Beschreibung
Verfahren zur Reinigung eines Partikelfilters
Die Erfindung bezieht sich auf ein Verfahren zur Regenerierung eines Partikelfilters, der im Abgaskanal einer Brennkraftmaschine angeordnet ist, der Partikel im Abgaskanal strömenden Abgas filtert und im laufenden Betrieb intermittierend regeneriert wird.
Moderne Brennkraftmaschinen, insbesondere Benzin- und Dieselbrennkraftmaschinen, werden üblicherweise mit einem Abgasreinigungssystem ausgestattet, um die Abgasemissionen zu senken. Mit zunehmender Verschärfung der zulässigen Emissionsgrenz- werte in allen wichtigen Industrieländern kommen in den Abgasreinigungssystemen zunehmend Partikelfilter zum Einsatz. Insbesondere bei Dieselbrennkraftmaschinen besitzen Partikelfilter Bedeutung, da dort vergleichsweise große Emissionen von Rußpartikeln auftreten können.
Ein Partikelfilter filtert im Abgas enthaltene Partikel, zumeist Rußpartikel, heraus und speichert diese Partikel ein. Er enthält typischerweise ein Filterelement, das von dem zu filternden Abgas durchströmt wird. Die Porosität des Filters wird dabei in Abhängigkeit von der Größe der auszufilternden Partikel gewählt. Oberhalb einer bestimmten Größe werden die Partikel in dem Filterelement des Partikelfilters zurückgehalten. Die Beladung des Partikelfilters mit Partikeln nimmt dadurch stetig zu. In gewissen Abständen muss der Par- tikelfilter gereinigt oder ersetzt werden, um ein Zusetzen („Verstopfen"") des Partikelfilters zu vermeiden. Dies ist notwendig, damit der Partikelfilter seine Funktion bei der Abgasreinigung stets mit einem ausreichenden Wirkungsgrad erfüllen kann. Der Partikelfilter kann durch einen neuen Partikelfilter ausgetauscht werden, oder der eingesetzte Partikelfilter kann gereinigt werden. Als Reinigungsverfahren kommt eine externe
Reinigung des Filters außerhalb der Brennkraftmaschine in Betracht, oder eine Reinigung im laufenden Betrieb, die im Rahmen dieser Erfindung als Regenerierung des Partikelfilters bezeichnet wird.
Die Regenerierung des Partikelfilters kann beispielsweise durch eine Verbrennung der gespeicherten Partikel erfolgen. Dazu wird der Partikelfilter vorübergehend auf eine Temperatur oberhalb der Zündtemperatur der Partikel gebracht. Sobald die Zündtemperatur erreicht ist, erfolgt bei ausreichender Sauerstoffkonzentration im Abgas ein spontaner Abbrand der eingespeicherten Partikel. Da die Zündtemperatur deutlich ü- ber der gewöhnlichen Betriebstemperatur des Partikelfilters liegt, ist dazu typischerweise ein aktives Aufheizen des Par- tikelfilters erforderlich. Beispielsweise erfordert der Abbrand von Rußpartikeln ohne Zusatz von Additiven eine Zündtemperatur von mindestens 550 °C. Ein Zusatz von Additiven kann die Zündtemperatur zwar absenken, doch macht dies eine Zugabevorrichtung für die Additive und ein Steuerungsverfah- ren zu dessen Betrieb erforderlich.
Um eine optimale Wirkung des Partikelfilters zu erhalten und die Betriebskosten, die durch die Regeneration des Partikelfilters entstehen, möglichst gering zu halten, wird im Stand der Technik typischerweise eine permanente Überwachung des Partikelfilters durchgeführt. Die Überwachung hat das Ziel, den optimalen Zeitpunkt für einen Regenerierungsvorgang zu bestimmen. Erfolgt die Regenerierung in zu großen Zeitintervallen, nimmt der Wirkungsgrad des Partikelfilters besonders zum Ende jedes Zeitintervalls hin stark ab. Die zunehmende
"Verstopfung" des Partikelfilters führt zu einer Behinderung des Abgasstroms, die eine Erhöhung des Abgasgegendruckes und somit des Kraftstoffverbrauchs bewirkt. Erfolgt die Regenerierung dagegen in zu kleinen Zeitintervallen, sind die damit verbundenen Betriebskosten höher als notwendig.
Für die Überwachung des Partikelfilters können Drucksensoren eingesetzt werden, die den Abgasdruck im Abgaskanal stromauf und stromab des Partikelfilters messen. Es sind auch Überwachungsverfahren denkbar, bei denen nur ein einzelner Druck- sensor eingesetzt wird, der direkt die Druckdifferenz des Abgases vor und nach dem Partikelfilter misst. In beiden Fällen werden Druckmesssignale einer Steuereinrichtung zugeführt, die daraus die Druckdifferenz zwischen dem Abgasdruck stromauf und stromab des Partikelfilters bestimmt. Übersteigt die Druckdifferenz einen vorgegebenen Schwellenwert, so werden Maßnahmen zur Regenerierung des Partikelfilters eingeleitet.
Nachteilig an diesem Vorgehen ist allerdings der mit der benötigten Sensorik verbundene zusätzliche Material- und Ferti- gungsaufwand. So müssen die Drucksensoren entweder direkt am Abgasrohr montiert werden oder über Rohre mit der Abgasanlage verbunden werden. Dabei ist eine Montage direkt am Abgasrohr problematisch, da der bzw. die Drucksensoren in diesem Fall insbesondere auf hohe Abgastemperaturen, auf Schwingbelas- tung, auf Spritzwasser von außen, sowie auf Steinschlag von außen ausgelegt werden müssen.
Wird ein Differenzdrucksensor eingesetzt, so ist eine Verrohrung des Sensors mit den entsprechenden Stellen der Abgasan- läge erforderlich.
Es hat sich darüber hinaus herausgestellt, dass Verrohrung und Drucksensoren gegenüber Verstopfungen anfällig sind. Solche Verstopfungen können beispielsweise durch die im Abgas enthaltenen Partikel oder andere Verschmutzungen, wie etwa ÖlVerbrennungsrückstände verursacht werden. Auch Kondenswas- ser mit der einhergehenden Problematik der Eisbildung bei niedrigen Außentemperaturen kann zu einer Verstopfung führen.
Hier setzt die Erfindung an, der die Aufgabe zugrunde liegt, ein Verfahren der eingangs geschilderten Art so weiterzubilden, dass die Regenerierungszeitpunkte des Partikelfilters
ohne Rückgriff auf zusätzliche Sensorik bestimmt werden können.
Diese Aufgabe wird erfindungsgemäß in einer ersten Variante dadurch gelöst, dass der der Brennkraftmaschine zugeführte Luftmassenstrom gemessen wird, der bei den aktuellen Betriebsparametern zu erwartende Luftbedarf der Brennkraftmaschine ermittelt wird und eine Regenerierung des Partikelfilters auf Grundlage einer Abweichung zwischen Luftmassenstrom und Luftbedarf eingeleitet wird.
Die Erfindung beruht somit auf dem Gedanken, die Regenerierungszeitpunkte nicht anhand des Druckabfalls über dem Partikelfilter im Abgaskanal zu bestimmen, sondern einen anderen, mit der zunehmenden Verstopfung des Partikelfilters einhergehenden Effekt auszunutzen. Die erfindungsgemäße Lösung baut auf der Beobachtung auf, dass bei zunehmender Beladung des Partikelfilters der Abgasgegendruck steigt, was zu einer Verringerung der von der Brennkraftmaschine je Arbeitstakt ange- saugten Frischluftmasse führt. Durch diese Verringerung der Frischluftmasse sinkt der Luftmassenstrom im Betrieb der Brennkraftmaschine, und gleichzeitig sinkt die maximale Leistung. Ohne die Abgasgegendruck erhöhende Wirkung des Partikelfilters wäre ein höherer Luftbedarf der Brennkraftmaschine zu erwarten. Somit kann aus der Abweichung zwischen dem Luftmassenstrom, der der Brennkraftmaschine zugeführt wird, und dem beim aktuellen Betriebspunkt zu erwartenden Luftbedarf direkt auf den Zustand des Partikelfilters geschlossen werden. Es wird damit vorteilhaft eine unmittelbare Wirkung der Verstopfung ausgewertet.
Im erfindungsgemäßen Verfahren der ersten Variante wird der Luftbedarf auf Grundlage von Betriebsparametern der Brennkraftmaschine, z.B. mittels eines Modells, berechnet, und die Regenerierungszeitpunkte des Partikelfilters werden aufgrund der Abweichung der momentanen Größe des gemessenen Luftmassenstroms vom berechneten Luftbedarf bestimmt. Erhöht sich
nämlich durch eine zunehmende Belegung des Partikelfilters der Abgasgegendruck, so verringert sich der Luftmassendurchsatz durch die Brennkraftmaschine im Vergleich zu dem Zustand mit einem leeren bzw. frisch regenerierten Partikelfilter zu- nehmend. Dieser Effekt tritt bei selbstansaugenden Brennkraftmaschinen auf und ist wegen der Gegendruckempfindlichkeit von Turboladern auch verstärkt bei aufgeladenen Brennkraftmaschinen zu beobachten.
Die Ermittlung der Größe des Luftmassenstroms schließt dabei im Rahmen der Erfindung insbesondere sowohl eine direkte Messung des Luftmassenstroms als auch eine Messung einer mit dem Luftmassenstrom zusammenhängenden Größe, aus der der Luftmassenstrom dann ermittelt werden kann, ein.
Mit Vorteil ist bei dem erfindungsgemäßen Verfahren vorgesehen, dass die Größe des der Brennkraftmaschine zugeführten Luftmassenstroms durch eine in einem Ansaugtrakt der Brennkraftmaschine angeordnete Luftmassen-Messeinrichtung oder ei- nen in dem Ansaugtrakt der Brennkraftmaschine angeordneten 'Drucksensor ermittelt wird.
In moderne Steuerungen für Brennkraftmaschinen ist in der Regel ein Modell zur Lasterfassung integriert, das auf Grundla- ge verschiedener Betriebsparameter der Brennkraftmaschine deren Luftbedarf ermittelt. Somit ist für die Bestimmung der Reinigungszeitpunkte nach dem erfindungsgemäßen Verfahren kein zusätzlicher Aufwand erforderlich, wenn die für die Lasterfassung bereits erfolgende Ermittlung des Luftbedarfs zu- sätzlich zur Überwachung- des Zustands des Partikelfilters verwendet werden kann.
In einer zweckmäßigen Weiterbildung des erfindungsgemäßen Verfahrens der ersten Variante wird der Partikelfilter als verstopft bewertet und ein Regenerierungsvorgang ausgelöst, wenn die Abweichung der momentanen Größe des gemessenen Luftmassenstroms vom aus Betriebsparametern berechneten Luftbe-
darf einen vorbestimmten Schwellenwert überschreitet. Durch eine solche Bewertung kann die Steuerung besonders einfach gestaltet werden.
Der vorbestimmte Schwellwert kann beispielsweise experimentell ermittelt werden. Seine Größe trägt dann vorteilhafterweise auch der Tatsache Rechnung, dass der nach einem Lasterfassungsmodell berechnete Luftbedarf und der gemessene Luftmassenstrom in der Praxis nicht völlig übereinstimmen. Dabei versteht es sich, dass bei der Berechnung des Luftbedarfs der Brennkraftmaschine auch andere Einflussgrößen als die Partikelbeladung des Partikelfilters berücksichtigt und einbezogen werden. Diese Einflussgrößen, beispielsweise der Umgebungsdruck oder Bauteiletoleranzen können das Lasterfassungssystem vertrimmen, und damit zu einer Abweichung des gemessenen
Luftmassenstroms vom berechneten Luftbedarf führen, ohne dass eine Reinigung des Partikelfilters erforderlich oder hilfreich wäre.
Bei den vermehrt zum Einsatz kommenden aufgeladenen Brennkraftmaschinen wird der Umgebungsdruck in der Regel mittels eines geeigneten Sensors gemessen, so dass er ohne weiteres im Lasterfassungsmodell berücksichtigt werden kann. Es sind jedoch im Stand der Technik auch Verfahren bekannt, das Las- terfassungsmodell ohne Einsatz eines Umgebungsdrucksensors in geeigneten Betriebszuständen auf den Umgebungsdruck zu adaptieren. Anpassungen an andere das Lasterfassungsmodell beeinflussende Größen, wie etwa die genannten Bauteiltoleranzen können beispielsweise dadurch erreicht werden, dass in Berei- chen mit einem wohldefinierten Zustand des Partikelfilters, beispielsweise einem leeren oder frisch regenerierten Filter, eine Adaption des Lasterforschungsmodells durchgeführt wird.
Es versteht sich, dass eine Wechselwirkung besteht zwischen dem Schwellenwert, bei dessen Überschreitung ein Regenerierungsvorgang des Partikelfilters ausgelöst wird, und der Genauigkeit, mit der weitere Einflussgrößen bei dem Lasterfas-
sungsmodell berücksichtigt werden. Kompensiert das Lasterfassungsmodell etwa nur wenige Einflussgrößen oder stellt es nur eine vergleichsweise grobe Kompensation bereit, so uss der Schwellenwert größer gewählt werden, als bei einer exakten Kompensation zahlreicher Einflussgrößen.
In einer zweiten Variante der Erfindung, die ebenfalls die genannte Aufgabe löst, ist bei einem gattungsgemäßen Verfahren vorgesehen, dass der der Brennkraftmaschine zugeführte Luftmassenstrom gemessen wird, ein Modell zur Ermittlung des beim aktuellen Betriebspunkt zu erwartenden Luftbedarfs an den Luft assenstrom adaptiert wird und eine Regenerierung des Partikelfilters eingeleitet wird, wenn das Modell nach der Adaption außerhalb vorbestimmter Parameterbereiche liegt.
Erfindungsgemäß wird dann ein Berechnungsschema für den Luftbedarf der Brennkraftmaschine an den ermittelten, tatsächlichen Luftmassenstrom adaptiert. Der Partikelfilter wird bei dieser Variante als verstopft gewertet und ein Regenerie- rungsvorgang ausgelöst, wenn 'das Berechnungsschema durch die Adaption vorbestimmte Parameterbereiche verlässt. Dies ist insbesondere der Fall, wenn das oben genannte Lasterfassungsmodell in Bereiche eines unplausiblen Verhaltens des Modells gelangt. Es kann dann der Schluss gezogen werden, dass die Abweichung des Modells vom plausiblen Verhalten auf eine Verstopfung des Partikelfilters zurückzuführen ist.
Für diese Variante gelten die vorstehende Ausführungen zur Wechselwirkung zwischen dem Schwellenwert und der Modellge- nauigkeit sinngemäß. Je mehr Einflussgrößen mit hoher Genauigkeit in dem Lasterfassungsmodell berücksichtigt werden, desto enger können die Grenzen der Parameterbereiche des Modells gezogen werden, bei deren Verlassen ein Reinigungsvorgang des Partikelfilters auszulösen ist.
Ist das Gesamtsystem, in dem die Erfindung eingesetzt wird, mit einer Lambda-Sonde ausgestattet, welche das Kraftstoff-
Luft-Gemisch durch Messung des Restsauerstoffgehalts des Abgases auf den Wert für stöchiometrische Verbrennung, Lambda = 1, regelt, so können das Signal der Lambda-Sonde und daraus abgeleitete Größen, wie etwa aus der Lambda-Regelung, einer Lambda-Adaption, oder Adaptionsinformationen bezüglich der Einspritzventile, zusätzlich herangezogen werden, um die Luftbedarfberechnung und damit die Einschätzung des Zustands des Partikelfilters zu verbessern. Fehlinterpretationen bezüglich des Zustands des Partikelfilters, wie sie ansonsten z.B. bei einem undichten Saugrohr auftreten können, werden damit wirkungsvoll vermieden.
Der Luftbedarf der Brennkraftmaschine wird mit Vorteil in einem Modell berechnet, das (unadaptiert) von einem leeren oder gereinigten Partikelfilter ausgeht, um einen wohldefinierten und reproduzierbaren Fixpunkt für die Berechnung zu erhalten. Weiter kann die Berechnung des Luftbedarfs und die Entscheidung, ob ein Regenerierungsvorgang ausgelöst wird, an allen Betriebspunkten oder nur an einem oder einigen vorbestimmten Betriebspunkten der Brennkraftmaschine erfolgen. Dann kann, ' im Falle der zweiten Variante der Erfindung, die Berechnung des Luftbedarfs in den restlichen Betriebsbereichen besser an den tatsächlichen gegenwärtigen Zustand des Partikelfilters angepasst werden, welcher im Mittel einen teilweise beladenen Partikelfilter darstellt.
In einer bevorzugten Weiterbildung der Erfindung wird der Luftbedarf der Brennkraftmaschine zur Bestimmung der Regenerierungszeitpunkte mit einem Modell berechnet, das einen lee- ren oder gereinigten Partikelfilters zugrunde legt, und zur Steuerung der Brennkraftmaschine wird ein Luftbedarf mit einem Modell berechnet, das einen teilweise beladenen Partikelfilter zugrunde legt. Dadurch kann im Standardbetrieb der Luftbedarf für die Steuerung im Mittel genauer berechnet wer- den, und die Entscheidung, ob ein Regenerierungsvorgang erforderlich ist, dagegen auf einen exakteren aktuellen Beladungszustand des Partikelfilters gestützt werden.
Werden die beiden letztgenannten Vorgehensweisen zusammenge- fasst, so wird der Luftbedarf für die Bestimmung der Regenerierungszeitpunkte an einem oder einigen vorbestimmten Be- triebspunkten unter Zugrundelegung eines leeren oder gereinigten Partikelfilters berechnet, und der Luftbedarf für die Steuerung der Brennkraftmaschine wird an den anderen Betriebspunkten unter Zugrundelegung eines teilweise beladenen Partikelfilters berechnet. Die ausgewählten Betriebspunkte erlauben dann eine Beurteilung des Zustands des Partikelfilters, die restlichen Betriebsbereiche eine realistische Berechnung des Luftbedarfs des Motors, etwa für die Steuerung anhand eines Lasterfassungsmodells.
In einer bevorzugten Weiterbildung der Erfindung wird das Berechnungsschema für den Luftbedarf der Brennkraftmaschine nach der Durchführung eines Regenerierungsvorgangs des Partikelfilters neu angepasst.
Die Erfindung wird nachfolgend unter Bezugnahme auf die
Zeichnungen beispielhaft noch näher erläutert. Dabei zeigt
Fig. 1 ein Schema darstellen einer Brennkraftmaschine, bei der das erfindungsgemäße Verfahren eingesetzt wird und
Fig. 2 ein Flussdiagramm zur Durchführung eines erfindungsgemäßen Verfahrens.
In Fig. 1 ist eine Brennkraftmaschine 10 schematisch darstellt. Die Brennkraftmaschine 10 wird von einer Einspritzvorrichtung 12 mit Kraftstoff 14 versorgt. Verbrennungsluft 16 wird über einen Ansaugtrakt 18 herangeführt. Nach der Verbrennung eines Kraftstoff-Luft-Gemisches in der Brenn- kraftmaschine 10, auf die im Einzelnen nicht näher eingegangen wird, werden Abgase 20 über einen Abgastrakt 22 ausgestoßen.
Im Abgastrakt 22 ist ein Partikelfilter 24 angeordnet, der im Abgas 20 enthaltene Partikel, insbesondere Rußpartikel herausfiltert, indem er sie einspeichert. Der Partikelfilter 24 wird intermittierend in sog. Regenerationsvorgängen von angesammelten Partikeln gereinigt. Dazu wird auf ein von einem Steuergerät 30 ausgegebenes Steuersignal 36 mittels einer Heizvorrichtung die Temperatur des Partikelfilters 24 über die Zündtemperatur der Rußpartikel angehoben. Alternativ kann auch eine Betriebspunktverstellung an der Brennkraftmaschine zur Abgastemperaturerhöhung erfolgen (gestrichelte Linie) . Bei ausreichender Sauerstoffkonzentration im Abgas 20 erfolgt dann ein spontaner Abbrand der im Partikelfilter 24 eingespeicherten Rußpartikel.
Das Steuergerät 30 enthält eine Recheneinheit 32, die auf Basis verschiedener, in Fig. 1 gemeinsam mit 40 bezeichneter Betriebsparameter den Luftbedarf Lcalc der Brennkraftmaschine 10 berechnet. Dazu wird ein Lasterfassungsmodell verwendet. Solche Modelle, die Betriebsparameter der Brennkraftmaschine, z.B. Drehzahl, Druck im Ansaugtrakt, zugeführte Kraftstoffmasse, Drosselklappenstellung, Betriebstemperatur o.a., auswerten und den Luftbedarf, der beim Betriebspunkt zu erwarten ist, ausgegeben, sind dem Fachmann bekannt. Die Betriebspara- meter 40 umfassen beispielsweise den Umgebungsdruck und die Betriebstemperatur der Brennkraftmaschine oder dergleichen.
Das Steuergerät 30 ist mit einem in Ansaugtrakt 18 angeordneten Luftmassenstromsensor 26 verbunden, der einen durch den Ansaugtrakt strömenden Ist-Luftmassenstrom misst und ein entsprechendes Signal 38 an das Steuergerät 30 liefert. Ein Messwert Lexp für den Ist-Luftmassenstrom wird einerseits der Recheneinheit 32 zugeleitet, um gegebenenfalls das Lasterfassungsmodell an die aktuellen Bedingungen anzupassen. Anderer- seits wird er zusammen mit dem errechneten Luftbedarf Lcalc einer Auswerteeinheit 34 zugeführt, die, wie weiter unten genauer beschrieben, auf Grundlage beider Größen entscheidet,
ob ein Regenerierungsvorgang für den Partikelfilter 24 eingeleitet werden soll.
Zur Ermittlung der optimalen Regenerierungszeitpunkte für den Partikelfilter 24 wird zunächst das Lasterfassungssystem für einen leeren bzw. einen frisch gereinigten Partikelfilter 24 durch die Recheneinheit 32 adaptiert und ein Schwellenwert Lthres festgelegt, dessen Bedeutung anhand der nachfolgenden Beschreibung deutlich wird. Im Betrieb der Brennkraftmaschine 10 wird dann das in Fig. 2 als Flussdiagramm dargestellte Verfahren in einem Schritt S10 gestartet.
In einem Schritt S12 berechnet zunächst die Recheneinheit 32 anhand des Lasterfassungsmodells den aktuellen Luftbedarf Lcalc der Brennkraftmaschine 10 für die momentanen Betriebsparameter 40. In einem Schritt S14 wird aus dem Signal 38 des Luftmassenstromsensors 26 der Ist-Wert Lexp des Luftmassenstroms im Ansaugtrakt 18 ermittelt und dem Steuergerät 30 zugeführt.
Die Auswerteeinheit 34 erhält im Steuergerät 30 als Eingangsgrößen den berechneten Luftmassenbedarf Lcalc und den gemessenen Luftmassenstrom Lexp und bestimmt in einem Schritt S16 die betragsmäßige Abweichung beider Werte,
ΔL = | Lcalc - Lexp |
In einem Schritt S18 wird die Abweichung ΔL mit einem vorbestimmten Schwellenwert Lthres verglichen. Ist die Abweichung kleiner als der Schwellenwert, wird keine Aktion durchgeführt. Das Verfahren kehrt dann zurück zu Schritt S12, in dem es erneut den Luftbedarf für die aktuellen Betriebsparameter errechnet .
Ist die Abweichung ΔL größer als der Schwellenwert Lthres, so wird der Partikelfilter 24 als verstopft gewertet und es wird in einem Schritt S20 eine Regenerierung des Partikelfil-
ters 24 eingeleitet. Das Verfahren endet dann im Schritt S22 Die Durchführung der Regenerierung selbst ist im Stand der Technik bekannt und wird daher nicht näher erläutert.
Nachdem die Regenerierung des Partikelfilters 24 erfolgreich beendet wurde, wird eine Anpassung des Lasterfassungsmodells an den neuen Zustand des Partikelfilters 24 vorgenommen. Liefert diese Anpassung des Lasterfassungsmodells oder seiner Komponenten ein unplausibles Ergebnis, so wird eine Fehler- meidung ausgegeben. Andernfalls wird das in Fig. 2 dargestellte Verfahren erneut gestartet.