WO2004013363A2 - Alliage cuivreux, sans nickel, du type cuivre, manganese, silicium - Google Patents

Alliage cuivreux, sans nickel, du type cuivre, manganese, silicium Download PDF

Info

Publication number
WO2004013363A2
WO2004013363A2 PCT/FR2003/002407 FR0302407W WO2004013363A2 WO 2004013363 A2 WO2004013363 A2 WO 2004013363A2 FR 0302407 W FR0302407 W FR 0302407W WO 2004013363 A2 WO2004013363 A2 WO 2004013363A2
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
heat treatment
manganese
copper
silicon
Prior art date
Application number
PCT/FR2003/002407
Other languages
English (en)
Other versions
WO2004013363A3 (fr
Inventor
Bertrand Pierre
Alain Cailliau
Original Assignee
Clal Msx
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Clal Msx filed Critical Clal Msx
Priority to AU2003269081A priority Critical patent/AU2003269081A1/en
Publication of WO2004013363A2 publication Critical patent/WO2004013363A2/fr
Publication of WO2004013363A3 publication Critical patent/WO2004013363A3/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A44HABERDASHERY; JEWELLERY
    • A44CPERSONAL ADORNMENTS, e.g. JEWELLERY; COINS
    • A44C27/00Making jewellery or other personal adornments
    • A44C27/001Materials for manufacturing jewellery
    • A44C27/002Metallic materials
    • A44C27/003Metallic alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/02Alloys based on copper with tin as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/04Alloys based on copper with zinc as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/05Alloys based on copper with manganese as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon

Definitions

  • Copper alloy, nickel free, of the copper, manganese, silicon type of the copper, manganese, silicon type.
  • the present invention essentially relates to an alloy based on copper, manganese, silicon and substantially nickel-free.
  • This new alloy of copper, manganese, silicon has the property of structural hardening by heat treatment.
  • This alloy is particularly advantageous for use in contact with the skin. According to another characteristic of the invention, this alloy is advantageously obtained by conventional means of manufacturing and processing.
  • the present invention essentially relates to a new, substantially nickel-free, structural hardening alloy consisting essentially of copper, manganese, and silicon, as well as unavoidable impurities, copper constituting the balance.
  • the present invention also relates to the use of this alloy in industry, such as in particular the eyewear industry, costume jewelery, leather goods, metal buttons, cutlery and cutlery, coins and medals, medical and surgical devices.
  • the present invention also relates to the use of this alloy as a substitute alloy for alloys, in particular copper alloys, comprising nickel, thus avoiding the presence of nickel, which causes in some people allergies.
  • the present invention also relates to the use of this alloy for its electrical conductivity properties. STATE OF THE ART
  • Copper alloys are used for their mechanical characteristics, however copper alloys comprising nickel are by the new standards in force prohibited on the market for prolonged applications in contact with the skin, when they release nickel at a rate> 0.5 ⁇ g / cm 2 / week.
  • patents relate to alloys replacing copper alloys containing nickel.
  • the inventors aim in particular to supply a nickel-free copper-tin alloy.
  • this alloy does not have the structural hardening properties by heat treatment given its low manganese content (0.05 to 4%).
  • This alloy is also described as being yellow in color, which is contrary to the aim of the present invention.
  • patent EP 1 061 148 which aims to provide a nickel-free copper-zinc alloy, the alloy also does not have the properties of structural hardening by heat treatment given the low silicon content (0 to 0.3%) .
  • Other nickel-free copper alloys are also described in:
  • Patent EP 568,094 but the percentage of silicon is low (0 to 0.3%) and the presence of nickel is mentioned, which is contrary to the present invention; - Patent EP 532,929, but the alloy also has a low silicon content as well as a low manganese content (0.4 to 1.3% Mn);
  • Patent EP-0 568 094 describes an alloy comprising 5 to 15% of manganese, but also comprising 4 to 7.5% of aluminum and 1 to 2.8% of iron, but only up to 0.3% of silicon. This therefore does not make it possible to obtain the alloy of the present invention, in particular by the fact that the silicon content is low. Iron and aluminum are present in large quantities, and do not only represent impurities.
  • Patent DE 1,258,104 describes an alloy comprising copper, manganese and silicon. However, in this alloy, the proportion of silicon is greater than 1.5%, and therefore does not allow the alloy of the present invention to be obtained.
  • Patent DE 1 187 805 also describes copper-based alloys. These only optionally include silicon. On the other hand, one of the essential characteristics of the present invention is not described, that is to say in particular to obtain an alloy with structural hardening.
  • the alloy of this patent DE 1 187 805 can also comprise nickel, which is contrary to the present invention. Therefore, the teaching of this document does not achieve the goal, nor achieve the alloy of the present invention.
  • US Patent 1,692,936 describes an alloy based on copper manganese and silicon also comprising at least 1% iron. This is therefore different from the present invention. In addition, this document does not describe a structural hardening alloy and only exemplifies compositions having a silicon content greater than 2.1%, which is different from the present invention.
  • Japanese patent JP-02-107729 describes an alloy comprising manganese and silicon, but also tin in a proportion of between 3 and 10%, which is different from the present invention.
  • Japanese patent JP-08-174272 describes a powder based on copper, manganese and silicon to be resistant to abrasion, obtained by atomization, the very principle of which is to reduce to powder, during very rapid cooling, droplets of a bath of liquid metal which itself is obtained by fusion of solid copper, solid manganese, and solid silicon.
  • this powder obtained by cooling a jet of liquid metal with a jet of water or gas under pressure which causes a real thermal shock is in the form of pre-alloyed particles of ten to one hundred microns in diameter, the alloy obtained of which is in a very unstable, fragile state, which poses no problem because the grains of the powder are then remelted in the so-called "hard facing" welding operation.
  • alloy according to the present invention which can be used for its structural hardening properties, and which is obtained by massive casting of the alloy and by carrying out at least one heat treatment of this alloy in its massive form, modifying thus its mechanical properties.
  • patent BE 457 587 describes a copper-tin-manganese alloy in particular containing nickel, which is contrary to the present invention.
  • the prior art neither suggests nor discloses the fact that a structural hardening alloy can be obtained, this alloy consisting essentially of copper-manganese-silicon, in the proportions of the present invention. Therefore, these patents do not make it possible to obtain the alloy of the present invention.
  • the main object of the present invention is to solve the new technical problem which consists in providing a new copper-manganese-silicon alloy, substantially nickel-free, with structural hardening, in particular by heat treatment.
  • the main object of the present invention is also to solve the new technical problem which consists in providing a substantially nickel-free alloy as a substitute alloy for copper alloys comprising nickel.
  • the main object of the present invention is also to solve the new technical problem which consists in providing a copper-free nickel-free alloy of substantially white color, in particular curable by heat treatment, in particular to be brought into contact, possibly prolonged, with the skin.
  • Another object of the present invention is to provide a substantially nickel-free copper alloy obtained by massive casting providing a stable, ductile and structurally hardened metal.
  • the present invention also aims to provide an alloy with high mechanical strengths such as breaking strength or Vickers hardness.
  • the present invention also aims to provide an alloy also compatible with the means of preparation and transformation conventional, such as in particular drawing, drawing, rolling and continuous and semi-continuous casting.
  • the present invention also aims to provide an alloy also compatible with conventional shaping means, such as in particular folding, stamping, cutting, cold stamping, stamping, etc.
  • the invention relates to a copper, manganese, silicon alloy, substantially nickel-free, obtained by massive casting of the semi-continuous or continuous type, the mechanical properties of which can be improved by structural hardening, in particular by heat treatment.
  • This alloy has high mechanical characteristics, such as breaking strength or Vickers hardness.
  • the inventors understand by "substantially nickel free", the fact that nickel is not added in the manufacturing process of the alloy, however it is possible that the alloy contains nickel in the impurity state, l ideal being that it does not have any.
  • the invention relates to a substantially nickel-free alloy comprising copper, manganese, and silicon, as well as the inevitable impurities, copper constituting the balance, characterized in that it is obtained by massive casting of an alloy consisting essentially, by weight, of a proportion of copper which is the balance at 100%, a proportion of manganese which is greater than 8 and less than or equal to 25%, a proportion of silicon which is greater than 0.3 and less than 1.5%; said alloy, in its massive form, having undergone at least one heat treatment modifying its mechanical properties.
  • the alloy according to the invention is thus obtained by massive casting of an alloy having the composition indicated for melting, the liquid metal being poured into a mold or an ingot mold, for example cooled with water. Thanks to this massive casting, solidification is slow, and the metal obtained is stable and ductile. Alloy ingots are thus obtained which may, for example, typically have approximately 400 mm in width, approximately 200 mm in thickness and approximately 3000 mm in length which weigh approximately 2500 kg.
  • the alloy of the invention thus obtained in massive ingot form has a metallurgical structure suitable for:
  • said heat treatment comprises at least one tempering heat treatment, conferring improved mechanical properties on said alloy.
  • said heat treatment comprises at least one hardening heat treatment, facilitating a cold forming treatment.
  • said heat treatment comprises at least one tempering heat treatment and at least one quenching heat treatment, whether or not followed by at least one cold forming treatment.
  • said heat treatment comprises at least one cold forming treatment followed by at least one treatment tempering heat, and / or at least one quenching heat treatment.
  • the alloy must contain a silicon content greater than 0.3% to have the property of structural hardening by heat treatment, in particular aimed at precipitating compounds of the Mn x Si y type , which corresponds to a phase rich in manganese and silicon.
  • the inventors cannot to date characterize these compounds more precisely, in particular as to the value of x and y.
  • the proportion by weight of manganese is greater than 8% and less than or equal to 20%, preferably is approximately 15%.
  • the proportion by weight of silicon is greater than 0.3 and less than or equal to 1.5%, preferably is greater than or equal to 0.5 and less than or equal to 1.5%. This proportion can be 0.35%, for example.
  • the invention relates to a copper, manganese, silicon alloy, characterized in that it comprises in proportion by weight approximately: 84% of copper; 15% Manganese; 1% silicon. According to another advantageous embodiment, the invention relates to a copper, manganese, silicon alloy, characterized in that it comprises in proportion by weight approximately: 84.5% of copper; 15% Manganese; 0.5% silicon.
  • impurities are those known to those skilled in the art. They mainly result from impurities in the raw materials and / or the manufacturing process. Among these impurities, we generally find iron, tin, aluminum, zinc, magnesium, lead, tellurium, carbon, etc.
  • the alloy has a phase rich in manganese and silicon.
  • the alloy is substantially nickel-free, which allows use of the alloy in contact, possibly prolonged, with the skin.
  • the alloy in the raw casting state, has a two-phase structure, comprising a phase rich in manganese and silicon.
  • the alloy will advantageously be formed by unit preferably greater than 1 kg, such as for example from 20 kg to 5000 kg in the form of an ingot by semi-continuous type casting or in the form of a wire or coil crown. flattened by continuous casting, typically, these ingots obtained during massive casting have a dimension of the order of 400 mm wide, 200 mm thick and 3000 mm in length which weigh 2500 kg.
  • the present invention relates to a method for manufacturing the alloy described above, characterized in that it comprises the massive casting of the liquid metal, for example in the form of an ingot, and in that at least one performs a homogenization heat treatment.
  • this manufacturing process comprises mixing the various constituents in the liquid state, in order to obtain the alloy of the present invention in the proportions described above, in the form of liquid metal which can thus be poured into a mold or an ingot mold to carry out said massive casting.
  • the alloy of the present invention is compatible with conventional production and processing means, such as in particular drawing, drawing, rolling, work hardening, and continuous and semi-continuous casting.
  • the alloy of the present invention is compatible with conventional shaping means, such as in particular folding, stamping, cutting, cold stamping, stamping, etc.
  • this alloy (the alloy of the present invention) is in its TB state (TB state: solution heat treatment, which can be intermediate in the transformation range and which can correspond to a delivery state depending on customer use).
  • this alloy (the alloy of the present invention) has undergone a transformation cycle to be hardened, during its manufacturing process.
  • This transformation cycle can contain one or more stages of heat treatment and / or one or more stages of mechanical treatment.
  • This alloy can be characterized technically by this transformation cycle.
  • the hardened metallurgical states are those known to those skilled in the art: for example TD, TF and TH states.
  • TF state TB state + thermal precipitation treatment, which is only practiced at the final stage in order to increase the mechanical properties of the product to be delivered.
  • TD state TB state + work hardening of x%.
  • the process for manufacturing this alloy comprises a heat treatment for homogenization.
  • said homogenization heat treatment comprises a rise in temperature of between 700 and 900 ° C., preferably around 750 ° C., for a period greater than or equal to 3 hours, preferably 4 hours.
  • said homogenization heat treatment is followed by rapid cooling, for example the cooling rate is greater than approximately 5 ° C. per second. This rapid cooling can be an air quench or a water quench.
  • the process for manufacturing this alloy comprises a heat treatment for dissolving.
  • the phase rich in Mn and Si of said alloy is dissolved in the matrix, thus allowing the dissolution or the precipitation of manganese silicides.
  • said heat treatment for dissolving comprises a rise in temperature greater than or equal to 600 ° C., preferably greater than or equal to 700 ° C., for a period of at least 10 minutes, preferably for 1 hour, followed by rapid cooling; such as for example quenching, for example water or air quenching.
  • said method for manufacturing this alloy comprises at least one thermal precipitation treatment.
  • This thermal precipitation treatment advantageously leads to the effect of structural hardening.
  • the phase rich in Mn and Si is precipitated. This results in an increase in the mechanical properties of the material, in particular the hardness, the breaking load, the elastic limit.
  • the thermal precipitation treatment is characterized for example by a rise in temperature between
  • the method for manufacturing this alloy comprises at least one quenching.
  • This quenching can be carried out with water or air, for example.
  • the method for manufacturing this alloy comprises at least one rolling operation.
  • rolling makes it possible to harden this alloy, preferably at 100%, it is possible to laminate (or to harden) up to
  • this operation can be inserted between the quenching heat treatment and the precipitation heat treatment.
  • this alloy has a low electrical conductivity, for example of 3% maximum compared to that of copper.
  • the electrical conductivity is also measured as a percentage
  • I.A.C.S. alloy International Annealed Cooper Standard
  • a comparison scale based on the electrical conductivity of pure copper
  • the alloy of the present invention has a substantially white color, quite comparable to the traditionally used alloys containing nickel.
  • the absence of nickel makes it possible to comply with the order relating to the prohibition of the marketing of certain products containing nickel, published in the Official Journal of the French Republic N ° 165, page
  • the invention relates to the use of an alloy as described above or obtained by a manufacturing process as described above, for the partial or complete manufacture of products, articles, parts intended to be brought into contact more or less prolonged with the skin.
  • said alloy can be used in the field of eyewear, costume jewelery, leather goods, metal buttons, cutlery and cutlery, coins and medals.
  • said alloy can be used for the partial or complete manufacture of spectacle frames, branches and circles of glasses in particular, earrings, neck and ankle chains, necklaces, rings, curb chains, belt buckles, bag clasps hand, rivet buttons, rivets, zippers, knife bolsters, spoons, forks, coins and commemorative medals.
  • the invention relates to the use of an alloy as described above or obtained by a manufacturing process as described above, for the partial or complete manufacturing of at least one part of a medical device, such as a surgical device, for example medical and surgical devices, such as epithelialization and surgical clips.
  • the invention relates to the use of an alloy as described above or obtained by a manufacturing process as described above, in the fields of electrical engineering and electricity, in particular in the form of resistance , shunts, and / or heating elements, and / or used for its good suitability for resistance or spot resistance welding.
  • the invention relates to an article produced at least in part with the alloy as described above.
  • the article is chosen from the group constituting in the wires or profiles, the bands, in particular the bands in rolls, the boards, the ingots or the sheets.
  • These articles are advantageously in the desired state (TB, TD, TF, or TH).
  • the article is made entirely of the alloy according to the invention.
  • the article is a finished article such as those described above (for example, at least part of the following articles: spectacle frames, temples, spectacle circles, earrings, neck and ankle chains, necklaces, rings, curb cuffs, belt buckles, purse clasps, rivet buttons, rivets, zippers, knife bolsters, spoons, forks, coins, commemorative medals, medical device, resistors, shunts, and items Heated).
  • a finished article such as those described above (for example, at least part of the following articles: spectacle frames, temples, spectacle circles, earrings, neck and ankle chains, necklaces, rings, curb cuffs, belt buckles, purse clasps, rivet buttons, rivets, zippers, knife bolsters, spoons, forks, coins, commemorative medals, medical device, resistors, shunts, and items Heated).
  • any characteristic which will appear to be new compared to any prior art forms an integral part of the present invention and protection is sought in its function and its generality.
  • the temperature and duration ranges of the heat treatments are given by way of example; those skilled in the art will be able to adjust these various parameters in order to obtain the desired properties.
  • all the percentages are given by weight, the temperature is in degrees Celsius and the pressure is atmospheric pressure, unless otherwise indicated.
  • the preparation of the alloy in the various proportions of its constituents, can be carried out, for example, by the production of an ingot of approximately 1 kg in a Baizers oven under controlled atmosphere. These ingots are obtained by static casting of the liquid metal poured into a mold or an ingot mold which can advantageously be cooled, for example with water. Solidification is slow, and the metal obtained is stable and ductile. These ingots are referenced in Table I below by the ingot number which corresponds to the number in the example.
  • Ingots Nos. 1, 2, 5, 6, and 7 are comparative compositions of the alloy of the invention.
  • the alloy of the invention is represented by the compositions of ingots No. 3 and 4.
  • the Vickers hardnesses of the various alloy compositions according to the present invention are set out below in Table II as a function of the metallurgical state.
  • HV Vickers hardness
  • EXAMPLE 8 ACCORDING TO THE PRESENT INVENTION
  • the preparation of the alloy for example of alloy No. 3, can be produced industrially, for example to produce an ingot of approximately 2.5 tonnes (format 200 ⁇ 400 mm) by semi-continuous casting.
  • the fusion is carried out in an aluminous crucible heated by induction to 1150 ° C from copper cathode, electrolytic manganese and cuprosilicon.
  • the ingot was preheated to around 850 ° C in a gas oven.
  • the hot rolling was carried out on a reversible rolling mill in 15 passes in order to obtain a strip 11.5 mm thick.
  • This strip 400 mm wide was then milled to 10.5 mm and cold rolled to 3.5 mm, which represents a hardening of 200%.
  • the phases rich in manganese and silicon were dissolved by the quenching heat treatment in a passage oven under controlled atmosphere, at a temperature of 700 ° C., followed by cooling with water. From this metallurgical state (raw quenching heat treatment state), it was possible to verify that the hardnesses obtained, in the different metallurgical states TB, TD, TF and TH, correspond well to the values in table II of the example 3 above.
  • the alloy of Example No. 3 heat treated at 750-770 ° C, for half an hour, followed by rapid cooling allows a hardness of about 85 Vickers to be obtained. From this quenched state or during the heat treatment, the phases rich in manganese and silicon have been dissolved, the ductility of the alloy makes it possible to be hardened by more than 200%; the alloy can therefore withstand the significant deformations of cold stamping for example. At the end of the cold deformation, the precipitation of the phases rich in manganese and silicon, by thermal treatment of precipitation for 3 hours at 410-420 ° C, followed by slow cooling, gives the finished part a hardness d 'about 270 Vickers.
  • Alloy No. 3 can for example undergo the following transformation cycle to be obtained in the TB state. transformation cycle
  • the ingot has a thickness of 1.5 mm and a TB state.
  • the Vickers hardnesses of the various compositions of the alloy of the present invention correspond to the values in Table II for this metallurgical state.
  • Alloy No. 3 can for example undergo the following transformation cycle to be obtained in the TH state.
  • transformation cycle Preparation of an ingot 400 x 200 x 3500
  • the ingot has a thickness of 1.5 mm and a TH state.
  • the Vickers hardnesses of the various compositions of the alloy of the present invention correspond to the values in Table II for this metallurgical state.
  • EXAMPLE 12 ACCORDING TO THE PRESENT INVENTION Alloy No. 3 can for example undergo the following transformation cycle in order to be obtained in the TD state. transformation cycle
  • the ingot has a thickness of 1.5 mm and a TD state.
  • the Vickers hardnesses of the various compositions of the alloy of the present invention correspond to the values in Table II for this metallurgical state.
  • Alloy No. 3 can for example undergo the following transformation cycle to be obtained in the TF state. transformation cycle
  • the ingot is 1.5 mm thick and TF state.
  • the Vickers hardnesses of the various compositions of the alloy of the present invention correspond to the values in Table II for this metallurgical state.
  • EXAMPLE 14 ACCORDING TO THE PRESENT INVENTION
  • Alloy No. 3 can for example undergo the following transformation cycle to be obtained in the TD state. transformation cycle Preparation of an ingot 400 x 200 x 3500
  • the ingot has a thickness of 0.25 mm and a TD state.
  • the Vickers hardnesses of the various compositions of the alloy of the present invention correspond to the values in Table II for this metallurgical state.
  • the alloys, as described in examples 1 to 7, are subjected to electrical conductivity tests in order to verify their suitability in the fields of electrical engineering and electricity. This also makes it possible to characterize these alloys according to their metallurgical state.
  • the electrical tests consist in calculating the value of electrical resistivity, quantity which determines the behavior of the alloy.
  • the values of the conductivities in table III are given according to the composition and metallurgical condition. The ingot numbers correspond to those in Table I of Examples 1 to 7.
  • Table III Electrical conductivity of the alloy in% I.A.C.S as a function of the metallurgical condition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)
  • Adornments (AREA)

Abstract

La présente invention concerne un nouvel alliage à base de cuivre, de manganèse, silicium, sensiblement sans nickel. Cet alliage sensiblement sans nickel est obtenu par coulée massive d'un alliage consistant essentiellement, en poids, une proportion en cuivre qui est le solde à 100%, une proportion en manganèse, qui est supérieure à 8 et inférieure ou égale à 25%, une proportion en silicium, qui est supérieure à 0,3 et inférieure à 1,5%, ledit alliage, sous sa forme massive, ayant subi au moins un traitement thermique modifiant ses propriétés mécaniques. Cet alliage trouve une utilisation en tant qu'alliage de remplacement aux alliages cuivreux comportant du nickel, dans le domaine de la lunetterie, bijouterie fantaisie, maroquinerie, boutonnerie métallique, coutellerie et couverts, monnaie et médailles.

Description

Alliage cuiyreux, sans nickel, du type cuiyre, manganèse, silicium.
La présente invention concerne essentiellement un alliage à base de cuivre, manganèse, silicium et sensiblement sans nickel.
Ce nouvel alliage de cuivre, manganèse, silicium présente la propriété de durcissement structural par traitement thermique.
Cet alliage est particulièrement avantageux pour une utilisation en contact avec la peau. Selon une autre caractéristique de l'invention, cet alliage est avantageusement obtenu par les moyens classiques de fabrication et de transformation.
Plus précisément, la présente invention concerne essentiellement un nouvel alliage à durcissement structural sensiblement sans nickel constitué essentiellement de cuivre, de manganèse, et de silicium, ainsi que des impuretés inévitables, le cuivre constituant le solde.
La présente invention concerne encore l'utilisation de cet alliage dans l'industrie, tel que notamment l'industrie de la lunetterie, bijouterie fantaisie, maroquinerie, boutonnerie métallique, coutellerie et couverts, monnaie et médailles, dispositifs médicaux et de chirurgie.
La présente invention concerne encore l'utilisation de cet alliage comme alliage de substitution aux alliages, notamment alliages cuivreux, comportant du nickel, évitant ainsi la présence de nickel, qui provoque chez certaines personnes des allergies. La présente invention concerne encore l'utilisation de cet alliage pour ses propriétés de conductivité électrique. ETAT DE LA TECHNIQUE
Les alliages cuivreux sont utilisés pour leurs caractéristiques mécaniques, cependant les alliages cuivreux comprenant du nickel sont de par les nouvelles normes en vigueur interdits à la mise sur le marché pour des applications prolongées en contact avec la peau, lorsqu'ils libèrent du nickel à un taux > à 0,5 μg/cm2/semaine.
Différents industriels ont cherché à substituer ces alliages cuivreux avec nickel par des alliages cuivreux, sensiblement sans nickel, ayant les mêmes caractéristiques mécaniques et une ductilité similaire ou comparable.
Plusieurs brevets portent sur des alliages de substitution aux alliages cuivreux comportant du nickel. Dans le brevet DE 198 07 551, les inventeurs visent notamment à fournir un alliage de cuivre-étain sans nickel. Cependant cet alliage ne présente pas les propriétés de durcissement structural par traitement thermique compte tenu de sa faible teneur en manganèse (0,05 à 4 %)., Cet alliage est de plus décrit comme étant de couleur jaune, ce qui est contraire au but de la présente invention.
Dans le brevet EP 1 061 148 qui vise à fournir un alliage cuivre-zinc sans nickel, l'alliage ne présente également pas les propriétés de durcissement structural par traitement thermique compte tenu de la faible teneur en silicium (0 à 0,3 %). D'autres alliages cuivreux sans nickel sont également décrits dans :
- le brevet EP 568 094, mais le pourcentage de silicium est faible (0 à 0,3 %) et il est mentionné la présence de nickel, ce qui est contraire à la présente invention ; - Le brevet EP 532 929, mais l'alliage comporte également une faible teneur en silicium ainsi qu'une faible teneur en manganèse (0,4 à 1,3 % Mn) ;
- Le brevet EP 621 346, mais la présence d'aluminium est élevée (4 à 8 %).
Dans d'autres brevets, tels que les brevet EP-1 061 148 et EP-0 437 855, décrivent des alliages comprenant une teneur élevée en zinc.
Dans les brevets EP-1 184 471, AT-190 284, DE 402 614 et US 1 840 921, la teneur en manganèse des alliages à base de cuivre est trop faible pour obtenir l'alliage de la présente invention.
Le brevet EP-0 568 094 décrit un alliage comprenant 5 à 15 % de manganèse, mais également comprenant 4 à 7,5 % d'aluminium et 1 à 2,8 % de fer, mais seulement jusqu'à 0,3 % de silicium. Ceci ne permet donc pas d'obtenir l'alliage de la présente invention, notamment par le fait que la teneur en silicium est faible. Le fer et l'aluminium sont présents en forte quantité, et ne représentent pas uniquement des impuretés.
Le brevet DE 1 258 104 décrit un alliage comprenant du cuivre, du manganèse et du silicium. Cependant, dans cet alliage, la proportion de silicium est supérieure à 1,5 %, et de ce fait, ne permet pas d'obtenir l'alliage de la présente invention.
Le brevet DE 1 187 805 décrit également des alliages à base de cuivre. Ceux-ci ne comprennent que de façon optionnelle du silicium. D'autre part, il n'est pas décrit un des caractères essentiels de la présente invention, c'est-à-dire notamment d'obtenir un alliage à durcissement structural. L'alliage de ce brevet DE 1 187 805 peut également comprendre du nickel, ce qui est contraire à la présente invention. De ce fait, l'enseignement de ce document ne permet pas d'atteindre le but, ni de réaliser l'alliage de la présente invention. Le brevet US 1 692 936 décrit un alliage à base de cuivre manganèse et silicium comprenant également au moins 1 % de fer. Ceci est donc différent de la présente invention. De plus, ce document ne décrit pas un alliage à durcissement structural et n'exemplifie que des compositions ayant une teneur en silicium supérieure à 2,1 %, ce qui est différent de la présente invention.
Le brevet japonais JP-02-107729 décrit un alliage comprenant du manganèse et du silicium, mais également de l'étain dans une proportion comprise entre 3 et 10 %, ce qui est différent de la présente invention. Le brevet japonais JP-08-174272 décrit une poudre à base de cuivre, de manganèse et de silicium pour être résistante à l'abrasion, obtenue par atomisation dont le principe même est de réduire en poudre, lors d'un refroidissement très rapide, des gouttelettes d'un bain de métal liquide qui lui-même est obtenu par fusion de cuivre solide, de manganèse solide, et de silicium solide. Ainsi, cette poudre obtenue par refroidissement d'un jet de métal liquide par un jet d'eau ou de gaz sous pression qui provoque un véritable choc thermique, se présente sous forme de particules pré-alliées d'une dizaine à une centaine de microns de diamètre dont l'alliage obtenu est dans un état très instable, fragile, ce qui ne pose pas de problème car les grains de la poudre sont ensuite refondus dans l'opération de soudage dite "hard facing".
Ce document ne décrit pas l'alliage selon la présente invention, utilisable pour ses propriétés de durcissement structural, et qui est obtenu par coulée massive de l'alliage et par réalisation d'au moins un traitement thermique de cet alliage sous sa forme massive modifiant ainsi ses propriétés mécaniques.
Enfin, le brevet BE 457 587 décrit un alliage cuivre-étain- manganèse notamment contenant du nickel, ce qui est contraire à la présente invention. L'art antérieur ne suggère pas, ni ne divulgue le fait que l'on peut obtenir un alliage à durcissement structural, cet alliage consistant essentiellement de cuivre-manganèse-silicium, dans les proportions de la présente invention. De ce fait, ces brevets ne permettent pas d'obtenir l'alliage de la présente invention.
BUTS DE L'INVENTION
La présente invention a pour but principal de résoudre le nouveau problème technique qui consiste à fournir un nouvel alliage à base de cuivre-manganèse-silicium, sensiblement sans nickel, à durcissement structural, notamment par traitement thermique.
La présente invention a encore pour but principal de résoudre le nouveau problème technique qui consiste à fournir un alliage sensiblement sans nickel comme alliage de substitution aux alliages cuivreux comportant du nickel.
La présente invention a encore pour but principal de résoudre le nouveau problème technique qui consiste à fournir un alliage cuivreux sans nickel de couleur sensiblement blanche, notamment durcissable par traitement thermique, notamment pour être mis en contact, éventuellement prolongé, avec la peau.
La présente invention a encore pour but de fournir un alliage cuivreux sensiblement sans nickel, obtenu par coulée massive procurant un métal stable, ductile et à durcissement structural. La présente invention a encore pour but de fournir un alliage à hautes résistances mécaniques telles que la résistance à la rupture ou la dureté Vickers.
La présente invention a encore pour but de fournir un alliage également compatible avec les moyens d'élaboration et de transformation classiques, tels que notamment l'étirage, le tréfilage, le laminage et la coulée continue et semi-continue.
La présente invention a encore pour but de fournir un alliage également compatible avec les moyens de mise en forme classique, tels que notamment le pliage, l'emboutissage, le découpage, la frappe à froid, le matriçage, etc.
DESCRIPTION DETAILLEE DE L'INVENTION
L'invention concerne un alliage cuivre, manganèse, silicium, sensiblement sans nickel, obtenu par coulée massive du type semi continu ou continu, dont les propriétés mécaniques sont améliorables par durcissement structural, notamment par traitement thermique. Cet alliage possède de hautes caractéristiques mécaniques, telle que la résistance à la rupture ou la dureté Vickers. Les inventeurs entendent par « sensiblement sans nickel », le fait que le nickel n'est pas ajouté dans le procédé de fabrication de l'alliage, cependant il se peut que l'alliage comporte du nickel à l'état d'impureté, l'idéal étant qu'il n'en comporte pas.
Selon un premier aspect, l'invention concerne un alliage sensiblement sans nickel comprenant du cuivre, du manganèse, et du silicium, ainsi que les impuretés inévitables, le cuivre constituant le solde, caractérisé en ce qu'il est obtenu par coulée massive d'un alliage consistant essentiellement, en poids, en une proportion en cuivre qui est le solde à 100 %, une proportion en manganèse qui est supérieure à 8 et inférieure ou égale à 25 %, une proportion en silicium qui est supérieure à 0,3 et inférieure à 1,5 % ; ledit alliage, sous sa forme massive, ayant subi au moins un traitement thermique modifiant ses propriétés mécaniques.
L'alliage selon l'invention est ainsi obtenu par coulée massive d'un alliage ayant la composition indiquée à la fusion, le métal liquide étant versé dans un moule ou une lingotière par exemple refroidi(e) à l'eau. Grâce à cette coulée massive, la solidification est lente, et le métal obtenu est stable et ductile. Il est ainsi obtenu des lingots d'alliage qui peuvent par exemple typiquement présenter environ 400 mm de large, environ 200 mm d'épaisseur et environ 3000 mm de longueur qui pèsent environ 2500 kg.
L'alliage sur l'invention obtenu ainsi sous forme massive de lingot présente une structure métallurgique adaptée à :
- la transformation par laminage à chaud ou par laminage à froid, pour permettre la fabrication de laminé en feuille, et par tréfilage ou étirage pour permettre la fabrication de fil ou de barre;
- ledit alliage ainsi obtenu sous forme de laminé ou fil ou barre permet d'autre part la déformation par découpage, matriçage, pliage, rétreint, emboutissage, pour obtenir en fin de procédé de fabrication des objets, qui du fait de l'absence ou quasi absence de nickel, n'auront aucune susceptibilité d'allergie à cet élément, lorsque ces objets seront mis en contact avec la peau, par exemple en se présentant sous forme d'implants ou de bijoux.
Avantageusement, ledit traitement thermique comprend au moins un traitement thermique de revenu, conférant des propriétés mécaniques améliorées audit alliage.
Avantageusement, ledit traitement thermique comprend au moins un traitement thermique de trempe, facilitant un traitement de mise en forme à froid.
Avantageusement, ledit traitement thermique comprend au moins un traitement thermique de revenu et d'au moins un traitement thermique de trempe, suivi ou non d'au moins un traitement de mise en forme à froid.
Avantageusement, ledit traitement thermique comprend au moins un traitement de mise en forme à froid suivi d'au moins un traitement thermique de revenu, et/ou d'au moins un traitement thermique de trempe.
L'alliage doit contenir une teneur en silicium supérieure à 0,3 % pour avoir la propriété du durcissement structural par traitement thermique, notamment visant à précipiter les composés du type MnxSiy, qui correspond à une phase riche en manganèse et silicium. Les inventeurs ne peuvent à ce jour pas caractériser ces composés de manière plus précise, notamment quant à la valeur de x et y.
Avantageusement la proportion en poids en manganèse est supérieure à 8 % et inférieure ou égale à 20 %, de préférence est d'environ 15 %.
Avantageusement la proportion en poids en silicium est supérieure à 0,3 et inférieure ou égale à 1,5%, de préférence est supérieure ou égale à 0,5 et inférieure ou égale à 1,5%. Cette proportion peut être de 0,35%, par exemple.
Selon un autre mode de réalisation avantageux, l'invention concerne un alliage cuivre, manganèse, silicium, caractérisé en ce qu'il comprend en proportion en poids environ : 84% de cuivre ; 15% de Manganèse ; 1% de silicium. Selon un autre mode de réalisation avantageux, l'invention concerne un alliage cuivre, manganèse, silicium, caractérisé en ce qu'il comprend en proportion en poids environ : 84.5% de cuivre ; 15% de Manganèse ; 0.5% de silicium.
Les impuretés inévitables sont celles connues de l'homme de l'art. Elles résultent principalement des impuretés des matières premières et/ou du procédé de fabrication. Parmi ces impuretés, on retrouve généralement le fer, l'étain, l'aluminium, le zinc, le magnésium, le plomb, le tellure, le carbone, etc. Avantageusement, l'alliage présente une phase riche en manganèse et en silicium.
Avantageusement, l'alliage est sensiblement sans nickel, ce qui permet une utilisation de l'alliage en contact, éventuellement prolongé, avec la peau.
Avantageusement l'alliage, à l'état brut de coulée, présente une structure biphasée, comportant une phase riche en manganèse et silicium.
On peut notamment élaborer des lingots vérifiant ces compositions dans un four par exemple un four Baizers sous atmosphère contrôlée. Ces lingots, obtenus par coulée statique, ont permis de réaliser une caracterisation métallurgique (dureté Vickers, structure, malléabilité) de l'état brut de coulée.
A l'état industriel, l'alliage sera avantageusement formé par unité de préférence supérieure à 1 kg, comme par exemple de 20 kg à 5000 kg sous forme de lingot par coulée de type semi continue ou sous forme de couronne de fil ou de bobine de méplat par coulée continue, typiquement, ces lingots obtenus lors de la coulée massive ont une dimension de l'ordre de 400 mm de large, 200 mm d'épaisseur et 3000 mm de longueur qui pèsent 2500 kg.
Selon un second aspect, la présente invention concerne un procédé de fabrication de l'alliage précédemment décrit, caractérisé en ce qu'il comprend la coulée massive du métal liquide, par exemple sous forme de lingot, et en ce qu'on réalise au moins un traitement thermique d'homogénéisation.
Avantageusement ce procédé de fabrication comprend le mélange des divers constituants à l'état liquide, afin d'obtenir l'alliage de la présente invention dans les proportions décrites ci-dessus, sous forme de métal liquide qui peut ainsi être versé dans un moule ou une lingotière pour réaliser ladite coulée massive.
Avantageusement, l'alliage de la présente invention est compatible avec les moyens d'élaboration et de transformation classiques, tels que notamment l'étirage, le tréfilage, le laminage, d'ecrouissage, et la coulée continue et semi-continue.
Avantageusement, l'alliage de la présente invention est compatible avec les moyens de mise en forme classique, tels que notamment le pliage, l'emboutissage, le découpage, la frappe à froid, le matriçage, etc. Avantageusement, cet alliage (l'alliage de la présente invention) est dans son état TB (Etat TB : traitement thermique de mise en solution, qui peut être intermédiaire dans la gamme de transformation et qui peut correspondre à un état de livraison en fonction de l'utilisation du client). Avantageusement, cet alliage (l'alliage de la présente invention) a subi un cycle de transformation pour être durci, lors de son procédé de fabrication. Ce cycle de transformation peut contenir une ou plusieurs étapes de traitement thermique et/ou une ou plusieurs étapes de traitement mécanique. Cet alliage peut être caractérisé techniquement par ce cycle de transformation. Les états métallurgiques durcis sont ceux connus par l'homme de l'art : par exemple états TD, TF et TH.
Etat TF : état TB + traitement thermique de précipitation, qui ne se pratique qu'au stade final afin d'augmenter les propriétés mécaniques du produit à livrer. Etat TD : état TB + écrouissage de x%.
Etat TH : état TB + écrouissage de x % + traitement thermique de précipitation. Avantageusement, le procédé de fabrication de cet alliage comprend un traitement thermique d'homogénéisation. De manière avantageuse ledit traitement thermique d'homogénéisation comprend une élévation de température comprise entre 700 et 900°C, de préférence à environ 750°C, pendant une période supérieure ou égale à 3 heures, de manière préférée 4 heures. De manière avantageuse ledit traitement thermique d'homogénéisation est suivi d'un refroidissement rapide, par exemple la vitesse de refroidissement est supérieur à environ 5°C par secondes. Ce refroidissement rapide peut être une trempe à l'air ou une trempe à l'eau.
Avantageusement, le procédé de fabrication de cet alliage comprend un traitement thermique de mise en solution. Lors de ce traitement thermique la phase riche en Mn et Si dudit alliage est mise en solution dans la matrice, permettant ainsi la mise en solution ou la précipitation de siliciures de Manganèse. Il en résulte un abaissement des propriétés mécaniques du matériau, notamment la dureté, la charge de rupture, la limite élastique et une augmentation de l'allongement ce qui permet de le travailler de nouveau à froid (comme par exemple le laminage, l'étirage, la frappe à froid, l'emboutissage, etc.). De manière avantageuse ledit traitement thermique de mise en solution comprend une élévation de température supérieure ou égale à 600°C, de préférence supérieure ou égale à 700°C, pendant une période d'au moins 10 minutes, de manière préférée pendant 1 heure, suivie d'un refroidissement rapide ; tel que par exemple une trempe, par exemple une trempe à l'eau ou à l'air.
De manière avantageuse, ledit procédé de fabrication de cet alliage comprend au moins un traitement thermique de précipitation. Ce traitement thermique de précipitation conduit avantageusement à l'effet de durcissement structural. Lors de ce traitement thermique de précipitation la phase riche en Mn et Si est précipitée. Il en résulte une augmentation des propriétés mécaniques du matériau, notamment de la dureté, de la charge de rupture, de la limite élastique.
Avantageusement, le traitement thermique de précipitation est caractérisé par exemple par une élévation de température comprise entre
300 et 500°C, de préférence comprise entre 350 et 450°C, pendant une période de 2 à 4 heures, de manière préférée de 3 heures, suivie d'un refroidissement qui est indifférent quant à sa nature. Le type de refroidissement n'a pas d'importance majeure pour le résultat à obtenir. Avantageusement le procédé de fabrication de cet alliage comprend au moins une trempe. Cette trempe peut être effectuée à l'eau ou à l'air, par exemple.
Avantageusement le procédé de fabrication de cet alliage comprend au moins une opération de laminage. Avantageusement le laminage permet d'écrouir cet alliage, de préférence à 100%, il est possible de laminer (ou d'écrouir) jusqu'à
260 %. De manière avantageuse, cette opération peut être insérée entre le traitement thermique de trempe et le traitement thermique de précipitation. Avantageusement, cet alliage possède une faible conductivite électrique, par exemple de 3 % maximum par rapport à celle du cuivre
(pourcentage en symbole I.A.C.S.).
On mesure également la conductivite électrique en pourcentage
I.A.C.S. de l'alliage (International Annealed Cooper Standard), échelle de comparaison basée sur la conductivite électrique du cuivre pur, qui fait
100 % I.A.C.S.
L'alliage de la présente invention possède une couleur sensiblement blanche, tout à fait comparable aux alliages traditionnellement utilisés contenant du nickel. L'absence de nickel permet d'être en conformité avec l'arrêté relatif à l'interdiction de mise sur le marché de certains produits contenant du nickel, paru au Journal Officiel de la République Française N°165, page
11068, du 19 juillet 2000, ce qui autorise son utilisation, lors de contact avec la peau, notamment lorsque ce contact est prolongé.
Selon un troisième aspect, l'invention concerne l'utilisation d'un alliage tel que décrit précédemment ou obtenu par un procédé de fabrication tel que décrit précédemment, pour la fabrication partielle ou complète de produits, articles, pièces destinées à être mis en contact plus ou moins prolongé avec la peau.
Avantageusement, ledit alliage peut être utilisé dans le domaine de la lunetterie, bijouterie fantaisie, maroquinerie, boutonnerie métallique, coutellerie et couverts, monnaie et médailles.
Avantageusement, ledit alliage peut être utilisé pour la fabrication partielle ou complète de montures de lunettes, branches et cercles de lunettes notamment, boucles d'oreilles, chaînes de cou et de chevilles, colliers, bagues, gourmettes, boucles de ceinture, fermoirs de sac à mains, boutons à rivets, rivets, fermetures à glissière, mitres de couteau, cuillères, fourchettes, pièces de monnaie et médailles commémoratives. Selon un quatrième aspect, l'invention concerne l'utilisation d'un alliage tel que décrit précédemment ou obtenu par un procédé de fabrication tel que décrit précédemment, pour la fabrication partielle ou complète d'au moins une pièce d'un dispositif médical, tel qu'un dispositif de chirurgie, par exemple appareils médicaux et de chirurgie, tels qu'agrafes d'épithélialisation et chirurgicales.
Pour bon nombre de ces articles, la mise en forme est obtenue le plus souvent par découpage, emboutissage et frappe à froid, comme le matriçage, pour obtenir des décors, et est facilitée par la bonne ductilité à l'état de mise en solution des phases riches en manganèse et silicium. Selon un cinquième aspect, l'invention concerne l'utilisation d'un alliage tel que décrit précédemment ou obtenu par un procédé de fabrication tel que décrit précédemment, dans les domaines de l'électrotechnique et de l'électricité, notamment sous forme de résistance, shunts, et/ou éléments chauffants, et/ou utilisé pour sa bonne aptitude au soudage par résistance par point ou à mollette.
Selon un sixième aspect, l'invention concerne un article réalisé au moins en partie avec l'alliage tel que décrit précédemment.
Avantageusement, l'article est choisi parmi le groupe constituant en les fils ou profilés, les bandes, notamment les bandes en rouleaux, les planches, les lingots ou les tôles. Ces articles étant avantageusement dans l'état désiré (TB, TD, TF, ou TH). De préférence, l'article est réalisé entièrement de l'alliage selon l'invention.
Avantageusement, l'article est un article fini tel que ceux décrit ci- dessus (par exemple, au moins une partie des articles suivant : montures de lunettes, branches, cercles de lunettes, boucles d'oreilles, chaînes de cou et de chevilles, colliers, bagues, gourmettes, boucles de ceinture, fermoirs de sac à mains, boutons à rivets, rivets, fermetures à glissière, mitres de couteau, cuillères, fourchettes, pièces de monnaie, médailles commémoratives, dispositif médical, résistances, shunts, et éléments chauffants).
Dans les exemples, toute caractéristique qui apparaîtra être nouvelle par rapport à un état de la technique quelconque fait partie intégrante de la présente invention et la protection est recherchée dans sa fonction et sa généralité. Notamment, les plages de température et de durée des traitements thermiques sont données à titre d'exemple ; l'homme de l'art saura ajuster ces différents paramètres afin d'obtenir les propriétés souhaitées. D'autre part, dans la description et les revendications, tous les pourcentages sont donnés en poids, la température est en degré Celsius et la pression est la pression atmosphérique, sauf indications contraires.
EXEMPLES 1 à 7 SELON LA PRESENTE INVENTION
La préparation de l'alliage, dans les différentes proportions de ses constituants, peut être effectuée, par exemple, par l'élaboration d'un lingot d'environ 1 kg dans un four Baizers sous atmosphère contrôlée. Ces lingots sont obtenus par coulée statique du métal liquide versé dans un moule ou une lingotiere qui peut avantageusement être refroidi(e), par exemple à l'eau. La solidification est lente, et le métal obtenu est stable et ductile. Ces lingots sont référencés dans le tableau I ci-après par le numéro de lingot qui correspond au numéro de l'exemple.
Les lingots N°l, 2, 5, 6, et 7 sont des compositions comparatives de l'alliage de l'invention. L'alliage de l'invention est représenté par les compositions des lingots N° 3 et 4.
Il peut aussi être obtenu des lingots de plus grande dimension, par exemple d'environ 400 mm de large, 200 mm d'épaisseur et 3000 mm de longueur qui pèsent environ 2500 kg et qui sont particulièrement adaptés aux opérations de transformation ultérieure (voir exemple 8 ci-après). Ces lingots subissent alors le cycle de transformation suivant :
- traitement thermique de mise en solution à 700 °C pendant 1 heure suivi d'un refroidissement rapide à l'eau (état de TB) ;
- traitement de laminage (ou d'ecrouissage) (état TD) ; - traitement thermique de précipitation, à une température de 350,
400, 450 ou 500 °C pendant une période de 3 heures, précédé d'une opération d'ecrouissage (état TH) ; Les duretés Vickers des différentes compositions d'alliage selon la présente invention sont exposées ci-après dans le tableau II en fonction de l'état métallurgique. Les résultats exprimés en dureté Vickers (HV). A titre illustratif de l'augmentation de la dureté obtenue par un traitement de précipitation, les inventeurs ont indiqué les duretés Vickers obtenues dans l'état TF, c'est à dire après traitement thermique de précipitation, à une température de 350, 400, 450 ou 500 °C pendant une période de 3 heures.
Les inventeurs entendent par « précipitation », le fait d'effectuer un traitement thermique de précipitation.
Tableau I : Composition des lingots
Figure imgf000018_0001
Tableau II : Dureté Vickers de l'alliage dans différents états metallurgigues :
Figure imgf000019_0001
EXEMPLE 8 SELON LA PRESENTE INVENTION La préparation de l'alliage, par exemple de l'alliage N° 3, peut être élaborée de façon industrielle, par exemple pour élaborer un lingot d'environ 2,5 tonnes (format 200 x 400 mm) par coulée semi-continue. La fusion est effectuée dans un creuset alumineux chauffé par induction à 1150°C à partir du cuivre cathode, manganèse électrolytique et cupro- silicium.
Après éboutage le lingot a été préchauffé à environ 850 °C dans un four à gaz. Le laminage à chaud s'est effectué sur un laminoir réversible en 15 passes afin d'obtenir une bande de 11,5 mm d'épaisseur. Cette bande de largeur 400 mm a été ensuite fraisée à 10,5 mm et laminée à froid à 3,5 mm, ce qui représente un écrouissage de 200 %. La mise en solution des phases riches en manganèse et silicium a été effectuée par le traitement thermique de trempe dans un four à passage sous atmosphère contrôlée, à une température de 700°C, suivi d'un refroidissement à l'eau. A partir de cet état métallurgique (état brut de traitement thermique de trempe), il a été possible de vérifier que les duretés obtenues, dans les différents états métallurgiques TB, TD, TF et TH, correspondent bien aux valeurs du tableau II de l'exemple 3 ci- dessus.
EXEMPLE 9 SELON LA PRESENTE INVENTION
L'alliage de l'exemple N°3 traité thermiquement à 750-770°C, pendant une demi-heure, suivi d'un refroidissement rapide permet d'obtenir une dureté d'environ 85 Vickers. A partir de cet état trempé ou lors du traitement thermique, les phases riches en manganèse et silicium ont été mises en solution, la ductilité de l'alliage permet d'être écroui de plus de 200 % ; l'alliage peut donc supporter les déformations importantes d'un matriçage à froid par exemple. A l'issue de la déformation à froid, la précipitation des phases riches en manganèse et silicium, par traitement thermique de précipitation de 3 heures à 410-420°C, suivi d'un refroidissement lent, confère à la pièce finie une dureté d'environ 270 Vickers.
EXEMPLE 10 à 14 SELON LA PRESENTE INVENTION
Il peut être effectuer, à titre illustratif, les cycles de transformations suivants afin d'obtenir l'alliage de la présente invention dans l'état métallurgique souhaité :
EXEMPLE 10 SELON LA PRESENTE INVENTION
L'alliage N°3 peut subir par exemple le cycle de transformation suivant pour être obtenu à l'état TB. cycle de transformation
Elaboration d'un lingot 400 x 200 x 3500
Traitement d'homogénéisation entre 750 et 850°C pendant 3 à 6 heures, refroidissement indifférent
Laminage à chaud de 200 mm à 11 mm Laminage à froid de 11 mm à 3 mm (environ 260 % d'ecrouissage)
Traitement thermique de mise en solution
Laminage de 3 à 1.5 mm (écrouissage 100%)
Traitement thermique de mise en solution
Le lingot a une épaisseur de 1.5 mm et un état TB. Les dureté Vickers des différentes compositions de l'alliage de la présente invention correspondent aux valeurs du tableau II pour cet état métallurgique. EXEMPLE 11 SELON LA PRESENTE INVENTION
L'alliage N°3 peut subir par exemple le cycle de transformation suivant pour être obtenu à l'état TH. cycle de transformation Elaboration d'un lingot 400 x 200 x 3500
Traitement d'homogénéisation entre 750 et 850°C pendant 3 à 6 heures, refroidissement indifférent Laminage à chaud de 200 mm à 11 mm
Laminage à froid de 11 mm à 3 mm (environ 260 % d'ecrouissage) Traitement thermique de mise en solution Laminage de 3 à 1.5 mm (écrouissage 100%) Traitement thermique de précipitation
Le lingot a une épaisseur de 1.5 mm et un état TH. Les dureté Vickers des différentes compositions de l'alliage de la présente invention correspondent aux valeurs du tableau II pour cet état métallurgique.
EXEMPLE 12 SELON LA PRESENTE INVENTION L'alliage N°3 peut subir par exemple le cycle de transformation suivant pour être obtenu à l'état TD. cycle de transformation
Elaboration d'un lingot 400 x 200 x 3500
Traitement d'homogénéisation entre 750 et 850°C pendant 3 à 6 heures, refroidissement indifférent
Laminage à chaud de 200 mm à 11 mm
Laminage à froid de 11 mm à 3 mm (environ 260 % d'ecrouissage)
Traitement thermique de mise en solution
Laminage de 3 à 1.5 mm (écrouissage 100%) Le lingot a une épaisseur de 1.5 mm et un état TD. Les dureté Vickers des différentes compositions de l'alliage de la présente invention correspondent aux valeurs du tableau II pour cet état métallurgique.
EXEMPLE 13 SELON LA PRESENTE INVENTION
L'alliage N°3 peut subir par exemple le cycle de transformation suivant pour être obtenu à l'état TF. cycle de transformation
Elaboration d'un lingot 400 x 200 x 3500
Traitement d'homogénéisation entre 750 et 850°C pendant 3 à 6 heures, refroidissement indifférent
Laminage à chaud de 200 mm à 11 mm Laminage à froid de 11 mm à 3 mm (environ 260 % d'ecrouissage)
Traitement thermique de mise en solution
Laminage de 3 à 1.5 mm (écrouissage 100%)
Traitement thermique de mise en solution
Traitement thermique de précipitation
Le lingot a une épaisseur de 1.5 mm et état TF. Les dureté Vickers des différentes compositions de l'alliage de la présente invention correspondent aux valeurs du tableau II pour cet état métallurgique. EXEMPLE 14 SELON LA PRESENTE INVENTION
L'alliage N°3 peut subir par exemple le cycle de transformation suivant pour être obtenu à l'état TD. cycle de transformation Elaboration d'un lingot 400 x 200 x 3500
Traitement d'homogénéisation entre 750 et 850°C pendant 3 à 6 heures, refroidissement indifférent
Laminage à chaud de 200 mm à 11 mm
Laminage à froid de 11 mm à 3 mm (environ 260 % d'ecrouissage) Traitement thermique de mise en solution
Laminage de 3 à 1 mm (écrouissage 200%)
Traitement thermique de mise en solution
Laminage de 1 à 0.3 mm (écrouissage 230%)
Traitement thermique de mise en solution Laminage de 0.3 à 0.25 mm (écrouissage 20%)
Le lingot a une épaisseur de 0.25 mm et un état TD. Les duretés Vickers des différentes compositions de l'alliage de la présente invention correspondent aux valeurs du tableau II pour cet état métallurgique.
EXEMPLE 15 SELON LA PRESENTE INVENTION Essai de conductivite électrique
Les alliages, tels que décrits aux exemples 1 à 7, sont soumis à des essais de conductivite électrique afin de vérifier leur adaptation dans les domaines de l'électrotechnique et de l'électricité. Ceci permet également de caractériser ces alliages selon leur état métallurgique. Les essais électriques consistent à calculer la valeur de résistivité électrique, grandeur qui détermine le comportement de l'alliage. On mesure également la conductivite électrique électrique en % I.A.C.S. de l'alliage (International Annealed Cooper Standard), échelle de comparaison basée sur la conductivite électrique du cuivre pur, qui fait 100% I.A.C.S. Les valeurs des conductivites dans le tableau III sont données en fonction de la composition et de l'état métallurgique. Les numéros de lingots correspondent à ceux du tableau I des exemples 1 à 7.
Tableau III: Conductivite electrigue de l'alliage en % I.A.C.S en fonction de l'état metallurgjgue.
Figure imgf000026_0001

Claims

REVENDICATIONS
1. Alliage sensiblement sans nickel comprenant du cuivre, du manganèse, et du silicium, ainsi que les impuretés inévitables, le cuivre constituant le solde, caractérisé en ce qu'il est obtenu par coulée massive d'un alliage consistant essentiellement, en poids, en une proportion en cuivre qui est le solde à 100 %, une proportion en manganèse, qui est supérieure à 8 et inférieure ou égale à 25 %, une proportion en silicium, qui est supérieure à 0,3 et inférieure à 1,5 %, ledit alliage, sous sa forme massive, ayant subi au moins un traitement thermique modifiant ses propriétés mécaniques.
2. Alliage selon la revendication 1, caractérisé en ce que ledit traitement thermique comprend au moins un traitement thermique de revenu, conférant des propriétés mécaniques améliorées audit alliage.
3. Alliage selon la revendication 1 ou 2, caractérisé en ce que ledit traitement thermique comprend au moins un traitement thermique de trempe, facilitant un traitement de mise en forme à froid.
4. Alliage selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit traitement thermique comprend au moins un traitement thermique de revenu et d'au moins un traitement thermique de trempe, suivi ou non d'au moins un traitement de mise en forme à froid.
5. Alliage selon l'une quelconque des revendications précédentes, caractérisé en ce que ledit traitement thermique comprend au moins un traitement de mise en forme à froid suivi d'au moins un traitement thermique de revenu et/ou d'au moins un traitement thermique de trempe.
6. Alliage selon l'une quelconque des revendications précédentes, caractérisé en ce que la proportion en poids en manganèse est supérieure à 8 et inférieure ou égale à 20 %, de préférence est d'environ 15 %.
7. Alliage selon l'une quelconque des revendications précédentes, caractérisé en ce que la proportion en poids en silicium est supérieure à 0,3 et inférieure ou égale à 1,5%, de préférence est supérieure ou égale à 0,5 et inférieure ou égale à 1,5%.
8. Alliage selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comprend en proportion en poids environ : 84% de cuivre ; 15% de Manganèse ; 1% de silicium.
9. Alliage selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comprend en proportion en poids environ : 84.5% de cuivre ; 15% de Manganèse ; 0.5% de silicium.
10. Alliage selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il présente une phase riche en manganèse et en silicium.
11. Procédé de fabrication de l'alliage, tel que défini à l'une quelconque des revendications 1 à 10, caractérisé en ce qu'il comprend une coulée massive de l'alliage, par exemple sous forme de lingot, et la réalisation d'au moins un traitement thermique d'homogénéisation.
12. Procédé, selon la revendication 11, caractérisé en ce que ledit traitement thermique d'homogénéisation comprend une élévation de température comprise entre 700 et 900°C, de préférence à environ 750°C, pendant une période supérieure ou égale à 3 heures, de manière préférée 4 heures, éventuellement suivie d'un refroidissement rapide.
13. Procédé, selon la revendication 11 ou 12, caractérisé en ce qu'il comprend au moins un traitement de mise en solution.
14. Procédé, selon l'une quelconque des revendications 11 à 13, caractérisé en ce que ledit traitement de mise en solution comprend une élévation de température supérieure ou égale à 600°C, de préférence supérieure ou égale à 700°C, pendant une période d'au moins 10 minutes, de manière préférée pendant 1 heures, suivie d'un refroidissement rapide.
15. Procédé, selon l'une quelconque des revendications 11 à 14, caractérisé en ce qu'il comprend au moins un traitement thermique de précipitation.
16. Procédé, selon l'une quelconque des revendications 11 à 15, caractérisé en ce que ledit traitement thermique de précipitation comprend une élévation de température comprise entre 300 et 500°C, de préférence comprise entre 350 et 450°C, pendant une période de 2 à 4 heures, de manière préférée de 3 heures, suivie d'un refroidissement.
17. Procédé, selon l'une quelconque des revendications 11 à 16, caractérisé en ce qu'il comprend au moins une trempe.
18. Procédé, selon l'une quelconque des revendications 11 à 17, caractérisé en ce qu'il comprend au moins une opération de transformation mécanique à froid, en particulier tel que de laminage, d'étirage, de tréfilage ou d'ecrouissage.
19. Utilisation d'un alliage, tel que défini à l'une quelconque des revendications 1 à 10 ou tel qu'obtenu par un procédé tel que défini à l'une quelconque des revendications 11 à 18, pour la fabrication partielle ou complète de produits, articles, pièces destinées à être mis en contact plus ou moins prolongé avec la peau.
20. Utilisation selon la revendication 19, dans le domaine de la lunetterie, bijouterie fantaisie, maroquinerie, boutonnerie métallique, coutellerie et couverts, monnaie et médailles.
21. Utilisation selon la revendication 19 ou 20, caractérisée en ce ledit alliage peut être utilisé pour la fabrication de montures de lunettes, branches et cercles de lunettes notamment, boucles d'oreilles, chaînes de cou et de chevilles, colliers, bagues, gourmettes, boucles de ceinture, fermoirs de sac à mains, boutons à rivets, rivets, fermetures à glissière, mitres de couteau, cuillères, fourchettes, pièces de monnaie et médailles commémoratives.
22. Utilisation d'un alliage tel que décrit selon l'une quelconque des revendications 1 à 10, ou tel qu'obtenu par un procédé tel que défini à l'une quelconque des revendications 11 à 18, pour la fabrication partielle ou complète d'au moins une pièce d'un dispositif médical, tel qu'un dispositif de chirurgie, par exemple appareils médicaux et de chirurgie tels qu'agrafes d'épithélialisation et chirurgicales.
23. Utilisation d'un alliage tel que décrit selon l'une quelconque des revendications 1 à 10, ou tel qu'obtenu par un procédé tel que défini à l'une quelconque des revendications 11 à 18, caractérisée en ce que ledit alliage est utilisé dans les domaines de l'electrotechnique et de l'électricité, notamment sous forme de résistance, shunts, et/ou éléments chauffants, et/ou utilisé pour sa bonne aptitude au soudage par résistance par point ou à mollette.
24. Article caractérisé en ce qu'il est réalisé au moins en partie avec l'alliage selon les revendications 1 à 10.
PCT/FR2003/002407 2002-07-30 2003-07-30 Alliage cuivreux, sans nickel, du type cuivre, manganese, silicium WO2004013363A2 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003269081A AU2003269081A1 (en) 2002-07-30 2003-07-30 Nickel-free cupreous alloy of a copper, manganese, silicon type

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/09656 2002-07-30
FR0209656A FR2843128A1 (fr) 2002-07-30 2002-07-30 Alliage cuivreux, sans nickel, du type cuivre, manganese, silicium

Publications (2)

Publication Number Publication Date
WO2004013363A2 true WO2004013363A2 (fr) 2004-02-12
WO2004013363A3 WO2004013363A3 (fr) 2004-04-08

Family

ID=30129531

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/002407 WO2004013363A2 (fr) 2002-07-30 2003-07-30 Alliage cuivreux, sans nickel, du type cuivre, manganese, silicium

Country Status (3)

Country Link
AU (1) AU2003269081A1 (fr)
FR (1) FR2843128A1 (fr)
WO (1) WO2004013363A2 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3147382A1 (fr) * 2015-09-25 2017-03-29 Berkenhoff GmbH Utilisation d'un élément métallique formé à partir d'un alliage cuivre-zinc-manganèse en tant qu'élément de chauffage électrique

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE402614C (de) * 1922-12-09 1924-09-18 Aeg Schmelzeinsatz zum elektrischen Schweissen oder Loeten von Kupfer im elektrischen Lichtbogen
US1692936A (en) * 1926-07-17 1928-11-27 Heusler Friedrich Copper alloy
GB578774A (en) * 1942-11-04 1946-07-11 Maurice Cook Improvements in or relating to wrought metal electrical resistance materials
DE1187805B (de) * 1960-03-24 1965-02-25 Dr Eugen Vaders Doppelmetall-Lagerschale
DE1258104B (de) * 1964-09-17 1968-01-04 Dr Eugen Vaders Doppelmetall-Lagerschale
US4036669A (en) * 1975-02-18 1977-07-19 Raychem Corporation Mechanical preconditioning method
US4047978A (en) * 1975-04-17 1977-09-13 Olin Corporation Processing copper base alloys
EP0568094A1 (fr) * 1992-04-30 1993-11-03 Deutsche Nickel Ag Alliage lourd non-ferreux, exempt de nickel et son application
EP1045042A1 (fr) * 1999-04-16 2000-10-18 Ykk Corporation Alliage de cuivre blanc, exempt de nickel
EP1061148A1 (fr) * 1999-06-17 2000-12-20 Ykk Corporation Alliage de cuivre blanc sans nickel
EP1184471A2 (fr) * 2000-09-02 2002-03-06 Berkenhoff GmbH Alliage, en particulier fil pour monture de lunettes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE457587A (fr) *
US1840921A (en) * 1929-08-01 1932-01-12 H L Spence Company Bronze for welding
AT190284B (de) * 1953-09-18 1957-06-25 Bayrisches Druckgusz Werk Thur Rotgußlegierung, insbesondere zur Herstellung von Kokillengußstücken
JP2623777B2 (ja) * 1988-10-17 1997-06-25 三菱マテリアル株式会社 Cu系焼結合金製変速機用同期リング
US5000273A (en) * 1990-01-05 1991-03-19 Norton Company Low melting point copper-manganese-zinc alloy for infiltration binder in matrix body rock drill bits
JPH08174272A (ja) * 1994-12-21 1996-07-09 Mitsui Mining & Smelting Co Ltd 硬化肉盛用銅基合金粉末

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE402614C (de) * 1922-12-09 1924-09-18 Aeg Schmelzeinsatz zum elektrischen Schweissen oder Loeten von Kupfer im elektrischen Lichtbogen
US1692936A (en) * 1926-07-17 1928-11-27 Heusler Friedrich Copper alloy
GB578774A (en) * 1942-11-04 1946-07-11 Maurice Cook Improvements in or relating to wrought metal electrical resistance materials
DE1187805B (de) * 1960-03-24 1965-02-25 Dr Eugen Vaders Doppelmetall-Lagerschale
DE1258104B (de) * 1964-09-17 1968-01-04 Dr Eugen Vaders Doppelmetall-Lagerschale
US4036669A (en) * 1975-02-18 1977-07-19 Raychem Corporation Mechanical preconditioning method
US4047978A (en) * 1975-04-17 1977-09-13 Olin Corporation Processing copper base alloys
EP0568094A1 (fr) * 1992-04-30 1993-11-03 Deutsche Nickel Ag Alliage lourd non-ferreux, exempt de nickel et son application
EP1045042A1 (fr) * 1999-04-16 2000-10-18 Ykk Corporation Alliage de cuivre blanc, exempt de nickel
EP1061148A1 (fr) * 1999-06-17 2000-12-20 Ykk Corporation Alliage de cuivre blanc sans nickel
EP1184471A2 (fr) * 2000-09-02 2002-03-06 Berkenhoff GmbH Alliage, en particulier fil pour monture de lunettes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 11, 29 novembre 1996 (1996-11-29) -& JP 08 174272 A (MITSUI MINING & SMELTING CO LTD), 9 juillet 1996 (1996-07-09) cité dans la demande *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3147382A1 (fr) * 2015-09-25 2017-03-29 Berkenhoff GmbH Utilisation d'un élément métallique formé à partir d'un alliage cuivre-zinc-manganèse en tant qu'élément de chauffage électrique

Also Published As

Publication number Publication date
AU2003269081A1 (en) 2004-02-23
FR2843128A1 (fr) 2004-02-06
AU2003269081A8 (en) 2004-02-23
WO2004013363A3 (fr) 2004-04-08

Similar Documents

Publication Publication Date Title
EP2450460B1 (fr) Alliage d'or gris sans nickel et sans cuivre
EP3165622B1 (fr) Procédé de fabrication d'un fil en alliage d'or
US10323310B2 (en) Process for making finished or semi-finished articles of silver alloy
EP1751322B1 (fr) Procede pour produire des articles finis ou semi-finis a partir d'un alliage d'argent comprenant du cuivre et du germanium
JP2007520632A (ja) 白金合金及びその製造方法
CA2915411A1 (fr) Element de structure extrados en alliage aluminium cuivre lithium
FR3053979B1 (fr) Flans en alliages d’aluminium avec un recuit flash local
WO2000032829A1 (fr) Alliage pouvant etre traite a la chaleur de platine, gallium, palladium pour la bijouterie
EP1287171B1 (fr) Alliage fe-ni durci pour la fabrication de grilles support de circuits integres et procede de fabrication
WO2004013363A2 (fr) Alliage cuivreux, sans nickel, du type cuivre, manganese, silicium
US7128792B2 (en) Sterling silver manganese alloy compositions
US6562158B1 (en) Heat-treatable platinum-gallium-palladium alloy for jewelry
FR2519568A1 (fr) Procede de fabrication de plaques et de feuilles en chrome metallique
EP3656245B1 (fr) Alliage d'or comprenant au moins 990 pour mille en poids d'or, article d'horlogerie ou de joaillerie a base d'un alliage d'or comprenant au moins 990 pour mille en poids d'or, et procédé de fabrication dudit alliage
GB2414739A (en) Process for making finished or semi-finished articles of silver alloy
EP3862445A1 (fr) Alliage d'or et son procede de fabrication
EP3808865B1 (fr) Alliage d'or blanc et son procede de fabrication
CH711727B1 (fr) Procédé de fabrication d’un fil en alliage d’or.
JPH11310836A (ja) 装飾用時効硬化性材料
BE511694A (fr)
BE437591A (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP