the water in the aquarium became turbid due to diarrhea in the feces after feeding in the control group, whereas the feces in the group in which the soybean protein hydrolyzate and low phytin soybean protein hydrolyzate were added had a shape. The water in the aquarium remained clean, with soft stool maintained. In addition, the low phytin soybean protein hydrolyzate tended to have more dung and more dung. (Table 10)
Figure imgf000023_0001
次に、 低フィチン大豆蛋白加水分解物の実施例を説明する。
Figure imgf000023_0001
Next, examples of the low-phytin soybean protein hydrolyzate will be described.
〔実施例 4〕  (Example 4)
脱脂大豆 1 0 k gに 7倍加水し、 5 0 °C、 p H 7で 3 0分撹拌しなが ら抽出した後、 遠心分離機にてオカラと豆乳を分離した後、 豆乳を硫酸 で P H 4. 5に調整後、 遠心分離し等電点沈殿蛋白質とホェ一蛋白に分 離後、 等電点沈殿蛋白質に対して 4倍加水後、 N a O Hで p H 7. 0に 調整し、 8 %濃度の蛋白液 5 0 リ ッ トルを調整した。  Water is added seven times to 10 kg of defatted soybeans, extracted after stirring at 50 ° C and pH 7 for 30 minutes, and then separated from okara and soymilk by a centrifugal separator. After adjusting to 4.5, centrifuged and separated into isoelectric precipitate protein and whey protein.After adding 4 times water to the isoelectric precipitate protein, adjusting the pH to 7.0 with NaOH, 50 liters of an 8% protein solution was prepared.
この蛋白液に蛋白分解酵素 「プロテア一ゼ 」 と 「プロテアーゼ MJ (天野製薬 (株) 製) をそれぞれ 1 6 0 gを添加し、 5 0 °Cで 5時間反 応させ、 加水分解した ( 1 5 %丁〇 可溶率 8 5 %) 。 次に p Hを 6. 0に調整し、 フィチン酸分解酵素 「スミチ一ム P HY」 (新日本化学ェ 業(株)製) 4 0 gを添加して 5 0 °Cで 6 0分反応させた後、 N a OHで p H 6. 5に調整し、 1 5 0 °Cで 7秒間殺菌後、 ただちにスプレードラ ィヤーで粉末乾燥させた。  To this protein solution, 160 g of each of the proteolytic enzymes “proteases” and “protease MJ (manufactured by Amano Pharmaceutical Co., Ltd.) were added, reacted at 50 ° C. for 5 hours, and hydrolyzed (1). Then, the pH was adjusted to 6.0, and 40 g of phytate-degrading enzyme “Sumitim P HY” (manufactured by Shin Nippon Chemical Co., Ltd.) was added. After the addition, the mixture was reacted at 50 ° C for 60 minutes, adjusted to pH 6.5 with NaOH, sterilized at 150 ° C for 7 seconds, and immediately dried with a spray dryer.
この粉末中のフィチン酸 (メソイノ シッ トへキサリ ン酸) 含量をバナ ドモリ ブデン酸吸光光度法で測定したところ検出されず (検出限界 5 m g / 1 0 0 g ) 、 極めて良好にフィチン酸を低減できた。  The content of phytic acid (mesoinositoxyhexalic acid) in this powder was not detected (detection limit: 5 mg / 100 g) by vanadomolybdic acid absorption spectrophotometry, and phytic acid was reduced very well. did it.
〔実施例 5〕 (Example 5)
脱脂大豆 1 0 k gに 7倍加水し、 5 0 、 p H 7で 3 0分撹拌しなが ら抽出した後、 遠心分離機にてオカラと豆乳を分離した後、 豆乳を硫酸 で P H 4. 5に調整後、 遠心分離し等電点沈殿蛋白質とホエー蛋白に分 離後、 等電点沈殿蛋白質に対して 4倍加水後、 N a〇 Hで p H 6. 0に 調整し、 8 %濃度の蛋白液 5 0 リ ッ トルを調整した。  Water is added 7-fold to 10 kg of defatted soybeans, extracted with stirring at 50 and pH 7 for 30 minutes, and then separated into okara and soymilk by a centrifugal separator. After adjusting to 5 and centrifuging to separate the isoelectric precipitate protein and whey protein, add 4 fold water to the isoelectric precipitate protein, adjust to pH 6.0 with Na〇H, and adjust to 8% A concentration of 50 liters of protein solution was adjusted.
この蛋白液を 5 0 °Cに加温し、 フイ タ一ゼ分解酵素 「スミチ一ム P H Y」 新日本化学工業(株)製 4 0 gを添加して 6 0分反応させた後、 N a ◦ Hで p H 7. 0に調整し、 プロテア一ゼ 」 天野製薬 (株) 製 1 6 0 gを添加させ 5時間反応させた。 p H 6. 5に調整し、 1 5 0 °Cで 7秒 間殺菌後、 ただちにスプレー ドライヤーで粉末乾燥させた。 This protein solution was heated to 50 ° C., and lipase-degrading enzyme “Sumitim PHY” was added with 40 g from Shin Nippon Chemical Co., Ltd., and allowed to react for 60 minutes. The pH was adjusted to 7.0 with H, and 160 g of “Proteases” (Amano Pharmaceutical Co., Ltd.) was added and reacted for 5 hours. The pH was adjusted to 6.5, sterilized at 150 ° C for 7 seconds, and immediately dried with a spray drier.
この粉末中のフィチン酸 (メソイ ノシッ トへキサリ ン酸) 含量をバナ ドモリブデン酸吸光光度法で測定したところ検出されず (検出限界 5 m g/ 1 0 0 g) 、 極めて良好にフィチン酸を低減できた。  The content of phytic acid (mesoinosittohexalic acid) in this powder was not detected by vanadomolybdic acid absorption spectrophotometry (detection limit: 5 mg / 100 g), reducing phytic acid extremely well did it.
〔実施例 6〕 (Example 6)
脱脂大豆 1 0 k gに 7倍加水し、 5 0 :、 p H 7で 3 0分撹拌しなが ら抽出した後、 遠心分離機にてオカラと豆乳を分離した後、 豆乳を硫酸 で P H 4. 5に調整後、 遠心分離し等電点沈殿蛋白質とホェ一蛋白に分 離後、 等電点沈殿蛋白質に対して 4倍加水後、 N a O Hで p H 6. 0に 調整し、 8 %濃度の蛋白液 5 0 リ ッ トルを調整し、 ただちにスプレー ド ライヤ—で粉末乾燥させた。 この蛋白液を 8 %溶液に調整し、 5 0 °Cに加温し、 フイタ一ゼ分解酵 素 「スミチーム P HY」 新日本化学工業(株)製 4 0 gを添加して 6 0分 反応させた後、 N a OHで p H 7. 0に調整し、 プロテア一ゼ 」 天野 製薬 (株) 製 1 6 0 gを添加させ 5時間反応させた。 p H 6. 5に調整 し、 1 5 0 °Cで 7秒間殺菌後、 ただちにスプレー ドライヤーで粉末乾燥 させた。  Water is added 7-fold to 10 kg of defatted soybeans, extracted at 50 :, pH 7 with stirring for 30 minutes, separated into okara and soymilk by a centrifuge, and the soymilk is PH4 After adjusting the pH to 5, centrifuged and separated into isoelectric precipitate protein and whey protein.After adding 4 fold water to the isoelectric precipitate protein, adjusting the pH to 6.0 with NaOH, 8 50 liters of a 50% protein solution was adjusted and immediately powder-dried with a spray dryer. This protein solution was adjusted to an 8% solution, heated to 50 ° C, added with 40 g of Sumitomo P HY, a protease degrading enzyme, manufactured by Shin Nippon Chemical Co., Ltd., and reacted for 60 minutes. After the reaction, the pH was adjusted to 7.0 with NaOH, and 160 g of "Proteases" (manufactured by Amano Pharmaceutical Co., Ltd.) was added, followed by reaction for 5 hours. The pH was adjusted to 6.5, sterilized at 150 ° C for 7 seconds, and immediately dried with a spray drier.
この粉末中のフィチン酸 (メソイ ノシッ トへキサリ ン酸) 含量をバナ ドモリブデン酸吸光光度法で測定したところ、 フィチン酸は 0. 5 %ま で低減されていた (検出限界 5 mg/ 1 0 0 g) 。  When the content of phytic acid (mesoinosittohexalic acid) in this powder was measured by vanadomolybdic acid spectrophotometry, phytic acid was reduced to 0.5% (detection limit: 5 mg / 100%). 0 g).
〔実施例 7〕 (Example 7)
脱脂大豆 1 0 k gに 7倍加水し、 5 0で、 p H 7で 3 0分撹拌しなが ら抽出した後、 遠心分離機にてオカラと豆乳を分離した後、 豆乳を硫酸 で P H 4. 5に調整後、 遠心分離し等電点沈殿蛋白質とホエー蛋白に分 離後、 等電点沈殿蛋白質に対して 4倍加水後、 N a OHで p H 6. 0に 調整し、 8 %濃度の蛋白液 5 0 リ ッ トルを調整した。 Add 7 times water to 10 kg of defatted soybeans, and stir at 50 and pH 7 for 30 minutes. After extracting the okara and soymilk using a centrifuge, the soymilk was adjusted to pH 4.5 with sulfuric acid, centrifuged, separated into isoelectric precipitation protein and whey protein, and then isoelectrically precipitated. After four-fold water addition to the protein, the pH was adjusted to 6.0 with NaOH, and 50 liters of an 8% protein solution was prepared.
この蛋白液を 5 0 °Cに加温し、 フイ タ一ゼ分解酵素 「スミチ一ム P H Y」 新日本化学工業(株)製 4 0 gを添加して 6 0分反応させた後、 ただ ちにスプレードライヤーで粉末乾燥させた。  This protein solution was heated to 50 ° C, and the phytase-degrading enzyme “Sumitim PHY”, 40 g, manufactured by Shin Nippon Chemical Industry Co., Ltd. was added and reacted for 60 minutes. Was dried with a spray dryer.
この溶液を 8 %に調整し、 N a OHで p H 7. 0に調整し、 プロテア —ゼ M」 天野製薬 (株) 製 1 6 0 gを添加させ 5時間反応させ、 1 5 0 °C で 7秒間殺菌後、 ただちにスプレードライヤ一で粉末乾燥させた。  The solution was adjusted to 8%, adjusted to pH 7.0 with NaOH, and added with 160 g of Proteaze M "Amano Pharmaceutical Co., Ltd., and allowed to react for 5 hours. After sterilization for 7 seconds, the powder was immediately dried with a spray dryer.
この粉末中のフィチン酸 (メソイノシッ トへキサリ ン酸) 含量をバナ ドモリ ブデン酸吸光光度法で測定したところ、 フィチン酸は 0. 2 %ま で低減されていた (検出限界 5 m gノ 1 0 0 g ) 。  When the content of phytic acid (mesoinosittohexalic acid) in this powder was measured by vanadomolybdic acid spectrophotometry, phytic acid was reduced to 0.2% (detection limit: 5 mg / min. g).
〔実施例 8〕 (Example 8)
脱脂大豆 1 0 k gに 7倍加水し、 5 0 °C、 p H 7で 3 0分撹拌しなが ら抽出した後、 遠心分離機にてオカラと豆乳を分離した後、 豆乳を硫酸 で P H 4. 5に調整後、 遠心分離し等電点沈殿蛋白質とホェ一蛋白に分 離後、 等電点沈殿蛋白質に対して 4倍加水後、 N a OHでp H 6. 0に 調整し、 8 %濃度の蛋白液 5 0 リ ッ トルを調整した。  Water is added seven times to 10 kg of defatted soybeans, extracted after stirring at 50 ° C and pH 7 for 30 minutes, and then separated from okara and soymilk by a centrifugal separator. After adjusting to 4.5, centrifuged and separated into isoelectric precipitate protein and whey protein.After adding 4 times water to the isoelectric precipitate protein, adjusting the pH to 6.0 with NaOH, 50 liters of an 8% protein solution was prepared.
この蛋白液を 5 0 °Cに加温し、 フィ 夕一ゼ分解酵素 「スミチーム P H Y」 新日本化学工業(株)製 4 0 gを添加して 6 0分反応させた後、 ただ ちにスプレードライヤーで粉末乾燥させた。  Heat this protein solution to 50 ° C, add 40 g of Sumiteam PHY, a enzyme degrading enzyme from Shin Nippon Chemical Co., Ltd., react for 60 minutes, and spray immediately. The powder was dried with a dryer.
この溶液を 8 %に調整し、 N a OHで p H 7. 0に調整し、 プロテア一 ゼ 」 天野製薬 (株) 製 1 6 0 gを添加させ 5時間反応させ(反応時 p H 6. 2 ) 、 その後、 再びフィ ターゼ分解酵素 「スミチーム P HY」 新日 本化学工業(株)製 4 0 gを添加して 6 0分反応させた後 1 5 0 °Cで 7秒 間殺菌後、 ただちにスプレー ドライヤーで粉末乾燥させた。 This solution was adjusted to 8%, adjusted to pH 7.0 with NaOH, and added with 160 g of Protease (Amano Pharmaceutical Co., Ltd.) and reacted for 5 hours (pH 6. 2) Then, again, phytase-degrading enzyme "Sumiteam P HY" After adding 40 g manufactured by Nippon Kagaku Kogyo Co., Ltd. and reacting for 60 minutes, the mixture was sterilized at 150 ° C. for 7 seconds and immediately dried by a spray drier.
この粉末中のフィチン酸 (メソイ ノ シッ トへキサリ ン酸) 含量をバナ ドモリ ブデン酸吸光光度法で測定したところ、 フィチン酸は 0. 2 %ま で低減されていた (検出限界 5 mg/ 1 0 0 g) 。  The content of phytic acid (mesoinosittohexalic acid) in this powder was measured by vanadomolybdic acid spectrophotometry, and it was found that phytic acid was reduced to 0.2% (detection limit: 5 mg / 1 0 0 g).
〔実施例 9〕 (Example 9)
一旦粉末乾燥した分離大豆蛋白 (不二製油 (株) 製、 「ニューフジプ ロー R」 ) 3 0 k gを p H 7. 0の 1 0 %水溶液とし、 蛋白分解酵素 「プ 口テア一ゼ 」 天野製薬 (株) 製 1. 2 k gならびに 「プロテアーゼ M」 天野製薬 (株) 製 0. 3 k gを作用させ 5 0 °Cで 5時間加水分解 ( 1 5 % 丁じ八可溶率 8 5 %) した後、 p Hを 6. 0に調整しフイ タ一ゼ分解酵 素「スミチーム P HY」新日本化学工業(株)製 0. 6 k g添加し 4 5 °C で 2時間加水分解を行なつた。  Once powder-dried isolated soy protein (Fuji Oil Co., Ltd., “New Fuji R”) 30 kg was converted to a 10% aqueous solution with a pH of 7.0, and the proteolytic enzyme “Puchi Tease” Amano Pharmaceutical 1.2 kg of Protease M and 0.3 kg of Amano Pharmaceutical Co., Ltd. were hydrolyzed at 50 ° C for 5 hours (15%, 8% solubility). Thereafter, the pH was adjusted to 6.0, and 0.6 kg of the fuzease-degrading enzyme “Sumiteam P HY” manufactured by Shin Nippon Chemical Co., Ltd. was added, followed by hydrolysis at 45 ° C for 2 hours. .
この分解液を連続処理可能な高速遠心分離機に 1 0 0 リ ツ 卜ルノ時間 の送液速度に調整し、 生じる沈降成分を分離除去した。 得られた遠心上 清液 (固形分の収率は 7 0 %) を p H 6. 5に調整し、 1 5 0 °Cで 7秒 間殺菌後、 ただちにスプレー ドライヤ一で粉末乾燥させた。  The decomposition solution was adjusted to a high-speed centrifugal separator capable of continuous processing at a feed speed of 100 liters, and the sedimentation component generated was separated and removed. The obtained centrifugal supernatant (solid content: 70%) was adjusted to pH 6.5, sterilized at 150 ° C for 7 seconds, and immediately dried by a spray dryer.
この粉末中のフィチン酸 (メソイ ノ シッ トへキサリ ン酸) 含量をバナ ドモリ ブデン酸吸光光度法で測定したところ検出されず (検出限界 5 m g/ 1 0 0 g) 、 極めて良好にフィチン酸を低減できた。  The content of phytic acid (mesoinosittohexalic acid) in this powder was not detected by vanadomolybdic acid absorption spectrophotometry (detection limit: 5 mg / 100 g). Could be reduced.
産業上の利用可能性 Industrial applicability
本発明の飼料を給餌することにより、 仔稚魚の生育を促進し、 大幅に 生残率を高めることができるようになったものである。  By feeding the feed of the present invention, the growth of larvae and larvae can be promoted, and the survival rate can be greatly increased.
特に、 養魚が困難とされる仔稚魚の生残率を高めることが出きるよう になり、 従来養魚が困難とされた魚の養殖が可能になったものである。 また、 ある程度成長した稚魚の生育を促進し、 糞を粘りのあるものと し水の濁り を防止できるようになり、 生育環境が改善されたものである。 また、 このような飼量に適した低フィチン植物蛋白加水分解物が可能 になったものである。 In particular, it may be possible to increase the survival rate of larvae and fry that are difficult to fish. In this way, fish cultivation, which has been difficult to fish conventionally, has become possible. It also promotes the growth of fry that has grown to some extent, makes the dung sticky, prevents water turbidity, and improves the growth environment. In addition, a low-phytin plant protein hydrolyzate suitable for such a quantity has become possible.
即ち、 本発明により、 フィチン酸含有量が極めて少なく、 さ らにはバ ナ ドモリ ブデン酸吸光光度法で検出限界以下という低フィチン植物蛋白 加水分解物が可能になったものである。 また、 樹脂吸着法による低フィ チン大豆蛋白加水分解物に比べ本発明の方法による低フィチン植物蛋白 加水分解物は風味に優れる (フィチン酸の分解物によると推察される) ものである。  That is, according to the present invention, a low-phytin vegetable protein hydrolyzate having an extremely low phytic acid content and being below the detection limit by vanadomolybdic acid absorption spectrophotometry has become possible. In addition, the low-phytin vegetable protein hydrolyzate according to the method of the present invention has an excellent flavor (it is presumed to be due to the decomposition of phytic acid) as compared with the low-phytin soybean protein hydrolyzate obtained by the resin adsorption method.
また、 本発明の低フィチン植物蛋白加水分解物は分子量が小さ く フィ チン酸が極めて少ないので消化吸収機能の発達が不充分な稚魚や生後生 まれてすぐの動物用の飼料に用いると消化吸収性に優れカルシウムなど の微量金属の吸収を促進し極めて有効である。  In addition, the low-phytin plant protein hydrolyzate of the present invention has a small molecular weight and extremely low phytic acid, so that it can be digested and absorbed when used in fry with insufficient development of digestion and absorption functions or animal feeds immediately after birth. It is highly effective and promotes the absorption of trace metals such as calcium.

Claims

請求の範囲 The scope of the claims
フィチン酸含有量が 0 . 0 5重量%以下 (乾燥固形分中) である植 物たん白加水分解物を飼料原料に含有することを特徴とする仔稚魚 用飼料。  A feed for larvae and larvae, comprising a plant protein hydrolyzate having a phytic acid content of 0.05% by weight or less (in dry solid content) as a feed material.
2 植物たん白加水分解物が平均分子量 2 0 0〜 1 0, 0 0 0 の植物た ん白加水分解物である請求項 1 の仔稚魚用飼料。  2. The feed for larvae and larvae according to claim 1, wherein the plant protein hydrolyzate is a plant protein hydrolyzate having an average molecular weight of 200 to 100,000.
3 飼料の形態が仔稚魚の摂取しやすい粒経、 浮遊性、 沈降速度を持ち しかも水中で栄養素が溶出せず、 消化管で消化吸収されるよう にマ ィク口カプセル化された微粒子飼料である請求項 1 または請求項 2 のいずれかの仔稚魚用飼料。  (3) A fine-particle diet encapsulated in a micro-mouth so that the form of the feed is easy to ingest for larvae and larvae, and has a particle size, buoyancy, sedimentation rate, and does not elute nutrients in water and can be digested and absorbed in the digestive tract. A feed for larvae and larvae according to any one of claims 1 and 2.
4. (a)蛋白分解酵素を用いて蛋白質を分解する工程及び(b)フィチン酸 を分解する酵素を用いてフィ チン酸を分解する工程を含むことを特 徴とする低フィチン植物たん白加水分解物の製造法。  4. A low-phytin protein protein hydrolyzate characterized by comprising (a) a step of degrading a protein using a protease and (b) a step of degrading phytic acid using an enzyme that degrades phytic acid. Production method of decomposition products.
5. 大豆蛋白を蛋白分解酵素を用いて分解した後、 フィチン酸を分解す る酵素を用いてフィチン酸を分解する請求項 4の製造法。 5. The method according to claim 4, wherein the soybean protein is decomposed using a protease, and then phytic acid is decomposed using an enzyme that decomposes phytic acid.
6. 未乾燥大豆蛋白をフィチン酸を分解する酵素を用いて分解した後、 蛋白分解酵素を用いて蛋白質を分解する請求項 4の製造法。  6. The method according to claim 4, wherein the undried soybean protein is decomposed using an enzyme that decomposes phytic acid, and then the protein is decomposed using a protease.
7 . フィチン酸を分解する酵素がフイ タ一ゼである請求項 4 ~ 6 のいず れかの製造法。 7. The method according to any one of claims 4 to 6, wherein the enzyme that degrades phytic acid is phytase.
8 . フイ タ一ゼ処理する p Hが 6〜 9である請求項 4〜 7 のいずれかの 製造法。 8. The process according to any one of claims 4 to 7, wherein the pH to be filtered is 6 to 9.
9. 低フィチン植物蛋白加水分解物の平均分子量が 2 0 0 ~ 1 0 0 0 0 である請求項 4〜 8 のいずれかの製造法。  9. The method according to any one of claims 4 to 8, wherein the low phytin plant protein hydrolyzate has an average molecular weight of 200 to 100,000.
10. 低フィチン植物蛋白加水分解物中のフィチン酸の含量が乾燥固形分 当たりバナドモリブデン酸吸光光度法 (検出限界 5 m g Z 1 0 0 g ) でフィチン酸が検出されない請求項 4〜 9のいずれかの製造法。 10. The phytic acid content in the low-phytin plant protein hydrolyzate is not detected by vanadomolybdic acid spectrophotometry (detection limit 5 mg Z 100 g) per dry solid content. Any manufacturing method.
PCT/JP2003/009355 2002-07-24 2003-07-23 Feed for fry young fishes and method of producing hydrolyzate of low-phytin vegetable protein to be used therein WO2004017751A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2005501227A JP4556868B2 (en) 2002-07-24 2003-07-23 Production of larvae feed and low phytin protein hydrolyzate
AU2003248093A AU2003248093A1 (en) 2002-07-24 2003-07-23 Feed for fry young fishes and method of producing hydrolyzate of low-phytin vegetable protein to be used therein

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002-215660 2002-07-24
JP2002215660 2002-07-24
JP2002216888 2002-07-25
JP2002-216888 2002-07-25
JP2003-272088 2003-07-08
JP2003272088 2003-07-08

Publications (1)

Publication Number Publication Date
WO2004017751A1 true WO2004017751A1 (en) 2004-03-04

Family

ID=31950442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009355 WO2004017751A1 (en) 2002-07-24 2003-07-23 Feed for fry young fishes and method of producing hydrolyzate of low-phytin vegetable protein to be used therein

Country Status (5)

Country Link
JP (1) JP4556868B2 (en)
KR (2) KR20110033314A (en)
CN (2) CN100379354C (en)
AU (1) AU2003248093A1 (en)
WO (1) WO2004017751A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148652A (en) * 2006-12-19 2008-07-03 Univ Kinki Feed for fishes of thunnus
BE1017901A3 (en) * 2007-01-16 2009-10-06 Bart Rossel FOAMING COMPOSITION FOR KILLING ARTHROPODS AND ITS USE.
JP2009284835A (en) * 2008-05-30 2009-12-10 Fuji Oil Co Ltd Green liver syndrome-preventive fish feed
WO2009143591A3 (en) * 2008-05-30 2010-03-18 Danis, Naamloze Vennotschap Method for processing soybeans
WO2020159376A1 (en) * 2019-01-28 2020-08-06 Skretting Aquaculture Research Centre As Feed for aquatic species with a stable soft and elastic texture
JP2020184905A (en) * 2019-05-13 2020-11-19 不二製油株式会社 Method for producing fish feed
JP2023500467A (en) * 2019-10-30 2023-01-06 シージェイ チェルジェダン コーポレイション Composition for producing soy protein concentrate with reduced phytic acid and use thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102453960B1 (en) * 2020-01-20 2022-10-11 조선대학교산학협력단 Feed additive composition for eel containing probiotics and pig plasma hydrolyzate as an active ingredient
KR102319352B1 (en) * 2021-02-03 2021-10-29 바이오메디팜 어업회사법인 주식회사 Nonhormonal Method for Masculinization of Chum Salmon

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227223A (en) * 1994-02-22 1995-08-29 Fuji Oil Co Ltd Feed for cultured paralichthys olivaceous
JPH0892123A (en) * 1994-09-28 1996-04-09 Fuji Oil Co Ltd Soybean protein enzymatic decomposition product having low phosphorus content and used for renal diseases
JPH10327770A (en) * 1997-05-30 1998-12-15 Yasuo Hatate Microcapsule for feed
JPH1156257A (en) * 1997-08-18 1999-03-02 Yoji Muramatsu Feed for feed organism for eel fry and culture of eel fry
JP2000300185A (en) * 1999-04-16 2000-10-31 Fuji Oil Co Ltd Production of soy protein

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DK1142485T3 (en) * 1994-04-22 2008-06-02 Novozymes As Process for improving the solubility of plant proteins
JP3259803B2 (en) * 1994-08-09 2002-02-25 不二製油株式会社 Farmed shrimp feed and shrimp farming method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227223A (en) * 1994-02-22 1995-08-29 Fuji Oil Co Ltd Feed for cultured paralichthys olivaceous
JPH0892123A (en) * 1994-09-28 1996-04-09 Fuji Oil Co Ltd Soybean protein enzymatic decomposition product having low phosphorus content and used for renal diseases
JPH10327770A (en) * 1997-05-30 1998-12-15 Yasuo Hatate Microcapsule for feed
JPH1156257A (en) * 1997-08-18 1999-03-02 Yoji Muramatsu Feed for feed organism for eel fry and culture of eel fry
JP2000300185A (en) * 1999-04-16 2000-10-31 Fuji Oil Co Ltd Production of soy protein

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148652A (en) * 2006-12-19 2008-07-03 Univ Kinki Feed for fishes of thunnus
BE1017901A3 (en) * 2007-01-16 2009-10-06 Bart Rossel FOAMING COMPOSITION FOR KILLING ARTHROPODS AND ITS USE.
JP2009284835A (en) * 2008-05-30 2009-12-10 Fuji Oil Co Ltd Green liver syndrome-preventive fish feed
WO2009143591A3 (en) * 2008-05-30 2010-03-18 Danis, Naamloze Vennotschap Method for processing soybeans
BE1018166A3 (en) * 2008-05-30 2010-06-01 Danis N V METHOD FOR TREATING SOYA BEANS
WO2020159376A1 (en) * 2019-01-28 2020-08-06 Skretting Aquaculture Research Centre As Feed for aquatic species with a stable soft and elastic texture
CN113727610A (en) * 2019-01-28 2021-11-30 斯克雷廷水产养殖研究中心公司 Feed for aquatic organisms having stable, soft and elastic texture
JP2020184905A (en) * 2019-05-13 2020-11-19 不二製油株式会社 Method for producing fish feed
JP2023500467A (en) * 2019-10-30 2023-01-06 シージェイ チェルジェダン コーポレイション Composition for producing soy protein concentrate with reduced phytic acid and use thereof
EP4052587A4 (en) * 2019-10-30 2023-12-27 CJ Cheiljedang Corporation Composition for preparing soy protein concentrate having reduced phytic acid, and use thereof
JP7417723B2 (en) 2019-10-30 2024-01-18 シージェイ チェルジェダン コーポレイション Composition for producing soy protein concentrate with reduced phytic acid and its uses

Also Published As

Publication number Publication date
KR101042124B1 (en) 2011-06-16
JP4556868B2 (en) 2010-10-06
AU2003248093A1 (en) 2004-03-11
KR20110033314A (en) 2011-03-30
CN101066097A (en) 2007-11-07
CN1671294A (en) 2005-09-21
CN101066097B (en) 2010-06-23
CN100379354C (en) 2008-04-09
KR20050025138A (en) 2005-03-11
JPWO2004017751A1 (en) 2005-12-08

Similar Documents

Publication Publication Date Title
US7070953B1 (en) Protein hydrolysates produced with the use of cod proteases
Mizani et al. An effective method for producing a nutritive protein extract powder from shrimp-head waste
CN100435648C (en) Feed composition and method of feeding animals
CN107105707B (en) Proline tolerant tripeptidylpeptidases and uses thereof
US6958385B2 (en) Bioactive peptides, uses thereof and process for the production of same
JP2011055831A (en) Method for producing fermented soybean cake by using bacillus subtilis
JP2009254348A (en) Method for producing food and drink of processed larva of bee, and food and drink of processed larva of bee
EP1064853B1 (en) Fine granular feeds for fry
JP4556868B2 (en) Production of larvae feed and low phytin protein hydrolyzate
JP4804003B2 (en) Production method of feed materials for fish, echinoderms or crustaceans
JP3259803B2 (en) Farmed shrimp feed and shrimp farming method
JP2001057852A (en) Heat-resistant enzyme-containing feed composition
CA2205712A1 (en) Process for converting waste protein sources into a balanced animal feed
JP3007135B2 (en) Dietary fiber and method for producing the same
JP2005087017A (en) Method for producing euphausiacea extract
Al Ghais et al. Utilization of fish viscera for protease production and used for digestion of waste in the pond
JP3259800B2 (en) Feed for aquaculture
RU2372787C1 (en) Method of obtaining fodder protein hydrolysate
TWI692308B (en) Soy protein concentrate hydrolyzed under low moisture condition and preparation method thereof
RU2088104C1 (en) Method for producing protein hydrolyzers of protein- containing raw material
Fernández-Gimenez Properties and some new applications of enzymes from wastes of the shrimp Pleoticus muelleri (Decapoda, Penaeoidea)
JPS61282042A (en) Feed for pisciculture
JPS58158138A (en) Production of protein suitable for enzymatic hydrolysis
JPS62289152A (en) Palatability improving agent for piglet feed
JPS61234743A (en) Feed for domestic animal and domestic fowl

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2005501227

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020047010738

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038177072

Country of ref document: CN

122 Ep: pct application non-entry in european phase
WWE Wipo information: entry into national phase

Ref document number: 1020117006214

Country of ref document: KR