WO2004006346A1 - Optimierter schichtverbundleiter mit supraleitschicht für die hochstromanwendung - Google Patents

Optimierter schichtverbundleiter mit supraleitschicht für die hochstromanwendung Download PDF

Info

Publication number
WO2004006346A1
WO2004006346A1 PCT/DE2003/001995 DE0301995W WO2004006346A1 WO 2004006346 A1 WO2004006346 A1 WO 2004006346A1 DE 0301995 W DE0301995 W DE 0301995W WO 2004006346 A1 WO2004006346 A1 WO 2004006346A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
current
commutation
conductor
composite conductor
Prior art date
Application number
PCT/DE2003/001995
Other languages
English (en)
French (fr)
Inventor
Ralf-Reiner Volkmar
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2004006346A1 publication Critical patent/WO2004006346A1/de

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/30Devices switchable between superconducting and normal states

Definitions

  • the invention relates to a composite conductor for limiting an electrical current at a predetermined voltage with a superconducting layer which can be kept in a superconducting state by cooling and can be converted into a normal conducting state if a critical current is exceeded , the superconducting layer being along its Current carrying direction has different critical local currents ic sup r a l oa l , and with a commutation layer connected flatly to this.
  • Such a composite conductor is known for example from US 5,828,291.
  • the composite conductor disclosed there extends on a plate-shaped carrier substrate which is arranged in a cryostat filled with liquid nitrogen.
  • the composite conductor has a superconductor layer which consists of a high-temperature superconductor material which is cooled below a so-called transition temperature by cooling with liquid nitrogen. At temperatures below the transition temperature, the superconducting layer is in a superconducting state in which it conducts a current to be limited almost without resistance.
  • the superconducting layer If the superconducting layer is in the superconducting state, a current conducted through the composite conductors essentially flows through the superconducting layer due to the almost infinitely low resistance. If the current density exceeds a certain threshold value, the superconductor begins to quench at the point with the smallest i c value, that is, it changes to the normally conductive state. In this first
  • Quench area of the composite conductor is then immediately redistributed to the adjacent commutation layer.
  • the resistance of the composite conductor that can be measured from the outside increases, which means that the current flow is somewhat reduced.
  • the expansion of the quench area in the superconducting layer takes place essentially by thermal conduction of the thermal energy deposited at the first quench area, supported by a somewhat lower current flow, but below the critical area.
  • the heat transport is essentially carried out by a carrier substrate or carrier element on or on which the superconducting layer is arranged.
  • the object of the invention is therefore to provide a composite conductor of the aforementioned type, in which the entire supra conductive layer is driven as homogeneously and completely into the quench.
  • the invention solves this problem in that an ohmic resistance of the commutation layer Rsunt is set such that the current i G ⁇ s which can be passed through the composite conductor as a function of the voltage U is equal to or greater than a maximum local critical current of the superconductor i c Supra loka lm ax ,
  • the commutation layer allows a current flow above the critical value of the latest quenching region of the superconducting layer even when the superconductor is completely quenched.
  • a current flow above the critical value in the non-quenching area of the superconductor is possible even after the first quenching of a locally restricted area.
  • the current can flow through the superconductor wherever it has not already been driven into the quench, so that these areas are not due to heat transport but rather due to Joule heat are driven solely into the quench due to the current flow.
  • a prerequisite for the behavior according to the invention is, of course, a sufficiently good surface contact between the superconducting layer and the commutation layer.
  • the superconducting layer advantageously consists of a high-temperature superconducting material such as YBaCu 3 0 7 , Bi 2 Sr 2 CaCu 2 ⁇ 8 or the like. Furthermore, it can be expedient to design the superconductor layer and the commutation conductor layer in the form of thin layers, which are applied, for example, as conductor tracks on a substrate.
  • the resistance of the shunt or commutation layer Rsu nt is temperature-dependent and therefore increases during the quench process in which the superconducting layer and thus also the commutating layer are heated above the transition temperature.
  • Rshunt is so small, at least until the superconducting layer is quenched completely and as completely as possible, that the current flow through the composite conductor is greater than i c supra local max.
  • the temperature range that is covered depends on the material and is between 77 Kelvin and 100 Kelvin, for example, when using YBaCu 3 0 as the superconductor material and liquid nitrogen as the cooling medium.
  • the resistance of the commutation layer should therefore be set such that the current flow through the composite conductor is only slightly larger than the maximum local critical current of the superconductor layer.
  • the current flowing through the composite conductor current even after the complete quenching of the superconductor layer is about 1.5 times as large ie i c Supra local max -
  • ic spra loal max is, for example, inductive and contactless according to one at the Internet address http: // www. theva.de/red Druckssystem/news_and_press/pdf/cryos cannews .pdf published 'measurement method determinable.
  • a measuring probe generating a magnetic field is guided at a short distance over the superconducting layer immersed in liquid nitrogen.
  • the measuring field of the measuring probe is locally limited, so that the grid is shifted in a grid-like manner Measuring probe a locally resolved critical current density and thus a maximum local critical current of the superconducting layer can be determined by multiplication with the cross-sectional area of the superconducting layer detected by the respective measurement.
  • the Kommut ists Mrs is formed as a conductor track extending on a plate-shaped or band-shaped carrier substrate, wherein the commutation conductor cross-sectional area A sh u n t is the condition A sh unt ⁇ kje Supra local max * A Su p ra * Pshunt * L S hunt met and where Asupra corresponds to the superconductor cross-sectional area, Ps h und the specific resistance of the commutation conductor layer , L shU nt corresponds to the length of the commutation layer, which is also designed as a conductor track, and k varies as a dimensionless factor between 1 and 2 due to the material.
  • the band-shaped carrier substrate is designed to be flexible in shape.
  • a composite conductor which is arranged on a plate-shaped carrier substrate, has a superconducting layer made of YBa2Ca2 ⁇ 7, which extends as a conductor track with a constant cross-sectional area of 0.000210 cm 2 over the carrier substrate.
  • the thickness of the superconducting layer is 0.35 ⁇ m.
  • the maximum current density of the superconductor material was 2.652
  • the commutation conductor also extends in conductor tracks over the carrier substrate. Its constant cross-sectional area A S hat is 0.0000092 cm 2 .
  • the thickness of the commutation conductor layer was 0.153 ⁇ m.
  • the commutation layer consists of gold. At 90 Kelvin there was a resistance of the gold layer of 8.9 ohms, which rose to 28.208 ohms at 350 Kelvin.
  • the composite conductor thus had a resistance of 8.787 Ohm at 90 Kelvin and a resistance of 27.637 Ohm at 350 Kelvin.

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

Um bei einem Verbundleiter zum Begrenzen eines elektrischen Stromes bei einer vorgegebenen Spannung mit einer Supraleitschicht, die durch Kühlung in einem supraleitenden Zustand haltbar ist und bei Überschreitung einer kritischen Strom-dichte iC Supra in einen normalleitenden Zustand überführbar ist, wobei die Supraleitschicht längs ihrer Stromführungsrichtung unterschiedliche kritische lokale Stromdichten iC Supra lokal aufweist, und mit einer flächig mit dieser verbundenen Kommutierungsschicht, ein möglichst homogenes und vollflächiges Quenchen der Supraschicht herbeizuführen wird vorgeschlagen, dass ein Ohmscher Widerstand der Kommutierungss-chicht RShunt so eingestellt ist, dass der in Abhängigkeit der Spannung U durch den Verbundleiter führbare Strom iGes größer ist als ein maximaler lokaler kritischer Strom des Supraleiters iC Supra lokal max.

Description

Beschreibung
Optimierter Schichtverbundleiter mit Supraleitschicht für die Hochstromanwendung
Die Erfindung betrifft einen Verbundleiter zum Begrenzen eines elektrischen Stromes bei einer vorgegebenen Spannung mit einer Supraleitschicht, die durch Kühlung in einem supraleitenden Zustand haltbar ist und bei Überschreitung eines kri- tischen Stromes isupra in einen normalleitenden Zustand überführbar ist, wobei die Supraleitschicht längs ihrer Stromführungsrichtung unterschiedliche kritische lokale Ströme ic supra loal aufweist, und mit einer flächig mit dieser verbundenen Kommutierungsschicht.
Ein solcher Verbundleiter ist beispielsweise aus der US 5,828,291 bekannt. Der dort offenbarte Verbundleiter erstreckt sich auf einem plattenförmigen TrägerSubstrat, das in einem mit flüssigem Stickstoff gefüllten Kryostaten angeord- net ist. Der Verbundleiter weist eine Supraleitschicht auf, die aus einem Hochtemperatursupraleitermaterial besteht, das durch Kühlung mit flüssigem Stickstoff unter eine sogenannte Sprungtemperatur gekühlt wird. Bei Temperaturen unterhalb der Sprungtemperatur befindet sich die Supraleitschicht in einem supraleitenden Zustand, in dem sie einen zu begrenzenden Strom nahezu widerstandslos leitet.
Weiterhin ist bekannt, dass die Supraleitschicht bei Überschreiten eines kritischen Stromes nicht homogen oder voll- flächig, sondern an bestimmten örtlich oder lokal begrenzten Stellen in den normal leitenden Zustand getrieben wird. Dies ist darauf zurückzuführen, dass die Supraleitschicht längs ihrer Stromführungsrichtung unterschiedliche kritische lokale
Ströme ic supra lokal aufweist .
Befindet sich die Supraleitschicht im supraleitenden Zustand, so fließt ein über die Verbundleiter geführter Strom aufgrund des nahezu unendlich kleinen Widerstandes im Wesentlichen durch die Supraleitschicht. Überschreitet die Stromdichte einen bestimmten Schwellenwert, beginnt der Supraleiter an der Stelle mit dem kleinsten ic -Wert zu quenchen also in den normal leitenden Zustand überzugehen. In diesem ersten
Quenchbereich des Verbundleiters erfolgt dann eine sofortige Stromumverteilung auf die benachbart angeordnete Kommutierungsschicht. Der von außen messbare Widerstand des Verbundleiters steigt an, wodurch sich der Stromfluss etwas verrin- gert . Die Ausdehnung des Quenchbereichs in der Supraleitschicht erfolgt im Wesentlichen durch Wärmeleitung der an dem ersten Quenchbereich deponierten thermischen Energie, unterstützt durch einen etwas niedrigeren Stromfluss, allerdings unterhalb des kritischen Bereiches . Dabei wird der Wärme- transport im Wesentlichen von einem Trägersubstrat oder Trägerelement übernommen, an oder auf dem die Supraleitschicht angeordnet ist. Die Ausdehnung des Quenchbereiches aufgrund einer solchen Wärmeleitung ist jedoch langsam, so dass bestimmte Bereiche des Verbundleiters insbesondere bei kurzen Begrenzungsprozessen nicht in den normal leitenden Zustand überführt und ein Quenchen von maximal 60 bis 80 Prozent der Gesamtfläche des Supraleiters beobachtet wurde. Das inhomogene Quenchen führt jedoch zu lokalen thermischen Energiespitzen und somit ggf. zur irreversiblen Zerstörung des Supralei- ters .
Aufgabe der Erfindung ist es daher, einen Verbundleiter der vorgenannten Art bereitzustellen, bei dem die gesamte Supra- leitschicht möglichst homogen und vollständig in den Quench getrieben wird.
Die Erfindung löst diese Aufgabe dadurch, dass ein Ohmscher Widerstand der Kommutierungsschicht Rsunt so eingestellt ist, dass der in Abhängigkeit der Spannung U durch den Verbundleiter führbare Strom iGβs gleich oder größer ist als ein maximaler lokaler kritischer Strom des Supraleiters ic Supra lokal max.
Erfindungsgemäß erlaubt die KommutierungsSchicht selbst bei vollständigem Quenchen des Supraleiters einen Stromfluss oberhalb des kritischen Wertes des am spätesten quenchenden Bereiches der Supraleitschicht. Auf diese Weise ist beispielsweise bei einem Kurzschlussstrom auch nach dem ersten Quenchen eines lokal beschränkten Bereichs ein Stromfluss oberhalb des kritischen Wertes im nicht quenchenden Bereich des Supraleiters möglich. Der Supraleiter kann daher erfindungsgemäß überall dort, wo er nicht bereits schon in den Quench getrieben wurde, von einem im Bereich der oder ober- halb der kritischen Werte liegenden Strom durchflössen werden, so dass diese Bereiche nicht durch Wärmetransport, sondern aufgrund von Joulscher Wärme also bedingt durch den Stromfluss allein in den Quench getrieben werden. Voraussetzung für das erfindungsgemäße Verhalten ist selbstverständ- lieh ein ausreichend guter Flächenkontakt zwischen der Supraleitschicht und der KommutierungsSchicht.
Vorteilhafterweise besteht die Supraleitschicht aus einem hochtemperatursupraleitenden Material wie YBaCu307, Bi2Sr2CaCu2θ8 oder dergleichen. Ferner kann es zweckmäßig sein, die Supraleitschicht und die Kommutierungsleiterschicht in Form von Dünnschichten auszugestalten, die beispielsweise als Leiterbahnen auf einem Substrat aufgebracht sind. Der Widerstand der Shunt- oder KommutierungsSchicht Rsunt ist temperaturabhängig und steigt daher während des Quenchprozes- ses an, bei dem die Supraleitschicht und damit auch die Kom- mutierungsschicht über die Sprungtemperatur hinaus erwärmt werden. Erfindungsge äß ist Rshunt zumindest bis zum vollständigen und möglichst vollflächigen Quenchen der Supraleitschicht so klein, dass der Stromfluss über den Verbundleiter größer als ic supra loal max ist. Der dabei überstrichene Tempera- turbereich ist materialabhängig und liegt beispielsweise bei Verwendung von YBaCu30 als Supraleitermaterial und flüssigem Stickstoff als Kühlmedium zwischen 77 Kelvin und 100 Kelvin.
Bei der Dimensionierung des Verbundleiters ist selbstver- ständlich zu berücksichtigen , dass Kommutierungsschichten mit kleineren Widerständen stärkeren thermischen Belastungen ausgesetzt sind und bei Überschreiten eines Maximalwertes zerstört werden können. Der Widerstand der Kommutierungss- chicht sollte daher so eingestellt sein, dass der Stromfluss über den Verbundleiter nur etwas größer ist als der maximale lokale kritische Strom der Supraleiterschicht. Vorteilhafterweise ist der über den Verbundleiter fließende Strom auch nach vollständigem Quenchen der Supraleiterschicht etwa 1,5 mal SO groß ie ic Supra lokal max -
ic spra loal max ist beispielsweise induktiv und kontaktlos gemäß einem unter der Internetadresse http: //www. theva.de/redaktionssystem/news_and_press/pdf/cryos cannews .pdf veröffentlichten 'Messverfahren bestimmbar. Hier- bei wird eine ein Magnetfeld erzeugende Messsonde in geringem Abstand über die in flüssigen Stickstoff eingetauchte Supraleitschicht geführt. Das Messfeld der Messsonde ist örtlich begrenzt, so dass durch ein rasterhaftes Verschieben der Messsonde eine örtlich aufgelöste kritische Stromdichte und somit durch Multiplikation mit der von der jeweiligen Messung erfassten Querschnittsfläche der Supraleitschicht ein maximaler lokaler kritischer Strom der Supraleitschicht bestimmbar ist.
Vorteilhafterweise ist die Kommutierungsschicht als Leiterbahn ausgebildet, die sich auf einem plattenförmigen oder bandförmigen Trägersubstrat erstreckt, wobei die Kommutie- rungsleiterquerschnittsflache Ashunt die Bedingung Ashunt ≥ k j e Supra lokal max * ASupra * Pshunt * LShunt erfüllt und wobei Asupra der Supraleiterquerschnittsfläche, Pshunt dem spezifischen Widerstand der Kommutierungsleiterschicht, LshUnt der Länge der ebenfalls als Leiterbahn ausgebildeten KommutierungsSchicht entspricht und k als dimensionsloser Faktor materialbedingt zwischen 1 und 2 variiert. Das bandförmige Trägersubstrat ist formflexibel ausgestaltet. Die vorgenannte Formel lässt sich aufgrund folgender Überlegungen ableiten. Durch Messungen konnte belegt werden, insbesondere aus Gleichstrommessungen, dass der kritische Stromfluss i'c nicht mit dem experimentell gemessenen kritischen Strom ic zusammenfällt, ab dem der Supraleiter beginnt hochohmig zu werden. Es konnte nachgewiesen werden, dass i'c materialbedingt beispielsweise das 1,5 fache des i C-Wertes beträgt. Somit gilt z. B., dass i ' c eiterbahn lokal max = 1,5 ic Leiterbahn lokal max- Weiterhin gilt für den Stromfluss der Kommutierungsschicht i(t) = U(t) / Rshunt = U(t) * As_ hunt/Pshunt * Lshunt • Fordert man erfindungsgemäß i(t)Ges ≥ i 'c Leiteran loal max so folgt daraus in erster Näherung die oben ausgeführte Formel . Bei einer vorgegebenen Spannung kann bei bekanntem spezifischem Widerstand des Supraleitermaterials und einem wie oben beschrieben bestimmbaren maximalen lokalen kritischen Strom ic Leiterbahn lokal max die Querschnittsfläche, die sich aus der Breite sowie der Dicke der Shunt-Schicht zusammensetzt, bestimmt werden. Auf diese Weise kann eine möglichst homogene Ausdehnung des Quench-Prozesses von auf plattenförmigen oder bandförmigen Trägersubstraten angeordnete Supraleitern bereitgestellt werden.
Es folgt die Beschreibung eines bevorzugten Ausführungsbei- spiels der Erfindung.
Ein Verbundleiter, der auf einem plattenförmigen Trägersubstrat angeordnet ist, weist eine Supraleitschicht aus YBa2Ca2θ7 auf, die sich als Leiterbahn einer konstanten Querschnittsfläche von 0,000210 cm2 über das Trägersubstrat erstreckt. Die Dicke der Supraleitschicht beträgt 0,35 μm. Als maximale Stromdichte des Supraleitermaterials wurde 2,652
MA/cm2 bestimmt. Der Kommutierungsleiter erstreckt sich ebenfalls in Leiterbahnen über das Trägersubstrat. Seine konstant bleibende Querschnittsfläche AShut beträgt 0,0000092 cm2. Die Dicke der Kommutierungsleiterschicht betrug 0,153 μm. Die Kommutierungsschicht besteht in dem beschriebenen Ausführungsbeispiel aus Gold. Bei 90 Kelvin ergab sich ein Widerstand der Goldschicht von 8,9 Ohm, der bei 350 Kelvin auf 28,208 Ohm anstieg. Der Verbundleiter hatte somit bei 90 Kelvin einen Widerstand von 8,787 Ohm, sowie bei 350 Kelvin ei- nen Widerstand von 27,637 Ohm.

Claims

Patentansprüche
1. Verbundleiter zum Begrenzen eines elektrischen Stromes bei einer vorgegebenen Spannung mit einer Supraleit- schicht, die durch Kühlung in einem supraleitenden Zustand haltbar ist und bei Überschreitung eines kritischen Stromes isupra in einen normalleitenden Zustand überführbar ist, wobei die Supraleitschicht längs ihrer Stromführungsrichtung unterschiedliche kritische lokale Ströme ic supra lokal aufweist, und mit einer flächig mit dieser verbundenen Kommutierungsschicht, d a d u r c h g e k e n n z e i c h n e t, dass ein Ohmscher Widerstand der Kommutierungsschicht Rshunt so eingestellt ist, dass der in Abhängigkeit der Spannung U durch den Verbundleiter führbare Strom iGes gleich oder größer ist als ein maximaler lokaler kritischer Strom des Supraleiters ic Supra loal max.
2. Verbundleiter nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, dass die Kommutierungsschicht als Leiterbahn ausgebildet ist, die sich auf einem plattenförmigen oder bandförmigen Trägersubstrat erstreckt, wobei die Kommutierungsleiter- guerschnittsflache Asunt die Bedingung Ashunt ≥ k * jC Supra lokal max * ASupra * Pshunt * LShunt / U erfüllt und wobei ASupra der Supraleiterquerschnittsfläche, Pshunt dem spezifischen Widerstand der Kommutierungsleiterschicht, Lsunt der Länge der ebenfalls als Leiterbahn ausgebildeten Kommutierungsschicht entspricht und k materialbedingt zwischen 1 und 2 variiert.
PCT/DE2003/001995 2002-07-09 2003-06-12 Optimierter schichtverbundleiter mit supraleitschicht für die hochstromanwendung WO2004006346A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10231914A DE10231914C1 (de) 2002-07-09 2002-07-09 Optimierter Schichtverbundleiter mit Supraleitschicht für die Hochstromanwendung
DE10231914.6 2002-07-09

Publications (1)

Publication Number Publication Date
WO2004006346A1 true WO2004006346A1 (de) 2004-01-15

Family

ID=27816220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/001995 WO2004006346A1 (de) 2002-07-09 2003-06-12 Optimierter schichtverbundleiter mit supraleitschicht für die hochstromanwendung

Country Status (2)

Country Link
DE (1) DE10231914C1 (de)
WO (1) WO2004006346A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828291A (en) * 1994-09-29 1998-10-27 Abb Research Ltd. Multiple compound conductor current-limiting device
DE19750758A1 (de) * 1997-11-11 1999-05-12 Siemens Ag Strombegrenzungseinrichtung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828291A (en) * 1994-09-29 1998-10-27 Abb Research Ltd. Multiple compound conductor current-limiting device
DE19750758A1 (de) * 1997-11-11 1999-05-12 Siemens Ag Strombegrenzungseinrichtung

Also Published As

Publication number Publication date
DE10231914C1 (de) 2003-10-09

Similar Documents

Publication Publication Date Title
DE4418050B4 (de) Hochtemperatursupraleiter und dessen Verwendung
DE4434819C1 (de) Vorrichtung zur Strombegrenzung
DE112005001495B4 (de) Supraleitendes Fehlerstrom-Begrenzungs-Element und Verfahren zur Herstellung desselben
DE19827227A1 (de) Strombegrenzungseinrichtung mit Leiterbahnanordnung aus Hoch-T¶c¶-Supraleitermaterial sowie Verfahren zur Herstellung der Einrichtung
DE602004012035T2 (de) Supraleitender Strombegrenzer mit magnetfeldunterstütztem Quench
EP1107322A2 (de) Hochtemperatursupraleiteranordnung und Verfahren zu deren Herstellung
EP1105924B1 (de) Resistiver kurzschlussstrombegrenzer mit einer leiterbahnstruktur aus hochtemperatur-supraleitermaterial sowie verfahren zur herstellung des strombegrenzers
WO2004006346A1 (de) Optimierter schichtverbundleiter mit supraleitschicht für die hochstromanwendung
EP1759426B1 (de) Strombegrenzungseinrichtung mit supraleitendem schaltelement
DE10225935C5 (de) Vorrichtung zum Leiten von Strom
DE10163008B4 (de) Resistive Strombegrenzungseinrichtung mit mindestens einer Leiterbahn mit supraleitendem und normalleitendem Material
DE69934804T2 (de) Supraleiter
DE10230618A1 (de) Bifilare Bandleiterstruktur eines Hochtemperatursupraleiters zur Strombegrenzung
DE60215789T2 (de) Supraleitender Fehlerstrombegrenzer
DE10226393B4 (de) Strombegrenzereinrichtung vom resistiven Typ mit supraleitender Leiterbahn und Shuntteil
DE1615591B1 (de) Kryogenischer Schalter
DE19825564A1 (de) Strombegrenzungseinrichtung, insbesondere Kurzschlußstrom-Begrenzer, mit Dünnschichtleiter aus Hoch-T¶c¶-Supraleitermaterial
DE10226390B4 (de) Resistive Strombegrenzereinrichtung mit supraleitender Leiterbahn und nicht-supraleitendem Shunt
DE19832273C1 (de) Resistiver Strombegrenzer mit Hoch-T¶c¶-Supraleitermaterial sowie Verfahren zur Herstellung des Strombegrenzers
DE10003725C2 (de) Resistive Strombegrenzungseinrichtung mit Hoch-T¶c¶-Supraleitermaterial sowie Verfahren zur Herstellung und Verwendung der Einrichtung
DE10226391A1 (de) Resistiver Strombegrenzer wenigstens einer supraleitenden Leiterbahn
DE10227840C1 (de) Resistive Strombegrenzervorrichtung mit mehreren elektrisch zusammengeschalteten Begrenzermodulen
DE19827223C5 (de) Resistiver Strombegrenzer mit Hoch-Tc-Supraleitermaterial und Verfahren zu dessen Herstellung
WO2004004019A2 (de) Strombegrenzungseinrichtung mit verbesserter wärmeableitung
Noudem et al. Transport properties of thick film YBa2Cu3Oy fabrics

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

122 Ep: pct application non-entry in european phase