WO2004010872A1 - 超音波診断システム及び歪み分布表示方法 - Google Patents

超音波診断システム及び歪み分布表示方法 Download PDF

Info

Publication number
WO2004010872A1
WO2004010872A1 PCT/JP2003/009731 JP0309731W WO2004010872A1 WO 2004010872 A1 WO2004010872 A1 WO 2004010872A1 JP 0309731 W JP0309731 W JP 0309731W WO 2004010872 A1 WO2004010872 A1 WO 2004010872A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression
correlation
ultrasonic
measurement point
distribution
Prior art date
Application number
PCT/JP2003/009731
Other languages
English (en)
French (fr)
Inventor
Tsuyoshi Shiina
Makoto Yamakawa
Naotaka Nitta
Original Assignee
Hitachi Medical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002222868A external-priority patent/JP4258015B2/ja
Priority claimed from JP2002222869A external-priority patent/JP4221555B2/ja
Application filed by Hitachi Medical Corporation filed Critical Hitachi Medical Corporation
Priority to US10/522,807 priority Critical patent/US8041415B2/en
Priority to EP03771448.2A priority patent/EP1541090B1/en
Publication of WO2004010872A1 publication Critical patent/WO2004010872A1/ja
Priority to US12/956,959 priority patent/US8382670B2/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/485Diagnostic techniques involving measuring strain or elastic properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0048Detecting, measuring or recording by applying mechanical forces or stimuli
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Clinical applications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/10Systems for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52036Details of receivers using analysis of echo signal for target characterisation
    • G01S7/52042Details of receivers using analysis of echo signal for target characterisation determining elastic properties of the propagation medium or of the reflective target
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Clinical applications
    • A61B8/0825Clinical applications for diagnosis of the breast, e.g. mammography

Definitions

  • the present invention relates to an ultrasonic diagnostic system and a strain distribution display method capable of quantitatively measuring the hardness of a living tissue using an ultrasonic diagnostic apparatus.
  • Ultrasonic tissue characterization is an application of medical ultrasound to measuring and imaging not only tissue shapes but also physical quantities such as sound velocity and attenuation constant in tissues using ultrasound.
  • One of them is the field of measuring the hardness of tissue, that is, the elastic property, which is being actively studied. This is because the elastic properties of a tissue are closely related to its pathological state. For example, it is known that sclerosing cancers such as breast cancer and thyroid cancer, cirrhosis, and arteriosclerosis have harder lesions than normal tissues.
  • sclerosing cancers such as breast cancer and thyroid cancer, cirrhosis, and arteriosclerosis have harder lesions than normal tissues.
  • hardness information of living tissue was obtained by palpation, but it is difficult to express objective information by palpation, and it requires the experience of a doctor, and the measurable area is limited to a somewhat large lesion near the body surface .
  • the ultrasonic echo signal (RF signal before compression) is measured before the tissue is compressed by the ultrasonic probe, using the ultrasonic diagnostic equipment and the ultrasonic probe as they are. 2 After that, the tissue is slightly compressed (about a few percent) with an ultrasonic probe, for example, and the ultrasonic echo signal (RF signal after compression) of the compressed tissue is measured. Then, from the measured RF signals before and after the tissue compression, the displacement distribution, which is the amount of displacement of each point inside the tissue due to compression, is estimated by the spatial correlation method.
  • the spatial correlation method is a method of estimating the displacement distribution in the tissue caused by compression from the RF signal (or the envelope of the RF signal) before and after tissue compression by template matching using a two-dimensional correlation function.
  • a fixed-size two-dimensional correlation window template
  • This is a method of estimating that the measurement point of interest has moved to the two-dimensional position of the signal data by autocorrelation processing. This autocorrelation processing is performed for each measurement point set in a grid, for example, to estimate a displacement distribution.
  • the sampling interval in the horizontal direction is generally larger than the sampling interval in the axial direction, so that the accuracy of the estimated displacement component is higher in the horizontal direction than in the axial direction.
  • the spatial correlation method has a feature that a two-dimensional displacement vector component can be estimated.
  • the displacement estimation accuracy is limited by the sampling interval, the displacement distribution can be estimated even when the tissue is significantly deformed (for example, about 5%).
  • the amount of calculation required for the spatial correlation processing is enormous, which impairs the real-time property, which is an advantage of ultrasonic measurement.
  • An object of the present invention is to obtain a displacement distribution, a strain distribution, and an elastic modulus distribution in real time.
  • an ultrasonic diagnostic system of the present invention provides a displacement of tissue of a subject based on a reflected echo signal (RF signal) measured before and after compression of the subject by an ultrasound probe.
  • the storage means for storing the feature quantity including the envelope signal of the RF signal output from the ultrasonic probe, and before and after compression based on the feature quantity of the subject stored before and after compression stored in this storage means
  • Correlation calculating means for calculating the correlation coefficient of the characteristic amount of the above and the phase difference between the received signals before and after compression
  • Displacement calculating means for calculating a displacement of a measurement point due to compression based on a relation number and a phase difference between RF signals before and after compression.
  • the displacement of the measurement point is obtained by using the correlation based on the features such as the envelope signal before and after the compression, the displacement distribution can be estimated in real time.
  • the problem of aliasing in the Doppler method can be solved.
  • the self-time of the envelope signal after compression is shifted while shifting the time axis of the envelope signal after compression. If the correlation function is determined for each measurement point, the computation time may be too long and the real-time property may be impaired.
  • the autocorrelation function of the envelope signal before and after compression is calculated first, and the obtained autocorrelation function is shifted according to the movement of the measurement point, for example, by a half wavelength interval of the ultrasonic signal, and the correlation coefficient is calculated. Is preferably obtained. As a result, the time required for the displacement calculation can be reduced, and the processing can be speeded up.
  • the ultrasonic diagnostic system of the present invention further comprises: storage means for storing an envelope signal of the orthogonally detected RF signal; and the envelope before and after compression of the subject corresponding to the slice plane stored in the storage means.
  • a measurement point is set in the frame data of the signal, the measurement point is moved at least two-dimensionally with respect to the frame data, and the envelope signal before and after the compression belonging to the two-dimensional correlation window surrounding the measurement point is compressed.
  • a correlation calculating means for determining a position where the correlation coefficient is maximum, and a phase difference between the RF signals before and after the compression, a position where the correlation coefficient determined by the correlation calculating means is maximum, and A displacement calculating means for calculating a displacement of the measurement point in at least a two-dimensional direction due to the compression based on the phase difference.
  • the two-dimensional direction is set to the direction of the ultrasonic beam received by the ultrasonic probe and the scanning direction of the ultrasonic beam.
  • the moving pitch of the measurement point in the ultrasonic beam direction is not limited to a half wavelength interval of the ultrasonic signal, but a smaller pitch is preferable.
  • the envelope before and after compression is obtained. It is desirable to find the autocorrelation function of the line signal, and to shift this autocorrelation function according to the movement of the measurement point to find the position where the correlation coefficient becomes maximum.
  • the displacement calculation according to the present invention can be applied not only to two dimensions but also to three dimensions.
  • frame data stored in the storage means is a multimedia data having frame data of a plurality of slice planes.
  • an envelope signal obtained by scanning in the slice direction is added.
  • the correlation calculating means moves the measurement point in the three-dimensional direction with respect to the polygon data, and determines a position where the correlation coefficient of the envelope signal before and after the compression belonging to the three-dimensional correlation window surrounding the measurement point is maximum. And the phase difference between the RF signals before and after compression.
  • the three-dimensional directions are the direction of the ultrasonic beam received by the ultrasonic probe, the scanning direction of the ultrasonic beam, and the slice direction orthogonal to these.
  • the correlation calculation means obtains a phase difference between the RF signals before and after the compression in the ultrasonic beam scanning direction, the ultrasonic beam scanning direction, and the slice direction orthogonal thereto.
  • the above-described high-speed processing method can be applied also when obtaining a three-dimensional displacement.
  • the method of obtaining the elastic modulus distribution is to divide the subject into a finite number of Also, it is possible to provide an elastic coefficient calculating means for creating a two-dimensional or three-dimensional finite element model and calculating an elastic coefficient distribution using the modeling information and the obtained strain distribution. Further, the obtained elasticity distribution can be displayed on the display means.
  • the elastic modulus calculation means assumes that the subject tissue is an isotropic elastic body and near incompressible, divides the subject tissue into a finite number of rectangular parallelepiped elements, creates a three-dimensional finite element model, and It is preferable that the elastic modulus, stress, and strain are uniform, and the elastic modulus distribution is calculated using the strain distribution information in the elasticity equation.
  • the assumption that the tissue is an isotropic elastic body is that when the tissue is statically compressed by applying external pressure, the relationship between stress and strain is almost linear, and the tissue is assumed to be an elastic body. Since the tissue can be approximated and the tissue of the subject is substantially isotropic, the present invention assumes that the tissue is an isotropic elastic body.
  • Poisson's ratio 0.5
  • the Poisson's ratio is a parameter that does not change much in the living body compared to the Young's modulus, it is preferable that the Poisson's ratio be constant at 0.49 in the present invention. According to this elastic modulus distribution calculation, the elastic modulus distribution can be reconstructed only from the axial strain distribution that can be calculated with high accuracy, and a stable elastic coefficient distribution can be calculated.
  • FIG. 1 is a diagram for explaining the principle of an ultrasonic diagnostic apparatus.
  • FIG. 2 is a diagram showing a specific example of a tissue elasticity measurement method using static compression and a principle of the tissue elasticity measurement method using static compression.
  • FIG. 3 is a diagram illustrating the principle of the spatial correlation method.
  • FIG. 4 is a diagram illustrating the principle of the Doppler method.
  • FIG. 5 is a diagram illustrating the principle of the composite autocorrelation method.
  • FIG. 6 shows a block diagram showing the circuit configuration that executes the basic algorithm of the complex autocorrelation method.
  • FIG. 7 is a block diagram showing a schematic configuration of an ultrasonic diagnostic system according to one embodiment of the present invention.
  • FIG. 8 is a flowchart showing a basic algorithm of the three-dimensional composite autocorrelation method.
  • FIG. 9 is a flowchart showing a basic algorithm of the three-dimensional composite autocorrelation method according to the ultrasonic diagnostic system of the present invention, and is a flowchart showing details of a part of the processing of FIG.
  • FIG. 10 is a flowchart showing details of the accelerated composite autocorrelation method in step S15 of FIG.
  • FIG. 11 is a block diagram showing a circuit configuration for executing a basic algorithm of the three-dimensional composite autocorrelation method according to the ultrasonic diagnostic system of the present invention.
  • FIG. 12 is a diagram schematically illustrating the procedure of the simulation.
  • FIG. 13 is a diagram illustrating an example of each point spread function used when the ultrasonic center frequency is 5.0 MHz.
  • Figure 14 is a diagram showing the outline of the organization model.
  • FIG. 15 is a diagram illustrating a distortion estimation error of each method with respect to the lateral displacement.
  • Figure 16 is a diagram showing the strain distribution estimated by each method (complex autocorrelation method, extended complex autocorrelation method, spatial correlation method) when the lateral displacement is 0.0 mm.
  • Figure 17 is a diagram showing the strain distribution estimated by each method (combined autocorrelation method, extended combined autocorrelation method, spatial correlation method) when the lateral displacement is 0.4 mm.
  • FIG. 18 is a diagram schematically showing a tissue model used for verification of oblique compression.
  • Figure 19 shows the strain distribution estimation results when the tissue model is simply compressed in the axial direction.
  • FIG. 20 shows a strain distribution estimation result when the tissue model is compressed in an oblique direction.
  • FIG. 21 is a diagram showing an example of two tissue models having a three-dimensional structure.
  • FIG. 22 is a first diagram illustrating each estimation result in the inclusion model.
  • FIG. 23 is a second diagram illustrating each estimation result in the inclusion model.
  • FIG. 24 is a first diagram illustrating each estimation result in the layered model.
  • FIG. 25 is a second diagram illustrating each estimation result in the layered model.
  • FIG. 26 is a diagram showing a basic configuration of the ultrasonic diagnostic system.
  • FIG. 27 is a diagram showing a specific configuration of the ultrasonic scanner used in the ultrasonic diagnostic system. BEST MODE FOR CARRYING OUT THE INVENTION
  • the ultrasonic diagnostic system of the present embodiment when performing the envelope correlation calculation, the processing that was one-dimensionally searched using the one-dimensional correlation window by the composite autocorrelation method is performed by performing a two-dimensional search using the two-dimensional correlation window.
  • a method called the extended composite autocorrelation method that also supports lateral movement is adopted.
  • this extended composite autocorrelation method reduces the amount of calculation by performing the envelope correlation calculation only at grid points at half-wavelength intervals in the axial direction and at line intervals in the horizontal direction, thereby increasing the speed. ing.
  • the extended composite autocorrelation method also uses the phase information to improve the axial displacement estimation accuracy.
  • phase information cannot be used for lateral displacement estimation because there is no signal to be used as a carrier. Therefore, the estimation accuracy of the lateral displacement is limited by the lateral sampling interval (ultrasonic beam line interval) as in the spatial correlation method.
  • the elastic modulus distribution reconstruction method proposed later since the elastic modulus distribution can be estimated only from the axial strain (displacement) distribution, the lateral displacement estimation accuracy is not particularly improved in this embodiment.
  • FIG. 1 is a diagram for explaining the principle of an ultrasonic diagnostic apparatus.
  • the ultrasonic probe 10 as an ultrasonic probe converts an electric signal into an ultrasonic wave and converts the ultrasonic wave into an electric signal. Emit an ultrasonic pulse into tissue 11.
  • the ultrasonic pulse radiated into the living tissue 11 is partially reflected at the first boundary 12 having a different acoustic impedance, and is reflected as a reflected echo 12 a. It goes to the wave probe 10 side, and the rest goes through.
  • a part of the transmitted ultrasonic pulse is similarly reflected at the second boundary 13 having the next different acoustic impedance, travels to the ultrasonic probe 10 side as a reflected echo 13a, and the rest is transmitted.
  • the reflected echo signal of the ultrasonic wave reflected in this way is received by the ultrasonic probe 10 and converted into a reflected echo signal of an electric signal.
  • the time t from the emission of the ultrasonic pulse from the ultrasonic probe 10 to the reception of the reflected echo signal from the reflective object 14 (distance between different acoustic impedances) located at the distance L is The following equation (1) is obtained.
  • c is the speed of sound in the living body, which can be regarded as approximately constant at 1500 [m / sec] in soft tissue. Therefore, by measuring the time t until the reflected echo signal is received, the distance L from the probe to the reflecting object can be obtained. Since the reflected echo signal has acoustic characteristic information of the living tissue, information of the living tissue such as a B-mode tomographic image can be displayed on the display based on the reflected echo signal. For example, using an ultrasonic diagnostic apparatus, an elastic property relating to the hardness of a tissue is measured.
  • the principle of measuring elastic properties is to apply mechanical vibration to tissue and evaluate hardness information from the propagation speed of the shear wave.
  • the propagation speed of the shear wave is faster in hard tissue and the propagation speed of the shear wave in soft tissue. Is based on being slow.
  • the propagation velocity V of the transverse wave propagating through the living tissue is, as shown in the following formula (2), the tissue density P, the shear elastic modulus ⁇ , the shear viscosity coefficient 2 , and the angular frequency ⁇ of the vibration. Involved.
  • FIG. 2A is a diagram showing a specific example of a tissue elasticity measurement method using static compression.
  • Fig. 2 (B) is a diagram showing the principle of the tissue elasticity measurement method using static compression. As is clear from the figure, this method measures the ultrasonic echo signal (compressed RF signal) of the tissue 11 before compression using the conventional ultrasonic diagnostic apparatus and ultrasonic probe 10 as they are.
  • the tissue 11 is slightly compressed (about several percent) by the ultrasonic probe 10, and the compressed ultrasonic echo signal (compressed RF signal) of the tissue 11 is measured. Then, from the measured RF signals before and after the tissue compression, a displacement distribution, which is the amount of movement of each point in the tissue due to the compression, is estimated.
  • the main methods of this displacement distribution estimation method include a method using spatial correlation and a method using Doppler principle.
  • FIG. 3 is a diagram illustrating the principle of the spatial correlation method.
  • the displacement distribution inside the tissue caused by compression is estimated from the RF signal (or the envelope of the RF signal) before and after tissue compression by template matching using a two-dimensional correlation function.
  • the specific processing is as follows. First, assuming that the RF signal (or its envelope signal) before and after tissue compression is (t, x), i 2 (t, x), the cross-correlation coefficient C (t, X; n, m) is given by the following equation (3).
  • t is the coordinate in the ultrasonic beam direction (axial direction)
  • X is the coordinate in the direction perpendicular to it (lateral direction)
  • t Is the correlation window size in the axial direction
  • x Q is the correlation window size in the horizontal direction
  • Li is the sampling interval in the axial direction
  • L x is the sampling interval in the horizontal direction
  • n and m are integers.
  • the accuracy of the estimated displacement component is lower in the lateral component than in the axial component.
  • the above processing is performed for each measurement point to estimate the displacement distribution.
  • the feature of the spatial correlation method is that it can estimate the two-dimensional displacement vector component.
  • the displacement distribution can be estimated even when the tissue is greatly deformed (about 5%).
  • the amount of calculation becomes enormous, the advantage of ultrasonic measurement, the real-time property, is lost.
  • the displacement estimation accuracy is also limited by the sampling interval, there is a problem that the accuracy is lower than the Doppler method described later.
  • FIG. 4 is a diagram illustrating the principle of the Doppler method. This method estimates the displacement distribution inside the tissue caused by compression from the RF signals before and after tissue compression using the Doppler principle used for blood flow measurement. The specific processing is as follows. First, the RF signal before and after tissue compression is modeled as in the following equation (4).
  • the Doppler method is a method of estimating the displacement distribution by performing the above processing for each measurement point, and is the same processing as blood flow measurement based on the Doppler principle. Therefore, there is an advantage that real-time measurement is possible. Also, since the phase information is used, the displacement estimation accuracy is better than the spatial correlation method. However, when the amount of movement inside the tissue is large, for example, when the wavelength is more than a quarter wavelength of the ultrasonic center frequency, aliasing occurs and correct displacement cannot be estimated. As can be seen from the above equation, only the axial displacement component can be estimated.
  • FIG. 5 is a diagram showing the principle of the composite autocorrelation method proposed by the present inventors.
  • the composite autocorrelation method solves the aliasing problem in the Doppler method by using the correlation based on the RF signal envelope.
  • the specific processing is as follows.
  • the RF signal before and after tissue compression is modeled as in the following equation, as in the case of the Doppler method.
  • T is the period of the ultrasonic wave
  • R A (t; r) is the self of the envelope.
  • the correlation function, t is the size of the correlation window
  • * is the complex conjugate
  • n is the number of movement pitches of the measurement points during the search
  • R u (t; 0) is the autocorrelation function of (t)
  • R 22 (t; n) is the autocorrelation function of s 2 (t + ⁇ ../ 2).
  • the method of estimating the displacement distribution by performing the above processing for each measurement point is the composite autocorrelation method, which is an extended version of the Doppler method. Therefore, it is a method that enables real-time measurement.
  • envelope correlation also supports displacement distribution estimation in the case of large deformation that cannot be measured by the Doppler method (when a displacement of more than one-quarter wavelength of ultrasonic waves occurs).
  • FIG. 6 is a block diagram showing a circuit configuration for executing a basic algorithm of the composite autocorrelation method.
  • the quadrature detection circuit (QD) 131 before pressurization inputs the signal before pressurization—the signal X (t), performs quadrature detection, and performs quadrature detection signals I x (t) and Qx (t).
  • the signal is output to the first correlation operation circuit 133 and the first correlation coefficient operation circuits 1350 to 135N.
  • the first correlation calculation circuit 133 calculates a correlation value RXX based on the signals Ix and Qx, and outputs it to each of the second correlation coefficient calculation circuits 1380 to 138N.
  • the second correlation calculation circuit 1340 includes a quadrature detection signal I y (t), Qy (t) is input, a correlation value Ry y is calculated based on the signals I y and Qy, and the calculated value is output to the second correlation coefficient calculation circuit 1380.
  • the first correlation coefficient calculation circuit 1350 includes a quadrature detection signal IX (t), Qx (t) from the quadrature detection circuit 131 before pressurization and a quadrature detection signal Iy (t) from the quadrature detection circuit 1320 after the first pressurization.
  • Qy (t) are input to obtain complex baseband signals S R and S, which are output to the third correlation operation circuit 1360 and the phase difference operation circuit 1370.
  • the third correlation operation circuit 1360 receives the complex baseband signals S R , S, from the first correlation coefficient operation circuit 1350, calculates a correlation value I Rxy I based on the complex base band signals S R , S, and calculates the second correlation coefficient Output to arithmetic circuit 1380.
  • the phase difference calculation circuit 1370 receives the complex baseband signal S R , from the first correlation coefficient calculation circuit 1350, and calculates the phase difference ⁇ based on the signal. (T).
  • the second phase relation number calculation circuit 1380 includes a correlation value R xx from the first correlation calculation circuit 133, a correlation value I Rxy I from the third correlation calculation circuit 1360, and a correlation value from the second correlation calculation circuit 1340. Enter Ry y and the correlation coefficient C based on each of these correlation values. Calculate (t) and output.
  • (t) I y 1 + j Qy 1 outputs to the (I y, (t), Q yi (t)) of the first correlation coefficient computing circuit 1341 and the second correlation computing circuit 1351.
  • the second correlation calculation circuit 1341 receives the quadrature detection signals I y, (t), Qy, (t) from the second quadrature detection circuit after pressurization (QD) 1321, and inputs the signals I y, (t), A correlation value Ry i is calculated based on Qy, (t) and output to the second correlation coefficient calculation circuit 1381.
  • the first correlation coefficient calculation circuit 1351 is composed of the quadrature detection signals I x (t) and Qx (t) from the quadrature detection circuit 131 before compression, and the quadrature detection circuit (QD) 1321 from the second quadrature detection circuit after compression.
  • the detection signals I y t (t), Qy, (t) are input, complex complex band signals S K1 , S n are obtained, and the signals are output to the third correlation operation circuit 1361 and the phase difference operation circuit 1371.
  • the third correlation operation circuit 136 1 receives the complex baseband signals S R1 , S hinderfrom the first correlation coefficient operation circuit 1351, obtains a correlation value I Rxyi I based on the input, and calculates the second correlation coefficient Output to arithmetic circuit 1381.
  • the second post-compression quadrature detection circuit (QD) 13 22 to 132N, the second correlation operation circuit 1342 to 134N, The correlation coefficient operation circuits 1352 to 135N, the third correlation operation circuits 1362 to 136N, the phase difference operation circuits 1 372 to 137N, and the second correlation coefficient operation circuits 1382 to 138N are the first and second stages described above.
  • the same processing as that of the circuit group is performed, and the correlation coefficients C 2 (t) to C N (t) and the phases ⁇ 2 (t) to ⁇ ⁇ (t) are output.
  • the circuit that executes the basic algorithm of the correlation method delays the pressurized echo signal y (t) by the delay circuit 134-13N by the ultrasonic cycle TZ2 (half wavelength), and then delays it by the quadrature detection circuit ( QD) Quadrature detection is individually performed using 1320 to 132N.
  • the strain distribution can be obtained by spatially differentiating it.
  • the strain distribution qualitatively represents the elastic properties of the tissue, and a diagnosis based on considerable elastic properties can be made even from the strain distribution.
  • the entire lesion such as cirrhosis
  • the tissue elastic modulus distribution is obtained from the strain distribution and stress distribution inside the tissue as described above.
  • the elastic modulus distribution must be reconstructed in an inverse problem from the strain distribution and the boundary conditions for tissue compression. Therefore, it is generally difficult to solve the inverse problem, and few elastic modulus reconstruction methods have been proposed at present. A conventionally proposed elastic modulus reconstruction method will be described below.
  • This method reconstructs the tissue elastic modulus distribution from the strain distribution (all components of the strain tensor including the shear strain component).
  • estimating the absolute elastic modulus requires an area where the elastic modulus is known in advance (reference area).
  • FIG. 7 is a block diagram showing a schematic configuration of an ultrasonic diagnostic system according to one embodiment of the present invention.
  • an ultrasonic probe 91 transmits an ultrasonic wave into a subject and receives a reflected wave of the ultrasonic wave.
  • a conventional sector scan probe sector phased array probe
  • linear scan probe linear array
  • Probe competing Scan probe
  • RF signals before and after the tissue compression are output to the quadrature detector 92.
  • the quadrature detector 92 converts the RF signal before and after the tissue compression into a complex envelope signal (IQ signal) before and after the tissue compression, respectively, and outputs the complex envelope signal to the complex two-dimensional correlation calculator 93.
  • the complex two-dimensional correlation calculator 93 calculates the two-dimensional correlation between the RF signals before and after the tissue compression, and outputs the position where the correlation becomes maximum to the lateral displacement calculator 94 and the axial displacement calculator 95. Then, the phase of the correlation function at that time is output to the axial displacement calculator 95.
  • Lateral displacement calculation unit 9 4 calculates the lateral displacement Iotaiota chi based on the correlation maximum position in the lateral direction from the complex two-dimensional correlation calculation unit 9 3, and outputs it to the lateral distortion calculation section 9 6 .
  • the axial displacement calculator 9 5 calculates the displacement u y in the axial direction based on the axial direction of the correlation maximum position and phase at that time from the complex two-dimensional correlation calculation unit 9 3, axial strain it Output to calculation unit 97.
  • the lateral distortion calculator 96 calculates the lateral distortion distribution ⁇ ⁇ ⁇ by spatially differentiating the distribution of the lateral displacement u x from the lateral displacement calculator 94 , and then quantizes it. Output to 8.
  • axial strain calculating unit 9 7 calculates the axial strain distribution epsilon gamma by spatially differentiating the distribution of lateral displacement u y from axial displacement calculation unit 9 5, the quantization unit it Output to 9-8.
  • Quantizer 9 8 each strain distribution transverse strain distribution epsilon chi and axial strain distribution epsilon gamma to grayscale (or color display) quantizes and outputs to the display unit 9 9.
  • the display unit 99 displays each of the quantized distortion distributions.
  • the RF signals before and after the tissue compression are first subjected to quadrature detection by the quadrature detector 92. That is, applying a sin wave and a cos wave having the same frequency as the center frequency of the ultrasonic wave to each RF signal and applying a low-pass filter to each of them gives a complex baseband signal s 2 as shown in the following equation (14). .
  • T is the period of the ultrasonic wave
  • L is the horizontal sampling interval (line interval)
  • R A (t, X;, U x ) is the autocorrelation function of the envelope
  • t Is the axial correlation window size
  • X Is the horizontal correlation window size
  • is the shift amount of the integration in the time axis direction
  • W is the shift amount of the integration in the beam line direction
  • * represents the complex conjugate.
  • R "(t, x; 0, 0) is s, (t, x) autocorrelation function
  • R 22 (t, x; n, m) is s 2 (t + nT / 2 , x + mL
  • the envelope correlation coefficient is used to overcome the aliasing problem in the same way as in the case of the composite autocorrelation method, that is, C (t) at each measurement point (t, X) , X; n, m) and a phase ⁇ C (t, ⁇ ; ⁇ , m), ⁇ (t,) of the phase ⁇ (t, ⁇ ; n, m) of R i2 (t, ⁇ ; ⁇ , m) ⁇ ; ⁇ , m) ⁇ for all ⁇ and m.
  • ⁇ , because _kTZ2 I is smaller than ⁇ .
  • ⁇ (t, X; k, 1) where no occurrence occurs the axial displacement u y and the lateral displacement ⁇ ⁇ can be expressed by the following formula (1) using the exact time shift at the measurement point (t, X). 1 7)
  • c is the speed of sound in tissue (here, the typical speed of sound in soft tissue is 150 Om Zs). Therefore, if the axial displacement and the lateral displacement are calculated at all points in the tissue as described above, the axial displacement distribution u y (x, y) and the lateral displacement distribution u x (x, y) are obtained. can get.
  • the above-mentioned extended composite autocorrelation method uses a two-dimensional correlation window and a search range so as to correspond to the lateral movement of the tissue, and the relative lateral direction of the tissue and the ultrasonic probe during tissue compression.
  • displacement of tissue occurs in the direction perpendicular to the axial direction and the lateral direction (direction perpendicular to the two-dimensional ultrasonic scanning plane (slice direction)) during tissue compression.
  • distortion cannot be estimated using the two-dimensional extended composite autocorrelation method. Therefore, in order to make the system more stable, it is possible to easily extend the extended composite autocorrelation method described above by using a three-dimensional correlation window and a three-dimensional search range.
  • FIG. 9 and FIG. 10 are flowcharts showing the basic algorithm of the three-dimensional composite autocorrelation method.
  • FIG. 10 is a flowchart showing details of a part of the process in FIG.
  • step S11 in combination with the determination processing in step S23, "1" is stored in the scanning line number register 1 in order to perform the same processing from the first scanning line to the Lth scanning line. .
  • step S12 a process of sequentially shifting the thickness direction (frame) from 1U to U is performed in combination with the determination process in step S18.
  • step S13 a process of sequentially shifting the azimuth direction (scanning line) from 1V to V is executed in combination with the determination process in step S17.
  • step S14 a process of sequentially shifting the distance direction (axial direction) from 0 to M is performed in combination with the determination process in step S16.
  • step S15 the correlation coefficient C (1, t; u, V, n) of the envelope in the distance direction (axial direction) is calculated by the composite autocorrelation method.
  • This composite autocorrelation method may be performed by a conventional method, but it takes a long time to calculate.
  • the correlation coefficient C (1, t U, V, n) This high-speed composite autocorrelation method will be described later.
  • Step S16 is a process combined with the previous step S14, in which it is determined whether or not the distance direction register n has reached its maximum value M. If so, the process proceeds to step S17. If not, the flow returns to step S14, and the distance direction register n is incremented.
  • step S17 the process is combined with the previous step S13, and it is determined whether or not the direction register resistance V has reached its maximum value V. If so, the process proceeds to step S18. If not, the flow returns to step S13 to increment the azimuth direction register V.
  • step S18 the process is combined with the previous step S12, and it is determined whether or not the thickness direction register u has reached its maximum value U. If so, the process proceeds to step S19. If not, the flow returns to step S12 to increment the thickness direction register u.
  • step S 20 the correlation coefficient C (1 determined in step S 19, t;.
  • step S23 the process is combined with the previous step S11, and it is determined whether or not the scanning line number register 1 has reached L. If so, the process proceeds to step S24, and so on. If not, the process returns to step S11, and the scan line number register 1 is incremented.
  • step S24 when the displacement distribution due to the tissue compression is estimated, the strain distribution is calculated by spatially dividing it.
  • FIG. 10 is a flowchart showing details of the accelerated composite autocorrelation method in step S15 of FIG.
  • step S31 the RF signal X before compression and the RF signal y after compression are each subjected to orthogonal detection to obtain I and Q signals as follows.
  • step S32 the correlations: Rxy, Rxx, and Ryy are calculated based on the following equation.
  • Rx x S X (t + v) ⁇ X * (t + d) d.
  • step S33 the correlation coefficient C Q is calculated based on the following equation using the obtained correlations Rxy, Rxx, and Ryy.
  • step S34 1 is set to a variable n.
  • step S36 Rxy n and Ry n y n are calculated based on the following equation.
  • Rxy n SX (t + v ) ⁇ Y n * (t + ⁇ ) d ⁇
  • step S 37 Rxy n obtained, the correlation coefficient C n with Ry n y n are calculated based on the following equation.
  • step S38 the variable n is incremented.
  • step S39 it is determined whether or not the variable n has reached the maximum value M. If the variable n has reached the maximum value, the process is terminated. If not, the process returns to step S35 to perform the same process. repeat.
  • the echo signal y (t) after pressurization in the axial direction is
  • Rxy n and Ry n y n can also be obtained from X and Y as in the following equations.
  • Rxy n 4 SX (t + v) ⁇ Y n * (t + ⁇ ) d ⁇
  • * represents a complex conjugate
  • FIG. 11 is a block diagram showing a circuit configuration for executing the basic algorithm of the three-dimensional composite autocorrelation method. If the circuit configuration for executing the composite autocorrelation method is as shown in Fig. 7 of the prior art, the orthogonal detection circuits 1320 to 132N can be processed by connecting the orthogonal detection circuits 1320 to 132N in multiple stages. It takes time Therefore, the processing time becomes enormous, hindering high-speed arithmetic processing and hindering real-time image display. Therefore, the processing speed of the circuit that executes the complex autocorrelation method is increased by adopting the circuit configuration shown in FIG. 11 corresponding to the basic algorithm described above.
  • the pre-pressor quadrature detection circuit (QD) 131 receives the echo signal X (t) before pressurization, performs quadrature detection on each, and converts the quadrature detection signals I x (t) and Qx (t) into the first signal. It outputs to the correlation calculation circuit 133 and the first correlation coefficient calculation circuit 1350 to 135N.
  • the first delay circuit 134 and the second delay circuit 135 delay the quadrature detection signal Y (t) by the period T of the ultrasonic wave, and calculate the delayed quadrature detection signal Y (t-T) by the first correlation coefficient calculation. Output to the circuit 1351, the third delay circuit 136, and the fourth delay circuit 137.
  • the third delay circuit 136 and the fourth delay circuit 137 each delay the quadrature detection signal Y (t-T) by the period T of the ultrasonic wave, and convert the delayed quadrature detection signal Y (t-2T) to the next stage. 1 Output to correlation coefficient calculation circuit and delay circuit (not shown). Thereafter, the signal is sequentially delayed by an integer multiple of the period using an N-stage delay circuit, and the delayed signal is supplied to the first correlation coefficient calculation circuit.
  • the first correlation calculation circuit 133 calculates a correlation value RXX based on the signals IX and Qx, and outputs it to each of the second correlation coefficient calculation circuits 1380 to 138N.
  • the second correlation calculation circuit 1340 receives the quadrature detection signals Iy (t) and Qy (t) from the quadrature detection circuit 132 after compression and calculates a correlation value Ryy based on the signals Iy and Qy. And outputs it to the second phase relationship arithmetic circuit 1380.
  • the first correlation coefficient calculation circuit 1350 includes the quadrature detection signals I x (t) and Qx (t) from the quadrature detection circuit 131 before pressurization and the quadrature detection signal I y (t) from the quadrature detection circuit 132 after pressurization. ), Qy (t) are input to obtain complex base punt signals S R , S, and output them to the third correlation operation circuit 1360 and the phase difference operation circuit 1370.
  • the third correlation operation circuit 1360 receives the complex baseband signals S R , S, from the first correlation coefficient operation circuit 1350, and based on the input, calculates the correlation value IR. xy I is obtained and output to the second correlation coefficient calculation circuit 1380.
  • the phase difference calculation circuit 1370 inputs the complex baseband signals S R , S, from the first correlation coefficient calculation circuit 1350, and calculates the phase difference ⁇ based on the signals. Find (t).
  • the second correlation coefficient calculation circuit 1380 receives the correlation value Rxx from the first correlation calculation circuit 133, the correlation value I Rxy from the third correlation calculation circuit 1360, and the correlation value Ryy from the second correlation calculation circuit 1340. And a correlation coefficient C based on each of these correlation values. Calculate (t) and output.
  • the second correlation operation circuit 1341 receives the delayed quadrature detection signals I y (t ⁇ T) and Qy (t ⁇ T) from the first delay circuit 134 and the second delay circuit 135, and outputs the signal I y ( Calculate the correlation value Ry! y based on t-T) and Qy (t-T), and output it to the second correlation coefficient calculation circuit 1381.
  • the first correlation coefficient calculation circuit 1351 is configured to output the quadrature detection signals IX (t) and Qx (t) from the pre-pressurization quadrature detection circuit 131 and the signals after delay from the first delay circuit 134 and the second delay circuit 135
  • the quadrature detection signals I y (t-T) and Qy (t-T) are input, and complex baseband signals S Rl and S josare obtained, which are sent to the third correlation operation circuit 1361 and the phase difference operation circuit 1371.
  • the third correlation operation circuit 1361 receives the complex baseband signals S R1 and S penetratefrom the first correlation coefficient operation circuit 1351 and calculates correlation values I Rxy and I based on the input signals. Output to the second correlation coefficient calculation circuit 1381.
  • the phase difference calculation circuit 1371 receives the complex baseband signals S R1 and S hinderfrom the first correlation coefficient calculation circuit 1351 and calculates a phase difference (t) based on the input signals.
  • 1381 receives the correlation value Rxx from the first correlation operation circuit 133, the correlation value I Rxy, I from the third correlation operation circuit 1361, and the correlation value Ry i from the second correlation operation circuit 1341, Calculate and output the correlation number C, (t) based on each correlation value.
  • the second correlation operation circuit 13 42 to 134N at the next stage calculates the quadrature detection signal I y (t—2T) ⁇ I y (t -NT), Qy (t-2 T) NT), and outputs correlation coefficients C 2 (t) to C N (t) and phases ⁇ 2 (1;) to ⁇ ⁇ (t).
  • an elastic modulus distribution reconstruction method using a three-dimensional finite element model will be described.
  • a tissue is modeled to simplify the inverse elastic modulus distribution reconstruction problem. This is also because the finite element method is used in the elastic modulus distribution reconstruction method proposed this time.
  • the organization is assumed and modeled as follows.
  • the tissue is assumed to be an isotropic elastic body.
  • external pressure is applied to compress the tissue statically.
  • only micro compression is performed. So, in this case, the relationship between stress and strain is almost linear. That is, the tissue can be approximated as an elastic body.
  • the tissue is assumed to be an isotropic elastic body in this embodiment.
  • the Poisson's ratio is a parameter that does not change much in the living body compared to the Young's modulus
  • the Poisson's ratio is fixed at 0.49 in this embodiment.
  • the finite element method is a method of approximating a target continuum with a set of a finite number of elements and numerically solving a system of linear equations that holds for this set.
  • the formulation of the finite element method will be described later.
  • the strain component in the axial direction in this embodiment, the y direction is the ultrasonic beam direction, that is, the axial direction
  • the stress component in all directions are known
  • the Young's modulus that is, the elastic modulus is obtained. be able to. It is difficult at present to measure the stress distribution directly from the above formula. Therefore, in this embodiment, the estimated ⁇ coefficient distribution approaches the actual distribution while alternately estimating and updating the stress distribution and the elastic coefficient distribution.
  • the procedure of the elastic modulus distribution reconstruction is as follows.
  • the stress distribution ⁇ s ' ⁇ generated at the initial elastic modulus distribution ⁇ E' Q ⁇ is obtained by the three-dimensional finite element method. Specifically, first, for each element in the tissue model, a balance equation (24) is obtained by substituting the strain-displacement relational equation and the stress-strain relation equation into the balance equation.
  • n ⁇ x, z si e ⁇ ⁇ ⁇ (2 ⁇ , in the above equation, p; is the external pressure vector on the body surface, and s n is the stress component in the direction perpendicular to the side surface. Is fixed, the middle equation shows that the stress distribution on the body surface is equal to the external pressure distribution, and the lower equation shows that the side surface is not constrained.
  • displacement distribution ⁇ iT fl ⁇ is substituted into the strain one displacement relationship
  • Ru seek 'strain distribution when the ⁇ Q ⁇ epsilon elastic modulus distribution E ⁇ ' ° ⁇ . then, the strain distribution ⁇ epsilon '° ⁇
  • the stress distribution ⁇ s ° ⁇ By substituting into the stress-strain relation, the stress distribution ⁇ s ° ⁇ for the elastic modulus distribution ⁇ is obtained.
  • the stress distribution is updated by performing a three-dimensional finite element analysis again using the elastic modulus distribution updated as described above and the boundary conditions described above.
  • the elastic modulus distribution reconstruction method based on the three-dimensional finite element model proposed this time.
  • This method estimates the elastic modulus distribution based on the three-dimensional balance equation. For this reason, the present method is based on an assumption closer to the actual living tissue than the conventional method, so that more accurate elastic modulus estimation becomes possible.
  • this method reconstructs the elastic coefficient distribution only from the axial strain distribution that can be estimated with high accuracy, and thus can perform stable elastic coefficient distribution reconstruction.
  • this method estimates the three-dimensional distribution of the tissue elasticity coefficient, the target is determined by using a two-dimensional array ultrasonic probe or by mechanically scanning the one-dimensional array ultrasonic probe in the slice direction. It is necessary to scan in three dimensions.
  • FIG. 12 is a diagram showing an outline of the procedure of this simulation.
  • tissue model with the elastic modulus distribution you want to estimate.
  • scatterers for generating ultrasonic echo signals are distributed in the tissue model.
  • tissue compression is performed on a computer. Then, the destination of each scattering point due to this compression is obtained by a finite element method or the like.
  • RF signals before and after compression are created based on the scatterer distribution before and after compression of the tissue model.
  • the extended composite autocorrelation method is applied to the simulation RF signal before and after compression. Apply to estimate the tissue strain distribution.
  • the tissue elastic modulus was reconstructed by the elastic modulus distribution reconstruction method using a three-dimensional finite element model. Estimate the distribution.
  • the elastic modulus distribution of the tissue model used in this simulation is different for each simulation, but in each case an isotropic elastic body is assumed.
  • the value of the elastic modulus set in each simulation is almost the same as the elastic modulus of the breast tissue that is the main target of this tissue elasticity measurement system.
  • point scatterers were distributed in each tissue model to create simulation RF signals before and after tissue compression. At this time, the average density of the point scatterers was 500 / cm3, the position of the scatterers before compression of the tissue was determined by a uniform random number, the scattering coefficient was 1.0 on average, and the standard deviation
  • the position of the scatterers after the tissue compression is determined by moving each scatterer before the tissue compression according to the result of the finite element analysis.
  • the information on the scatterers of the actual tissue is unknown, but when the B-mode image is formed based on the simulated RF signal, each parameter is set so as to be close to the B-mode image of the actual tissue.
  • a simulation RF signal before and after tissue compression for a tissue model is created by convolution of a scatterer function before and after tissue compression with a point spread function of an ultrasonic system as shown in the following equation (29).
  • i, (x, y, z) is the RF signal before tissue compression
  • i 2 (x, y, z) is the RF signal after tissue compression
  • h (, y, z) is the ultrasound system.
  • the point spread function (impulse response) t L (x, y, z) is the scatterer function before tissue compression
  • t 2 (X, y, z) is the scatterer function after tissue compression.
  • the scatterer function is a function that takes the value of the scattering coefficient at the position where the scatterer exists in the tissue model, and is 0 at other positions.
  • the scatterer function 2 (X, y, z) after tissue compression is The position of each scatterer in the scatterer function (x, y, z) is moved according to the deformation of the tissue model. However, displacement at each scatterer position due to tissue compression is obtained by linear interpolation of the displacement vector at element nodes obtained by finite element analysis.
  • hy (y) is a point spread function in the direction of the ultrasonic beam
  • hx (x) and hz (z) are point spread functions in a direction orthogonal to the ultrasonic beam.
  • the X direction is the direction in the ultrasonic tomographic plane (lateral direction)
  • the z direction is the direction perpendicular to the ultrasonic tomographic plane (slice direction).
  • the point spread function in each direction is created based on the reflection echo distribution from the wire 'target (a 0.13 mm diameter wire stretched in water) measured by an actual ultrasonic device.
  • FIG. 13 is a diagram showing an example of each point spread function used when the ultrasonic center frequency is 5.0 MHz.
  • 13 (A) shows the point spread function hy (y) in the axial direction, which approximates the distribution of reflected echoes from an actual wire and evening get by applying a sine wave to a Gaussian function.
  • 13 (B) shows the spread function hx (x) in the horizontal direction, and
  • Fig. 13 (C) shows the spread function hz (x) in the slice direction. Approximate the reflection echo distribution.
  • the parameters of each function are changed according to the center frequency, and will be explained again in each simulation.
  • FIG. 14 is a diagram schematically showing an organization model.
  • the tissue model is a model with an outer shape of 60 mm x 60 mm (two-dimensional) and a uniform elastic modulus distribution. And this The tissue model is compressed to produce a uniform 3% strain in the axial direction.
  • a simple one-dimensional elastic body is assumed as the tissue model.
  • simulated RF signals before and after deformation are created for this tissue model.
  • the parameters of the ultrasonic system used at this time were center frequency 5.0 MHz, pulse width 0.5 mm, ultrasonic beam width 1.0 mm, scan line interval 0.5 mm, and sampling frequency 30 MHz.
  • the distortion distribution is estimated by the extended composite autocorrelation method proposed this time.
  • distortion distribution estimation was also performed using the combined autocorrelation method and the spatial correlation method.
  • a correlation window and search range of the same size were used in each method so that the accuracy and the like could be simply compared.
  • the extended composite autocorrelation method and the spatial correlation method have a two-dimensional correlation window of 1.6 mm (axial direction) ⁇ 2.5 mm (lateral direction) and 5.6 mm (axial direction) ⁇ 7.5 mm
  • the one-dimensional processing combined autocorrelation method used the same 1.6 mm one-dimensional correlation window and 5.6 mm one-dimensional search range only in the axial direction.
  • FIG. 15 shows the distortion estimation error of each method with respect to the lateral displacement.
  • indicates the composite autocorrelation method
  • indicates the extended composite autocorrelation method
  • indicates the spatial correlation method.
  • the following equation (31) was used as the distortion estimation error e.
  • FIG. 16 shows each method (composite method) when the lateral displacement is 0.0 mm.
  • Figure 17 shows each method when the lateral displacement is 0.4 mm (the composite auto-correlation method, the extended composite auto-phase).
  • FIG. 6 is a diagram illustrating a distortion distribution estimated by a correlation method and a spatial correlation method).
  • FIGS. 16 and 17 show the average value and the standard deviation of the strain estimated for each depth in the axial direction.
  • the extended composite autocorrelation method takes 3.6 times longer than the composite autocorrelation method, but 1Z compared to the spatial correlation method. It only took (7.7) hours. Therefore, it can be understood that the extended composite autocorrelation method has a certain degree of realism.
  • FIG. 18 is a diagram schematically showing a tissue model used for verification of oblique compression.
  • the tissue model has a three-dimensional structure with an outer shape of 6 O mmx 6 O mmx 6 O mm, and the tissue model has a diameter of 15 mm and a length of 6 O mm Hard It is a model in which a large cylindrical inclusion exists.
  • the elasticity coefficient (Yang's modulus) of the periphery is 10 kPa
  • the elastic modulus of the inclusion is 30 kPa, which is three times harder than the periphery.
  • this elastic modulus value is set based on the elastic modulus of breast tissue and the elastic modulus of breast cancer, which are the main targets this time.
  • this organization model was compressed in two ways. First, as shown in Fig. 18 (B), a uniform external pressure of 200 Pa is applied to this tissue model in the axial direction from the upper surface, and the tissue model is moved in the axial direction. Compress 2%. Second, as shown in Fig. 18 (C), a uniform external pressure (2 OOP a in the axial direction and 30 Pa in the lateral direction) is applied to the tissue model from the top of the model. In addition, compress the tissue model diagonally.
  • simulation RF signals before and after tissue compression are created, and the strain distribution is estimated by the extended composite autocorrelation method.
  • distortion distribution estimation using the composite autocorrelation method and the spatial correlation method is also performed.
  • the correlation window size and search range used in each method are the same, and the size is the same as the previous simulation.
  • the parameters of the ultrasonic system used to create the simulation RF signal were the same as in the previous simulation: center frequency 5.0 MHz, pulse width 0.5 mm, lateral ultrasonic beam width.
  • the ultrasonic beam width in the slice direction is 2.0 mm
  • the scanning line interval is 0.5 mm
  • the sampling frequency is 30 MHz.
  • FIG. 19 shows the strain distribution estimation result when the tissue model is simply compressed in the axial direction
  • FIG. 20 shows the strain distribution estimation result when the tissue model is compressed in the oblique direction.
  • the ideal strain distribution in each figure is the axial strain distribution obtained by performing three-dimensional finite element analysis under each condition, and this strain distribution is regarded as the correct answer.
  • the results in FIGS. 19 and 20 are the results at the center section of the tissue model.
  • the reason why the ideal strain distribution is not bilaterally symmetric in Fig. 20 is the effect of compression in the diagonal direction. Is getting bigger.
  • the second step of the tissue elasticity imaging system is to estimate the elastic modulus distribution from the strain distribution, and the simulation method is used to verify the proposed elastic modulus distribution reconstruction method using a three-dimensional finite element model.
  • FIG. 21 is a diagram showing an example of two tissue models having a three-dimensional structure. The inclusion model in Fig.
  • 21 (a) is a model simulating breast cancer, in which a hard inclusion with a diameter of 20 mm exists in a model with an outer shape of 100 mm x 100 mm x 100 mm.
  • the elastic modulus of the inclusion is 30 kPa
  • the peripheral elastic modulus is 10 kPa.
  • 21 (b) is a model that simulates a layered object such as muscle, and has a hard layer with a thickness of 20 mm in a model with an outer shape of 100 mm mx 10 O mmx 10 O mm.
  • the elastic modulus of the hard layer is 30 kPa
  • the elastic modulus of the surroundings is 10 kPa Let it be Pa.
  • the Poisson's ratio is uniform at 049.
  • a uniform external pressure of 100 Pa is applied in the axial direction from the top of the model, and in the case of the layered model in Fig. 21 (b),
  • Each model is compressed on a computer with a uniform external pressure of 150 Pa.
  • the reason why the strength of the external pressure is changed in the two models is that the same distortion of about 1% occurs in each model.
  • simulated RF signals before and after these tissue model compressions are created, and the axial strain distribution is estimated by the extended composite autocorrelation method.
  • the elastic modulus distribution is estimated by the proposed three-dimensional elastic modulus distribution reconstruction method.
  • the elastic modulus distribution is also estimated by the two-dimensional reconstruction method for comparison using the same axial strain distribution and boundary conditions.
  • the parameters of the ultrasonic system used to create the simulation RF signal were center frequency 3.75 MHz, pulse width 0.75 mm, transverse ultrasonic beam width 2.0 mm, slice direction ultrasonic beam width 2.0 mm, scan line spacing 2.0 mm.
  • the size of the correlation window in the extended composite autocorrelation method is 3.2 mm (axial direction) x 4.0 mm (horizontal direction), and the search range is 11.2 mm (axial direction) ⁇ 14.0 mm (horizontal direction).
  • an organization model is constructed using 50,000 cuboid elements of 2 mm (axial direction) ⁇ 2 mm (lateral direction) x 5 mm (slice direction).
  • FIGS. FIGS. 22 and 23 show the results of each estimation in the inclusive model
  • FIGS. 24 and 25 show the results of each estimation in the layered model.
  • the three-dimensional reconstruction method estimates the three-dimensional distribution of the elastic modulus, but here only the results at the model mid-section are shown. This is because the 2D reconstruction method can only estimate the elastic modulus distribution in a 2D cross section, so here we show only the comparable central cross section. Numerical evaluation of the 3D reconstruction results and the 2D reconstruction results for each tissue model yielded the following results. In the peripheral area In the peripheral area
  • the parameters used for the evaluation are the elastic modulus error e s in the peripheral region, the standard deviation SD S in the peripheral region, and the contrast at the model center.
  • the error e e is defined as follows.
  • E actual elastic modulus, N s is the number of elements in the peripheral region, E "is the elastic coefficient of the average value in the peripheral region, E" e estimated elastic modulus in the model center is E e real that put the model center
  • the elastic modulus, E s is the actual elastic modulus in the surrounding area.
  • the proposed elastic modulus distribution reconstruction method using the three-dimensional finite element model can estimate the elastic modulus more accurately than the two-dimensional reconstruction method assuming the plane stress state.
  • the value of the elasticity coefficient is accurately estimated, whereas in the two-dimensional reconstruction method, it is estimated to be smaller than the actual value of the elasticity coefficient. This is because the movement in the direction perpendicular to the two-dimensional consideration plane is restricted in the two-dimensional state as expected before. Therefore, a method for reconstructing the distribution of sex coefficients based on the same three dimensions as actual living tissue is necessary.
  • FIG. 26 is a diagram showing a basic configuration of this ultrasonic diagnostic system.
  • This ultrasonic diagnostic system includes a 3D ultrasonic scanner 281, an ultrasonic diagnostic device 282, a personal computer 283, a pulse motor controller 2884, a pulse motor 2885, a pressure gauge 2886, etc.
  • Consists of The three-dimensional ultrasonic scanner 281 is for transmitting an ultrasonic pulse into a tissue and receiving an ultrasonic echo signal from the tissue.
  • the three-dimensional ultrasonic scanner 281 has a configuration capable of three-dimensional scanning.
  • the ultrasonic diagnostic device 282 controls the three-dimensional ultrasonic scanner 281 and determines the measurement site by displaying an ultrasonic B-mode image in real time.
  • the diagnostic device can be used as is.
  • This ultrasonic diagnostic device is a fully digitalized device that has a frame memory inside, so it is possible to temporarily store the measured RF signal.
  • the personal computer 283 receives the RF signal measured by the ultrasonic diagnostic apparatus 282 and performs processing for estimating tissue elasticity characteristics (processing of the above-described proposed method) and displaying the processing result. It is.
  • the pulse motor 285 controls the tissue compression, is fixed to the tip of the arm whose position can be fixed, and has a three-dimensional ultrasonic scanner 285 mounted on the movable part of the pulse motor 285. 1 is attached. Then, the pulse motor 285 is controlled by the pulse motor controller 284, and the ultrasonic scanner 281 is moved up and down on the tissue surface, thereby compressing the micro-tissue by several percent with high accuracy.
  • the pressure gauge 2886 measures the pressure on the body surface, which is a boundary condition required for elastic modulus reconstruction, and is placed between the ultrasonic scanner 281 and the body surface. However, here, it is assumed that the pressure distribution on the body surface when the tissue compression is performed by the ultrasonic scanner 281 is uniform, and the value measured by the pressure gauge 286 is used as the pressure value. Used as
  • Fig. 27 shows the specific structure of the ultrasonic scanner 281 used in this ultrasonic diagnostic system.
  • FIG. The 3D ultrasonic scanner 281 mechanically swings a convex type 2D scanning probe in water in the slice direction instead of a 2D array type in which ultrasonic transducers are arranged in a 2D plane. This is a type that performs three-dimensional scanning by.
  • the characteristics of the ultrasonic scanner are also set for the mammary gland.
  • the main characteristics of the ultrasonic scanner used in this study are the ultrasonic center frequency 7.5 MHz, the sampling frequency 30 MHz, the number of scanning lines 71, the number of frames 44, the oscillation angle of the transducer 3 At 0 °, the time required for one 3-dimensional scan is 0.5 seconds.
  • the deflection angle of the transducer is the deflection angle when the complex type probe is swung in the slice direction
  • the number of frames is the scanning plane obtained when the convex type probe is swung once. (Frames).
  • the pulse width was about 0.5 mm
  • the horizontal beam width was about 1.5 mm
  • the slice width was about 2.6 mm.
  • the ultrasonic scanner 281 While watching the real-time B-mode image of the ultrasonic diagnostic apparatus 282, the 3D ultrasonic scanner 281 connected to the arm is moved, and the ultrasonic scanner 281 is set at a site to be measured. At this time, the ultrasonic scanner 281 does not perform three-dimensional scanning (that is, does not mechanically swing the convex probe), and uses only the B-mode image of the central plane of the scanner as the ultrasonic diagnostic apparatus 282 To be displayed. This is because B mode cannot be displayed in real time when three-dimensional scanning is performed with the ultrasonic diagnostic apparatus 282 of this time.
  • the ultrasonic diagnostic apparatus capable of displaying the B mode in real time, it is possible to set a part while performing three-dimensional scanning. After moving the ultrasonic scanner 281 to the measurement site, fix the movable part of the arm and fix the ultrasonic scanner 281. Then, the 3D RF signal before the tissue compression is measured. It is automatically scanned in three dimensions by pressing the three-dimensional scanning button. The time required for one three-dimensional scan is only 0.5 seconds. At this time, the measured RF data before compression is stored in the frame memory in the ultrasonic device.
  • the pulse motor By pressing the compression button of the controller 2 84 once, the pulse motor 2 8 5 attached to the arm moves the ultrasonic scanner 2 8 1 by the preset amount, and the ultrasonic scanner 2 8 1 Compress tissue by itself. Then, with the pulse mode 285 stopped and compressing the tissue, the 3D scanning button is pressed again, and the RF data after the tissue compression is measured.
  • the RF data after the tissue compression is also stored in the frame memory in the ultrasonic apparatus 282 in the same manner as the RF data before the compression. Also, measure the pressure of the pressure gauge attached to the end of the ultrasonic scanner 281 in a compressed state. With the above, the measurement section is completed, the tissue compression is released, and the subject is released.
  • the personal computer 283 accesses the frame memory in the ultrasonic diagnostic apparatus 282, and stores the RF data before and after the tissue compression on the hard disk on the personal computer 283. This is because the frame memory in the ultrasound system is temporary and has only one measurement capacity.
  • the personal computer 283 executes the program of the elastic modulus distribution reconstruction method using the extended composite autocorrelation method and the three-dimensional finite element model, and estimates the strain distribution and the ⁇ coefficient distribution from the RF data before and after tissue compression.
  • the personal computer 283 displays the B-mode image, the strain image, and the elastic modulus image on a monitor by a display program.
  • the displacement distribution can be estimated corresponding to the lateral displacement, and the elastic modulus distribution can be reconstructed only from the strain distribution in the ultrasonic beam direction (axial direction).
  • the envelope signal has been described as an example, but a parameter that can specify the correlation of the waveform including the amplitude, the peak value, and the wave number may be used as long as the parameter represents the characteristic amount of the waveform.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Acoustics & Sound (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

被検体の圧縮前後に超音波探触子から出力されるRF信号を直交検波して得られる包絡線信号からなるフレームデータに計測点を設定し、計測点を前記フレームデータに対して超音波ビーム方向(1次元方向)、2次元又は3次元方向に移動して、計測点を囲む相関窓に属する圧縮前後の包絡線信号の相関係数が最大となる位置を求め、これに基づいて圧縮に伴う計測点の変位を求めるとともに、さらに圧縮前後のRF信号間の位相差を求めて圧縮に伴う計測点の変位を精度よく求める変位演算手段とを備えて構成することにより、変位量の制約を受けずに変位分布を推定することができ、演算処理時間を短縮し、横方向変位にも対応できるようにする。

Description

P T/JP2003/009731
明 細 書 超音波診断システム及び歪み分布表示方法 技術分野
本発明は、 超音波診断装置を用いて、 生体組織の硬さを定量的に計測すること のできる超音波診断システム及び歪み分布表示方法に関する。 背景技術
超音波の医療面への応用は、 組織形状だけではなく組織内の音速や減衰定数な どの物理量を超音波により計測 ·画像化し診断に利用しょうとする分野 (ultrasonic tissue characterization) がある。 その中の 1つとして組織の硬 さ、 すなわち弾性特性を計測しょうとする分野があり、 現在盛んに研究されてい る。 これは、 組織の弾性特性がその病理状態と深く関連しているためである。 例 えば、 乳がんや甲状腺がんなどの硬化性がんや肝硬変、 動脈硬化症などは正常組 織よりも病変部分が硬くなることが知られている。 これまで、 生体組織の硬さ情 報は触診により得ていたが、 触診では客観的な情報表現が難しく、 医師の経験も 必要で、 また計測できる領域も体表付近のある程度大きな病変に限られる。
そこで、 体表から静的な圧力を加えて組織をわずかに圧縮変形させ、 その際生 じる組織内部の歪みを超音波により計測し、 歪みから組織の弾性特性を評価する 方法力 sある (J. Op ir, I. Cespedes, H. Ponnekanti , Y. Yazdi and X. Li ,
'Elastography: A quantitative method for imaging the elasticity of biological tissues", Ultrasonic Imaging, vol. 13, pp. Ill - 134, 1991)。 この従来技術は、 硬い組織では生じる歪みが小さく、 軟らかい組織では歪みが大 きくなることを基にしている。 すなわち、 組織を静的に圧縮してその際生じる組 織内の歪み分布から組織の弾性特性を評価する。
具体的には、 超音波診断装置および超音波プローブをそのまま用い、 超音波プ ローブによって組織を圧縮する前の超音波エコー信号 (圧縮前 RF信号) を計測 2 する。その後、 例えば超音波プローブにより組織をわずかに(数パーセント程度) 圧縮し、 組織の圧縮後の超音波エコー信号 (圧縮後 R F信号) を計測する。 そし て、 計測された組織圧縮前後の R F信号から圧縮によつて組織内部の各点がどれ だけ動いたかという変位量である変位分布を空間相関法により推定する。
空間相関法は、 圧縮によって生じた組織内部の変位分布を組織圧縮前後の R F 信号 (または R F信号の包絡線) から 2次元相関関数を用いたテンプレートマツ チングにより推定する手法である。 つまり、 断層像データに対応する圧縮前の R F信号デ一夕に一定サイズの 2次元の相関窓 (テンプレート) を設定し、 その相 関窓の R F信号データと最大の相関を有する圧縮後の R F信号データの 2次元位 置に、着目した計測点が移動したことを自己相関処理により推定する手法である。 この自己相関処理を例えば格子状に設定される各計測点について行い変位分布推 定する。 空間相関法の処理において、 一般に、 横方向 (超音波ビームのスキャン 方向) のサンプリング間隔は、 軸方向のサンプリング間隔よりも大きいので、 推 定される変位成分の精度は横方向成分の方が軸方向成分よりも悪くなる。 このよ うに、空間相関法では 2次元の変位べクトル成分を推定できるという特徴がある。 また、 変位推定精度がサンプリング間隔によって制限されてしまうが、 組織が大 きく変形した場合 (例えば、 5 %程度) でも変位分布を推定できる。 しかし、 空 間相関処理にかかる計算量が膨大になるため超音波計測の利点であるリアルタイ ム性を損なつてしまうという問題がある。
本発明の目的は、 リアルタイムに変位分布、 歪み分布、 弾性係数分布を求める ことにある。
発明の開示
上記目的を達成するため、 本発明の超音波診断システムは、 超音波探触子によ つて被検体の圧縮前後に計測してなる反射エコー信号 (R F信号) に基づいて被 検体の組織の変位を求めるにあたり、 超音波探触子から出力される R F信号の包 絡線信号を含む特徴量を蓄積する記憶手段と、 この記憶手段に蓄積された被検体 の圧縮前後の特徴量に基づき圧縮前後の特徴量の相関係数及び圧縮前後の受信信 号間の位相差を求める相関演算手段と、 この相関演算手段によって求められた相 関係数及び圧縮前後の R F信号間の位相差に基づいて圧縮に伴う計測点の変位を 求める変位演算手段とを備えたことを特徴とする。 また、 計測点における変位を 空間微分することによつて被検体の組織の歪み分布を求める歪み演算手段と、 求 めた歪み分布を表示する表示手段とを備えることができる。
このように、 圧縮前後の包絡線信号などの特徴量による相関を用いて計測点の 変位を求めていることから、 リアルタイムに変位分布を推定することができる。 特に、 計測点を超音波ビーム方向に超音波信号の 2分の 1波長間隔で移動して相 関係数の最大位置を求めることにより、 ドプラ法におけるエイリアシングの問題 を解決できる。
ところで、 相関演算において、 計測点における圧縮前後の包絡線信号の相関係 数が最大となる位置を求めるに際し、 圧縮後の包絡線信号の時間軸をずらしなが ら圧縮後の包絡線信号の自己相関関数を計測点ごとに求めると、 演算時間がかか りすぎてリアルタイム性が損なわれるおそれがある。
そこで、 圧縮前後の包絡線信号の自己相関関数を先に求め、 求めた自己相関関 数を計測点の移動に合わせて、 例えば超音波信号の 2分の 1波長間隔でシフトし て相関係数を求めることが好ましい。 これにより、 変位演算にかかる時間を短縮 して処理を高速化できる。
また、 本発明の超音波診断システムは、 直交検波された R F信号の包絡線信号 を蓄積する記憶手段と、 この記憶手段に蓄積されたスライス面に対応する前記被 検体の圧縮前後の前記包絡線信号のフレームデータに計測点を設定し、 該計測点 を前記フレームデータに対して少なくとも 2次元方向に移動して、 前記計測点を 囲む 2次元相関窓に属する前記圧縮前後の前記包絡線信号の相関係数が最大とな る位置を求めるとともに、 前記圧縮前後の前記 R F信号間の位相差を求める相関 演算手段と、 前記相関演算手段によって求められた前記相関係数が最大となる位 置及び前記位相差に基づいて前記圧縮に伴う前記計測点の少なくとも 2次元方向 の変位を求める変位演算手段とを備えることを特徴とする。
すなわち、 相関窓を用いた空間相関法の長所である 2次元又は 3次元の変位計 測に対応でき、 ドプラ法の長所であるリアルタイム性と高精度を生かして組み合 わせた複合自己相関法(C A法: Comb ined Autocorrelat ion method) と称する 方法を提案するものである。 この複合自己相関法によれば、 一定の横方向変位に も対応して変位分布を推定可能である。 この場合の、 2次元方向は、 超音波探触 子により受信される超音波ビームの方向と、 この超音波ビームの走査方向に設定 する。 特に、 計測点を超音波ビーム方向に超音波信号の 2分の 1波長間隔で移動 し、 超音波ビームの走査方向に超音波ビームピッチで移動して、 相関係数の最大 位置を求めることが好ましい。 ここで、 計測点の超音波ビーム方向の移動ピッチ は、 超音波信号の 2分の 1波長間隔に限られるものではないが、 これよりも小さ いピッチが好ましい。
さらに変位演算を高速化するには、 上述したと同様に、 計測点を囲む 2次元相 関窓に属する圧縮前後の包絡線信号の相関係数が最大となる位置を求めるに際し、 圧縮前後の包絡線信号の自己相関関数を求め、 この自己相関関数を計測点の移動 に合わせてずらして相関係数が最大となる位置を求めることが望ましい。
また、 本発明の変位演算は、 2次元に限らず 3次元に適用できる。 1次元配列 の超音波探触子を用いる 3次元の場合は、 記憶手段に蓄積されるフレームデータ を複数のスライス面のフレームデータを有するポリュ一ムデ—夕とする。 また、 2次元配列の超音波探触子を用いる 3次元の場合は、 スライス方向の走査により 得られる包絡線信号を加えたものとなる。 そして、 相関演算手段は、 計測点をポ リユームデータに対して 3次元方向に移動して、 計測点を囲む 3次元相関窓に属 する圧縮前後の包絡線信号の相関係数が最大となる位置を求めるとともに、 圧縮 前後の R F信号間の位相差を求める。 この場合の、 3次元方向は、 超音波探触子 により受信される超音波ビームの方向と、 超音波ビームの走査方向と、 これらに 直交するスライス方向である。 また、 相関演算手段は、 圧縮前後の R F信号間の 超音波ビーム方向、 超音波ビームの走査方向及びこれらに直交するスライス方向 の位相差を求めることが好ましい。 さらに、 3次元変位を求める場合も、 上述し た高速処理法を適用することができる。 また、 計測点をスライス方向に移動する 場合は、 超音波ビームのスライスピッチ単位にする。
また、 弾性率分布を求める方法は、 被検体を有限個の要素に分割して少なくと も 2次元又は 3次元の有限要素モデルを作成し、 そのモデル化の情報と求めた歪 み分布を用いて弾性係数分布を演算する弾性係数演算手段を備えることができる。 また、これにより求めた弾性分布を表示手段に表示することができる。この場合、 弾性係数演算手段は、 被検体組織を等方性弾性体及び近非圧縮性と仮定し、 被検 体組織を有限個の直方体要素に分割して 3次元有限要素モデル化し、 各要素内で は、 弾性係数、 応力、 歪みは一様であると仮定し、 弾性方程式に前記歪み分布情 報を用いて弾性係数分布を演算することが好ましい。
ここで、 組織を等方性弾性体と仮定するのは、 外部から圧力を加えて組織を静 的に圧縮した場合、 応力と歪みの間の関係はほぼ線形であり、 組織を弾性体とし て近似でき、 被検体の組織はほぼ等方性が成り立つので、 この発明では組織を等 方性弾性体と仮定している。 また、 組織を近非圧縮性と仮定するのは、 生体組織 が非圧縮性 (ポアソン比レ = 0 . 5 ) であると特殊な弾性方程式となり、 有限要 素法を適用することができなくなるからである。 また、 ポアソン比を生体内で一 定とすることで弾性係数分布推定の推定パラメ一夕をヤング率のみとすることが でき、 逆問題を簡単化できる。 また、 ポアソン比はヤング率に比べ生体中であま り変化しないパラメ一夕であるため、 この発明ではポアソン比を 0 . 4 9で一定 とすることが好ましい。 この弾性係数分布演算によれば、 精度よく演算可能な軸 方向の歪み分布のみから弾性係数分布を再構成することができ、 安定した弾性係 数分布の演算が行える。 図面の簡単な説明
図 1は、 超音波診断装置の原理を説明するための図である。
図 2は、 静的圧縮による組織弾性計測方式の具体例及び静的圧縮による組織弹 性計測方式の原理を示す図である。
図 3は、 空間相関法の原理を示す図である。
図 4は、 ドプラ法の原理を示す図である。
図 5は、 複合自己相関法の原理を示す図である。
図 6は、 複合自己相関法の基本アルゴリズムを実行する回路構成を示すブロッ ク図である。
図 7は、 本発明の一実施例である超音波診断システムの概略構成を示すブロッ ク図である。
図 8は、 3次元複合自己相関法の基本アルゴリズムを示すフローチャート図で ある。
図 9は、 本発明の超音波診断システムに係る 3次元複合自己相関法の基本アル ゴリズムを示すフローチャート図であり、 図 7の処理の一部の詳細を示すフロー チヤ一卜図である。
図 1 0は、 図 9のステップ S 1 5の高速化された複合自己相関法の詳細を示す フローチャート図である。
図 1 1は、 本発明の超音波診断システムに係る 3次元複合自己相関法の基本ァ ルゴリズムを実行する回路構成を示すブロック図である。
図 1 2は、 シミュレーシ aンの手順の概略を示す図である。
図 1 3は、 超音波中心周波数 5 . 0 MH zの場合に用いた各点広がり関数の一 例を示す図である。
図 1 4は、 組織モデルの概略を示す図である。
図 1 5は、 横方向変位に対する各手法の歪み推定誤差を示す図である。
図 1 6は、 横方向変位が 0 . O mmの場合の各手法 (複合自己相関法、 拡張複 合自己相関法、 空間相関法) により推定した歪み分布を示す図である。
図 1 7は、 横方向変位が 0 . 4 mmの場合の各手法 (複合自己相関法、 拡張複 合自己相関法、 空間相関法) により推定した歪み分布を示す図である。
図 1 8は、斜め方向圧縮の検証に使用される組織モデルの概略を示す図である。 図 1 9は、 組織モデルを単純に軸方向に圧縮した場合の歪み分布推定結果を示 す。
図 2 0は、 組織モデルを斜め方向に圧縮した場合の歪み分布推定結果を示す。 図 2 1は、 3次元構造を持つ 2つの組織モデルの一例を示す図である。
図 2 2は、 内包モデルにおける各推定結果を示す第 1の図である。
図 2 3は、 内包モデルにおける各推定結果を示す第 2の図である。 図 2 4は、 層状モデルにおける各推定結果を示す第 1の図である。
図 2 5は、 層状モデルにおける各推定結果を示す第 2の図である。
図 2 6は、 超音波診断システムの基本構成を示す図である。
図 2 7は、 超音波診断システムで用いた超音波スキャナの具体的構成を示す図 である。 発明を実施するための最良の形態
以下、 添付図面に従って本発明に係る超音波診断システムの好ましい実施の形 態について説明する。本実施例の超音波診断システムでは、包絡線相関計算の際、 複合自己相関法で 1次元の相関窓で 1次元探索していた処理を 2次元の相関窓を 用いて 2次元探索することにより横方向の移動にも対応した拡張複合自己相関法 と呼ばれる方法を採用している。 また、 この拡張複合自己相関法は、 軸方向には 2分の 1波長間隔、 横方向にはライン間隔の格子点でのみ包絡線相関計算を行う ことにより計算量を減少させて高速化を図っている。 ただし、 複合自己相関と同 様に拡張複合自己相関法でも位相情報を利用して軸方向の変位推定精度を向上さ せている。 しかし、 横方向変位の推定はキャリアとなる信号がないため位相情報 は利用できない。 そのため、 横方向変位推定精度は空間相関法と同様に横方向サ ンプリング間隔 (超音波ビームライン間隔) により制限されてしまう。 しかし、 後で提案する弾性係数分布再構成法では軸方向の歪み (変位) 分布のみから弾性 係数分布を推定できるため、 この実施例では横方向変位推定精度の向上は特に行 わない。
本実施例の拡張複合自己相関法の具体的な構成を説明する前に、 本発明の前提 技術となる複合自己相関法について、 図 1〜図 6を参照して説明する。 図 1は、 超音波診断装置の原理を説明するための図である。 図から明かなように、 超音波 探触子である超音波プローブ 1 0は電気信号を超音波に、 また超音波を電気信号 に変換するものであり、 この超音波プローブ 1 0を用いて生体組織 1 1内に超音 波パルスを放射する。 生体組織 1 1内に放射された超音波パルスは音響インピー ダンスの異なる第 1の境界 1 2で一部が反射され、 反射エコー 1 2 aとして超音 波プローブ 1 0側に向かい、 その残りは透過していく。 透過した超音波パルスは 次の音響インピーダンスの異なる第 2の境界 1 3で同様に一部が反射され、 反射 ェコ一 1 3 aとして超音波プローブ 1 0側に向かい、 その残りは透過する。 この ようにして反射した超音波の反射エコー信号は超音波プローブ 1 0によって受波 され電気信号の反射エコー信号に変換される。 このとき、 超音波プローブ 1 0か ら超音波パルスが放射されてから距離 Lの位置にある反射物体 1 4 (音響インピ 一ダンスの異なる境界) からの反射エコー信号を受信するまでの時間 tは、 次式 ( 1 ) となる。
1L
c … ( 1 ) ここで、 cは生体内での音速であり、 軟組織では 1 5 0 0 [m/秒] にほぼ一定 とみなせる。 よって、 反射エコー信号を受信するまでの時間 tを計測すればプロ ーブから反射物体までの距離 Lを求めることができる。 この反射エコー信号は、 生体組織の音響特性情報を有することから、 その反射エコー信号に基づいて Bモ ―ド断層像などの生体組織の情報をディスプレイに表示することができる。 例えば、 超音波診断装置を用いて、 組織の硬さに関する弾性特性を計測するこ とが行われている。 弾性特性を計測する原理は、 組織に機械的振動を与えてその 横波の伝搬速度から硬さ情報を評価するものであり、 硬い組織では横波の伝搬速 度が速ぐ軟らかい組織では横波の伝搬速度が遅いことを基にしている。ただし、 厳密には生体組織中を伝わる横波の伝搬速度 Vは、 次式 (2 ) に示したように、 組織の密度 P、 せん断弾性係数 ^、 せん断粘性係数 2、 および振動の角周波数 ωに関係している。
V
Figure imgf000010_0001
一方、 図 2に示すように、 組織を静的に圧縮してその際生じる組織内の歪み分 布から弾性特性を評価する方式が提案されている。 これは、 硬い組織では歪みが 小さく、軟らかい組織では歪みが大きくなることに基づいている。図 2 (A)は、 静的圧縮による組織弾性計測方式の具体例を示す図である。 図 2 (B) は、 静的 圧縮による組織弾性計測方式の原理を示す図である。 図から明かなように、 この 方式は、 従来からある超音波診断装置および超音波プローブ 10をそのまま用い て組織 1 1の圧縮前の超音波エコー信号(圧縮前 R F信号)を計測する。その後、 超音波プローブ 10により組織 1 1をわずかに (数パーセント程度) 圧縮し、 組 織 1 1の圧縮後の超音波エコー信号 (圧縮後 RF信号) を計測する。 そして、 計 測された組織圧縮前後の R F信号から圧縮によつて組織内部の各点がどれだけ動 いたかという移動量である変位分布を推定する。 この変位分布推定手法の主なも のとしては、 空間相関を用いる方法とドプラの原理を用いる方法がある。
図 3は、 空間相関法の原理を示す図である。 この方法は、 圧縮によって生じた 組織内部の変位分布を組織圧縮前後の RF信号 (または RF信号の包絡線) から 2次元相関関数を用いたテンプレートマッチングにより推定する手法である。 そ の具体的な処理は以下のようになる。 まず、 組織圧縮前後の RF信号 (またはそ の包絡線信号) を (t, x), i 2 (t, x) とすると、 この 2つの信号の相互 相関係数 C ( t, X ; n, m) は、 次式 (3) となる。
Figure imgf000011_0001
ここで、 tは超音波ビーム方向 (軸方向) の座標、 Xはそれに直交する方向 (横 方向) の座標、 t。は軸方向の相関窓サイズ、 xQは横方向の相関窓サイズ、 Liは 軸方向のサンプリング間隔、 Lx は横方向のサンプリング間隔、 n, mは整数で ある。 そして、 この相互相関関数が最大となるときの (n, m) を (k, 1 ) と すると、 計測点 (t, X) における軸方向の変位 uy と横方向の変位 ux はそれ ぞれ次式のようにして求められる。
uv =kL( x = \ LX
ただし、 横方向のサンプリング間隔 Lx は軸方向のサンプリング間隔 よりも 大きいので、 推定される変位成分の精度は横方向成分の方が軸方向成分よりも悪 くなる。 上記の処理を各計測点について行い変位分布推定する。 空間相関法は 2 次元の変位ベクトル成分を推定できるという特徴がある。 また、 組織が大変形し た場合 (5%程度) でも変位分布を推定できる。 しかし、 計算量が膨大になるた め超音波計測の利点であるリアルタイム性を損なってしまう。 また、 変位推定精 度もサンプリング間隔により制限されてしまうため、 後に述べるドプラ法と比べ ると精度が悪いという問題点もある。
図 4は、 ドプラ法の原理を示す図である。 この方法は、 圧縮によって生じた組 織内部の変位分布を組織圧縮前後の R F信号から血流計測に用いられているドプ ラの原理を利用して推定する手法である。その具体的な処理は以下のようになる。 まず、 組織圧縮前後の RF信号を次式 (4) のようにモデル化する。
¾(/) = ReU( e-j(fi,oi"e)J
i2(t) = ReU(i -て) e -ゾ 。('- ] I
… (4) ここで、 (t) は圧縮前の RF信号、 i2 (t) は圧縮後の RF信号、 A (t) は包絡線、 ω。 は超音波の中心角周波数、 ては時間シフトである。 そして、 この 2つの RF信号をそれぞれ直交検波すると、 次式のようなベースバンド信号が得 られる。
sM) = A(t-T)ej{a,oT+e)
2 … (5) そして、 この 2つの信号の相関関数 R12 (t) は次式で表される。
Figure imgf000012_0001
… (6)
ここで、 RA (t) は包絡線の自己相関関数、 t。 は超音波ビーム軸方向の相関 窓サイズである。 また、 *は複素共役を表している。 よって、 この相関関数 R12 ( t ) の位相 ψ ( t ) から圧縮による時間シフトて、 軸方向変位 Uy は次式 (7) のようにして求まる。 て =
CT
uv =——
y 2 … (7) ただし、 cは組織内の音速であり、 生体内で一定と仮定する。
上記の処理を各計測点について行い変位分布推定する手法がドプラ法であり、 ドプラの原理を基にした血流計測と同じ処理となっている。 そのため、 リアル夕 ィム計測が可能であるという利点がある。 また、 位相情報を用いているので変位 推定精度が空間相関法よりも良い。 しかし、 組織内部の移動量が大きくなると、 例えば超音波中心周波数の 4分の 1波長以上となると、 エイリアシングを起こし てしまい正しい変位推定ができないという問題点がある。 また、 上式からもわか るように軸方向の変位成分のみしか推定できない。
そこで、 それら 2つの手法の長所を組み合わせた 「複合自己相関法 (CA法: Combined Autocorrelation Method)」 を本願の発明者等は提案している。 図 5 は、 本願発明者等が提案している複合自己相関法の原理を示す図である。 複合自 己相関法は、 ドプラ法におけるエイリアシングの問題を RF信号の包絡線による 相関を用いることによって解決したものである。 その具体的な処理は以下のよう になる。
まず、 組織圧縮前後の RF信号をドプラ法のときと同じように次式のようにモ デル化する。
=
Figure imgf000013_0001
L ( = Re 0―て) eーゾ 小
… (8) ここで、 (t) は圧縮前の RF信号、 i2 (t) は圧縮後の RF信号、 A (t) は包絡線、 ω。 は超音波の中心角周波数、 ては時間シフトである。 そして、 この 2つの RF信号をそれぞれ直交検波すると、 次式のようなベ一スバンド信号が得 られる。
sl t) = A t)eje
そして、 この 2つの信号間の複素相関関数 R12 ( t ; n) を次式のように定義す る。
Figure imgf000014_0001
("=…,一 2, - 1,0,1,2,...) ... ( 10) ここで、 Tは超音波の周期、 RA ( t ; r) は包絡線の自己相関関数、 t。 は相 関窓サイズである。 また、 *は複素共役を表している。 ここで、 nは探索時にお ける計測点の移動ピッチ数であり、 n=0の場合は、 ドプラ法における自己相関 関数の式 (6) に一致する。 すなわち、 n = 0の場合はドプラ法と同じであり、 軸方向変位が超音波の波長の 4分の 1以上になるとエイリアシングを起こしてし まう。 そこで、 この問題を克服するために次式 (1 1) で定義される包絡線相関 係数 C ( t ; n) を用いる。
Figure imgf000014_0002
ただし、 Ru (t ; 0) は、 (t) の自己相関関数、 R22 ( t ; n) は s2 (t + ΠΤ../2) の自己相関関数である。 そして、 この包絡線相関係数 C (t ; n) が最大となる nの値を kとすると、 その n = kのときの R12 ( t ; k) の位相 φ ( t ; k) は、 エイリアシングの起きていない位相となる。 これは、 包絡線相関 を計算する間隔を 2分の 1波長 (周期) に選んだためである。 ちなみに、 この 2 分の 1波長はエイリアシングを起こさないための最大の間隔である。 よって、 こ の φ (t ; k) を用いることにより組織圧縮による時間シフト 及び軸方向変位 uv は次式のように求まる。 て =— - J→-k—
a>n 2
cて
u„ =
' 2 … (12) ただし、 cは組織内の音速であり、 生体内で一定と仮定する。
上記の処理を各計測点について行い変位分布推定する手法が複合自己相関法で あり、 ドプラ法を拡張したような手法となっている。 そのため、 リアルタイム計 測が可能な手法となっている。 また、 包絡線相関を用いることによってドプラ法 では計測不可能であった大変形の場合 (超音波の 4分の 1波長以上の変位が生じ る場合) の変位分布推定にも対応している。
図 6は、 複合自己相関法の基本アルゴリズムを実行する回路構成を示すプロッ ク図である。 図において、 加圧前直交検波回路 (QD) 131は、 加圧前のェコ —信号 X ( t ) を入力し、 それぞれ直交検波して、 直交検波信号 I x ( t ), Qx ( t ) 信号を、 第 1相関演算回路 133及び第 1相関係数演算回路 1350〜 1 35 Nに出力する。 第 1加圧後直交検波回路 (QD) 1320は、 加圧後のェコ 一信号 y (t) を入力し、 それぞれ直交検波して直交検波信号 Y (t) = I y + j Qy (I y (t), Qy (t)) を、 第 1相関係数演算回路 1340及び第 2相 関演算回路 1350に出力する。 第 1遅延回路 134は、 ェコ一信号 y (t) を 超音波の周期 Tだけ遅延させ、 遅延したェコ一信号 =y (t -T) を第 2加 圧後直交検波回路 (QD) 1321に出力する。 第 2遅延回路 135は、 第 1遅 延回路 134によって遅延されたエコー信号 yi =y ( t -T) を同じく超音波 の周期 Tだけ遅延させ、 遅延したエコー信号 y2 =y (t - 2T) を次段の第 2 加圧後直交検波回路 (QD) 1322 (図示せず) に出力する。 以後、 N段の遅 延回路を用いて順次周期 Tの整数倍だけ信号を遅延して、 遅延した信号を加圧後 直交検波回路に供給する。
第 1相関演算回路 133は、信号 I x, Qxに基づいて相関値 R X Xを演算し、 それを各第 2相関係数演算回路 1380〜138Nに出力する。 第 2相関演算回 路 1340は、 加圧後直交検波回路 1320からの直交検波信号 I y (t), Qy (t) を入力し、 信号 I y, Qyに基づいて相関値 Ry yを演算し、 それを第 2 相関係数演算回路 1380に出力する。 第 1相関係数演算回路 1350は、 加圧 前直交検波回路 131からの直交検波信号 I X ( t), Qx ( t ) 及び第 1加圧後 直交検波回路 1320からの直交検波信号 I y (t), Qy (t) を入力し、 複素 ベースバント信号 SR , S, を求め、 それを第 3相関演算回路 1360及び位相 差演算回路 1370に出力する。 第 3相関演算回路 1360は、 第 1相関係数演 算回路 1350からの複素ベースバント信号 SR, S, を入力し、 それに基づい て相関値 I Rxy Iを求め、 それを第 2相関係数演算回路 1380に出力する。 位相差演算回路 1370は、 第 1相関係数演算回路 1350からの複素べ一スバ ント信号 SR , を入力し、 それに基づいて位相差 Φ。 (t) を求める。 第 2相 関係数演算回路 1380は、 第 1相関演算回路 133からの相関値 R xx、 第 3 相関演算回路 1360からの相関値 I Rxy I、 並びに第 2相関演算回路 1 34 0からの相関値 Ry yを入力し、 これらの各相関値に基づいて相関係数 C。 (t) を演算し、 出力する。
第 2加圧後直交検波回路 (QD) 1321は、 第 1遅延回路 134によって遅 延されたェコ一信号 y, =y (t -T) を入力し、 それぞれ直交検波して直交検 波信号 (t) = I y1 + j Qy1 (I y, (t), Qyi (t)) を、 第 1相関 係数演算回路 1341及び第 2相関演算回路 1351に出力する。 第 2相関演算 回路 1341は、 第 2加圧後直交検波回路 (QD) 1321からの直交検波信号 I y, (t), Qy, ( t) を入力し、 その信号 I y, (t), Qy, (t) に基づ いて相関値 Ry iを演算し、それを第 2相関係数演算回路 1381に出力する。 第 1相関係数演算回路 1351は、 加圧前直交検波回路 131からの直交検波信 号 I x (t), Qx (t)、 第 2加圧後直交検波回路 (QD) 1 321からの直交 検波信号 I yt ( t), Qy, (t) を入力し、 複素べ一スバント信号 SK1, Sn を求め、 それを第 3相関演算回路 1361及び位相差演算回路 1371に出力す る。 第 3相関演算回路 136 1は、 第 1相関係数演算回路 1351からの複素べ ースバント信号 SR1, S„を入力し、 それに基づいて相関値 I Rxyi Iを求め、 それを第 2相関係数演算回路 1381に出力する。 位相差演算回路 1371は、 9731
15 第 1相関係数演算回路 1351からの複素べ一スバント信号 SR1, S„を入力し、 それに基づいて位相差 (t) を求める。 第 2相関係数演算回路 1381は、 第 1相関演算回路 133からの相関値 R xx、 第 3相関演算回路 1361からの 相関値 | Rxy, I、 並びに第 2相関演算回路 1341からの相関値 RylYlを 入力し、 これらの各相関値に基づいて相関係数 (t) を演算し、 出力する。 以下同様に、 第 1遅延回路 135以降の第 2加圧後直交検波回路 (QD) 13 22〜132N、 第 2相関演算回路 1342〜134N、 第 1相関係数演算回路 1352〜135N、 第 3相関演算回路 1362〜136N、 位相差演算回路 1 372〜 137 N及び第 2相関係数演算回路 1382〜 138 Nは、 上述の 1段 目及び 2段目の回路群と同様の処理を実行し、 相関係数 C2 (t) 〜CN (t) 及 び位相 Φ2 (t) 〜φΝ (t) を出力する。 このように、 図 6の複合自己相関法 の基本アルゴリズムを実行する回路は、 加圧後のエコー信号 y ( t) を遅延回路 134〜13Nで超音波の周期 TZ2 (2分の 1波長) だけ遅延し、 それを直交 検波回路 (QD) 1320〜132 Nを用いて個別に直交検波している。
前述のように組織庄縮に伴う変位分布が推定されたら、 それを空間微分するこ とにより歪み分布が得られる。 歪み分布は定性的に組織の弾性特性を表している ものであり、 歪み分布からでもかなりの弾性特性に基づいた診断は行える。 しか し、 肝硬変などの病変部全体が硬くなるような場合には、 定量的な弾性係数によ つて評価しなければ組織診断は難しい。 そのため、 近年、 組織弾性係数分布再構 成法についても研究されるようになってきた。 しかし、 今のところスタンダード な手法はなく、 いずれの手法も研究段階であるというのが実状である。
一方、 組織弾性係数分布は先にも述べたように組織内部の歪み分布と応力分布 から求められる。 しかし、 応力分布を直接計測することは現状では困難であるた め、 歪み分布と組織圧縮の際の境界条件から逆問題的に弾性係数分布を再構成す ることになる。 そのため、 一般的に逆問題を解くことは難しく、 現在提案されて ^る弾性係数再構成法も数少ない。 従来から提案されている弾性係数再構成法を 以下に説明する。
第 1に、 1次元を仮定した方法 (1次元弾性体を仮定) がある。 これは、 1次 元弾性体を仮定して歪みの逆数を弾性係数とみなす方法である。 この方法は弾性 係数再構成法ではなく、 歪みの逆数を求めるだけであるので、 歪みにおける非定 量性をそのまま残している。
第 2に、 弾性方程式から応力項を消去する方法 (等方性弾性体、 非圧縮性、 平 面歪み状態を仮定) がある。 これは、 平面歪み状態を仮定した場合の弾性方程式 を変形し、 応力項を消去した方程式を用いて組織圧縮の際の境界条件 (体表での 外部圧力分布、 または体表での変位) と歪み分布 (せん断歪み成分を含む歪みテ ンソルの全成分) から組織弾性係数分布を再構成する手法である。 ただし、 絶対 的な弾性係数を推定するには、弾性係数が前もってわかっている領域(参照領域) が必要となる。
第 3に、 弾性微分方程式を積分する方法 (等方性弾性体、 非圧縮性、 平面応力 状態を仮定) がある。 これは、 平面応力状態を仮定した場合の弾性方程式を変形 した応力項を含まない弾性係数に関する微分方程式を体表付近での弾性係数を基 準として順次積分していくことにより、 歪み分布 (せん断歪み成分を含む歪みテ ンソルの全成分) から組織弹性係数分布を再構成する方法である。 そのため、 体 表付近の弾性係数分布が前もって分かっている領域が必要であり、 また体表付近 を基準として積分を行っていくので奥に行くほど誤差が積算されるという問題点 もある。
第 4に、 摂動法を用いた手法 (等方性弾性体、 近非圧縮性、 平面歪み状態を仮 定) がある。 これは、 平面歪み状態を仮定した場合の弾性方程式を基にした摂動 法により体表での外部圧力分布と超音波ビーム方向 (軸方向) の歪み分布とから 反復的に組織弾性係数分布を再構成する方法である。
以上、 本発明の原理の基本事項及び本発明の具体的な解決課題を説明した。 以 下、 これらの課題を解決できる本発明の実施例について説明する。 図 7は、 本発 明の一実施例である超音波診断システムの概略構成を示すブロック図である。 図 において、 超音波プローブ 9 1は、 被検体内へ超音波を送波すると共にその反射 波を受波するものであり、 従来のセクタスキャンプローブ (セクタフェイズドア レイプローブ) リニアスキャンプローブ (リニアアレイプローブ) 又はコンペッ クススキャンプローブ (コンベックスアレイプローブ) などである。
超音波プローブ 9 1からは、 組織圧縮前後の R F信号が直交検波器 9 2に出力 される。 直交検波器 9 2は、 組織圧縮前後の R F信号をそれぞれ組織圧縮前後の 複素包絡線信号 (I Q信号) に変換し、 複素 2次元相関計算部 9 3に出力する。 複素 2次元相関計算部 9 3は、 組織圧縮前後の R F信号間における 2次元相関を 計算し、 その相関が最大となる位置を横方向変位計算部 9 4及び軸方向変位計算 部 9 5に出力し、そのときの相関関数の位相を軸方向変位計算部 9 5に出力する。 ただし、 軸方向にはエイリアシングを起こさずに位相を検出できる最大の間隔で ある超音波中心周波数の 2分の 1波長間隔でのみ相関を計算するものとする。 こ れは、超音波診断システムのリアルタイム表示を優先させるためである。従って、 高精度な相関を計算するためには、この 2分の 1波長間隔に限定する必要はない。 横方向変位計算部 9 4は、 複素 2次元相関計算部 9 3からの横方向の相関最大 位置に基づいて横方向の変位 ιιχ を計算し、 それを横方向歪み計算部 9 6に出力 する。 一方、 軸方向変位計算部 9 5は、 複素 2次元相関計算部 9 3からの軸方向 の相関最大位置及びそのときの位相に基づいて軸方向の変位 u y を計算し、 それ を軸方向歪み計算部 9 7に出力する。 横方向歪み計算部 9 6は、 横方向変位計算 部 9 4からの横方向変位 ux の分布を空間的に微分することにより横方向歪み分 布 ε χ を計算し、 それを量子化部 9 8に出力する。 一方、 軸方向歪み計算部 9 7 は、 軸方向変位計算部 9 5からの横方向変位 uy の分布を空間的に微分すること により軸方向歪み分布 ε γ を計算し、 それを量子化部 9 8に出力する。 量子化部 9 8は、 横方向歪み分布 ε χ 及び軸方向歪み分布 ε γ をグレースケール表示 (又 はカラー表示) するために各歪み分布を量子化し、 表示部 9 9に出力する。 表示 部 9 9は、 量子化された各歪み分布を表示する。
次に、 図 7の超音波診断システムで採用した拡張複合自己相関法の動作につい て説明する。 まず、 組織圧縮が極僅か (数パーセント以下) である場合、 組織内 部を局所的に見れば平行移動したと見なすことができ、 組織圧縮前後の R F信号 を次式のようにモデル化できる。 ¾(/,JC) = Re - 。'- j
/,ひ, x)
Figure imgf000020_0001
ここで、 (t , X) は圧縮前の RF信号、 i 2 ( t, x) は圧縮後の RF信 号、 A (t, x) は包絡線、 ω。 は超音波の中心角周波数、 ては時間シフトであ り軸方向変位の時間概念、 ux は横方向変位、 0は初期位相である。 また、 ここ ではドプラ法や複合自己相関法のときと違い横方向の変位も考慮して圧縮前後の RF信号をモデル化している。 そして、 この式の中で最終的に知りたいパラメ一 夕は、 軸方向の変位 uy =c て/ 2 (すなわち、 時間シフトて) と横方向変位 ux である。 ただし、 cは組織内の音速であり、 生体内で一定と仮定する。
そこで、 これらの組織圧縮前後の RF信号を、 まず直交検波器 92でそれぞれ 直交検波する。 すなわち、 各 RF信号に超音波の中心周波数と同じ周波数の s i n波, c o s波をかけ、 それぞれ低域通過フィルタをかけると、 次式 (14) の ような複素ベースバンド信号 , s2 が得られる。
s1(t,x) = A(t,x)eJff s it, x = A(t-T,x- ux)eji<OoT+0)
… (14) そして、 この st ( t , x) と s2 ( t + Ώ. Ύ/2 , x +mL) との間の 2次 元複素相関関数 R12 (t, x ; n, m) を次式 (1 5) のように定義する。
*
R (tfx n.m) +vix+mL + w) dvaw
Figure imgf000020_0002
T - + )
= RA(t,x;t -n—,ux -mL)e 2
("=-Nrain,"',-2,-l,0,l,2,"',Nma
(m = ^,-,-2,-1,0X2,-^)
··■ (1 5 ここで、 Tは超音波の周期、 Lは横方向サンプリング間隔(ライン間隔)、 RA ( t , X ; て, Ux ) は包絡線の自己相関関数、 t。は軸方向相関窓サイズ、 X。は横方 向相関窓サイズである。 また、 レはて時間軸方向の積分のずらし量、 Wはビーム ライン方向の積分のずらし量であり、 *は複素共役を表している。 そして、 この
2次元複素相関関数を用いて、次式(1 6)に示す 2次元包絡線相関係数 C ( t, X; n, m) を定義する。
Figure imgf000021_0001
ただし、 R„ ( t, x; 0, 0) は s , ( t, x) の自己相関関数、 R22 ( t , x ; n, m) は s2 ( t +nT/2, x+mL) の自己相関関数である。 そして、 こ の包絡線相関係数を用いて複合自己相関法の場合と同様にエイリアシングの問題 を克服する。 すなわち、 各計測点 (t , X) における C ( t , X ; n, m) と R i2 ( t , χ ; η, m) の位相 φ ( t , χ; n, m) との組 { C ( t , χ; η, m) , φ ( t , χ ; η, m)} をすベての ηと mについて求める。 ここで、 nと mの範囲 が十分広ければ、 すなわち、 包絡線相関を行う探索範囲が十分に大きければ、 包 絡線相関係数が最大となる (n, m) = (k, 1) に対する位相 φ (t, x; k, 1) はエイリアシングの起きていない位相となる。 これは、 包絡線相関 C (t, X; n, m) が最大となる (n, m) = (k, 1) のとき、 s l ( t , x) と s 2 ( t + kT/2, x+ 1 L) との時間シフ卜の大きさ I r-kT/2 |が TZ2 よりも小さくなる、 すなわち、 ( t , ; k, 1 ) | =ω。 I て _kTZ2 Iが πよりも小さくなるためである。 よって、 このエイリアシングの起きていな い Φ ( t , X ; k, 1 ) を用いれば、 計測点 (t, X) における正確な時間シフ ト で、 軸方向変位 uy 、 そして横方向変位 ιιχ が次式 (1 7) のように求まる。 て
Figure imgf000021_0002
·'·(1 7) ux = IL
ただし、 cは組織内での音速 (ここでは軟組織における一般的な音速 1 50 Om Zsで一定とする) である。 したがって、 組織内のすべての点で上記のように軸 方向変位と横方向変位を計算すれば、 軸方向変位分布 uy (x, y) と横方向変 位分布 ux (x, y) が得られる。
また、 各変位分布を次式のように空間微分することにより、 軸方向歪み分布 £y (X, y) と横方向歪み分布 εχ (X, y) が次式 (18) のように求められる。 du (x,y)
O, )
dy
_dux{x,y
d x
(18) 以上のようにして、組織圧縮前後の RF信号から軸方向と横方向の変位(歪み) 分布を推定することができる。 ただし、 上式の ux = 1 Lからもわかるように横 方向変位の精度は横方向サンプリング間隔 (ライン間隔) によって制限されてし まうため、 精度は若干劣るということはあるが、 リアルタイムに観察できるので 実用性の高いものである。
また、 上述の拡張複合自己相関法は、 組織の横方向移動に対応するように 2次 元の相関窓と探索範囲を用いて、 組織圧縮の際の組織と超音波プローブの相対的 な横方向移動には対応しているが、 組織圧縮の際に軸方向と横方向にそれぞれ垂 直な方向(2次元超音波走査面に垂直な方向(スライス方向)) の変位が生じてし まい組織移動が起こった場合には、 2次元の拡張複合自己相関法では歪みの推定 を行うことができない。 そのため、 より安定したシステムにするには、 上述の拡 張複合自己相関法を 3次元の相関窓と 3次元の探索範囲を用いることにより簡単 に拡張することが可能である。
図 9及び図 10は、 3次元複合自己相関法の基本アルゴリズムを示すフローチ ャ一ト図である。 なお、 図 10は、 図 9の処理の一部の詳細を示すフローチヤ一 卜図である。
ステップ S 11では、 ステップ S 23の判定処理と組み合わせて、 第 1番目の 走査線から第 L番目の走査線についてそれぞれ同様の処理を行うために、 走査線 番号レジスタ 1に 「1」 を格納する。 ステップ S 12では、ステップ S 18の判定処理と組み合わせて、厚み方向(フ レーム) を一 Uから Uまで順次シフトする処理を実行する。
ステップ S 13では、ステップ S 17の判定処理と組み合わせて、方位方向(走 査線) を一 Vから Vまで順次シフトする処理を実行する。
ステップ S 14では、ステップ S 16の判定処理と組み合わせて、距離方向(軸 方向) を 0から Mまで順次シフトする処理を実行する。
ステップ S 1 5では、 複合自己相関法により、 距離方向 (軸方向) における包 絡線の相関係数 C ( 1, t ; u, V, n) を計算する。 この複合自己相関法は、 従来の方法でやってもいいが、 それだと計算に時間を要するので、 ここでは、 高 速化された複合自己相関法を用いて相関係数 C (1, t ; u, V, n) の計算を 行う。 この高速化複合自己相関法については後述する。
ステップ S 16では、 前のステップ S 14と組み合わせられた処理であり、 距 離方向レジスタ nがその最大値 Mに達したか否かの判定を行い、 達した場合には ステップ S 17に進み、 そうでない場合はステップ S 14にリターンし、 距離方 向レジスタ nをインクリメント処理する。
ステップ S 17では、 前のステップ S 13と組み合わせられた処理であり、 方 位方向レジス夕 Vがその最大値 Vに達したか否かの判定を行い、 達した場合には ステップ S 18に進み、 そうでない場合はステップ S 13にリタ一ンし、 方位方 向レジスタ Vをインクリメント処理する。
ステップ S 18では、 前のステップ S 12と組み合わせられた処理であり、 厚 み方向レジスタ uがその最大値 Uに達したか否かの判定を行い、 達した場合には ステップ S 1 9に進み、 そうでない場合はステップ S 12にリターンし、 厚み方 向レジスタ uをインクリメント処理する。
ステップ S 19では、 ステップ S 12〜ステップ S 18の処理によって求めら れた相関係数 C ( 1, t ; u, V, n) (u = -U, ...0, U) (v--V, ... 0, .„, V) (n= 0, 1, ..., N) の中から最大となる (u, v, n) を求め、 それを (u。, ν。, n。) とする。 なお、 本実施例では、 圧縮変位のみを考えて n=0, 1, ..., Nとしたが、 弛緩変位をも求める場合は、 n =— Μ,···, 0, 1, „., Nのように設定すればよいことは当業者に容易に理解されるところである。 • ステップ S 20では、 ステップ S 19で求められた相関係数 C (1, t ; u0, v。 , nQ ) について、 その位相差 Φ (1, t ; u。 , vQ , n。) を計算する。 ステップ S 21では、 最終的な位相差として、 φ = η。 ττ + φ ( 1 , t ; u0, v。, n。) を計算する。
ステップ S 22では、 (u。 , v。 , n。) の近傍の相関係数 C ( 1, t ; u, v, n) を用いて、 方位方向の変位: v = vD +Δν及び厚み方向の変位: u = uQ +Διιを計算する。
ステップ S 23では、 前のステップ S 1 1と組み合わせられた処理であり、 走 査線番号レジスタ 1が Lに達したか否かの判定を行い、 達した場合にはステップ S 24に進み、 そうでない場合はステップ S 11にリターンし、 走査線番号レジ スタ 1をインクリメント処理する。
ステップ S 24では、 組織圧縮に伴う変位分布が推定されたら、 それを空間微 分することにより歪み分布を計算する。
図 10は、 図 9のステップ S 15の高速化された複合 己相関法の詳細を示す フローチャート図である。
ステップ S 31では、 圧縮前の RF信号 Xと圧縮後の RF信号 yをそれぞれ直 交検波して、 以下のように I, Q信号を求める。
( t) →I x、 Qx (X ( t) = I x+ j Qxとする)
y ( t) →I y、 Qy (Y ( ) = I y+ j Qyとする)
ステップ S 32では、 相関: Rxy、 Rxx、 R y yを次式に基づいて計算す る。
Rxy= S X ( t +ソ) · Y* ( t + v) d v
Rx x= S X ( t + v) · X* (t +レ) dリ .
Ry y= S Y ( t + y) · Y* ( t + v) d v
ステップ S 33では、 求められた相関 Rxy、 Rxx、 Ryyを用いて相関係 数 CQ を次式に基づいて計算する。
C„ = I Rxy I /7~Rxx^Ry y 2003/009731
23 ステップ S 34では、 変数 nに 1をセットする。
ステップ S 3 5では、 Yn (t) =Y (t -nT) eiwnTを計算する。
ステップ S 36では、 次式に基づいて Rxyn , Rynynを計算する。
Rxyn = S X ( t + v) · Yn* ( t + ν) d ν
= X ( t +ソ) · Υ* ( t -nT+ v) β1'ωηΊά v
Rynyn= Y„ (t + v) Yn* (t +ソ) dリ
= S Y ( t -nT+ v) - Y* ( t -nT+ v) d v
ステップ S 37では、 求められた Rxyn , Rynynを用いて相関係数 Cnを次 式に基づいて計算する。
C„ = I Rx yn I / Rx xT Rynys
ステップ S 38では、 変数 nをインクリメント処理する。
ステップ S 39では、 変数 nが最大値 Mに達したか否かを判定し、 達した場合 はこの処理を終了し、 達していない場合は、 ステップ S 3 5にリタ一ンし、 同様 の処理を繰り返す。
図 10のフローチャートでは、 Rxyn , Rynynを求めるのに、 ステップ S 35で Ynを Yから導いている。 このために、回路構成の簡略化を図ることができ る。 以下、 どのようにして Υη を Υから導くかについて説明する。
まず、 加圧前のエコー信号 X (t) を
X ( t) =u ( t ) c o s (ω t + θ)
軸方向に加圧後のエコー信号 y (t) を
y ( t ) =x ( t + r) =u (t +て) c o s (ω (t +て) +0) とする。 各信号 x, y, yn の直交検波値は、
X (t) I x=0. 5 u ( t ) c o s e
Qx = - 0. 5 u ( t ) s i n Θ
(X ( t) = I x + j Q x = 0. 5 u (t) e~ie)
y ( t ) → I y = 0. 5 u ( t + r ) c o s (ω τ + Θ)
Q y—— 0. 5 u (t +て ) s i n (ω τ + Θ)
(Y ( t) = I y + j Qy= 0. 5 u ( t +t) e-j(tt,r + 0) ) yn (t) =y (t -nT)
=u (t +t— nT) c o s (ω ( t + r -nT) + Θ) =u (t +t— nT) c o s (c t +ω (て— nT) +Θ) となる。 ここで、 Tは半周期なので、
I yn= 0. 5 u ( t + r -nT) c o s (ω (て— nT) +θ)
Qy„=- 0. 5 u (t +て _ηΤ) s i n (ω (て— nT) + θ)
(Υ = I yn+ j Qyn=0. 5 u ( t +て — nT) e_" "て- ))
となる。 以上の式から以下のような関係が成り立つ。
Υη (t) = I yn+ j Qyn '
=0. 5 u ( t + r - nT) e -j(cu(r-nT) + e)
=Y (t -nT) eiMnT
これから Yn ( t) は Y ( t) = I y+ j Qyから求まることになる。
従って、 Rxyn, Rynynも、 次式のように X、 Yから求めることができる。 Rxyn =4 S X (t + v) · Yn * ( t + ν) d ν
= 4 S X (t +リ) · Υ* (1; _ηΤ +ソ) ejwnTd v
I x yn I =R un
= u ( t +リ) u ( t + r -nT+ v) d v
= 4nx (t + v) - Yn * ( t +ソ) I d v
=4 Π X ( t + y) · Y* ( t -nT+ y) eia,nT I d v
=4 S I X ( t + v) - Y* ( t -nT+ v) I d v Ry„yn= u ( t + r -nT+ v) u (t +て一 nT+リ) d v
=4 Π Y„ (t + v) · Yn * (t + ν) I d v
=4 S Y ( t -nT+ ν) · Y* (t一 nT +レ) dソ
ここで、 *は複素共役を表している。
図 1 1は、 この 3次元複合自己相関法の基本アルゴリズムを実行する回路構成 を示すブロック図である。 複合自己相関法を実行する回路構成を従来技術の図 7 に示すようなものにすると、 直交検波回路 1 320〜132 Nが多段接続される ことによって、 直交検波回路 1320〜1 32 Nの処理に時間を要するようにな り、 その処理時間は膨大なものとなってしまい、 高速な演算処理の妨げとなり、 リアルタイムな画像表示の妨げとなっていた。 そこで、 前述のような基本アルゴ リズムに応じた図 11のような回路構成を採用することによって、 複合自己相関 法を実行する回路の処理速度を高速化している。
加圧前直交検波回路(QD) 131は、加圧前のエコー信号 X (t) を入力し、 それぞれ直交検波して、 直交検波信号 I x (t), Qx (t) 信号を、 第 1相関演 算回路 133及び第 1相関係数演算回路 1350〜135 Nに出力する。 加圧後 直交検波回路 (QD) 132は、 加圧後のエコー信号 y (t) を入力し、 それぞ れ直交検波して直交検波信号 Y (t) = I y + j Qy (I y (t), Qy ( t)) を、 第 1相関係数演算回路 1350、 第 2相関演算回路 1340及び第 1遅延回 路 134及び第 2遅延回路 135に出力する。 第 1遅延回路 134及び第 2遅延 '回路 135は、 直交検波信号 Y (t) をそれぞれ超音波の周期 Tだけ遅延させ、 遅延した直交検波信号 Y (t -T) を第 1相関係数演算回路 1351、 第 3遅延 回路 136及び第 4遅延回路 137に出力する。 第 3遅延回路 136及び第 4遅 延回路 137は、 直交検波信号 Y (t -T) をそれぞれ超音波の周期 Tだけ遅延 させ、 遅延した直交検波信号 Y (t -2T) を次段の第 1相関係数演算回路及び 遅延回路 (図示せず) に出力する。 以後、 N段の遅延回路を用いて順次周期丁の 整数倍だけ信号を遅延して、 遅延した信号を第 1相関係数演算回路に供給する。 第 1相関演算回路 133は、信号 I X, Qxに基づいて相関値 R X Xを演算し、 それを各第 2相関係数演算回路 1380〜138 Nに出力する。 第 2相関演算回 路 1340は、加圧後直交検波回路 132からの直交検波信号 I y( t),Qy ( t) を入力し、 信号 I y, Qyに基づいて相関値 Ry yを演算し、 それを第 2相関係 数演算回路 1380に出力する。 第 1相関係数演算回路 1350は、 加圧前直交 検波回路 131からの直交検波信号 I x ( t ) , Qx (t) 及び加圧後直交検波回 路 132からの直交検波信号 I y (t), Qy (t) を入力し、 複素ベースパント 信号 SR , S, を求め、 それを第 3相関演算回路 1360及び位相差演算回路 1 370に出力する。 第 3相関演算回路 1360は、 第 1相関係数演算回路 135 0からの複素べ一スバント信号 SR, S, を入力し、 それに基づいて相関値 I R xy Iを求め、 それを第 2相関係数演算回路 1380に出力する。 位相差演算回 路 1370は、 第 1相関係数演算回路 1350からの複素ベースバント信号 SR, S, を入力し、 それに基づいて位相差 Φ。 (t) を求める。 第 2相関係数演算回 路 1380は、 第 1相関演算回路 133からの相関値 Rxx、 第 3相関演算回路 1360からの相関値 I Rxy し 並びに第 2相関演算回路 1340からの相関 値 Ryyを入力し、 これらの各相関値に基づいて相関係数 C。 (t) を演算し、 出力する。
第 2相関演算回路 1341は、 第 1遅延回路 134及び第 2遅延回路 135か らの遅延後の直交検波信号 I y (t— T), Qy (t -T)を入力し、信号 I y (t 一 T), Qy (t -T) に基づいて相関値 Ry!y,を演算し、 それを第 2相関係数 演算回路 1381に出力する。 第 1相関係数演算回路 1351は、 加圧前直交検 波回路 131からの直交検波信号 I X (t), Qx (t)、 第 1遅延回路 134及 び第 2遅延回路 135からの遅延後の直交検波信号 I y (t一 T), Qy (t一 T) を入力し、 複素べ一スバント信号 SRl, S„を求め、 それを第 3相関演算回路 13 61及び位相差演算回路 1371に出力する。 第 3相関演算回路 1361は、 第 1相関係数演算回路 1351からの複素ベースバント信号 SR1, S„を入力し、そ れに基づいて相関値 I Rxy, Iを求め、 それを第 2相関係数演算回路 1381 に出力する。 位相差演算回路 1371は、 第 1相関係数演算回路 1351からの 複素ベースバント信号 SR1, S„を入力し、 それに基づいて位相差 (t) を求 める。 第 2相関係数演算回路 1381は、 第 1相関演算回路 133からの相関値 Rxx、 第 3相関演算回路 1361からの相関値 I Rxy, I、 並びに第 2相関演 算回路 1341からの相関値 Ry iを入力し、 これらの各相関値に基づいて相 関係数 C, (t) を演算し、 出力する。
第 3遅延回路 135及び第 4遅延回路 136から次段の第 2相関演算回路 13 42〜134N、 第 1相関係数演算回路 1352〜135N、 第 3相関演算回路 1362〜 1 36 N、 位相差演算回路 1372〜; 137 N及び第 2相関係数演算 回路 1382〜138Nは、 上述と同様の処理を順次遅延された遅延後の直交検 波信号 I y (t— 2T) · · · I y ( t -NT), Qy ( t - 2 T) · · · Qy (t 一 N T) に対して実行し、 相関係数 C 2 ( t ) 〜 CN ( t ) 及び位相 φ 2 ( 1;) 〜 ΦΝ ( t ) を出力する。
次に、 3次元有限要素モデルを用いた弾性係数分布再構成法について説明する。 弾性係数分布再構成逆問題を簡単化するため、 この実施の形態では組織をモデル 化する。 これはまた、 今回提案する弾性係数分布再構成法において有限要素法を 用いるためでもある。 この実施の形態では、 組織を以下のように仮定及びモデル 化する。
まず、 組織を等方性弾性体と仮定する。 組織歪み分布を推定する際、 外部から 圧力を加えて組織を静的に圧縮する。 しかし、 組織圧縮前後の R F信号間の相関 を保っために、 微小圧縮しか行わない。 そのため、 この場合、 応力と歪みの間の 関係はほぼ線形である。 すなわち、 組織を弾性体として近似できる。 また、 今回 対象としている軟組織はほぼ等方性が成り立つため、 この実施の形態では組織を 等方性弾性体と仮定する。
さらに、 組織を近非圧縮性と仮定する。 生体組織は、 非圧縮性 (ポアソン比レ = 0 . 5 ) に近いことが知られている。 そこで、 ポアソン比を 0 . 4 9とし、 生体 内で一定とする。ここで、完全な非圧縮性を仮定しないのは、ポアソン比レ = 0 . 5とすると特殊な弹性方程式となり、 今回の提案手法で用いている有限要素法が 適用できなくなるためである。 そして、 ポアソン比を生体内で一定とすることで 弾性係数分布推定の推定パラメ一夕をヤング率のみとすることができ、 逆問題を 簡単化できる。 また、 ポアソン比はヤング率に比べ生体中であまり変化しないパ ラメ一夕であるため、 この実施の形態ではポアソン比を 0 . 4 9で一定とする。 組織を 3次元有限要素モデル化する。 この弾性係数分布再構成法では有限要素 法を用いるため、組織を有限個の直方体要素に分割する。そして、各要素内では、 弾性係数、 応力、 歪みは一様であると仮定する。 一般的に逆問題を解くには、 そ れに対応する順問題を理解することが重要である。 今回の歪み分布と境界条件か ら弾性係数分布を推定する逆問題の場合、 それに対応する順問題とは、 弾性係数 分布と境界条件から歪み分布を求めることである。 そして、 この順問題の数値解 法の 1つが有限要素法 (FEM: F ini t e El ement Me thod) である。 ここで、 有限要素法とは対象となる連続体を有限個の要素の集合で近似し、 こ の集合体に対して成り立つ連立 1次方程式を数値的に解く手法のことである。 な お、 有限要素法の定式化については後述する。 ここでは有限要素法とは 「入力と して物体の弹性係数分布と境界条件を与えれば、 出力としてそのときの歪み (変 位) 分布と応力分布が得られるもの」 として捉えておけば十分である。
この実施の形態では、 組織を等方性弾性体で近似するため、 組織内では以下の ような弾性方程式 (つりあい方程式 ·歪み一変位関係式 ·応力一歪み関係式) が 成り立つ。
つりあい方程式は次式 (19) のように表される。 =0
dx,
(/,ゾ =12'3) — (19) ここで、 i.、 j =1, 2, 3は、 x、 y、 zに対応する。 また、 歪み—変位関係式は 次式 (20) のように表される。 r dut ouj
Figure imgf000030_0001
応力一歪み関係式 (一般化したフックの法則) は次式 (21) のように表され る。 び
Figure imgf000030_0002
… (21) 上記の式ではテンソル表現を用いており、 実際にはつりあい方程式として 3つの 式、 歪み一変位方程式として 6つの式、 応力—歪み関係式として 6つの式が存在 する。 また、 座標系 (xt , x2, x3 ) は (x, y, z) を表しており、 その他 の記号は以下のことを表している。
E :ヤング率 (弾性係数とはヤング率のことを表している)
V :ポアソン比 T/JP2003/009731
29 εη:歪みテンソル
ηη= ε"+ ε22 + ε 33:体積歪み)
sn:応力テンソル
djj:クロネッカーのデル夕
U; :変位ベクトル '
f i :体積力ベクトル (重力の影響は無視できるため、 ここでは =0とする) ここで、 応力一歪み関係式を について整理すると、 次のような歪み一応力関 係式 (22) が得られる。
Figure imgf000031_0001
ただし、 Snn=Sll + S22 + s33である。 よって、 この式の中で i = j =2とし、 ヤン グ率 Eについて整理すると次式 (23) が得られる。
E び22 - V (び 11 +び 33)
"22
び - び x+び J
sy - (23) 従って、 軸方向 (この実施の形態では、 y方向を超音波ビーム方向、 すなわち軸 方向とする) の歪み成分と全方向の応力成分がわかれば、 ヤング率すなわち弾性 係数を求めることができる。 なお、 上述の計算式からは、 応力分布を直接計測す ることは現状では困難である。 そこで、 この実施の形態では応力分布と弾性係数 分布を交互に推定 ·更新しながら、 推定弹性係数分布を実際の分布に近づけてい く。 その弾性係数分布再構成の手順は、 以下のようになる。
第 1に、 未知弾性係数分布の初期値分布 {E °} として一様分布を考える。 第 2に、 初期弾性係数分布 {E'Q} のときに生じる応力分布 {s' } を 3次元有限要 素法により求める。 具体的には、 まず組織モデル内の各要素に対して歪み一変位 関係式及び応力一歪み関係式をつりあい方程式に代入して得られる次式のような つりあい方程式 (24) を作る。
Figure imgf000032_0001
ただし、 un _ dux du 0u3
dxn dxl dx2 dx^
- (25) である。 そして、 この連立方程式を以下のような境界条件のもとガウスの消去法 を用いて変位について解き、 弹性係数分布 {E'°} のときの変位分布 {u'°} を 求める。
u I = 0 び i \y=top= Pi
σ I , =
n \x,z=si e · · · ( 2 Γ、 上式において、 p;は体表における外部圧力ベクトル、 snは側面に垂直な方向の 応力成分である。 また、 上段の式は底面が固定されていることを示し、 中段の式 は体表での応力分布は外部圧力分布に等しいことを示し、 下段の式は側面が拘束 されていないことをそれぞれ示している。 次に、 この変位分布 {iTfl} を歪み一 変位関係式に代入して、 弾性係数分布 {E'Q} のときの歪み分布 { ε '°} を求め る。 そして、 この歪み分布 { ε '°} を応力一歪み関係式に代入することにより、 弾性係数分布 {Ε } のときの応力分布 {s °} を得る。
第 3に、 3次元有限要素法により得られた応力分布と拡張複合自己相関法によ り推定した軸方向 (y方向) 歪み分布 { εγ } を用いて、 弾性係数分布 {E'k} を次式 (27) により更新する。 , — )
sy - (27) ただし、 この式は、 上述の応力一歪み関係式を ευについて整理し、 式中の i = j =2とし、 ヤング率 Eについて整理した式を書き改めたものであり、 式中の k は繰り返し回数を表している。
第 4に、 上述のように更新された弾性係数分布と上述の境界条件を用いて再び 3次元有限要素解析を行い、 応力分布を更新する。
そして、 第 3及び第 4の処理を繰り返すことにより弾性係数分布を実際の分布 に近づけていく。 ただし、 次式 (2 8 ) の条件が満たされた時点で弾性係数分布 推定は収束したとみなし、 推定を終了する。 it+1
丄 < Γ
N Y、 1
… ( 2 8 ) ここで、 1は要素番号、 Νは要素数、 Γはしきい値である。
以上が、 今回提案した 3次元有限要素モデルによる弾性係数分布再構成法であ り、 この方法は 3次元のつりあい方程式を基に弾性係数分布を推定している。 そ のため、 本手法は従来の手法よりもより実際の生体組織に近い仮定に基づいてい るので、 より正確な弾性係数推定が 能になる。 また、 本手法は精度良く推定可 能な軸方向の歪み分布のみから弾性係数分布を再構成するため、 安定した弾性係 数分布再構成が行える。 ただし、 本手法は組織弾性係数の 3次元分布を推定する 手法であるため、 2次元アレイ超音波プローブを用いるか、 1次元アレイ超音波 プローブをスライス方向に機械的に走査することにより、 対象を 3次元的に走査 する必要がある。
この実施の形態の拡張複合自己相関法と 3次元有限要素モデルによる弾性係数 分布再構成法の有効性をシミュレーションによって実証する。 図 1 2は、 このシ ミュレーションの手順の概略を示す図である。
第 1に、 推定したい弾性係数分布を持つ組織モデルを作成する。 このとき、 組 織モデル内には超音波エコー信号を発生させるための散乱体を分布させておく。 第 2に、 この組織モデルに対して外部圧力を加え、 計算機上で組織圧縮を行う。 そして、 この圧縮による各散乱点の移動先を有限要素法などにより求める。 第 3 に、 組織モデル圧縮前後の散乱体分布を基に圧縮前後の R F信号を作成する。 第 4に、 この圧縮前後のシミュレ一ション R F信号に対して拡張複合自己相関法を 適用し、 組織歪み分布を推定する。 第 5に、 拡張複合自己相関法により推定され た歪み分布と組織モデル圧縮の際に設定した境界条件 (外部圧力分布など) とか ら 3次元有限要素モデルによる弾性係数分布再構成法により組織弾性係数分布を 推定する。
今回のシミュレ一シヨンで用いた組織モデルの弾性係数分布は、 各シミュレ一 シヨンにおいて異なるが、 いずれの場合も等方性弾性体を仮定する。 なお、 各シ ミュレーションで設定した弾性係数の値としては、 今回の組織弾性計測システム で主な'対象としている乳房組織の弾性係数にほぼ即している。 また、 組織圧縮前 後のシミュレ一ション RF信号を作成するために、 各組織モデルには点散乱体を 分布させた。 その際、 点散乱体の平均密度としては 500個/ cm3とし、 組織 圧縮前の散乱体の位置は一様乱数により、 散乱係数は平均 1. 0、 標準偏差
3の正規乱数により決めた。 そして、 組織圧縮後の散乱体位置は有限要素解析の 結果に応じて組織圧縮前の各散乱体を移動させることにより決めている。ここで、 実際の組織の散乱体に関する情報は未知であるが、 シミュレーション RF信号を 基に Bモード像にした際、 実際の組織の Bモード像に近くなるように各パラメ一 夕を設定する。
この実施の形態では、 組織モデルに対する組織圧縮前後のシミュレーション R F信号を次式 (29) のように組織圧縮前後の散乱体関数と超音波システムの点 広がり関数との畳み込みにより作成する。
ix, y,z = fj J/z( -x y- ,ζ-ζ'^ (ΛΓ' ,γ,ζ' )dx' dy' dz
iつ (x,
Figure imgf000034_0001
ここで、 i, (x, y, z) は組織圧縮前の RF信号、 i2 (x, y, z) は組 織圧縮後の RF信号、 h ( , y, z) は超音波システムの点広がり関数 (イン パルス応答)、 t L (x, y, z) は組織圧縮前の散乱体関数、 t2 (X, y, z) は組織圧縮後の散乱体関数である。 ただし、 散乱体関数とは組織モデル内の散乱 体が存在する位置ではその散乱係数の値をとり、 その他の位置では 0であるよう な関数である。 また、 組織圧縮後の散乱体関数 2 (X, y, z) は組織圧縮前 散乱体関数 (x, y, z) の各散乱体の位置を組織モデルの変形に応じて移 動させたものである。 ただし、 組織圧縮に伴う各散乱体位置での変位は有限要素 解析により得られる要素節点での変位べクトルを線形補間することにより求めて いる。
また、 この実施の形態ではシミュレーション超音波システムとして無焦点、 か つ減衰のないシステムを仮定する。 すなわち、 超音波システムの点広がり関数 h (x, y, z) は空間的に不変であると仮定する。 さらに、 点広がり関数は次式 (30) のように方向ごとに分離できると仮定する。 h(x,y,z) = hx(x)hy(y)hz(z)
… (30) ここで、 hy (y) は超音波ビーム方向の点広がり関数、 hx (x), h z (z) はそれぞれ超音波ビームに直交した方向の点広がり関数である。 ただし、 X方向 は超音波断層面内の方向(横方向)、 z方向は超音波断層面に垂直な方向(スライ ス方向) とする。 そして、 各方向の点広がり関数は実際の超音波装置により計測 したワイヤー 'ターゲット (水中に張った直径 0. 13mmのワイヤ一) からの 反射エコー分布を基に作成する。 図 13は、 超音波中心周波数 5. 0 MHzの場 合に用いた各点広がり関数の一例を示す図である。 図 13 (A) は軸方向の点広 がり関数 hy (y) を示し、 これはガウス関数に正弦波をかけたものによって実 際のワイヤー .夕一ゲットからの反射エコー分布を近似し、 図 13 (B) は横方 向点の広がり関数 hx (x) を、 図 13 (C) はスライス方向の広がり関数 h z (x) をそれぞれ示し、 これらはガウス関数によって実際のワイヤー ·ターゲッ トからの反射ェコ一分布を近似する。 また、 各関数のパラメ一夕は中心周波数に 応じて変えており、 各シミュレ一ションの際に改めて説明する。
次に、 変位 (歪み) 分布推定法として今回提案した拡張複合自己相関法の有効 性をシミュレーションにより評価する。 まず、 拡張複合自己相関法の複合自己相 関法に对する拡張点である組織の横方向変位に対応できる点について検証する。 図 14は、 組織モデルの概略を示す図である。 組織モデルは、 外形 60mmx 60mm (2次元) で、 一様な弾性係数分布をもつモデルである。 そして、 この 組織モデルを軸方向に一様な 3%の歪みが生じるように圧縮する。 ここで、 この シミュレーションに関しては拡張複合自己相関法のみの評価を行うため、 組織モ デルとしては単純な 1次元弾性体を仮定している。そして、組織の横方向移動(超 音波プローブに対する相対的な横方向移動) に関する影響を検証するため、 軸方 向の圧縮と同時に横方向に 0.0mmから 1.4mmまでの横方向変位を与えた。 ただし、 横方向に関しては単純な平行移動であり、 組織に対して超音波プローブ が完全に滑つた場合を想定している。
そして、 この組織モデルに対して変形前後のシミュレーション RF信号を作成 する。 その際用いた超音波システムに関するパラメータは、 中心周波数 5. 0M Hz、 パルス幅 0. 5mm、 超音波ビーム幅 1. 0mm、 走査ライン間隔 0. 5 mm、 サンプリング周波数 30MHzである。 そして、 この圧縮前後のシミュレ —ション RF信号を用いて、 今回提案した拡張複合自己相関法により歪み分布を 推定する。 また、 比較のために複合自己相関法と空間相関法を用いても歪み分布 推定を行った。 ここで、 単純に精度等を比較できるように各手法では同じサイズ の相関窓と探索範囲を用いた。 具体的には、 拡張複合自己相関法と空間相関法で は 1. 6 mm (軸方向) χ2. 5 mm (横方向) の 2次元相関窓と 5. 6 mm (軸 方向) χ7. 5 mm (横方向) の 2次元探索範囲を用い、 1次元処理の複合自己 相関法では軸方向だけ同じ 1. 6 mmの 1次元相関窓と 5. 6 mmの 1次元探索 範囲を用いた。
このようにして各手法により歪み分布を推定した結果、 図 15〜図 17のよう になる。 ここで、 図 15は横方向変位に対する各手法の歪み推定誤差を示してい る。 ◊は複合自己相関法、 口は拡張複合自己相関法、 △は空間相関法を示す。 た だし、 歪み推定誤差 eとしては次式 (31) を用いた。
Figure imgf000036_0001
ここで、 ε は推定された歪み、 £ iは実際の歪み (理想値)、 iは要素番号、 N は要素数である。 また、 図 16は横方向変位が 0. Ommの場合の各手法 (複合 自己相関法、 拡張複合自己相関法、 空間相関法) によ,り推定した歪み分布、 図 1 7は横方向変位が 0 . 4 mmの場合の各手法 (複合自己相関法、 拡張複合自己相 関法、 空間相関法) により推定した歪み分布を示す図である。 なお、 図 1 6及び 図 1 7は軸方向の深さごとに推定された歪みの平均値と標準偏差を表している。 このシミュレーション結果より、 従来の複合自己相関法 (C A法) では組織の 相対的な横方向変位が超音波ビームを越えて生じてしまう (今回の場合、 横方向 変位がビーム幅の片側分である 0 . 5 mmを超えてしまう) と歪み推定が急に悪 くなつてしまうのに対し、 拡張複合自己相関法では横方向変位の大きさにかかわ らず安定して歪み推定が可能であることが理解できる。 また、 空間相関法も横方 向変位にかかわらず安定して歪み推定が行えるものの、 拡張複合自己相関法と比 ベると 2倍以上誤差が大きく精度が悪いことが理解できる。 また、 各手法の処理 時間を比較したところ、 下表のように拡張複合自己相関法は複合自己相関法に比 ベて 3 . 6倍時間がかかってしまうものの、 空間相関法と比べると 1 Z ( 7 . 7 ) の時間しかかからなかった。 そのため、 拡張複合自己相関法はある程度リアル夕 ィム性が保たれていることが理解できる。
Figure imgf000037_0001
次に、 斜め方向圧縮に関する検証について説明する。 前述のシミュレーショ ンでは簡単な 2次元の均一組織モデルを用いたが、 次は実際の生体組織と同じ 3 次元構造を持つ組織モデルを用いてシミュレーションを行う。 また、 超音波プロ ーブにより組織を圧縮する際、 超音波ビーム方向 (軸方向) に圧縮するのが理想 であるが、 ここでは斜めに圧縮してしまった場合の影響を検証する。
図 1 8は、斜め方向圧縮の検証に使用される組織モデルの概略を示す図である。 組織モデルは、 図 1 8 (A) に示すように、 外形が 6 O mmx 6 O mmx 6 O mm の 3次元構造をしており、 この組織モデル中に直径 1 5 mm、 長さ 6 O mmの硬 い円柱形内包物が存在するようなモデルである。 ここで、 周辺の弹性係数 (ヤン グ率) は 1 0 k P a、 内包物の弾性係数は周辺より 3倍硬い 3 0 k P aとする。 ただし、 この弾性係数の値は今回主な対象としている乳房組織の弾性係数および 乳がんの弾性係数を基に設定する。 そして、 この組織モデルを 2通りの方法で圧 縮を行った。 1つ目は、 図 1 8 (B ) に示すように、 この組織モデルに対して上 面から軸方向に一様な 2 0 0 P aの外部圧力を加えて、 組織モデルを軸方向に約 2 %圧縮する。 2つ目は、 図 1 8 ( C ) に示すように、 この組織モデルに対して モデル上面から斜め方向の一様な外部圧力 (軸方向に 2 O O P a、 横方向に 3 0 P a ) を加えて、 組織モデルを斜め方向に圧縮する。
そして、 上記の 2通りの場合についてそれぞれ組織圧縮前後のシミュレーショ ン R F信号を作成し、 拡張複合自己相関法により歪み分布を推定する。 なお、 こ こでも比較のために複合自己相関法と空間相関法による歪み分布推定も行う。 た だし、 単純に比較できるように各手法で用いた相関窓サイズと探索範囲は同じと し、 そのサイズは前のシミュレ一ションと同じとする。 また、 シミュレーション R F信号作成の際に用いた超音波システムに関するパラメ一夕も前のシミュレ一 ションと同じ、 中心周波数 5 . 0 MH z、 パルス幅 0 . 5 mm、 横方向超音波ビ —ム幅 1 . 0 mm、スライス方向超音波ビーム幅 2 . 0 mm、走査ライン間隔 0 . 5 mm、 サンプリング周波数 3 0 MH zとする。
上記のようにして行ったシミュレーションの結果は、 図 1 9及び図 2 0に示す ようになる。 ここで、 図 1 9は組織モデルを単純に軸方向に圧縮した場合の歪み 分布推定結果を示し、 図 2 0は組織モデルを斜め方向に圧縮した場合の歪み分布 推定結果を示す。 なお、 各図における理想的な歪み分布とは、 各条件で 3次元有 限要素解析を行って得られた軸方向歪み分布であり、 この歪み分布を正解として いる。 また、 図 1 9及び図 2 0における結果は組織モデルの中央断面での結果で ある。 ここで、 図 2 0において理想歪み分布が左右対称でないのは斜め方向に圧 縮した影響であり、 特に今回の場合は図に向かって右斜め下に圧縮したため、 図 右上の部分の横方向変位が大きくなつている。
そして、 このシミュレーションの結果より、 軸方向に圧縮した場合は拡張複合 自己相関法と複合自己相関法はほぼ同じ結果となったが、 斜め方向に圧縮した場 合は横方向変位が大きくなるため、 複合自己相関法では推定できなくなる領域が 生じてしまうのに対し、 拡張複合自己相関法では先のシミュレーション同様に横 方向変位の大きさにかかわらず安定して歪み推定が可能であることが改めて確認 された。 また、 空間相関法も横方向変位の大きさには依存しないものの拡張複合 自己相関法の結果と比較すると明らかに推定精度が悪いのが見てとれる。 そのた め、 前のシミュレーションと合わせて改めて拡張複合自己相関の有効性が確認さ れた。
前述の拡張複合自己相関法は、 精度良く、 かつ高速に組織歪み分布を推定でき ることができる。 そこで、 次に組織弾性映像システムの第 2段階である歪み分布 から弾性係数分布を推定する手法で、 今回提案した 3次元有限要素モデルによる 弾性係数分布再構成法についてシミュレーシヨンにより検証を行う。
今回提案した弾性係数分布再構成法の最大の特徴は 3次元の力学的つりあい方 程式に基づいて弾性係数分布を推定することである。 そこで、 今回提案した手法 と手順的には同じであるが、 2次元の力学的つりあい方程式を基にしている点だ けが異なる 2次元再構成法を用いて、 提案した 3次元再構成法と比較することに より検証を行う。 この 2次元再構成法では、 2次元の平面歪み状態を仮定した弾 そこで、 まず組織モデルとして、 実際の生体組織と同じ 3次元構造を持つ図 2 1 のような 2つのモデルを用いる。 図 2 1は、 3次元構造を持つ 2つの組織モデル の一例を示す図である。 図 2 1 ( a ) の内包物モデルは、 乳がんを模擬したモデ ルで、外形 1 0 0 mmx 1 0 0 mmx 1 0 0 mmのモデル中に直径 2 0 mmの硬い 内包物が存在するもので、 内包物の弾性係数は 3 0 k P a、 周辺の弾性係数は 1 O k P aとする。 これらの弾性係数の値は、 先ほどのシミュレーションと同じよ うに実際の乳房組織の弾性係数を基に決めている。 また、 周辺と内包物のポアソ ン比としては、 共に非圧縮性に近いため 0 . 4 9で一様とする。 そして、 図 2 1 ( b ) の層状モデルは筋肉などの層状のものを模擬したモデルで、 外形 1 0 0 m mx 1 0 O mmx 1 0 O mmのモデル中に厚さ 2 0 mmの硬い層がモデル中に存 在するというもので、 硬い層の弾性係数は 3 0 k P a、 周辺の弾性係数は 1 0 k P aとする。 そして、 このモデルの場合もポアソン比は 049で一様とする。 そして、 図 21 (a) の内包物モデルの場合はモデル上,部から軸方向に 100 P aの一様な外部圧力により、 図 21 (b) の層状モデルの場合はモデル上部か ら軸方向に 150 P aの一様な外部圧力により、 各モデルをコンピュータ上で圧 縮する。 ここで、 2つのモデルで外部圧力の強さを変えているのは、 各モデルと も同じ約 1 %の歪みが生じるようにするためである。 そして、 これらの組織モデ ル圧縮前後のシミュレーション R F信号を作成し、 拡張複合自己相関法により軸 方向歪み分布を推定する。 そして、 この推定された軸方向歪み分布と圧縮の際の 境界条件とから、 提案した 3次元弾性係数分布再構成法により弾性係数分布を推 定する。 また、 同じ軸方向歪み分布と境界条件を用いて比較のために 2次元再構 成法によっても弾性係数分布を推定する。 ここで、 シミュレーション RF信号を 作成するために用いた超音波システムのパラメータとしては、 中心周波数 3. 7 5MHz, パルス幅 0. 75mm、 横方向超音波ビーム幅 2. 0mm, スライス 方向超音波ビーム幅 2. 0mm、 走査ライン間隔 2. 0mmである。 また、 拡張 複合自己相関法における相関窓のサイズは 3. 2mm (軸方向) x4. 0mm (横 方向)、 探索範囲は 1 1. 2mm (軸方向) χ14. 0mm (横方向) とする。 さ らに、 3次元有限要素モデルよる弾性係数分布再構成では 2 mm (軸方向) χ 2 mm (横方向) x5mm (スライス方向) の直方体要素 50000個を用いて組 織モデルを構成する。
そして、 このシミュレーションの結果は、 図 22〜図 25に示すようになる。 図 22及び図 23は内包モデルにおける各推定結果を示す、 図 24及び図 25は 層状モデルにおける各推定結果を示す。 ただし、 3次元再構成法では弾性係数の 3次元分布を推定しているが、 ここではモデル中央断面での結果のみを示す。 こ れは、 2次元再構成法では 2次元断面での弾性係数分布しか推定できないので、 'ここでは比較できる中央断面のみ示す。 また、 各組織モデルにおける 3次元再構 成結果と 2次元再構成結果を数値的に評価したところ次のような結果が得られた。 周辺領域におけ 周辺領域にお モデル中心に
弹' I生 1糸数 s¾ るコノ卜
[%] [%] ラスト誤差
厂し/ <y ¾ Ί _! 内包 3次元再構成法 3. 5 15. 5 11. 0 物モ
デル 2次元再構成法 30. 9 17. 9 35. 9 層状 3次元再構成法 8. 5 26. 8 3. 1 モデ
ル 2次元再構成法 24. 9 22. 1 43. 5 ここで、 用いた評価用のパラメ一夕は、 周辺領域における弾性係数誤差 es 、 周 辺領域における標準偏差 SDS 、 モデル中心におけるコントラスト誤差 ee であ り、 それぞれ次式のように定義する。
Ε,—ΕΛ
¾ =■
Ε.
Figure imgf000041_0001
… (32) ただし、 上式における S は周辺領域における総和、 E は推定された弾性係数、
Eは実際の弾性係数、 Ns は周辺領域の要素数、 E" は周辺領域における弾性係 数の平均値、 E"eはモデル中心における推定弾性係数、 Ee はモデル中心におけ る実際の弾性係数、 Es は周辺領域における実際の弾性係数である。
以上のシミュレ一ション結果より、 今回提案した 3次元有限要素モデルによる 弾性係数分布再構成法の方が平面応力状態を仮定した 2次元再構成法よりもより 正確な弾性係数を推定できることが確認された。 ここで、 3次元再構成法では弹 性係数の値が正確に推定されているのに対し、 2次元再構成法では実際の弾性係 数の値よりも小さく推定しまっている。 これは、 前もって予想されていたように 2次元状態では 2次元考察面に垂直な方向の動きが制限されてしまうためである。 そのため、 実際の生体組織と同じ 3次元を基にした弹性係数分布再構成法が必要 2003/009731
40 であることがこのシミュレーションにより改めて示された。
次に、 上述の拡張複合自己相関法と 3次元有限要素モデルによる弾性係数再構 成法を実装した超音波診断システムの具体的構成について説明する。 図 2 6は、 この超音波診断システムの基本構成を示す図である。この超音波診断システムは、 3次元超音波スキャナ 2 8 1、 超音波診断装置 2 8 2、 パーソナルコンピュータ 2 8 3、 パルスモ一タコントローラ 2 8 4、 パルスモータ 2 8 5、 圧力計 2 8 6 などから構成される。 3次元超音波スキャナ 2 8 1は超音波パルスを組織内に送 信し、 かつ組織からの超音波エコー信号を受信するためのものである。 ただし、 ここでは 3次元有限要素モデルによる弹性係数再構成法を用いるため、 組織内の 3次元的なデ一夕が必要になる。 そこで、 この超音波診断システムでは 3次元超 音波スキャナ 2 8 1は 3次元走査が可能な構成となっている。 超音波診断装置 2 8 2は 3次元超音波スキャナ 2 8 1を制御したり、 リアルタイムに超音波 Bモ一 ド画像を表示して計測部位を決定したりするためのもので、 従来の超音波診断装 置をそのまま用いることができる。 この超音波診断装置はフルデジタル化された 装置で内部にフレームメモリを持っているため、 計測した R F信号を一時的に保 存しておくことが可能となっている。 パーソナルコンピュータ 2 8 3は、 超音波 診断装置 2 8 2によって計測された R F信号を受け取り、 組織弾性特性推定のた めの処理(前述の提案手法の処理)、および処理結果の表示を行うためのものであ る。 パルスモータ 2 8 5は組織圧縮を制御するためのものであり、 位置固定が可 能なアームの先端に固定されており、 かつパルスモータ 2 8 5の可動部分には 3 次元超音波スキャナ 2 8 1が取り付けてある。 そして、 パルスモータコントロー ラ 2 8 4によりこのパルスモータ 2 8 5を制御し、 超音波スキャナ 2 8 1を組織 表面で上下に動かすことにより数パ一セントの微小組織圧縮を精度良く行う。 圧 力計 2 8 6は弾性係数再構成の際に必要な境界条件である体表上での圧力を測る ためのもので、 超音波スキャナ 2 8 1と体表との間に置かれる。 ただし、 ここで は超音波スキャナ 2 8 1で組織圧縮を行った際の体表上での圧力分布は一様であ ると仮定し、 圧力計 2 8 6で計測された値をその圧力値として用いる。
図 2 7は、 この超音波診断システムで用いた超音波スキャナ 2 8 1の具体的構 成を示す図である。 3次元超音波スキャナ 2 8 1は、 超音波振動子が 2次元平面 状に並んだ 2次元アレイ型ではなく、 コンベックス型の 2次元走査プロ一ブを水 中で機械的にスライス方向に振ることにより 3次元走査を行うタイプのものであ る。
図 2 6の超音波診断システムは、 乳がん診断を主な対象としているため、 超音 波スキャナの特性も乳腺用に設定してある。 今回用いた超音波スキャナの主な特 性としては、 超音波中心周波数 7 . 5 MH z , サンプリング周波数 3 0 MH z、 走査ライン数 7 1本、 フレーム数 4 4枚、 振動子の振れ角 3 0 °、 1回の 3次元 走査にかかる時間 0 . 5秒となっている。 ここで、 振動子の振れ角とはコンペッ クス型のプロ一ブをスライス方向に振る際の振れ角のことであり、 フレーム数と はコンベックス型のプローブを 1回振る際に取得される走査面 (フレーム) の数 である。 また、 水中のワイヤ一·ターゲットにより超音波パルスの特性を計測し たところ、 パルス幅約 0 . 5 mm、 横方向ビーム幅約 1 . 5 mm、 スライス方向 ビーム幅約 2 . 6 mmであった。
図 2 6の超音波診断システムの弾性計測の動作例について説明する。 まず、 超 音波診断装置 2 8 2のリアルタイム Bモード像を見ながら、 アームにつながった 3次元超音波スキャナ 2 8 1を動かし、 計測を行いたい部位に超音波スキャナ 2 8 1を設定する。 この際、 超音波スキャナ 2 8 1は 3次元走査を行わず (すなわ ち、 コンベックス型のプローブを機械的に振らず)、スキャナの中央面の Bモード 像のみを超音波診断装置 2 8 2に表示する。 これは、 今回の超音波診断装置 2 8 2で 3次元走査をするとリアルタイムに Bモードを表示できないためである。 従 つて、リアルタイムに Bモ一ドを表示することのできる超音波診断装置の場合は、 3次元走査を行いながら部位の設定を行なうことができる。 計測部位に超音波ス キヤナ 2 8 1を移動させたら、 アームの可動部を固定し、 超音波スキャナ 2 8 1 を固定する。 そして、 組織圧縮前の 3次元 R F信号を計測する。 これは、 3次元 走査用のポタンを押すことにより自動的に 3次元走査される。 また、 1回の 3次 元走査にかかる時間はわずか 0 . 5秒である。 このとき、 計測された圧縮前の R Fデ一夕は超音波装置内のフレームメモリに保存しておく。次に、パルスモータ · コントローラ 2 8 4の圧縮用のポタンを 1回押すことにより、 アームに取り付け られたパルスモータ 2 8 5が前もって設定しておいた量だけ超音波スキャナ 2 8 1を動かし、 超音波スキャナ 2 8 1自身により組織を圧縮する。 そして、 パルス モー夕 2 8 5が止まって組織圧縮を行っている状態で、 再び 3次元走査用のポ夕 ンを押し、 組織圧縮後の R Fデ一夕を計測する。 ここで、 組織圧縮後の R Fデ一 タも圧縮前の R Fデータと同様に超音波装置 2 8 2内のフレームメモリに保存さ れる。 また、 圧縮している状態で超音波スキャナ 2 8 1の端に取り付けられた圧 力計の圧力を計測しておく。 以上で、 計測部は終わりで、 組織圧縮を解除し、 被 験者は解放される。
被検者解放後は、 パーソナルコンピュータ 2 8 3から超音波診断装置 2 8 2内 のフレームメモリにアクセスし、 組織圧縮前後の R Fデータをパーソナルコンビ ユー夕 2 8 3上のハードディスクに保存する。 これは、 超音波装置内のフレ一ム メモリは一時的なものであり、 1回の計測分しか容量がないためである。 パーソ ナルコンピュータ 2 8 3は、 拡張複合自己相関法と 3次元有限要素モデルによる 弾性係数分布再構成法のプログラムを実行し、 組織圧縮前後の R Fデータから歪 み分布及び弹性係数分布を推定する。そして、パーソナルコンピュータ 2 8 3は、 表示用のプログラムによってモニタ上に Bモード像、 歪み像、 弾性係数像を この発明の超音波診断システム、 歪み分布表示方法及び弾性係数分布表示方法 によれば、 横方向変位に対応して変位分布を推定することができると共に超音波 ビーム方向 (軸方向) の歪み分布のみから弾性係数分布を再構成することができ るという効果がある。
なお、 本件は、 包絡線信号を例に説明したが、 波形の特徴量を表すものであれ ば、 振幅、 波高値、 波数を含む波形の相関を特定可能なパラメータでもよい。

Claims

請求の範囲
1 . 被検体との間で超音波信号を送受信する超音波探触子と、
この超音波探触子により検出された信号の特徴量を蓄積する記憶手段と、 この記憶手段に蓄積された前記被検体の圧縮前後の前記特徴量に基づき前記圧 縮前後の前記特徴量の相関係数及び前記圧縮前後の前記受信信号間の位相差を求 める相関演算手段と、
この相関演算手段によって求められた前記相関係数及び前記位相差に基づいて 前記圧縮に伴う前記計測点の変位並びに前記被検体の組織の歪み分布を求める演 算手段と、
前記歪み分布を表示する表示手段とを備えたことを特徴とする超音波診断シス アム。
2 . 前記特徴量は、 包絡線、 振幅、 波高値、 波数を含む波形の相関を特定 可能なパラメータであることを特徴とする請求項 1に記載の超音波診断システム。
3 . 前記相関演算手段は、 前記記憶手段に蓄積された前記被検体の圧縮前 後の前記超音波探触子により検出された信号の包絡線信号からなる超音波ビーム データに計測点を設定し、 該計測点を少なくとも超音波ビーム方向に移動して、 前記計測点における前記圧縮前後の前記包絡線信号の相関係数が最大となる位置 を求めるとともに、 前記圧縮前後の前記受信信号間の位相差を求め、
前記演算手段は、 前記相関演算手段により求められた前記相関係数が最大とな る位置及び前記位相差に基づいて前記圧縮に伴う前記計測点の変位を求める変位 演算手段を含んでなることを特徴とする請求項 1に記載の超音波診断システム。
4 . 前記演算手段は、 前記計測点における変位を空間微分することによつ て前記被検体の組織の歪み分布を求める歪み演算手段を含んでなることを特徴と する請求項 3に記載の超音波診断システム。
5 . 前記相関演算手段は、 前記計測点を前記超音波ビーム方向に前記超 音波信号の 2分の 1波長間隔で移動して前記相関係数の最大位置を求めることを 特徴とする請求項 3に記載の超音波診断システム。
6 . 前記相関演算手段は、 前記計測点における前記圧縮前後の前記包絡 線信号の相関係数が最大となる位置を求めるに際し、 圧縮後の前記包絡線信号の 自己相関関数を求め、 この自己相関関数を前記計測点の移動に合わせて前記超音 波信号の 2分の 1波長間隔でシフトして前記相関係数を求めることを特徴とする 請求項 3に記載の超音波診断システム。
7 . 前記被検体を有限個の要素に分割して少なくとも 2次元の有限要素 モデルを作成し、 そのモデル化の情報と前記歪み分布を用いて弾性係数分布を演 算する弾性係数演算手段を備え、 前記表示手段に前記弾性分布を表示することを 特徴とする請求項 6に記載の超音波診断システム。
8 . 前記相関演算手段は、 前記記憶手段に蓄積されたスライス面に対応 する前記被検体の圧縮前後の前記包絡線信号のフレームデータに計測点を設定し、 該計測点を前記フレームデ一夕に対して少なくとも 2次元方向に移動して、 前記 計測点を囲む 2次元相関窓に属する前記圧縮前後の前記包絡線信号の相関係数が 最大となる位置を求めるとともに、 前記圧縮前後の前記 R F信号間の位相差を求 め、
前記演算手段は、 前記相関演算手段によって求められた前記相関係数が最大と なる位置及び前記位相差に基づいて前記圧縮に伴う前記計測点の少なくとも 2次 元方向の変位を求める変位演算手段を含んでなることを特徴とする請求項 1に記 載の超音波診断システム。
9 . 前記 2次元方向は、 前記超音波探触子により受信される超音波ビー ムの方向と、 該超音波ビームの走査方向であることを特徴とする請求項 8に記載 の超音波診断システム。
1 0 . 前記相関演算手段は、 前記計測点を前記超音波ビーム方向に前記超 音波信号の 2分の 1波長間隔で移動し、 前記超音波ビームの走査方向に前記超音 波ビームピッチで移動して前記相関係数の最大位置を求めることを特徴とする請 求項 9に記載の超音波診断システム。
1 1 . 前記被検体を有限個の要素に分割して少なくとも 2次元の有限要素 モデルを作成し、 そのモデル化の情報と前記歪み分布を用いて弾性係数分布を演 算する弹性係数演算手段を備え、 前記表示手段に前記弾性分布を表示することを 特徴とする請求項 8に記載の超音波診断システム。
1 2 . 前記相関演算手段は、 前記計測点を囲む 2次元相関窓に属する前記 圧縮前後の前記包絡線信号の相関係数が最大となる位置を求めるに際し、 圧縮後 の前記包絡線信号の自己相関関数を求め、 この自己相関関数を前記計測点の移動 に合わせてずらして前記相関係数を求めることを特徴とする請求項 8に記載の超 音波診断システム。
1 3 . 前記記憶手段に蓄積されたフレームデータは、 複数のスライス面の フレームデ一夕を有するボリュームデ一夕であり、
前記相関演算手段は、 前記計測点を前記ポリュ一ムデータに対して 3次元方向 に移動して、 前記計測点を囲む 3次元相関窓に属する前記圧縮前後の前記包絡線 信号の相関係数が最大となる位置を求めるとともに、 前記圧縮前後の前記 R F信 号間の位相差を求めることを特徴とする請求項 5に記載の超音波診断システム。
1 4 . 前記 3次元方向は、 前記超音波探触子により受信される超音波ビー ムの方向と、 該超音波ビームの走査方向と、 これらに直交するスライス方向であ ることを特徴とする請求項 1 3に記載の超音波診断システム。
1 5 . 前記相関演算手段は、 前記計測点を前記超音波ビーム方向に前記超 音波信号の 2分の 1波長間隔で移動し、 前記超音波ビームの走査方向に前記超音 波ビームピッチで移動し、 前記スライス方向に前記超音波ビームのスライスピッ チで移動して前記相関係数の最大位置を求めることを特徴とする請求項 1 4に記 載の超音波診断システム。
1 6 . 前記相関演算手段は、 前記圧縮前後の前記 R F信号間の前記超音波 ビーム方向、 前記超音波ビームの走査方向及びこれらに直交するスライス方向の 位相差を求めることを特徴とする請求項 1 3に記載の超音波診断システム。
1 7 . 前記被検体を有限個の要素に分割して少なくとも 3次元の有限要素 モデルを作成し、 そのモデル化の情報と前記歪み分布を用いて弾性係数分布を演 算する弾性係数演算手段を備え、 前記表示手段に前記弾性分布を表示することを 特徴とする請求項 1 3に記載の超音波診断システム。
1 8 . 前記相関演算手段は、 前記計測点を囲む 3次元相関窓に属する前記 圧縮前後の前記包絡線信号の相関係数が最大となる位置を求めるに際し、 圧縮後 の前記包絡線信号の自己相関関数を求め、 この自己相関関数を前記計測点の移動 に合わせてずらして前記相関係数を求めることを特徴とする請求項 1 3に記載の 超音波診断システム。
1 9 . 前記弾性係数演算手段は、 前記被検体組織を等方性弾性体及び近非 圧縮性と仮定し、 前記被検体組織を有限個の直方体要素に分割して 3次元有限要 素モデル化し、前記各要素内では、弾性係数、応力、歪みは一様であると仮定し、 弾性方程式に前記歪み分布を用いて弾性係数分布を演算することを特徴とする請 求項 1 7に記載の超音波診断システム。
2 0 . 超音波探触子によって被検体の圧縮前後に計測してなる受信信号に 基づいて前記被検体の組織の変位を求め、 この求めた変位に基づいて前記被検体 の組織の歪み分布を求めて表示手段に表示する歪み分布表示方法において、 前記圧縮前後の受信信号の特徴量を求める第 1のステップと、
前記特徴量に基づき前記圧縮前後の前記特徴量の相関係数及び前記圧縮前後の 前記信号間の位相差を求める第 2のステップと、
求められた前記相関係数及び前記位相差に基づいて前記圧縮に伴う前記計測点 の変位並びに前記被検体の組織の歪み分布を求める第 3のステツプと、
求めた前記歪み分布を前記表示手段に表示する第 4のステップとを有してなる ことを特徵とする歪み分布表示方法。
2 1 . 前記特徴量は、 包絡線、 振幅、 波高値、 波数を含む波形の相関を特 定可能なパラメ一夕であることを特徴とする請求項 2 0に記載の歪み分布表示方 法。
2 2 . 前記第 2ステップは、 前記蓄積された前記被検体の圧縮前後の前記 超音波探触子により検出された信号の包絡線信号からなる超音波ビームデータに 計測点を設定し、 該計測点を少なくとも超音波ビーム方向に移動して、 前記計測 点における前記圧縮前後の前記包絡線信号の相関係数が最大となる位置を求める とともに、 前記圧縮前後の前記受信信号間の位相差を求め、 前記第 3ステツプは、 前記求められた前記相関係数が最大となる位置及び前記 位相差に基づいて前記圧縮に伴う前記計測点の変位を求めることを特徴とする請 求項 2 0に記載の歪み分布表示方法。
2 3 . 前記第 3のステップは、 前記計測点における変位を空間微分すること によって前記被検体の組織の歪み分布を求める歪み演算手段を含んでなることを 特徴とする請求項 2 2に記載の歪み分布表示方法。
2 4 . 前記第 2のステップは、 前記計測点を前記超音波ビーム方向に前記 超音波信号の 2分の 1波長間隔で移動して前記相関係数の最大位置を求めること を特徴とする請求項 2 2に記載の歪み分布表示方法。
2 5 . 前記第 2のステツプは、 前記計測点における前記圧縮前後の前記包 絡線信号の相関係数が最大となる位置を求めるに際し、 圧縮後の前記包絡線信号 の自己相関関数を求め、 この自己相関関数を前記計測点の移動に合わせて前記超 音波信号の 2分の 1波長間隔でシフトして前記相関係数を求めることを特徴とす る請求項 2 2に記載の歪み分布表示方法。
2 6 . 前記第 2のステップは、 前記被検体のスライス面に対応する圧縮前 後の前記包絡線信号のフレームデータに計測点を設定し、 該計測点を前記フレー ムデータに対して少なくとも 2次元方向に移動して、 前記計測点を囲む 2次元相 関窓に属する前記圧縮前後の前記包絡線信号の相関係数が最大となる位置を求め るとともに、 前記圧縮前後の前記 R F信号間の位相差を求め、
前記第 3のステップは、 前記求められた前記相関係数が最大となる位置及び前 記位相差に基づいて前記圧縮に伴う前記計測点の少なくとも 2次元方向の変位を 求めることを特徴とする請求項 2 0に記載の歪み分布表示方法。
2 7 . 前記 2次元方向は、 前記超音波探触子により受信される超音波ビ一 ムの方向と、 該超音波ビームの走査方向であることを特徴とする請求項 2 6に記 載の歪み分布表示方法。
2 8 . 前記第 2のステップは、 前記計測点を前記超音波ビーム方向に前記 超音波信号の 2分の 1波長間隔で移動し、 前記超音波ビームの走査方向に前記超 音波ビームピッチで移動して前記相関係数の最大位置を求めることを特徴とする 請求項 2 7に記載の歪み分布表示方法。
2 9 . 前記第 2のステップは、 前記計測点を囲む 2次元相関窓に属する前 記圧縮前後の前記包絡線信号の相関係数が最大となる位置を求めるに際し、 圧縮 後の前記包絡線信号の自己相関関数を求め、 この自己相関関数を前記計測点の移 動に合わせてずらして前記相関係数を求めることを特徴とする請求項 2 6に記載 の歪み分布表示方法。
3 0 . 前記第 2のステップは、 前記被検体の複数のスライス面に対応する 圧縮前後の前記包絡線信号のポリユームデータに計測点を設定し、 該計測点を前 記ボリュームデータに対して 3次元方向に移動して、 前記計測点を囲む 3次元相 関窓に属する前記圧縮前後の前記包絡線信号の相関係数が最大となる位置を求め るとともに、 前記圧縮前後の前記 R F信号間の位相差を求め、
前記第 3のステップは、 前記求められた前記相関係数が最大となる位置及び前 記位相差に基づいて前記圧縮に伴う前記計測点の 3次元方向の変位を求 ること を特徴とする請求項 2 0に記載の歪み分布表示方法。
3 1 . 前記 3次元方向は、 前記超音波探触子により受信される超音波ビー ムの方向と、 該超音波ビームの走査方向と、 これらに直交するスライス方向であ ることを特徴とする請求項 3 0に記載の歪み分布表示方法。
3 2 . 前記第 2のステップは、 前記計測点を前記超音波ビーム方向に前記 超音波信号の 2分の 1波長間隔で移動し、 前記超音波ビームの走査方向に前記超 音波ビームピッチで移動し、 前記スライス方向に前記超音波ビームのスライスピ ツチで移動して前記相関係数の最大位置を求めることを特徴とする請求項 3 1に 記載の歪み分布表示方法。
3 3 . 前記被検体から受信した信号で作られた仮想モデルを有限個の要素 に分割して少なくとも 2次元の有限要素モデルを作成し、 そのモデル化の情報と 前記求めた前記歪み分布を用いて弾性係数分布を演算する第 5のステップと、 この求めた弾性係数分布を前記表示手段に表示する第 6のステップとを有して なることを特徴とする請求項 2 0に記載の歪み分布表示方法。
3 4 . 前記第 5ステツプは、 前記被検体を有限個の要素に分割して 3次元 の有限要素モデルを作成し、 そのモデル化の情報と前記歪み分布を用いて弾性係 数分布を演算する弾性係数演算手段を備え、 前記表示手段に前記弾性分布を表示 することを特徴とする請求項 3 3に記載の歪み分布表示方法。
PCT/JP2003/009731 2002-07-31 2003-07-31 超音波診断システム及び歪み分布表示方法 WO2004010872A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US10/522,807 US8041415B2 (en) 2002-07-31 2003-07-31 Ultrasonic diagnosis system and strain distribution display method
EP03771448.2A EP1541090B1 (en) 2002-07-31 2003-07-31 Ultrasonic diagnosis system and distortion distribution display method
US12/956,959 US8382670B2 (en) 2002-07-31 2010-11-30 Ultrasonic diagnosis system and distortion distribution display method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002/222868 2002-07-31
JP2002/222869 2002-07-31
JP2002222868A JP4258015B2 (ja) 2002-07-31 2002-07-31 超音波診断システム、歪み分布表示方法及び弾性係数分布表示方法
JP2002222869A JP4221555B2 (ja) 2002-07-31 2002-07-31 超音波診断システム、歪み分布表示方法及び弾性係数分布表示方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/956,959 Division US8382670B2 (en) 2002-07-31 2010-11-30 Ultrasonic diagnosis system and distortion distribution display method

Publications (1)

Publication Number Publication Date
WO2004010872A1 true WO2004010872A1 (ja) 2004-02-05

Family

ID=31190341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/009731 WO2004010872A1 (ja) 2002-07-31 2003-07-31 超音波診断システム及び歪み分布表示方法

Country Status (4)

Country Link
US (2) US8041415B2 (ja)
EP (3) EP1541090B1 (ja)
CN (1) CN100475154C (ja)
WO (1) WO2004010872A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1475040A3 (en) * 2003-05-07 2004-12-15 Terumo Kabushiki Kaisha Device to measure the elasticity of a blood vessel by intravascular ultrasound
WO2006013916A1 (ja) 2004-08-05 2006-02-09 Hitachi Medical Corporation 弾性像表示方法及び超音波診断装置
CN1313055C (zh) * 2004-08-20 2007-05-02 清华大学 采用两种尺度的生物组织位移估计方法
CN1313054C (zh) * 2004-08-20 2007-05-02 清华大学 一种多尺度的生物组织位移估计方法
CN1313056C (zh) * 2004-08-06 2007-05-02 清华大学 一种二维综合互相关的生物组织位移估计方法
CN1319492C (zh) * 2004-08-06 2007-06-06 清华大学 一种变尺度的生物组织位移估计方法
US8041415B2 (en) 2002-07-31 2011-10-18 Tsuyoshi Shiina Ultrasonic diagnosis system and strain distribution display method
CN105092376A (zh) * 2015-08-10 2015-11-25 西安电子科技大学 一种导电橡胶的弹性模量获取方法
WO2017043442A1 (ja) * 2015-09-07 2017-03-16 株式会社日立製作所 超音波撮像装置及び超音波信号処理方法

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050267368A1 (en) * 2003-07-21 2005-12-01 The Johns Hopkins University Ultrasound strain imaging in tissue therapies
CA2457376C (en) * 2003-10-14 2015-09-15 The University Of British Columbia Method for imaging the mechanical properties of tissue
EP1989997A1 (en) * 2004-08-24 2008-11-12 The General Hospital Corporation Process, System and Software Arrangement for Measuring a Mechanical Strain and Elastic Properties of a Sample
EP1782736B1 (en) * 2004-08-25 2012-06-06 Hitachi Medical Corporation Ultrasonographic device
US8235898B2 (en) * 2004-08-27 2012-08-07 University Of Washington Through Its Center For Commercialization Ultrasonic direct strain estimation using temporal and spatial correlation
US20070232916A1 (en) * 2004-10-08 2007-10-04 Koji Waki Ultrasound Diagnostic Apparatus
US7315678B2 (en) * 2004-12-13 2008-01-01 California Institute Of Technology Method and apparatus for low-loss signal transmission
US8211019B2 (en) * 2005-01-21 2012-07-03 Chikayoshi Sumi Clinical apparatuses
JP5075830B2 (ja) * 2006-09-01 2012-11-21 株式会社日立メディコ 超音波診断装置
KR100936456B1 (ko) * 2006-12-07 2010-01-13 주식회사 메디슨 초음파 시스템
JP4945300B2 (ja) * 2007-04-25 2012-06-06 株式会社東芝 超音波診断装置
WO2009031327A1 (ja) * 2007-09-06 2009-03-12 Hitachi Medical Corporation 超音波撮像装置
JP4903271B2 (ja) * 2007-11-16 2012-03-28 株式会社日立メディコ 超音波撮像システム
CN101449983B (zh) * 2007-11-29 2014-12-10 深圳迈瑞生物医疗电子股份有限公司 超声线阵偏转成像的扫描变换插值方法和装置
WO2009077985A1 (en) * 2007-12-17 2009-06-25 Koninklijke Philips Electronics, N.V. Method and system of strain gain compensation in elasticity imaging
US7905835B2 (en) * 2008-01-15 2011-03-15 General Electric Company Method for assessing mechanical properties of an elastic material
JP5426101B2 (ja) * 2008-02-25 2014-02-26 株式会社東芝 超音波診断装置及、超音波画像処理装置及び超音波画像処理プログラム
US20110077515A1 (en) * 2008-05-29 2011-03-31 Koninklijke Philips Electronics N.V. Tissue strain analysis
JP5229473B2 (ja) * 2008-06-04 2013-07-03 財団法人ヒューマンサイエンス振興財団 超音波医療装置
KR101014564B1 (ko) * 2008-06-26 2011-02-16 주식회사 메디슨 탄성 영상을 형성하기 위한 초음파 시스템 및 방법
JP5374086B2 (ja) * 2008-07-25 2013-12-25 古野電気株式会社 骨強度診断装置及び骨強度測定方法
WO2010044385A1 (ja) * 2008-10-14 2010-04-22 株式会社 日立メディコ 超音波診断装置、及び超音波画像表示方法
WO2010053156A1 (ja) 2008-11-10 2010-05-14 国立大学法人京都大学 超音波診断システムおよび超音波診断装置
BRPI1008488A2 (pt) * 2009-02-26 2017-05-30 Ct Hospitalier Universitaire D Angers diagnóstico melhorado de fibrose ou cirrose do fígado
KR101085220B1 (ko) * 2009-05-14 2011-11-21 삼성메디슨 주식회사 탄성 영상 구현 장치 및 방법
RU2559910C2 (ru) * 2009-06-30 2015-08-20 Конинклейке Филипс Электроникс Н.В. Последовательности распространения/отслеживания для виброметрии дисперсионных поперечных волн
US9610063B2 (en) 2010-03-26 2017-04-04 The Johns Hopkins University Methods and apparatus for ultrasound strain imaging
CN102327133A (zh) * 2011-09-20 2012-01-25 东南大学 一种超声探头装置
US8801614B2 (en) * 2012-02-10 2014-08-12 Siemens Medical Solutions Usa, Inc. On-axis shear wave characterization with ultrasound
ES2616687T3 (es) 2012-03-27 2017-06-14 Littelfuse, Inc. Capucha de extremo de fusible con terminal susceptible de ser rebordeado
EP2898346B1 (en) 2012-09-20 2022-11-23 B-K Medical ApS Motion estimation in elastography imaging
CN103211625B (zh) * 2013-01-11 2015-08-19 深圳市恩普电子技术有限公司 基于弹性成像的生物位移计算方法
US9488514B2 (en) * 2013-01-15 2016-11-08 Ssi Technologies, Inc. Three-mode sensor for determining temperature, level, and concentration of a fluid
EP3004827B1 (de) * 2013-06-05 2017-11-29 Ev Group E. Thallner GmbH Messeinrichtung und verfahren zur ermittlung einer druckkarte
JP2015016144A (ja) * 2013-07-11 2015-01-29 セイコーエプソン株式会社 超音波測定装置、超音波画像装置及び超音波測定方法
CN103519848A (zh) * 2013-10-25 2014-01-22 中国科学院深圳先进技术研究院 基于超声回波射频信号的组织位移估算方法和系统
US10034653B2 (en) * 2016-01-11 2018-07-31 Biosense Webster (Israel) Ltd. Tissue depth estimation using gated ultrasound and force measurements
JP6658085B2 (ja) * 2016-02-26 2020-03-04 コニカミノルタ株式会社 超音波診断装置、超音波診断装置の制御方法及びプログラム
JP6929028B2 (ja) * 2016-07-29 2021-09-01 キヤノン株式会社 測距型センサを用いて人を検知する装置、方法及びプログラム
CN108784736B (zh) * 2018-05-23 2020-02-14 成都信息工程大学 一种二维迭代的超声弹性成像应变估计方法
CN111521141B (zh) * 2019-02-01 2021-12-07 国核电站运行服务技术有限公司 一种测量管道三向热膨胀位移的装置及方法
CN117355258A (zh) * 2021-05-26 2024-01-05 加利福尼亚大学董事会 可拉伸超声阵列对深层组织模量的三维映射

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524636A (en) * 1992-12-21 1996-06-11 Artann Corporation Dba Artann Laboratories Method and apparatus for elasticity imaging
JP3462584B2 (ja) * 1994-02-14 2003-11-05 フクダ電子株式会社 超音波診断装置
JP3435240B2 (ja) 1995-01-20 2003-08-11 株式会社東芝 移動物体検知装置及びその方法
DE19824108A1 (de) 1998-05-29 1999-12-02 Andreas Pesavento Ein System zur schnellen Berechnung von Dehnungsbildern aus hochfrequenten Ultraschall-Echosignalen
US6277074B1 (en) * 1998-10-02 2001-08-21 University Of Kansas Medical Center Method and apparatus for motion estimation within biological tissue
US6352507B1 (en) * 1999-08-23 2002-03-05 G.E. Vingmed Ultrasound As Method and apparatus for providing real-time calculation and display of tissue deformation in ultrasound imaging
US6514204B2 (en) * 2000-07-20 2003-02-04 Riverside Research Institute Methods for estimating tissue strain
US6638221B2 (en) * 2001-09-21 2003-10-28 Kabushiki Kaisha Toshiba Ultrasound diagnostic apparatus, and image processing method
US8041415B2 (en) 2002-07-31 2011-10-18 Tsuyoshi Shiina Ultrasonic diagnosis system and strain distribution display method
US7223241B2 (en) * 2004-12-16 2007-05-29 Aloka Co., Ltd. Method and apparatus for elasticity imaging

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MAKOTO YAMAKAWA ET AL.: "Kakucho fukugo jiko sokanho ni yoru soshiki yugami bunpu suitei-jikkenteki kento-", JOURNAL OF MEDICAL ULTRASONICS, vol. 28, no. 3, 15 April 2001 (2001-04-15), pages J390, XP002974146 *
MAKOTO YAMAKAWA ET AL.: "Tissue elasticity reconstruction based on 3-dimensional finite-element model", JPN. J. APPL. PHYS., vol. 38, no. 5B, PART 1, 30 May 1999 (1999-05-30), pages 3393 - 3398, XP002973311 *
TSUYOSHI SHIINA ET AL.: "Fukugo jiko sokanho ni yoru jitsujikan tissue elasticity imaging", JOURNAL OF MEDICAL ULTRASONICS, vol. 26, no. 2, 15 February 1999 (1999-02-15), pages 57 - 66, XP002974145 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8041415B2 (en) 2002-07-31 2011-10-18 Tsuyoshi Shiina Ultrasonic diagnosis system and strain distribution display method
US8382670B2 (en) 2002-07-31 2013-02-26 Tsuyoshi Shiina Ultrasonic diagnosis system and distortion distribution display method
US7338452B2 (en) 2003-05-07 2008-03-04 Terumo Kabushiki Kaisha Ultrasonic diagnostic apparatus and method
EP1475040A3 (en) * 2003-05-07 2004-12-15 Terumo Kabushiki Kaisha Device to measure the elasticity of a blood vessel by intravascular ultrasound
EP1800603A4 (en) * 2004-08-05 2009-03-11 Hitachi Medical Corp METHOD FOR VISUALIZING AN ELASTIC IMAGE AND ECOGRAPH
WO2006013916A1 (ja) 2004-08-05 2006-02-09 Hitachi Medical Corporation 弾性像表示方法及び超音波診断装置
US8734351B2 (en) 2004-08-05 2014-05-27 Hitachi Medical Corporation Method of displaying elastic image and diagnostic ultrasound system
CN1313056C (zh) * 2004-08-06 2007-05-02 清华大学 一种二维综合互相关的生物组织位移估计方法
CN1319492C (zh) * 2004-08-06 2007-06-06 清华大学 一种变尺度的生物组织位移估计方法
CN1313054C (zh) * 2004-08-20 2007-05-02 清华大学 一种多尺度的生物组织位移估计方法
CN1313055C (zh) * 2004-08-20 2007-05-02 清华大学 采用两种尺度的生物组织位移估计方法
CN105092376A (zh) * 2015-08-10 2015-11-25 西安电子科技大学 一种导电橡胶的弹性模量获取方法
CN105092376B (zh) * 2015-08-10 2018-02-06 西安电子科技大学 一种导电橡胶的弹性模量获取方法
WO2017043442A1 (ja) * 2015-09-07 2017-03-16 株式会社日立製作所 超音波撮像装置及び超音波信号処理方法
JPWO2017043442A1 (ja) * 2015-09-07 2018-02-15 株式会社日立製作所 超音波撮像装置及び超音波信号処理方法

Also Published As

Publication number Publication date
CN100475154C (zh) 2009-04-08
EP1541090A4 (en) 2009-05-13
US8041415B2 (en) 2011-10-18
EP2374413A2 (en) 2011-10-12
EP2201896A1 (en) 2010-06-30
EP1541090A1 (en) 2005-06-15
EP2374413B1 (en) 2017-06-21
CN1678243A (zh) 2005-10-05
US20110125019A1 (en) 2011-05-26
EP2374413A3 (en) 2011-12-21
EP1541090B1 (en) 2019-05-15
US8382670B2 (en) 2013-02-26
US20060052696A1 (en) 2006-03-09

Similar Documents

Publication Publication Date Title
WO2004010872A1 (ja) 超音波診断システム及び歪み分布表示方法
JP4258015B2 (ja) 超音波診断システム、歪み分布表示方法及び弾性係数分布表示方法
JP4221555B2 (ja) 超音波診断システム、歪み分布表示方法及び弾性係数分布表示方法
Lopata et al. Performance evaluation of methods for two-dimensional displacement and strain estimation using ultrasound radio frequency data
Sumi et al. Estimation of shear modulus distribution in soft tissue from strain distribution
US9084559B2 (en) Imaging method, displacement measurement method and apparatus
JP4389091B2 (ja) 超音波診断システム、歪み分布表示方法及び弾性係数分布表示方法
US8137275B2 (en) Tissue complex modulus and/or viscosity ultrasound imaging
JP2011078744A (ja) 変位計測方法及び装置、並びに、超音波診断装置
JP5075830B2 (ja) 超音波診断装置
Abeysekera Three dimensional ultrasound elasticity imaging
WO2015030076A1 (ja) 超音波画像撮像装置及び超音波画像表示方法
Abeysekera et al. Analysis of 2-D motion tracking in ultrasound with dual transducers
Lokesh et al. Understanding the contrast mechanism in rotation elastogram: a parametric study
Islam Ultrasound Imaging Based on Cross-Correlation Mapping
Kostyleva Monitoring of percutaneous radiofrequency ablation of hepatic metastases of colorectal cancer using ultrasound elastography
Sun Deformation correction in ultrasound imaging in an elastography framework
Lindop 2D and 3D elasticity imaging using freehand ultrasound
Wei Distance Estimation for 3D Freehand Ultrasound-Scans with Visualization System
Hall 103 4. Ultrasound Elastography Ultr 4. Timothy J. Hall, Assad A. Oberai, Paul E. Barbone, and Matthew Bayer 4.1 Introduction... 4.1. 1 Brief Clinical Motivation.
Zahiri-Azar Real-time imaging of elastic properties of soft tissue with ultrasound
Ahmed et al. Strain Estimation Techniques Using MATLAB Toolbox for Tissue Elasticity Imaging
Patil et al. Session POS: Posters
Hashemi Ultrasound Elastography: Time Delay Estimation
Lopata 2D and 3D ultrasound strain imaging. Methods and in vivo applications.

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: 2006052696

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2003771448

Country of ref document: EP

Ref document number: 10522807

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 20038207559

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003771448

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10522807

Country of ref document: US