WO2004004869A1 - Plasma-russfilter - Google Patents

Plasma-russfilter Download PDF

Info

Publication number
WO2004004869A1
WO2004004869A1 PCT/DE2003/002187 DE0302187W WO2004004869A1 WO 2004004869 A1 WO2004004869 A1 WO 2004004869A1 DE 0302187 W DE0302187 W DE 0302187W WO 2004004869 A1 WO2004004869 A1 WO 2004004869A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
inlet
filter
channels
soot
Prior art date
Application number
PCT/DE2003/002187
Other languages
English (en)
French (fr)
Inventor
Thomas Hammer
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to DE50305763T priority Critical patent/DE50305763D1/de
Priority to EP03762434A priority patent/EP1517737B1/de
Priority to JP2004518423A priority patent/JP4522854B2/ja
Priority to US10/522,853 priority patent/US7326264B2/en
Publication of WO2004004869A1 publication Critical patent/WO2004004869A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/0001Making filtering elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/247Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure of the cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/24Particle separators, e.g. dust precipitators, using rigid hollow filter bodies
    • B01D46/2403Particle separators, e.g. dust precipitators, using rigid hollow filter bodies characterised by the physical shape or structure of the filtering element
    • B01D46/2418Honeycomb filters
    • B01D46/2451Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure
    • B01D46/2486Honeycomb filters characterized by the geometrical structure, shape, pattern or configuration or parameters related to the geometry of the structure characterised by the shapes or configurations
    • B01D46/249Quadrangular e.g. square or diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • B01D46/50Means for discharging electrostatic potential
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/66Regeneration of the filtering material or filter elements inside the filter
    • B01D46/80Chemical processes for the removal of the retained particles, e.g. by burning
    • B01D46/84Chemical processes for the removal of the retained particles, e.g. by burning by heating only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/022Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous
    • F01N3/0222Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters characterised by specially adapted filtering structure, e.g. honeycomb, mesh or fibrous the structure being monolithic, e.g. honeycombs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/023Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles
    • F01N3/027Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means
    • F01N3/0275Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters using means for regenerating the filters, e.g. by burning trapped particles using electric or magnetic heating means using electric discharge means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2279/00Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses
    • B01D2279/30Filters adapted for separating dispersed particles from gases or vapours specially modified for specific uses for treatment of exhaust gases from IC Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/28Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a plasma reactor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/10Residue burned
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S55/00Gas separation
    • Y10S55/30Exhaust treatment

Definitions

  • the invention relates to a plasma soot filter according to the preamble of claim 1.
  • a soot filter is the subject of DE 100 57 862 Cl.
  • an electrode is attached to each of its edges in a filter channel in order to generate surface sliding discharges.
  • the electrodes required for plasma generation can either be embedded in the filter material or applied to the filter material in such a way that in any case between an electrode connected to high voltage. trode and the ground electrode is connected to a layer of high dielectric strength. Due to the embedding of the electrodes described there, such surface sliding discharges can only be generated on both sides of the cell walls, while the soot is only deposited on one side. This means that the specific energy consumption for regeneration is twice as high as is actually required.
  • Electrodes exposed to the exhaust gas are exposed to erosion processes due to the contact with the exhaust gas, which can be intensified by gas discharge processes. These erosion processes can not only affect the service life of the electrodes in particular, but also the service life of the ceramic due to the formation of metal oxides.
  • Another disadvantage is that the large number of electrodes - four per inlet channel - significantly increases the size and weight of the plasma soot filter compared to a conventional filter.
  • a wall flow filter consisting of mutually closed elongate channels with any cross section is created, the walls of which are covered with soot are regenerated by surface sliding discharges.
  • the surface sliding discharges now burn due to the arrangement of the electrodes embedded in the filter material and thus protected against erosion, preferably on the inlet side of the filter covered with soot.
  • only two electrodes are required for generating the surface sliding discharges in the given geometry with double-beam symmetry per inlet channel.
  • the starting point of the invention is a wall flow filter consisting of elongated channels with a square cross section arranged in a matrix.
  • the channels are mutually closed along a row or a column, so that inlet and outlet channels alternate.
  • the electrode arrangement according to the invention ensures that the distribution of the electric field in the individual cells of the plasma soot filter enables the ignition of non-thermal surface sliding discharges in individual cells.
  • the dielectric properties of the wall material of the ceramic soot filter which concentrates the field in cavities between the electrodes, are used.
  • a reduction in the number of electrodes per inlet channel from 4 to 2 does not result in a deterioration in the electrical field distribution with regard to the generation of surface sliding discharges.
  • What is essential for this is the arrangement of the electrodes on diagonally opposite edges of the square channel cross section, it being necessary that adjacent inlet channels must be connected in the same polarity via their edges not provided with electrodes.
  • FIG. 1 and FIG. 3 cross sections of plasma filter elements with inlet and outlet channels and associated electrodes
  • FIGS. 1 to 5 and 7 to 12 described in detail in DE 100 57 862 C1 wall-flow filters made of ceramic material made of mutually closed elongate channels with a special square cross-section, in the corner points of which electrodes are installed, are shown.
  • FIG. 1 shows in cross section such an electrode arrangement in a plasma filter element of a conventional type with four electrodes per channel embedded in filter material.
  • an inlet channel is designated 10 and an outlet channel 20.
  • Inlet duct 10 and outlet duct 20 are separated by porous walls 30 made of specific ceramic material. Electrodes are installed in the walls 30 at the edges of the channels, each serving in pairs next to one another as a high-voltage electrode 41 and an earthed electrode 42.
  • the electrodes 41 and 42 made of electrically conductive material are each surrounded by an electrically insulating barrier layer 43 which, in contrast to the filter material of the walls 30, has low porosity for reasons of high voltage resistance.
  • FIG. 2 shows the distribution of the electric field strength, which is important for the formation of surface sliding discharges, for a voltage of 10 kV applied to the high-voltage electrodes with a square channel cross section of 2 2 mm 2 in the cross section of the arrangement according to FIG. 1.
  • the field minima calculated in FIG Designated arrangement according to Figure 1. These minima are due to the quadrupole arrangement of the electrodes on the axes of symmetry of both the inlet and outlet channels. Areas of increased electric field strength 51, in which electric gas discharges will ignite preferentially, can be found in the vicinity of the channel walls of both the inlet and outlet channels.
  • Figure 3 shows an electrode arrangement for the selective generation of gas discharges in the inlet channels in cross section.
  • the main difference from Figure 1 is the diamond-shaped Order of the inlet channels 10 and the outlet channels 20, which results from a rotation of the structure according to FIG. 1 by 45 °.
  • Another difference from the prior art is that on the inlet channels, which are now diamond-shaped, there are electrodes 40 in the vertical direction at opposite corners of the diamond, each of which is designed in pairs as a high-voltage electrode 41 and as a ground electrode 42. Again, a barrier layer 43 is provided for a porous filter material.
  • FIG. 4 shows the advantageous distribution of the electric field of the arrangement according to FIG. 3, which preferably enables the ignition of gas discharges within the inlet channels.
  • This calculated representation shows that, compared to FIG. 2, the inlet channels 10 have an increased electric field strength over almost the entire cross section, which is sufficient for the ignition of gas discharges, while in the outlet channels 20 only in the vicinity of the electrodes due to slightly increased electric fields ignition of gas discharges can be expected. Otherwise, field minima 50 according to FIG. 2 are again present.
  • Preferred starting points for gas discharges in the inlet channels 10 are due to the particularly strong increase in the electric field strength there, first in the vicinity of the electrodes. However, since electrical charge carriers are stored there during operation of the gas discharge and thus the electric fields are reduced there, the preferred starting points of the gas discharges slide successively along the walls of the inlet channels 10 in the direction of the central region until the walls are so far covered with surface charges are that no more gas discharges can be ignited.
  • the arrangement according to FIG. 3 not only results in an electrical field distribution that is advantageous for the efficient use of electrical energy, but also in a reduction in material and cost due to a reduced number of electrodes per filter volume and area and at the same time a reduced electrical capacity has a cost-reducing effect due to the simplified design of high-voltage power supplies for the electrical excitation of the plasma soot filter.
  • What is essential for this is the arrangement of the electrodes on diagonally opposite edges of the square channel cross-section, with adjacent inlet channels necessarily having to be connected in the same polarity via their edges not provided with electrodes.
  • FIG. 5 shows, as a detail from FIG. 3, the diamond-like cross section of an individual inlet duct with electrode 41, counterelectrode 42 and two axes 60 and 60 ⁇ , which define a double-beam symmetry. These elements are important for the functionality of the filter, the electrodes 41 and 42 being connected by the axis 60 as a line of symmetry.
  • outlet channels are deformed in a complementary manner, so that the cross-section is completely covered again with inlet and outlet channels.
  • any conversion of a square into an nx square with n> 2 is possible.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Arc Welding In General (AREA)
  • Sampling And Sample Adjustment (AREA)
  • Amplifiers (AREA)
  • Filtering Of Dispersed Particles In Gases (AREA)

Abstract

Vom Stand der Technik ist ein Verfahren zur Verminderung kohlenstoffhaltiger Partikelemissionen von Dieselmotoren und eine zugehörige Anordnung bekannt, bei der insbesondere zur Regeneration des Filters Oberflächengleitentladungen ausgenutzt werden. Gemäß der Erfindung ist ein dafür geeignetes Wandflussfilter aus wechselseitig verschlossenen, länglichen Kanälen gebildet. Die Elektroden sind dabei in das Filtermaterial eingebettet und dadurch vor Erosion geschützt. Durch eine geeignete Geometrie reichen erfindungsgemäß zwei Elektroden zur selektiven Erzeugung der Oberflächengleitentladungen im Einlasskanal des Wandflussfilter aus.

Description

Beschreibung
Plasma-Rußfilter
Die Erfindung bezieht sich auf ein Plasma-Rußfilter gemäß dem Oberbegriff des Patentanspruches 1. Ein solcher Rußfilter ist Gegenstand der DE 100 57 862 Cl .
Mit vorgenanntem Patent wird ein Verfahren zur Verminderung kohlenstoffhaltiger Partikelemissionen von Dieselmotoren unter Schutz gestellt, bei dem die im Abgas enthaltenen Rußpartikel an Filteroberflächen abgeschieden werden, wobei zwecks Regeneration des Filters die abgeschiedenen Partikel oxidiert werden und die Regeneration durch nichtthermische, elektri- sehe Oberflachengleitentladungen an den mit Rußpartikeln belegten Oberflächen erfolgt .
In der DE 100 57 862 Cl sind verschiedene Geometrien zum Betrieb einer derartigen Anordnung beschrieben, die auf dem Prinzip von sogenannten Wandflussfiltern basieren. Diese Filter bestehen aus parallelen Kanälen mit viereckigem Querschnitt, die wechselseitig jeweils an der Auslassseite und an der Einlassseite des Abgases verschlossen sind. Dadurch ergibt sich eine Aufteilung in Einlasskanäle für das rußbelade- ne und Auslasskanäle für das gefilterte Abgas. Der Ruß wird auf den Innenwänden der einlassseitig offenen Kanäle abgeschieden und dort durch Sauerstoff- und Hydroxyl-Radikale oxidiert, die in unmittelbarer Wandnähe von nichtthermischen Oberflächengleitentladungs-Plasmen erzeugt werden.
In der DE 100 57 862 Cl wird in naheliegender Weise davon ausgegangen, dass zur Erzeugung von Oberflachengleitentladungen in einem Filterkanal an jeder seiner Kanten eine Elektrode angebracht ist . Die zur Plasmaerzeugung erforderlichen Elektroden lassen sich dabei entweder in das Filtermaterial einbetten oder auf dem Filtermaterial so aufbringen, dass auf jeden Fall zwischen einer mit Hochspannung verbundenen Elek- trode und der mit Masse verbundenen Gegenelektrode eine Schicht hoher dielektrischer Festigkeit liegt. Durch die dort beschriebene Einbettung der Elektroden lassen sich solche Oberflachengleitentladungen jedoch nur auf beiden Seiten der Zellwände generieren, während der Ruß nur auf einer Seite abgeschieden wird. Damit ist der spezifische Energieverbrauch für die Regeneration doppelt so hoch wie eigentlich erforderlich.
Dem Abgas ausgesetzte Elektroden hingegen, die dort in Kombination mit eingebetteten Elektroden für den bevorzugten Betrieb von Oberflachengleitentladungen auf einer Seite der Wand vorgeschlagen werden, sind durch den Kontakt mit dem Abgas Erosionsprozessen ausgesetzt, die durch Gasentladungspro- zesse noch verstärkt werden können. Diese Erosionsprozesse können nicht nur die Lebensdauer speziell der Elektroden, sondern über die Entstehung von Metalloxiden auch die Lebensdauer der Keramik beeinträchtigen.
Ein weiterer Nachteil ist, dass die große Zahl der Elektroden - und zwar vier je Einlasskanal - Größe und Gewicht des Plasmarußfilters gegenüber einem herkömmlichen Filter wesentlich erhöht .
Aus der Literatur sind Geometrien zum Betrieb dielektrisch behinderter Entladungen in keramischen Wabenkörpern bekannt (siehe z.B. EP 0 840 838 Bl) , in denen durch eine innenliegende Hochspannungs- und eine außenliegende Masseelektrode ein zylindrisches, viele Kanäle enthaltendes Volumen angeregt werden kann. Dadurch kann aber weder zwischen Ein- und Auslasskanälen eines Rußfilters differenziert werden, noch können gezielt Oberflachengleitentladungen erzeugt werden. Außerdem ist wegen der großen Schlagweite zwischen den Elektroden eine hohe Spannungsamplitude von über 20 kV erforderlich, die im Kraftfahrzeug zu Problemen führen kann. Ausgehend von letzterem Stand der Technik ist es Aufgabe der Erfindung, ein Plasma-Rußfilter anzugeben, bei dem durch eine geeignete Geometrie die oben angeführten Nachteile vermieden werden.
Die Aufgabe ist erfindungsgemäß durch die Merkmale des Patentanspruches 1 gelöst. Weiterbildungen sind in den abhängigen Ansprüchen angegeben.
Mit der Erfindung ist ein aus wechselseitig verschlossenen länglichen Kanälen mit beliebigem Querschnitt bestehender Wandflussfilter geschaffen, dessen mit Ruß belegte Wände durch Oberflachengleitentladungen regeneriert werden. Dabei brennen nunmehr die Oberflachengleitentladungen bedingt durch die Anordnung der in das Filtermaterial eingebetteten und damit vor Erosion geschützten Elektroden bevorzugt auf der mit Ruß belegten Einlassseite des Filters. Vorteilhafterweise werden bei der angegebenen Geometrie mit zweistrahliger Symmetrie pro Einlasskanal nur zwei Elektroden zur Erzeugung der Oberflachengleitentladungen benötigt.
Ausgangspunkt der Erfindung ist ein aus matrixartig angeordneten länglichen Kanälen mit viereckigem Querschnitt bestehender Wandflussfilter. Die Kanäle sind längs einer Zeile oder einer Spalte wechselseitig verschlossenen, so dass sich Einlass- und Auslasskanäle abwechseln.
Durch die erfindungsgemäße Elektrodenanordnung wird sichergestellt, dass die Verteilung des elektrischen Feldes in den einzelnen Zellen des Plasma-Rußfilters die Zündung von nicht- thermischen Oberflachengleitentladungen in einzelnen Zellen ermöglicht. Dabei werden die dielektrischen Eigenschaften des Wandmaterials des keramischen Rußfilters ausgenutzt, die das Feld in Hohlräumen zwischen den Elektroden konzentriert. Überraschenderweise ergibt sich durch eine Verminderung der Elektrodenzahl pro Einlasskanal von 4 auf 2 nicht etwa eine Verschlechterung der elektrischen Feldverteilung hinsichtlich der Erzeugung von Oberflachengleitentladungen. Wesentlich dafür ist die Anordnung der Elektroden an diagonal gegenüberliegenden Kanten des viereckigen Kanalquerschnittes, wobei notwendigerweise über ihre nicht mit Elektroden versehenen Kanten benachbarte Einlasskanäle in gleicher Polarität beschaltet werden müssen.
Weitere Einzelheiten und Vorteile der Erfindung ergeben sich aus der nachfolgenden Figurenbeschreibung von Ausführungsbei- spielen anhand der Zeichnung in Verbindung mit den Patentansprüchen. Es zeigen
Figur 1 und Figur 3 Querschnitte von Plasmafilterelementen mit Ein- und Auslasskanälen und zugehörigen Elektro- den,
Figur 2 und Figur 4 berechnete Feldstärkeverteilungen bei den
Anordnungen gemäß Figur 1 und 3 sowie Figur 5 Querschnitte eines Einlasskanals mit zweistrahliger Symmetrie und dessen Variation.
Die Figuren werden nachfolgend teilweise gemeinsam beschrieben. Insbesondere zu Figur 1 wird im Einzelnen auf die Patentschrift DE 100 57 862 Cl verwiesen.
In letzterem Patent wird ein Verfahren und zugehörige Anordnungen zur Verminderung kohlenstoffhaltiger Partikelemissionen von Dieselmotoren unter Schutz gestellt, bei denen Oberflachengleitentladungen zum Einsatz kommen. In den in der DE 100 57 862 Cl im Einzelnen beschriebenen Figuren 1 bis 5 sowie 7 bis 12 sind Wandflussfilter aus keramischem Material aus wechselseitig verschlossenen länglichen Kanälen mit speziell viereckigem Querschnitt, in deren Eckpunkte jeweils Elektroden eingebaut sind, dargestellt.
Figur 1 zeigt im Querschnitt eine derartige Elektrodenanordnung in einem Plasmafilterelement herkömmlicher Art mit vier in Filtermaterial eingebetteten Elektroden je Kanal. Im Einzelnen ist ein Einlaßkanal mit 10 und ein Auslasskanal mit 20 bezeichnet. Einlasskanal 10 und Auslasskanal 20 sind durch poröse Wände 30 aus spezifischem keramischen Material getrennt. In den Wänden 30 sind jeweils an den Kanten der Kanäle 10 Elektroden eingebaut, die jeweils paarweise nebeneinander als Hochspannungselektrode 41 und geerdete Elektrode 42 dienen. Um ausreichende dielektrische Festigkeit zu gewährleisten, sind die aus elektrisch leitfähigem Material gefer- tigten Elektroden 41 und 42 jeweils von einer elektrisch isolierenden Barrierenschicht 43 umgeben, die aus Gründen der Hochspannungsfestigkeit im Gegensatz zum Filtermaterial der Wände 30 niedrige Porosität aufweist.
Figur 2 zeigt die für die Ausbildung von Oberflachengleitentladungen wichtige Verteilung der elektrischen Feldstärke für eine an den Hochspannungselektroden anliegende Spannung von 10 kV bei einem quadratischen Kanalquerschnitt von 2 2 mm2 im Querschnitt der Anordnung gemäß Figur 1. Mit 50 sind er- rechnete Feldminima in der Anordnung gemäß Figur 1 bezeichnet . Diese Minima finden sich aufgrund der quadrupolartigen Anordnung der Elektroden jeweils auf den Symmetrieachsen sowohl der Ein- als auch der Auslasskanäle. Bereiche erhöhter elektrischer Feldstärke 51, in denen elektrische Gasentladun- gen bevorzugt zünden werden, finden sich in der Nähe der Kanalwände sowohl der Ein- als auch der Auslasskanäle.
Insgesamt ist aus Figur 2 erkennbar, dass sich aufgrund der Symmetrie in den Auslasskanälen 20 die gleiche elektrische Feldverteilung wie in den Einlasskanälen 10 ergibt. Zur Ruß- oxidation im Wandflussfilter werden aber die Bereiche erhöhter elektrischer Feldstärke tatsächlich nur in den Einlasskanälen benötigt .
Figur 3 zeigt eine Elektrodenanordnung zur selektiven Erzeugung von Gasentladungen in den Einlasskanälen im Querschnitt . Wesentlicher Unterschied zu Figur 1 ist die rautenförmige An- Ordnung der Einlasskanäle 10 und der Auslasskanäle 20, welche sich aus einer Drehung der Struktur gemäß Figur 1 um 45° ergibt. Weiterer Unterschied zum Stand der Technik ist, dass an den nunmehr rautenförmig ausgebildeten Einlasskanälen jeweils in der Senkrechte an gegenüberliegenden Ecken der Raute E- lektroden 40 vorhanden sind, die jeweils paarweise als Hochspannungselektrode 41 und als Masseelektrode 42 ausgeführt sind. Auch hier ist bei einem porösen Filtermaterial wieder eine Barrierenschicht 43 vorgesehen.
Figur 4 zeigt die vorteilhafte Verteilung des elektrischen Feldes der Anordnung gemäß Figur 3, die die Zündung von Gasentladungen innerhalb der Einlasskanäle bevorzugt ermöglicht. Aus dieser berechneten Darstellung ergibt sich, dass im Ver- gleich zu Figur 2 die Einlasskanäle 10 über nahezu den gesamten Querschnitt eine erhöhte, für die Zündung von Gasentladungen ausreichende elektrische Feldstärke aufweisen, während in den Auslasskanälen 20 nur in Elektrodennähe aufgrund leicht erhöhter elektrischer Felder mit der Zündung von Gas- entladungen zu rechnen ist. Ansonsten sind wieder Feldminima 50 entsprechend Figur 2 vorhanden.
Bevorzugte Ansatzpunkte von Gasentladungen in den Einlasskanälen 10 liegen aufgrund der dort besonders stark erhöhten elektrischen Feldstärke zuerst in Elektrodennähe. Da während des Betriebes der Gasentladung dort jedoch elektrische Ladungsträger gespeichert werden und damit die elektrischen Felder dort reduziert werden, gleiten die bevorzugten Ansatzpunkte der Gasentladungen sukzessive auf den Wänden der Ein- lasskanäle 10 entlang in Richtung auf den Mittenbereich, bis die Wände soweit mit Oberflächenladungen belegt sind, dass keine weiteren Gasentladungen mehr gezündet werden können.
Letzterer Prozess ist mit der Ausbildung von Oberfläc en- gleitentladungen verbunden. Obwohl die anfängliche Feldverteilung Volumen- und Oberflachengleitentladungen gleichermaßen ermöglicht, wird auf diese Weise ein nicht unwesentlicher Teil der elektrischen Energie in Oberfl chengleitentladungen umgesetzt. Gleichzeitig wird der Betrieb von Gasentladungen in den Auslasskanälen weitgehend unterdrückt. Damit wird bestätigt, dass mit der Anordnung gemäß Figur 3 ein gegenüber Figur 1, die dem Stand der Technik entspricht, verbessertes Ergebnis für die Realisierung eines Plasma-Russfilters mit Einsatz von Oberflachengleitentladungen zur Oxidation des Rußes vorliegt.
Bei der Anordnung gemäß Figur 3 ergibt sich gegenüber Figur 1 nicht nur eine für die effiziente Nutzung der elektrischen Energie vorteilhafte elektrische Feldverteilung, sondern auch eine Verringerung des Material- und Kostenaufwandes durch reduzierte Elektrodenzahl pro Filtervolumen und -Fläche und gleichzeitig eine verringerte elektrische Kapazität, die sich durch vereinfachte Auslegung von Hochspannungsnetzteilen für die elektrische Anregung des Plasma-Rußfilters kostensenkend auswirkt. Wesentlich dafür ist die Anordnung der Elektroden an diagonal gegenüberliegenden Kanten des viereckigen Kanal- querschnittes, wobei über ihre nicht mit Elektroden versehenen Kanten benachbarte Einlasskanäle notwendigerweise in gleicher Polarität beschaltet werden müssen.
Figur 5 zeigt als Ausschnitt aus Figur 3 links den rautenar- tigen Querschnitt eines einzelnen Einlasskanals mit Elektrode 41, Gegenelektrode 42 und zwei Achsen 60 und 60λ, die eine zweistrahlige Symmetrie definieren. Diese Elemente sind für Funktionsfähigkeit des Filters von Bedeutung, wobei die Elektroden 41 und 42 durch die Achse 60 als eine Symmetrieli- nie verbunden sind.
Es ist offensichtlich, dass das beschriebene Konzept auf andere Kanalquerschnitte übertragbar ist. Ausgehend von der in Figur 3 gezeigten Gesamtgeometrie und der spezifischen Sym- metrie gemäß Figur 5 hält man die Elektroden 41 und 42 sowie die Verbindungsachse 60 zwischen den Elektroden 41 und 42 als erste Symmetrielinie fest und verformt den Kanalquerschnitt symmetrisch bezüglich dieser Achse. Bei Berücksichtigung der zweiten Symmetrielinie ergibt sich beispielsweise eine Sternform im rechten Bereich von Figur 5, bei der die für die Rußablagerung wirksame Wandfläche im Einlasskanal gegenüber Fi- gur 3 vergrößert ist.
Berücksichtigt man die Geometrie entsprechend Figur 5, werden die Auslasskanäle komplementär entsprechend verformt, so dass sich wieder eine vollständige Bedeckung des Querschnittes mit Ein- und Auslasskanälen ergibt. Im Prinzip ist jede Umwandlung eines Vierecks in ein nxViereck mit n>2 möglich.

Claims

Patentansprüche
1. Plasma-Rußfilter auf der Grundlage eines Wandflussfilters, bestehend aus wechselseitig verschlossenen länglichen Ein- lass- und Auslasskanälen aus keramischem Filtermaterial, wobei Rußpartikel an den Filteroberflächen der Einlasskanäle abgeschieden und dort zwecks Regeneration des Filters durch Einwirkung dielektrisch behinderter Oberflachengleitentladungen oxidiert werden, g e k e n n z e i c h n e t durch die Kombination folgender Merkmale: die Kanäle (10, 20) haben einen Querschnitt mit zweistrahliger Symmetrie zur Erzeugung der Oberflachengleitentladungen sind pro Einlasskanal (10) genau zwei Elektroden (41, 42) unter- schiedlicher Polarität vorhanden, die auf einer der Symmetrielinien (60, 60 λ) liegen.
2. Plasma-Rußfilter nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die Elektroden (41, 42) in das Filtermaterial (30) eingebettet und damit vor Erosion geschützt sind.
3. Plasma-Rußfilter nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Elektroden (41, 42) in ein elektrisch isolierendes Barrierenmaterial (43) niedriger Porosität eingebettet sind.
4. Plasma-Rußfilter nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Oberflachengleitentladungen selektiv auf der mit Ruß belegten
Einlassseite des Wandflussfilters mit Einlasskanal (10) und Auslasskanal (20) brennen.
5. Plasma-Rußfilter nach einem der vorhergehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass die Kanäle (10, 20) mit ihrem Querschnitt in zweistrahliger Symmetrie eine Viereckgeometrie haben, wobei die beiden Elektroden (41, 42) an gegenüberliegenden Ecken der Viereckgeometrie angeordnet sind.
6. Plasma-Rußfilter nach Anspruch 5, d a d u r c h g e - k e n n z e i c h n e t , dass die Viereckgeometrie eine vertikal orientierte Raute ist .
7. Plasma-Rußfilter nach Anspruch 6, wobei Elektroden an diagonal gegenüberliegenden Ecken von mehreren benachbarten rau- tenförmigen Kanalquerschnitten angeordnet sind, d a d u r c h g e k e n n z e i c h n e t , dass die Elektroden (41, 42) an den Ecken benachbarter Einlasskanäle (10) in gleicher Polarität beschaltet sind.
8. Plasma-Rußfilter nach einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t , dass der Querschnitt des Einlasskanals (10) mit zweistrahliger Geometrie eine (nx4) -eckige Geometrie mit n>2 hat, die durch Verformung des viereckförmigen Querschnitts des Einlasskanals (10) bei Festhalten der Elektroden (41, 42) und der ersten Symmetrielinie (60) erhalten wird (Fig. 5) .
PCT/DE2003/002187 2002-07-03 2003-07-01 Plasma-russfilter WO2004004869A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE50305763T DE50305763D1 (de) 2002-07-03 2003-07-01 Plasma-russfilter
EP03762434A EP1517737B1 (de) 2002-07-03 2003-07-01 Plasma-russfilter
JP2004518423A JP4522854B2 (ja) 2002-07-03 2003-07-01 プラズマ炭素微粒子フィルタ
US10/522,853 US7326264B2 (en) 2002-07-03 2003-07-01 Plasma particulate filter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10229881.5 2002-07-03
DE10229881A DE10229881B4 (de) 2002-07-03 2002-07-03 Plasma-Russfilter

Publications (1)

Publication Number Publication Date
WO2004004869A1 true WO2004004869A1 (de) 2004-01-15

Family

ID=29723667

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2003/002187 WO2004004869A1 (de) 2002-07-03 2003-07-01 Plasma-russfilter

Country Status (7)

Country Link
US (1) US7326264B2 (de)
EP (1) EP1517737B1 (de)
JP (1) JP4522854B2 (de)
AT (1) ATE345863T1 (de)
DE (2) DE10229881B4 (de)
ES (1) ES2277117T3 (de)
WO (1) WO2004004869A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132103A1 (ja) * 2005-06-08 2006-12-14 Nissin Electric Co., Ltd. 排ガス浄化方法及び排ガス浄化システム
EP2067758A1 (de) 2007-12-07 2009-06-10 Kabushiki Kaisha Toyota Jidoshokki Verfahren zur Herstellung einer Plasmabehandlungsvorrichtung für die Abgasreinigung
WO2010127770A2 (de) * 2009-05-02 2010-11-11 Hydac Filtertechnik Gmbh Filtervorrichtung zum reinigen von fluiden

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2867510B1 (fr) * 2004-03-11 2006-10-20 Peugeot Citroen Automobiles Sa Systeme de purification des gaz d'echappement d'un moteur thermique de vehicule automobile et ligne d'echappement comportant un tel systeme
FR2883199B1 (fr) * 2005-03-18 2007-06-22 Peugeot Citroen Automobiles Sa Filtre a particules pour vehicule automobile et systeme et ligne d'echappement comprenant un tel filtre a particules
GB2429417B (en) * 2005-08-25 2010-08-11 Perkins Engines Co Ltd Autoselective regenerating particulate filter
US7685814B2 (en) * 2006-07-12 2010-03-30 Cummins Filtration, Inc. Systems, apparatuses, and methods of determining plugging or deplugging of a diesel oxidation catalyst device
US8252077B2 (en) * 2007-09-17 2012-08-28 GM Global Technology Operations LLC Electrically heated particulate filter heater insulation
WO2009107951A2 (ko) * 2008-02-25 2009-09-03 제주대학교 산학협력단 디젤 엔진의 입자상 물질 저감장치
JP2012504039A (ja) * 2008-09-30 2012-02-16 パーキンズ エンジンズ カンパニー リミテッド フィルタを再生する方法および装置
WO2017090587A1 (ja) * 2015-11-26 2017-06-01 京セラ株式会社 粒子状物質の測定装置用部品およびその製造方法
WO2018012421A1 (ja) * 2016-07-12 2018-01-18 日本碍子株式会社 微粒子数検出器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3705979A1 (de) * 1987-02-25 1988-09-08 Navsat Gmbh Abgasrussfilter
DE3715174A1 (de) * 1987-05-07 1988-11-24 Christian Bergemann Verfahren zur regeneration russbehafteter flaechen und filter aus keramischen oder mineralischen werkstoffen oder beschichtungen
DE4230631A1 (de) * 1992-09-12 1994-03-24 Amann & Soehne Verfahren zur Entfernung von elektrisch leitenden Teilchen aus einem Gasstrom sowie Vorrichtung zur Durchführung des Verfahrens
JP2001173427A (ja) * 1999-12-15 2001-06-26 Toyota Central Res & Dev Lab Inc 放電再生式捕集フィルタ
DE10057862C1 (de) * 2000-11-21 2002-02-07 Siemens Ag Verfahren zur Verminderung kohlenstoffhaltiger Partikelemissionen von Dieselmotoren und zugehörige Anordnung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3608801A1 (de) * 1986-03-15 1987-09-17 Fev Forsch Energietech Verbr Verfahren und vorrichtung zur regeneration von partikelfiltersystemen
US5207807A (en) * 1986-12-05 1993-05-04 Iveco Fiat S.P.A. Regenerable filter for exhaust gases of an internal-combustion engine
JPH0227107A (ja) * 1988-07-18 1990-01-29 Nafuzato Gmbh 排気ガスすすフィルタ
JPH06146852A (ja) * 1992-11-13 1994-05-27 Senichi Masuda デイーゼルエンジン排気ガス浄化装置
EP0840838B1 (de) * 1995-07-27 1999-03-17 Carl Maria Prof. Dr. Fleck Verfahren und vorrichtung zur zerlegung von stickstoffoxiden in abgasen von verbrennungsmotoren
US5827407A (en) * 1996-08-19 1998-10-27 Raytheon Company Indoor air pollutant destruction apparatus and method using corona discharge
GB9803817D0 (en) * 1998-02-25 1998-04-22 Aea Technology Plc A component for gas treatment
GB2351923A (en) * 1999-07-12 2001-01-17 Perkins Engines Co Ltd Self-cleaning particulate filter utilizing electric discharge currents
DE10003816A1 (de) * 2000-01-28 2001-08-02 Opel Adam Ag Regenerierbarer Partikelfilter zum Entfernen von Rußpartikeln aus Abgasen
JP2001276561A (ja) * 2000-03-31 2001-10-09 Ngk Insulators Ltd ハニカム構造体を具える放電装置
JP2001349215A (ja) * 2000-06-08 2001-12-21 Hideo Kawamura Noxを吸着材に付着させて分解する排気ガス浄化装置
DE10130163B4 (de) * 2000-11-21 2012-01-12 Siemens Ag Anordnung zur Verminderung kohlenstoffhaltiger Partikelemissionen von Dieselmotoren
FR2842389B1 (fr) * 2002-07-09 2004-08-20 Physiques Ecp Et Chimiques Dispositif modulaire pour generer de multiples decharges electriques glissantes de haute tension
JP2004340049A (ja) * 2003-05-16 2004-12-02 Hino Motors Ltd 排気浄化装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3705979A1 (de) * 1987-02-25 1988-09-08 Navsat Gmbh Abgasrussfilter
DE3715174A1 (de) * 1987-05-07 1988-11-24 Christian Bergemann Verfahren zur regeneration russbehafteter flaechen und filter aus keramischen oder mineralischen werkstoffen oder beschichtungen
DE4230631A1 (de) * 1992-09-12 1994-03-24 Amann & Soehne Verfahren zur Entfernung von elektrisch leitenden Teilchen aus einem Gasstrom sowie Vorrichtung zur Durchführung des Verfahrens
JP2001173427A (ja) * 1999-12-15 2001-06-26 Toyota Central Res & Dev Lab Inc 放電再生式捕集フィルタ
DE10057862C1 (de) * 2000-11-21 2002-02-07 Siemens Ag Verfahren zur Verminderung kohlenstoffhaltiger Partikelemissionen von Dieselmotoren und zugehörige Anordnung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2000, no. 23 10 February 2001 (2001-02-10) *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132103A1 (ja) * 2005-06-08 2006-12-14 Nissin Electric Co., Ltd. 排ガス浄化方法及び排ガス浄化システム
EP2067758A1 (de) 2007-12-07 2009-06-10 Kabushiki Kaisha Toyota Jidoshokki Verfahren zur Herstellung einer Plasmabehandlungsvorrichtung für die Abgasreinigung
WO2010127770A2 (de) * 2009-05-02 2010-11-11 Hydac Filtertechnik Gmbh Filtervorrichtung zum reinigen von fluiden
WO2010127770A3 (de) * 2009-05-02 2010-12-29 Hydac Filtertechnik Gmbh Filtervorrichtung zum reinigen von fluiden
CN102428162A (zh) * 2009-05-02 2012-04-25 Hydac过滤技术有限公司 净化液体的过滤器装置
US8961752B2 (en) 2009-05-02 2015-02-24 Hydac Filtertechnik Gmbh Filter device for purifying fluids
CN102428162B (zh) * 2009-05-02 2015-04-22 Hydac过滤技术有限公司 净化液体的过滤器装置

Also Published As

Publication number Publication date
DE10229881A1 (de) 2004-01-15
JP2005531401A (ja) 2005-10-20
JP4522854B2 (ja) 2010-08-11
US20060010843A1 (en) 2006-01-19
ATE345863T1 (de) 2006-12-15
DE50305763D1 (de) 2007-01-04
DE10229881B4 (de) 2008-01-31
EP1517737B1 (de) 2006-11-22
EP1517737A1 (de) 2005-03-30
US7326264B2 (en) 2008-02-05
ES2277117T3 (es) 2007-07-01

Similar Documents

Publication Publication Date Title
DE4416676C2 (de) Vorrichtung zur Entgiftung von Abgasen aus mobilen Anlagen
EP0537219B1 (de) Verfahren und vorrichtung zur reinigung von abgasen
DE10229881B4 (de) Plasma-Russfilter
WO2006050546A1 (de) Verfahren und filteranordnung zum abscheiden von russpartikeln
DE10102681A1 (de) Plasmaartiges Abgasreinigungsgerät
AT409653B (de) Verfahren und vorrichtung zum abscheiden von russpartikel aus einem abgasstrom, insbesondere einer diesel-brennkraftmaschine
EP2477748B1 (de) Vorrichtung zur behandlung von russpartikel enthaltendem abgas
EP2477749B1 (de) VORRICHTUNG UND VERFAHREN ZUR BEHANDLUNG VON RUßPARTIKEL ENTHALTENDEM ABGAS
AT501888B1 (de) Wabenfilter mit planaren elektroden
DE3404987A1 (de) Hochspannungsisolator
DE60320090T2 (de) Reaktor zur plasmabehandlung eines gasstroms insbesondere von abgasen aus einem verbrennungsmotor eines kraftfahrzeugs
EP1375851A1 (de) Plasmareaktor, Verfahren zu dessen Herstellung und Einrichtung zur Behandlung von Abgasen in Verbrennungsmotoren
WO2000057992A1 (de) Vorrichtung und verfahren zur behandlung von strömenden gasen, insbesondere von abgasen
DE10344489B4 (de) Vorrichtung und Verfahren zur Ausfilterung von Ruß aus Abgasen oder Aerosolen aus Abluft und zur plasmagestützten Behandlung von Abgas oder von Abluft
EP0658685B1 (de) Vorrichtung zum Abscheiden von Russpartikeln aus den Abgasen von Brennkraftmaschinen
DE60210557T2 (de) Vorrichtung zur Abgasbehandlung einer Brennkraftmaschine
DE102005024472B4 (de) Verfahren und Vorrichtung zur Behandlung von Aerosolen, Schad- und Geruchsstoffen im Ionenwind
EP2616181B1 (de) Vorrichtung zur erzeugung eines elektrischen feldes in einem abgassystem
WO2006128711A1 (de) Verfahren und vorrichtung zur verminderung des partikelanteils in abgasen
DE102010042719A1 (de) Abgasreinigungsvorrichtung
EP1888206A1 (de) Verfahren und vorrichtung zum abbau von stickstoffoxiden in einem abgasstrom
DE19504138A1 (de) Abgasreinigungsmodul und Verfahren zu seiner Herstellung
EP2603677A1 (de) Halterung für zumindest eine elektrode in einer abgasleitung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003762434

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004518423

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2006010843

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10522853

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2003762434

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10522853

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003762434

Country of ref document: EP