WO2004017489A1 - 回転電機のマグネット - Google Patents

回転電機のマグネット Download PDF

Info

Publication number
WO2004017489A1
WO2004017489A1 PCT/JP2003/010387 JP0310387W WO2004017489A1 WO 2004017489 A1 WO2004017489 A1 WO 2004017489A1 JP 0310387 W JP0310387 W JP 0310387W WO 2004017489 A1 WO2004017489 A1 WO 2004017489A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic pole
magnet
pole portions
inter
magnetic
Prior art date
Application number
PCT/JP2003/010387
Other languages
English (en)
French (fr)
Inventor
Shinya Naito
Haruyoshi Hino
Hiroyuki Ishihara
Junji Terada
Tomohiro Ono
Motokuni Nishiyama
Masashi Kawasaki
Original Assignee
Yamaha Hatsudoki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Hatsudoki Kabushiki Kaisha filed Critical Yamaha Hatsudoki Kabushiki Kaisha
Priority to EP03788130A priority Critical patent/EP1553678A4/en
Priority to JP2004528889A priority patent/JPWO2004017489A1/ja
Priority to AU2003266503A priority patent/AU2003266503A1/en
Publication of WO2004017489A1 publication Critical patent/WO2004017489A1/ja
Priority to US11/058,921 priority patent/US7116027B2/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2793Rotors axially facing stators
    • H02K1/2795Rotors axially facing stators the rotor consisting of two or more circumferentially positioned magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/52Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by DC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/66Arrangements of batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2204/00Indexing codes related to suspensions per se or to auxiliary parts
    • B60G2204/10Mounting of suspension elements
    • B60G2204/30In-wheel mountings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/12Bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/40Electrical machine applications
    • B60L2220/44Wheel Hub motors, i.e. integrated in the wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/142Emission reduction of noise acoustic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a magnet for an axial gap type rotating electric machine.
  • an axial-gap-type electric motor serving as the axial-gap-type rotating electric machine includes a disk-shaped rotor-side yoke having a rotating shaft supported by its bearing, for example, a circular motor.
  • the stator-side yoke which is a laminate in which plate-shaped steel sheets are laminated along the central axis direction, faces each other, and the facing surface is orthogonal to the rotation axis.
  • a magnetic field for example, is arranged in a circular shape (annular shape) on the opposing surface of the rotor-side yoke, and the magnet is arranged in the circumferential direction. It has magnetic poles (N-pole, S-pole) alternately arranged along.
  • the opposite surface of the yoke on the stator side A plurality of teeth are provided along the radial direction (radial direction), and the opposing surfaces of the magnet and the tooth are orthogonal to the rotation axis, and the gap between the opposing surfaces is It is formed in a plane perpendicular to the rotation axis.
  • a magnetic circuit is formed between the rotor and the stator, and each tee is wound via a coil wound around each tooth of the stator.
  • the induced voltage waveform changes from a sinusoidal waveform to a distorted waveform, torque ripple occurs, the rotation of the rotor becomes uneven, and vibration and noise may occur. Had occurred.
  • Japanese Patent Application Laid-Open No. 2001-577753 discloses that a groove is formed by cutting a boundary between a plurality of magnetic poles affixed to a rotor core, and a motor is driven.
  • a configuration for reducing the pulsation of Luke is disclosed. 2003/010387
  • the present invention has been made in view of the above-described circumstances, and is to make an induced voltage waveform closer to a sine waveform when a rotor rotates and a magnetic pole of a magnet facing each tooth switches. It is an object of the present invention to provide a magnet for a rotating electric machine that realizes the above without deteriorating the assemblability of the rotor.
  • a magnet of a rotating electrical machine includes a plurality of teeth arranged in a substantially circular shape with a gap interposed therebetween along a rotation axis direction.
  • a plurality of magnetic pole portions facing each other and arranged in a substantially circular shape, and extending in a circumferential direction from each of the adjacent magnetic pole portions of the plurality of magnetic pole portions, and facing the teeth of the magnetic pole portion.
  • a plurality of inter-pole portions having a tooth-facing surface that is recessed along the rotation axis direction from a surface to be formed.
  • a magnet for a rotating electric machine includes a plurality of teeth arranged in a substantially circular shape, with a gap interposed therebetween along the rotation axis direction.
  • a plurality of magnetic pole portions arranged in a substantially circular shape, and extending in a circumferential direction from each of the adjacent magnetic pole portions of the plurality of magnetic pole portions, and facing the teeth of the magnetic pole portion.
  • a plurality of inter-pole portions having a tooth-facing surface that is recessed along the rotation axis direction from the surface, and a radial width of the inter-pole portion is defined as a radial width of each of the magnetic pole portions.
  • the length of at least one of the inner peripheral side and the outer peripheral side of the portion between the magnetic poles along the radial direction from the rotation shaft is set so as to be narrower than that of the magnetic pole.
  • the length of the corresponding peripheral part in each magnetic pole part is made different.
  • the inner peripheral portion of the inter-magnetic pole portion is recessed toward the outer peripheral portion of the inter-magnetic pole portion rather than the inner peripheral portion of each of the magnetic pole portions to form a concave inner peripheral portion.
  • the plurality of magnetic pole portions and the plurality of inter-magnetic pole portions are resin magnet portions integrally formed of a resin material.
  • the magnetic flux between the magnetic poles is made smaller than that of the adjacent magnetic poles. Also, the magnetic flux can be smoothly changed with respect to the rotation of the rotor (rotation of the magnetic pole part).
  • the induced voltage waveform corresponding to the intersecting magnetic flux between the rotor magnet and the teeth can be approximated to a sine wave, and the occurrence of torque ripple is suppressed to reduce the rotation of the rotor.
  • FIG. 1 is a side view of an electric motorcycle which is an example of a device equipped with an axial gap type rotating electric machine including a magnet of a rotating electric machine according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view (partial side view) taken along the line II-II of FIG. 1 for explaining the inside of the rear end of the rear arm shown in FIG. -FIG. 3 is a plan view showing a state in which the rotor according to the embodiment of the present invention, to which the magnet is fixed, is viewed from the stator side shown in FIG.
  • FIG. 4 is a cross-sectional view taken along the line IV-IV of the rotor shown in FIG.
  • FIG. 5 is an enlarged perspective view showing a portion between the magnetic poles shown in FIG.
  • FIGS. 6A to 6C are diagrams showing the positional relationship between the rotor shown in FIGS. 2 and 3 and the teeth when the rotor is rotated.
  • FIG. 7A is a diagram showing the relationship between the magnet amount of the conventional magnet and the magnet amount of the present invention (the present embodiment).
  • Fig. 7B shows the ratio between the induced voltage distortion factor of the electric motor using the magnet of the conventional example and the induced voltage distortion factor of the electric motor using the magnet of the present invention (the present embodiment). 2003/010387
  • FIG. 1 A first figure.
  • FIG. 8 is a diagram showing a magnet according to a first modification of the embodiment of the present invention. ⁇
  • FIG. 9 is a diagram showing a magnet according to a second modification of the embodiment of the present invention.
  • FIG. 10 is a diagram showing a magnet according to a third modification of the embodiment of the present invention.
  • FIG. 11 is a diagram showing a magnet according to a fourth modification of the embodiment of the present invention.
  • FIG. 1 is a side view of an electric motorcycle 1 on which an axial gear-type rotary electric machine, which is an example of a rotary electric machine using a magnet according to an embodiment of the present invention, is mounted.
  • the electric motorcycle 1 is provided with a head tip 2 at an upper front portion of the vehicle body, and inside the head tip and the tip, an unillustrated part for changing the direction of the car body is provided.
  • the steering shaft is rotatably inserted.
  • a handle support 3 to which the handle 3a is fixed is attached, and both ends of the handle 3a are attached to both ends.
  • Top 4 is installed.
  • a pair of left and right front forks 5 are attached downward from the lower end of the head pipe 2.
  • a front wheel 6 is mounted via a front axle 7, and the front wheels 6 are buffered and suspended by the front forks 5. In this state, it is rotatably supported by the front axle 7.
  • a meter 8 is arranged in front of the handle 3 a of the handle 3, and a head lamp 9 is fixed below the meter 8 in the handle 3.
  • a flash lamp 10 (only one is shown in FIG. 1) is provided on each side of the head lamp 9.
  • a pair of left and right body frames 11 each forming an approximately L-shape in side view extend from the head pipe 2 toward the rear of the body.
  • the body frame 11 has a round pipe shape, extends diagonally downward from the head pipe 2 toward the rear of the vehicle body, and then extends horizontally toward the rear to be substantially L-shaped in side view. Has been established.
  • a pair of left and right seat rails 12 extend diagonally upward from the rear end to the rear from the rear end of the pair of body frames 11.
  • the rear end 12 a of the seat reel 12 is bent rearward along the shape of the seat 13.
  • a battery 14 is detachably provided, and the battery 14 houses a plurality of rechargeable rechargeable batteries.
  • an inverted U-shaped seat stay 15 is welded so as to be inclined upward toward the front of the vehicle body.
  • the sheet 13 is openable and closable in a portion surrounded by the sheet 15 and the left and right sheet rails 12, that is, the sheet 13 is arranged to be rotatable up and down via the front end of the sheet 13.
  • the rear end of the seat rail 12 is provided with a rear hender 16, and the rear end of the rear hender 16 is provided with a tile lamp 17. It is attached.
  • a flash lamp (only one is shown in FIG. 1) 18 is attached to the left and right of the tile lamp 17.
  • the rear arm bracket 19 (only one is shown in Fig. 1) is welded to the lower part of the seat 13 of the pair of left and right body frames 11 1.
  • the front ends of the rear arms 20 are swingably supported by the pair of rear arm brackets 19 via pivot shafts 21.
  • a rear wheel 22 as a drive wheel is rotatably supported at the rear end 20a of the rear arm 20.
  • the wheel 22 is buffer-suspended by the reaction 23.
  • a pair of footsteps 24 (only one is shown in FIG. 1) are provided, and a side stand 25 is connected to the rear side of the footstep 24 via an axis 26. It is rotatably supported by the left rear arm 20, and the side stand 25 is urged to the closed side by the return spring 27. .
  • An axial gap type electric motor 28 (hereinafter simply referred to as an electric motor) connected to a rear wheel 22 and thereafter rotating the wheel 22 is provided in a rear end 20 a of the rear arm 20.
  • a drive unit 29 including an abbreviated as 28 may be installed.
  • FIG. 2 is a cross-sectional view (partial side view) taken along the line II-II of FIG. 1 for explaining the inside of the rear end portion 20a of the rear arm 20.
  • the rear wheel 22 is not shown.
  • a gear cover 35 is attached to the right side of the rear end 20 a of the rear arm 20, and a drive unit 29 is formed in a space formed therein.
  • the electric motor 28, the planetary gear reducer 36, the controller 37, etc. are integrally incorporated.
  • the axial gap type electric motor 28 has a bearing 3 a with respect to a rear end 20 a of the rear arm 20 through bearings 38 a and 38 b.
  • a rotor (mouth) 40 rotatably supported about the center axis B ⁇ of 8 a and 38 b, and a rear end of the rim facing the rotor 40. It has a substantially annular (doughnut) -shaped stator (stay-night) 41 fixed to the inner surface of 10 parts 20a.
  • the rotor 40 has a rotor side yoke 42.
  • the rotor side yoke 42 is provided at the rear end of the rear arm 20. Forming a convex piece toward 20 a
  • the rotor side yoke 42 has an annular annular portion 42 a facing the stator 41, and a rear end of the rear arm 20 from an inner peripheral portion of the annular portion 42 a.
  • a portion of the taper 42b extending toward the portion 20a in a substantially tapered shape (substantially frustoconical shape), and a limb of the tapered portion 42b.
  • a first cylindrical portion 4 2c that protrudes along the central axis B 0 from the rear end portion 20a side peripheral portion to the rear end portion 20a, and a cylindrical portion 4 2c A rear end portion of the climbing beam 20a
  • An annular portion 42d extending radially inward from the side peripheral portion and an inner peripheral portion of the annular portion 42d.
  • a second cylindrical portion 42 e extending convexly from the portion toward the rear end portion 20 a along the central axis BO.
  • the second cylindrical portion 42e is rotatably supported about a central axis B0 via bearings 38a, 38b, and the rotation of the rotor 40 is performed. Make up the axis. Therefore, the center of the rotation axis of the rotation axis 42 e of the rotor 40 is aligned with the center axis B 0 of the bearings 38 a and 38 b.
  • the rotor 40 is a ring part 4 of the rotor side yoke 42. 2a, which is fixed to the stator-side facing surface and has a substantially circular shape (annular shape) coaxial with the center axis BO.
  • a rotating shaft 46 is connected coaxially with the rotor 40 (rotating shaft 42 e) at the rear wheel end of the rotating shaft 42 e of the rotor 40.
  • the shaft 46 is rotatable together with the rotor 40.
  • the planetary gear reducer 36 is connected to the rotating shaft 46 and is incorporated in the taper portion 42 b of the rotor side yoke 42.
  • the planetary gear reducer 36 and the electric motor 28 partially overlap in the vehicle width direction.
  • the planetary gear reducer 36 is arranged coaxially with the rotating shaft 46.
  • the motor is connected to the rear axle 47 and has the function of reducing the rotation of the electric motor 28 (rotation of the rotating shaft 46) and transmitting it to the rear axle 47.
  • a nut 50 is detachably screwed onto a tip portion 47a of the rear axle 47 protruding from the gear bar 35, and the rear wheel 22 is fitted to the rear axle 47. It is attached by screwing nuts 50 in the closed state.
  • stator side of the laminated structure (yoke) They are arranged in a substantially circular shape so as to face each other with a gap therebetween, and include a plurality of teeth 61 each made of a laminated body of steel plates.
  • the magnet 45 sandwiches a gap along the direction of the rotation axis BO with respect to the plurality of teeth 61 arranged in a substantially circular shape as described above. And a plurality of magnetic pole portions 45a (N pole) and 45b (S pole) arranged in a substantially circular shape.
  • the N pole portion 45a and the S pole portion 45b are alternately arranged along the circumferential direction.
  • the magnet 45 is formed between a plurality of magnetic poles extending in the circumferential direction from adjacent magnetic poles in the plurality of magnetic poles (N pole 45 a and S pole 45 b).
  • a part 45c is provided, and the boundary of the magnetic poles (boundary between the N pole and the S pole) Bm exists along the substantially radial direction at the approximate center of the part 45c between the magnetic poles.
  • FIG. 4 is an enlarged view of a portion 45 c between magnetic poles shown in FIG.
  • the inter-pole portion 45c is located between the tooth-facing surfaces of the adjacent magnetic pole portions (N-pole portion 45a and S-pole portion 45b).
  • the recess is also concavely curved along the rotation axis direction, and has a concave tooth-facing surface.
  • the area of the concave tooth facing surface of the magnetic pole portion 45c is smaller than the N pole portion 45a and the S pole portion 45b on both sides.
  • the torque is reduced compared to when there is no concave magnetic pole gap. It can be kept constant.
  • the depth of the concave portion of the inter-magnetic pole portion 45c along the rotation axis direction and the radius of curvature of the concave portion of the curved surface are set to a length at which a change in magnetic flux described later becomes smooth.
  • the magnets 45 are, for example, resin magnets (bonded magnets). It is produced by molding a resin (mixture) obtained by mixing (compounding) a resin with a resin into an annular shape by injection molding. Next, the operation of the electric motor 28 using the magnet 45 having the above-described configuration will be described.
  • a magnetic circuit is formed between the rotor 40 and the stator 41, and the magnetic flux emitted from the N pole of the magnet 45 of the rotor 40. Flows through the teeth 61 to the stator-side yoke 60, and flows to the south pole of the magnet 45 through the other teeth 61.
  • the excitation via controller 37 etc.
  • the excited magnets 61 are sequentially moved, and the rotor 40 is rotated together with the magnet 45.
  • FIGS. 6A to 6C show the positional relationship with the teeth 61 (indicated by a two-dot chain line) when the rotor 40 rotates.
  • the teeth opposing between the magnetic pole portions (the N pole portion 45a and the S pole portion 45b) of the magnet 45 are provided. Since the surface is provided with an inter-pole portion 45c which is recessed from the magnetic pole portions 45a and 45b, the magnetic flux in the concave pole portion 45c is reduced, and the N pole 4 of the rotor 40 is reduced. The magnetic flux changes smoothly as 5a and 45b transition from one given tooth 61 to the next.
  • FIG. 7A shows the magnet amount M 0 of the conventional magnet (when there is no concave magnetic pole portion) when the torque is kept constant and the magnet 45 of the present embodiment.
  • FIG. 6 is a diagram showing the relationship between the amount of magnetism and the amount of magnetism (the vertical axis represents the amount of magnetism).
  • Fig. 7B shows a conventional example (where the concave magnetic pole gap is The ratio of the induced voltage distortion (the amount of harmonic components) in the electric motor using the magnet of the present embodiment to the induced voltage distortion in the electric motor 28 using the magnet 45 of the present embodiment.
  • FIG. 7A shows the magnet amount M 0 of the conventional magnet (when there is no concave magnetic pole portion) when the torque is kept constant and the magnet 45 of the present embodiment.
  • FIG. 6 is a diagram showing the relationship between the amount of magnetism and the amount of magnetism (the vertical axis represents the amount of magnetism).
  • Fig. 7B shows a conventional example (where the concave magnetic pole
  • the magnet 45 of the present embodiment has a concave portion 45 c between the magnetic poles while maintaining the torque, so that the magnet corresponding to the concave portion is formed. It is possible to reduce the cutting amount (for example, about 11.4%), which can contribute to the cost reduction of rotating electrical machines.
  • the induced voltage distortion factor in the electric motor 28 using the magnet 45 of the present embodiment is the same as that of the conventional electric motor using the magnet. Compared to the induced voltage distortion factor in the evening, it is reduced to about 1/7, and the induced voltage waveform due to the intersecting magnetic flux can be approximated to a sine waveform.
  • the tooth facing surface has the magnetic pole part 45 a and With the provision of the concave magnetic pole portion 45 c that is more concave than that of the rotor 45, it corresponds to the intersecting magnetic flux between the magnet 45 of the rotor 40 and the teeth 61.
  • the induced voltage waveform can be approximated to a sine wave, and the occurrence of torque ripple can be suppressed, the smooth rotation of the rotor 40 can be maintained, and the generation of vibration and noise can be prevented.
  • the magnet 45 is configured.
  • the plurality of magnetic pole portions 45a, 45b and the plurality of magnetic pole portions 45c are integrally formed into an annular shape by injection molding using, for example, a resin obtained by mixing magnet powder and a binder resin. Generated.
  • the N poles 45a and 45b are concavely curved to provide the concave magnetic pole portion 45c.
  • the shape of the concave portion is not limited to a curved surface, but may be a rectangular shape. It can take any shape, such as shape.
  • FIG. 8 is a diagram showing a magnet 70 according to a first modification of the present embodiment.
  • a magnet 70 is a resin magnet integrally formed by, for example, injection molding, and includes a plurality of teeth 61 arranged in a substantially circular shape as described above. And a plurality of magnetic pole portions 70a (N pole) and 7Ob (S pole) disposed in a substantially circular shape and opposed to each other with a gap along the rotation axis B ⁇ direction. .
  • the N pole portion 70a and the S pole portion 70b are alternately arranged along the circumferential direction.
  • the magnet 70 is formed between a plurality of magnetic poles extending in the circumferential direction from adjacent magnetic poles in the plurality of magnetic poles (N pole 70 a and S pole 70 b).
  • a portion 70c is provided, and the boundary of the magnetic pole (boundary between the N pole and the S pole) Bm substantially along the radial direction is present substantially at the center of the portion 70c between the magnetic poles.
  • the length L1 along the radial direction from the rotation axis BO with respect to the inner peripheral portion 71 of the inter-pole portion 70c is defined as the length of each of the pole portions 70a and 70b.
  • the inner circumferential portion 72 is longer than the length L 2, and the radial width W 1 of the magnetic pole portion 70 c is set to the radial width of each magnetic pole portion 70 a and 70 b. It is shorter than W2.
  • the inner peripheral portion 71 of the inter-magnetic pole portion 70c is larger than the inner peripheral portion 72 of the magnetic pole portions 70a and 70b. Outside the gap between the magnetic poles 70 c
  • the inner peripheral portion 71 is a concave inner peripheral portion by being recessed in a rectangular shape toward the peripheral portion 73.
  • each of the magnetic pole portions 70a and 70b projects in a rectangular shape toward the rotation axis B #.
  • the induced voltage waveform corresponding to the intersecting magnetic flux between the magnet 70 of the rotor 40 and the tooth 61 can be approximated to a sine wave, and the occurrence of torque ripple can be reduced.
  • smoothness of rotation of the rotor 40 can be maintained, and generation of vibration and noise can be prevented.
  • the plurality of magnetic pole portions 70 a and 70 b and the plurality of inter-magnetic pole portions 70 c constituting the magnet 70 are formed.
  • it is produced by integrally molding an annular shape by injection molding using a resin obtained by mixing magnet powder and a binder resin.
  • the number of parts of the rotor 40 is not increased, and the assembly of the rotor 40 is not performed. While maintaining high performance, the effect of reducing torque ripple can be obtained.
  • FIG. 9 is a diagram showing a magnet 80 according to a second modification of the present embodiment.
  • This magnet 80 is also a resin magnet integrally formed by, for example, injection molding, and has a plurality of magnetic pole portions 80 a and 70 ob equivalent to the magnetic pole portions 70 a and 70 ob shown in FIG. a (N-pole), 80 (S-pole), and a plurality of inter-pole portions 80c. At the approximate center of the inter-pole portion 80c, the boundary of the magnetic poles along the substantially radial direction ( The boundary between the north and south poles) B m exists.
  • the length L 3 along the radial direction from the rotation axis B ⁇ ⁇ ⁇ ⁇ with respect to the inner peripheral portion 81 of the inter-pole portion 80 c is defined as the length of each pole portion 80 a.
  • 80b are longer than the length L4 of the inner peripheral portion 82, and the radial width W3 of the portion 80c between the magnetic poles is defined by the magnetic pole portions 80a and 80b. It is shorter than the radial width W 4 of.
  • the inner peripheral portion 81 of the inter-pole portion 80 c is made to be closer to the outer peripheral portion 83 of the inter-pole portion 80 c than to the inner peripheral portion 82 of each of the magnetic pole portions 80 a and 80 b.
  • the inner peripheral portions 82 of the magnetic pole portions 80a and 80b are projected in a curved shape toward the rotation axis BO.
  • the inner peripheral portion 81 is provided with the inter-magnetic pole portion 80 c that is recessed from the inner peripheral portion 82 of each of the magnetic pole portions 80 a and 80 b, the concave magnetic pole is provided. Between 80 c The magnetic flux decreases, and the magnetic flux accompanying rotation of the rotor 40 can be smoothly changed. As a result, an effect similar to that of the first modified example can be obtained.
  • FIG. 10 is a diagram showing a magnet 90 according to a third modification of the present embodiment.
  • This magnet 90 is also a resin magnet integrally formed by, for example, injection molding, and has a plurality of magnetic pole portions 90 a (N pole), 90 substantially the same as those of the first and second modifications. 0 b (S pole), and a plurality of inter-pole portions 90 c, and substantially at the center of the inter-pole portion 90 c, a magnetic pole boundary (N pole and S The pole boundary) B m exists.
  • the length L5 along the radial direction from the rotation axis BO with respect to the inner peripheral portion 91 of the inter-pole portion 90c is set to each of the magnetic pole portions 90a and 90a.
  • the inner width 92 of the 90 b is longer than the length L 6 of the inner circumference 92, and the radial width W 5 of the inter-pole portion 90 c is defined by the diameter of each of the magnetic pole portions 90 a and 90 b. It is shorter than the width W6 in the direction.
  • the inner circumference 91 of the inter-pole portion 90 c is smaller than the inner circumference 92 of each of the magnetic pole portions 90 a and 90 b. It is recessed in a substantially V-shape toward the outer peripheral portion 93 of the inter-pole portion 90 c, and the inner peripheral portion '92 of each of the magnetic pole portions 90 a and 90 b is substantially moved toward the rotation axis BO. It is projected in an inverted V shape.
  • the inner peripheral portion 91 is Since the magnetic pole portion 90 c is recessed from the inner peripheral portion 92 of the portions 90 a and 90 b, the magnetic flux of the concave magnetic pole portion 90 decreases, and the rotation of the rotor 40 is reduced. The magnetic flux associated with the change can be changed smoothly. As a result, the same effect as in the first and second modifications can be obtained.
  • the length along the radial direction from the rotation axis B0 with respect to the inner peripheral portion of the magnetic pole portion is defined as the length of the inner peripheral portion of each magnetic pole portion.
  • FIG. 11 is a diagram showing a magnet 100 according to a fourth modification of the present embodiment.
  • the magnet 100 is a resin magnet integrally formed by, for example, injection molding, and has a plurality of magnetic pole portions substantially equivalent to those of the first to third modifications.
  • 100 a N-pole
  • 100 b S-pole
  • inter-pole portions 100 c are provided.
  • the length L 7 along the radial direction from the rotation axis B ⁇ with respect to the outer peripheral portion 101 of the inter-pole portion 100 c is defined as the length of each magnetic pole portion 100.
  • a and 100 b are shorter than the length L 8 of the outer peripheral portion 102, and the radial width W 7 of the inter-pole portion 100 c is set to each of the magnetic pole portions 100 a and 100 a. And shorter than the radial width W 8 of 100 b.
  • the outer periphery 101 of the inter-pole portion 100 c is separated from the outer periphery of the magnetic pole portions 100 a and 100 b.
  • 0 2 is projected in a substantially rectangular shape from the rotation axis BO toward the outer peripheral side.
  • the inner peripheral portion 103 of the inter-magnetic pole portion 100 c is not recessed, but the outer peripheral portion 101 is formed by the outer peripheral portion 103 of each magnetic pole portion 100 a and 100 b. It is concave with respect to the outer periphery 102. Also in this configuration, the magnetic flux in the concave magnetic pole portion 100c is reduced, and the magnetic flux accompanying the rotation of the rotor 40 can be changed smoothly, as in the first to third modified examples. Various effects can be obtained.
  • the magnet according to the present invention is used for an axial gap type rotating electric machine mounted on a motorcycle, but the present invention is not limited to this.
  • the present invention can be applied to an axial-gap rotating electric machine mounted on another device / equipment, and the above-described effects can be obtained.
  • an axial gap type electric motor (electric motor) has been described as an axial gap type rotating electric machine on which the magnet according to the present invention is mounted, the present invention is not limited to this.
  • the present invention can be applied to a so-called generator that generates an electromotive force in a coil by rotating the rotor from the outside.
  • the magnet side is described as the rotor and the coil side is described as the stator, but the present invention is not limited to this. It is possible to configure the cut side as a stator and the coil side as a rotor, and it is possible to obtain substantially the same effects as in the above-described embodiments.
  • the magnet according to the present invention is integrally formed by injection molding.
  • the present invention has been described as a resin magnet, the present invention is not limited to this configuration.
  • a sintered magnet or the like may be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

 本発明は、回転子が回転して各ティースに対向するマグネットの磁極が切り替わる際において、誘起電圧波形を正弦波形に近付ける。 略円形状に配設された複数のティース61に対して回転軸方向BOに沿って間隙を挟んで対向し、略円形状に配設された複数の磁極部45aおよび45bと、複数の磁極部45aおよび45bにおける隣接する磁極部それぞれから周方向に沿って延在し、磁極部45aおよび45bのティース61に対向する面よりも回転軸方向BOに沿って凹んだティース対向面を有する複数の磁極間部45cとを備え、複数の磁極部45a、45bおよび複数の磁極間部45cを一体に成形している。

Description

' 明 細 書 回転電機のマグネ ッ ト 技術分野
本発明は、 アキシャルギャ ッ プ型の回転電機のマグネ ッ ト に関する。 背景技術
電動二輪車等の駆動源や他の一般の電動モータ に用 い られる 回転電機と して、 近年では、 ラ ジアルギャ ッ プ型 回転電機に加えてアキシャ ルギヤ ッ プ型回転電機に も注 目が集め られている。
こ のアキシャルギヤ ッ プ型回転電機と しての例えばァ キシャ ルギャ ッ プ型電動モ一タ は、 その軸受に支持され た回転軸を有する 円板状の回転子側ヨ ーク と、 例えば円 板状の鋼板が中心軸方向に沿っ て積層された積層体であ る 固定子側ヨ ーク とが互いに対向 し、 かつその対向面が 回転軸に直交する構造を有している。
そ して、 回転子側ヨーク の対向面には、 例えば円形状 (円環状) に界磁用マグネ ッ ト (磁石) が配設されてお り 、 こ のマグネ ッ ト は、 その周方向に沿っ て交互に配置 された磁極 ( N極、 S 極) を有している。
また、 固定子側ヨ ーク の対向面には、 回転軸に対する 放射方向 (半径方向) に沿っ て複数のティ ースが配設さ れてお り 、 磁石およびティ ースの互いの対向面は回転軸 に直交し、 かつその対向面間のギャ ッ プは回転軸に垂直 な平面状に形成される。
すなわち 、 アキシャルギャ ッ プ型モータ においては、 回転子と固定子との間において磁気回路が形成されてお り 、 固定子の各ティ ース に巻回されたコ イ ルを介 して各 ティ 一スか ら発生する磁束を、 回転子側マグネ ッ ト の N 極、 S 極に合わせて順次切 り 替える こ と によ り 、 回転子 側マグネッ ト の各ティ 一ス の磁束に対する吸引力および 反発力 を利用 して、 回転子を回転させている。
しか しながら 、 上述 した構成の回転電機においては、 回転子が回転して各ティ 一ス に対向するマグネ ッ ト の磁 極が切 り替わる際に、 その磁極の切 り 替えが急峻であ る ため、 錯交磁束によ り 発生する誘起電圧波形に高調波成 分が含まれてし まう 。 .
こ の高調波成分によ り 、 誘起電圧波形が正弦波形か ら 歪んだ波形に変化し、 トルク リ ッ プルが発生して回転子 の回転が不円滑にな り 、 振動 · 騒音が発生する恐れが生 じていた。
こ の点、 特開平 2 0 0 1 — 5 7 7 5 3 には、 回転子鉄 心に貼 り 付け られた複数の磁極間の境目 を削る こ と によ り 溝を形成し、 モータ の ト ルク の脈動を低減する構成が 開示されている。 2003/010387
3 しか しながら 、 上記特開平 2 0 0 1 — 5 7 7 5 3 の構 成では、 複数の磁極を回転子鉄心にそれぞれ貼 り 付け、 その貼 り 付け後に、 全ての磁極間の境目 を削 ら な く ては な ら なかっ た。 こ のため、 回転子の組立性を悪化させ、 また、 回転子の部品点数を増大させる結果とな っ ていた 発明の開示
本発明は上述 した事情に鑑みてなされたもので、 回転 子が回転して各ティ 一ス に対向するマグネ ッ 卜 の磁極が 切 り 替わる際において、 誘起電圧波形を正弦波形に近付 ける こ と を、 その回転子の組立性を悪化させる こ とな く 実現する回転電機のマグネ ッ ト を提供する こ と をその 目 的とする。
上記目的を達成しるための本発明の第 1 の態様に係る 回転電機のマグネッ ト は、 略円形状に配設された複数の ティ 一ス に対して回転軸方向に沿っ て間隙を挟んで対向 し、 略円形状に配設された複数の磁極部と、 前記複数の 磁極部における隣接する磁極部それぞれか ら周方向に沿 つ て延在し、 当該磁極部の前記ティ ース に対向する面よ り も前記回転軸方向に沿っ て凹んだティ ース対向面を有 する複数の磁極間部と を備えている。
上記目的を達成しるための本発明の第 2 の態様に係る 回転電機のマグネ ッ ト は、 略円形状に配設された複数の ティ ース に対して回転軸方向に沿っ て間隙を挟んで対向 し、 略円形状に配設された複数の磁極部と、 前記複数の 磁極部における隣接する磁極部それぞれか ら周方向に沿 つ て延在 し、 当該磁極部の前記ティ ース に対向する面よ り も前記回転軸方向に沿っ て凹んだティ ース対向面を有 する複数の磁極間部と を備え、 当該磁極間部の径方向の 幅を、 前記各磁極部における径方向の幅よ り も狭く なる よ う に し、 前記磁極間部の内周側および外周側の内の少 な く と も一方の周部に対する前記回転軸か ら の径方向に 沿つ た長さ を、 前記各磁極部にお ける対応する周部の長 さ に対して異な らせている。
本発明の第 2 の態様において、 前記磁極間部の内周部 を、 前記各磁極部の内周部よ り も 当該磁極間部の外周部 に向けて凹ませて凹状内周部を形成している。
本発明の第 1 または第 2 の態様において、 前記複数の 磁極部および前記複数の磁極間部は、 樹脂材料によ り一 体に成形された樹脂磁石部である。
以上述べたよ う に、 本発明の第 1 および第 2 の態様に 係わる回転電機のマ グネ ッ ト によれば、 磁極間部の磁束 を、 隣接する磁極部よ り も減少させる こ と によ り 、 回転 子の回転 (磁極部の回転) に対しても 、 磁束を滑 らかに 変化させる こ とができる。
したがっ て、 回転子のマグネ ッ ト とティ ース と の間の 錯交磁束に対応する誘起電圧波形を正弦波に近付ける こ とができ、 トルク リ ッ プルの発生を抑制して回転子の回 P T/JP2003/010387
5 転の円滑性を維持し、 振動 · 騒音の発生を防止する こ と ができ る。
図面の簡単な説明
図 1 は、 本発明の実施の形態に係わる 回転電機のマグ ネ ッ ト を含むアキシャルギャ ッ プ型回転電機が搭載され た装置の一例である電動二輪車の側面図である。
図 2 は、 図 1 に示すリ ャアーム の後端部の内部を説明 するための図 1 にお ける I I — I I 矢視断面図 (一部側 面図) である。 - 図 3 は、 本発明の実施の形態に係わるマグネ ッ トが固 設された回転子を図 2 に示す固定子側か ら見た場合の状 態を表す平面図であ る。
図 4 は、 図 3 に示す回転子の I V — I V矢視断面図で ある。
図 5 は、 図 3 に示す磁極間部を拡大して示す斜視図で あ る。
図 6 A〜図 6 C は、 図 2 、 図 3 等に示す回転子が回転 した場合のティ ース との位置関係を示す図であ る。
図 7 Aは、 従来例のマグネ ッ ト のマグネ ッ ト量と本発 明 (本実施形態) のマグネ ッ ト のマグネ ッ ト量と の関係 を表す図である。
図 7 B は、 従来例のマグネ ッ ト を用いた電動モータ に おける誘起電圧歪率と本発明 (本実施形態) のマグネ ッ ト を用 いた電動モータ における誘起電圧歪率と の比率を 2003/010387
示す図であ る。
図 8 は、 本発明の実施の形態の第 1 の変形例に係わる マグネ ッ ト を示す図である。 ·
図 9 は、 本発明の実施の形態の第 2 の変形例に係わる マグネ ッ ト を示す図である。
図 1 0 は、 本発明の実施の形態の第 3 の変形例に係わ るマグネ ッ ト を示す図である。
図 1 1 は、 本発明の実施の形態の第 4 の変形例に係わ るマグネ ッ ト を示す図であ る。 発明を実施するための最良の形態
本発明に係る回転子の実施の形態について、 添付図面 を参照 して説明する。
図 1 は、 本発明の実施の形態に係わるマ グネ ッ ト を用 いた回転電機の一例である アキシャルギヤ ッ プ型回転電 機が搭載された電動二輪車 1 の側面図であ る。
図 1 に示すよ う に、 電動二輪車 1 は、 その車体前方上 部にヘッ ドノ°ィ プ 2 を備え、 こ のヘ ッ ドノ、°ィ プ内には、 車体方向変更用の図示しないステア リ ング軸が回動自在 に挿通されている 。 こ のステア リ ング軸の上端には、 ハ ン ドル 3 a が固定されたハ ン ドル支持部 3 が取 り 付け ら れてお り 、 こ のハ ン ドル 3 a の両端には.グ リ ッ プ 4 が取 り 付け られている 。 また、 不図示の右側 (図 1 の奥側) のグ リ ッ プ 6 は回動可能なス ロ ッ トルグリ ッ プを構成し て いる 。
そして、 ヘ ッ ドパイ プ 2 の下端か ら下方に向けて、 左 右一対の フ ロ ン ト フ ォーク 5 が取 り 付け られている 。 フ ロ ン ト フ オーク 5 それぞれの下端には、 前輪 6 が前車軸 7 を介して取 り 付け られてお り 、 前輪 6 は、 フ ロ ン ト フ オ ーク 5 によ り 緩衝懸架さ れた状態で前車軸 7 によ り 回 転 自在に軸支されてい る 。 ノ、 ン ドル支持部 3 のノ、 ン ドル 3 a の前方にはメータ 8 が配置され、 Λン ドル支持部 3 における メータ 8 の下方には、 へッ ド ラ ンプ 9 が固定さ れてお り 、 そのヘッ ド ラ ンプ 9 の両側方には、 フ ラ ッ シ ャ ラ ンプ 1 0 (図 1 には一方のみ図示) がそれぞれ設け ら れてい る 。
へッ ドパイ プ 2 か ら側面視で略 L字形を成す左右一対 の車体フ レーム 1 1 が車体後方に向かって延設されてい る 。 こ の車体フ レーム 1 1 は、 丸パイ プ状であ り 、 へ ッ ドパイ プ 2 か ら車体後方に向けて斜め下方に延びた後、 後方に向かっ て水平に延びて側面視略 L字状を成してい る 。
この一対の車体フ レーム 1 1 の後方側端部には、 その 後方側端部か ら後方に向けて斜め上方に左右一対のシー ト レ一ル 1 2 が延設されてお り 、 こ の シー ト レ一リレ 1 2 の後方側端部 1 2 a は、 シー ト 1 3 の形状に沿つ て後方 側に屈曲されている。
そ して、 こ の左右一対のシー ト レール 1 2 の間には、 バッ テ リ 1 4 が着脱自在に配設されてお り 、 こ のバッ テ リ 1 4 は、 充電可能な複数の 2 次電池を収納して構成さ れている。
左右一対のシー ト レール 1 2 の屈曲部分近傍には、 逆 U字状を成すシー ト ステー 1 5 が車体前方に向かっ て斜 め上方に傾斜して溶着されてお り 、 こ のシー トステ一 1 5 と左右のシー ト レール 1 2 で囲まれる部分に上記シー ト 1 3 が開閉可能、 すなわち 、 シー ト 1 3 の前端部を介 して上下に回動可能に配置されている。
シー ト レ一ル 1 2 の後端部には リ ャ フ ェ ンダ 1 6 が取 り 付け られてお り 、 こ の リ ャフ ェ ンダ 1 6 の後面には、 ティ ルラ ンプ 1 7 が取 り 付け ら れてい る。 さ ら に、 ティ ルラ ンプ 1 7 の左右には、 フ ラ ッ シュ ラ ンプ (図 1 にお いては一方のみ図示) 1 8 が取 り付け られている。
—方、 左右一対の車体フ レーム 1 1 のシー ト 1 3 下方 の水平部には、 リ ャアームブラ ケ ッ ト 1 9 (図 1 には一 方のみ図示) がそれぞれ溶着さ れてお り 、 左右一対の リ ャアームブラケッ ト 1 9 には、 リ ャアーム 2 0 の前端が ピボッ ト軸 2 1 を介 して揺動自在に支持さ れている 。 そ して、 こ の リ ャアーム 2 0 の後端部 2 0 a には駆動輪で あ る後輪 2 2 が回転自在に軸支されてお り 、 こ の リ ャァ ーム 2 0 および後輪 2 2 は、 リ ャク ッ シ ョ ン 2 3 によ り 緩衝懸架されている。
左右一対の車体フ レーム 1 1 の水平部下方には、 左右 一対の フー トステッ プ 2 4 (図 1 には一方のみ図示) が それぞれ配設されてお り 、 また、 フー トステッ プ 2 4 の 後方側には、 サイ ドスタ ン ド 2 5 が軸 2 6 を介して回動 可能に左側の リ ャァ一ム 2 0 に支持されてお り 、 サイ ド ス タ ン ド 2 5 は、 リ ター ンス プリ ング 2 7 によ り 閉 じ側 に付勢されている。
そして、 リ ャアーム 2 0 の後端部 2 0 a 内には、 後輪 2 2 に連結され、 その後輪 2 2 を回転駆動させるための アキシャルギャ ッ プ型電動モータ 2 8 (以下、 単に電動 モ一夕 2 8 と略記する こ と も あ る) を含む駆動ュニ ッ ト 2 9 が取 り付け られてレゝる。
図 2 は、 リ ャアーム 2 0 の後端部 2 0 a の内部を説明 するための図 1 における I I 一 I I 矢視断面図 (一部側 面図) である。 なお、 後輪 2 2 は図示していない。
図 2 に示すよ う に、 リ ャアーム 2 0 の後端部 2 0 a の 右側側面には、 ギヤカバー 3 5 が被着され、 その内部に 形成された空間内に、 駆動ユニッ ト 2 9 を構成する電動 モータ 2 8 、 遊星ギヤ減速機 3 6 およびコ ン ト ロー ラ 3 7 等が一体的に組み込まれている。
アキシ ャルギャ ッ プ型電動モータ 2 8 は、 図 2 に示す よ う に、 リ ャアーム. 2 0 の後端部 2 0 a に対して、 軸受 3 8 a 、 3 8 b を介して、 その軸受 3 8 a 、 3 8 b の 中 心軸線 B 〇 を中心に回動可能に支持された回転子 (口 一 夕) 4 0 と、 こ の回転子 4 0 に対向 して リ ャァ一ム後端 10 部 2 0 a の内面に固定された略円環 ( ドーナッ ツ) 状の 固定子 (ステ—夕) 4 1 と を備えている。
回転子 4 0 は、 図 2 、 図 3 および図 4 に示すよ う に、 回転子側ョ一ク 4 2 を有 し、 こ の回転子側ヨーク 4 2 は 、 リ ャアーム 2 0 の後端部 2 0 a へ向かっ て凸の略駒形 を成 してい る
すなわち 、 回転子側ョーク 4 2 は、 固定子 4 1 に対向 する 円環状の円環部 4 2 a と、 こ の円環部 4 2 a の内周 緣部か ら リ ャアーム 2 0 の後端部 2 0 a へ向かつ て略テ ―パ一状 (略円錐台状) に延在するテ一パ一部 4 2 b と 、 こ のテ一パ一部 4 2 b の リ ャァ—ム後端部 2 0 a 側周 緣部か ら後端部 2 0 a に向かっ て中心軸線 B 0 に沿つ て 凸状に延在する第 1 の円筒部 4 2 c と、 こ の円筒部 4 2 c の り ャァ一ム後端部 2 0 a 側周緣部か らその内側に向 かっ て径方向に延在する 円環部 4 2 d と、 こ の円環部 4 2 d の内周緣部か ら後端部 2 0 a に向かつ て中心軸線 B O に沿つ て凸状に延在する第 2 の円筒部 4 2 e と を備え てい る
そ して、 こ の第 2 の円筒部 4 2 e が軸受 3 8 a、 3 8 b を介 して中心軸線 B 0 を中心に回動可能に支持されて お り 、 回転子 4 0 の回転軸を構成 している。 したがっ て 、 回転子 4 0 の回転軸 4 2 e の回転軸中心が軸受 3 8 a 、 3 8 b の中心軸線 B 0 に対応してレゝる。
また、 回転子 4 0 は、 回転子側ヨ ーク 4 2 の円環部 4 2 a における固定子側対向面に対して固設されてお り 、 中心軸線 B O に対して同軸な略円形形状 (円環形状) を ム
匕匕
有する界磁用マ グネ ッ ト (磁石) 4 5 を備えている。 回転子 4 0 の回転軸 4 2 e における後輪側端部には、 こ の回転子 4 0 (回転軸 4 2 e ) と 同軸状に回転軸 4 6 が接続されてお り 、 こ の回転軸 4 6 は、 回転子 4 0 と一 体に回転可能になっ ている。
方、 遊星ギヤ減速機 3 6 は、 回転軸 4 6 に連結され てお り 、 回転子側ヨーク 4 2 のテー パ ー部 4 2 b 内 に組 み込まれている 。 こ の遊星ギヤ減速機 3 6 と電動モ一タ 2 8 と は車幅方向において部分的にオー バ 一ラ ッ プして いる 遊星ギヤ減速機 3 6 は、 回転軸 4 6 と 同軸状に配置さ れた後車軸 4 7 に連結さ れてお り 、 電動モ—夕 2 8 の回 転 (回転軸 4 6 の回転) を減速して後車軸 4 7 に伝達す る機能を有 している。 後車軸 4 7 のギヤ力バー 3 5 か ら 突出する先端部 4 7 a にはナッ ト 5 0 が着脱自在に螺着 されてお り 、 後輪 2 2 は、 後車軸 4 7 に嵌合された状態 においてナッ ト 5 0 の螺着によ り 取 り 付け られている。 た、 図 2 に示すよ う に、 固定子 4 1 は、 リ ャアーム
2 0 の後端部 2 0 a に固設されてお り 、 円板状あ る いは 円環状鋼板 (本実施形態では円環状鋼板とする) が中心 軸方向に沿つ て積層されて成る積層体構造の固定子側ョ ―ク (ステ一夕 ヨ ーク) 6 0 と、 磁石 4 5 に対して所定 間隙をあ けて対向 した状態で略円形状に配設されてお り 、 それぞれが鋼板の積層体か ら成る複数のティ ース 6 1 と を備えている。
すなわち、 図 3 および図 4 に示すよ う に、 マグネッ ト 4 5 は、 上述 した略円形状に配設された複数のティ ース 6 1 に対 して回転軸 B O方向に沿っ て間隙を挟んで対向 し、 略円形状に配設された複数の磁極部 4 5 a ( N極) および 4 5 b ( S 極) を備えてい る。 こ の N極部 4 5 a および S 極部 4 5 b は、 周方向に沿っ て交互に配設され ている。
また、 マグネ ッ ト 4 5 は、 複数の磁極部 ( N極部 4 5 a および S 極部 4 5 b ) における隣接する磁極部それぞ れか ら周方向に沿っ て延在する複数の磁極間部 4 5 c を 備えてお り 、 磁極間部 4 5 c の略中心には、 略径方向に 沿っ た磁極の境界 ( N極 と S 極の境界) B mが存在する 図 5 は、 図 3 に示す磁極間部 4 5 c を拡大して示す図 であ る。 図 5 に示すよ う に、 磁極間部 4 5 c は、 そのテ ィ 一ス対向面が隣接する磁極部 ( N極部 4 5 a および S 極部 4 5 b ) のティ 一ス対向面よ り も回転軸方向に沿つ て曲面状に凹んでお り 、 凹状のティ ース対向面を有 して い る。
こ の磁極間部 4 5 c の凹状ティ ース対向面の面積は、 その両側の N極部 4 5 a および S 極部 4 5 b よ り も小さ く なつ てお り 、 ま た、 基本波成分を残し、 高調波成分の みを取 り 除く よ う に しているため、 こ の凹状磁極間部が 無い場合と比べて も、 ト ルク を略一定に維持する こ とが でき る。
また、 磁極間部 4 5 c の凹状部分の回転軸方向に沿つ た深さ および曲面凹状部分の曲率半径は、 後述する磁束 変化が滑らかになる長さ に定め られている。
そ して、 本実施形態におけるマグネ ッ ト 4 5 (磁極部 4 5 a 、 4 5 b および磁極間部 4 5 c ) は、 例えば樹脂 磁石 (ポン ド磁石) であ り 、 磁石粉とバイ ンダー樹脂と を混合 (コ ンパウ ン ド) した樹脂 (混合物) を射出成形 によ り 円環状に一体成形 して生成されている。 . 次に、 上述した構成を有するマグネ ッ ト 4 5 が用 い ら れた電動モータ 2 8 の作用 について説明する。
こ の電動モータ 2 8 においては、 回転子 4 0 と固定子 4 1 との間で磁気回路が形成されてお り 、 回転子. 4 0 の マグネ ッ ト 4 5 の N極か ら 出た磁束は、 ティ ース 6 1 を 介 して固定子側ヨーク 6 0 へ流れ、 他のティ ース 6 1 を 介 してマグネッ ト 4 5 の S 極へ流れてい る。
こ の状態において、 所定のティ ース 6 1 のコ イ リレ 6 2 へ通電する と、 そのコイ ル 6 2 を介 して所定のティ ース 6 1 が励磁され、 ティ ース 6 1 およびマ グネ ッ ト 4 5 間 で吸引反発作用が引き起こ される。
したがっ て、 コ ン ト ロー ラ 3 7 等を介 して励磁するテ ィ ース 6 1 を順次切 り 換える こ と によ り 、 励磁されるテ ィ ース 6 1 を順次移動させて、 マグネ ッ ト 4 5 と と も に 回転子 4 0 を回転させてい る。
こ こ で、 図 6 A〜図 6 C に、 回転子 4 0 が回転した場 合のティ ース 6 1 (二点鎖線で示す) との位置関係を示 す。
こ の とき、 仮に、 磁極間部 4 5 c が無ければ、 回転子 4 0 の N極 4 5 a および 4 5 b がティ 一ス 6 1 か ら次の ティ ース 6 1 へ移 り 替わる際に、 磁束が急峻に変化する ため、 その磁束変化に起因 した高調波成分が発生する こ と になる。
しか しなが ら、 本実施形態の電動モータ 2 8 によれば 、 そのマグネ ッ ト 4 5 の磁極部 ( N極部 4 5 a および S 極部 4 5 b ) 間に、 そのティ ース対向面が磁極部 4 5 a および 4 5 b よ り も凹んだ磁極間部 4 5 c を設けてい る ため、 その凹状磁極間部 4 5 c の磁束が減少し、 回転子 4 0 の N極 4 5 a および 4 5 b が所定のティ ース 6 1 か ら次のティ 一ス 6 1 へ移 り 替わる 際に、 磁束が滑 らかに 変化する。
こ こで、 図 7 Aは、 トルク を一定に保持した場合にお ける従来例 (凹状磁極間部が無い場合) のマグネ ッ ト の マグネッ ト量 M 0 と本実施形態のマグネ ッ 卜 4 5 のマ グ ネ ッ ト量 M l との関係を表す図である (縦軸がマグネ ッ ト量を表す)。 また、 図 7 B は、 従来例 (凹状磁極間部が 無い場合) のマグネ ッ ト を用 いた電動モータ における誘 起電圧歪率 (高調波成分の量) と本実施形態のマグネ ッ ト 4 5 を用いた電動モータ 2 8 における誘起電圧歪率と の比率を示す図である。
図 7 Aか ら 明 ら かなよ う に、 本実施形態のマグネ ッ ト 4 5 は、 トルク を維持しなが ら 、 その磁極間部 4 5 c を 凹ませているため、 その凹み分のマグネ ッ ト量を削減 ( 例え ば、 約 1 1 . 4 %削減) する こ とができ、 回転電機 のコ ス ト削減に寄与する こ とができる。
また、 図 7 B か ら 明 らかなよ う に、 本実施形態のマグ ネ ッ ト 4 5 を用いた電動モー夕 2 8 における誘起電圧歪 率は、 従来例のマグネ ッ ト を用いた電動モ一夕 における 誘起電圧歪率と比べて、 約 1 / 7 に低減してお り 、 錯交 磁束によ る誘起電圧波形を正弦波形に近付ける こ とがで きる。
以上述べたよ う に、 本実施形態によれば、 マ グネ ッ ト 4 5 の N極部 4 5 a および S 極部 4 5 b 間に、 そのティ ース対向面が該磁極部 4 5 a および 4 5 よ り も凹んだ 凹状磁極間部 4 5 c を設けた こ とによ り 、 回転子 4 0 の マ グネ ッ ト 4 5 とティ 一ス 6 1 との間の錯交磁束に対応 する誘起電圧波形を正弦波に近付ける こ とができ、 トル ク リ ッ プルの発生を抑制して回転子 4 0 の回転の円滑性 を維持し、 振動 · 騒音の発生を防止する こ とができる。
そして、 本実施形態では、 マグネ ッ ト 4 5 を構成する 複数の磁極部 4 5 a 、 4 5 b および複数の磁極間部 4 5 c を、 例えば磁石粉とバイ ンダ一樹脂と を混合した樹脂 を用いて射出成形によ り 円環状に一体成形して生成して いる。
こ のため、 特開平 2 0 0 1 — 5 7 7 5 3 に開示された よ う に、 複数の磁極を回転子鉄心にそれぞれ貼 り 付け、 その貼 り 付け後に、 全ての磁極間の境目 を削る構成と比 ベて、 上記複数の磁極の貼 り 付け工程および磁極間の境 目 を削る工程を削減する こ とができ、 回転子 4 0 の組立 性を悪化させる こ とな く 、 上述した トルク リ ッ プル抑制 効果を実現する こ とができ る。
また、 上記複数の磁極を貼 り 付けて回転子を組み立て る場合と比べて、 上記複数の磁極をそれぞれ個別に用 い る必要がな く な り 、 回転子 4 0 の部品'点数を低減する こ とができる。
なお、 本実施形態では、 N極 4 5 a および 4 5 b 間を 曲面状に凹ませて凹状磁極間部 4 5 c を設けたが、 凹状 部分の形状については、 曲面状に限ら ず、 矩形状等任意 の形を とる こ とが可能である。
そ して、 本実施形態では、 回転子 4 0 の N極部 4 5 a および S 極部 4 5 b がティ 一ス 6 1 か ら次のティ ース 6 1 へ移 り 替わる際において、 磁束を滑 らかに変化させる ため に N極 4 5 a および 4 5 b 間に凹状磁極間部 4 5 c を設けたが、 本発明はこれに限定される ものではない。 すなわち 、 図 8 は、 本実施形態の第 1 の変形例に係わ るマグネ ッ ト 7 0 を示す図であ る。
図 8 に示すよ う に、 マグネ ッ ト 7 0 は、 例えば射出成 形によ り 一体成形さ れた樹脂磁石であ り 、 上述した略円 形状に配設された複数のティ ース 6 1 に対して回転軸 B 〇方向に沿つて間隙を挟んで対向 し、 略円形状に配設さ れた複数の磁極部 7 0 a ( N極) および 7 O b ( S 極) を備えている。 こ の N極部 7 0 a および S 極部 7 0 b は 、 周方向に沿っ て交互に配設されている。
また、 マグネ ッ ト 7 0 は、 複数の磁極部 ( N極部 7 0 a および S 極部 7 0 b ) における隣接する磁極部それぞ れか ら周方向に沿っ て延在する複数の磁極間部 7 0 c を 備えてお り 、 磁極間部 7 0 c の略中心には、 略径方向に 沿っ た磁極の境界 ( N極と S 極の境界) B mが存在する さ ら に、 本構成のマグネ ッ ト 7 0 においては、 磁極間 部 7 0 c の内周部 7 1 に対する回転軸 B Oから の径方向 に沿っ た長さ L 1 を、 各磁極部 7 0 a および 7 0 b の内 周部 7 2 の長さ L 2 よ り も長 く してお り 、 磁極間部 7 0 c の径方向の幅 W 1 を、 各磁極部 7 0 a および 7 O b の 径方向の幅 W 2 よ り も短 く している。
すなわち、 本変形例のマグネッ ト 7 0 においては、 そ の磁極間部 7 0 c の内周部 7 1 を、 各磁極部 7 0 a およ び 7 O b の内周部 7 2 よ り も、 その磁極間部 7 0 c の外 周部 7 3 に向けて矩形状に凹ませる こ と によ り 、 内周部 7 1 を凹状内周部と している。
こ の結果、 各磁極部 7 0 a および 7 0 b の内周部 7 2 は、 回転軸 B 〇へ向かって矩形状に突出している。
こ の変形例に基づく マグネ ッ ト 7 0 を用 いた電動モ一 夕 2 8 においても、 そのマグネ ッ ト 7 0 の磁極部 ( N極 部 7 0 a および S 極部 7 0 b ) 間に、 その内周部 7 1 が 各磁極部 7 0 a および 7 0 b の内周部 7 2 よ り も凹んだ 磁極間部 7 0 c を設けているため、 その凹状磁極間部 7 0 c の磁束が減少 し、 回転子 4 0 の N極 7 0 a および 7 0 b が所定のティ ース 6 1 か ら次のティ ース 6 1 へ移 り 替わる際に、 磁束が滑 らかに変化する。
こ の結果、 回転子 4 0 のマグネ ッ ト 7 0 とティ 一ス 6 1 と の間の錯交磁束に対応する誘起電圧波形を正弦波に 近付ける こ とができ、 トルク リ ッ プルの発生を抑制して 回転子 4 0 の回転の円滑性を維持 し、 振動 · 騒音の発生 を防止する こ とができ る。
また、 こ の第 1 の変形例に係る マグネ ッ ト 7 0 におい ても、 マ グネ ッ ト 7 0 を構成する複数の磁極部 7 0 a 、 7 0 b および複数の磁極間部 7 0 c を、 例えば磁石粉 と パイ ンダー樹脂と を混合した樹脂を用 いて射出成形によ り 円環状に一体成形して生成している。
こ のため、 上述 した実施形態と 同様に、 回転子 4 0 の 部品点数を増大させる こ とな く 、 かつ回転子 4 0 の組立 性を高 く 維持しなが ら、 トルク リ ッ プルの低減効果を得 る こ と ができる。
また、 図 9 は、 本実施形態の第 2 の変形例に係わるマ グネ ッ ト 8 0 を示す図である。
こ のマグネ ッ ト 8 0 も、 例えば射出成形によ り 一体成 形された樹脂磁石であ り 、 図 8 に示す磁極部 7 0 a およ び 7 O b と 同等の複数の磁極部 8 0 a ( N極)、 8 0 ( S 極)、 および複数の磁極間部 8 0 c を備えてお り 、 磁極 間部 8 0 c の略中心には、 略径方向に沿っ た磁極の境界 ( N極と S 極の境界) B mが存在する。
本変形例のマグネ ッ ト 8 0 においては、 磁極間部 8 0 c の内周部 8 1 に対する回転軸 B 〇か ら の径方向に沿つ た長さ L 3 を、 各磁極部 8 0 a および 8 0 b の内周部 8 2 の長さ L 4 よ り も長 く してお り 、 磁極間部 8 0 c の径 方向の幅 W 3 を、 各磁極部 8 0 a および 8 0 b の径方向 の幅 W 4 よ り も短く している。
そ して、 磁極間部 8 0 c の内周部 8 1 を、 各磁極部 8 0 a および 8 O b の内周部 8 2 よ り も、 その磁極間部 8 0 c の外周部 8 3 に向 けて凹ませて、 各磁極部 8 0 a お よび 8 0 b の内周部 8 2 を、 回転軸 B Oへ向か っ て曲面 状に突出させている。
すなわち、 本変形例においても、 内周部 8 1 が各磁極 部 8 0 a および 8 0 b の内周部 8 2 よ り も 凹んだ磁極間 部 8 0 c を設けているため、 その凹状磁極間部 8 0 c の 磁束が減少 し、 回転子 4 0 の回転に伴う 磁束を滑 らかに 変化させる こ とができる。 こ の結果、 第 1 の変形例 と 同 様の効果を得る こ とができ る。
また、 図 1 0 は、 本実施形態の第 3 の変形例に係わる マグネ ッ ト 9 0 を示す図である。
このマグネ ッ ト 9 0 も、 例えば射出成形によ り 一体成 形された樹脂磁石であ り 、 第 1 および第 2 変形例 と略同 等の複数の磁極部 9 0 a ( N極)、 9 0 b ( S 極)、 およ び複数の磁極間部 9 0 c を備えてお り 、 磁極間部 9 0 c の略中心には、 略径方向に沿っ た磁極の境界 ( N極と S 極の境界) B mが存在する。
本変形例のマグネ ッ ト 9 0 においては、 磁極間部 9 0 c の内周部 9 1 に対する回転軸 B Oか ら の径方向に沿つ た長さ L 5 を、 各磁極部 9 0 a および 9 0 b の内周部 9 2 の長さ L 6 よ り も長く してお り 、 磁極間部 9 0 c の径 方向の幅 W 5 を、 各磁極部 9 0 a および 9 O b の径方向 の幅 W 6 よ り も短く している。
そ して、 本変形例に係わるマグネ ッ ト 9 0 では、 磁極 間部 9 0 c の内周部 9 1 を、 各磁極部 9 0 a および 9 0 b の内周部 9 2 よ り も、 その磁極間部 9 0 c の外周部 9 3 に向けて略 V字状に凹ませて、 各磁極部 9 0 a および 9 O b の内周部 ' 9 2 を、 回転軸 B Oへ向かって略逆 V字 状に突出させている。
すなわち、 本変形例において も、 内周部 9 1 が各磁極 部 9 0 a および 9 0 b の内周部 9 2 よ り も凹んだ磁極間 部 9 0 c を設けているため、 その凹状磁極間部 9 0 の 磁束が減少し、 回転子 4 0 の回転に伴う 磁束を滑 らかに 変化させる こ とができる。 この結果、 第 1 および第 2 変 形例 と同様の効果を得る こ とができる。
なお、 第 1 の変形例〜第 3 の変形例においては、 磁極 間部の内周部に対する回転軸 B 0か ら の径方向に沿つ た 長さ を、 各磁極部の内周部の長さ よ り も長 く した構成に ついて示したが、 本発明は これに限定される も のではな い D
すなわち、 図 1 1 は、 本実施形態の第 4 の変形例に係 わるマグネ ッ ト 1 0 0 を示す図である。
図 1 1 に示すよ う に、 マ グネ ッ ト 1 0 0 は、 例えば射 出成形によ り 一体成形された樹脂磁石であ り 、 第 1 〜第 3 変形例 と略同等の複数の磁極部 1 0 0 a ( N極)、 1 0 0 b ( S 極)、 および複数の磁極間部 1 0 0 c を備えてお り 、 磁極間部 1 0 0 c の略中心には、 略径方向 に沿つ た 磁極の境界 ( N極と S 極の境界) B mが存在する。
本変形例のマグネッ ト 1 0 0 においては、 磁極間部 1 0 0 c の外周部 1 0 1 に対する回転軸 B 〇か ら の径方向 に沿っ た長さ L 7 を、 各磁極部 1 0 0 a および 1 0 0 b の外周部 1 0 2 の長さ L 8 よ り も短く してお り 、 磁極間 部 1 0 0 c の径方向の幅 W 7 を、 各磁極部 1 0 0 a およ び 1 0 0 b の径方向の幅 W 8 よ り も短く してレ る。 そ して、 本変形例に係わるマ グネ ッ ト 1 0 0 では、 磁 極間部 1 0 0 c の外周部 1 0 1 を、 各磁極部 1 0 0 a お よび 1 0 0 b の外周部 1 0 2 よ り も、 その磁極間部 1 0 0 c の内周部 1 0 3 に向けて略矩形状に凹ませて、 各磁 極部 1 0 0 a および 1 0 0 b の外周部 1 0 2 を、 回転軸 B Oか ら外周側へ向かっ て略矩形状に突出させている。
すなわち 、 本変形例においては、 磁極間部 1 0 0 c の 内周部 1 0 3 を凹ますのではな く 、 その外周部 1 0 1 を 各磁極部 1 0 0 a および 1 0 0 b の外周部 1 0 2 に対し て凹ま している。 こ の構成において も、 凹状磁極間部 1 0 0 c の磁束が減少 し、 回転子 4 0 の回転に伴う 磁束を 滑 らか に変化させる こ とができ、 第 1 〜第 3 変形例と 同 様の効果を得る こ とができる。
なお、 上述した実施の形態およびその変形例において は、 磁極間部の内周側および外周側の一方のみを他方側 に凹ます構成について示 したが、 本発明はこ の構成に限 定される も のではな く 、 磁極間部の内周側および外周側 の双方をそれぞれ他方側に凹ますよ う に構成して も よ い また、 上述した実施形態で説明 した、 磁極間部を、 そ のティ ース対向面を回転軸方向に沿っ て凹ます構成と 、 第 1 〜第 4 変形例で説明 した、 磁極間部を、 その内周部 および外周部の内の少な く と も一方を、 他方側 (内周部 を凹ます場合、 外周部側、 外周部を凹ます場合、 内周部 側) へ凹ます構成 と を組み合わせて用いる こ と も可能で あ り 、 回転子 4 0 の回転に伴う磁束を、 さ ら に滑 ら かに 変化させる こ とが可能になる。
なお、 上述した実施形態および各変形例においては、 本発明に係わるマグネ ッ ト を、 自動二輪車に搭載したァ キシャルギャ ッ プ型回転電機に用 いたが、 本発明は これ に限定さ れる ものではな く 、 他の装置 /機器に搭載さ れ たアキシャルギヤ ッ プ型回転電機に適用する こ とが可能 であ り 、 上述した効果が得 られる。
そ して、 上述した実施形態および各変形例においては
、 本発明に係わる マグネ ッ ト が搭載されたアキシャルギ ヤ ッ プ型回転電機 と して、アキシャルギャ ッ プ型電動機 ( 電動モータ) について説明 したが、 本発明はこれに限定 される も のではな く 、 回転子を外部か ら回転させる こ と によ り 、 コ イ ルに起電力 を生 じ させる、 いわゆる発電機 に適用する こ と も可能であ る。
また、 上述した実施形態および各変形例においては、 マグネ ッ ト 側を回転子、 コイ ル側を固定子と して説明 し たが、 本発明はこれに限定される ものではな く 、 マ グネ ッ ト側を固定子、 コ イ ル側を回転子と して構成する こ と が可能であ り 、 上述 した各実施の形態と略同様に効果を 得る こ とができる。
さ ら に、 上述した実施形態および各変形例においては
、 本発明に係るマグネ ッ ト を射出成形によ り 一体成形さ れた樹脂磁石と して説明 したが、 本発明は この構成に限 定さ れる ものではなく 、 例えば焼結磁石等でもよ い。
なお、 本発明は前述した各実施の形態に限定さ れる こ とな く 、 その発明の要旨に基づく 範囲内において適宜な 変更を行う こ と によ り その他の態様で実施 し得る もので ある。

Claims

請求の範囲
1 . 略円形状に配設された複数のティ ースに対して回 転軸方向に沿っ て間隙を挟んで対向 し、 略円形状に配設 された複数の磁極部と、
前記複数の磁極部における隣接する磁極部それぞれか ら周方向に沿っ て延在し、 当該磁極部の前記ティ ース に 対向する面よ り も前記回転軸方向に沿っ て凹んだティ ー ス対向面を有する複数の磁極間部と を備え、 - 前記複数の磁極部および前記複数の磁極間部を一体に 成形 した こ とを特徴とする 回転電機のマグネ ッ ト。
2 . 略円形状に配設された複数のティ 一ス に対して回 転軸方向に沿っ て間隙を挾んで対向 し、 略円形状に配設 された複数の磁極部と、
前記複数の磁極部にお ける隣接する磁極部それぞれか ら周方向に沿って延在する複数の磁極間部と を備え、 当該磁極間部の径方向の幅を、 前記各磁極部における 径方向の幅よ り も狭く なる よ う に し、
前記磁極間部の内周側および外周側の内の少な く と も 一方の周部に対する前記回転軸か ら の径方向に沿っ た長 さ を、 前記各磁極部における対応する周部の長さ に対し て異な らせた こ と を特徴とする回転電機のマグネ ッ ト 。
3 . 前記磁極間部の内周部を、 前記各磁極部の内周部 よ り も当該磁極間部の外周部に向けて凹ませて凹状内周 部を形成してお り 、
前記複数の磁極部および前記複数の磁極間部を一体に 成形 した こ と を特徴とする請求項 2 記載の回転電機のマ グネ ッ ト。
4 . 前記複数の磁極間部は、 前記磁極部の前記ティ 一 ス に対向する面よ り も前記回転軸方向に沿っ て凹んだテ ィ ース対向面をそれぞれ有する こ と を特徴とする請求項 3 記載の回転電機のマグネ ッ ト。
5 . 前記複数の磁極部および前記複数の磁極間部は、 樹脂材料によ り一体に成形された榭脂磁石部であ る こ と を特徴とする請求項 1 乃至 3 の内 の何れか 1 項記載の回 転電機のマグネッ ト 。
PCT/JP2003/010387 2002-08-16 2003-08-15 回転電機のマグネット WO2004017489A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP03788130A EP1553678A4 (en) 2002-08-16 2003-08-15 MAGNET OF AN ELECTRIC DYNAMOMA MACHINE
JP2004528889A JPWO2004017489A1 (ja) 2002-08-16 2003-08-15 鞍乗型車両
AU2003266503A AU2003266503A1 (en) 2002-08-16 2003-08-15 Magnet of dynamo-electric machine
US11/058,921 US7116027B2 (en) 2002-08-16 2005-02-16 Magnet for a dynamo-electric machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002237633 2002-08-16
JP2002-237633 2002-08-16

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/058,921 Continuation US7116027B2 (en) 2002-08-16 2005-02-16 Magnet for a dynamo-electric machine

Publications (1)

Publication Number Publication Date
WO2004017489A1 true WO2004017489A1 (ja) 2004-02-26

Family

ID=31884442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/010387 WO2004017489A1 (ja) 2002-08-16 2003-08-15 回転電機のマグネット

Country Status (7)

Country Link
US (1) US7116027B2 (ja)
EP (1) EP1553678A4 (ja)
JP (1) JPWO2004017489A1 (ja)
CN (1) CN1675813A (ja)
AU (1) AU2003266503A1 (ja)
TW (1) TWI256190B (ja)
WO (1) WO2004017489A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116027B2 (en) 2002-08-16 2006-10-03 Yamaha Motor Co. Ltd Magnet for a dynamo-electric machine
JP2007068388A (ja) * 2005-08-05 2007-03-15 Yamaha Motor Co Ltd 回転電機を搭載する鞍乗型車両
JP2009207338A (ja) * 2008-02-29 2009-09-10 Daikin Ind Ltd アキシャルギャップ型回転電機及び界磁子用コア
EP2709248A2 (en) 2012-09-14 2014-03-19 Yamaha Hatsudoki Kabushiki Kaisha Axial gap type electric rotating machine, electric wheelchair and electric bicycle
JPWO2021145136A1 (ja) * 2020-01-14 2021-07-22

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI283103B (en) * 2004-02-06 2007-06-21 Yamaha Motor Co Ltd Rotating electric machine and electrically driven vehicle
JP2008043031A (ja) * 2006-08-04 2008-02-21 Mabuchi Motor Co Ltd リング形状界磁マグネットに薄肉部を形成した小型モータ
TWI385899B (zh) * 2008-12-25 2013-02-11 Metal Ind Res & Dev Ct 永磁式電機之轉子結構及其製造方法
CN103138518A (zh) * 2011-11-28 2013-06-05 台达电子工业股份有限公司 三相轴向磁通马达及其磁路调控方法
US20140175931A1 (en) * 2012-12-21 2014-06-26 Samsung Electro-Mechanics Co., Ltd. Axial flux permanent magnet motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505923Y1 (ja) * 1969-12-27 1975-02-20
JPS6430444A (en) * 1987-07-23 1989-02-01 Matsushita Electric Works Ltd Rotor magnet

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3219861A (en) * 1961-03-06 1965-11-23 Printed Motors Inc Alternating-current generator
US3310693A (en) * 1964-02-04 1967-03-21 Gray & Huleguard Inc Magnetic coupling
JPS5619516B2 (ja) 1973-05-21 1981-05-08
CA1004275A (en) * 1974-04-04 1977-01-25 Eric Whiteley Permanent magnet synchronous dynamoelectric machine
JPS5253204A (en) * 1975-10-24 1977-04-28 Hitachi Metals Ltd Permanent magnet type revolving machine
JPS5553164A (en) * 1978-10-14 1980-04-18 Sony Corp Permanent magnet rotor
JPS59139842A (ja) * 1983-01-31 1984-08-10 Seiko Epson Corp 回転電機用多極着磁磁石
WO1985000704A1 (fr) * 1983-07-28 1985-02-14 Michel Grosjean Moteur polyphase a rotor aimante presentant n paires de poles a aimantation axiale
GB8817760D0 (en) * 1988-07-26 1988-09-01 Rolls Royce Plc Electrical power generator
JPH02252970A (ja) * 1989-03-27 1990-10-11 Sawafuji Electric Co Ltd スタータのロータおよびその製造方法
US5206556A (en) * 1989-08-29 1993-04-27 Mabuchi Motor Co., Ltd. Field magnet for miniature motors
IT1261598B (it) * 1993-09-30 1996-05-23 Gate Spa Motore elettrico a magneti permanenti con coppia di riluttanza ridotta
US6037696A (en) * 1993-12-29 2000-03-14 Samot Engineering (1992) Ltd. Permanent magnet axial air gap electric machine
GB9510994D0 (en) * 1995-05-31 1995-07-26 Turbo Genset The Company Ltd Rotary electrical machines
JP3500822B2 (ja) 1995-12-26 2004-02-23 アイシン・エィ・ダブリュ株式会社 永久磁石式同期電動機
JP3017953B2 (ja) * 1996-07-24 2000-03-13 株式会社東芝 電動機の回転子及びその製造方法
JP2000156947A (ja) * 1998-11-17 2000-06-06 Yukio Kinoshita 磁石式電動機及び発電機
JP2001037124A (ja) * 1999-07-27 2001-02-09 Hitachi Metals Ltd 回転子
JP2001057753A (ja) 1999-08-12 2001-02-27 Mitsubishi Heavy Ind Ltd アキシャルギャップ型モータ
US6713922B2 (en) * 2000-12-29 2004-03-30 Otis Elevator Company Integrally skewed permanent magnet for use in an electric machine
JP3304969B2 (ja) * 2001-07-17 2002-07-22 株式会社デンソー 車両用制振発電電動機
AU2003266503A1 (en) 2002-08-16 2004-03-03 Yamaha Hatsudoki Kabushiki Kaisha Magnet of dynamo-electric machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS505923Y1 (ja) * 1969-12-27 1975-02-20
JPS6430444A (en) * 1987-07-23 1989-02-01 Matsushita Electric Works Ltd Rotor magnet

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1553678A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7116027B2 (en) 2002-08-16 2006-10-03 Yamaha Motor Co. Ltd Magnet for a dynamo-electric machine
JP2007068388A (ja) * 2005-08-05 2007-03-15 Yamaha Motor Co Ltd 回転電機を搭載する鞍乗型車両
JP2009207338A (ja) * 2008-02-29 2009-09-10 Daikin Ind Ltd アキシャルギャップ型回転電機及び界磁子用コア
EP2709248A2 (en) 2012-09-14 2014-03-19 Yamaha Hatsudoki Kabushiki Kaisha Axial gap type electric rotating machine, electric wheelchair and electric bicycle
JPWO2021145136A1 (ja) * 2020-01-14 2021-07-22
WO2021145136A1 (ja) * 2020-01-14 2021-07-22 ヤマハ発動機株式会社 アキシャルギャップ型モータ
EP4071973A4 (en) * 2020-01-14 2023-01-18 Yamaha Hatsudoki Kabushiki Kaisha MOTOR WITH AXIAL GAP
JP7300525B2 (ja) 2020-01-14 2023-06-29 ヤマハ発動機株式会社 アキシャルギャップ型モータ

Also Published As

Publication number Publication date
AU2003266503A1 (en) 2004-03-03
TWI256190B (en) 2006-06-01
TW200404398A (en) 2004-03-16
US20050174003A1 (en) 2005-08-11
EP1553678A1 (en) 2005-07-13
EP1553678A4 (en) 2007-05-02
US7116027B2 (en) 2006-10-03
CN1675813A (zh) 2005-09-28
JPWO2004017489A1 (ja) 2005-12-08

Similar Documents

Publication Publication Date Title
US7116027B2 (en) Magnet for a dynamo-electric machine
EP1536542B1 (en) Rotating electric machine
US7151335B2 (en) Permanent magnet rotating electric machine and electric car using the same
US7462968B2 (en) Electric wheel
US7145277B2 (en) Rotary electric machine for a permanent magnet synchronous motor
TWI362160B (en) Axial gap electronic motor
US20100231079A1 (en) Axial gap motor
JP2003506005A (ja) 電気駆動装置(選択可能な形態)
JP2007159394A (ja) トルクリップルを低減する回転電気機械
JP2007159394A5 (ja)
JP2003018810A (ja) 外部回転子を備えた電機
JP2000224790A (ja) 回転電機及びそれを用いた電動車両
TWI308414B (en) Axial gap dynamo-electric machine
JP5612632B2 (ja) 永久磁石回転電機
JP2007221854A (ja) ステータの固定構造および電動車両
CN211266665U (zh) 一种轮毂电机
JP5840413B2 (ja) 直流モータ
JP2003009485A (ja) 自転車、車椅子等用の補助電動機
JP2001218434A (ja) 補助動力付き自転車
JP2009254130A (ja) 車両用ブラシレス交流発電機
JP2001178099A (ja) 直流型ブラシモータ
KR20090084427A (ko) 차량용 교류발전기의 회전자
JPS58165636A (ja) 直流機の固定子
JP2006014582A (ja) 永久磁石発電機

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004528889

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003788130

Country of ref document: EP

Ref document number: 20038191296

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11058921

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003788130

Country of ref document: EP