WO2004013403A2 - Procede de traitement par impregnation de textiles architecturaux par une composition silicone reticulable en elastomere et textile architectural ainsi revetu - Google Patents

Procede de traitement par impregnation de textiles architecturaux par une composition silicone reticulable en elastomere et textile architectural ainsi revetu Download PDF

Info

Publication number
WO2004013403A2
WO2004013403A2 PCT/FR2003/002317 FR0302317W WO2004013403A2 WO 2004013403 A2 WO2004013403 A2 WO 2004013403A2 FR 0302317 W FR0302317 W FR 0302317W WO 2004013403 A2 WO2004013403 A2 WO 2004013403A2
Authority
WO
WIPO (PCT)
Prior art keywords
architectural
silicone
silicone composition
equal
polyorganosiloxane
Prior art date
Application number
PCT/FR2003/002317
Other languages
English (en)
Other versions
WO2004013403A3 (fr
Inventor
Géraldine MARTIN
Jean-Luc Perillon
Original Assignee
Tissage Et Enduction Serge Ferrari Sa
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tissage Et Enduction Serge Ferrari Sa filed Critical Tissage Et Enduction Serge Ferrari Sa
Priority to SI200332581T priority Critical patent/SI1525351T1/sl
Priority to AU2003269046A priority patent/AU2003269046A1/en
Priority to CA 2493951 priority patent/CA2493951A1/fr
Priority to ES03750833.0T priority patent/ES2692776T3/es
Priority to DK03750833.0T priority patent/DK1525351T3/en
Priority to EP03750833.0A priority patent/EP1525351B1/fr
Priority to US10/522,705 priority patent/US20060115656A1/en
Priority to JP2004525464A priority patent/JP2005534481A/ja
Publication of WO2004013403A2 publication Critical patent/WO2004013403A2/fr
Publication of WO2004013403A3 publication Critical patent/WO2004013403A3/fr

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/128Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with silicon polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/24994Fiber embedded in or on the surface of a polymeric matrix
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31652Of asbestos
    • Y10T428/31663As siloxane, silicone or silane

Definitions

  • the invention relates to the treatment of fibrous materials (in particular flexible supports such as woven supports or nonwoven supports), by a silicone elastomer composition vulcanizable by hydrosilylation (polyaddition), in particular of the two-component type (known as RTV-2). .
  • the invention relates to the production of architectural silicone membranes obtained by impregnating an architectural textile, particularly but not limited to a glass fabric or a fabric of synthetic fibers such as polyester, by means of the silicone composition - especially RTN2- type referred to above.
  • the invention also relates to architectural silicone membranes obtained by impregnating an architectural textile, in particular but not limited to a glass fabric, by means of the silicone composition -notarnrnent RTN2- type referred to above.
  • “Architectural textile” means a fabric or non-woven material and, more generally, any fibrous medium intended for use after covering the clothing industry: shelters, mobile structures, textile buildings, partitions, flexible doors, tarpaulins, tents , stands or marquees; - furniture, cladding, advertising screens, windbreaks or filter panels; sun protection, ceilings and blinds.
  • the silicone coating is defined as the action of coating a textile, using a crosslinkable liquid silicone composition, and then cross-linking the coated film on the support, so as to produce a coating intended in particular to protect it to give it particular qualities, for example to give it characteristics of hydrophobicity / oleophobicity, waterproofing or improved mechanical properties or even to change the appearance.
  • Impregnation is defined as the action of penetrating a highly fluid liquid based crosslinkable silicone inside a fibrous support (core penetration) and then crosslink the silicone to give the textile properties of the type mentioned above.
  • silicone elastomers on architectural textiles has many advantages related to the intrinsic characteristics of silicones. These In particular, composites have good flexibility, good mechanical strength and improved fire behavior.
  • silicones give them, among other things, an appropriate protection because of their hydrophobicity and their excellent resistance to chemical, thermal and climatic aggressions as well as a long life.
  • the method of depositing silicones by coating may have shortcomings. Indeed, the architectural fabrics exposed to bad weather must not have any effect of capillary rise from the edges, which would be detrimental to their aesthetics and their life span. However, the coating does not represent an effective technique for the protection of fibrous materials against the phenomenon of capillary rise.
  • liquid silicone compositions known for impregnating textiles are fluid silicone solutions or emulsions.
  • liquid silicone compositions consisting of silicone oils, for example of the RTN-2 type, could not be used for textile impregnation.
  • the inventors have sought to develop a treatment process at least by impregnation of architectural textiles, by application of a liquid silicone oil-based composition (s), crosslinkable elastomer, said method to have in particular to specifications to allow obtaining architectural textiles treated heart and surface, so as to have improved properties in terms of mechanical reinforcement, water repellency, waterproofing, appearance, fireproofing and especially resistance to capillary rise.
  • a liquid silicone oil-based composition (s), crosslinkable elastomer said method to have in particular to specifications to allow obtaining architectural textiles treated heart and surface, so as to have improved properties in terms of mechanical reinforcement, water repellency, waterproofing, appearance, fireproofing and especially resistance to capillary rise.
  • Another objective sought by the inventors is the manufacture of architectural silicone membranes formed by composites based on architectural textiles and silicone, which membranes have good mechanical properties and resistance to capillary rise, these composites being capable of being produced. by impregnation according to the process of the invention.
  • liquid silicone composition the liquid phase of which is essentially or even exclusively formed by a or more crosslinkable silicone oil (s), especially cold, elastomer, could be used in a treatment process by impregnating fibrous supports, to give them mechanical properties and properties of resistance to capillary rise very satisfactory.
  • step Ii 1 is an impregnation step in the heart of the architectural textile using a liquid silicone composition which is as defined above and which is otherwise fluid and obtained by resorting to neither dilution, solubilization nor emulsification.
  • Such fluid liquid silicone compositions preferably have a dynamic viscosity of between 1000 and 7000 mPa.s at 25 ° C., and more preferably between 2000 and 5000 mPa.s at 25 ° C. before crosslinking.
  • All the viscosities referred to in the present application correspond to a dynamic viscosity quantity at 25 ° C., ie the dynamic viscosity which is measured, in a manner known per se, at a speed gradient of shear sufficiently low that the viscosity measured is independent of the speed gradient.
  • At least one step HI is provided, in which the step li> 2 of application of liquid silicone is a coating using a silicone composition crosslinkable liquid made of elastomer.
  • the fact of carrying out a treatment combining at least one impregnation and at least one silicone coating is a pledge of quality for architectural textiles whose properties are sought to be modified, in particular resistance to capillary rise, without prejudice to the other mechanical properties. water repellency, fire resistance, appearance.
  • the fluidity of the silicone coating liquid is less than that of silicone impregnation liquid.
  • the silicone oil compositions including the impregnating fluid compositions, used in the process according to the invention comprise a mixture of polyorganosiloxanes (a) and (b).
  • the polyorganosiloxanes (a) used in the present invention preferably have a unit of the formula: a Z b SiO (4- (a + b)) / 2 (a.1) wherein:
  • - W is an alkenyl group
  • Z is a monovalent hydrocarbon group, which has no adverse effect on the activity of the catalyst and is selected from alkyl groups having 1 to 8 carbon atoms inclusive, optionally substituted by at least one halogen atom, and also from aryl groups,
  • - a is 1 or 2
  • b is 0, 1 or 2
  • a + b is between 1 and 3
  • optionally at least some of the other units are units of average formula:
  • the polyorganosiloxane (a) may be very predominantly formed of units of formula
  • W is generally chosen from methyl, ethyl and phenyl radicals, at least 60 mol% of the radicals W being methyl radicals.
  • siloxyl units of formula (a.1) are the vinyldimethylsiloxane unit, the vinylphenylmethylsiloxane unit and the vinylsiloxane unit.
  • siloxyl units of formula (a.2) are SiO 2/2, dimethylsiloxane, methylphenylsiloxane, diphenylsiloxane, methylsiloxane and phenylsiloxane units.
  • polyorganosiloxanes (a) are dimethylvinylsilyl-terminated dimethylpolysiloxanes, methylvinyldimethylpolysiloxane copolymers with trimethylsilyl ends, methylvinyldimethylpolysiloxane copolymers with dimethylvinylsilyl ends, cyclic methylvinylpolysiloxanes.
  • the dynamic viscosity ⁇ d of this polyorganosiloxane (a) is between 0.01 and 200 Pa.s, preferably between 0.01 and 100 Pa.s.
  • the POS (a) comprises at least 98% of siloxy units D: -R 2 SiO 2/2 with R having the same definition as W or Z, the percentage corresponding to a number of units per 100 silicon atoms .
  • the preferred compositions of polyorganosiloxane (b) comprise the siloxyl unit of formula:
  • L is a monovalent hydrocarbon group, which has no adverse effect on the activity of the catalyst and is chosen from alkyl groups having from 1 to 8 carbon atoms inclusive, optionally substituted by at least one halogen atom, and also from aryl groups; - d is 1 or 2, e is 0, 1 or 2 and d + e has a value between 1 and 3;
  • polyorganosiloxane (b) mention may be made of poly (dimethylsiloxane) (methylhydrogensiloxy) ⁇ , ⁇ dimethylhydrogensiloxane.
  • the polyorganosiloxane (b) may be formed only of units of formula (b.l) or additionally comprises units of formula (b.2).
  • the polyorganosiloxane (b) may have a linear, branched, cyclic or lattice structure.
  • the degree of polymerization is greater than or equal to 2. More generally, it is less than 100.
  • the dynamic viscosity ⁇ d of this polyorganosiloxane (b) is between 5 and 1000 mPa.s, preferably between 10 and 100 mPa.s.
  • Group L has the same meaning as group Z above.
  • Examples of units of formula (b1) are: H (CH 3 ) 2 SiO 1/2 , HCH 3 SiO 2/2 ,
  • polyorganosiloxane (b) examples are:
  • monovalent Z or L hydrocarbon groups that may be present in the POS (a) and (b) mentioned above, mention may be made of: methyl, ethyl; n-propyl; i-propyl; n-butyl; i-butyl; t-butyl; chloromethyl; dichloromethyl; chloroethyl; ⁇ , ⁇ -dichloroethyl; fluoromethyl; difluoromethyl; ⁇ , ⁇ -difluoroethyl; 3,3,3-trifluoropropyl; trifluorocyclopropyl; 4,4,4-trifluorobutyl; hexafluoro-3,5,5,5,5,5 pentyl; ⁇ -cyanoethyl, ⁇ -cyanopropyl; phenyl; p-chlorophenyl; m-chlorophenyl; 3,5-dichloro-phenyl; trichlorophenyl;
  • These groups may be optionally halogenated or may be chosen from cyanoalkyl radicals.
  • Halogens are, for example, fluorine, chlorine, bromine and iodine, preferably chlorine or fluorine.
  • the POS (a) and (b) may consist of mixtures of different silicone oils.
  • the proportions of (a) and (b) are such that the molar ratio of the silicon-bonded hydrogen atoms in (b) to the silicon-bonded alkenyl radicals in (a) is between 0.4 and 10.
  • the silicone phase of the composition comprises at least one polyorganosiloxane resin (g), comprising at least one alkenyl residue in its structure, and this resin has a weight content of alkenyl group (s) of between 0.1 and 20% by weight and, preferably, between 0.2 and 10% by weight.
  • these resins are branched organopolysiloxane oligomers or polymers well known and commercially available. They are preferably in the form of siloxane solutions.
  • the radicals R are identical or different and are chosen from linear or branched C 1 -C 6 alkyl radicals, C 2 -C 4 alkenyl phenyl radicals, 3,3,3-trifluoro-propyl radicals. There may be mentioned, for example, as R alkyl radicals, methyl, ethyl, isopropyl, tert-butyl and n-hexyl radicals, and as R radicals alkenyls, vinyl radicals.
  • oligomers or branched organopolysiloxane polymers examples include MQ resins, MDQ resins, TD resins and MDT resins, the alkenyl functions that may be carried by the M, D and / or T units.
  • resins which are particularly suitable mention may be made of vinylated MDQ or MQ resins having a weight content of vinyl groups of between 0.2 and 10% by weight, these vinyl groups being borne by the M and / or D units.
  • This structural resin is advantageously present in a concentration of between 10 and 70% by weight relative to all the constituents of the composition, preferably between 30 and 60% by weight and, more preferably, between 40 and 60% by weight. in weight.
  • the polyaddition reaction is well known to those skilled in the art. It is also possible to use a catalyst in this reaction.
  • This catalyst may especially be chosen from platinum and rhodium compounds.
  • platinum complexes and an organic product described in US-A-3 159 601, US-A-3 159 602, US-A-3,220,972 and European patents can be used.
  • the most preferred catalyst is platinum. In this.
  • the amount by weight of catalyst (c), calculated as the weight of platinum-metal is generally between 2 and 400 ppm, preferably between 5 and 100 ppm based on the total weight of the polyorganosiloxanes (a) and (b).
  • adhesion promoter may for example comprise: (d.1) at least one alkoxylated organosilane having the following general formula:
  • R, R, R are hydrogenated or hydrocarbon radicals which are identical to or different from each other and represent hydrogen, linear C 1 -C 4 branched alkyl or phenyl optionally substituted with at least one C 1 -C 3 alkyl;
  • - A is a linear or branched C1-C4 alkylene
  • - G is a valencial link
  • R and R are identical or different radicals and represent a linear or branched C1-C4 alkyl
  • (d.2) at least one organosilicon compound comprising at least one epoxy radical, said compound (d.2) being preferably 3-glycidoxypropyltimethoxysilane (GLYMO);
  • proportions of (d.l), (d.2) and (d.3), expressed in% by weight relative to the total of the three, are preferably as follows:
  • this adhesion promoter (d) is preferably present in a proportion of 0.1 to 10%, preferably 0.5 to 5% and more preferably still 1 to 2.5% by weight relative to all the constituents of the composition. It is also possible to provide a load (e) which will preferably be mineral. It may consist of products chosen from siliceous materials (or not).
  • siliceous materials they can act as reinforcing or semi-reinforcing filler.
  • the reinforcing siliceous fillers are chosen from colloidal silicas, silica powders of combustion and precipitation or their mixture.
  • These powders have an average particle size generally less than 0.1 ⁇ m and a BET specific surface area greater than 50 m 2 / g, preferably between 100 and 300 m 2 / g.
  • siliceous fillers such as diatomaceous earth or ground quartz can also be used.
  • non-siliceous mineral materials they can be used as semi-reinforcing mineral filler or stuffing.
  • these non-siliceous fillers that can be used alone or in a mixture are carbon black, titanium dioxide, aluminum oxide, hydrated alumina, expanded vermiculite, zirconia, zirconate, unexpanded vermiculite, calcium carbonate, zinc oxide, mica, talc, iron oxide, barium sulphate and slaked lime.
  • These fillers have a particle size generally of between 0.01 and 300 ⁇ m and a BET surface area of less than 100 ⁇ rVg.
  • the filler employed is a silica.
  • the filler may be treated using any suitable compatibilizing agent and in particular hexamethyldisilazane.
  • suitable compatibilizing agent for more details in this respect, reference may be made, for example, to patent FR-B-2 764 894.
  • a charge quantity of between 5 and 30, preferably between 7 and 20, % by weight relative to all the constituents of the composition.
  • the silicone elastomer composition further comprises at least one retarder (f) of the addition reaction (crosslinking inhibitor) chosen from the following compounds:
  • polyorganosiloxanes advantageously cyclic and substituted by at least one alkenyl, tetramethylvinyltetrasiloxane being particularly preferred,
  • acetylenic alcohols see FR-B-1,528,464 and FR-A-2,372,874. These form part of the preferred hydrosilylation reaction thermal mockers, have the formula:
  • - R is a linear or branched alkyl radical, or a phenyl radical
  • R - R ' is H or a linear or branched alkyl radical, or a phenyl radical
  • the total number of carbon atoms contained in R and R ' being at least 5, preferably from 9 to 20.
  • Said alcohols are preferably chosen from those having a boiling point greater than 250 ° C. Examples that may be mentioned include:
  • Such a retarder (f) is present at a maximum of 3000 ppm, preferably at 100 to 2000 ppm relative to the total weight of the organopolysiloxanes (a) and (b).
  • the functional additives (h) may be covering products such as, for example, pigments / dyes or stabilizers.
  • the composition may, for example, consist of a part A comprising the compounds (d1) and (d.2) while the part B contains the compound (d.3).
  • the two-component silicone elastomer composition AB is characterized in that it is in two separate parts A and B intended to be mixed to form the composition in that one of these parts A and B comprises the catalyst (c) and a single species ( a) or (b) polyorganosiloxane; and part A or B containing the polyorganosiloxane (b) is free of compound (d.3) of the promoter (d).
  • the composition may, for example, consist of a part A comprising the compounds (d1) and (d.2) while the part B contains the compound (d.3).
  • a filler it is advantageous to first prepare a primary mash by mixing a mineral filler, at least a portion of the POS (b), as well as at least a portion of the polyorganosiloxane (a). ).
  • This mashing serves as a base for obtaining, on the one hand, a part A resulting from the mixture of the latter with the polyorganosiloxane (b) optionally a crosslinking inhibitor and finally the compounds (d1) and (d.2) of the promoter (d). ).
  • Part B is made by mixing a portion of the mash referred to above and polyorganosiloxane (a), catalyst (Pt) and compounds (d.3) of the promoter (d).
  • the viscosity of the parts A and B and their mixture can be adjusted by varying the amounts of the constituents and by choosing the polyorganosiloxanes of different viscosity.
  • one or more functional additives (h) are used, they are distributed in parts A and B according to their affinity with the content of A and B.
  • RTN-2 ready-to-use silicone elastomer composition
  • any suitable impregnation means eg padding
  • any suitable impregnation means eg squeegee or cylinder
  • the crosslinking of the liquid silicone (fluid) composition applied to the architectural fabric to be impregnated, or even to be coated is generally activated for example by heating the impregnated architectural textile, or even coated, at a temperature between
  • Another object of the invention is constituted by an architectural silicone membrane that can be obtained by the process according to the invention (architectural textile / silicone composite).
  • This composite membrane is characterized in that it is impregnated at the core of crosslinked silicone elastomer obtained from a liquid silicone composition, as defined above in the context of the description of the process according to the invention, this composition being otherwise fluid and obtained using neither dilution, solubilization nor emulsification.
  • the architectural fabric used in the constitution of this membrane is formed by a fabric, a nonwoven, a knit or more generally any fibrous support selected from the group of materials comprising: glass, silica, metals, ceramics , silicon carbide, carbon, boron, basalt, natural fibers such as cotton, wool, hemp, flax, man-made fibers such as viscose, or cellulosic fibers, synthetic fibers such as polyesters, polyamides, polyacrylics, chlorofibers, polyolefins, synthetic rubbers, polyvinyl alcohol, aramids, fluorofibres, phenolics ...
  • the invention also relates to an architectural silicone membrane ⁇ architectural textile composite / crosslinked silicone elastomer) that can be obtained by the process according to the invention or from the two-component system referred to above, characterized by a capillary rise of less than 20 mm, preferably less than 10 mm and more preferably still equal to 0, the capillary rise being measured according to a test T.
  • the architectural silicone membrane corresponding to a coated architectural textile as defined above or obtained by the process described above constitutes a membrane of choice for interior or exterior architecture or sun protection, particularly because of its low capillary rise, or even zero.
  • such a membrane has a weight of less than 2000 g / m 2 and preferably a weight of between 400 and 1500 g / m 2.
  • FIG. 1 is a snapshot of a section of a silicone composite based on fibrous material.
  • FIG. 2 is a diagram showing the results of a comparative test of capillary rise, performed on three bands of tissue ⁇ (control) and ⁇ a, ⁇ b (Example 1.7).
  • I.3-a polyester fabric of 200 g / m 2 is impregnated with the composition by means of a laboratory calender.
  • the conditions of the impregnation are the following: - roll diameter 10 cm (width 25cm)
  • I.3-b A glass fabric of 300 g / m 2 is impregnated with the composition by means of a laboratory calender.
  • the silicone composition deposited is crosslinked by placing the architectural (composite) membrane resulting from test I.3-a or I.3-b in a ventilated oven at 150 ° C. for 1 min.
  • FIG. 1 shows a sectional view of the composite obtained from example I.3-a.
  • the corresponding scale is displayed on the image. It demonstrates the quality of the impregnation by revealing the compactness of the resulting composite.
  • This picture shows the quality of the impregnation obtained by the process object of the invention.
  • the absence of fluidizing or emulsifying solvent makes it possible to avoid the formation of solvent pockets in the matrix of the crosslinked silicone composition.
  • the capillary rise is given by the rise height of a liquid with which the end of a composite strip is in contact, according to a T test.
  • the test T is conducted as follows: - a strip of 2 ⁇ 20 cm of the silicone fibrous material composite is cut, a tray containing a colored ink (for example ink for a fountain pen) is prepared, the strip of fibrous material cut above the ink tray so as to flush the strip on the ink, - level 0 is defined as the meniscus line of the ink on the strip, the composite strip is left in place until the rising edge of the ink equilibrates, the height (H) is measured in millimeters corresponding to the difference between the level 0 and the level of maximum ascent of the ink along the strip.
  • a colored ink for example ink for a fountain pen
  • the capillary rise is defined by the distance H.
  • the resistance to the capillary rise is inversely proportional to H.
  • the diagrams of FIG. 2 represent, comparatively, the trace of such capillary rise for three strips of fabric: the control strip ⁇ on the left corresponds to a strip cut from a non-impregnated fibrous material and coated with 200 g / m 2 of silicone elastomer on each side;
  • the center strip ⁇ a corresponds to a cut strip of a composite according to the invention, that is to say made from a fibrous material based on polyester, impregnated according to the invention, then coated with 120 g / m 2 silicone elastomer on each side;
  • the straight band ⁇ b corresponds to a cut strip of a composite according to the invention, that is to say made from a fibrous material based on glass, impregnated according to the invention, then coated with 100g / m 2 silicone elastomer on each side
  • the strips ( ⁇ ) of the architectural silicone membrane (composite) according to the invention have a zero capillary rise, while the control band ( ⁇ ) has a capillary rise over more than 100 mm.
  • the impregnation according to the invention prevents the recovery which is made on the entire sample in its absence. It has been shown a formulation capable of satisfying the compromise of low viscosity suitable for impregnating textiles and of sufficient mechanical properties for the characteristics of the composite. It will be noted that the properties achieved make it possible to classify the product in the range of elastomers; in particular elongation and hardness are typical of this class. With such a composition, the level of impregnation of the textile is excellent which limits the capillary rise by infiltration along the fibers of the fabric which would be poorly sheathed by the hydrophobic polymer.
  • compositions presented are as in the first example prepared cold by simple mixing. Nevertheless their preparation is done so as to have two parts, A and B, which are associated with each other in the ratio 100 A / 10 B, just before their use.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

L'invention concerne la réalisation de membranes silicones architecturales obtenues par imprégnation d'un textile architectural, en particulier mais non limitativement d'un tissu de verre, au moyen de la composition silicone -notamment de type RTV2- élastomère vulcanisable par hydrosilylation (polyaddition). Le but de l'invention est la mise au point d'un procédé de traitement au moins par imprégnation de matériaux fibreux, à l'aide d'une composition silicone liquide 100 % silicone RTV-2. Les étapes essentielles du procédé sont les suivantes:-Ii- application sur un matériau fibreux d'une composition silicone liquide réticulable en élastomère, comprenant (a) un polyorganosiloxane (POS) vinylé; (b) au moins un POS hydrogéné; (c) un catalyseur au platine ;(d) éventuellement un promoteur d'adhérence ; (e) éventuellement une charge minérale; (f) éventuellement un inhibiteur de réticulation; et éventuellement une résine POS; éventuellement des additifs fonctionnels;-IIi- réticulation ;-III- éventuellement au moins une autre séquence comprenant les étapes Ii et IIi (i est un entier positif) répondant à la même définition que celle donnée ci-dessus pour les étapes Ii et Iii ; caractérisé en ce que l'étape Ii est une étape d'imprégnation à coeur du matériau fibreux à l'aide d'une composition silicone liquide telle que définie ci-dessus et étant par ailleurs fluide et obtenue en ayant recours ni à une dilution, ni à une solubilisation, ni à une émulsification. L'invention concerne aussi la membrane silicone architecturale (composite) imprégné à coeur à l'aide d'un liquide silicone fluide 100 % RTV-2.

Description

PROCEDE DE TRAITEMENT PAR IMPREGNATION DE TEXTILES
ARCHITECTURAUX PAR UNE COMPOSITION SILICONE RETICULABLE EN
ELASTOMERE ET TEXTILE ARCHITECTURAL AINSI REVETU
L'invention concerne le traitement de matériaux fibreux (en particulier des supports souples tels que des supports tissés ou des supports non-tissés), par une composition silicone élastomère vulcanisable par hydrosilylation (polyaddition), notamment du type bicomposant (dite RTV-2).
Plus précisément, l'invention concerne la réalisation de membranes silicones architecturales obtenues par imprégnation d'un textile architectural, en particulier mais non limitativement d'un tissu de verre ou d'un tissu de fibres synthétiques tel qu'un polyester, au moyen de la composition silicone -notamment de type RTN2- visée ci-dessus.
L'invention concerne aussi des membranes silicones architecturales obtenues par imprégnation d'un textile architectural, en particulier mais non limitativement d'un tissu de verre, au moyen de la composition silicone -notarnrnent de type RTN2- visée ci-dessus.
Par "textile architectural" , on entend un tissu ou non tissé et plus généralement tout support fibreux destiné après revêtement à la confection : d'abris, de structures mobiles, de bâtiments textiles, de cloisons, de portes souples, de bâches, de tentes, de stands ou de chapiteaux ; - de mobiliers, de bardages, d'écrans publicitaires, de brise-vent ou panneaux filtrants ; de protections solaires, de plafonds et de stores.
Le traitement des textiles architecturaux, à l'aide de compositions silicones liquides réticulables en élastomères, est classiquement réalisé par enduction ou par imprégnation, quand les compositions sont des émulsions ou des solutions.
L'enduction silicone est définie comme l'action d'enduire un textile, à l'aide d'une composition silicone liquide réticulable, puis de faire réticuler le film enduit sur le support, de façon à produire un revêtement destiné notamment à le protéger, à lui conférer des qualités particulières, par exemple à lui conférer des caractéristiques d'hydrophobie / d'oléophobie, d'imperméabilisation ou des propriétés mécaniques améliorées ou encore propre à en modifier l'aspect.
L'imprégnation est quant à elle définie cornrne l'action de faire pénétrer un liquide très fluide à base de silicone réticulable à l'intérieur d'un support fibreux (pénétration à cœur) puis de faire réticuler le silicone pour conférer au textile des propriétés du type de celles évoquées ci-dessus.
En pratique, les enductions d' élastomères silicones sur des textiles architecturaux présentent de nombreux avantages liés aux caractéristiques intrinsèques des silicones. Ces composites présentent notamment une bonne souplesse, une bonne résistance mécanique et un comportement au feu amélioré.
Par ailleurs, à la différence des élastomères traditionnels, les silicones leur confèrent entre autres une protection appropriée du fait de leur hydrophobie et de leur excellente résistance aux agressions chimiques, thermiques et climatiques ainsi qu'une forte longévité.
Cependant, dans le domaine émergent des composites silicones pour l' architecture textile, le mode de dépose des silicones par enduction peut présenter des insuffisances. En effet, les tissus architecturaux exposés aux intempéries ne doivent pas présenter d'effet de remontée capillaire depuis les bordures, ce qui nuirait à leur esthétique et à leur durée de vie. Or, l'enduction ne représente pas une technique efficace pour la protection de matériaux fibreux vis-à-vis du phénomène de remontée capillaire.
Pour pallier cela, il était a priori concevable de recourir à la technique d'imprégnation des textiles, au moyen de compositions silicones liquides, par exemple de type RTN-2, réticulables en élastomères.
Mais jusqu'alors les seules compositions silicones liquides connues pour réaliser des imprégnations de textiles, sont des solutions ou des émulsions silicones fluides.
En fait, il existait avant l'invention un préjugé technique selon lequel les compositions silicones liquides constituées par des huiles silicones par exemple de type RTN-2, ne pouvaient pas être utilisées pour l'imprégnation de textiles.
Nonobstant cela, les inventeurs ont cherché à mettre au point un procédé de traitement au moins par imprégnation de textiles architecturaux, par application d'une composition silicone liquide à base d'huile(s), réticulable en élastomère, ledit procédé devant avoir notamment pour spécifications de permettre l'obtention de textiles architecturaux traités à cœur et en surface, de manière à présenter des propriétés améliorées en termes de renfort mécanique, d'hydrofugation, d'imperméabilisation, d'aspect, d'ignifugation et surtout de résistance à la remontée capillaire.
Un autre objectif visé par les inventeurs est la fabrication de membranes silicones architecturales formées par des composites à base de textiles architecturaux et de silicone, lesquelles membranes ont de bonnes propriétés mécaniques et de résistance à la remontée capillaire, ces composites étant susceptibles d'être produits par imprégnation selon le procédé de l'invention.
Ces objectifs, parmi d'autres, ont été atteints par les inventeurs qui ont découvert, de façon tout à fait surprenante, et malgré le préjugé technique précité, qu'une composition silicone liquide, dont la phase liquide est essentiellement voire exclusivement formée par une ou plusieurs huile(s) silicones réticulables, notamment à froid, en élastomère, pouvait être utilisée dans un procédé de traitement par imprégnation de supports fibreux, pour leur conférer des propriétés mécaniques et des propriétés de résistance aux remontées capillaires très satisfaisantes.
D'où il s'ensuit que l'invention concerne tout d'abord un procédé de réalisation d'une membrane silicone architecturale par imprégnation d'un textile architectural avec au moins un silicone, comprenant les étapes essentielles suivantes : -li = entier positif- application sur un textile architectural d'une composition silicone liquide réticulable en élastomère, comprenant:
(a) au moins un polyorganosiloxane (POS) présentant, par molécule, au moins deux groupes alcényles, de préférence en C2-C6 liés au silicium ;
(b) au moins un polyorganosiloxane présentant, par molécule, au moins trois atomes d'hydrogène liés au silicium ; (c) une quantité catalytiquement efficace d'au moins un catalyseur, de préférence composé d'au moins un métal appartenant au groupe du platine ;
(d) éventuellement au moins un promoteur d'adhérence ;
(e) éventuellement une charge minérale ;
(f) éventuellement au moins un inhibiteur de réticulation ; (g) et éventuellement au moins une résine polyorganosiloxane ;
(h) éventuellement des additifs fonctionnels pour conférer des propriétés spécifiques ; -Ili = entier positif- réticulation de la composition de silicone ; -III- éventuellement au moins une autre séquence opératoire comprenant les étapes li > 2 et Ili > 2 (i étant un entier positif) répondant à la même définition que celle donnée ci-dessus pour les étapes li et Ili; caractérisé en ce que l'étape Ii=l est une étape d'imprégnation à cœur du textile architectural à l'aide d'une composition silicone liquide qui est telle que définie ci-dessus et qui est par ailleurs fluide et obtenue en ayant recours ni à une dilution, ni à une solubilisation, ni à une émulsification.
A la connaissance des inventeurs, de telles compositions fluides d'huiles silicone réactives et susceptibles de vulcaniser par polyaddition, n'ont jamais été mises en œuvre dans un procédé d'imprégnation de matériau fibreux. De telles compositions silicones liquides fluides (huiles) présentent de préférence une viscosité dynamique comprise entre 1000 et 7000 mPa.s, à 25°C, et plus préférentiellement comprise entre 2000 et 5000 mPa.s à 25°C avant réticulation.
Toutes les viscosités dont il est question dans la présente demande, correspondent à une grandeur de viscosité dynamique à 25°C, c'est-à-dire la viscosité dynamique qui est mesurée, de manière connue en soi, à un gradient de vitesse de cisaillement suffisamment faible pour que la viscosité mesurée soit indépendante du gradient de vitesse.
Avantageusement, la composition silicone liquide fluide huileuse sélectionnée pour l'étape (li = 1) d'imprégnation présente, après réticulation complète par effet thermique, à savoir cuisson en étuve ventilée de 30 minutes à 150°C, au moins l'une des propriétés mécaniques suivantes :
- une dureté Shore A au moins égale à 2, de préférence comprise entre 5 et 65 ; - une résistance à la rupture au moins égale à 0,5 N.mm"1, de préférence au moins égale à 1,0 N.mm"1 et plus préférentiellement au moins égale à 2,0 N.mm"1 ;
- une élongation à la rupture au moins égale à 50 %, de préférence au moins égale à 100 % et plus préférentiellement au moins égale à 200 %.
Les techniques générales de l'imprégnation de textiles architecturaux, sont bien connues de l'homme du métier: racle, en particulier par racle sur cylindre, racle en l'air et racle sur tapis, ou par foulardage, c'est-à-dire par exprimage entre deux rouleaux, ou encore par rouleau lécheur, cadre rotatif, rouleau inverse "reverse roll", transfert, pulvérisation. On peut imprégner l'une ou les deux faces de la matière textile, de préférence par foulardage. On procède ensuite au séchage et à la réticulation, de préférence par air chaud ou infra-rouges, notamment de 30 s à 5 min, à une température de réticulation sans dépasser la température de dégradation du support. Le foulardage représente une technique particulièrement appropriée au procédé de l'invention.
Selon un mode préféré de mise en œuvre du procédé selon l'invention, il est prévu au moins une étape HI, dans laquelle l'étape li > 2 d'application de silicone liquide est une enduction à l'aide d'une composition silicone liquide réticulable en élastomère. Le fait de réaliser un traitement combinant au moins une imprégnation et au moins une enduction silicone est un gage de qualité pour le textiles architecturaux dont on cherche à modifier les propriétés, notamment la résistance aux remontées capillaires, sans préjudice aux autres propriétés mécaniques, d'hydrofugation, de résistance au feu, d'aspect. La fluidité de la composition silicone liquide réticulable d'enduction de l'étape li > 2 est identique ou différente de celle de l'étape d'imprégnation li = 1. Avantageusement, la fluidité du liquide silicone d'enduction est moindre que celle du liquide silicone d'imprégnation.
Les compositions d'huiles silicone, y compris les compositions fluides d'imprégnation, mises œuvre dans le procédé selon l'invention comprennent un mélange de polyorganosiloxanes (a) et (b).
Les polyorganosiloxanes (a) utilisés dans la présente invention ont de préférence un motif de formule : a Zb SiO(4-(a+b))/2 (a.1 ) dans laquelle :
- W est un groupe alcényle,
- Z est un groupe hydrocarboné monovalent, exempt d'action défavorable sur l'activité du catalyseur et choisi parmi les groupes alkyles ayant de 1 à 8 atomes de carbone inclus, éventuellement substitués par au moins un atome d'halogène, et ainsi que parmi les groupes aryles,
- a est 1 ou 2, b est 0, 1 ou 2 et a + b est compris entre 1 et 3, éventuellement au moins une partie des autres motifs sont des motifs de formule moyenne :
Zc SiO(4-c) 2 (a.2) dans laquelle W a la même signification que ci-dessus et c a une valeur comprise entre 0 et 3.
Le polyorganosiloxane (a) peut être très majoritairement formé de motifs de formule
(a.l) ou peut contenir, en outre, des motifs de formule (a.2). De même, il peut présenter une structure linéaire. Son degré de polymérisation est, de préférence, compris entre 2 et 5 000.
W est généralement choisi parmi les radicaux méthyle, éthyle et phényle, 60 % molaire au moins des radicaux W étant des radicaux méthyle.
Des exemples de motifs siloxyle de formule (a.l) sont le motif vinyldiméthylsiloxane, le motif vinylphénylméthylsiloxane et le motif vinylsiloxane.
Des exemples de motifs siloxyle de formule (a.2) sont les motifs SiO_ι/2, diméthylsiloxane, méthylphénylsiloxane, diphénylsiloxane, méthylsiloxane et phénylsiloxane.
Des exemples de polyorganosiloxanes (a) sont les diméthylpolysiloxanes à extrémités diméthylvinylsilyle, les copolymères méthylvinyldiméthylpolysiloxanes à extrémités triméthylsilyle, les copolymères méthylvinyldiméthylpolysiloxanes à extrémités diméthylvinylsilyle, les méthylvinylpolysiloxanes cycliques.
La viscosité dynamique ηd de ce polyorganosiloxane (a) est comprise entre 0,01 et 200 Pa.s, de préférence entre 0,01 et 100 Pa.s.
De préférence, le POS (a) comprend au moins 98 % de motifs siloxyle D: -R2SiO2/2 avec R répondant à la même définition que W ou Z, ce pourcentage correspondant à un nombre de motifs pour 100 atomes de silicium.
En ce qui concerne les compositions d'huiles de silicone selon l'invention, les compositions préférées de polyorganosiloxane (b) comportent le motif siloxyle de formule :
Hd Le SiO(4-(d+e))/2 (b.l) dans laquelle :
- L est un groupe hydrocarboné monovalent, exempt d'action défavorable sur l'activité du catalyseur et choisi parmi les groupes alkyles ayant de 1 à 8 atomes de carbone inclus, éventuellement substitués par au moins un atome d'halogène, et ainsi que parmi les groupes aryles ; - d est 1 ou 2, e est 0, 1 ou 2 et d + e a une valeur comprise entre 1 et 3 ;
- éventuellement, au moins une partie des autres motifs étant des motifs de formule moyenne :
Figure imgf000008_0001
dans laquelle L a la même signification que ci-dessus et g a une valeur comprise entre 0 et 3.
A titre d'exemples de polyorganosiloxane (b), on peut citer le poly(diméthylsiloxane) (méthylhydrogénosiloxy) α, ω diméthylhydrogénosiloxane.
Le polyorganosiloxane (b) peut être uniquement formé de motifs de fonnule (b.l) ou comporte en plus des motifs de formule (b.2).
Le polyorganosiloxane (b) peut présenter une structure linéaire, ramifiée, cyclique ou en réseau. Le degré de polymérisation est supérieur ou égal à 2. Plus généralement, il est inférieur à 100.
La viscosité dynamique ηd de ce polyorganosiloxane (b) est comprise entre 5 et 1000 mPa.s, de préférence entre 10 et 100 mPa.s.
Le groupe L a la même signification que le groupe Z ci-dessus.
Des exemples de motifs de formule (b.l) sont : H(CH3)2SiO1/2, HCH3SiO2/2,
H(C6H5)SiO2/2. Les exemples de motifs de formule (b.2) sont les mêmes que ceux donnés plus haut pour les motifs de formule (a.2).
Des exemples de polyorganosiloxane (b) sont :
- les diméthylpolysiloxanes à extrémités hydrogénodiméthylsilyle, - les copolymères à motifs (diméthyl)-(hydrogénométhyl)polysiloxanes à extrémités triméthylsilyle,
- les copolymères à motifs diméthyl-hydrogénométhylpolysiloxanes à extrémités hydrogénodiméthylsilyle,
- les hydrogénométhylpolysiloxanes à extrémités triméthylsilyle, - les hydrogénométhylpolysiloxanes cycliques,
- les résines hydrogénosiloxaniques comportant des motifs siloxyles M : R-.SiO1/2, Q : SiO4/2 et/ou T : RSiO3/2, éventuellement D : -R^iO^, avec R = H ou répondant à la même définition que L.
Comme autres exemples de groupes hydrocarbonés Z ou L, monovalents susceptibles d'être présents dans les POS (a) et (b) susvisés, on peut citer : méthyle, éthyle ; n-propyle ; i-propyle ; n-butyle ; i-butyle ; t-butyle ; chlorométhyle ; dichlorométhyle ; -chloroéthyle ; α, β-dichloroéthyle ; fluorométhyle ; difluorométhyle ; α, β-difluoroéthyle ; trifluoro-3,3,3-propyle ; trifluorocyclopropyle ; trifluoro-4,4,4 butyle ; hexafluoro-3 ,3,5,5,5,5 pentyle ; β-cyanoéthyle, γ-cyanopropyle ; phényle ; p-chloro- phényle ; m-chlorophényle ; dichloro-3, 5 -phényle ; trichlorophényle ; tétrachloro-phényle ; o-, p- ou m-tolyle ; α, α, α-trifluorotolyle ; xylyle (diméthyle-2,3 phényle ; diméthyle-3,4- phényle).
Ces groupements peuvent être éventuellement halogènes, ou bien encore être choisis parmi les radicaux cyanoalkyles.
Les halogènes sont par exemple le fluor, le chlore, le brome et l'iode, de préférence le chlore ou le fluor.
Les POS (a) et (b) peuvent être constitués de mélanges de différentes huiles silicone.
De préférence, les proportions de (a) et de (b) sont telles que le rapport molaire des atomes d'hydrogène liés au silicium dans (b) sur les radicaux alcényles liés au silicium dans (a) est compris entre 0,4 et 10.
Selon une variante la phase silicone de la composition comprend au moins une résine polyorganosiloxane (g), comportant au moins un reste alcényle dans sa structure, et cette résine présente une teneur pondérale en groupe(s) alcényle(s) comprise entre 0,1 et 20 % en poids et, de préférence, entre 0,2 et 10 % en poids. Ces résines sont des oligomères ou polymères organopolysiloxanes ramifiés bien connus et disponibles dans le commerce. Elles se présentent de préférence sous la forme de solutions siloxaniques. Elles présentent, dans leur structure, au moins deux motifs différents choisis parmi ceux de formule R3SiO()55 (motif M), R2SiO (motif D), RSiOi55 (motif T) et Siθ2 (motif Q), l'un au moins de ces motifs étant un motif T ou Q.
Les radicaux R sont identiques ou différents et sont choisis parmi les radicaux alkyles linéaires ou ramifiés en C\ - Cg, les radicaux alcényles en C2 - C4 phényle, trifluoro-3,3,3 propyle. On peut citer par exemple : comme radicaux R alkyles, les radicaux méthyle, éthyle, isopropyle, tertiobutyle et n-hexyle, et comme radicaux R alcényles, les radicaux vinyles.
On doit comprendre que dans les résines (g) du type précité, une partie des radicaux R sont des radicaux alcényles.
Comme exemples d'oligomères ou de polymères organopolysiloxanes ramifiés, on peut citer les résines MQ, les résines MDQ, les résines TD et les résines MDT, les fonctions alcényles pouvant être portées par les motifs M, D et/ou T. Comme exemple de résines qui conviennent particulièrement bien, on peut citer les résines MDQ ou MQ vinylées ayant une teneur pondérale en groupes vinylé comprise entre 0,2 et 10 % en poids, ces groupes vinylé étant portés par les motifs M et/ou D.
Cette résine de structure est avantageusement présente dans une concentration comprise entre 10 et 70 % en poids par rapport à l'ensemble des constituants de la composition, de préférence entre 30 et 60 % en poids et, plus préférentiellement encore, entre 40 et 60 % en poids.
La réaction de polyaddition est bien connue par l'homme du métier. On peut d'ailleurs utiliser un catalyseur dans cette réaction. Ce catalyseur peut notamment être choisi parmi les composés du platine et du rhodium. On peut, en particulier, utiliser les complexes du platine et d'un produit organique décrit dans les brevets US-A-3 159 601, US-A-3 159 602, US-A-3 220 972 et les brevets européens EP-A-0 057 459, EP-A-0 188 978 et EP-A-0 190 530, les complexes du platine et d'organosiloxanes vinylés décrits dans les brevets US-A-3 419 593, US-A-3 715 334, US-A-3 377 432 et US-A-3 814 730. Le catalyseur généralement préféré est le platine. Dans ce. cas, la quantité pondérale de catalyseur (c), calculée en poids de platine-métal, est généralement comprise entre 2 et 400 ppm, de préférence entre 5 et 100 ppm basés sur le poids total des polyorganosiloxanes (a) et (b).
Dans un mode de réalisation avantageux du procédé selon l'invention, on peut utiliser un promoteur d'adhérence. Ce promoteur d'adhérence peut par exemple comprendre : (d.1) au moins un organosilane alcoxylé répondant à la formule générale suivante :
Figure imgf000011_0001
dans laquelle :
1 2 3
- R , R , R sont des radicaux hydrogénés ou hydrocarbonés identiques ou différents entre eux et représentant l'hydrogène, un alkyle linéaire ramifié en Ci- C4 ou un phényle éventuellement substitué par au moins un alkyle en C1-C3 ;
- A est un alkylène linéaire ou ramifié en C1-C4 ; - G est un lien valenciel ;
- R et R sont des radicaux identiques ou différents et représentent un alkyle en C1-C4 linéaire ou ramifié ;
- x' = 0 ou l
- x = 0 à 2, ledit composé (d.l) étant de préférence du vinyltriméthoxysilane (NTMS) ;
(d.2) au moins un composé organosilicié comprenant au moins un radical époxy, ledit composé (d.2) étant de préférence du 3-Glycidoxypropyltiméthoxysilane (GLYMO) ;
(d.3) au moins un chélate de métal M et/ou un alcoxyde métallique de formule générale M (OJ)n, avec n = valence de M et J = alkyle linéaire ou ramifié en Ci - Cg M étant choisi dans le groupe formé par : Ti, Zr, Ge, Li, Mn, Fe, Al, Mg, ledit composé (d.3) étant de préférence du titanate de tert.butyle.
Les proportions des (d.l), (d.2) et (d.3), exprimée en % en poids par rapport au total des trois, sont de préférence les suivantes :
(d.l) > 10, (d.2) > 10,
(d.3) ≤ 80.
Par ailleurs, ce promoteur d'adhérence (d) est de préférence présent à raison de 0,1 à 10 %, de préférence 0,5 à 5 % et plus préférentiellement encore 1 à 2,5 % en poids par rapport à l'ensemble des constituants de la composition. Il est aussi possible de prévoir une charge (e) qui sera de préférence minérale. Elle peut être constituée par des produits choisis parmi les matières siliceuses (ou non).
S'agissant des matières siliceuses, elles peuvent jouer le rôle de charge renforçante ou semi-renforçante.
Les charges siliceuses renforçantes sont choisies parmi les silices colloïdales, les poudres de silice de combustion et de précipitation ou leur mélange.
Ces poudres présentent une taille moyenne de particule généralement inférieure à 0,1 μm et une surface spécifique BET supérieure à 50 m2/g, de préférence comprise entre 100 et 300 m2/g.
Les charges siliceuses semi-renforçantes telles que des terres de diatomées ou du quartz broyé, peuvent être également employées.
En ce qui concerne les matières minérales non siliceuses, elles peuvent intervenir comme charge minérale semi-renforçante ou de bourrage. Des exemples de ces charges non siliceuses utilisables seules ou en mélange sont le noir de carbone, le dioxyde de titane, l'oxyde d'aluminium, l'alumine hydratée, la vermiculite expansée, le zircone, un zirconate, la vermiculite non expansée, le carbonate de calcium, l'oxyde de zinc, le mica, le talc, l'oxyde de fer, le sulfate de baryum et la chaux éteinte. Ces charges ont une granulométrie généralement comprise entre 0,01 et 300 μm et une surface BET inférieure à lOO πrVg.
De façon pratique mais non limitative, la charge employée est une silice. La charge peut être traitée à l'aide de tout agent de compatibilisation approprié et notamment l'hexaméthyldisilazane. Pour plus de détails à cet égard, on peut se référer par exemple au brevet FR-B-2 764 894. Sur le plan pondéral, on préfère mettre en œuvre une quantité de charge comprise entre 5 et 30, de préférence entre 7 et 20 % en poids par rapport à l'ensemble des constituants de la composition.
Avantageusement, la composition élastomère silicone comprend en outre au moins un ralentisseur (f) de la réaction d'addition (inhibiteur de réticulation), choisi parmi les composés suivants :
- polyorganosiloxanes, avantageusement cycliques et substitués par au moins un alcényle, le tétraméthylvinyltétrasiloxane étant particulièrement préféré,
- la pyridine,
- les phosphines et les phosphites organiques, - les amides insaturés,
- les maléates alkyles
- et les alcools acétyléniques. Ces alcools acétyléniques, (Cf. FR-B-1 528 464 et FR-A-2 372 874), qui font partie des Moqueurs thermiques de réaction d'hydrosilylation préférés, ont pour formule :
R - (R') C (OH) - C ≡ CH
formule dans laquelle :
- R est un radical alkyle linéaire ou ramifié, ou un radical phényle ;
- R' est H ou un radical alkyle linéaire ou ramifié, ou un radical phényle ;
- les radicaux R, R' et l'atome de carbone situé en α de la triple liaison pouvant éventuellement former un cycle ;
- le nombre total d'atomes de carbone contenu dans R et R' étant d'au moins 5, de préférence de 9 à 20.
Lesdits alcools sont, de préférence, choisis parmi ceux présentant un point o d'ébullition supérieur à 250 C. On peut citer à titre d'exemples :
- l'éthynyl-1-cyclohexanol 1 ;
- le méthyl-3 dodécyne-1 ol-3 ;
- le triméthyl-3,7,11 dodécyne-1 ol-3 ;
- le diphényl-1,1 propyne-2 ol-l ; - l'éthyl-3 éthyl-6 nonyne-1 ol-3 ;
- le méthyl-3 pentadécyne-1 ol-3.
Ces alcools α-acétyléniques sont des produits du commerce.
Un tel ralentisseur (f) est présent à raison de 3 000 ppm au maximum, de préférence à raison de 100 à 2000 ppm par rapport au poids total des organopolysiloxanes (a) et (b).
Concernant les additifs fonctionnels (h) susceptibles d'être mis en oeuvre, il peut s'agir de produits couvrants tels que par exemple des pigments/colorants ou des stabilisants.
Dans le procédé selon l'invention, on peut également utiliser un système bicomposant précurseur de la composition. Ce système bicomposant est caractérisé en ce que : il se présente en deux parties A et B distinctes destinées à être mélangées pour former la composition en ce que l'une de ces parties A et B comprend le catalyseur (c) et une seule espèce (a) ou (b) de polyorganosiloxane; et la partie A ou B contenant le polyorganosiloxane (b) est exempte de composé (d.3) du promoteur (d). C'est ainsi que la composition peut, par exemple, être constituée d'une partie A comprenant les composés (d.l) et (d.2) tandis que la partie B contient le composé (d.3). Pour obtenir la composition élastomère silicone bicomposant A-B. Dans le cas où une charge est mise en oeuvre, il est avantageux de préparer tout d'abord un empâtage primaire en mélangeant une charge minérale, au moins une partie du POS (b), ainsi qu'au moins une partie du polyorganosiloxane (a).
Cet empâtage sert de base pour obtenir, d'une part, une partie A résultant du mélange de ce dernier avec le polyorganosiloxane (b) éventuellement un inhibiteur de réticulation et enfin les composés (d.l) et (d.2) du promoteur (d). La partie B est réalisée par mélange d'une partie de l'empâtage visé ci-dessus et de polyorganosiloxane (a), de catalyseur (Pt) et de composés (d.3) du promoteur (d).
La viscosité des parties A et B et de leur mélange peut être ajustée en jouant sur les quantités des constituants et en choisissant les polyorganosiloxanes de viscosité différente. Dans le cas où un ou plusieurs additifs fonctionnels (h) sont employés, ils sont répartis dans les parties A et B selon leur affinité avec le contenu de A et B.
Une fois mélangées l'une à l'autre les parties A et B forment une composition élastomère silicone (RTN-2) prête à l'emploi, qui peut être appliquée sur le support par tout moyen d'imprégnation approprié (par exemple foulardage), et éventuellement tout moyen d'imprégnation approprié (par exemple racle ou cylindre).
La réticulation de la composition silicone liquide (fluide) appliquée sur le textile architectural à imprégner, voire à revêtir, est généralement activée par exemple en chauffant le textile architectural imprégné, voire revêtu, à une température comprise entre
50 et 200°C, en tenant bien évidemment compte de la résistance maximale du support à la chaleur.
Un autre objet de l'invention est constitué par une membrane silicone architecturale susceptible d'être obtenue, par le procédé selon l'invention (composite textile architectural/ silicone) .
Cette membrane composite est caractérisée en ce qu'elle est imprégnée à cœur d'élastomère silicone réticulé obtenu à partir d'une composition silicone liquide, telle que définie ci-dessus dans le cadre de la description du procédé selon l'invention, cette composition étant par ailleurs fluide et obtenue en ayant recours ni à une dilution, ni à une solubilisation, ni à une émulsification.
Avantageusement, le textile architectural entrant dans la constitution de cette membrane est formé par un tissu, un non-tissé, un tricot ou plus généralement tout support fibreux choisi dans le groupe de matériaux comprenant : le verre, la silice, les métaux, la céramique, le carbure de silicium, le carbone, le bore, le basalte, les fibres naturelles comme le coton, la laine, le chanvre, le lin, les fibres artificielles comme la viscose, ou des fibres cellulosiques, les fibres synthétiques comme les polyesters, les polyamides, les polyacryliques, les chlorofibres, les polyoléfines, les caoutchoucs synthétiques, l'alcool polyvinylique, les aramides, les fluorofibres, les phénoliques ...
L'invention vise également une membrane silicone architecturale {composite textile architectural/ élastomère silicone réticulé) susceptible d'être obtenue par le procédé selon l'invention ou à partir du système bicomposant susvisé, caractérisé par une remontée capillaire de moins de 20 mm, de préférence de moins de 10 mm et plus préférentiellement encore égale à 0, la remontée capillaire étant mesurée selon un test T. Avantageusement, la membrane silicone architecturale correspondant à un textile architectural enduit tel que défini ci dessus ou obtenu par le procédé décrit supra, constitue une membrane de choix pour l' architecture intérieure ou extérieure ou la protection solaire, notamment du fait de sa remontée capillaire faible, voire nulle.
Suivant une caractéristique préférée, une telle membrane a un poids inférieur à 2000 g /m2 et préférentiellement un poids compris entre 400 et 1500 g/m2
Description des figures
- La figure 1 est un cliché d'une coupe d'un composite de silicone à base de matériau fibreux. - La figure 2 est un schéma représentant les résultats d'un test T comparatif de remontée capillaire, effectué sur trois bandes de tissu α (témoin) et βa, βb (exemple 1.7).
Les exemples qui suivent ont pour vocation d'illustrer des modes particuliers de réalisation de membranes silicones architecturales selon l'invention, sans limiter celle-ci à ces simples modes particuliers.
EXEMPLE I : Préparation, imprégnation et propriétés d'une composition d'huiles de silicone selon l'invention
1.1- Préparation
Dans un réacteur à température ambiante, on mélange progressivement, dans les proportions indiquées ci-après (parties en poids) : - 96,6 parties d'une résine M M(Vi) D(Ni) DQ contenant env. 0.6% de Ni
11 parties de poly (diMe)(Mehydrogénénosiloxy) α,ω diMehydrogéno siloxy, de viscosité 25 rnPa.s et contenant 20% de SiH 0,025 partie d'éthynylcyclohexanol 1 partie de vinyltriméthoxysilane 1 partie de 3-glycidoxypropyltriméthoxysilane 0,4 partie de titanate de butyle
0,022 partie de catalyseur de réticulation au platine Karstedt. Note : Me correspond à un radical méthyle.
1.2- Propriétés de la composition ainsi préparée
- Viscosité :
On mesure la viscosité de la composition préparée au moyen d'un viscosimètre Brookfield : Viscosité = 2,3 Pa .s
- Réactivité :
La réactivité du bain est appréciée par la mesure de son temps de gel dans un GelTimer GelNorm commercialisé par OSI : Réactivité à 70°C = 30 min
1.3- Imprégnation
I.3-a Un tissu polyester de 200g/m2 est imprégné de la composition au moyen d'une calandre de laboratoire.
Les conditions de l'imprégnation sont les suivantes : - diamètre des cylindres 10 cm (largeur 25cm)
- vitesse de défilement 1 m/min
- pression appliquée 20kg/cm
- taux d' exprimage 35 %
I.3-b Un tissu de verre de 300 g/m2 est imprégné de la composition au moyen d'une calandre de laboratoire.
Les conditions de l'imprégnation sont les suivantes :
- diamètre des cylindres 10 cm (largeur 25cm)
- vitesse de défilement 1 m/min
- pression appliquée 22 kg/cm - taux d'exprimage 30 %
1.4- Réticulation
La composition silicone déposée est réticulée en plaçant la membrane architecturale (composite) résultante de l'essai I.3-a ou I.3-b dans une étuve ventilée à 150°C pendant 1 min.
1.5- Propriétés mécaniques de l'élastomère silicone d'imprégnation après réticulation Les propriétés mécaniques d'usage sont établies selon les normes du métier sur la base de pion de 6mm d'épaisseur pour la dureté et de plaque test de 2mm d'épaisseur pour les expériences en rupture. La réticulation est rendue complète par une cuisson en étuve ventilée de 30min à 150°C. Dureté Shore A = 33
Résistance à la rupture = 3,9 MPa
Elongation à rupture = 140 %
1.6- Contrôle de l'imprégnation On Observe la pénétration de la composition dans le tissu par Microscopie
Electronique à Balayage.
Le cliché de la figure 1 présente une vue en coupe du composite obtenu à partir de l'exemple I.3-a. L'échelle correspondante est affichée sur l'image. Il démontre la qualité de l'imprégnation en révélant la compacité du composite résultant. Ce cliché montre la qualité de l'imprégnation obtenue par le procédé objet de l'invention. L'absence de solvant de fluidification ou d'émulsion permet d'éviter la formation de poches de solvant dans la matrice de la composition de silicone réticulée.
1.7- Résistance à la remontée capillaire
Procédure analytique :
La remontée capillaire est donnée par la hauteur de remontée d'un liquide avec lequel l'extrémité d'une bande de composite est en contact, selon un test T.
Le test T est conduit comme suit : - on découpe une bande de 2 x 20 cm du composite matériau fibreux silicone, on prépare un bac contenant une encre colorée (par exemple de l'encre pour stylo plume), on suspend verticalement la bande de matériau fibreux découpée au-dessus du bac d'encre de manière à faire affleurer la bande sur l'encre, - on définit le niveau 0 comme étant la ligne de ménisque de l'encre sur la bande, la bande de composite est laissée en place jusqu'à ce que le front de remontée de l'encre s'équilibre, on mesure la hauteur (H) en millimètres correspondant à la différence entre le niveau 0 et le niveau de remontée maximal de l'encre le long de la bande.
La remontée capillaire est définie par la distance H. La résistance à la remontée capillaire est inversement proportionnelle à H.
Résultats
Les schémas de la figure 2 représentent comparativement la trace de telles remontées capillaires pour trois bandes de tissu : - la bande témoin α de gauche correspond à une bande découpée d'un matériau fibreux non imprégné et enduit de 200g/m2 d'élastomère silicone, sur chaque face ;
- la bande βa du centre correspond à une bande découpée d'un composite selon l'invention, c'est-à-dire réalisé à partir d'un matériau fibreux à base de polyester, imprégné selon l'invention, puis enduit de 120g/m2 d'élastomère silicone sur chaque face ;
- la bande βb de droite correspond à une bande découpée d'un composite selon l'invention, c'est-à-dire réalisé à partir d'un matériau fibreux à base de verre, imprégné selon l'invention, puis enduit de 100g/m2 d'élastomère silicone sur chaque face
Les bandes (β) de la membrane architecturale silicone (composite) selon l'invention présentent une remontée capillaire nulle, tandis que la bande (α) témoin présente une remontée capillaire sur plus de 100 mm.
On voit ainsi clairement que l'imprégnation selon l'invention prémunit de la remontée qui se fait sur l'intégralité de l'échantillon en son absence. On a montré une formulation capable de satisfaire le compromis d'une faible viscosité apte à l'imprégnation de textiles et de propriétés mécaniques suffisantes pour les caractéristiques du composite. On notera que les propriétés atteintes permettent de classer le produit dans la gamme des élastomères ; en particulier l'élongation et la dureté sont typiques de cette classe. Avec une telle composition, le niveau d'imprégnation du textile est excellent ce qui limite la remontée capillaire par infiltration le long de fibres du tissu qui seraient mal gainées par le polymère hydrophobant.
EXEMPLE II : Compositions d'huiles silicones fluides selon l'invention
Les exemples ci-après démontrent qu'avec des compositions très fluides telles que celles présentées, on peut couvrir une large gamme de dureté des élastomères tout en conservant des propriétés mécaniques raisonnables. Les compositions présentées sont comme dans le premier exemple préparées à froid par simple mélange. Néanmoins leur préparation se fait de manière à disposer de deux parties, A et B, qui sont associées entre elles selon le ratio 100 A / 10 B, juste avant leur utilisation.
Les tableaux (I) et (II) ci-après décrivent ces compositions et les propriétés qu'elles développent.
Figure imgf000020_0001
Figure imgf000021_0001

Claims

REVENDICATIONS
-1- Procédé de réalisation d'une membrane silicone architecturale par imprégnation d'un textile architectural avec au moins un silicone, comprenant les étapes essentielles suivantes :
-fi = entier positif- application sur un textile architectural d'une composition silicone liquide réticulable en élastomère, comprenant:
(a) au moins un polyorganosiloxane (POS) présentant, par molécule, au moins deux groupes alcényles, de préférence en C2-Cg liés au silicium ;
(b) au moins un polyorganosiloxane présentant, par molécule, au moins trois atomes d'hydrogène liés au silicium ;
(c) une quantité catafytiquement efficace d'au moins un catalyseur, de préférence composé d'au moins un métal appartenant au groupe du platine ; (d) éventuellement au moins un promoteur d'adhérence ;
(e) éventuellement une charge minérale ;
(f) éventuellement au moins un inhibiteur de réticulation ; (i) éventuellement au moins une résine polyorganosiloxane ;
(j) et éventuellement des additifs fonctionnels pour conférer des propriétés spécifiques ;
-Ili = entier positif- réticulation de la composition de silicone ;
-m- éventuellement au moins une autre séquence opératoire comprenant les étapes li ≥ 2 et Ili > 2 (i étant un entier positif) répondant à la même définition que celle donnée ci-dessus pour les étapes li et Ili ;
caractérisé en ce que
- l'étape Ii=l est une étape d'imprégnation à cœur du textile architectural à l'aide d'une composition silicone liquide présentant :
* avant réticulation une viscosité dynamique comprise entre 1000 et 7000 mPa.s, à 25°C, et plus préférentiellement comprise entre 2000 et 5000 mPa.s à 25°C avant réticulation * et après réticulation complète par une cuisson en étuve ventilée de 30 minutes à 150°C, au moins l'une des propriétés mécaniques suivantes : une dureté Shore A au moins égale à 2, de préférence comprise entre 5 et 65 ; - une résistance à la rupture au moins égale à 0,5 N.mm"1, de préférence au moins égale à 1,0 N.mm"1 et plus préférentiellement au moins égale à 2 N.mm"1 ; une élongation à la rupture au moins égale à 50 %, de préférence au moins égale à 10O % et plus préférentiellement au moins égale à 200 %,
> et étant par ailleurs fluide et obtenue en ayant recours ni à une dilution, ni à une solubilisation, ni à une émulsification,
- la membrane silicone architecturale ainsi obtenue ayant une remontée capillaire de moins de 20 mm, de préférence de moins de 10 mm et plus préférentiellement encore égale à 0, la remontée capillaire étant mesurée selon un test T
-2- Procédé selon la revendication 1, caractérisé par le fait que l'étape d'imprégnation comprend un foulardage.
-3- Procédé selon l'une ou l'autre des revendications 1 et 2, caractérisé en ce qu'il comprend au moins une étape III, dans laquelle l'étape li > 2 d'application de silicone liquide est une enduction à l'aide d'une composition silicone liquide réticulable en élastomère.
-4- Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que le polyorganosiloxane (a) choisi présente des motifs de formule :
Wa Zfc SiO(4-(a+b))/2 (a.1 ) dans laquelle : - W est un groupe alcényle,
- Z est un groupe hydrocarboné monovalent, exempt d'action défavorable sur l'activité du catalyseur et choisi parmi les groupes alkyles ayant de 1 à 8 atomes de carbone inclus, éventuellement substitués par au moins un atome d'halogène, et ainsi que parmi les groupes aryles, - a est 1 ou 2, b est 0, 1 ou 2 et a + b est compris entre 1 et 3, - éventuellement au moins une partie des autres motifs sont des motifs de formule moyenne :
Zc SiO(4-cy2 (a.2) dans laquelle W a la même signification que ci-dessus et c a une valeur comprise entre 0 et 3.
-5- Procédé selon l'une quelconque des revendications 1 à 5, selon lequel le polyorganosiloxane (b) comporte le motif siloxyle de formule :
Hd Le SiO(4-(d+e))/2 (b.l) dans laquelle :
- L est un groupe hydrocarboné monovalent, exempt d'action défavorable sur l'activité du catalyseur et choisi parmi les groupes alkyles ayant de 1 à 8 atomes de carbone inclus, éventuellement substitués par au moins un atome d'halogène, et ainsi que parmi les groupes aryles ;
- d est 1 ou 2, e est 0, 1 ou 2 et d + e a une valeur comprise entre 1 et 3 ;
- éventuellement, au moins une partie des autres motifs étant des motifs de formule moyenne :
Lg SiO(4-g)/2 (b.2) dans laquelle L a la même signification que ci-dessus et g a une valeur comprise entre 0 et 3.
-6- Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que les proportions de (a) et de (b) sont telles que le rapport molaire des atomes d'hydrogène liés au silicium dans (b) sur les radicaux alcényles liés au silicium dans (a) est compris entre 0,4 et 10.
-7- Procédé selon l'une quelconque des revendications 1 à 6, selon lequel le promoteur d'adhérence comprend : (d.1) au moins un organosilane alcoxyle répondant à la formule générale suivante:
Figure imgf000024_0001
dans laquelle : - R , R , R sont des radicaux hydrogénés ou hydrocarbonés identiques ou différents entre eux et représentant l'hydrogène, un alkyle linéaire ramifié en Ci - C4 ou un phényle éventuellement substitué par au moins un alkyle en C1-C3 ;
- A est un alkylène linéaire ou ramifié en C \ -C4 ; - G est un lien valenciel ;
- R et R sont des radicaux identiques ou différents et représentent un alkyle en C1-C4 linéaire ou ramifié ;
- x' ≈ O ou l
- x = 0 à 2, ledit composé (d.l) étant de préférence du vinyltriméthoxysilane (VTMS) ;
(d.2) au moins un composé organosilicié comprenant au moins un radical époxy, ledit composé (d.2) étant de préférence du 3-Glycidoxypropyltiméthoxysilane
(GLYMO) ; (d.3) au moins un chélate de métal M et/ou un alcoxyde métallique de formule générale
M (OJ)n, avec n = valence de M et J = alkyle linéaire ou ramifié en Cj - Cg M étant choisi dans le groupe formé par : Ti, Zr, Ge, Li, Mn, Fe, Al, Mg, ledit composé (d.3) étant de préférence du titanate de tert.butyle.
-8- Procédé selon l'une quelconque des revendications 1 à 7, selon lequel le promoteur d'adhérence est présent à raison de 0,1 à 10 % en poids par rapport à l'ensemble des constituants.
-9- Membrane silicone architecturale susceptible d'être obtenue par le procédé selon l'une quelconque des revendications 1 à 8, caractérisée en ce que le textile architectural est imprégné à cœur d'élastomère silicone réticulé obtenu à partir d'une composition silicone liquide, telle que définie ci-dessus dans le cadre des revendications 1 à 8 de procédé.
-10- Membrane silicone architecturale selon la revendication 9, caractérisée en ce que le tissu architectural enduit qui entre dans la constitution est formé par un support fibreux choisi dans le groupe de matériaux comprenant : le verre, la silice, les métaux, la céramique, le carbure de silicium, le carbone, le bore, le basalte, les fibres naturelles comme le coton, la laine ,1e chanvre, le lin, les fibres artificielles comme la viscose, ou des fibres cellulosiques, les fibres synthétiques comme les polyesters, les polyamides, les polyacryliques, les chlorofibres, les polyoléfines, les caoutchoucs synthétiques, l'alcool polyvinylique, les aramides, les fluorofibres, les phénoliques. -11- Membrane silicone architecturale selon la revendication 9 ou 10, caractérisée par une remontée capillaire de moins de 20 mm, de préférence de moins de 10 mm et plus préférentiellement encore égale à 0, la remontée capillaire étant mesurée selon un test T.
-12- Membrane architecturale selon l'une quelconque des revendications 9 à 11, caractérisée en ce qu'elle présente un poids inférieur à 2000g m2 et de préférence compris entre 400 et 1500g/m2.
PCT/FR2003/002317 2002-07-30 2003-07-22 Procede de traitement par impregnation de textiles architecturaux par une composition silicone reticulable en elastomere et textile architectural ainsi revetu WO2004013403A2 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
SI200332581T SI1525351T1 (sl) 2002-07-30 2003-07-22 Metoda za obdelavo arhitekturnih tkanin z impregnacijo z elastomernim, zamreženim silikonskim sestavkom
AU2003269046A AU2003269046A1 (en) 2002-07-30 2003-07-22 Method for the treatment of architectural fabrics by means of impregnation with an elastomeric cross-linkable silicone composition, and architectural fabric coated by means of said method
CA 2493951 CA2493951A1 (fr) 2002-07-30 2003-07-22 Procede de traitement par impregnation de textiles architecturaux par une composition silicone reticulable en elastomere et textile architectural ainsi revetu
ES03750833.0T ES2692776T3 (es) 2002-07-30 2003-07-22 Procedimiento para el tratamiento por impregnación de textiles arquitectónicos con una composición de silicona reticulable en elastómeros
DK03750833.0T DK1525351T3 (en) 2002-07-30 2003-07-22 PROCEDURE FOR TREATING ARCHITECTURAL TEXTILES USING IMPRESSION WITH A CROSS-CONNECTED SILICONE ELASTOM COMPOSITION
EP03750833.0A EP1525351B1 (fr) 2002-07-30 2003-07-22 Procede de traitement par impregnation de textiles architecturaux par une composition silicone reticulable en elastomere
US10/522,705 US20060115656A1 (en) 2002-07-30 2003-07-22 Method for the treatment of architectural fabrics by means of impregnation with an elastomeric cross-linkable silicone composition, and architectural fabric coated by means of said method
JP2004525464A JP2005534481A (ja) 2002-07-30 2003-07-22 エラストマーに架橋され得るシリコーン組成物で含浸する手段による建築用編織布の処理方法及び該方法の手段によって被覆された建築用編織布

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0209673A FR2843134B1 (fr) 2002-07-30 2002-07-30 Procede de traitement par impregnation de textiles architecturaux par une composition silicone reticulable en elastomere et textile architectural ainsi revetu
FR02/09673 2002-07-30

Publications (2)

Publication Number Publication Date
WO2004013403A2 true WO2004013403A2 (fr) 2004-02-12
WO2004013403A3 WO2004013403A3 (fr) 2004-04-08

Family

ID=30129543

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/002317 WO2004013403A2 (fr) 2002-07-30 2003-07-22 Procede de traitement par impregnation de textiles architecturaux par une composition silicone reticulable en elastomere et textile architectural ainsi revetu

Country Status (13)

Country Link
US (1) US20060115656A1 (fr)
EP (1) EP1525351B1 (fr)
JP (1) JP2005534481A (fr)
CN (1) CN100390352C (fr)
AU (1) AU2003269046A1 (fr)
CA (1) CA2493951A1 (fr)
DK (1) DK1525351T3 (fr)
ES (1) ES2692776T3 (fr)
FR (1) FR2843134B1 (fr)
PT (1) PT1525351T (fr)
SI (1) SI1525351T1 (fr)
TR (1) TR201816057T4 (fr)
WO (1) WO2004013403A2 (fr)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2914657A1 (fr) * 2007-04-03 2008-10-10 Bluestar Silicones France Soc Procede d'obtention d'un composite materiau fibreux/silicone et ledit composite materiau fibreux/silicone
EP2366949A1 (fr) 2010-03-16 2011-09-21 Jean-Charles Barbotin Produit textile complexe souple, étanche par une imprégnation à base de matériau élastomère, comportant au moins une piste souple conductrice, et procédé de fabrication d'un tel produit
US9593209B2 (en) 2009-10-22 2017-03-14 Dow Corning Corporation Process for preparing clustered functional polyorganosiloxanes, and methods for their use
US9670392B2 (en) 2013-02-11 2017-06-06 Dow Corning Corporation Stable thermal radical curable silicone adhesive compositions
US9718925B2 (en) 2013-02-11 2017-08-01 Dow Corning Corporation Curable silicone compositions comprising clustered functional polyorganosiloxanes and silicone reactive diluents
US9862867B2 (en) 2013-02-11 2018-01-09 Dow Corning Corporation Alkoxy-functional organopolysiloxane resin and polymer and related methods for forming same
US9944758B2 (en) 2013-02-11 2018-04-17 Dow Corning Corporation Clustered functional polyorganosiloxanes, processes for forming same and methods for their use
US10370574B2 (en) 2013-02-11 2019-08-06 Dow Silicones Corporation Method for forming thermally conductive thermal radical cure silicone compositions
US10370572B2 (en) 2013-02-11 2019-08-06 Dow Silicones Corporation Moisture-curable hot melt silicone adhesive compositions including an alkoxy-functional siloxane reactive resin

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2843119B1 (fr) 2002-07-30 2006-10-06 Rhodia Chimie Sa Composition d'huiles silicone reticulables en elastomeres pour le traitement par impregnation de materiaux fibreux
US7134267B1 (en) 2003-12-16 2006-11-14 Samson Rope Technologies Wrapped yarns for use in ropes having predetermined surface characteristics
US20060042141A1 (en) * 2004-09-01 2006-03-02 Juergen Hansen Frame system
US8341930B1 (en) 2005-09-15 2013-01-01 Samson Rope Technologies Rope structure with improved bending fatigue and abrasion resistance characteristics
DE102007039263A1 (de) * 2007-08-20 2009-02-26 Sattler Ag Selbstklebendes Printmedium
US9434137B2 (en) * 2008-08-08 2016-09-06 Saint-Gobain Performance Plastics Corporation Thermal spray masking tape
CN102105617A (zh) * 2008-08-08 2011-06-22 美国圣戈班性能塑料公司 热喷涂遮蔽胶带
GB0818864D0 (en) * 2008-10-15 2008-11-19 Dow Corning Fabric and fibre conditioning additives
CN101613952B (zh) * 2009-07-30 2011-06-15 中国人民解放军国防科学技术大学 连续碳化硅纤维制造用油剂及其应用工艺
BR112012002556B1 (pt) 2009-08-04 2019-11-05 Dsm Ip Assets Bv fibras revestidas de alta resistencia
US20140272409A1 (en) * 2013-03-14 2014-09-18 Samson Rope Technologies Fiber structures, systems, and methods for fabricating rope structures with improved lubricity
CN103132327B (zh) * 2013-03-18 2014-07-09 中国人民解放军国防科学技术大学 一种连续SiC纤维用上浆剂及其制备方法与应用
CN104176973B (zh) * 2013-05-23 2016-09-07 闫炳润 硅烷水泥混凝土防腐防水剂及其制备方法
CN104694004B (zh) * 2015-02-17 2020-03-31 成都拓利科技股份有限公司 一种无溶剂防污闪有机硅涂料及其制备方法
US9573661B1 (en) 2015-07-16 2017-02-21 Samson Rope Technologies Systems and methods for controlling recoil of rope under failure conditions
WO2018148282A1 (fr) 2017-02-08 2018-08-16 Elkem Silicones USA Corp. Bloc-batterie secondaire à gestion thermique améliorée
US11639149B2 (en) * 2017-03-15 2023-05-02 Shin-Etsu Chemical Co., Ltd. Flame-resistant airbag, method of manufacturing flame-resistant airbag, and addition-curable liquid silicone rubber composition for flame-resistant airbags
NL2018671B1 (en) * 2017-04-10 2018-10-19 Klomp Beheer B V Method for providing objects with a protective coating of silicone elastomer
KR101864422B1 (ko) * 2017-11-28 2018-06-05 (주)제이에스바이오코켐 합성직물원단용 실리콘 코팅제 및 합성직물원단에 실리콘 코팅제를 코팅하는 방법
CN112812737B (zh) * 2021-01-07 2022-11-25 成都民航六维航化有限责任公司 一种用于飞机防火墙耐高温阻燃的有机硅密封剂
CN116289225B (zh) * 2021-12-20 2024-04-02 四川大学 一种基于聚联硼硅氧烷改性的纤维及其制备方法
FR3140769A1 (fr) * 2022-10-13 2024-04-19 Jehier Matériau multicouches souple résistant à l’explosion d’une batterie électrique
CN115920862B (zh) * 2022-12-26 2024-08-20 江苏理工学院 一种用于油水分离的超疏水木质纤维素复合物及其制备方法
FR3144920A1 (fr) * 2023-01-16 2024-07-19 Elkem Silicones France Sas Dispositif de protection passive contre l’incendie comprenant une mousse silicone

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868063A (en) * 1986-07-22 1989-09-19 Shin-Etsu Chemical Co., Ltd. Glass fiber article-coating compositions
EP0543401A1 (fr) * 1991-11-22 1993-05-26 Toshiba Silicone Co., Ltd. Composition de caoutchouc de silicone et tissu enduit de caoutchouc de silicone
EP0646672A1 (fr) * 1993-08-26 1995-04-05 Wacker-Chemie GmbH Tissus enduits pour coussins d'air
US6074963A (en) * 1994-03-29 2000-06-13 Shin-Etsu Chemical, Co., Ltd. Thermally conductive composite sheets and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19645721A1 (de) * 1996-11-06 1998-05-07 Wacker Chemie Gmbh Vernetzbare Organopolysiloxanmassen

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4868063A (en) * 1986-07-22 1989-09-19 Shin-Etsu Chemical Co., Ltd. Glass fiber article-coating compositions
EP0543401A1 (fr) * 1991-11-22 1993-05-26 Toshiba Silicone Co., Ltd. Composition de caoutchouc de silicone et tissu enduit de caoutchouc de silicone
EP0646672A1 (fr) * 1993-08-26 1995-04-05 Wacker-Chemie GmbH Tissus enduits pour coussins d'air
US6074963A (en) * 1994-03-29 2000-06-13 Shin-Etsu Chemical, Co., Ltd. Thermally conductive composite sheets and manufacturing method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2914657A1 (fr) * 2007-04-03 2008-10-10 Bluestar Silicones France Soc Procede d'obtention d'un composite materiau fibreux/silicone et ledit composite materiau fibreux/silicone
US9593209B2 (en) 2009-10-22 2017-03-14 Dow Corning Corporation Process for preparing clustered functional polyorganosiloxanes, and methods for their use
EP2366949A1 (fr) 2010-03-16 2011-09-21 Jean-Charles Barbotin Produit textile complexe souple, étanche par une imprégnation à base de matériau élastomère, comportant au moins une piste souple conductrice, et procédé de fabrication d'un tel produit
FR2957611A1 (fr) * 2010-03-16 2011-09-23 Jean Charles Barbotin Nappe architecture en elastomere comportant au moins un trame textile et pouvant etre electro-conductrice
US9670392B2 (en) 2013-02-11 2017-06-06 Dow Corning Corporation Stable thermal radical curable silicone adhesive compositions
US9718925B2 (en) 2013-02-11 2017-08-01 Dow Corning Corporation Curable silicone compositions comprising clustered functional polyorganosiloxanes and silicone reactive diluents
US9862867B2 (en) 2013-02-11 2018-01-09 Dow Corning Corporation Alkoxy-functional organopolysiloxane resin and polymer and related methods for forming same
US9944758B2 (en) 2013-02-11 2018-04-17 Dow Corning Corporation Clustered functional polyorganosiloxanes, processes for forming same and methods for their use
US10370574B2 (en) 2013-02-11 2019-08-06 Dow Silicones Corporation Method for forming thermally conductive thermal radical cure silicone compositions
US10370572B2 (en) 2013-02-11 2019-08-06 Dow Silicones Corporation Moisture-curable hot melt silicone adhesive compositions including an alkoxy-functional siloxane reactive resin

Also Published As

Publication number Publication date
WO2004013403A3 (fr) 2004-04-08
EP1525351B1 (fr) 2018-08-08
EP1525351A2 (fr) 2005-04-27
CN1697900A (zh) 2005-11-16
ES2692776T3 (es) 2018-12-05
AU2003269046A1 (en) 2004-02-23
US20060115656A1 (en) 2006-06-01
FR2843134B1 (fr) 2006-09-22
CN100390352C (zh) 2008-05-28
FR2843134A1 (fr) 2004-02-06
DK1525351T3 (en) 2018-11-19
CA2493951A1 (fr) 2004-02-12
SI1525351T1 (sl) 2018-12-31
JP2005534481A (ja) 2005-11-17
TR201816057T4 (tr) 2018-11-21
PT1525351T (pt) 2018-11-15

Similar Documents

Publication Publication Date Title
EP1525351B1 (fr) Procede de traitement par impregnation de textiles architecturaux par une composition silicone reticulable en elastomere
EP2134898A1 (fr) Procede d'obtention d'un composite materiau fibreux/silicone et ledit composite materiau fibreux/silicone
EP1525277B1 (fr) Composition d huiles silicone reticulables en elastomeres pour le traitement par impregnation de materiaux fibreux
EP0681014B1 (fr) Composition élastomère silicone et ses applications, notamment pour l'enduction de sac gonflable, destiné à la protection d'un occupant de véhicule
EP1957585B1 (fr) Vernis silicone polyaddition anti-salissures, application de ce vernis sur un support et support ainsi traite
WO2007071631A1 (fr) Support fibreux comprenant un revetement silicone
WO2003106758A2 (fr) Emulsion silicone aqueuse pour le revetement de supports fibreux tisses ou non
WO1999043753A1 (fr) Composition silicone adhesive reticulable et utilisation de cette composition pour le collage de substrats divers
WO2009016199A2 (fr) Composition elastomere silicone adhesive
EP1534888B1 (fr) Procede de revetement d'un textile architectural avec au moins une couche d'elastomere silicone, a partir d'une emulsion silicone aqueuse et textile architectural ainsi revetu
WO1999002592A1 (fr) Composition silicone pour l'enduction de substrats en matiere souple, notamment textile
WO2008107407A1 (fr) Procede de fabrication d'un support en matiere textile et ledit support en matiere textile
EP3794064B1 (fr) Procede de production de materiaux silicones poreux

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2493951

Country of ref document: CA

Ref document number: 2003269046

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2004525464

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2003750833

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038206196

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003750833

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006115656

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10522705

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10522705

Country of ref document: US