WO2004017033A1 - 振動情報送信装置および振動監視解析システム - Google Patents

振動情報送信装置および振動監視解析システム Download PDF

Info

Publication number
WO2004017033A1
WO2004017033A1 PCT/JP2002/008230 JP0208230W WO2004017033A1 WO 2004017033 A1 WO2004017033 A1 WO 2004017033A1 JP 0208230 W JP0208230 W JP 0208230W WO 2004017033 A1 WO2004017033 A1 WO 2004017033A1
Authority
WO
WIPO (PCT)
Prior art keywords
vibration
circuit
monitoring
signal
transmitter
Prior art date
Application number
PCT/JP2002/008230
Other languages
English (en)
French (fr)
Inventor
Shingo Boda
Hiroyuki Maeda
Original Assignee
Shinkawa Sensor Technology, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinkawa Sensor Technology, Inc. filed Critical Shinkawa Sensor Technology, Inc.
Priority to US10/524,105 priority Critical patent/US7168324B2/en
Priority to JP2004528811A priority patent/JP4105692B2/ja
Priority to PCT/JP2002/008230 priority patent/WO2004017033A1/ja
Publication of WO2004017033A1 publication Critical patent/WO2004017033A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01HMEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
    • G01H1/00Measuring characteristics of vibrations in solids by using direct conduction to the detector
    • G01H1/003Measuring characteristics of vibrations in solids by using direct conduction to the detector of rotating machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M7/00Vibration-testing of structures; Shock-testing of structures
    • G01M7/02Vibration-testing by means of a shake table
    • G01M7/025Measuring arrangements

Definitions

  • the present invention relates to a vibration information transmission device and a vibration monitoring and analysis system, and more particularly, to a field (site) wiring work in a system for analyzing vibration of a rotating machine such as a generator, a motor, a turbine, a fan, and a pump. It will reduce it.
  • a field (site) wiring work in a system for analyzing vibration of a rotating machine such as a generator, a motor, a turbine, a fan, and a pump. It will reduce it.
  • the conventional vibration monitoring and analysis system 1 for rotating machinery consists of a plurality of vibration sensors 2—l to n installed on the bearings of rotating machinery, and each vibration sensor 2—: ! Transducers 3 — 1 to n that convert sensor output signals, which are vibration information from ⁇ n to analog electric signals proportional to vibration values, and analog electric signals from each transducer 3 — 1 to n
  • a vibration monitor 4 for monitoring and alarming abnormal vibrations
  • an analysis and diagnosis device 5 for analyzing and diagnosing vibrations from analog electric signals from the vibration monitor 4, and having an A / D conversion circuit
  • an analysis and diagnosis device for displaying the results of the 5 analysis diagnoses.
  • the wiring method for each of the above devices is as follows: The vibration sensors 2-1 to n and the transducers 3-1 to n are connected individually using multiple analog wires AW 1, and the transducers 3-1 to! ! And the vibration monitor 4 are connected individually using a plurality of analog wires AW2, and the vibration monitor 4 and the analysis / diagnosis device 5 are also connected using a plurality of analog wires AW3. Both are connected individually, and the analysis and diagnosis device 5 and the personal combination It is connected to Utah 6 via the digital network DN.
  • the vibration information obtained from the vibration sensors 2-1 to n while the rotor of the rotating machine makes one rotation is analyzed by the analysis and diagnosis device 5 by the transient analysis. The cause of vibration is analyzed and diagnosed by performing FFT analysis.
  • the vibration sensor 2-1! ! And transducer 3-1 are connected by individual analog electric wires AW1, AW2, and AW3 because analog signals are transmitted. If there are many measurement points (11) for performing vibration measurement, the number of wires AW1, AW2, and AW3 must be the same as the number of measurement points, increasing the number of wires and wiring work There was a problem.
  • the present invention has been made in view of the above problems, and has as its object to improve the efficiency of field wiring of a vibration monitoring and analysis system for a rotating machine. Disclosure of the invention
  • a transmitter is provided as a device for outputting vibration information from a vibration sensor for detecting vibration of an object to be measured to a digital network, and the transmitter is a transducer for converting the vibration information from the vibration sensor into an analog electric signal.
  • a circuit an A / D conversion circuit for converting an analog electric signal from the transducer circuit into a digital signal;
  • the digital signal from the AZD conversion circuit to the digital network And a network interface for outputting the vibration information in the same housing.
  • the transducer function and the AZD conversion function are formed into a circuit and the above-mentioned transmitter is housed in the same housing together with the network interface. Wiring is reduced as compared with the above, so that wiring cost can be reduced and wiring workability can be improved.
  • the transducer circuit, A / D conversion circuit, and network interface are integrated as the above transmitter, the system can be downsized, and space can be saved in the field (site). it can.
  • the transmitter is provided with an overall vibration detection circuit for reading an amplitude value of an analog electric signal from the transducer circuit and detecting an abnormal vibration in parallel with the AZD conversion circuit, and outputs the vibration signal to the network interface.
  • the transmitter can detect the abnormal vibration by reading the amplitude value, which has been performed by the conventional vibration monitor, and the system can be simplified.
  • the present invention transmits vibration data transmitted from the vibration information transmitting device to the analysis and diagnosis means or the vibration monitoring means for monitoring and alarming Z and abnormal vibration via the digital network. It provides a vibration monitoring and analysis system that is in use.
  • the wiring to the analysis and diagnosis means can be unified, and the degree of freedom in arrangement of the analysis and diagnosis means can be increased. it can.
  • the above Analysis and diagnosis of the cause of vibration is performed by performing frequency analysis on the time series sampling data transmitted from the transmitter by FFT analysis.Furthermore, the vibration monitoring means is connected to a digital network.
  • the wiring to the vibration monitoring means can be unified, and the degree of freedom in arranging the vibration monitoring means can be increased.
  • Time-synchronized measurement can be performed for each vibration sensor.
  • each of the vibration sensors Since the signals of the respective sensors are switched and multiplexed, it is not possible to synchronize the measurement start of the signals of the respective vibration sensors.
  • the transmitters since each transmitter is independent of each of the vibration sensors, the transmitters are independent of each other. Synchronous measurement can be performed.
  • the trigger signal for synchronous measurement can be sent via a digital network connected to the transmitter.
  • the transmitter includes a synchronization trigger signal generating unit that is generated at a reference position of a rotation phase of the rotating machine to be measured, and the transmitter includes an input unit for receiving a synchronization trigger signal from the synchronization trigger signal generating unit.
  • FIG. 1 is an overall configuration diagram of a vibration monitoring and analyzing system according to an embodiment of the present invention.
  • FIG. 2 is a configuration diagram of the transmitter.
  • FIG. 3 is a schematic diagram showing an arrangement state of a sensor on a rotating machine.
  • Figure 4 is a conceptual diagram of synchronous measurement.
  • FIG. 5 shows a comparative example, (A) is a configuration diagram, and (B) is a conceptual diagram of measurement timing.
  • FIG. 6 is a configuration diagram of a conventional vibration monitoring and analysis system. BEST MODE FOR CARRYING OUT THE INVENTION
  • the vibration monitoring analysis system 10 includes n vibration sensors 2-1 to n installed in a rotating machine to be diagnosed, and vibration sensors 2-1 to n. Transmitters connected one-to-one individually! To n, n digital transmitters (field path) DNs connecting n transmitters 1 1 to 1 to n, analysis and diagnostic means 14 connected to digital network DN, and vibration connected to digital network DN Monitoring means 17 are provided.
  • the rotating machine 30 is provided with a rotor 31 on a rotating shaft 32 at intervals, and vibration sensors 2-1 to n are installed on a bearing portion of the rotor 31.
  • a sensor 40 as a means for generating a synchronization trigger signal is provided on the surface of the rotor 31.
  • the vibration sensors 2-1 to: n and the sensor 40 use an eddy current type non-contact displacement sensor, and a speed sensor and an acceleration sensor can be used in the same manner.
  • a part of the circumferential surface of the rotor 31 is provided with a marker 31a that is located at a position of 0 ° of the rotation phase of the rotor 31. Thus, each time the marker 31a passes directly below the sensor 40, one synchronous trigger signal is generated.
  • Transmitter 1 1 1 1 1 ⁇ ! ! As shown in Fig. 2, vibration sensor 2-1 ⁇ ! ! Transducer circuit 18 that converts the sensor output signal, which is vibration information from the sensor, into an analog electric signal proportional to the vibration value, and A / D converter circuit 19 that converts the analog electric signal from the transducer circuit 18 into a digital signal.
  • Network interface 20 for outputting digital signals from the AZD conversion circuit 19 to the digital network DN, and overall vibration detection provided in parallel with the A / D conversion circuit 19 for detecting abnormal vibration.
  • the A / D conversion circuit 19 is provided with an input section 22 for a synchronization trigger signal from the sensor 40.
  • the analysis / diagnosis means 14 is disposed in a central control room or the like, and includes an analysis / diagnosis device 12 connected to the digital network DN and a personal computer 13 connected to the output side of the analysis / diagnosis device 12. It is configured.
  • the analysis / diagnosis device 12 requests time-series sampling data from the transmitters 11 to 1 to n as needed to perform frequency analysis by FFT analysis, and outputs the result to the personal computer 13.
  • the rotational frequency component (fn) of the rotating machine extracted from the frequency analysis result and the characteristic frequency components (high frequency, low frequency, 2fn, 11 2, the critical speed £; parsing diagnose the abnormality cause by (or the like).
  • the vibration monitoring means 17 is arranged in the field (site), and is configured by individually connecting the control device 15 and the personal computer 16 to the digital network DN.
  • the control device 15 is a transmitter over the transmitter 1 2002/008230
  • Vibration detection circuit 21 Receives the vibration value (overall amplitude value) detected by reading the P-P value (Peak-to-Peak Va 1 ue) in real time, and issues an alarm for abnormal vibration. It outputs an alarm and an alarm signal to stop the rotating machine immediately.
  • the personal computer 16 receives the vibration data from the transmitters 111 to 1-n, and displays the same indicator and display as the conventional vibration monitor with the monitoring software installed in advance.
  • the transmitters 11 to l-n house the transducer circuit 18, the A / D conversion circuit 19, and the network interface 20 in the same housing, so that the wiring cost is reduced.
  • wiring workability can be improved, and downsizing can be achieved to save space in the field (site).
  • each of the devices 12, 15 and 16 is individually digitally connected. It is possible to connect to any position on the network DN, thereby increasing the degree of freedom in arrangement, and the number of wires to each device 12, 15, 16 can be one.
  • n transmitters 11 1 to 1 to n are individually connected to n vibration sensors 2 to 1 to n in a one-to-one correspondence, and the vibration sensors 2 to 1 to n are connected.
  • ⁇ Transducer circuit 18 ⁇ A / D converter circuit 19 ⁇ Circuits connected to network interface 20 are made independent, so as shown in Fig. 4, each vibration sensor 2-l ⁇ n is independent Continuous signal processing is possible, and time-synchronized measurement (sampling) can be performed using the synchronization trigger signal from the sensor 40 as the sampling start.
  • Nn and the analog signals from the transducers 3 _l ⁇ n are multiplexed by the multiplexer 7 and transmitted to one A / D converter 8 and the network interface 9.
  • each vibration sensor 2-1 ⁇ ! ! The signals from the sensors are switched by the multiplexer 7 and multiplexed, so that each vibration sensor 2— :!
  • the timing of measurement (sampling) of signals n to n is shifted by the time ⁇ t, and the start of each measurement cannot be synchronized.
  • each of the transmitters 11-1 to 1-n is independently connected to each of the vibration sensors 2-1 to 1-n, each of the transmitters 11-1 to 1-! !
  • the synchronous trigger signal generated when the sensor 40 coincides with the marker 31 a of the rotor 31 of the rotating machine 30 is synchronized with the rotation phase of the rotor 31. Since it corresponds to the 0 ° position, synchronous measurement can be performed with the 0 ° position of the rotation phase of the rotor 31 as the sampling start, and the vibration phase measurement of the rotating machine 30 can be performed.
  • the trigger signal for synchronous measurement is the transmitter 11_1! !
  • the signal may be transmitted via the digital network DN connected to the network, and in that case, the synchronization signal line may be unnecessary.
  • the O one Paoru vibration detection circuit 2 1 for detecting the abnormal vibration by reading the peak value of the analog electrical signals from the transmitter 1 1 one 1 ⁇ n internal to the transducer circuit 1 8, the conventional conducted a vibration monitor Transmitter 11 1 1! ! And the system can be simplified. it can.
  • the wiring cost can be reduced. Wiring workability can be improved, and downsizing can be achieved to save space in the field (site).
  • the wiring to the analysis and diagnosis means and the vibration monitoring means can be unified, and The degree of freedom in arranging the diagnostic means and the vibration monitoring means can be increased.
  • the vibration sensor-> transducer circuit ⁇ A / D conversion circuit ⁇ circuit connected to the network interface can be made independent. Time-synchronized measurement can be performed for each vibration sensor.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

振動監視解析システムのフィールドワイヤリングを効率化するもので、被測定物の振動を検出する振動センサー2-1~nからの振動情報をデジタル電気信号へ変換すると共にデジタルネットワークDNへと出力するトランスミッタ11-1~nを設け、トランスミッタ11-1~nは、振動センサー2-1~nからの振動情報をアナログ電気信号へと変換するトランスデューサ回路18と、該トランスデューサ回路18からのアナログ電気信号をデジタル信号へ変換するA/D変換回路19と、該A/D変換回路19からのデジタル信号をデジタルネットワークDNへと出力するためのネットワークインターフェース20とを同一筐体内に備えている。

Description

明 細 書 振動情報送信装置およぴ振動監視解析システム 技術分野
本発明は振動情報送信装置およぴ振動監視解析システムに関し、 詳し くは、 発電機、 モータ、 タービン、 ファン、 ポンプ等の回転機械の振動 を解析するシステムでのフィールド (現場) の配線作業を低減するもの である。 背景技術
図 6に示すように、 従来提供されている回転機械の振動監視解析シス テム 1は、 回転機械の軸受部などに設置された複数の振動センサー 2— l〜nと、 各振動センサー 2—:!〜 nからの振動情報であるセンサー出 力信号を振動値に比例するアナログ電気信号へと変換するトランスデュ ーサ 3 — 1〜nと、 各トランスデューサ 3 — 1〜nからのアナログ電気 信号を表示すると共に異常振動の監視 ·警報を行う振動モニター 4と、 該振動モニター 4からのアナログ電気信号より振動の解析診断を行い、 かつ、 A/ D変換回路を有する解析診断装置 5と、 解析診断装置 5の解 析診断結果を表示するパーソナルコンピュータ 6とを備えている。 上記各機器の配線方法は、 振動センサー 2— 1〜nと トランスデュー サ 3 — 1〜nとの間は複数本のアナログ電線 AW 1を用いてそれぞれ個 別に接続し、 トランスデューサ 3— 1〜!!と振動モニター 4との間も複 数本のアナログ電線 AW 2を用いてそれぞれ個別に接続し、 振動モニタ — 4と解析診断装置 5との間も複数本のアナログ電線 AW 3を用いてそ れぞれ個別に接続している 共に、 解析診断装置 5とパーソナルコンビ ユータ 6との間はデジタルネットワーク D Nを介して接続されている。 そして、 上記した振動監視解析システム 1により振動解析診断を行う 際には、 回転機械のロータが 1回転する間に振動センサー 2— 1 〜 nよ り得られる振動情報を解析診断装置 5により トランジェント解析や F F T解析を行って振動発生原因を解析 ·診断している。
しかしながら、 上記振動監視解析システム 1によれば、 振動センサー 2— 1〜!!とトランスデューサ 3— 1〜! 1の間と、 トランスデューサ 3 一 :!〜 nと振動モニター 4の間と、 振動モニター 4と解析診断装置 5の 間とをアナログ式の信号伝送を行っているため、 個別のアナ口グ電線 A W l 、 AW 2、 AW 3で結線する必要があり、 振動測定を行う測定点 ( 11個) が多い場合には、 各電線 AW 1、 AW 2、 AW 3が測定点と同数 必要であるため、 電線本数および配線作業が増大してしまう問題があつ た。
また、 電線本数が増大することで、 フィールド (現場) でのワイヤリ ングが煩雑となると共に、 メンテナンスコス トが増大する問題もある。 本発明は、 上記した問題に鑑みてなされたものであり、 回転機械の振 動監視解析システムのフィールドワイヤリングを効率化することを課題 としている。 発明の開示
本発明は、 被測定物の振動を検出する振動センサーからの振動情報を デジタルネットワークへ出力する装置としてトランスミッタを設け、 上記トランスミッタは、 上記振動センサーからの振動情報をアナログ 電気信号へと変換するトランスデューサ回路と、 該トランスデューサ回 路からのアナ口グ電気信号をデジタル信号へ変換する A/D変換回路と
、 該 AZD変換回路からのデジタル信号を上記デジタルネットワークへ と出力するためのネットワークインターフェースとを同一筐体内に備え ていることを特徵とする振動情報送信装置を提供している。
上記構成とすると、 トランスデューサ機能と AZD変換機能とを回路 化して上記ネットワークインターフェースと共に同一筐体内に一体収容 した上記トランスミッタを設けているので、 トランスデューサゃ AZD 変換器などを独立した機器で組み合わせた場合に比べてワイヤリングが 低減され、 ワイヤリングコス トの低減およぴ配線作業性を向上すること ができる。
また、 トランスデューサ回路と A/D変換回路とネットワークインタ 一フェースとを上記トランスミッタとして一体化しているので、 システ ムを小型化することができ、 フィールド (現場) での省スペース化を図 ることができる。
上記トランスミッタは、 上記トランスデューサ回路からのアナログ電 気信号の振幅値を読み取って異常振動を検出するオーバーオール振動検 波回路を上記 AZD変換回路と並列で設け、 上記ネットワークインター フェースに出力している。
上記構成とすると、 従来の振動モニターで行っていた振幅値の読取に よる異常振動の検出をトランスミッタで行うことができ、 システムの簡 素化が促進される。
また、 本発明は、 上記記載の振動情報送信装置から送信される振動デ ータを上記デジタルネットワークを介して解析診断手段あるいは Zおよ び異常振動の監視 ·警報を行う振動監視手段に送信している振動監視解 析システムを提供している。
上記のように、 上記解析診断手段をデジタルネットワーク上に接続す る構成とすることで、 解析診断手段への配線を 1本化することができる と共に、 解析診断手段の配置自由度も高めることができる。 なお、 上記 振動発生原因の解析 ·診断は、 上記トランスミッタより送信される時系 列のサンプリングデータを F F T解析により周波数分析して行っている また、 上記振動監視手段をデジタルネットワーク上に接続する構成と することで、 振動監視手段への配線を 1本化とすることができると共に 、 振動監視手段の配置自由度も高めることができる。
複数の上記振動センサ一に対して複数の上記トランスミッタを 1対 1 で独立して接続し、 振動センサ一" トランスデューサ回路→A/D変換 回路→ネットワークインターフェースと繋がる回路をそれぞれ独立させ ることで、 各振動センサーごとに時間的な同期のとれた計測を行うこと ができる。
つまり、 例えば、 複数の振動センサーからの信号をそれぞれ独立した 回路で処理せずに、 マルチプレクサを用いて多重化した状態で 1つの A ZD変換ゃネットワークインターフェースに接続すると、 上記マルチプ レクサで各振動センサーの信号をスィッチして多重化するので、 各振動 センサーの信号の計測スタートの同期をとることができないが、 本発明 では、 各トランスミッタが各振動センサーに対して独立しているので、 トランスミッタ間で同期のとれた計測を行うことができる。
なお、 同期計測のトリガー信号は、 上記トランスミッタに接続された デジタルネットワークを介して行うことができる。
上記被測定物となる回転機械の回転位相の基準位置で発せられる同期 トリガー信号発生手段を備え、 上記トランスミッタには該同期トリガー 信号発生手段からの同期トリガー信号の入力部を備えている。
このように、 同期計測のトリガー信号を、 回転機械の回転位相の基準 位置と一致させて送信することで、 回転機械の回転にも同期した計測が 可能となり、 振動の位相解析を行うことができる。 図面の簡単な説明
第 1図は、 本発明の実施形態にかかる振動監視解析システムの全体構 成図である。 第 2図は、 トランスミ ッタの構成図である。 第 3図は、 回 転機械へのセンサーの配置状態を示す概略図である。 第 4図は、 同期計 測の概念図である。 第 5図は、 比較例を示し (A) は構成図、 (B ) は 計測タイミングの概念図である。 第 6図は、 従来の振動監視解析システ ムの構成図である。 発明を実施するための最良の形態
以下、 本発明の実施形態にかかるを図面を参照して説明する。
実施形態の振動監視解析システム 1 0は、 図 1に示すように、 診断対 象である回転機械に設置された n個の振動センサー 2— 1〜nと、 振動 センサー 2— 1〜nに対して 1対 1で個別に接続された n個のトランス ミッタ 1 1一:!〜 nと、 n個のトランスミッタ 1 1一 1〜nを夫々接続 したデジタルネットワーク (フィールドパス) D Nと、 デジタルネット ワーク D Nに接続された解析診断手段 1 4と、 デジタルネットワーク D Nに接続された振動監視手段 1 7とを備えている。
回転機械 3 0は、 図 3に示すように、 回転軸 3 2にロータ 3 1を間隔 をあけて備えており、 ロータ 3 1の軸受部分に振動センサー 2— 1〜n を設置していると共に、 同期トリガー信号発生手段となるセンサー 4 0 をロータ 3 1の表面に設置している。
なお、 振動センサー 2— 1〜: nおよびセンサー 4 0は渦電流式の非接 触変位センサーを用いており、 同様に速度センサー、 加速度センサーを 用いることも可能である。 ロータ 3 1の円周表面の一部にはロータ 3 1 の回転位相の 0 ° 位置となるマーカー 3 1 aを設け、 ロータ 3 1の回転 によりマーカー 3 1 aがセンサー 4 0直下を通過するごとに同期トリガ 一信号を発生するようにしている。
トランスミッタ 1 1 一 1〜!!は、 図 2に示すように、 同一筐体内に、 振動センサー 2 — 1〜!!からの振動情報であるセンサー出力信号を振動 値と比例するアナログ電気信号へと変換するトランスデューサ回路 1 8 と、 トランスデューサ回路 1 8からのアナログ電気信号をデジタル信号 へ変換する A/D変換回路 1 9と、 AZD変換回路 1 9からのデジタル 信号をデジタルネットワーク D Nへと出力するためのネットワークイン ターフェース 2 0と、 A/D変換回路 1 9と並列に設けた異常振動を検 出するオーバーオール振動検波回路 2 1とを備えており、 また、 A/ D 変換回路 1 9にはセンサー 4 0からの同期トリガー信号の入力部 2 2を 設けている。
解析診断手段 1 4は、 中央制御ルーム等に配置され、 デジタルネット ワーク D Nに接続された解析診断装置 1 2と、 該解析診断装置 1 2の出 力側に接続されたパーソナルコンピュータ 1 3とで構成されている。 解析診断装置 1 2は、 必要に応じて時系列のサンプリングデータをト ランスミッタ 1 1一 1〜nに要求して F F T解析による周波数分析を行 レ、、 その結果をパーソナルコンピュータ 1 3に出力し、 該パーソナルコ ンピュータ 1 3に予めインストールされたビューソフトウヱァで、 上記 周波数分析結果から抽出される回転機械の回転数成分 (f n ) や、 特徴 的な周波数成分 (高周波、 低周波、 2 f n、 11 2、 危険速度£ (;等 ) により異常原因を解析診断している。
振動監視手段 1 7は、 フィールド (現場) に配置され、 コントロール 装置 1 5とパーソナルコンピュータ 1 6とをそれぞれ個別にデジタルネ ットワーク D Nに接続して構成されている。
コントロール装置 1 5は、 トランスミ ッタ 1 1一 1〜nのォ一バーオ 2002/008230
7 ール振動検波回路 2 1で P— P値 (P e a k— t o— P e a k V a 1 u e) の読取により検出した振動値 (オーバーオール振幅値) をリアル タイムでデータ受信し、 異常振動に対する警報アラームと回転機械を緊 急停止させる警報信号とを出力する。
パーソナノレコンピュータ 1 6は、 トランスミッタ 1 1一 1〜nからの 振動データを受信し、 予めィンストールされたモニタリングソフトクェ ァで、 従来の振動モニターと同様の指示計と表示を行う。
上記構成とすると、 トランスミッタ 1 1一 l〜nは、 トランスデュー サ回路 1 8と A/D変換回路 1 9とネットワークインターフェース 20 とを同一筐体内に一体収容しているので、 ワイヤリングコス トの低減お よぴ配線作業性を向上することができると共に、 小型化が図られフィー ルド (現場) での省スペース化も図ることができる。
また、 解析診断装置 12、 コントロール装置 1 5、 パーソナルコンビ ユータ 1 6をデジタルネットワーク (フィールドバス) DNを介して接 続する構成としているので、 夫々の装置 1 2、 1 5、 16は個別にデジ タルネットワーク DN上の任意の位置に接続可能となり、 配置自由度を 高めることができると共に、 夫々の装置 1 2、 1 5、 16への配線も 1 本とすることができる。
さらに、 図 2に示すように、 n個の振動センサー 2— 1〜nに対して n個のトランスミッタ 1 1一 l〜nを 1対 1で個別に接続し、 振動セン サー 2— l〜n→トランスデューサ回路 1 8→A/D変換回路 1 9→ネ ットワークインターフェース 20と繋がる回路をそれぞれ独立させてい るので、 図 4に示すように、 各振動センサー 2— l〜nごとに独立状態 で連続した信号処理が可能で、 センサー 40からの同期トリガー信号を サンプリング ·スタートとして時間的に同期のとれた計測 (サンプリン グ) を行うことができる。 詳しくは、 システムのデジタル化を図る際に、 図 5 (A) の比較例の 図面に示すように、 複数の振動センサー 2—:!〜 nおよびトランスデュ ーサ 3 _ l〜nからのアナログ信号をマルチプレクサ 7で多重化して 1 つの A/D変換器 8およびネットワークィンタフエース 9に送信する構 成としてしまった場合には、 図 5 ( B ) に示すように、 各振動センサー 2 - 1〜!!からの信号をマルチプレクサ 7でスィツチして多重化するこ とより、 各振動センサー 2—:!〜 nの信号の計測 (サンプリング) のタ ィミングに時間 Δ tのズレが生じ、 それぞれの計測スタートの同期をと ることができない。
しかし、 本発明では、 上述したように、 各トランスミッタ 1 1— 1〜 nが各振動センサー 2— 1〜nに対して独立して接続しているので、 各 トランスミッタ 1 1一 1〜!!間で同期のとれた計測を行うことができる そして、 センサー 4 0が回転機械 3 0のロータ 3 1のマーカー 3 1 a と一致した際に発せられる同期トリガー信号は、 ロータ 3 1の回転位相 の 0 ° 位置と対応しているので、 ロータ 3 1の回転位相の 0 ° 位置をサ ンプリング ' スタートとした同期計測ができ、 回転機械 3 0の振動位相 計測が可能となる。
なお、 同期計測のトリガー信号は、 トランスミッタ 1 1 _ 1〜!!に接 続されたデジタルネットワーク D Nを介して送信してもよく、 その場合 には、 同期用信号線も不要とすることができる。
また、 トランスミッタ 1 1一 1〜n内部にトランスデューサ回路 1 8 からのアナログ電気信号のピーク値を読み取って異常振動を検出するォ 一パーオール振動検波回路 2 1を設けることで、 従来は振動モニターで 行っていた振幅値の読み取りによる異常振動の検出機能をトランスミツ タ 1 1一 1〜!!に吸収することができ、 システムの簡素化を図ることが できる。
産業上の利用可能性
上記した説明より明らかなように、 本発明によれば、 トランスデュー サ回路と A/D変換回路とネットワークインターフェースを同一筐体内 に一体収容した上記トランスミッタを設けているので、 ワイヤリングコ ストの低減および配線作業性を向上することができると共に、 小型化が 図られフィールド (現場) での省スペース化を図ることができる。 また、 上記解析診断手段および上記振動監視手段をデジタルネットヮ ーク上に接続する構成とすることで、 解析診断手段おょぴ振動監視手段 への配線を 1本化することができると共に、 解析診断手段および振動監 視手段の配置自由度も高めることができる。
さらに、 複数の上記振動センサ一に対して複数の上記トランスミッタ を 1対 1で個別に接続し、 振動センサ一" トランスデューサ回路→A/ D変換回路→ネットワークインターフェースと繋がる回路をそれぞれ独 立させることで、 各振動センサーごとに時間的な同期のとれた計測を行 うことができる。
また、 上記トランスミッタ内部に上記トラ スデューサ回路からのアナ ログ電気信号の振幅値を読み取って異常振動を検出するオーバーオール 振動検波回路を設けることで、 従来は振動モニターで行っていた振幅値 の読敢による異常振動の検出機能をトランスミッタに吸収することがで き、 システムの簡素化が促進される。

Claims

請 求 の 範 囲
1 . 被測定物の振動を検出する振動センサーからの振動情報をデジタル ネットワークへ出力する装置としてトランスミッタを設け、
上記トランスミッタは、 上記振動センサーからの振動情報をアナログ 電気信号へと変換するトランスデューサ回路と、 該トランスデューサ回 路からのアナログ電気信号をデジタル信号へ変換する A/D変換回路と 、 該 A/D変換回路からのデジタル信号を上記デジタルネットワークへ と出力するためのネットワークインターフェースとを同一筐体内に備え ていることを特徴とする振動情報送信装置。
2 . 上記トランスミッタは、 上記トランスデューサ回路からのアナログ 電気信号の振幅値を読み取って異常振動を検出するオーバーオール振動 検波回路を上記 AZD変換回路と並列で設け、 上記ネットワークインタ 一フェースに出力している請求項 1に記載の振動情報送信装置。
3 . 請求項 1に記載の振動情報送信装置から送信される振動データを上 記デジタルネットワークを介して解析診断手段あるいは/および異常振 動の監視 ·警報を行う振動監視手段に送信している振動監視解析システ ム。
4 . 複数の上記振動センサーに対して複数の上記トランスミッタを 1対 1で独立して接続している請求項 3に記載の振動監視解析システム。
5 . 上記被測定物となる回転機械の回転位相の基準位置で発せられる同 期トリガー信号発生手段を備え、 上記トランスミッタには該同期トリガ 一信号発生手段からの同期トリガー信号の入力部を備えている請求項 3 に記載の振動監視解析システム。
PCT/JP2002/008230 2002-08-12 2002-08-12 振動情報送信装置および振動監視解析システム WO2004017033A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/524,105 US7168324B2 (en) 2002-08-12 2002-08-12 Vibration information transmission apparatus and vibration monitoring/analyzing system
JP2004528811A JP4105692B2 (ja) 2002-08-12 2002-08-12 振動情報送信装置および振動監視解析システム
PCT/JP2002/008230 WO2004017033A1 (ja) 2002-08-12 2002-08-12 振動情報送信装置および振動監視解析システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/008230 WO2004017033A1 (ja) 2002-08-12 2002-08-12 振動情報送信装置および振動監視解析システム

Publications (1)

Publication Number Publication Date
WO2004017033A1 true WO2004017033A1 (ja) 2004-02-26

Family

ID=31742925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/008230 WO2004017033A1 (ja) 2002-08-12 2002-08-12 振動情報送信装置および振動監視解析システム

Country Status (3)

Country Link
US (1) US7168324B2 (ja)
JP (1) JP4105692B2 (ja)
WO (1) WO2004017033A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256352A (ja) * 2009-04-24 2010-11-11 General Electric Co <Ge> 構造的完全性監視システム
JP2016153812A (ja) * 2009-10-26 2016-08-25 フルークコーポレイションFluke Corporation 振動分析システム
CN109895124A (zh) * 2019-03-04 2019-06-18 河南科技大学 一种蔬菜移栽机旋转式取苗机械手的振动检测装置及方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4313754B2 (ja) * 2004-12-10 2009-08-12 住友電装株式会社 通信制御装置
US8339129B2 (en) * 2006-06-23 2012-12-25 Aktiebolaget Skf Vibration and condition monitoring system and the parts thereof
JP5052198B2 (ja) * 2007-05-01 2012-10-17 株式会社松浦機械製作所 ワーク及び又は工具の工作段階における振動状態測定方法
US8154417B2 (en) * 2007-10-05 2012-04-10 Itt Manufacturing Enterprises, Inc. Compact self-contained condition monitoring device
US8538615B2 (en) 2009-02-06 2013-09-17 Belon Engineering Inc. Smart electrical wheel for electrical bikes
US8448587B2 (en) * 2010-01-26 2013-05-28 Cnh Canada, Ltd. Row unit bounce monitoring system
CH705536B1 (de) * 2011-09-13 2017-09-29 Toshiba Kk Schaufelschwingungsmessvorrichtung.
US9330560B2 (en) 2012-05-02 2016-05-03 Flowserve Management Company Reconfigurable equipment monitoring systems and methods
US10012766B2 (en) 2015-04-10 2018-07-03 Google Llc Monitoring external vibration sources for data collection
US9811984B2 (en) 2015-04-13 2017-11-07 Itt Manufacturing Enterprises Llc Sensing module for monitoring conditions of a pump or pump assembly
EP3539260A4 (en) * 2016-11-10 2020-11-25 Bently Nevada, LLC EQUIPMENT MONITORING SYSTEMS AND DEVICES
JP6944285B2 (ja) * 2017-06-29 2021-10-06 川崎重工業株式会社 回転部材を有する装置の異常原因特定システム
US10476578B2 (en) 2017-10-10 2019-11-12 Thomas ST. LAWRENCE Radio frequency extender device for extending an effective range of wireless radio frequency networks by a combination of wireless and wired connections
US10783721B2 (en) 2017-12-15 2020-09-22 Caterpillar Inc. Monitoring and diagnostics system for a machine with rotating components
US10836255B2 (en) 2017-12-15 2020-11-17 Caterpillar Inc. On-board monitoring and event detection system for a machine with rotating components
US11867416B2 (en) 2019-11-13 2024-01-09 Johnson Controls Tyco IP Holdings LLP Remaining useful life estimator of components of HVAC system
DE102020133335A1 (de) * 2019-12-17 2021-06-17 Fanuc Corporation Werkzeugmaschine und verfahren zum abschätzen von schwingungen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000029270A1 (de) * 1998-11-12 2000-05-25 Stn Atlas Elektronik Gmbh Verfahren zur erkennung von schäden im schienenverkehr

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433111A (en) * 1994-05-05 1995-07-18 General Electric Company Apparatus and method for detecting defective conditions in railway vehicle wheels and railtracks
US5579013A (en) * 1994-05-05 1996-11-26 General Electric Company Mobile tracking unit capable of detecting defective conditions in railway vehicle wheels and railtracks
US6044698A (en) * 1996-04-01 2000-04-04 Cairo Systems, Inc. Method and apparatus including accelerometer and tilt sensor for detecting railway anomalies
US5854994A (en) * 1996-08-23 1998-12-29 Csi Technology, Inc. Vibration monitor and transmission system
US6292108B1 (en) * 1997-09-04 2001-09-18 The Board Of Trustees Of The Leland Standford Junior University Modular, wireless damage monitoring system for structures
US6098022A (en) * 1997-10-17 2000-08-01 Test Devices, Inc. Detecting anomalies in rotating components
US20030014199A1 (en) * 2001-07-12 2003-01-16 Patrick Toomey System and methods for detecting fault in structure
US20030088346A1 (en) * 2001-10-27 2003-05-08 Vetronix Corporation Noise, vibration and harshness analyzer
US6807862B2 (en) * 2002-02-21 2004-10-26 Sekos, Inc. Device and method for determining and detecting the onset of structural collapse

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000029270A1 (de) * 1998-11-12 2000-05-25 Stn Atlas Elektronik Gmbh Verfahren zur erkennung von schäden im schienenverkehr

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010256352A (ja) * 2009-04-24 2010-11-11 General Electric Co <Ge> 構造的完全性監視システム
JP2016153812A (ja) * 2009-10-26 2016-08-25 フルークコーポレイションFluke Corporation 振動分析システム
CN109895124A (zh) * 2019-03-04 2019-06-18 河南科技大学 一种蔬菜移栽机旋转式取苗机械手的振动检测装置及方法

Also Published As

Publication number Publication date
JP4105692B2 (ja) 2008-06-25
US20050284226A1 (en) 2005-12-29
JPWO2004017033A1 (ja) 2005-12-02
US7168324B2 (en) 2007-01-30

Similar Documents

Publication Publication Date Title
JP4105692B2 (ja) 振動情報送信装置および振動監視解析システム
EP2518456A1 (en) Method for monitoring demagnetization
JP4966114B2 (ja) 振動測定システム
JP5917551B2 (ja) コンポーネント故障検出システム
JP2009524760A (ja) 少なくとも1つのギアボックス及び遊星ギアボックスを備える風力タービン
TW201812179A (zh) 泵總成、方法及電腦程式
JP2018155494A (ja) 軸受異常診断システム及び軸受異常診断方法
JP2012104109A (ja) 回転部品からデータを送信するためのシステム及び方法
JP2007523414A (ja) 機械における摩耗を検出するための方法
JP2009133810A (ja) 振動監視装置
KR100372589B1 (ko) 기계 상태 진단방법 및 진단센서
JP6897064B2 (ja) 軸受異常診断方法および診断システム
TW200521445A (en) Monitoring circuit and related method
JPH0615987B2 (ja) 振動検出機構の診断方法
KR20080063572A (ko) 빌트인 디지털 진동모니터
KR101245747B1 (ko) 회전축의 비틀림 진동 변형량 측정 장치
US7580802B2 (en) Method of determining condition of a turbine blade, and utilizing the collected information for estimation of the lifetime of the blade
JP2008140335A (ja) 多点計測装置
JP3087470B2 (ja) 回転機器の異常診断装置
KR101119502B1 (ko) 진동모니터
KR20020051322A (ko) 회전기의 다채널 진동감시장치
JP4869008B2 (ja) 回転機械の振動診断システム
KR20200025610A (ko) 통합 센서 진단 장치
WO2022163261A1 (ja) 機器診断システム
US8290723B2 (en) Apparatus for monitoring rotating components

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10524105

Country of ref document: US

Ref document number: 2004528811

Country of ref document: JP

122 Ep: pct application non-entry in european phase