WO2004008812A1 - Flexible organic electroluminescence element and production method therefor and information display unit and lighting device - Google Patents

Flexible organic electroluminescence element and production method therefor and information display unit and lighting device Download PDF

Info

Publication number
WO2004008812A1
WO2004008812A1 PCT/JP2003/008889 JP0308889W WO2004008812A1 WO 2004008812 A1 WO2004008812 A1 WO 2004008812A1 JP 0308889 W JP0308889 W JP 0308889W WO 2004008812 A1 WO2004008812 A1 WO 2004008812A1
Authority
WO
WIPO (PCT)
Prior art keywords
sealing plate
sealing
substrate
organic
emitting layer
Prior art date
Application number
PCT/JP2003/008889
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Takamura
Original Assignee
Rohm Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd. filed Critical Rohm Co., Ltd.
Publication of WO2004008812A1 publication Critical patent/WO2004008812A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED

Definitions

  • the present invention relates to an organic light emitting element, which is an electric light emitting element used as a backlight for a liquid crystal display or a light source for display-optical communication, etc., and particularly to a sealing structure for improving reliability.
  • the present invention relates to a flexible organic electrifying port luminescent element and a manufacturing method thereof, and an information display device and an illuminating device including an organic electroluminescent element. ⁇ ⁇ .
  • Electroluminescence is a light-emitting device that uses a phenomenon called electroluminescence of solid fluorescent substance or elect-port luminescence.
  • Various types of e-light are displayed on the display unit of the display device.
  • an organic EL device using an inorganic material as a luminous body has been put to practical use, and is being developed for application to a backlight / flat display of a liquid crystal display.
  • inorganic EL devices require AC and a high voltage of about 100 V to emit light, and because it is difficult to emit blue light, full color uniformization by the three primary colors R, G, and B of light is difficult. There are drawbacks such as difficulty.
  • FIG. 6 a hole injection 31 made of a transparent electrode film such as IT0 formed by a sputtering method or a vacuum evaporation method on a transparent glass substrate 30 is laminated as an anode, and this hole injection 31 is formed.
  • a hole transport layer 32 such as TPD (N, N'-diphenyl-1-N, N, 1-bis (3-methylphenyl) -11, -diphenyl-1,4'-diamine) is formed on the substrate. .
  • a light emitting layer 33 using Alq3 (8-hydroxy quinoline aluminum) or the like is formed by a vacuum deposition method, and an electron injection electrode is formed on the light emitting layer 33.
  • 34 is stacked as a cathode.
  • This electron injection is mainly made of a metal film having a low work function, such as AlLi or MgAg. Recombination is performed by applying a positive DC voltage to the hole injection S ⁇ 31 and a negative DC voltage to the electron injection electrode 34 to the organic EL element of this configuration, thereby generating excitons, and finally shifting from the excited state to the ground state. The light emission occurs.
  • an arbitrary emission wavelength can be easily controlled by changing the light-emitting material and layer structure, so that it can be applied to various light-emitting devices, lighting elements, and full-color displays. Be expected.
  • the organic EL element emits electrons directly from the electron injection m @ 34 or into the light emitting layer 33 through the electron transport layer, and emits light from the hole injection 31 directly or through the hole transport layer 32. Light is emitted by recombination with holes injected into the layer 33.
  • the electrode 34 needs to be improved.
  • the improvement of the cathode material of the electron injection electrode 34 in 2) is intended to make it easier for electrons to enter the light emitting layer, so the barrier between the electron injection electrode 34 and the light emitting layer 33 must be reduced. No. Therefore, the material of the electron injection electrode 34 needs to have a small work function and a high electric conductivity.
  • MgAg U.S. Pat. No. 4,885,2111
  • a 1 L i Japanese Patent Application Laid-Open No. 5-12 1172
  • these alloys are very active and chemically unstable.
  • the cathode material is corroded and oxidized by moisture and oxygen from the outside, causing significant growth of non-light-emitting portions called dark spots on the light-emitting surface and temporal deterioration such as a decrease in luminance. It will be easier.
  • Organic solids such as the light emitting layer 33 and the hole transporting layer 32 used in the organic EL device are generally susceptible to moisture and oxygen, and similarly cause dark spot growth and reduced brightness. Therefore, for practical organic EL devices and devices using them, the devices must be sealed for the purpose of preventing moisture and oxygen from entering the organic material and the S material, thereby increasing reliability.
  • organic EL elements use an organic material in the light-emitting layer, they generally have a drawback in that when the temperature exceeds their glass point transfer temperature, crystallization of the organic substance occurs and the light emission characteristics of the element rapidly deteriorate. there were. Therefore, in the manufacturing process after the organic light emitting layer is laminated, the temperature cannot be raised from 80 to 100 ° C. or more. Therefore, in the step of attaching and adhering the sealing plate, an ultraviolet curable resin is used for the adhesive instead of a thermosetting epoxy resin generally used for liquid crystal displays and the like.
  • UV-curable resins containing acryl or epoxy resin as a main component have higher moisture and oxygen permeability than thermosetting epoxy resins and the like. This is another important issue for improving device life.
  • the present invention solves these problems by providing a flexible organic EL device using a plastic substrate with an improved sealing structure and reduced moisture and oxygen permeability. By doing so, the object is to suppress inferiority of the device light emitting performance. At the same time, the objective is to commercialize the organic EL device for various information display devices and lighting devices.
  • a sealing plate is essential for an organic EL device to protect it from moisture and oxygen.
  • an ultraviolet curing resin is used as the adhesive.
  • Organic EL devices In a flexible organic EL device using a plastic substrate, it is necessary to reduce moisture and oxygen entering from the entire surface of the plastic substrate and the plastic sealing plate and from the bonding surface.
  • Organic EL devices on the other hand, have a transparent (anode) extraction terminal and a metal electrode (cathode) bow I extraction terminal. The frame terminal for connecting these to the drive circuit is drawn out of the sealing plate, so the frame terminal
  • One of the important issues is how to bond the sealing plate with the sealing plate. Disclosure of the invention
  • the invention of the present application is to sequentially laminate a transparent electrode layer, a light-emitting layer composed of organic electodes and luminescence, and a metal electrode layer on a flexible plastic substrate.
  • -It is a luminescence element.
  • the surface of the flexible plastic substrate on which the light emitting layer is not formed is made of plastic. Since the sealing plate is used for sealing, the use of plastic having low hygroscopicity for the sealing plate can prevent the device light emission performance from deteriorating due to moisture or oxygen entering from the outside. As a result, it is possible to provide a flexible organic EL element having a practical element life and a long display life while the display screen is bent. In addition, since the sealing plate is also made of plastic, the entire organic EL port of the luminescent element is fluorinated. Can be rexible.
  • At least one of a sealing plate for sealing the light emitting layer and a sealing plate for sealing the substrate can be bonded to the substrate with an ultraviolet curing resin. Since this is possible at a low temperature of 100 ° C. or less, it is particularly effective when a material such as PET (polyethylene terephthalate) having low heat resistance is used for a flexible plastic substrate. At least one of the sealing plate for sealing the light emitting layer or the sealing plate for sealing the substrate can be bonded to the substrate with a thermosetting resin.
  • At least one of a sealing plate that seals the light emitting layer or a sealing plate that seals the substrate and the substrate can be bonded with an epoxy resin that starts curing by mixing a main agent and a curing agent. . This is particularly effective when plastic materials with low heat resistance are used for flexible plastics because they can be bonded at room temperature.
  • a gas barrier layer can be formed on one or both of the inner surface of the sealing plate for sealing the light emitting layer and the inner surface of the sealing plate for sealing the substrate.
  • a gas barrier layer formed by stacking a silicon oxide film or a nitride film formed by a method such as a vacuum evaporation method, or a laminated film thereof and a metal film such as aluminum is used as a sealing plate.
  • One or both of a sealing plate for sealing the light emitting layer and the substrate, or a sealing plate for sealing the substrate and a space formed by the substrate is filled with a silicone oil-based or fluorine-based inert liquid. Can be done.
  • a silicone oil-based or fluorine-based inert liquid By filling the surface of the flexible plastic substrate where the light-emitting layer is not formed, that is, the inner surface of the sealing plate on the display surface side, with dimethyl silicone oil or a fluorine-based inert liquid, light scattering occurs. It is possible to suppress a decrease in the external extraction efficiency and promote heat radiation from the organic EL element.
  • the surface of the flexible plastic substrate on which the light emitting layer is formed that is, the space between the sealing plate on the non-display surface side and the surface of the organic EL element is filled with an inert liquid in the same manner as described above.
  • the organic EL element can be protected by dissipating heat from the element and dispersing external mechanical stress in the liquid.
  • One or both of the inner surface of the sealing plate for sealing the light emitting layer and the inner surface of the sealing plate for sealing the substrate may contain a moisture absorbent, an oxygen absorber, or both.
  • a moisture absorbent such as an alcohol, a glycol, or a glycol, or a glycol, or a glycol, or a glycol, or a glycol, or a glycol, or a glycol, or a glycol, or both.
  • a hygroscopic agent and / or oxygen absorber on the inner surface of the sealing plate, the effects of moisture and the like are eliminated as much as possible, and a long-life organic electrification port and luminescence element with little deterioration are provided. Obtainable.
  • the extraction electrode terminals of the transparent electrode layer and the metal electrode layer can be taken out of a joint between the sealing plate and the substrate that seals the light emitting layer.
  • the circuit board can be directly connected to the terminal by taking out the terminal from the junction between the sealing plate and the substrate, and the drive IC that controls the electrode terminals and the organic electrifying port Electrically connected via the A drive circuit is connected to the organic electroluminescent port's luminescence element to function as a component for information display devices and lighting devices.
  • the method of manufacturing the organic electroluminescent device of the present Jg shell comprises a plastic layer in which a transparent layer, an organic electroluminescent port, a luminescent light emitting layer, and a metal electrode layer are sequentially laminated on a flexible plastic substrate.
  • What is claimed is: 1. A method for manufacturing an organic electroluminescence element, wherein a surface of a substrate on which a light emitting layer is not formed is sealed with a sealing plate. The process is characterized in that the process up to bonding to the substrate is performed in an atmosphere of an inert gas such as nitrogen or in a vacuum.
  • An information display device and a lighting device according to the present invention are any one of claims 1 to 8. It is formed by connecting a drive circuit and the like to the organic electret port and the luminescence element.
  • FIG. 1 is a cross-sectional view of a configuration in which an organic electroluminescent device and a driving circuit according to an embodiment of the present invention are connected and can be used as an information display device or a lighting device.
  • FIG. 2 is a sectional view showing the structure of an organic electroluminescent device according to an embodiment of the present invention.
  • FIG. 3 is a view showing a flow of manufacturing an organic electroluminescent device according to an embodiment of the present invention. '
  • FIG. 4 is a schematic diagram of a mobile phone showing an example of the information display device.
  • FIGS. 5A and 5B are diagrams showing a method of filling an inert liquid between the flexible 'plastic' and the sealing plate.
  • FIG. 6 is a cross-sectional view of the configuration of the organic electroluminescent element of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • the organic electroluminescent (EL) element of the present invention has a transparent electrode layer 11 on a flexible plastic substrate 10 as shown in FIG.
  • a light-emitting layer 13 composed of an organic electorifice / noreluminescence and a metal layer 14 are sequentially laminated, and the light-emitting layer 13 is formed of a plastic with a sealing plate 15a on the non-display surface side (this embodiment). It is sealed.
  • the surface of the substrate 10 on which the light emitting layer 13 is not formed is sealed with a sealing plate 15b on the display surface side made of plastic.
  • Flexible plastic substrate 10 is a transparent or translucent and flexible substrate, and is made of plastic such as PC (polycarbonate), PET (polyethylene terephthalate) and PES (polyethersulfone). Material is used. As the substrate 10, PES or the like having particularly excellent heat resistance is preferable.
  • an organic layer including a transparent electrode 11, a hole transport layer 12, a light emitting layer 13 made of an organic EL material, and a metal electrode 14 are sequentially laminated.
  • the organic EL element includes a plastic Si substrate 10, a transparent electrode 11 laminated on the upper surface thereof, a light emitting layer 13 made of at least an organic EL material, and a metal electrode 14.
  • the transparent electrode 11 has a function as a hole injection S3 ⁇ 4, and has a structure in which light emitted from the light emitting layer 13 made of an organic EL material is extracted from a transparent or translucent plastic substrate 10.
  • ⁇ change indium), IZO (zinc-de one flop indium oxide), ZnO, Sn0 2, I n 2 0 3 or the like is used.
  • One has a single-layer structure of only the light-emitting layer 13 made of an organic EL material, and a two-layer structure of the hole-transport layer 12 and the light-emitting layer 13 or the light-emitting layer 13 and the electron-transport layer (not shown). Any structure such as a three-layer structure of the hole transport layer 12, the light emitting layer 13, and the electron transport layer may be used. However, in the case of such a two-layer structure or a three-layer structure, the hole transport layer and the hole injection electrode 11 or the electron transport layer and the metal S 14 are stacked so as to be in contact with each other.
  • a hole injection layer, an electron injection layer, or the like is provided so as to be in contact with the hole injection 11 or the metal electrode 14, a four-layer structure, a five-layer structure, or a multilayer structure having more than four layers is used. There is also.
  • the light-emitting layer 13 is preferably made of a phosphor having a fluorescent property in the visible region and having good film-forming properties.
  • BeBq2 Be-benzoquinolinol
  • Stilbene 4,4,1-bis [5,7-di- (2-methyl-1-butyl) -2-pentoxoxazolyl] stilbene
  • the hole transport layer 12 is preferably a layer having a high hole mobility, being transparent and having good film formability.
  • triphenylamine derivatives such as TPD, borfin, tetraphenylporphine copper, phthalocyanine, copper phthalocyanine , Titanium phthalocyanine Porphyrin compounds such as oxide, 1,1-bis ⁇ 4_ (di-P-tolylamino) phenyl ⁇ cyclohexane, 4,4 ', 4''-trimethyltriphenylenamine, N, N, ⁇ ', ⁇ ' —tetrakis ( ⁇ -tolyl) 10-phenylenediamine, 1- ( ⁇ , ⁇ -di-tolylamino) naphthylene, 4, 4 '—bis (dimethylamino) 1 2_2' — dimethyl triphenylmethane, ⁇ , ⁇ , N ', ⁇ , - tetraphenyl one 4, 4 5
  • the electron transporting layer is composed of an osadiazol conductor such as 1,3-bis (4-tert-butyl-phenyl-1,3,4-oxaziazolyl) phenylene (OXD-7) or anthraquinodimethane Derivatives, diphenylquinone derivatives and the like are used.
  • the metal electrode 14 include metals such as Al, In, Mg, and Ti; Mg alloys such as Mg—Ag alloys and Mg—In alloys; A 1—Li alloys; Al—Sr alloys; A1 alloy such as Ba alloy is used.
  • A1-Mg alloy or A1-Li-Mg alloy is a metal having a low work function and excellent corrosion resistance, and is very effective.
  • Reference numerals 16a and 16b denote drive circuits, each of which includes a transparent electrode 11 of an organic EL element and a metal electrode. An IC for supplying a drive signal to the pole 14 is mounted. Circuit elements such as chip resistors and chip capacitors are arranged around the driving circuits 16a and 16b. 17 a and 17 b are terminals, which are connected to the transparent layer 11 and the metal layer 14. 18a and 18b are flexible circuit boards as external wiring, and electrically connect the electrode terminals 17a and 17b to the drive circuits 16a and 16b. Electric signals from the driving circuits 16a and 16b are supplied to the transparent electrode 11 and the metal electrode layer 14 via the external wirings 18a and 18b, and the light emitting layer 13 emits light according to the signal.
  • Electric signals from the driving circuits 16a and 16b are supplied to the transparent electrode 11 and the metal electrode layer 14 via the external wirings 18a and 18b, and the light emitting layer 13 emits light according to the signal.
  • the transparent 3 ⁇ 4fil 1 and the metal SS14 which are formed above and below the light emitting layer 13, have the lead electrode terminals 17a and 17b of the S14 outside the bonding portions 19a and 19b. Have been withdrawn.
  • the electrode terminals 17a and 17b are taken out of the joint between the sealing plate 15a and the flexible plastic substrate 10, and the circuit boards 16a and 16b are connected to the electrode terminals 17a and 17b.
  • the terminals 17 & and 17b and the driving IC for controlling the organic EL element are electrically connected via the circuit boards 18a and 18b.
  • the above-mentioned light emitting layer 13 can emit light in accordance with a signal for each pixel, display a desired information image, and realize an information display device. Can be configured. By forming each pixel of the light emitting layer 13 with R, G, and B, an information image can be displayed in full color.
  • the information display unit 9 of the mobile phone can be configured, or an electronic organizer or the like can be configured. Furthermore, by turning on or off the whole without displaying an image, it can also function as a part for a lighting device.
  • a sealing plate 15a for sealing the surface on which the light emitting layer 13 is formed and the non-display surface side in the embodiment of the present invention includes a flexible (PC) (polycarbonate) having the same flexibility as the plastic substrate 10.
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PE polyethylene
  • PP Materials such as (polypropylene) are used, but PP and PC, which have particularly low hygroscopicity (absorption rate), are excellent.
  • the feature of the present application is that the surface on which the light emitting layer 13 is not formed, and the display surface side in the embodiment of the present invention are sealed with a sealing plate 15b made of a plastic material, so that moisture and oxygen permeability are high. Even in the case of an organic EL device using the flexible plastic substrate 10, it is possible to prevent the device light emission performance from deteriorating due to moisture or oxygen entering from the outside. As a result, it is possible to provide a flexible organic EL device having a practical long life. Similar to the sealing plate 15a, materials such as PC (polycarbonate), PET (polyethylene terephthalate), PE (polyethylene), and PP (polypropylene) are used for the sealing plate 15b. In order to suppress the diffusion of oxygen and moisture into the inside, a material having a small absorption rate or a material having high heat resistance is preferable, and a plurality of sealing plates are used depending on the material used.
  • two sealing plates 15a and 15b are used on both sides of the substrate 10, and the flexible plastic substrate 10 is sandwiched and sealed, but one sheet is folded.
  • the same effect can also be obtained by sealing the display surface side and the non-display surface side of the flexible 'plastic substrate 10 using two substrates apparently as described above.
  • the sealing plate 15a made of a plastic material for sealing the non-display surface has transparency enough to cure the ultraviolet curing resin with respect to ultraviolet light having a wavelength of about 30 O nm.
  • a resin having an ultraviolet ray composition is applied to the joint 19 a between the sealing plate 15 a and the flexible plastic substrate 10, and ultraviolet rays are irradiated from the sealing plate side 15 a without a mask, thereby forming the sealing plate.
  • 15a and flexible plastic substrate 10 can be bonded.
  • the sealing plate 15b used for sealing the display surface side has a light transmitting property so that light from the light emitting layer 13 can be extracted.
  • an ultraviolet curing resin is applied to the joint 19b between the sealing plate 15b and the flexiplastic plastic substrate 10 and the sealing plate 15b is irradiated with ultraviolet light to seal.
  • the stop plate 15b and the flexible 'plastic substrate 10 can be bonded.
  • the bonding between the sealing plates 15a and 15b and the flexible plastic substrate 10 can be performed at a low temperature of 100 ° C or less, so that PET (Poly-Poly) is particularly low in heat resistance. This is particularly effective when a material such as ethylene terephthalate) is used for the flexible plastic substrate 10.
  • an organic EL device with low moisture and oxygen permeability and high reliability and long life can be obtained. be able to.
  • Conventional organic EL devices using glass have high thermal conductivity, so when bonding with a thermosetting resin, the heat applied to cure the resin emits light from the organic EL through a glass substrate with high thermal conductivity. In some cases, the light-emitting layer exceeded the glass transition temperature, causing crystallization of organic substances and the like, and the light-emitting characteristics of the device were rapidly deteriorated.
  • the plastic flexible substrate 10 when PES (polyethersulfone) or the like having relatively high heat resistance is used for the plastic flexible substrate 10, since the thermal conductivity is lower than that of glass, the light-emitting layer 13 made of heat-sensitive organic EL is used.
  • the plastic flexible 10 can be bonded to the sealing plate 15a without any influence.
  • a thermosetting resin is applied to the joints 19a and 19b between the sealing plates 15a and 15b and the plastic / flexible substrate 10 and locally heated only at the joints 19.
  • heat is hardly transmitted to the light emitting layer 13.
  • this bonding method is the most reliable bonding method because the heat-cured resin has low moisture permeability and oxygen permeability, and a highly reliable organic EL device can be obtained.
  • the two-component epoxy resin that starts curing by mixing the main agent and the curing agent is applied to the joints 19 & and 19 b, and is hardened to form the sealing plates 15 & and 15 b.
  • Flexible ⁇ Plastic substrate 10 can be bonded. This method allows bonding at room temperature. This is particularly effective when a material such as PET (polyethylene terephthalate) having low heat resistance is used for the flexible plastic substrate 10.
  • a curing reaction such as a tertiary amine or a catalyst type, a polyaddition type, or a latent type is added to an epoxy resin as a base material to cause a chain reaction, thereby causing a hardening reaction.
  • the inner surface of the sealing plate 15a and the inner surface of the sealing plate 15b is coated with silicon or metal oxide film and nitride film, or a laminate thereof by a method such as a vacuum evaporation method. It is preferable to form a gas barrier layer (not shown) in which a metal film such as aluminum and a metal film such as aluminum is laminated.
  • a gas barrier layer (not shown) can be formed on the flexible plastic substrate 10 to further improve the moisture resistance. In this case, it is provided between the transparent SMI 1 and the flexible plastic substrate 10, or between the flexible plastic substrate 10 and the sealing plate 15b.
  • an aluminum film gas barrier layer When an aluminum film gas barrier layer is laminated on the sealing plate 15a, it becomes opaque to ultraviolet rays. In this case, it is possible to remove the aluminum film only at the joint 19a, apply an ultraviolet-curing resin to the joint 19a, irradiate ultraviolet rays to irradiate the resin, and bond the resin. it can.
  • sealing plate 15b on the display surface side must be formed with a gas barrier layer that is not opaque to light so that light can be extracted from the light emitting layer 13.
  • thermosetting resin may be applied to the joint 19a to apply heat, By applying the epoxy resin, the sealing plate 15a and the flexible plastic substrate can be bonded. In any case, it can be carried out in an atmosphere of an inert gas such as nitrogen or in a vacuum.
  • Adhesion between the sealing plates 15a and 15b and the flexible 'plastic' 10 is realized by appropriately combining the above methods according to the material used.
  • Table 1 shows the physical properties of various plastic film materials.
  • the table compares various physical properties of soda glass and various plastic film materials. Glass has a large specific gravity and is heavy, but has low water absorption and excellent heat resistance. That is, the glass transition point is high and the coefficient of linear expansion is small.
  • Plastic materials have low specific gravity and light weight, but have high water absorption and poor heat resistance. That is, they have a low glass transition point and a large coefficient of linear expansion. Glass and plastic show almost the same value in total light transmittance and refractive index, and can be optically used for the same purpose.
  • PP polypropylene
  • PP polypropylene
  • Water-absorption is extremely high, but the glass transition point is extremely low, and it is not suitable as organic EL device substrate 10.
  • PES polyethersulfone
  • PES polyethersulfone
  • PP polypropylene
  • PC polycarbonate
  • Table 2 shows a comparison between the effects of the prior art and the present invention.
  • Table 2 shows the most basic conventional example as Conventional 1.In Conventional 1, soda glass is used for the organic EL element substrate and the sealing plate. Can be applied. Due to the fact that oxygen permeability and moisture permeability are so small as to be negligible compared to plastics, this is the configuration with the least deterioration of the element. However, if flexibility is required for organic EL devices in the future, glass is not suitable.
  • the flexible organic EL element is practically reliable by adopting a structure in which the light emitting display surface side of the flexible plastic is sealed with a plastic sealing plate. Gender level.
  • a method of using a plurality of sealing plates, providing a bonding method according to the heat resistance of each plastic material, and providing a substrate of an organic EL element, a display surface side sealing plate and a non-display surface side Oxygen permeability and moisture permeability were structurally suppressed by providing a gas barrier layer suitable for the sealing plate.
  • the principle of the present invention is to block the organic EL element with a plurality of blocking layers (sealing plate and organic EL element E) from oxygen and moisture in the air to reduce the diffusion speed.
  • the diffusion rate (diffusion coefficient) of oxygen and moisture in a solid from a gas and in a solid is governed by its concentration difference (partial pressure difference), pressure and temperature.
  • the diffusion of oxygen and moisture into the inside can be suppressed stepwise by the plastic sealing plate, and the time to reach the organic EL device can be delayed. Therefore, the amount of oxygen and water in the organic EL element decreases, and the deterioration of the element is suppressed.
  • Degradation of luminance in the degradation item (entire surface of the light-emitting portion) refers to a case where moisture or oxygen passes through the sealing plates 15a and 15b, and the luminance of the light-emitting layer 13 is degraded by moisture or oxygen.
  • Luminance deterioration refers to a case where the light-emitting layer 13 deteriorates in luminance due to a gas generated from a resist formed in the manufacturing process of the organic EL device. To prevent this, it is necessary to apply heat to the resist to evaporate gases such as moisture. The more heat-resistant substrates are used, the greater the amount of heat applied, and the greater the effect 7 Table 2 Differences in the degree of deterioration of the organic EL device depending on the substrate material
  • PET polyethylene ⁇ phthalate
  • PC polycarbonate
  • PES polyethylene sulfone
  • PE polyethylene
  • Display side / rear layer laminate film of silicon oxide film, silicon oxynitride film, aluminum oxide film, etc.
  • Organic EL device substrate / rear layer silicon oxide film, silicon oxynitride film, aluminum oxide film, etc.
  • Non-display surface side barrier layer Laminated film of silicon oxide film, silicon oxynitride film, aluminum film, etc.
  • PE / Aluminum foil PE (Aluminum foil laminated with polyethylene film)
  • FIG. 2 is a schematic view of an organic EL device illustrating another embodiment of the present invention.
  • 25a and 25b are sealing plates made of a plastic material such as PC (polycarbonate) and TAC (triacetylcellulose).
  • a hard coat film (not shown) made of acryl resin is applied to the surfaces of the sealing plates 25a and 25b to prevent damage due to external factors.
  • sealing plates 25a and 25b On the inner surfaces of the sealing plates 25a and 25b, aluminum vapor-deposited films, silicon oxide films or silicon oxynitride films are sequentially laminated (not shown) in the order of several tens to several hundreds of nm each. It prevents moisture and oxygen from entering from outside. However, an aluminum vapor-deposited film is not applied to the sealing plate 25a on the display surface side so as not to be opaque.
  • Reference numeral 20 denotes a plastic substrate as a transparent substrate, which includes PC (polycarbonate), PET (polyethylene terephthalate), and PES (polyethersulfur).
  • a transparent resin film with a thickness of about 50 to 300 ⁇ m.
  • a transparent electrode 21 On the upper surface of the plastic substrate 20, a transparent electrode 21, a hole transport layer 22, a light emitting layer 23 made of organic EL, a metal electrode 24, and a vapor-deposited film of calcium or the like as a moisture absorbing layer (not shown)
  • a silicon oxynitride vapor-deposited film (not shown) as a barrier layer for a gas of moisture and oxygen is sequentially laminated.
  • a silicone oil or a carbon fluoride-based inert liquid 26 b is filled between the display surface side sealing plate 25 b and the plastic substrate 20 c.
  • Liquid 26b is a liquid that is thermally stable and highly non-flammable (has no flash point), non-toxic, odorless, metal and plastic, and other organic electrified ports and luminescent elements.
  • silicone oil examples include dimethyl silicone oil used as an insulating oil for transformers, and methylphenyl silicone oil used as a heat carrier.
  • fluorine-based inert liquid there is a carbon fluoride-based inert liquid such as Fluorinert (trade name) developed by Threem Corporation in the United States.
  • the inert liquid 5 is dropped into the concave portion of the sealing plate 15a, and the adhesive 4 described above is applied around the inert liquid. Then, as shown in FIG. 5B, a flexible plastic substrate 10 on which the transparent electrode layer 11, the light emitting layer 13, the metal layer 14, and the like are formed is covered and adhered.
  • the space between the non-display surface side sealing plate 25a and the gas barrier layer on the surface of the organic EL element is filled with the inert liquid 26a in the same manner as described above, so that the light emitting layer 23 made of organic EL is formed. Promotes heat dissipation, and protects the organic EL element by dispersing external mechanical stress in the liquid.
  • 27 a and 27 b are electrode terminals for connecting external wiring.
  • the periphery of the display surface side sealing plate 25 b and the periphery of the plastic substrate 20 and the The display surface side sealing plate 25a and the plastic substrate 20 are bonded to the joints 29a and 29 by applying a thermosetting resin and curing by thermocompression bonding, or by applying an ultraviolet curable resin to the joining portions 29a and 29b. Is applied and cured by UV irradiation. In either case, it may be performed in an atmosphere of an inert gas such as nitrogen or in a vacuum.
  • FIG. 3 is a flow chart of manufacturing an organic EL device according to an embodiment of the present invention.
  • a transparent conductive film 2 made of ITO is previously formed on a flexible plastic substrate 10 by a sputtering method or an ion plating method, and a resist film 1 is formed on the surface of the ITO transparent conductive film.
  • a photoresist pattern by photolithography (S1) o
  • PC polycarbonate
  • PET polyethylene terephthalate
  • PES polyyester sulfone
  • a photoresist to be an insulating film is applied on the plastic substrate 10 and pre-baked, and then exposed and developed by a photolithography method to form an insulating film pattern 3 (S3). Furthermore, the flexible plastic substrate 10 on which the hole injection electrode 11 and the insulating film pattern 3 are formed is baked at as high a temperature as possible, depending on the heat resistance of the substrate 10, to adversely affect the light emitting layer 13 made of organic EL. The organic solvent component remaining in the insulating film 3 and the moisture adsorbed on the surface are evaporated. Next, the hole transport layer 12, the light emitting layer 13, and the electron injection metal electrode 14 are sequentially formed by a vacuum evaporation method (S4 to S6).
  • Electron injection metal No. 14 was prepared using a BN (boron nitride) boat in the same vacuum as above. The film is formed by thermal evaporation or EB evaporation using an EB (electron beam) gun. Since the light-emitting layer 13 has different dyes for doping depending on the emission color, in an organic EL device that emits light of a plurality of colors, the emission color is separately applied to each emission color by a mask vapor deposition method using a metal mask. Similarly, the electron-injection metal electrode 14 is separately coated by a mask vapor deposition method using a metal mask according to the light emission pattern.
  • a seal-bonding date 4 is applied and drawn around the sealing plates 15a and 15b made of plastic by a dispenser or screen printing.
  • sealing plates 15a and 15b are occupied on the display surface side and the non-display surface side of the organic EL element by ultraviolet irradiation, heating, or permanent depending on the type of sealing resin.
  • the sealing adhesive resin 4 is hardened to complete the sealing (S7).
  • a method of manufacturing one organic EL element is described for convenience.
  • a flexible plastic substrate of the organic EL element and a plastic substrate serving as a sealing plate are large and can be formed into multiple sheets. It is possible to use a sheet-shaped or roll-shaped plastic substrate. 1 and 2, the illustration of the patterning of the transparent electrode 11 and the insulating film 3 is omitted.
  • the sealing plate is attached to the display surface side and the non-display surface side of the organic EL element in an inert atmosphere such as nitrogen or in a vacuum, and the sealing resin is cured so that the area around the light emitting layer is inactive. It can be in a gas or vacuum atmosphere, can be isolated from oxygen and moisture, and can prevent the ingress of moisture from the outside by the sealing plate.
  • a highly reliable organic EL device can be obtained.
  • after sealing take out into the atmosphere and cut each organic EL element into single pieces (cut off all plastic boards), and cut to remove unnecessary plastic boards on the terminals (peripheral removal) Only the sealing plate on the terminal section is cut off), and the step is performed.
  • the present invention it is possible to extend the life with little change over time and to use various display devices with high practicality that can be used in an operating environment requiring high reliability, such as mobile phones, mobile terminals, and electronic notebooks. ⁇ It can be used for belt-type display devices, and even lighting devices.

Landscapes

  • Electroluminescent Light Sources (AREA)

Abstract

An organic electroluminescence element comprising, sequentially laminated on a flexible plastic substrate (10), a transparent electrode layer (11), a light emitting layer (13) consisting of an organic electroluminescence, and a metal electrode layer (14), the light emitting layer (13) being sealed with a plastic sealing plate (15a), characterized in that the surface, on which the light emitting layer (13) is not formed, of the substrate (10) is sealed with a plastic sealing plate (15b). As a result, a flexible organic EL element using a plastic substrate is improved in sealing structure, reduced in features to permeate water content and oxygen, and restricted in deterioration of element luminous performance.

Description

明 細 書  Specification
フレキシブル有機ェレクト口 ·ルミネヅセンス素子及びその製造方法並びに情報 Flexible organic electorifice · Luminescent element, its manufacturing method and information
技術分野 Technical field
本発明は、 液晶表示用ディスプレイのバックライトゃディスプレイや表示 -光 通信の光源などに用いられる電気的発光素子である有機ェレクト口'ルミネヅセ ンス素子に係り、 特に信頼性向上のために封止構造を最適化したフレキシブル有 機エレクト口 'ルミネッセンス素子及びその製造方法、 並びに有機エレクトロ · ルミネヅセンス素子を含む情報表示装置及び照明装置に関する。 冃景. 技術  The present invention relates to an organic light emitting element, which is an electric light emitting element used as a backlight for a liquid crystal display or a light source for display-optical communication, etc., and particularly to a sealing structure for improving reliability. The present invention relates to a flexible organic electrifying port luminescent element and a manufacturing method thereof, and an information display device and an illuminating device including an organic electroluminescent element.冃 景. Technology
エレクトロ 'ルミネッセンスとは、 固体蛍光性物質の電界発光またはエレクト 口 'ルミネヅセンスといわれる現象を利用した発光デバィスであり、 各種情幸 g表 示装置の表示部にはエレクト口'ルミネヅセンス (以下、 「ELj と略記) を利 用した有機 EL素子が知られている。 また現在無機系材料を発光体として用いた 無機 EL素子が実用化され、 液晶ディスプレイのバックライトゃフラヅトデイス プレイ等への応用展開が図られている。 しかし無機 EL素子は素子を発光させる ために交流でしかも 100V程度の高電圧が必要であること、 また青色の発光が 難しいため、 光の三原色 R, G, Bによるフルカラ一化が困難であることなどの 欠点がある。  Electroluminescence is a light-emitting device that uses a phenomenon called electroluminescence of solid fluorescent substance or elect-port luminescence. Various types of e-light are displayed on the display unit of the display device. In addition, an organic EL device using an inorganic material as a luminous body has been put to practical use, and is being developed for application to a backlight / flat display of a liquid crystal display. However, inorganic EL devices require AC and a high voltage of about 100 V to emit light, and because it is difficult to emit blue light, full color uniformization by the three primary colors R, G, and B of light is difficult. There are drawbacks such as difficulty.
一方、 有酣料を用いた EL素子に関する研究も古くから行われていたが、 非 常に効率が悪いため、 低い輝度しか得られず本格的な実用化研究には至っていな かった。 しかし、 1987年にコダック社の C. W. Tang等が提案した構造、 すなわち有機物質をホール輸送層及び発光層の 2層に分けた機能分離型の積層構 造を有する有機 EL素子は、 10V以下の低電圧にもかかわらず 1000 c d/ m2以上の高輝度発光を実現した (C. W. Tang and S. A. Vans 1 ke: App 1. P y s. Lett, 51 ( 1987) 913) 。 これに より、 有機 ELが俄然注目され、 近年、 同様の構成を有する積層型の有機 EL素 子についての研究が盛んに行われてきている。 On the other hand, research on EL devices using narcotics has been carried out for a long time, but the efficiency is so low that only low brightness can be obtained and full-scale practical research has not been completed. However, the structure proposed by Kodak's CW Tang in 1987, that is, an organic EL device having a function-separated stacked structure in which an organic substance is divided into two layers, a hole transport layer and a light-emitting layer, has a low voltage of 10 V or less. High-brightness light emission of 1000 cd / m 2 or more was realized despite the voltage (CW Tang and SA Vans 1 ke: App 1. Pys. Lett, 51 (1987) 913). As a result, OLEDs have suddenly attracted attention. In recent years, stacked OLEDs with the same configuration Research on children has been actively conducted.
ここで、 = ^の有機 EL素子構成について図 6を参照しながら簡単に説明する。 従来はガラス基板上に形成した有機 EL素子の背面側にガラスまた金属製の封止 板を貼り合わせた構造が主流であった。 図 6において、 透明なガラス基板 30の 上にスパヅタリング法や真空蒸着法などを用いて形成された I T 0などの透明電 極膜よりなる正孔注入 31が陽極として積層され、 この正孔注入 31の 上に TPD (N, N' —ジフエニル一 N, N, 一ビス (3—メチルフエニル) 一 1, —ジフエニル一 4, 4' —ジァミン)等の正孔輸送層 32が積層形成さ れている。 そして、 正孔輸送層 32の上には、 Alq3 (8-Hydr oxyq u ino l ine Aluminum) 等を利用した発光層 33が真空蒸着法よ つて形成され、 この発光層 33の上に電子注入電極 34を陰極として積層してい る。 この電子注入 «¾34は、 主として AlL iや MgAgなどの仕事関数の低 い金属膜からなる。 この構成の有機 EL素子に、 正孔注入 S¾31にプラス、 電 子注入電極 34にマイナスの直流電圧を印加することで再結合、 これによる励起 子の生成、 最後に励起状態から基底状態への移行によって発光が起きる。 このよ うな発光原理を持つ有機 EL素子においては、 発光材料や層構造を変化させるこ とで、 任意の発光波長を容易に制御できるため、 各種発光デバイスや照明素子、 フルカラ一ディスプレイへの応用が期待される。  Here, the configuration of the organic EL element of = ^ will be briefly described with reference to FIG. Conventionally, a structure in which a glass or metal sealing plate is bonded to the back side of an organic EL element formed on a glass substrate has been mainly used. In FIG. 6, a hole injection 31 made of a transparent electrode film such as IT0 formed by a sputtering method or a vacuum evaporation method on a transparent glass substrate 30 is laminated as an anode, and this hole injection 31 is formed. A hole transport layer 32 such as TPD (N, N'-diphenyl-1-N, N, 1-bis (3-methylphenyl) -11, -diphenyl-1,4'-diamine) is formed on the substrate. . Then, on the hole transport layer 32, a light emitting layer 33 using Alq3 (8-hydroxy quinoline aluminum) or the like is formed by a vacuum deposition method, and an electron injection electrode is formed on the light emitting layer 33. 34 is stacked as a cathode. This electron injection is mainly made of a metal film having a low work function, such as AlLi or MgAg. Recombination is performed by applying a positive DC voltage to the hole injection S 直流 31 and a negative DC voltage to the electron injection electrode 34 to the organic EL element of this configuration, thereby generating excitons, and finally shifting from the excited state to the ground state. The light emission occurs. In an organic EL device having such a light-emitting principle, an arbitrary emission wavelength can be easily controlled by changing the light-emitting material and layer structure, so that it can be applied to various light-emitting devices, lighting elements, and full-color displays. Be expected.
有機 EL素子は、 前述したように電子注入 m@ 34から直接または電子輸送層 を介して発光層 33に注入された電子と、 正孔注入 ¾ϋ3 1から直接または正孔 輸送層 32を介して発光層 33に注入された正孔との再結合により発光が生じる。 このような発光機構に基づく有機 EL素子において発光特性を向上させるには、 主として、 1) 発光層 33、 正孔輸送層 32等の有機膜の改善、 2)正孔注入電 極 31及び電子注入電極 34の改善が必要となる。 これらのうち、 2) の電子注 入電極 34の陰極材の改良は発光層へ電子を入りやすくすることを目的とするた め、 電子注入電極 34または発光層 33との障壁を低くしなければならない。 よ つて、 電子注入電極 34の陰 料としては仕事関数が小さく電気伝導性の高い ことが必要であり、 例えば、 MgAg (米国特許明細書第 4, 885, 21 1 号) や A 1 L i (特開平 5— 12 1172号公報)等の合金が一般に用いられて いる。 As described above, the organic EL element emits electrons directly from the electron injection m @ 34 or into the light emitting layer 33 through the electron transport layer, and emits light from the hole injection 31 directly or through the hole transport layer 32. Light is emitted by recombination with holes injected into the layer 33. In order to improve the light emission characteristics of an organic EL device based on such a light emission mechanism, mainly, 1) improvement of an organic film such as a light emitting layer 33 and a hole transport layer 32, 2) a hole injection electrode 31 and electron injection. The electrode 34 needs to be improved. Of these, the improvement of the cathode material of the electron injection electrode 34 in 2) is intended to make it easier for electrons to enter the light emitting layer, so the barrier between the electron injection electrode 34 and the light emitting layer 33 must be reduced. No. Therefore, the material of the electron injection electrode 34 needs to have a small work function and a high electric conductivity. For example, MgAg (U.S. Pat. No. 4,885,2111) and A 1 L i ( Japanese Patent Application Laid-Open No. 5-12 1172) is generally used. I have.
ところで、 これら合金は非常に活性で化学的に不安定である。 そのため、 外部 からの水分や酸素によって陰極材が腐食、 酸ィ匕してしまい、 発光面中に存在する ダークスポットと呼ばれる未発光部の著しい成長や、 輝度低下等の絰時的劣化を 生じさせ易くなる。 また、 有機 E L素子に使用される発光層 3 3ゃ正孔輸送層 3 2等の有機固体は、 一般に水分や酸素に弱く、 同様にダークスポットの成長や輝 度低下を招く。 したがって、 実用的な有機 E L素子やそれを用いたデバイスは、 有機材料や《S材料への水分及び酸素の進入を防ぐ目的で素子を封止し、 信頼性 を上させなければならない。  By the way, these alloys are very active and chemically unstable. As a result, the cathode material is corroded and oxidized by moisture and oxygen from the outside, causing significant growth of non-light-emitting portions called dark spots on the light-emitting surface and temporal deterioration such as a decrease in luminance. It will be easier. Organic solids such as the light emitting layer 33 and the hole transporting layer 32 used in the organic EL device are generally susceptible to moisture and oxygen, and similarly cause dark spot growth and reduced brightness. Therefore, for practical organic EL devices and devices using them, the devices must be sealed for the purpose of preventing moisture and oxygen from entering the organic material and the S material, thereby increasing reliability.
従来の有機 E Lディスプレイ素子では、 ガラス基板 3 0に、 ガラスまたは金属 製またはガラス製の封止板 3 5を貼り合わせしているため、 曲げることが出来な い (フレキシブルで無い) 、 落下等により衝撃が加わると割れ易い、 重量が重い 等の欠点があった。 これらの欠点を解決する手段として、 ガラス基板及びガラス または金属製封止板の代わりにプラスチック基板を使用する方法が提案されてい る。 しかしこの方法によると、 前記の欠点は解消されるが、 前述のとおり有機 E L素子は、 外部から浸入した水分や酸素によって素子発光性能の劣化を生じ易い ため、 一般的にガラスや金属よりも水分及び酸素の透過性が大きいとされるブラ スチック基板では、 実用的な素子寿命が保持出来ないという問題があつた。 また、 有機 E L素子は発光層に有機物を用いているため、 一般的にそれらのガ ラス点移転温度を超えると有機物の結晶化等が発生し、 急激に素子発光特性が劣 化するという欠点があった。 そのために有機発光層積層以降の製造過程では、 温 度を 8 0から 1 0 0 °C以上にすることが出来ない。 したがって封止板を貼付け · 接着する工程では、 一般に液晶デイスプレイなどに用いられている熱硬化型のェ ポキシ樹脂ではなく、 紫外線硬化樹脂が接着剤に用いられている。 しかしながら ァクリルやエポキシ樹脂を主剤とする紫外線硬化樹脂は、 熱硬化型のエポキシ樹 脂等と比較すると水分及び酸素透過性が大きい。 これも素子寿命改善に対する、 重要な課題となっている。  In the conventional organic EL display element, since a sealing plate 35 made of glass, metal, or glass is bonded to the glass substrate 30, it cannot be bent (not flexible). There were drawbacks, such as easy cracking and heavy weight when subjected to impact. As a means for solving these drawbacks, a method has been proposed in which a plastic substrate is used instead of a glass substrate and a glass or metal sealing plate. However, according to this method, the above-mentioned disadvantage is solved, but as described above, the organic EL element is liable to deteriorate in light emitting performance due to moisture or oxygen entering from the outside. In addition, a plastic substrate, which is considered to have high oxygen permeability, has a problem that a practical device life cannot be maintained. In addition, since organic EL elements use an organic material in the light-emitting layer, they generally have a drawback in that when the temperature exceeds their glass point transfer temperature, crystallization of the organic substance occurs and the light emission characteristics of the element rapidly deteriorate. there were. Therefore, in the manufacturing process after the organic light emitting layer is laminated, the temperature cannot be raised from 80 to 100 ° C. or more. Therefore, in the step of attaching and adhering the sealing plate, an ultraviolet curable resin is used for the adhesive instead of a thermosetting epoxy resin generally used for liquid crystal displays and the like. However, UV-curable resins containing acryl or epoxy resin as a main component have higher moisture and oxygen permeability than thermosetting epoxy resins and the like. This is another important issue for improving device life.
本発明は、 これらの課題を解決するために、 プラスチック基板を用いたフレキ シブル有機 E L素子において、 封止構造を改善し水分及び酸素の透過性を減少さ せることによって、 素子発光性能の劣ィ匕を抑えることを目的とする。併せて有機 E L素子の各種情報表示装置及び照明装置用途への実用化を図ることを目的とす る。 The present invention solves these problems by providing a flexible organic EL device using a plastic substrate with an improved sealing structure and reduced moisture and oxygen permeability. By doing so, the object is to suppress inferiority of the device light emitting performance. At the same time, the objective is to commercialize the organic EL device for various information display devices and lighting devices.
これらの目的を達成するためには、 プラスチック封止板の部材及び構造選択が 重要な課題となる。 前述のとおり、 有機 E L素子には水分や酸素から保護するた めの封止板が必須である。 しかし有機 E L素子 *|反と封止板との接着において、 ガラス転移点温度以上になることを避けるため、 接着剤には紫外線硬ィ匕樹脂を使 用している。 プラスチヅク基板を用いたフレキシブル有機 E L素子においては、 プラスチヅク基板及びプラスチヅク封止板の全面及び接着面から侵入する水分や 酸素を減少させる必要がある。 一方有機 E L素子には透明 (陽極) 引き出し 端子及び金属電極 (陰極) 弓 Iき出し端子があるが、 これらを駆動回路と接続する ための額縁端子を封止板より外へ引き出すため、 額縁端子と封止板の接着方法も 重要な課題の一つである。 発明の開示  In order to achieve these objectives, the selection of plastic sealing plate members and structures is an important issue. As mentioned above, a sealing plate is essential for an organic EL device to protect it from moisture and oxygen. However, in order to avoid exceeding the glass transition temperature when bonding the organic EL device * | and the sealing plate, an ultraviolet curing resin is used as the adhesive. In a flexible organic EL device using a plastic substrate, it is necessary to reduce moisture and oxygen entering from the entire surface of the plastic substrate and the plastic sealing plate and from the bonding surface. Organic EL devices, on the other hand, have a transparent (anode) extraction terminal and a metal electrode (cathode) bow I extraction terminal. The frame terminal for connecting these to the drive circuit is drawn out of the sealing plate, so the frame terminal One of the important issues is how to bond the sealing plate with the sealing plate. Disclosure of the invention
前述した目的を達成するために、 本願の発明は、 フレキシブル 'プラスチヅク 基板上に透明電極層と、 有機エレクト口 ·ルミネッセンスからなる発光層と、 金 属電極層とを順次積層し、 該発光層をブラスチックよりなる封止板で封止した有 機エレクトロ 'ルミネヅセンス素子であって、 前記謝反の発光層が形成されない 面をプラスチックよりなる封止板で封止したことを特徴とする有機エレクト口 - ルミネッセンス素子である。  In order to achieve the above-described object, the invention of the present application is to sequentially laminate a transparent electrode layer, a light-emitting layer composed of organic electodes and luminescence, and a metal electrode layer on a flexible plastic substrate. An organic electroluminescent element sealed with a plastic sealing plate, wherein a surface on which the light emitting layer is not formed is sealed with a plastic sealing plate. -It is a luminescence element.
この構成にすることにより、 水分及び酸素の透過性が大きいフレキシブル ·プ ラスチック を使用した有機エレクトロ ·ルミネッセンス素子の場合であって も、 フレキシブル■プラスチヅク基板の発光層が形成されない面をプラスチック からなる封止板で封止しているので、 封止板に吸湿性の小さいプラスチックを用 いることにより、 外部から浸入した水分や酸素によって素子発光性能の劣化を生 じるのを防止することができる。 その結果、 表示画面を曲げられながら、 実用的 な素子寿命の長いフレキシブル有機 E L素子を提供することができる。 また、 封 止板もプラスチヅクであるため、 有機エレクト口 'ルミネッセンス素子全体をフ レキシブレにすることができる。 With this configuration, even in the case of an organic electroluminescence element using a flexible plastic having a high moisture and oxygen permeability, the surface of the flexible plastic substrate on which the light emitting layer is not formed is made of plastic. Since the sealing plate is used for sealing, the use of plastic having low hygroscopicity for the sealing plate can prevent the device light emission performance from deteriorating due to moisture or oxygen entering from the outside. As a result, it is possible to provide a flexible organic EL element having a practical element life and a long display life while the display screen is bent. In addition, since the sealing plate is also made of plastic, the entire organic EL port of the luminescent element is fluorinated. Can be rexible.
前記発光層を封止する封止板または基板を封止する封止板の少なくとも一方と 前記 ¾反を紫外線硬化樹脂で接着することができる。 これは、 1 0 0 °C以下の低 温で 可能なため、 特に耐熱性の低い P E T (ポリエチレンテレフ夕レート) などの材料をフレキシブル ·プラスチヅク基板に用いる場合に特に有効である。 前記発光層を封止する封止板または基板を封止する封止板の少なくとも一方と 前記 ¾反を熱硬ィ匕樹脂で接着することができる。 これは、 比較的高い耐熱性を有 する P E S (ポリエーテルスルホン) などを基板に用いる場合に有効であり、 ガ ラスより低い熱伝導性をうまく利用し、 接着部のみを局部的に加熱し、 熱に弱い 有機エレクト口 ·ルミネッセンス素子に影響を与えずに素子基板と封止板とを接 着することが出来る。 また熱硬ィ匕後の樹脂は透湿性及び酸素透過性が低く、 最も 信頼性の高い接着方法であり、 信頼性の高い有機エレクト口 'ルミネッセンス素 子を得ることができる。  At least one of a sealing plate for sealing the light emitting layer and a sealing plate for sealing the substrate can be bonded to the substrate with an ultraviolet curing resin. Since this is possible at a low temperature of 100 ° C. or less, it is particularly effective when a material such as PET (polyethylene terephthalate) having low heat resistance is used for a flexible plastic substrate. At least one of the sealing plate for sealing the light emitting layer or the sealing plate for sealing the substrate can be bonded to the substrate with a thermosetting resin. This is effective when using PES (polyethersulfone) or the like that has relatively high heat resistance for the substrate, making good use of the thermal conductivity lower than glass, heating only the adhesive part locally, Organic electrification which is weak to heat ・ The element substrate and the sealing plate can be bonded without affecting the luminescence element. Further, the resin after thermosetting is low in moisture permeability and oxygen permeability, is the most reliable bonding method, and can provide a highly reliable organic electroluminescent device.
前記発光層を封止する封止板、 または ¾反を封止する封止板の少なくとも一方 と前記基板を主剤及び硬化剤を混合することにより硬化を開始させるエポキシ樹 脂で接着することができる。 これは、 常温で接着することが可能であるため、 耐 熱性の低いプラスチック材をフレキシブル ·プラスチック ¾1反に使用した場合に 特に有効である。  At least one of a sealing plate that seals the light emitting layer or a sealing plate that seals the substrate and the substrate can be bonded with an epoxy resin that starts curing by mixing a main agent and a curing agent. . This is particularly effective when plastic materials with low heat resistance are used for flexible plastics because they can be bonded at room temperature.
前記発光層を封止する封止板の内面または基板を封止する封止板の内面の一方 または両方にガス ·バリアー層を形成することができる。 そうすることにより、 真空蒸着法等の方法で形成した珪素、 または、 金属の酸化膜及び窒化膜、 または それらの積層膜及びアルミ等の金属膜とを積層したガス ·バリアー層を封止板の 内面に形成することで水分の浸入の更に防止をすることができ、 長寿命の有機ェ レクトロ ·ルミネッセンス素子を得ることができる。  A gas barrier layer can be formed on one or both of the inner surface of the sealing plate for sealing the light emitting layer and the inner surface of the sealing plate for sealing the substrate. By doing so, a gas barrier layer formed by stacking a silicon oxide film or a nitride film formed by a method such as a vacuum evaporation method, or a laminated film thereof and a metal film such as aluminum is used as a sealing plate. By forming it on the inner surface, the intrusion of moisture can be further prevented, and a long-life organic electroluminescence device can be obtained.
前記発光層を封止する封止板と前記基板、 または前記基板を封止する封止板と 前記基板で形成される空間の何れか一方または両方にシリコーンオイル系または フッ素系不活性液体を充填させることができる。 フレキシブル 'プラスチック基 板の発光層が形成されない面、 すなわち表示面側の封止板の内面にジメチルシリ コーンオイルや、 また、 フッ素系不活性液体を充填することで、 光の散乱による 外部取り出し効率の低下を抑えると共に、 有機 E L素子からの放熱を促すことが できる。 また、 フレキシブル 'プラスチック基板の発光層が形成される面、 すな わち非表示面側の封止板と有機 E L素子表面の間にも、 前述と同様に不活性液体 を充填し、 有機 E L素子からの放熱を促すと共に、 外部からの機械的応力を液体 中に分散することにより有機 E L素子を保護することができる。 One or both of a sealing plate for sealing the light emitting layer and the substrate, or a sealing plate for sealing the substrate and a space formed by the substrate is filled with a silicone oil-based or fluorine-based inert liquid. Can be done. By filling the surface of the flexible plastic substrate where the light-emitting layer is not formed, that is, the inner surface of the sealing plate on the display surface side, with dimethyl silicone oil or a fluorine-based inert liquid, light scattering occurs. It is possible to suppress a decrease in the external extraction efficiency and promote heat radiation from the organic EL element. In addition, the surface of the flexible plastic substrate on which the light emitting layer is formed, that is, the space between the sealing plate on the non-display surface side and the surface of the organic EL element is filled with an inert liquid in the same manner as described above. The organic EL element can be protected by dissipating heat from the element and dispersing external mechanical stress in the liquid.
前記発光層を封止する封止板の内面または基板を封止する封止板の内面の一方 または両方に吸湿剤、 または、 酸素吸収剤、 またはそれら両方を内包することが できる。 これにより、 封止板の内面に吸湿剤、 または、 酸素吸収剤、 またはそれ ら両方を内包することで、 水分等の影響を極力排除し、 劣化が少ない長寿命もの 有機エレクト口 ·ルミネッセンス素子を得ることができる。  One or both of the inner surface of the sealing plate for sealing the light emitting layer and the inner surface of the sealing plate for sealing the substrate may contain a moisture absorbent, an oxygen absorber, or both. In this way, by incorporating a hygroscopic agent and / or oxygen absorber on the inner surface of the sealing plate, the effects of moisture and the like are eliminated as much as possible, and a long-life organic electrification port and luminescence element with little deterioration are provided. Obtainable.
前記透明電極層及び金属電極層の引き出し電極端子を、 前記発光層を封止する 封止板と基板の接合部より外側に取り出すことができる。 s¾端子を封止板と基 板の接合部より外側に取り出すことにより、 端子に回路基板を直接接続する ことができ、 電極端子と有機エレクト口 ·ルミネッセンス素子を制御する駆動 I Cがこの回路基板を介して電気的に接続される。 有機エレクト口 'ルミネヅセン ス素子に駆動回路が接続されることで情報表示装置及び照明装置用の部品として 機能する。  The extraction electrode terminals of the transparent electrode layer and the metal electrode layer can be taken out of a joint between the sealing plate and the substrate that seals the light emitting layer. The circuit board can be directly connected to the terminal by taking out the terminal from the junction between the sealing plate and the substrate, and the drive IC that controls the electrode terminals and the organic electrifying port Electrically connected via the A drive circuit is connected to the organic electroluminescent port's luminescence element to function as a component for information display devices and lighting devices.
さらに、 本 Jg貝の有機エレクト口 'ルミネッセンス素子の製造方法は、 フレキシ プル ·プラスチック基板上に透明 層と、 有機ェレクト口 ·ルミネヅセンス発 光層と、 金属電極層とを順次積層し、 プラスチックよりなる封止板で封止する有 機エレクトロ ·ルミネッセンス素子の製造方法であって、 前記発光層及び前記基 板の発光層が形成されない面を封止板で封止し、 該封止板を前記基板に接着する までの工程を窒素等の不活性ガス雰囲気中、 または真空中で行うことを特徴とす る。  Furthermore, the method of manufacturing the organic electroluminescent device of the present Jg shell comprises a plastic layer in which a transparent layer, an organic electroluminescent port, a luminescent light emitting layer, and a metal electrode layer are sequentially laminated on a flexible plastic substrate. What is claimed is: 1. A method for manufacturing an organic electroluminescence element, wherein a surface of a substrate on which a light emitting layer is not formed is sealed with a sealing plate. The process is characterized in that the process up to bonding to the substrate is performed in an atmosphere of an inert gas such as nitrogen or in a vacuum.
これにより、 有機エレクト口 ·ルミネッセンスからなる発光層を備えたフレキ シブル ·プラスチック ¾|反をプラスチック基板よりなる封止し、 接着するまでの 全てを窒素等の不活性ガス雰囲気中、 または真空中で行うことことで、 劣化の少 ない信頼性の高い有機エレクトロ 'ルミネッセンス素子を得ることができる。 本発明による情報表示装置及び照明装置は、 請求項 1乃至 8に記載のいずれか の有機エレクト口 ·ルミネッセンス素子に、 駆動回路等が接続されることにより 形成される。 In this way, the organic electrode port, the flexible plastic with a luminescent light emitting layer, and the plastic are sealed with a plastic substrate, and the entire process up to bonding is performed in an inert gas atmosphere such as nitrogen or in a vacuum. By doing so, a highly reliable organic EL device with little deterioration can be obtained. An information display device and a lighting device according to the present invention are any one of claims 1 to 8. It is formed by connecting a drive circuit and the like to the organic electret port and the luminescence element.
なお、 これらの各構成は限定されるものではなく、 可能な限り組み合わせるこ とが出来る。 図面の簡単な説明  These components are not limited and can be combined as much as possible. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の一実施例を示す有機エレクト口 ·ルミネッセンス素子及び駆 動回路が接続され、 情報表示装置や照明装置とし得る構成の断面図である。  FIG. 1 is a cross-sectional view of a configuration in which an organic electroluminescent device and a driving circuit according to an embodiment of the present invention are connected and can be used as an information display device or a lighting device.
図 2は、 本発明の一実施例を示す有機エレクト口 'ルミネッセンス素子の構成 断面図である。  FIG. 2 is a sectional view showing the structure of an organic electroluminescent device according to an embodiment of the present invention.
図 3は、 本発明の一実施例を示す有機エレクト口 'ルミネッセンス素子の製造 フローを示す図である。 '  FIG. 3 is a view showing a flow of manufacturing an organic electroluminescent device according to an embodiment of the present invention. '
図 4は、 情報表示装置の一例を示す携帯電話機の概略図である。  FIG. 4 is a schematic diagram of a mobile phone showing an example of the information display device.
図 5 A及び 5 Bは、 フレキシブル 'プラスチック ¾|反と封止板との間に不活性 液体を充填する方法を示す図である。  FIGS. 5A and 5B are diagrams showing a method of filling an inert liquid between the flexible 'plastic' and the sealing plate.
図 6は、 の有機エレクトロ 'ルミネッセンス素子の構成断面図である。 発明を実施するための最良の形態  FIG. 6 is a cross-sectional view of the configuration of the organic electroluminescent element of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
つぎに、 図面を参照しながら本発明の有機エレクト口 'ルミネッセンス (E L ) 素子について説明をする。 本発明の有機エレクトロ ·ルミネッセンス素子は、 駆動回路も接続され情報表示装置や照明装置とし得る構成の断面図が図 1に示さ れるように、 フレキシブル ·プラスチック基板 1 0上に透明電極層 1 1と、 有機 エレクト口 ·ノレミネヅセンスからなる発光層 1 3と、 金属 層 1 4とが順次積 層され、 発光層 1 3がプラスチヅクからなる非表示面側 (本実施例) の封止板 1 5 aで封止されている。 そして、 基板 1 0の発光層 1 3が形成されない面をブラ スチックからなる表示面側の封止板 1 5 bで封止されていることに特徴がある。 フレキシブル ·プラスチック基板 1 0は透明または半透明で、 可撓性のある基 板であって、 P C (ポリ力一ボネィト) 、 P E T (ポリエチレンテレフタレ一 ト) 及び P E S (ポリエーテルスルフォン) などのプラスチヅク材が用いられる。 基板 10としては、 特に耐熱性の優れた PESなどが好ましい。 プラスチック基 板 10の上面には透明電極 11、 正孔輸送層 12及び有機 EL材料からなる発光 層 13などからなる有機層、 金属電極 14が順次積層されている。 有機 EL素子 は、 プラスチヅク Si反 10とその上面に積層した透明電極 11と、 少なくとも有 機 EL材からなる発光層 13と、 金属電極 14とを備えている。 Next, the organic electroluminescent (EL) element of the present invention will be described with reference to the drawings. The organic electroluminescence element of the present invention has a transparent electrode layer 11 on a flexible plastic substrate 10 as shown in FIG. A light-emitting layer 13 composed of an organic electorifice / noreluminescence and a metal layer 14 are sequentially laminated, and the light-emitting layer 13 is formed of a plastic with a sealing plate 15a on the non-display surface side (this embodiment). It is sealed. The surface of the substrate 10 on which the light emitting layer 13 is not formed is sealed with a sealing plate 15b on the display surface side made of plastic. Flexible plastic substrate 10 is a transparent or translucent and flexible substrate, and is made of plastic such as PC (polycarbonate), PET (polyethylene terephthalate) and PES (polyethersulfone). Material is used. As the substrate 10, PES or the like having particularly excellent heat resistance is preferable. On the upper surface of the plastic substrate 10, an organic layer including a transparent electrode 11, a hole transport layer 12, a light emitting layer 13 made of an organic EL material, and a metal electrode 14 are sequentially laminated. The organic EL element includes a plastic Si substrate 10, a transparent electrode 11 laminated on the upper surface thereof, a light emitting layer 13 made of at least an organic EL material, and a metal electrode 14.
透明電極 11はホール注入 S¾としての機能を有し、 有機 EL材料かなる発光 層 13で発光した光を透明または半透明のプラスチック基板 10から取り出す構 造となっており、 ITO (錫ド一フ Ϊ変化インジウム) 、 IZO (亜鉛ド一プ酸化 インジウム) 、 ZnO、 Sn02、 I n203 等が使用される。 The transparent electrode 11 has a function as a hole injection S¾, and has a structure in which light emitted from the light emitting layer 13 made of an organic EL material is extracted from a transparent or translucent plastic substrate 10. Ϊ change indium), IZO (zinc-de one flop indium oxide), ZnO, Sn0 2, I n 2 0 3 or the like is used.
有 «1は、 有機 EL材料かなる発光層 13のみの単層構造の他に、 正孔輸送層 12と発光層 13、 または発光層 13と電子輸送層 (図示せず) の 2層構造や、 正孔輸送層 12と発光層 13と電子輸送層の 3層構造など、 いずれの構造でもよ い。 但し、 このような 2層構造または 3層構造の場合には、 正孔輸送層と正孔注 入電極 11が、 または電子輸送層と金属 «S 14が接するように積層して形成さ れる。 なお、 正孔注入 11や金属電極 14と接するように、 正孔注入層とか 電子注入層などを入れる場合は 4層構造や 5層構造、 またはそれ以上の多層構造 で有 «1を構成する場合もある。  One has a single-layer structure of only the light-emitting layer 13 made of an organic EL material, and a two-layer structure of the hole-transport layer 12 and the light-emitting layer 13 or the light-emitting layer 13 and the electron-transport layer (not shown). Any structure such as a three-layer structure of the hole transport layer 12, the light emitting layer 13, and the electron transport layer may be used. However, in the case of such a two-layer structure or a three-layer structure, the hole transport layer and the hole injection electrode 11 or the electron transport layer and the metal S 14 are stacked so as to be in contact with each other. When a hole injection layer, an electron injection layer, or the like is provided so as to be in contact with the hole injection 11 or the metal electrode 14, a four-layer structure, a five-layer structure, or a multilayer structure having more than four layers is used. There is also.
発光層 13としては、 可視領域で蛍光特性を有し、 かつ成膜性の良い蛍光体か らなるものが好ましく、 Alq3や Be—べンゾキノリノール (BeBq2) の 他に、 2, 5—ビス (5, 7—ジ一 t—ペンチル一2—ベンゾォキサゾリル) ― 1, 3, 4—チアジアゾ一ル、 4, 4, 一ビス (5, 7—ベンチル—2—べンゾ ォキサゾリル) スチルベン、 4, 4, 一ビス 〔5, 7—ジ一 (2—メチル一2— プチル) —2—ペンゾォキサゾリル〕 スチルペン、 2, 5—ビス (5, 7—ジー t一ペンチルー 2—ベンゾォキサゾリル) チォフィン、 2, 5—ビス ( 〔5—ひ, ひージメチルベンジル〕 一 2—ベンゾォキサゾリル) チォフェン、 2, 5—ビス 〔5, 7—ジ— (2—メチル一2—プチル) —2—べンゾォキサゾリル〕 —3, 4ージフエ二ルチオフェン、 2, 5—ビス (5—メチル一2—ベンゾォキサゾリ ル) チォフェン、 4, 4, 一ビス (2—ペンゾォキサイゾリル) ビフエニル、 5 —メチルー 2— 〔2— 〔4一 (5—メチル一2—ベンゾォキサイゾリル) フエ二 ル〕 ビニル〕 ベンゾォキサイゾリル、 2— 〔2— ( 4—クロ口フエニル) ビニ ル〕 ナフト 〔1 , 2— d〕 ォキサゾ一ル等のベンゾォキサゾ一ル系、 2 , 2, 一 ( p—フエ二レンジビニレン) 一ビスべンゾチアゾ一ル等のベンゾチアゾ一ル系、 2 - 〔2— 〔4— ( 2—ベンゾイミダゾリル) フエニル〕 ビニル〕 ペンゾイミダ ゾ一ル、 2 - C 2 - ( 4一カルボキシフエニル) ビニル〕 ベンゾイミダゾ一ル等 のべンゾィミダゾ一ル系等の蛍光増白剤や、 トリス ( 8—キノリノール) アルミ 二ゥム、 ビス (8—キノリノ一レ) マグネシウム、 ビス (ペンゾ 〔: f〕 一8—キ ノリノール) 亜鉛、 ビス (2—メチル一 8—キノリノラート) アルミニウムォキ シド、 トリス (8—キノリノール) インジウム、 トリス (5—メチルー 8—キノ リノール) アルミニウム、 8—キノリノ一ノレリチウム、 トリス (5—クロ口一 8 —キノリノール) ガリウム、 ビス (5—クロ口一 8—キノリノール) カルシウム、 ポリ 〔亜鉛、 ビス (8—ヒドロキシ一 5—キノリノニル) メタン〕等の 8—ヒド 口キシキノリン系金属錯体ゃジリチウムェピンドリジオン等の金属キレート化ォ キシノイド化合物や、 1 , 4一ビス (2—メチルスチリル) ベンゼン、 1, 4一 ( 3—メチルスチリル) ベンゼン、 1 , 4—ビス (4ーメチルスチリル) ベンゼ ン、 ジスチリルベンゼン、 1 , 4一ビス (2—ェチルスチリル) ベンゼン、 1 , 4—ビス (3—ェチルスチリル) ベンゼン、 1 , 4—ビス (2—メチルスチリ ル) 2—メチルベンゼン等のスチリルベンゼン系化合物や、 2, 5—ビス (4— メチルスチリル) ピラジン、 2 , 5—ビス (4—ェチルスチリル) ピラジン、 2 , 5—ビス 〔2— ( 1—ナフチル) ビニル〕 ピラジン、 2, 5—ビス (4—メトキ シスチリル) ピラジン、 2 , 5—ビス 〔2— ( 4—ビフエニル) ビニル〕 ピラジ ン、 2 , 5—ビス 〔2— ( 1—ピレニル) ビニル〕 ビラジン等のジスチルピラジ ン誘導体や、 ナフ夕ルイミド誘導体や、 ペリレン誘導体や、 ォキサジァゾール誘 導体や、 アルダジン誘導体や、 シクロペン夕ジェン誘導体や、 スチリルァミン誘 導体や、 クマリン系誘導体や、 芳香族ジメチリディン誘導体等が用いられる。 さ らに、 アントラセン、 サリチル酸塩、 ピレン、 コロネン等も用いられる。 The light-emitting layer 13 is preferably made of a phosphor having a fluorescent property in the visible region and having good film-forming properties. In addition to Alq3 and Be-benzoquinolinol (BeBq2), 2,5-bis (5,7-di-t-pentyl-2-benzoxazolyl) ― 1,3,4-thiadiazol, 4,4,1-bis (5,7-bentyl-2-benzozoxazolyl) Stilbene, 4,4,1-bis [5,7-di- (2-methyl-1-butyl) -2-pentoxoxazolyl] stilbene, 2,5-bis (5,7-g-t-pentyl-2 —Benzoxazolyl) Thiophine, 2,5-bis ([5-hi, h-dimethylbenzyl] -1-2-benzoxazolyl) thiophene, 2,5-bis [5,7-di- (2 —Methyl-1-butyl) —2-Benzoxazolyl) —3,4-diphenylthiophene, 2,5-bis (5-methyl-1-benzobenzoxazo) Le) Chiofen, 4, 4, One-bis (2-pen Zoo according benzisoxazolyl) biphenyl, 5 - methyl-2- [2- [4 one (5-methyl-one 2-benzo O wherein benzisoxazolyl) phenylene Benzoxazolyl, 2- (2- (4-chlorophenyl) vinyl) naphtho [1,2-d] benzoxazoles such as oxazolyl, 2,2,1 (p —Phenylene divinylene) Benzothiazoles such as 1-benzobenzothiazole, 2- [2- (4- (2-benzimidazolyl) phenyl] vinyl] benzoimidazole, 2-C 2-(4-carboxy) Phenyl) vinyl] benzoimidazole-based fluorescent brighteners such as benzimidazole, etc., tris (8-quinolinol) aluminum dimethyl, bis (8-quinolinol) magnesium, bis (penzo [: f] 18-quinolinol) zinc, bis (2-methyl-18-quinolinolate) aluminum oxide, tris (8-quinolinol) indium, tris (5-methyl-8-quinolinol) aluminum , 8-quinolino-1-quinolinol, tris (5-1-quinolinol) gallium, bis (5-1-quinolinol) calcium, poly [zinc, bis (8-hydroxy-1-quinolinonyl) methane] 8-chelated xyquinoline-based metal complexes, such as metal-chelated oxinoid compounds such as dilithium epindridione, 1,4-bis (2-methylstyryl) benzene, and 1,4--1- (3-methylstyryl) Benzene, 1,4-bis (4-methylstyryl) benzene, distyrylbenzene, 1,4-bis (2-ethylstyryl) benzene, 1,4-bis (3-ethylstyryl) benzene, 1,4-bis (2- Styrylbenzene-based compounds such as 2-methylbenzene, 2,5-bis (4-methylstyryl) pyrazine, 2,5-bis (4- Rustyryl) pyrazine, 2,5-bis [2- (1-naphthyl) vinyl] pyrazine, 2,5-bis (4-methoxycistyryl) pyrazine, 2,5-bis [2- (4-biphenyl) vinyl] pyrazine 2,2,5-bis [2- (1-pyrenyl) vinyl] distilpyrazine derivative such as virazine, naphthylimide derivative, perylene derivative, oxaziazole derivative, aldazine derivative, cyclopentene derivative, A styrylamine derivative, a coumarin derivative, an aromatic dimethylidin derivative, or the like is used. In addition, anthracene, salicylate, pyrene, coronene and the like are also used.
正孔輸送層 1 2としては、 正孔移動度が高く、 透明で成膜性の良いものが好ま しく T P D等のトリフェニルァミン誘導体の他に、 ボルフイン、 テトラフェニル ポルフィン銅、 フタロシアニン、 銅フタロシアニン、 チタニウムフタロシアニン オキサイド等のポリフィリン化合物や、 1, 1—ビス {4_ (ジ— P—トリルァ ミノ) フエ二ル} シクロへキサン、 4, 4' , 4' ' —トリメチルトリフエニレ ァミン、 N, N, Ν' , Ν' —テトラキス (Ρ—トリル) 一Ρ—フエ二レンジァ ミン、 1— (Ν, Ν—ジ一 Ρ—トリルァミノ) ナフ夕レン、 4, 4' —ビス (ジ メチルァミノ) 一 2_2' —ジメチルトリフエニルメタン、 Ν, Ν, N' , Ν, —テトラフエニル一 4, 45 —ジアミノビフエニル、 Ν, N' —ジフエニル一 Ν, Ν, 一ジ一 m—トリル一 4, N, N—ジフエ二ルー Ν, Ν' —ビス (3—メチル フエニル) 一1, Γ 一 4, 4' —ジァミン、 4' —ジアミノビフエニル、 Ν— フエ二ルカルバゾ一ル等の芳香族第三級ァミンや、 4—ジ一 Ρ—トリルアミノス チルベン、 4— (ジ— Ρ—トリルァミノ) 一4' ― 〔4— (ジ一 Ρ—トリルアミ ノ) スチリル〕 スチルベン等のスチルベン化合物や、 トリァゾール誘導体や、 ォ キサジザゾール誘導体や、 ィミダゾール誘導体や、 ポリァリ一ルアルカン誘導体 や、 ピラゾリン誘導体や、 ピラゾロン誘導体や、 フエ二レンジァミン誘導体や、 ァニールァミン誘導体や、 ァミノ置換カルコン誘導体や、 ォキサゾ一ル誘導体や、 スチリルアントラセン誘導体や、 フルォレノン誘導体や、 ヒドラゾン誘導体や、 シラザン誘導体や、 ポリシラン系ァ二リン系共重合体や、 高分子ォリゴマーや、 スチリルァミン化合物や、 芳香族ジメチリディン系化合物や、 ポリ 3—メチルチ ォフェン等の有機材料が用いられる。 また、 ポリカーボネート等の高分子中に低 分子の正孔輸送層 4用の有機材料を分散させた、 高分子分散系の正孔輸送層用い られる。 The hole transport layer 12 is preferably a layer having a high hole mobility, being transparent and having good film formability. In addition to triphenylamine derivatives such as TPD, borfin, tetraphenylporphine copper, phthalocyanine, copper phthalocyanine , Titanium phthalocyanine Porphyrin compounds such as oxide, 1,1-bis {4_ (di-P-tolylamino) phenyl} cyclohexane, 4,4 ', 4''-trimethyltriphenylenamine, N, N, Ν ', Ν' —tetrakis (Ρ-tolyl) 10-phenylenediamine, 1- (Ν, Ν-di-tolylamino) naphthylene, 4, 4 '—bis (dimethylamino) 1 2_2' — dimethyl triphenylmethane, Ν, Ν, N ', Ν, - tetraphenyl one 4, 4 5 - diamino Biff enyl, New, N' - diphenyl one New, New, temporary one m- tolyl one 4, N, N- Aromatic tertiary amines such as diphenyl, Ν ', bis (3-methylphenyl) -11, Γ-1,4,4'-diamine, 4'-diaminobiphenyl, Ν-phenylcarbazole, , 4-di-tolylaminostilbene, 4- (di-tolylamino) 1 4 '― [4- (di- Tolylamino) styryl] stilbene compounds such as stilbene, triazole derivatives, oxazizazole derivatives, imidazole derivatives, polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, anilineamine derivatives, amino Substituted chalcone derivatives, oxazolyl derivatives, styryl anthracene derivatives, fluorenone derivatives, hydrazone derivatives, silazane derivatives, polysilane-based arinline copolymers, high-molecular-weight oligomers, styrylamine compounds, and aromatics Organic materials such as dimethylidin-based compounds and poly 3-methylthiophene are used. Further, a polymer-dispersed hole transport layer in which a low molecular weight organic material for the hole transport layer 4 is dispersed in a polymer such as polycarbonate is used.
なお、 電子輸送層としては、 1, 3—ビス (4— t er t—プチルフエ二ルー 1, 3, 4—ォキサジァゾリル) フエ二レン (OXD— 7) 等のォサジァゾ一ル 導体、 アントラキノジメタン誘導体、 ジフエ二ルキノン誘導体等が用いられる。 金属電極 14としては、 Al、 In、 Mg、 T i等の金属や、 Mg— Ag合金、 M g— I n合金等の M g合金や、 A 1— Li合金、 Al— Sr合金、 Al-Ba 合金等の A 1合金等が用いられる。 特に A 1一 M g合金あるいは A 1— L i一 M g合金は、 低仕事関数であってしかも耐食性の優れた金属であり、 きわめて有効 である。  The electron transporting layer is composed of an osadiazol conductor such as 1,3-bis (4-tert-butyl-phenyl-1,3,4-oxaziazolyl) phenylene (OXD-7) or anthraquinodimethane Derivatives, diphenylquinone derivatives and the like are used. Examples of the metal electrode 14 include metals such as Al, In, Mg, and Ti; Mg alloys such as Mg—Ag alloys and Mg—In alloys; A 1—Li alloys; Al—Sr alloys; A1 alloy such as Ba alloy is used. In particular, A1-Mg alloy or A1-Li-Mg alloy is a metal having a low work function and excellent corrosion resistance, and is very effective.
16a及び 16 bは駆動回路であって、 有機 EL素子の透明電極 1 1と金属電 極 14に駆動信号を供給する I C等が搭載されている。 駆動回路 16a及び 16 bの周辺にはチヅプ抵抗ゃチヅプコンデンサ等の回路素子が配置されている。 1 7 a及び 17 bは 端子であり、 透明 11及び金属 ¾@層 14と接続され ている。 18a及び 18 bは外部配線としてのフレキシブル回路基板であって、 電極端子 17a及び 17bと駆動回路 16a及び 16 bとを電気的に接続する。 駆動回路 16 a及び 16 bからの電気信号が外部配線 18 a及び 18 bを介して 透明電極 11及び金属電極層 14に供給され、 発光層 13が信号に応じて発光す る。 Reference numerals 16a and 16b denote drive circuits, each of which includes a transparent electrode 11 of an organic EL element and a metal electrode. An IC for supplying a drive signal to the pole 14 is mounted. Circuit elements such as chip resistors and chip capacitors are arranged around the driving circuits 16a and 16b. 17 a and 17 b are terminals, which are connected to the transparent layer 11 and the metal layer 14. 18a and 18b are flexible circuit boards as external wiring, and electrically connect the electrode terminals 17a and 17b to the drive circuits 16a and 16b. Electric signals from the driving circuits 16a and 16b are supplied to the transparent electrode 11 and the metal electrode layer 14 via the external wirings 18a and 18b, and the light emitting layer 13 emits light according to the signal.
封止板 15 aによって封止された有機 EL素子では、 発光層 13の上下に形成 される透明 ¾fil 1及び金属 «S14の引き出し電極端子 17a及び 17bが、 接合部 19 a及び 19 bより外部に引き出されている。 電極端子 17 a及び 17 bを封止板 15 aとフレキシブル ·プラスチック基板 10の接合部より外側に取 り出し、 この電極端子 17 a及び 17bに回路基板 16 a及び 16bが接続され る。 ®ϋ端子 17&及び17 bと有機 EL素子を制御する駆動 I Cがこの回路基 板 18 a及び 18 bを介して電気的に接続される。  In the organic EL device sealed by the sealing plate 15a, the transparent ¾fil 1 and the metal SS14, which are formed above and below the light emitting layer 13, have the lead electrode terminals 17a and 17b of the S14 outside the bonding portions 19a and 19b. Have been withdrawn. The electrode terminals 17a and 17b are taken out of the joint between the sealing plate 15a and the flexible plastic substrate 10, and the circuit boards 16a and 16b are connected to the electrode terminals 17a and 17b. (2) The terminals 17 & and 17b and the driving IC for controlling the organic EL element are electrically connected via the circuit boards 18a and 18b.
有機 EL素子に駆動回路 18 a及び 18 bが接続されることで、 前述の発光層 13を各画素ごとに信号に応じて発光させることができ、 所望の情報画像を表示 し、 情報表示装置を構成することができる。 なお、 発光層 13の各画素を R、 G、 Bで構成することにより、 フルカラーで情報画像を表示することができる。 たと えば図 4に示されるように、 携帯電話機の情報表示装置部分 9を構成することも できるし、 また、 電子手帳などを構成することもできる。 さらに、 画像を表示さ せないで、 全体を点灯させたりオフにすることにより、 照明装置用の部品として 機能させることもできる。  By connecting the driving circuits 18a and 18b to the organic EL element, the above-mentioned light emitting layer 13 can emit light in accordance with a signal for each pixel, display a desired information image, and realize an information display device. Can be configured. By forming each pixel of the light emitting layer 13 with R, G, and B, an information image can be displayed in full color. For example, as shown in FIG. 4, the information display unit 9 of the mobile phone can be configured, or an electronic organizer or the like can be configured. Furthermore, by turning on or off the whole without displaying an image, it can also function as a part for a lighting device.
本発明では、 発光層 13 (他の有機層および両電極も含む発光部) を保護し水 分が侵入するのを防止するため、 発光層 13を有機層側 (本実施例では非表示面 側) の封止板 15aで封止する構造が採用されている。 発光層 13が形成される 面、 本発明の実施での非表示面側を封止する封止板 15 aには、 フレキシブル ' プラスチック基板 10と同等のフレキシブル性を有する、 PC (ポリカーボネィ ト) 、 PET (ポリエチレンテレフ夕レート) 及び PE (ポリエチレン) 、 PP (ポリプロピレン) 等の材料が使用されるが、 特に吸湿性 (吸収率) が小さい P Pや P Cが優れている。 In the present invention, in order to protect the light emitting layer 13 (light emitting portion including other organic layers and both electrodes) and prevent water from entering, the light emitting layer 13 is placed on the organic layer side (the non-display surface side in this embodiment). The structure of sealing with the sealing plate 15a is adopted. A sealing plate 15a for sealing the surface on which the light emitting layer 13 is formed and the non-display surface side in the embodiment of the present invention includes a flexible (PC) (polycarbonate) having the same flexibility as the plastic substrate 10. , PET (polyethylene terephthalate) and PE (polyethylene), PP Materials such as (polypropylene) are used, but PP and PC, which have particularly low hygroscopicity (absorption rate), are excellent.
本願の特徴は、 発光層 1 3が形成されない面、 本発明の実施での表示面側をプ ラスチヅク材からなる封止板 1 5 bで封止することで、 水分及び酸素の透過性が 大きいフレキシブル ·プラスチヅク基板 1 0を使用した有機 E L素子場合であつ ても、 外部から浸入した水分や酸素によって素子発光性能の劣化を生じるのを防 止することができる。 その結果、 実用的な素子寿命の長いフレキシブル有機 E L 素子を提供することができるというものである。 封止板 1 5 bには、 封止板 1 5 aと同様 P C (ポリカーボネイト) 、 P E T (ポリエチレンテレフ夕レート) 及 び P E (ポリエチレン) 、 P P (ポリプロピレン) 等の材料が使用される。 酸素 及び水分の内部への拡散を抑制するため、 吸収率の小さい材料や耐熱性の高い材 料が好ましく、 使用される材料に応じて複数の封止板が使用される。  The feature of the present application is that the surface on which the light emitting layer 13 is not formed, and the display surface side in the embodiment of the present invention are sealed with a sealing plate 15b made of a plastic material, so that moisture and oxygen permeability are high. Even in the case of an organic EL device using the flexible plastic substrate 10, it is possible to prevent the device light emission performance from deteriorating due to moisture or oxygen entering from the outside. As a result, it is possible to provide a flexible organic EL device having a practical long life. Similar to the sealing plate 15a, materials such as PC (polycarbonate), PET (polyethylene terephthalate), PE (polyethylene), and PP (polypropylene) are used for the sealing plate 15b. In order to suppress the diffusion of oxygen and moisture into the inside, a material having a small absorption rate or a material having high heat resistance is preferable, and a plurality of sealing plates are used depending on the material used.
本実施例では基板 1 0の両面側に封止板 1 5 a及び 1 5 bの 2枚を使用し、 フ レキシブル ·プラスチック基板 1 0を挟み込んで封止する構造としているが、 1 枚を折り畳んで見かけ上 2枚にしたものを用いて、 フレキシブル 'プラスチヅク 基板 1 0の表示面側及び非表示面側を封止することでも同様の効果を得ることが できる。  In this embodiment, two sealing plates 15a and 15b are used on both sides of the substrate 10, and the flexible plastic substrate 10 is sandwiched and sealed, but one sheet is folded. The same effect can also be obtained by sealing the display surface side and the non-display surface side of the flexible 'plastic substrate 10 using two substrates apparently as described above.
非表示面を封止するプラスチック材からなる封止板 1 5 aは、 3 0 O nm程度 の波長の紫外線に対して、 紫外線硬化樹脂を硬化させるだけの透明度を有してい る。 封止板 1 5 aとフレキシブル ·プラスチック基板 1 0の接合部 1 9 aに紫外 線構成の樹脂を塗布し、 封止板側 1 5 aからマスクなしで紫外線を照射すること で、 封止板 1 5 aとフレキシブル ·プラスチック基板 1 0を接着することができ る。 表示面側を封止するために用いられる封止板 1 5 bは発光層 1 3からの光を 取出せるよう光透過性の性質を有している。 この性質を利用し、 封止板 1 5 bと フレキシプル ·プラスチック基板 1 0との接合部 1 9 bに紫外線硬ィ匕樹脂を塗布 し、 封止板 1 5 bから紫外線を照射させることで封止板 1 5 bとフレキシブル ' プラスチック基板 1 0を接着することができる。  The sealing plate 15a made of a plastic material for sealing the non-display surface has transparency enough to cure the ultraviolet curing resin with respect to ultraviolet light having a wavelength of about 30 O nm. A resin having an ultraviolet ray composition is applied to the joint 19 a between the sealing plate 15 a and the flexible plastic substrate 10, and ultraviolet rays are irradiated from the sealing plate side 15 a without a mask, thereby forming the sealing plate. 15a and flexible plastic substrate 10 can be bonded. The sealing plate 15b used for sealing the display surface side has a light transmitting property so that light from the light emitting layer 13 can be extracted. Utilizing this property, an ultraviolet curing resin is applied to the joint 19b between the sealing plate 15b and the flexiplastic plastic substrate 10 and the sealing plate 15b is irradiated with ultraviolet light to seal. The stop plate 15b and the flexible 'plastic substrate 10 can be bonded.
この方法では封止板 1 5 a及び 1 5 bとフレキシブル ·プラスチヅク基板 1 0 との接合を 1 0 0 °C以下の低温で接続が可能なため特に耐熱性の低い P E T (ポ リエチレンテレフ夕レート) などの材料をフレキシブル ·プラスチヅク基板 1 0 に用いる場合に特に有効である。 In this method, the bonding between the sealing plates 15a and 15b and the flexible plastic substrate 10 can be performed at a low temperature of 100 ° C or less, so that PET (Poly-Poly) is particularly low in heat resistance. This is particularly effective when a material such as ethylene terephthalate) is used for the flexible plastic substrate 10.
封止板 1 5 a及び 1 5 bとフレキシブル ·プラスチック謝反 1 0とを熱硬化樹 脂で接着することで、 水分及び酸素の透過性が小さく信頼性が高く長寿命の有機 E L素子を得ることができる。 従来のガラス を使用した有機 E L素子では熱 伝導度が大きいため熱硬化樹脂で接着しょうとすると、 樹脂を硬化させるために 加えられた熱が、 熱伝導度が大きいガラス基板を通じて有機 E Lからなる発光層 に伝わり、 発光層がガラス点移転温度を超えて有機物の結晶化等が発生し、 急激 に素子発光特性が劣化してしまうことがあった。  By bonding the sealing plates 15a and 15b and the flexible plastic resin 10 with a thermosetting resin, an organic EL device with low moisture and oxygen permeability and high reliability and long life can be obtained. be able to. Conventional organic EL devices using glass have high thermal conductivity, so when bonding with a thermosetting resin, the heat applied to cure the resin emits light from the organic EL through a glass substrate with high thermal conductivity. In some cases, the light-emitting layer exceeded the glass transition temperature, causing crystallization of organic substances and the like, and the light-emitting characteristics of the device were rapidly deteriorated.
しかし、 比較的高い耐熱性を有する P E S (ポリエーテルスルホン) 等をブラ スチック ·フレキシブル基板 1 0に用いる場合、 その熱伝導性がガラスより低い ので、 熱に弱い有機 E Lからなる発光層 1 3に影響を与えずにプラスチック ·フ レキシブル ¾反 1 0と封止板 1 5 aを接着することができる。 つまり、 封止板 1 5 a及び 1 5 bとプラスチック ·フレキシブル基板 1 0の接合部 1 9 a及ぴ 1 9 bに熱硬化樹脂を塗布し、 接^ 1 9のみに局部的に加熱しても、 プラスチヅ ク ·フレキシブル基板 1 0の熱伝導性がガラスより低いので熱が発光層 1 3に伝 わりにくい構造となる。 特に、 この接合方法は、 熱硬化後の樹脂が透湿性及び酸 素透過性が低く、 最も信頼性の高い接着方法であり、 信頼性の高い有機 E L素子 を得ることができる。  However, when PES (polyethersulfone) or the like having relatively high heat resistance is used for the plastic flexible substrate 10, since the thermal conductivity is lower than that of glass, the light-emitting layer 13 made of heat-sensitive organic EL is used. The plastic flexible 10 can be bonded to the sealing plate 15a without any influence. In other words, a thermosetting resin is applied to the joints 19a and 19b between the sealing plates 15a and 15b and the plastic / flexible substrate 10 and locally heated only at the joints 19. In addition, since the plastic and flexible substrate 10 has lower thermal conductivity than glass, heat is hardly transmitted to the light emitting layer 13. In particular, this bonding method is the most reliable bonding method because the heat-cured resin has low moisture permeability and oxygen permeability, and a highly reliable organic EL device can be obtained.
主剤及び硬化剤を混合することにより硬化を開始させる 2液性エポキシ樹脂を 接合部 1 9 &及び1 9 bに塗布し、 硬ィ匕させることで、 封止板 1 5 &及び1 5 b とフレキシブル ·プラスチック基板 1 0とを接着することができる。 この方法は 常温で接着することが可能である。 特に 耐熱性の低い P E T (ポリエチレンテ レフ夕レー卜) などの材料をフレキシプル ·プラスチヅク基板 1 0に使用した場 合に有効である。 なお、 2液性エポキシ樹脂としては、 たとえば主剤としてのェ ポキシ樹脂に、 三級ァミンなどの触媒型、 重付加型、 または潜在型などの硬化剤 を添加することにより連鎖反応をさせて硬ィ匕させるものを用いることができる。 封止板 1 5 aの内面または封止板 1 5 bの内面の一方または両方に真空蒸着法 等の方法で、 珪素、 または、 金属の酸ィ匕膜及び窒化膜、 またはそれらの積層 ¾ びアルミ等の金属膜とを積層したガス 'バリア層 (図示しない) を形成すること が好ましい。 ガス 'バリア層を封止板 1 5 &及び1 5 bに形成することで、 水分 の浸入を更に防止することができ、 長寿命の有機 E L素子を得ることができる。 さらに耐湿性を向上させるためフレキシブル ·プラスチック基板 1 0にもガ ス 'バリア層 (図示せず) を形成することができる。 この場合、 透明 SM I 1と フレキシブル■プラスチック謝反 1 0と間、 若しくはフレキシブル ·プラスチヅ ク基板 1 0と封止板 1 5 bとの間に設けられる。 The two-component epoxy resin that starts curing by mixing the main agent and the curing agent is applied to the joints 19 & and 19 b, and is hardened to form the sealing plates 15 & and 15 b. Flexible · Plastic substrate 10 can be bonded. This method allows bonding at room temperature. This is particularly effective when a material such as PET (polyethylene terephthalate) having low heat resistance is used for the flexible plastic substrate 10. In addition, as a two-component epoxy resin, for example, a curing reaction such as a tertiary amine or a catalyst type, a polyaddition type, or a latent type is added to an epoxy resin as a base material to cause a chain reaction, thereby causing a hardening reaction. What can be used can be used. Either one or both of the inner surface of the sealing plate 15a and the inner surface of the sealing plate 15b is coated with silicon or metal oxide film and nitride film, or a laminate thereof by a method such as a vacuum evaporation method. It is preferable to form a gas barrier layer (not shown) in which a metal film such as aluminum and a metal film such as aluminum is laminated. By forming the gas barrier layer on the sealing plates 15 & and 15 b, it is possible to further prevent the infiltration of moisture and to obtain a long-life organic EL device. Further, a gas barrier layer (not shown) can be formed on the flexible plastic substrate 10 to further improve the moisture resistance. In this case, it is provided between the transparent SMI 1 and the flexible plastic substrate 10, or between the flexible plastic substrate 10 and the sealing plate 15b.
封止板 1 5 aにアルミ膜のガス 'バリア層をラミネートした場合は、 紫外線に 対し不透明となる。 この場合は、 接合部 1 9 aのみアルミ膜を無くしておいて、 接合部 1 9 aに紫外線硬化樹脂を塗布しておいて、 紫外線を照射し樹脂を硬ィ匕さ せて接着することができる。  When an aluminum film gas barrier layer is laminated on the sealing plate 15a, it becomes opaque to ultraviolet rays. In this case, it is possible to remove the aluminum film only at the joint 19a, apply an ultraviolet-curing resin to the joint 19a, irradiate ultraviolet rays to irradiate the resin, and bond the resin. it can.
なお、 表示面側の封止板 1 5 bは発光層 1 3から光を取出せるよう、 光に対し 不透明とならないガス ·バリア層を形成する必要がある。  Note that the sealing plate 15b on the display surface side must be formed with a gas barrier layer that is not opaque to light so that light can be extracted from the light emitting layer 13.
また、 封止板 1 5 a内面にアルミ膜等の紫外線に対し不透明な膜を蒸着した場合 であっても、 接合部 1 9 aに熱硬化樹脂を塗布し熱を加えることや、 2液性のェ ポキシ樹脂を塗布することで、 封止板 1 5 aとフレキシブル ·プラスチック基板 を接着することができる。 いずれの場合においても窒素等の不活性ガス雰囲気中 または真空中にて実施することが出来る。 Even when a film opaque to ultraviolet rays such as an aluminum film is deposited on the inner surface of the sealing plate 15a, a thermosetting resin may be applied to the joint 19a to apply heat, By applying the epoxy resin, the sealing plate 15a and the flexible plastic substrate can be bonded. In any case, it can be carried out in an atmosphere of an inert gas such as nitrogen or in a vacuum.
封止板 1 5 a及び 1 5 bとフレキシブル 'プラスチック ¾反 1 0との接着は、 使用する材料等に応じて上記の方法が適宜組み合わされて実現される。  Adhesion between the sealing plates 15a and 15b and the flexible 'plastic' 10 is realized by appropriately combining the above methods according to the material used.
次に、 本発明に適するプラスチヅク材料について検討を行った。 表 1に各種プ ラスチックフィルム材の諸物性を示す。 表ではソーダガラスと各種プラスチック フィルム材料の諸物性を比較している。 ガラスは比重が大きく重いが、 吸水率は 小さく、 耐熱性に優れている。 つまり、 ガラス転移点が高く、 線膨張係数が小さ い。  Next, a plastic material suitable for the present invention was examined. Table 1 shows the physical properties of various plastic film materials. The table compares various physical properties of soda glass and various plastic film materials. Glass has a large specific gravity and is heavy, but has low water absorption and excellent heat resistance. That is, the glass transition point is high and the coefficient of linear expansion is small.
プラスチック材料は、 比重が小さく軽いが、 吸水率が大きく、 耐熱性に乏しい、 つまりガラス転移点が低く、 線膨張係数が大きい。 ガラスとプラスチヅクは、 全 光線透過率及び屈折率では、 ほぼ同様の値を示し、 光学的には同じ用途に用いる ことができる。 プラスチック材料の中でも、 吸水率や耐熱性が大きく異なる、 吸水率では P P (ポリプロピレン) が最も優れているが、 ガラス転移点が極端に低く有機 E L素 子基板 1 0としては適さない。 また耐熱性では、 P E S (ポリエーテルスルホ ン) のガラス転移点が最も高く、 線膨張係数も小さいので有機 E L素子基板に適 しているが、 吸水率が大きいので封止板には適さない。 封止板 1 5 &及ぴ1 5 b には吸水率が比較的小さい、 p p (ポリプロピレン) や P C (ポリカーボネィ ト) が適している。素材の吸水率とは別に、 透湿性を低減させるために、 ガス · バリァ層を封止板の内面に成膜するか、 またはアルミ箔などの金属膜をラミネー 卜する方法がある。 Plastic materials have low specific gravity and light weight, but have high water absorption and poor heat resistance. That is, they have a low glass transition point and a large coefficient of linear expansion. Glass and plastic show almost the same value in total light transmittance and refractive index, and can be optically used for the same purpose. Among plastic materials, PP (polypropylene) is the best in terms of water absorption and heat resistance. Water-absorption is extremely high, but the glass transition point is extremely low, and it is not suitable as organic EL device substrate 10. In terms of heat resistance, PES (polyethersulfone) has the highest glass transition point and low linear expansion coefficient, so it is suitable for organic EL element substrates, but it is not suitable for sealing plates because of its high water absorption. For the sealing plates 15 & 15b, PP (polypropylene) or PC (polycarbonate) with a relatively low water absorption is suitable. Apart from the water absorption of the material, there is a method of forming a gas barrier layer on the inner surface of the sealing plate or laminating a metal film such as an aluminum foil to reduce the moisture permeability.
表 1 各種プラスチックフィルム材の諸物性 (ソーダガラスを含む)  Table 1 Properties of various plastic film materials (including soda glass)
Figure imgf000016_0001
Figure imgf000016_0001
表中の記号説明: PG (ポリカーボネイト)、 PET (ポリェチレ fレフタレート)、 PP (ポリプロピレン)、 PES (ポリエ ルスル:^ )、 PSF (ポリスルフォン)、 PAR (ポリアリレート)、 PMMA (ポリメチノレメタァクリレート) 表 2に従来技術と本発明の効果の比較を示す。 表 2には、 最も基本的な従来例 を従来 1として表している、 従来 1は、 有機 E L素子基板及び封止板にソーダガ ラスを用いており、 製造過程において 3 0 0 °C以上の高温を適用できる。 酸素透 過性及び透湿性が、 プラスチック と比較して無視出来るほど小さいなどの理 由により、 素子の劣化が最も少ない構成である。 しかし、 今後有機 E L素子に対 し、 フレキシブル性が求められると、 ガラスは適当ではない。 Explanation of symbols in the table: PG (Polycarbonate), PET (Polyethylene f phthalate), PP (Polypropylene), PES (Polyethyl sulfone: ^), PSF (Polysulfone), PAR (Polyarylate), PMMA (Polymethylenmethacrylate) (Crylate) Table 2 shows a comparison between the effects of the prior art and the present invention. Table 2 shows the most basic conventional example as Conventional 1.In Conventional 1, soda glass is used for the organic EL element substrate and the sealing plate. Can be applied. Due to the fact that oxygen permeability and moisture permeability are so small as to be negligible compared to plastics, this is the configuration with the least deterioration of the element. However, if flexibility is required for organic EL devices in the future, glass is not suitable.
また、 従来 2及び従来 3に示す様に、 単純にガラス基板をフレキシブル ·ブラ スチヅク基板に置き変えた場合、 有機 E L素子の劣化が著しくなり実用化が難し 2003/008889 In addition, as shown in Conventional 2 and Conventional 3, when a glass substrate is simply replaced with a flexible plastic substrate, the organic EL element is significantly deteriorated and practical use is difficult. 2003/008889
1 6 い。 1 6
本発明では、 フレキシブル ·プラスチック ¾反を用いた有機 E L素子において、 フレキシブル'プラスチック の発光表示面側をプラスチックの封止板で封止 する構成とすることにより、 フレキシブル有機 E L素子を実用的な信頼性レベル に高めることできた。  According to the present invention, in the organic EL element using a flexible plastic material, the flexible organic EL element is practically reliable by adopting a structure in which the light emitting display surface side of the flexible plastic is sealed with a plastic sealing plate. Gender level.
本発明の方法としては、 複数の封止板を用い、 また、 各々のプラスチック材質 の耐熱性に応じた接着方法を提供し、 有機 E L素子の基板、 表示面側封止板及び 非表示面側封止板に適したガス 'バリア層を設けることにより、 構造的に酸素透 過性及び透湿性を抑制させた。  As a method of the present invention, a method of using a plurality of sealing plates, providing a bonding method according to the heat resistance of each plastic material, and providing a substrate of an organic EL element, a display surface side sealing plate and a non-display surface side Oxygen permeability and moisture permeability were structurally suppressed by providing a gas barrier layer suitable for the sealing plate.
本発明の原理としては、 空気中の酸素と水分から、 有機 E L素子を複数の遮断 層 (封止板及び有機 E L素子 ¾¾) で遮り、 その拡散速度を低下させることにあ る。 気体から固体、 及び固体中の酸素及び水分の拡散速度 (拡散係数) は、 その 濃度差 (分圧差) 、 圧力及び温度に支配される。  The principle of the present invention is to block the organic EL element with a plurality of blocking layers (sealing plate and organic EL element E) from oxygen and moisture in the air to reduce the diffusion speed. The diffusion rate (diffusion coefficient) of oxygen and moisture in a solid from a gas and in a solid is governed by its concentration difference (partial pressure difference), pressure and temperature.
しかし、 圧力及び温度は共通項目であるので、 濃度差すなわち気体中の酸素及 び水分の分圧の差が問題となる。 酸素及び水の分子は、 温度及び圧力に従って空 気から封止板に侵入し、 ブラスチック材料毎の拡散係数に従つて拡散する。  However, since pressure and temperature are common items, the difference in concentration, that is, the difference in partial pressure of oxygen and moisture in gas poses a problem. Oxygen and water molecules enter the sealing plate from the air according to temperature and pressure and diffuse according to the diffusion coefficient of each plastic material.
従来のフレキシブル ·プラスチック基板の有機 E L素子であれば、 酸素及び水 の分子が有機 E L素子内部に侵入し素子を劣化させる。 本発明ではプラスチック の封止板によって、 酸素及び水分の内部への拡散を段階的に抑制し、 有機 E L素 子へ到達する時間を遅らせることができる。 よって有機 E L素子内の酸素及び水 分量は低下し、 素子の劣化が抑制される。 劣化項目で輝度劣化 (発光部全面) と は、 水分または酸素が封止板 1 5 a及び 1 5 bを通過して水分または酸素により 発光層 1 3が輝度劣化を生じる場合をいう。 輝度劣化 (発光部周囲) とは、 有機 E 1素子の製造過程で形成されるレジストから発生するガスにより発光層 1 3が 輝度劣化を生じる場合をいう。 これを防止するにはレジストに熱を加えて水分等 のガスを蒸発させる必要があり、 耐熱性の高い基板を使用するほど加えられる熱 量が大きくなるので、 その効果は大きくなる 7 表 2 基板材質による有機 E L素子の劣化程度の違い In the case of the conventional organic EL device on a flexible plastic substrate, molecules of oxygen and water enter the organic EL device and deteriorate the device. In the present invention, the diffusion of oxygen and moisture into the inside can be suppressed stepwise by the plastic sealing plate, and the time to reach the organic EL device can be delayed. Therefore, the amount of oxygen and water in the organic EL element decreases, and the deterioration of the element is suppressed. Degradation of luminance in the degradation item (entire surface of the light-emitting portion) refers to a case where moisture or oxygen passes through the sealing plates 15a and 15b, and the luminance of the light-emitting layer 13 is degraded by moisture or oxygen. Luminance deterioration (around the light-emitting portion) refers to a case where the light-emitting layer 13 deteriorates in luminance due to a gas generated from a resist formed in the manufacturing process of the organic EL device. To prevent this, it is necessary to apply heat to the resist to evaporate gases such as moisture.The more heat-resistant substrates are used, the greater the amount of heat applied, and the greater the effect 7 Table 2 Differences in the degree of deterioration of the organic EL device depending on the substrate material
Figure imgf000018_0001
Figure imgf000018_0001
表中の記号説明: PET (ポリエチレ^レフタレート)、 PC (ポリカーボネイト)、 PES (ポリェ "^ルスルホン)、 PE (ポリ エチレン)  Explanation of symbols in the table: PET (polyethylene ^ phthalate), PC (polycarbonate), PES (polyethylene sulfone), PE (polyethylene)
表示面側/ リア層 (酸化珪素膜、酸化窒化珪素膜、酸化アルミ二ユウム膜などの積層膜) 有機 EL素子基板/くリア層 (酸化珪素膜、酸化窒化珪素膜、酸化アルミ二ユウム膜などの積層膜) 非表示面側バリア層 (酸化珪素膜、酸化窒化珪素膜、アルミニユウム膜などの積層膜)  Display side / rear layer (laminated film of silicon oxide film, silicon oxynitride film, aluminum oxide film, etc.) Organic EL device substrate / rear layer (silicon oxide film, silicon oxynitride film, aluminum oxide film, etc.) Non-display surface side barrier layer (Laminated film of silicon oxide film, silicon oxynitride film, aluminum film, etc.)
PE/アルミ箔ノ PE (アルミ箔をポリエチレンフィルムにてラミネートしたもの)  PE / Aluminum foil PE (Aluminum foil laminated with polyethylene film)
図 2は本発明の他の実施形態を説明する有機 E L素子の概略図である。 図 2に おいて、 2 5 a及び 2 5 bは封止板であって、 P C (ポリカーボネイト) 、 T A C (トリアセチルセルロース) などのプラスチック材料よりなる。 封止板 2 5 a 及び 2 5 bの表面にはァクリル樹脂製のハ一ドコ一ト膜 (図示せず) が施され、 外的要因による傷を防止する。  FIG. 2 is a schematic view of an organic EL device illustrating another embodiment of the present invention. In FIG. 2, 25a and 25b are sealing plates made of a plastic material such as PC (polycarbonate) and TAC (triacetylcellulose). A hard coat film (not shown) made of acryl resin is applied to the surfaces of the sealing plates 25a and 25b to prevent damage due to external factors.
また封止板 2 5 a及び 2 5 bの内面にはアルミ蒸着月莫、 酸化珪素膜または酸化 窒ィ匕珪素膜が各々 数十から数百 nm程度で順次積層 (図示せず) されており、 外部からの水分及び酸素の浸入を阻止する。 ただし表示面側の封止板 2 5 aには 不透明とならないようアルミ蒸着膜は施さない。  On the inner surfaces of the sealing plates 25a and 25b, aluminum vapor-deposited films, silicon oxide films or silicon oxynitride films are sequentially laminated (not shown) in the order of several tens to several hundreds of nm each. It prevents moisture and oxygen from entering from outside. However, an aluminum vapor-deposited film is not applied to the sealing plate 25a on the display surface side so as not to be opaque.
2 0は透明基板としてのプラスチヅク¾反であって、 P C (ポリカーボネィ ト) 、 P E T (ポリエチレンテレフ夕レート) 及び P E S (ポリエーテルスルフ オン) などの厚み 5 0から 3 0 0〃m程度の透明樹脂フィルムを用いる。 プラス チヅク基板 2 0の上面には透明電極 2 1、 正孔輸送層 2 2、 有機 E Lからなる発 光層 2 3、 金属電極 2 4、 吸湿層としてのカルシウム等の蒸着膜 (図示せず) 、 水分及び酸素のガス 'バリア層としての酸化窒化珪素蒸着膜 (図示せず) が順次 積層されている。 また、 表示面側の封止板 2 5 bとプラスチック 反 2 0との間 には、 シリコーンオイルまたは弗化炭素系の不活性液体 2 6 bが充填されている c 本発明にて用いる不活性液体 2 6 bとは熱的ィ匕学的に安定性が高い液体で、 且 つ、 不燃性 (引火点が無い) 、 無毒、 無臭で、 金属やプラスチック、 及びその他 有機ェレクト口 ·ルミネヅセンス素子の構成材料を侵さず、 電気絶縁性が高く (絶縁耐カ 2 . 5 4 mmGAPあたり、 1 0 KV以上) 、 浸透性に優れ (表面張 力が 3 O mN/m ( 2 5 °C) 以下) 、 熱伝導性が良く (熱伝導率 1 5 W/ m - K以上) 、 粘度変化が小さく (流動点— 4 0 °C以下) 、 沸点が高く (1 5 0 °C以上) 、 オゾン破壊係数がゼロの液体のこと指す。 Reference numeral 20 denotes a plastic substrate as a transparent substrate, which includes PC (polycarbonate), PET (polyethylene terephthalate), and PES (polyethersulfur). On) Use a transparent resin film with a thickness of about 50 to 300〃m. On the upper surface of the plastic substrate 20, a transparent electrode 21, a hole transport layer 22, a light emitting layer 23 made of organic EL, a metal electrode 24, and a vapor-deposited film of calcium or the like as a moisture absorbing layer (not shown) A silicon oxynitride vapor-deposited film (not shown) as a barrier layer for a gas of moisture and oxygen is sequentially laminated. A silicone oil or a carbon fluoride-based inert liquid 26 b is filled between the display surface side sealing plate 25 b and the plastic substrate 20 c. Liquid 26b is a liquid that is thermally stable and highly non-flammable (has no flash point), non-toxic, odorless, metal and plastic, and other organic electrified ports and luminescent elements. It does not corrode the constituent materials, has high electrical insulation (10 KV or more per 2.54 mm GAP), and has excellent permeability (surface tension of 3 O mN / m (25 ° C) or less) , Good thermal conductivity (thermal conductivity 15 W / m-K or more), small change in viscosity (pour point-40 ° C or less), high boiling point (150 ° C or more), ozone destruction coefficient Refers to a zero liquid.
シリコーンオイルとしては、 トランスの絶縁油などに用いられている、 ジメチ ルシリコーンオイルや、 熱媒として用いられている、 メチルフエニルシリコーン オイルなどがある。 またフヅ素系不活性液体としては、 米国スリーェム社で開発 された、 フロリナート (商品名) などの弗化炭素系の不活性液体がある。  Examples of the silicone oil include dimethyl silicone oil used as an insulating oil for transformers, and methylphenyl silicone oil used as a heat carrier. In addition, as a fluorine-based inert liquid, there is a carbon fluoride-based inert liquid such as Fluorinert (trade name) developed by Threem Corporation in the United States.
シリコーンオイルまたは弗化炭素系の不活性液体 2 6 bが充填させることで、 光の散乱による外部取り出し効率の低下を抑えると共に、 有機 E Lからなる発光 層 2 3からの放熱を促すことができる。 この不活性液体を封入するには、 たとえ ば図 5 Aに示されるように、 封止板 1 5 aの凹部内に不活性液体 5を滴下すると 共に、 その周囲に前述の接着剤 4を塗布し、 次いで図 5 Bに示されるように、 透 明電極層 1 1、 発光層 1 3、 金属 «@層 1 4などが形成されたフレキシブル ·プ ラスチック基板 1 0を被せ、 接着することにより得られる。  By filling with silicone oil or a carbon fluoride inert liquid 26 b, it is possible to suppress a decrease in external extraction efficiency due to light scattering and promote heat radiation from the light emitting layer 23 made of organic EL. In order to enclose the inert liquid, for example, as shown in FIG. 5A, the inert liquid 5 is dropped into the concave portion of the sealing plate 15a, and the adhesive 4 described above is applied around the inert liquid. Then, as shown in FIG. 5B, a flexible plastic substrate 10 on which the transparent electrode layer 11, the light emitting layer 13, the metal layer 14, and the like are formed is covered and adhered. Can be
また、 非表示面側封止板 2 5 aと有機 E L素子表面のガス ·バリア層との間に も、 前述と同様に不活性液体 2 6 aを充填し、 有機 E Lからなる発光層 2 3の放 熱を促すと共に、 外部からの機械的応力を液体中に分散することにより有機 E L 子を保護する。 2 7 a及び 2 7 bは外部配線を接続する電極耑子である。  In addition, the space between the non-display surface side sealing plate 25a and the gas barrier layer on the surface of the organic EL element is filled with the inert liquid 26a in the same manner as described above, so that the light emitting layer 23 made of organic EL is formed. Promotes heat dissipation, and protects the organic EL element by dispersing external mechanical stress in the liquid. 27 a and 27 b are electrode terminals for connecting external wiring.
また、 表示面側封止板 2 5 bの周囲部とプラスチック基板 2 0の周囲部及び非 表示面側封止板 25 aとプラスチック基板 20とは、 接合部 29 a及び 29わに 熱硬化樹脂を塗布し、 熱圧着により硬化接着するか、 または紫外線硬化樹脂を接 合部 29 a及び 29bに塗布形成し、 紫外線照射により硬化接着する。 いずれの 場合においても窒素等の不活性ガス雰囲気中または真空中にて実施することが出 来る。 In addition, the periphery of the display surface side sealing plate 25 b and the periphery of the plastic substrate 20 and the The display surface side sealing plate 25a and the plastic substrate 20 are bonded to the joints 29a and 29 by applying a thermosetting resin and curing by thermocompression bonding, or by applying an ultraviolet curable resin to the joining portions 29a and 29b. Is applied and cured by UV irradiation. In either case, it may be performed in an atmosphere of an inert gas such as nitrogen or in a vacuum.
図 3は本発明の実施形態を説明する有機 E L素子の製造フローである。 図 3に おいて、 フレキシブル■プラスチック基板 10上に予め I TOからなる透明導電 膜 2をスパッタリング法、 またはイオンプレーティング法などにより形成してお き、 I TO透明導電膜表面にレジスト膜 1を形成し、 フォトリソグラフィ一法に よってフォトレジストパターンを形成する (S 1) o フレキシブル ·プラスチッ ク基板 10として、 PC (ポリカーボネイト) 、 PET (ポリエチレンテレフ夕 レート) 及び PES (ポリエ一テルスルフォン) などのプラスチヅク材を用いら れる。  FIG. 3 is a flow chart of manufacturing an organic EL device according to an embodiment of the present invention. In FIG. 3, a transparent conductive film 2 made of ITO is previously formed on a flexible plastic substrate 10 by a sputtering method or an ion plating method, and a resist film 1 is formed on the surface of the ITO transparent conductive film. To form a photoresist pattern by photolithography (S1) o Flexible plastic substrate 10, such as PC (polycarbonate), PET (polyethylene terephthalate), and PES (polyester sulfone) Plastic material is used.
次に、 多結晶 IT 0膜の場合は、 塩酸と塩化第二鉄混合水溶液、 または塩酸と 硝酸水溶液にて、 アモルファス I TO膜の場合は、 クェン酸などの有機酸水溶液、 または希薄な塩酸と硝^ K溶液によって I TO透明導電膜のフォトェヅチングを 行い、 その後不要となったフォトレジストをアセトンなどの有機溶剤、 または水 酸ィ匕カリウム水溶液などによって除去すると、 透明^ i (正孔注入電極) 11の 形成が完了する (S2)。  Next, in the case of a polycrystalline IT0 film, use an aqueous solution of a mixture of hydrochloric acid and ferric chloride or an aqueous solution of hydrochloric acid and a nitric acid. In the case of an amorphous ITO film, use an aqueous solution of an organic acid such as citric acid or a dilute hydrochloric acid. Photo-etching of the ITO transparent conductive film with a nitric acid solution is performed, and then the unnecessary photoresist is removed with an organic solvent such as acetone or an aqueous solution of potassium hydroxide. The formation of 11 is completed (S2).
次に、 絶縁膜となるフォトレジストをプラスチック基板 10上に塗布しプレべ —ク後、 フォトリソグラフィ一法による露光 '現像を行い、 絶縁膜パターン 3を 形成する (S3) 。 さらに、 正孔注入電極 11及び絶縁膜パターン 3が形成され たフレキシブル ·プラスチヅク基板 10を、 ¾¾10の耐熱性により異なるが、 可能な限り高温でベーキングを行い、 有機 ELからなる発光層 13に悪影響を及 ぼす、 絶縁膜 3中に残存する有機溶媒成分及び表面の吸着水分を蒸発させる。 次に、 真空蒸着法により正孔輸送層 12、 発光層 13及び電子注入金属電極 1 4を順次成膜する ( S 4〜 S 6 ) 。 正孔輸送層 12及び発光層 13は、 10一4 Paオーダ程度の清浄な真空中で、 抵抗加熱蒸着源を用いた真空蒸着を行う。 電 子注入金属 ¾14は前述と同様な真空中で、 BN (窒化ホウ素) ボートを用い た抵抛口熱蒸着、 若しくは E B (電子線) ガンを用いた E B蒸着により成膜する。 発光層 1 3は発光色により、 ドーピングする色素が異なるため、 複数色発光させ る有機 E L素子においては、 メタルマスクを用いたマスク蒸着法により、 発光色 毎に塗り分けを行う。 また同様に、 電子注入金属電極 1 4も、 発光パターンに応 じて、 メタルマスクによるマスク蒸着法による塗り分けを行う。 Next, a photoresist to be an insulating film is applied on the plastic substrate 10 and pre-baked, and then exposed and developed by a photolithography method to form an insulating film pattern 3 (S3). Furthermore, the flexible plastic substrate 10 on which the hole injection electrode 11 and the insulating film pattern 3 are formed is baked at as high a temperature as possible, depending on the heat resistance of the substrate 10, to adversely affect the light emitting layer 13 made of organic EL. The organic solvent component remaining in the insulating film 3 and the moisture adsorbed on the surface are evaporated. Next, the hole transport layer 12, the light emitting layer 13, and the electron injection metal electrode 14 are sequentially formed by a vacuum evaporation method (S4 to S6). The hole transport layer 12 and the light emitting layer 13, at 10 one 4 Pa order of about a clean vacuum, and vacuum evaporation using resistance heating evaporation source. Electron injection metal No. 14 was prepared using a BN (boron nitride) boat in the same vacuum as above. The film is formed by thermal evaporation or EB evaporation using an EB (electron beam) gun. Since the light-emitting layer 13 has different dyes for doping depending on the emission color, in an organic EL device that emits light of a plurality of colors, the emission color is separately applied to each emission color by a mask vapor deposition method using a metal mask. Similarly, the electron-injection metal electrode 14 is separately coated by a mask vapor deposition method using a metal mask according to the light emission pattern.
最後に、 プラスチックからなる封止板 1 5 a及び 1 5 bの周囲に、 シール接着 樹月旨 4をディスペンザ一、 またはスクリ一ン印刷などにより塗布描画する。 次に 有機 E L素子の表示面側及び非表示面側に封止板 1 5 a及び 1 5 b貝占り合せ、 シ —ル接着樹脂の種類に応じ、 紫外線照射、 または加熱、 または常 置により、 シール接着樹脂 4を硬ィ匕させ封止を完了させる (S 7 ) 。 以上により本発明の有 機 E L素子が完成する。  Finally, a seal-bonding date 4 is applied and drawn around the sealing plates 15a and 15b made of plastic by a dispenser or screen printing. Next, sealing plates 15a and 15b are occupied on the display surface side and the non-display surface side of the organic EL element by ultraviolet irradiation, heating, or permanent depending on the type of sealing resin. Then, the sealing adhesive resin 4 is hardened to complete the sealing (S7). Thus, the organic EL device of the present invention is completed.
なお以上の説明では便宜上、 一個の有機 E L素子の製造方法を述べているが、 実際には有機 E L素子のフレキシブル ·プラスチヅク基板、 ならびに封止板とな るプラスチヅク基板は、 大型で多面取り出来る、 シート状、 またはロール状のプ ラスチック基板を用いることが可能である。 また、 図 1および図 2では、 透明電 極 1 1のパターニングゃ絶縁膜 3の図示を省略してある。  In the above description, a method of manufacturing one organic EL element is described for convenience. However, in practice, a flexible plastic substrate of the organic EL element and a plastic substrate serving as a sealing plate are large and can be formed into multiple sheets. It is possible to use a sheet-shaped or roll-shaped plastic substrate. 1 and 2, the illustration of the patterning of the transparent electrode 11 and the insulating film 3 is omitted.
この場合、 窒素などの不活性雰囲気中、 または真空中で有機 E L素子の表示面 側及び非表示面側に封止板を貼り合せ、 シール樹脂を硬化させることにより、 発 光層周囲を不活性ガス、 または真空雰囲気にすることができ、 酸素や水分と隔離 することができ、 しかも封止板により外部からの水分などの浸入も阻止すること ができるため、 有機層の劣化が少なく、 非常に信頼性の高い有機 E L素子が得ら れる。 この場合、 封止後に大気中に取り出し、 有機 E L素子各々を単個に分割す る切断 (全てのプラスチヅク板を切り離す) 工程と、 端子上の不要なプラスチヅ ク板を取り除くための切断 (周辺取り出し端子部上の封止板のみ切り離す) 、 ェ 程が行われる。  In this case, the sealing plate is attached to the display surface side and the non-display surface side of the organic EL element in an inert atmosphere such as nitrogen or in a vacuum, and the sealing resin is cured so that the area around the light emitting layer is inactive. It can be in a gas or vacuum atmosphere, can be isolated from oxygen and moisture, and can prevent the ingress of moisture from the outside by the sealing plate. A highly reliable organic EL device can be obtained. In this case, after sealing, take out into the atmosphere and cut each organic EL element into single pieces (cut off all plastic boards), and cut to remove unnecessary plastic boards on the terminals (peripheral removal) Only the sealing plate on the terminal section is cut off), and the step is performed.
本発明によれば、 プラスチヅク 反を用いたフレキシブル有機 E L素子におい て、 外部からプラスチック基板全面を透過 ·拡散侵入する酸素及び水分を抑制し、 ダークスポッ卜の成長や輝度の低下を防ぐことができる。 産業上の利用可能性 ADVANTAGE OF THE INVENTION According to this invention, in the flexible organic EL element using a plastic reaction, oxygen and moisture which permeate | transmit and diffuse in the whole plastic substrate from the outside can be suppressed, and the growth of a dark spot and the fall of brightness | luminance can be prevented. Industrial applicability
本発明によれば、 経時変化の少ない長寿命化が可能となり、 高い信頼性の求め られる動作環境で使用できる実用性の高い各種表示装置や、 携帯電話機、 携帯端 末機、 電子手帳なと" ^帯型の表示装置、 さらには照明装置などに利用することが できる。  According to the present invention, it is possible to extend the life with little change over time and to use various display devices with high practicality that can be used in an operating environment requiring high reliability, such as mobile phones, mobile terminals, and electronic notebooks. ^ It can be used for belt-type display devices, and even lighting devices.

Claims

言青求の範囲 Scope of Word
1 フレキシブル ·プラスチヅク基板上に透明電極層と、 機エレクトロ ·ル ミネヅセンスからなる発光層と、 金属電極層とを順次積層し、 該発光層をプラス チヅクよりなる封止板で封止した有機ェレクト口 -ルミネヅセンス素子であって、 前記謝反の発光層が形成されない面をプラスチヅクよりなる封止板で封止したこ とを特徴とする有機エレクトロ ·ルミネッセンス素子。  1 A transparent electrode layer, a light-emitting layer composed of electro-luminescence, and a metal electrode layer are sequentially laminated on a flexible plastic substrate, and an organic electrifying port is formed by sealing the light-emitting layer with a sealing plate composed of a plastic. -An organic electroluminescent element, wherein the surface on which the light emitting layer is not formed is sealed with a sealing plate made of plastic.
2 前記発光層を封止する封止板または基板を封止する封止板の少なくとも一 方と前記基板を紫外線硬化樹脂で接着したことを特徴とする請求項 1に記載の有 機エレクトロ ·ルミネヅセンス素子。  2. The organic electroluminescence according to claim 1, wherein at least one of a sealing plate for sealing the light emitting layer or a sealing plate for sealing a substrate is bonded to the substrate with an ultraviolet curable resin. element.
3 前記発光層を封止する封止板または基板を封止する封止板の少なくとも一 方と前記基板を熱硬ィ匕樹脂で接着したことを特徴とする請求項 1に記載の有機ェ レクト口 'ノレミネヅセンス素子。  3. The organic electing device according to claim 1, wherein at least one of a sealing plate for sealing the light emitting layer or a sealing plate for sealing a substrate is bonded to the substrate with a thermosetting resin. Mouth 'no luminescence element.
4 前記発光層を封止する封止板、 または基板を封止する封止板の少なくとも 一方と前記 を主剤及び硬化剤を混合することにより硬化を開始させるェポキ シ樹脂で接着したことを特徴とする請求項 1に記載の有機エレクトロ 'ルミネヅ センス素子。  (4) At least one of a sealing plate for sealing the light-emitting layer or a sealing plate for sealing a substrate is bonded to an epoxy resin which starts curing by mixing a base material and a curing agent. The organic electroluminescent element according to claim 1, wherein
5 前記発光層を封止する封止板の内面または基板を封止する封止板の内面の 一方または両方にガス ·バリア一層を形成したことを特徴とする請求項 1記載の 有機エレクトロ ·ルミネヅセンス素子。  5. The organic electroluminescence according to claim 1, wherein a gas barrier layer is formed on one or both of an inner surface of a sealing plate for sealing the light emitting layer and an inner surface of a sealing plate for sealing the substrate. element.
6 前記発光層を封止する封止板と前記基板、 または前記基板を封止する封止 板と前記基板で形成される空間の何れか一方または両方にシリコーンオイル系ま たはフヅ素系不活性液体を充填させたことを特徴とする請求項 1に記載の有機ェ レク卜口 ·ノレミネッセンス素子。  6 One or both of a sealing plate for sealing the light emitting layer and the substrate, or a sealing plate for sealing the substrate and a space formed by the substrate, or a silicone oil-based or fluorine-based material 2. The organic electroluminescence port / noreluminescence device according to claim 1, wherein the organic electroluminescence device is filled with an inert liquid.
7 前記発光層を封止する封止板の内面または基板を封止する封止板の内面の 一方または両方に吸湿剤、 または、 酸素吸収剤、 またはそれら両方を内包したこ とを特徴とする請求項 1に記載の有機エレクト口 ·ルミネッセンス素子。  (7) One or both of the inner surface of the sealing plate for sealing the light emitting layer and the inner surface of the sealing plate for sealing the substrate contains a moisture absorbent, an oxygen absorber, or both. 2. The organic electroluminescence device according to claim 1, wherein
8 前記透明電極層及び金属電極層の引き出し電¾¾子を、 前記発光層を封止 する封止板と基板の接合部より外側に取り出したことを特徴とする請求項 1乃至 7に記載の有機ェレクト口 'ルミネヅセンス素子。 9 フレキシブル ·プラスチック謝反上に透明電極層と、 有機エレクト口 'ル ミネッセンス発光層と、 金属 層とを順次積層し、 プラスチックよりなる封止 板で封止する有機エレクト口 'ルミネヅセンス素子の製造方法であって、 前記発光層及び前記基板の発光層が形成されない面を封止板で封止し、 該封止板 を前記基板に接着するまでの工程を窒素等の不活性ガス雰囲気中、 または真空中 で行うことを特徴とする有機エレクト口 'ルミネッセンス素子の製造方法。 8. The organic device according to claim 1, wherein the extraction electrodes of the transparent electrode layer and the metal electrode layer are taken out of a junction between a sealing plate for sealing the light emitting layer and a substrate. Select port 'Luminescence element. 9 Flexible / plastic plastics, a transparent electrode layer, an organic electroluminescent port, a luminescent layer, and a metal layer are sequentially laminated and sealed with a plastic sealing plate. Wherein the surface of the substrate on which the light emitting layer and the light emitting layer are not formed is sealed with a sealing plate, and the step of bonding the sealing plate to the substrate is performed in an inert gas atmosphere such as nitrogen, or A method for manufacturing an organic electroluminescent device, which is performed in a vacuum.
1 0 請求項 1乃至 8に言 3載のいずれかの有機エレクトロ 'ルミネッセンス素 子を含む情報表示装置または照明装置。  10. An information display device or a lighting device, comprising the organic electroluminescent element according to claim 3 according to claim 1.
PCT/JP2003/008889 2002-07-15 2003-07-14 Flexible organic electroluminescence element and production method therefor and information display unit and lighting device WO2004008812A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-206164 2002-07-15
JP2002206164A JP2004047381A (en) 2002-07-15 2002-07-15 Flexible organic electroluminescent element, manufacturing method of same, information display device, and lighting device

Publications (1)

Publication Number Publication Date
WO2004008812A1 true WO2004008812A1 (en) 2004-01-22

Family

ID=30112785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008889 WO2004008812A1 (en) 2002-07-15 2003-07-14 Flexible organic electroluminescence element and production method therefor and information display unit and lighting device

Country Status (2)

Country Link
JP (1) JP2004047381A (en)
WO (1) WO2004008812A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007322458B2 (en) * 2006-11-21 2013-12-19 Callaghan Innovation Wave energy converter

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE527705T1 (en) * 2004-12-06 2011-10-15 Koninkl Philips Electronics Nv ORGANIC ELECTROLUMINescent LIGHT SOURCE
JP2006286238A (en) * 2005-03-31 2006-10-19 Toppan Printing Co Ltd Flexible organic el element and its manufacturing method
WO2007029474A1 (en) * 2005-09-05 2007-03-15 Konica Minolta Holdings, Inc. Process for producing organic electroluminescence panel
KR100647004B1 (en) 2005-11-29 2006-11-23 삼성에스디아이 주식회사 Organic light-emitting display device
JP2007179783A (en) * 2005-12-27 2007-07-12 Konica Minolta Holdings Inc Manufacturing method of organic electroluminescent element
WO2007135604A2 (en) * 2006-05-22 2007-11-29 Philips Intellectual Property & Standards Gmbh Interconnection arrangement and method for interconnecting a high-cuurent carrying cable with a metal thin-film
JP4745181B2 (en) 2006-09-26 2011-08-10 富士フイルム株式会社 ORGANIC EL LIGHT EMITTING DEVICE AND METHOD FOR MANUFACTURING ORGANIC EL LIGHT EMITTING DEVICE
JP5104849B2 (en) * 2007-02-22 2012-12-19 コニカミノルタホールディングス株式会社 Method for manufacturing organic electroluminescent element, organic electroluminescent element
US8847480B2 (en) * 2009-03-18 2014-09-30 Semiconductor Energy Laboratory Co., Ltd. Lighting device
KR20120055720A (en) 2009-09-04 2012-05-31 가부시끼가이샤 쓰리본드 Organic el element sealing member
JP5452266B2 (en) * 2010-02-08 2014-03-26 パナソニック株式会社 Light emitting device
JP2012169139A (en) * 2011-02-14 2012-09-06 Semiconductor Energy Lab Co Ltd Light-emitting panel and lighting device
JP2014053157A (en) * 2012-09-06 2014-03-20 Pioneer Electronic Corp Light-emitting device
JP2016110858A (en) * 2014-12-08 2016-06-20 コニカミノルタ株式会社 Planar light emission module

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012385A (en) * 1996-06-26 1998-01-16 Matsushita Electric Ind Co Ltd Organic thin film el element
JPH1167451A (en) * 1997-08-20 1999-03-09 Idemitsu Kosan Co Ltd Organic el luminous unit and multi-color luminous unit
JP2001118674A (en) * 1999-10-19 2001-04-27 Auto Network Gijutsu Kenkyusho:Kk Organic electroluminescent display device
JP2002134271A (en) * 2000-10-30 2002-05-10 Dainippon Printing Co Ltd Sealed el element sealed by using barrier nature laminating structure object

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1012385A (en) * 1996-06-26 1998-01-16 Matsushita Electric Ind Co Ltd Organic thin film el element
JPH1167451A (en) * 1997-08-20 1999-03-09 Idemitsu Kosan Co Ltd Organic el luminous unit and multi-color luminous unit
JP2001118674A (en) * 1999-10-19 2001-04-27 Auto Network Gijutsu Kenkyusho:Kk Organic electroluminescent display device
JP2002134271A (en) * 2000-10-30 2002-05-10 Dainippon Printing Co Ltd Sealed el element sealed by using barrier nature laminating structure object

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2007322458B2 (en) * 2006-11-21 2013-12-19 Callaghan Innovation Wave energy converter

Also Published As

Publication number Publication date
JP2004047381A (en) 2004-02-12

Similar Documents

Publication Publication Date Title
JP6751459B2 (en) Organic electroluminescence lighting panel, manufacturing method thereof, and organic electroluminescence lighting device
TWI499106B (en) Water-barrier encapsulation method
JP4544937B2 (en) Organic functional device, organic EL device, organic semiconductor device, organic TFT device, and manufacturing method thereof
WO2004008812A1 (en) Flexible organic electroluminescence element and production method therefor and information display unit and lighting device
WO2011001567A1 (en) Organic el light emitter, organic el lighting device, and process for production of organic el light emitter
WO2011039911A1 (en) Organic el lighting device and manufacturing method therefor
JP2002025765A (en) Organic electroluminescent element and its manufacturing method
WO2011007480A1 (en) Organic el device, organic el device producing method, and organic el illumination device
JP2007531297A (en) Electroluminescent device interlayer and electroluminescent device
JP2003203771A (en) Organic light emitting element, display device, and illumination device
JPH10214683A (en) Organic electroluminescent element
JP2002373777A (en) Organic electroluminescent element and its manufacturing method
JP4178887B2 (en) Organic electroluminescence device
JP4803478B2 (en) Ga-based alloy and organic functional element using the same
JP2007095518A (en) Organic electroluminescent display
JP4609135B2 (en) Method for manufacturing organic electroluminescence element
JPH11224771A (en) Organic electroluminescence element
JPH10335061A (en) Method and device for manufacturing organic electroluminescent element
TW201304132A (en) Planar light emitting device
JP2013069615A (en) Organic el display and manufacturing method therefor
JP2000100561A (en) Organic electroluminescent element
JP2001085155A (en) Organic electroluminescent element and organic electroluminescent device using it
JP2009283154A (en) Organic light emitting device, and electronic apparatus
JP2003347051A (en) Organic electroluminescent element
JP2007250329A (en) Self light-emitting element, self light-emitting panel, manufacturing method of self light-emitting element, and manufacturing method of self light-emitting panel

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase