WO2004003264A1 - Thin sheet manufacturing method, and thin sheet manufacturing apparatus - Google Patents

Thin sheet manufacturing method, and thin sheet manufacturing apparatus Download PDF

Info

Publication number
WO2004003264A1
WO2004003264A1 PCT/JP2003/008056 JP0308056W WO2004003264A1 WO 2004003264 A1 WO2004003264 A1 WO 2004003264A1 JP 0308056 W JP0308056 W JP 0308056W WO 2004003264 A1 WO2004003264 A1 WO 2004003264A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin plate
base plate
manufacturing
plate
silicon
Prior art date
Application number
PCT/JP2003/008056
Other languages
French (fr)
Japanese (ja)
Inventor
Shuji Goma
Hirozumi Gokaku
Kozaburo Yano
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to JP2004517275A priority Critical patent/JP4105158B2/en
Priority to AU2003244062A priority patent/AU2003244062A1/en
Publication of WO2004003264A1 publication Critical patent/WO2004003264A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Definitions

  • the present invention relates to a thin plate manufacturing method and a thin plate manufacturing apparatus, and more particularly, to a silicon thin plate manufacturing method and a silicon thin sheet manufacturing apparatus.
  • Silicon is used for consumer solar cells.
  • the conversion efficiency of silicon decreases in the order of single crystal, polycrystal, and amorphous, but on the other hand, the cost is lower and the area is easier to increase.
  • amorphous silicon the S i H 4 CVD (Chemical Vapor Deposition) method as a raw material, glass, plastic, inexpensive because it can be deposited on such a metal substrate, and tends to a large area .
  • the conversion efficiency is up to about 12%. .
  • single-crystal silicon can be produced in diameters of 150 mm (6 inches) or 200 mm (8 inches) by the CZ (Czochralski) method, and it can be made larger, with a conversion efficiency of 15%. Can be exceeded.
  • Polycrystalline silicon For polycrystalline silicon, various manufacturing methods are being studied using sheet glass manufacturing technology and the like. Polycrystalline silicon tends to have a large area like amorphous silicon, but the conversion efficiency is located between monocrystalline silicon and amorphous silicon.
  • the present invention provides a thin plate manufacturing method and a thin plate manufacturing method that can greatly increase the manufacturing efficiency by expanding the production scale and can drastically reduce the manufacturing cost per unit area. It is an object of the present invention to provide a thin plate manufacturing apparatus.
  • the thin plate manufacturing method of the present invention is a method of manufacturing a thin plate by immersing a surface layer of a base plate in a melt and attaching the thin plate to the surface of the base plate. In this manufacturing method, after the thin plate formed on the surface of the base plate is separated from the base plate, at least the peripheral edge of the thin plate is cut.
  • a burr portion on the peripheral edge of the thin plate generated on the side surface of the base plate can be removed, and a flat thin plate can be obtained.
  • a cutting of the molding to the product dimensions may be performed.
  • the forming of the thin plate may be cut so as to have a predetermined size. That is, the removal of the peripheral portion may be performed simultaneously with the cutting of the molding, or the cutting of the molding may be performed regardless of the removal of the peripheral portion. In the case where the removal of the peripheral portion is performed simultaneously with the cutting of the forming, a thin plate formed in one step can be obtained.
  • the molding is cut so that multiple thin plates, such as two or three, are removed from the thin plate excluding burrs.
  • a silicon thin plate for a solar cell can be efficiently obtained.
  • At least one of surface waviness, surface roughness, thickness, and thickness distribution of the thin plate can be inspected.
  • the above inspection makes it possible, for example, to check the shape of a silicon thin plate that governs the performance of a solar cell.
  • the thin plate formed on the crystal growth surface of the base plate is preferably transported in an attitude above the base plate. With this method, it is possible to prevent the thin plate from falling off the base plate.
  • the thin plate is placed on a flat surface with the free surface during growth of the thin plate facing upward, and cut. As described above, the cutting yield can be improved by turning the free surface upward when growing a thin plate.
  • the thin sheet manufacturing apparatus of the present invention is a thin sheet manufacturing apparatus for manufacturing a thin plate by immersing a surface layer portion of a base plate in a melt and attaching the thin plate to the surface of the base plate.
  • the apparatus for manufacturing a thin plate includes a separating device for separating a thin plate adhered to the base plate from the base plate, and a cutting device for cutting at least a peripheral portion of the thin plate separated from the base plate.
  • an inspection device for inspecting the shape of the thin plate may be provided.
  • the thin sheet can be sent to the next process while checking the quality of the silicon sheet. For this reason, it is possible to avoid a situation in which the performance of a silicon thin plate is inferior after being assembled into a solar cell.
  • FIG. 1A and 1B are diagrams illustrating an example of an apparatus of an immersion mechanism according to an embodiment of the present invention.
  • FIG. 1A is a layout view
  • FIG. 1B is a perspective view of the immersion mechanism. .
  • FIGS. 2A and 2B are diagrams showing a device of another immersion mechanism according to the embodiment of the present invention
  • FIG. 2A is a diagram showing an elevating operation for immersion
  • FIG. It is a figure which shows the attitude
  • FIG. 3 is a diagram showing a thin plate manufacturing process according to the embodiment of the present invention.
  • FIG. 4 is a diagram showing a base plate discriminating apparatus in the thin plate manufacturing process of FIG.
  • FIG. 5 is a diagram showing a silicon thin plate formed on the surface of the base plate.
  • FIG. 6 is a diagram of a process of separating a silicon thin plate from a base plate.
  • FIG. 7 is a view showing a state in which the end of the silicon thin plate is cut.
  • FIG. 8A and 8B are views showing a method of cutting the edge of the silicon thin plate, FIG. 8A is a perspective view, and FIG. 8B is a sectional view.
  • FIG. 9 is a view showing the XY stage in a state where no silicon thin plate is provided.
  • FIG. 10 is a diagram showing a process of transferring a silicon thin plate whose end has been removed.
  • FIG. 11 is a diagram illustrating a method of cutting out four silicon thin plates from one silicon thin plate.
  • FIG. 12 is a diagram of a process of inspecting a silicon thin plate from which an end has been removed.
  • FIG. 13 is a diagram showing another device of the immersion mechanism in the embodiment of the present invention.
  • FIG. 14 is a view illustrating still another device of the immersion mechanism in the embodiment of the present invention.
  • FIG. 1A and 1B are diagrams illustrating a thin plate manufacturing apparatus according to an embodiment of the present invention.
  • the thin plate manufacturing apparatus shown in FIG. 1A has a main chamber 61 in which a crucible 9 is arranged, and two sub-chambers 63 and 64 provided continuously in the main chamber.
  • the silicon melt 10 is stored in the crucible 9 of the main chamber 61, and an immersion mechanism 70 for immersing the surface layer of the base plate 2 in the silicon melt 10 is arranged.
  • An inert gas is introduced into the main chamber and maintained at a pressure slightly lower than atmospheric pressure, that is, a negative pressure.
  • 1A and 1B Ar gas is introduced and the pressure is set to 70 O Torr.
  • the sub-chamber 63 is a charging sub-chamber for loading the base plate.
  • the sub-chamber 64 is a take-out sub-chamber for taking out the base plate 2 to which the silicon is attached from the main chamber 61.
  • the loading sub-chamber and the unloading sub-chamber should be located so as to face each other with the crucible 9 therebetween. This simplifies the flow of the base plate. It is not necessary to face each other with a crucible. Thereafter, depending on the configuration and shape of the immersion mechanism to be described, the two sub-chambers may be arranged on the same wall side of the main chamber.
  • one sub-chamber may be provided with a carry-in line and a carry-out line.
  • the atmosphere in the sub-chamber is the same as that in the main chamber, that is, the atmosphere is inert gas and has a negative pressure.
  • the airtight door 8 1 is opened with the airtight door 8 3 between the sub chamber 6 3 and the main chamber 6 1 closed, and the base plate 2 is moved to the sub chamber 6 3 Carry in.
  • the airtight door 81 is closed, and the atmosphere of the sub chamber 63 is made the same as that of the main chamber 61.
  • the hermetic door 83 between the main room and the main room is opened, and the base plate 2 is inserted into the main room 61.
  • the immersion mechanism 70 grasps the base plate 2 and transfers it onto the crucible 9. Next, the base plate is lowered, and the surface layer of the base plate is immersed in a silicon melt 10 to adhere a silicon layer to the surface of the base plate. Thereafter, the base plate 2 on which the silicon is adhered rises and leaves the crucible 9. During this time, the attached silicon is naturally cooled, a solid phase grows, and a predetermined silicon thin plate 1 is formed.
  • the base plate is rotated by some rotating mechanism while the silicon base plate is attached so that the silicon thin plate formed by attaching to the base plate is transported while being mounted on the base plate.
  • the base plate 2 on which the silicon thin plate 1 is formed is airtightly opened after confirming that the airtight door 8 1 of the sub chamber 6 4 is closed.
  • the atmosphere in the sub-chamber 64 is controlled so as to be the same as the atmosphere in the main chamber 61. Thereafter, the base plate on which the silicon thin plate is formed is sealed with an airtight door 8. With the 3 closed, open the airtight door 81 and carry it out.
  • At least one cooling device for accelerating the cooling may be provided, and the cooling device may be used to cool the silicon-adhered base plate.
  • Any transport mechanism may be used as the immersion mechanism 70 for transporting the base plate in the main chamber and immersing it in the silicon melt 1 °.
  • the support plate 56 is run along the rail 52, Perform horizontal transfer.
  • the transfer in the vertical direction is performed by raising and lowering a lifting device 53 that supports the reynole 52 and moves up and down along the pole.
  • the base plate 2 is attached to a pedestal 51 connected to a support plate 56 by a rod 58, and moves as the support plate 56 runs on the rail 52.
  • the horizontal movement is stopped on the silicon melt 10 in the crucible 9 and the elevating device 53 descends, so that the support plate 56, the rod 58, the pedestal 51, and the base plate 2 are moved together with the rail 52. It descends, and the surface layer of the base plate is immersed in the silicon melt. As a result, silicon adheres to the surface of the base plate. Thereafter, the elevating device 53 ascends and the base plate separates from the silicon melt.
  • the heat insulating shield plate 57 is placed on the crucible to protect the immersion mechanism such as rails. To place.
  • FIGS. 2A and 2B are diagrams showing another immersion mechanism different from the above immersion mechanism.
  • the base plate 2 is held by a pedestal 51 and connected to a drive mechanism 76.
  • the drive mechanism 76 has a rotary motion mechanism that not only moves along the axis 72 but also rotates by itself.
  • the elevating drive mechanism 73 lowers the drive mechanism 76 and the base plate 2 including the shaft 72 together and melts the silicon plate on the base plate. By attaching the liquid, the silicon thin plate 1 can be manufactured.
  • the driving mechanism 76 rotates as shown in Figure 2B, and the silicon thin plate 1 is placed on the ground plate 2 Take. With this position, even if the adhesive force of the silicon thin plate is reduced, the silicon thin plate can be prevented from detaching from the base plate 2 and dropping. Again, any mechanism for rotating the pedestal may be used as long as the base plate can move with a thin silicon plate placed on it during transfer.
  • FIG. 3 a silicon thin plate manufactured by the thin plate manufacturing apparatus is transferred to a cooling process while being attached to a carbon base plate.
  • the silicon thin plate and the lower plate cooled in the cooling step are separated by a thin plate separating device.
  • the base plate separated from the silicon thin plate is transferred to the base plate determination process, Is determined.
  • the three types of judgment are: (al) can be used again for immersion treatment, (a 2) processing is required before use for immersion treatment, and (a 3) is disposed of It is a judgment.
  • the height of the ridges on the surface of the carbon base plate immersed in the silicon melt decreases as the number of immersion treatments increases. If the height of the ridges is reduced, a high-quality silicon sheet with a uniform thickness cannot be formed. Further, as the number of uses increases, a hole-shaped concave portion is formed on the surface of the base plate. These hole-shaped recesses also deteriorate the surface properties of the silicon thin plate.
  • the determination that processing was necessary before use in the immersion treatment in (a2) was made by forming ridges and depressions of a predetermined height again on the surface of the base plate and cutting to remove the pits. It means that processing must be performed. New ridge-like irregularities are formed on the surface of the base plate by cutting, and the thickness is reduced by cutting. In the case where the thickness is reduced within a predetermined range, a silicon thin plate can be manufactured without any trouble by modifying the trajectory of dipping the base plate in the silicon melt.
  • the horizontal movement command, the vertical movement movement command, and the tilt movement command are each programmed by a personal computer, and transmitted to the controller, thereby realizing an arbitrary trajectory according to the program. I do.
  • One motor is assigned to each of the horizontal movement, the vertical movement, and the tilt movement described above, and each is individually driven by a total of three motors.
  • the above-mentioned program is used to obtain a silicon thin plate with a predetermined thickness corresponding to (si) fluctuations in the liquid level of the melt and (s 2) fluctuations in the thickness of the base plate. Control movement (movement).
  • the disposal in (a3) refers to a base plate whose thickness has decreased beyond the processing limit as a result of repeating the above cutting process. There is no room for cutting such a base plate, so it is discarded. The discarded base plate is replenished by adding a new base plate.
  • FIG. 4 is a diagram showing a base plate discriminating apparatus used in the base plate discriminating step.
  • the base plate 2 from which the silicon thin plate has been separated is sequentially fed from the back to the near side.
  • the base plate that has been fed forward is measured by the surface state measurement unit 11 and the side surface state measurement unit 12 first.
  • the surface condition measurement unit 11 observes the height of the ridge-shaped irregularities on the crystal growth surface of the base plate, the hole-shaped concave portions, etc.
  • the shape of the crystal growth surface is measured.
  • the side surface measurement unit 12 measures the thickness of the base plate and reads the identification mark and the usage history marking formed on the side surface. The surface properties, shape, thickness, markings, etc.
  • the base board management PC 14 ascertains the state and use history of the target base board, and based on the information, determines which of the above judgments (al), (a2), and (a3) Is determined.
  • the content of this determination is sent to the sorting device 15 via the determination transmission path 17.
  • the sorting device 15 sorts the target base plate to a transfer path corresponding to the determination.
  • the marking information is sent from the base plate management PC 14 to the marking device 13 via the marking information transmission path 18.
  • the marking device 13 performs marking on the side surface of the base plate based on the marking information.
  • the marking may be of any shape. For example, there is a method of engraving each time a character or symbol is used.
  • the base plate may be provided with an identification mark for identifying itself.
  • an identification mark unique to the base plate which differs for each base plate, may be used, or a lot of base plates may be used as one lot and a lot identification mark may be used.
  • the shape of the identification mark may be any shape. For example, there is a method of engraving characters, symbols, serial numbers, bar codes, etc.
  • the above marking is desirably made on a surface other than the surface on which the thin plate is grown, specifically on the side surface or the back surface.
  • the mark shape it is also possible to mark the growth surface.
  • the mark is transferred to the thin plate, and it is possible to grasp the used base plate or its history just by looking at the thin plate. The above marking makes it possible to reconsider the usage history even when an unexpected situation occurs and the identity of the base plate is confused.
  • the silicon thin plate separated from the base plate by the thin plate separating device is transferred to the edge cutting device, where the flash at the end is cut.
  • the burrs at the end are used as a raw material for silicon melt as broken material.
  • the silicon thin plate of the product part whose end has been removed is transferred to the thin plate inspection process, where it is inspected, and passed products are put into the solar cell manufacturing process. Rejected products are considered to be broken materials and used as raw materials for silicon melts.
  • the step of cutting the edge of the silicon thin plate will be described.
  • FIG. 5 is a view showing a state where the silicon thin plate 1 is formed on the crystal growth surface of the base plate 2.
  • the uppermost surface of the silicon thin plate is the surface that was in contact with the silicon melt to the end when the silicon adhered, and is the free surface la. Silicon is formed not only on one surface of the base plate, but also on the surrounding side surfaces. The side part is an end beam.
  • the silicon thin plate 1 is lifted up by the vacuum suction device 3 to be separated from the base plate 2.
  • the crystal growth surface 2a of the base plate is separated from the silicon thin plate.
  • the end 4 of the square silicon thin plate is cut off by a cutting portion 29 to obtain a silicon thin plate 5 as a product.
  • FIG. 8A is a perspective view of a silicon thin plate placed on the suction stage 25 of the end cutting device
  • FIG. 8B is a schematic sectional view thereof.
  • the end beam is cut along the dotted line in FIG. 8A.
  • the silicon thin plate shown in FIGS. 8A and 8B includes an end burr 4, and the silicon thin plate is placed on the suction stage 25 of the end cutting device with the free surface 1a on the top side. I have.
  • FIG. 9 is a diagram showing the XY stage where no silicon thin plate is placed. As shown in FIG. 9, the suction stage is integrated with the XY stage 23.
  • the outer shape of the suction stage is higher than the height of the end beam, smaller than the inner circumference of the end beam, and larger than the four rounds of cutting the thin silicon plate. Therefore, when the silicon thin plate is fixed to the suction stage, the end burrs do not interfere with the XY stage 23 and the suction stage.
  • FIG. 8A and 8B the silicon thin plate 1 with the burrs at the ends is mounted on the XY stage 23.
  • FIG. The silicon thin plate 1 is cut at its end by a laser beam 21 emitted from a cutting unit 22 while operating an XY table.
  • FIG. 10 is a diagram showing the silicon thin plate after the end is cut. Products and The silicon thin plate 5 is pulled up by the vacuum suction device 24 and transferred to a predetermined processing step. The burrs 4 at the end are used as a raw material for silicon melt.
  • the cutting step of forming one silicon thin plate separated from one base plate into four silicon thin plates will be described with reference to FIG.
  • the laser beam 21 emitted from the cutting unit 2'2 is used while scanning the XY stage 23 using the same end cutting device as that shown in FIGS. 8A and 8B.
  • it is molded into four thin silicon plates. After molding, each of the four silicon thin plates is pulled up by a vacuum suction device and transferred to a predetermined processing step in the same manner as in FIG.
  • the above cutting may be performed by scanning the laser beam 21 emitted from the cutting unit 22.
  • the cutting of the end portion and the cutting of the molding may be performed using different cutting devices.
  • the tact time required for cutting can be reduced as compared with using one cutting device.
  • the means for cutting the silicon thin plate is not limited to a laser, and a dicer, plasma cutting, electron beam cutting, or any other cutting means can be used.
  • FIG. 12 is a view showing an inspection process of a silicon thin plate whose end has been cut. It is assumed that the silicon thin plate 5 is sequentially fed from the left end of the figure to the right. The shape of the silicon thin plate 5 mounted on the XY stage 32 is inspected by the shape inspection unit 31. Next, the silicon thin plate 5 is transferred to a strength test unit 33, where it is subjected to a predetermined bending stress and subjected to a test to determine whether it will be broken. Since this strength test is a destructive test, it is preferable that only a predetermined number of silicon thin plates be extracted from one lot and tested. In addition, in the case of a normal silicon thin plate, a 100% test may be used as long as the test applies a bending stress that does not cause crushing.
  • FIGS. 13 and 14 show examples of a thin plate manufacturing apparatus.
  • a support plate 56 having a guide hole runs along the rail 52.
  • the lifting rails 54 and 55 form a shallow U-shaped orbit on the crucible so that the pedestal approaches the silicon melt on the silicon melt 10.
  • the upper end of the rod 58 is freely mounted on the rails 54, 55.
  • the base plate 2 is mounted on the pedestal 51 and run along the rails 52, 54, 55.
  • the rails 54 and 55 draw a smooth arc and follow a trajectory approaching the silicon melt 10.
  • the rod approaches the silicon melt through the guide hole formed in the support plate 56, and as a result, the surface layer of the base plate 2 is immersed in the silicon melt.
  • the rails 54, 55 take an ascending trajectory. The subsequent movement is the same as in FIG. 1B.
  • the base plate 2 is attached to a base plate coupler 42 arranged around the rotation axis 41.
  • the base plate coupler moves according to the rotation of the rotating shaft 41.
  • a silicon thin plate is formed on the surface of the base plate 2.
  • Example 1 the number of times the base plate was used was investigated. That is, a thin plate manufactured using a carbon base plate immersed in a silicon melt a predetermined number of times was inspected by the method shown in FIG. 12 to determine pass / fail.
  • the passing criterion was that the maximum filtered waviness defined by JISB 0601-1994 be less than or equal to 300 ⁇ .
  • the acceptance criteria were that the thickness of the entire plate was 350 ⁇ m ⁇ 50 m. Sheets that did not reach the inspection process due to poor sheet growth, dropping, cracking, or chipping were counted as rejected. Table 1 shows the results. Number of times of base plate use 1 time 10 times 50 times 100 times 500 times 1000 times
  • Example 2 the number of times of cutting the base plate and the change in the thickness of the base plate were investigated. Table 2 shows the thickness of the base plate according to the number of times of cutting and the progress of the thin plate inspection results.
  • the method of inspecting a thin plate is the same as in Example 1.
  • the thickness of the base plate decreases as the number of cutting operations increases.
  • the rate of reduction can be estimated to be 2 mm in thickness per cut.
  • the cutting allowance per cutting is 2 mm.
  • the pass rate of the silicon thin plate becomes 75% when the number of cutting operations is two, and the yield is considerably deteriorated.
  • a pass rate of 97% was maintained even after six cutting operations. In the case of eight cuttings, the thickness becomes too thin and immersion is impossible.
  • Example 3 the relationship between the presence / absence of cutting of the end of the silicon thin plate, the presence / absence of inspection after cutting, and the non-defective product ratio was investigated.
  • the inspection method after cutting is the same as in Example 1.
  • the product yield after the solar cell fabrication process is improved. If the edges remain, the screen during electrode printing cannot contact the surface that was in contact with the base plate, resulting in poor electrode printing and deteriorating the characteristics. Also, the overall rate of non-defective products does not change depending on the presence or absence of inspection. Also, depending on the presence or absence of the inspection, the overall non-defective rate does not change. However, the non-defective rate in the solar cell fabrication process was inferior to that without inspection. If the undulation or thickness distribution of the silicon thin plate is out of the acceptable standard, the anti-reflection film cannot be formed uniformly and the electrodes cannot be formed uniformly, which causes poor characteristics. For this reason, before conducting the solar cell fabrication process, the inspection is performed in advance and the defective silicon thin plate is removed, so that waste in subsequent steps can be reduced.
  • Table 4 shows the results of investigations on the vertical relationship between the silicon thin plate and the base plate during transport immediately after the immersion treatment, and the attitude of the silicon thin plate when cutting the edge of the silicon thin plate.
  • the manufacturing efficiency of the thin plate can be increased, and the manufacturing cost can be reduced.
  • a high quality silicon thin plate can be manufactured with high efficiency, so that the manufacturing cost can be reduced. For this reason, it is expected to be widely used in fields where cost competition with other power generation methods such as solar power generation is severe.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Photovoltaic Devices (AREA)

Abstract

A thin sheet manufacturing method with very high manufacturing efficiency and at a revolutionarily low manufacturing cost per unit area both achieved by expanding the production scale and a thin sheet manufacturing apparatus. A silicon thin sheet (1) is manufactured by the process including a dipping step in which the surface portion of a base sheet (2) is dipped in a silicon melt (10), and silicon is made to adhere to the surface of the base sheet. After the silicon thin sheet (1) formed on the surface (2a) of the base sheet (2) is separated from the base sheet, at least the peripheral portion (4) of the silicon thin sheet (1) is cut. Since a high-quality silicon thin sheet can be manufactured at a high efficiency, the manufacturing cost can be lowered.

Description

明細書 薄板製造方法および薄板 造装置 技術分野  Description Sheet manufacturing method and sheet manufacturing apparatus
本発明は、 薄板製造方法および薄板製造装置に関し、 より具体的にはシリコン 薄板製造方法およびシリコン薄板製造装置に関するものである。 背景技術  The present invention relates to a thin plate manufacturing method and a thin plate manufacturing apparatus, and more particularly, to a silicon thin plate manufacturing method and a silicon thin sheet manufacturing apparatus. Background art
民生用の太陽電池には、 シリコンが用いられる。 シリコンは、 単結晶、 多結晶、 非晶質の順に変換効率が低下するが、 他方、 上記の順にコストが安く大面積化し やすくなる。 このうち、 非晶質シリコンは、 S i H4を原料として C V D (Chemical Vapor Deposition)法により、 ガラス、 プラスチック、 金属基板など の上に堆積することができるので安価であり、 かつ大面積化しやすい。 変換効率 は最高約 1 2 %程度である。 . Silicon is used for consumer solar cells. The conversion efficiency of silicon decreases in the order of single crystal, polycrystal, and amorphous, but on the other hand, the cost is lower and the area is easier to increase. Among these, amorphous silicon, the S i H 4 CVD (Chemical Vapor Deposition) method as a raw material, glass, plastic, inexpensive because it can be deposited on such a metal substrate, and tends to a large area . The conversion efficiency is up to about 12%. .
また、 単結晶シリコンは C Z (Czochralski)法により直径 1 5 0 mm ( 6イン チ) や 2 0 0 mm ( 8インチ) のインゴットが製造され、 大型化も可能であり、 変換効率は 1 5 %を超えることができる。  In addition, single-crystal silicon can be produced in diameters of 150 mm (6 inches) or 200 mm (8 inches) by the CZ (Czochralski) method, and it can be made larger, with a conversion efficiency of 15%. Can be exceeded.
また、 多結晶シリコンは、 板ガラスの製造技術等を用いて、 各種の製造方法が 検討されている。 多結晶シリコンは非晶質シリコンと同様に大面積化しやすいが、 変換効率は、 単結晶シリコンと非晶質シリコンとの中間に位置する。  For polycrystalline silicon, various manufacturing methods are being studied using sheet glass manufacturing technology and the like. Polycrystalline silicon tends to have a large area like amorphous silicon, but the conversion efficiency is located between monocrystalline silicon and amorphous silicon.
上記の各種のシリコン製造方法は、 大面積化、 変換効率の向上および製造コス トの低減をもたらしてきた。 しカゝし、 現状の原子力発電や火力発電などの大規模 な発電方式に比べてその発電単価はかなり割高であり、 製造コストを低減する必 要がある。 発明の開示  The various silicon manufacturing methods described above have resulted in larger areas, higher conversion efficiencies, and lower manufacturing costs. However, compared to current large-scale power generation methods such as nuclear power and thermal power generation, the unit cost of power generation is considerably higher, and it is necessary to reduce manufacturing costs. Disclosure of the invention
本発明は、 生産規模の拡大により製造効率を大きく高めることができ、 単位面 積当りの製造コストを画期的に低下させることができる、 薄板製造方法およびそ の薄板製造装置を提供することを目的とする。 The present invention provides a thin plate manufacturing method and a thin plate manufacturing method that can greatly increase the manufacturing efficiency by expanding the production scale and can drastically reduce the manufacturing cost per unit area. It is an object of the present invention to provide a thin plate manufacturing apparatus.
本^!明の薄板製造方法は、 融液に下地板の表層部を浸し、 その下地板の表面に 薄板を付着させる浸漬処理により薄板を製造する方法である。 この製造方法では、 下地板の表面に形成された薄板を、 下地板と分離した後、 その薄板の少なくとも 周縁部を切断する。  The thin plate manufacturing method of the present invention is a method of manufacturing a thin plate by immersing a surface layer of a base plate in a melt and attaching the thin plate to the surface of the base plate. In this manufacturing method, after the thin plate formed on the surface of the base plate is separated from the base plate, at least the peripheral edge of the thin plate is cut.
この方法により、 下地板の側面にかかって生成する薄板の周縁部のバリ部分を 除去し、 平坦な薄板を得ることができる。 少なくともとは、 バリ部分の除去とは 別にさらに、 製品寸法にする成形の切断を行なってもよいことを意味している。 また、 下地板と分離した後、 その薄板を所定の寸法となるように、 成形の切断を 行なってもよい。 すなわち、 上記周縁部の除去を上記成形の切断と同時に行なつ てもよいし、 周縁部の除去と無関係に成形の切断を行なってもよい。 上記周縁部 の除去を上記成形の切断と同時に行なう場合には、 1工程で成形された薄板を得 ることができる。  By this method, a burr portion on the peripheral edge of the thin plate generated on the side surface of the base plate can be removed, and a flat thin plate can be obtained. At least means that apart from the removal of the burr part, a cutting of the molding to the product dimensions may be performed. After separation from the base plate, the forming of the thin plate may be cut so as to have a predetermined size. That is, the removal of the peripheral portion may be performed simultaneously with the cutting of the molding, or the cutting of the molding may be performed regardless of the removal of the peripheral portion. In the case where the removal of the peripheral portion is performed simultaneously with the cutting of the forming, a thin plate formed in one step can be obtained.
上記において、 バリを除いた薄板を、 たとえば 2枚取りや 3枚取りなど複数枚 取りするように、 成形の切断を行なう。 成形の切断を行なうことにより、 たとえ ば太陽電池用のシリコン薄板を能率よく得ることができる。  In the above, the molding is cut so that multiple thin plates, such as two or three, are removed from the thin plate excluding burrs. By cutting the molding, for example, a silicon thin plate for a solar cell can be efficiently obtained.
上記の切断された周縁部を回収し、 シリコン融液の原料に用いることが望まし く、 製造コストを低減することができる。  It is desirable that the above-mentioned cut peripheral portion is collected and used as a raw material of the silicon melt, and the production cost can be reduced.
上記の周縁部が切断された薄板について、 全数または抜き取りで形状検査を行 なうことが好ましい。 たとえばシリコン薄板について検査を行ない合格品を次ェ 程に回すことにより、 たとえば、 後の太陽電池製造工程における処理工数を無駄 にすることがなくなる。  It is preferable to carry out a shape inspection on all or the thin sheets whose peripheral edge is cut. For example, by inspecting a silicon thin plate and passing a passing product to the next step, for example, the processing man-hour in a later solar cell manufacturing process is not wasted.
上記の形状検查では、 薄板における、 表面うねり、 表面粗さ、 厚み、 および厚 み分布、 のうちの少なくとも 1つが検査されることができる。  In the above-described shape inspection, at least one of surface waviness, surface roughness, thickness, and thickness distribution of the thin plate can be inspected.
上記検査により、 たとえば太陽電池の性能を支配するシリコン薄板の形状をチ エックすることが可能となる。  The above inspection makes it possible, for example, to check the shape of a silicon thin plate that governs the performance of a solar cell.
上記の周縁部が切断された薄板について、 全数または抜き取りで機械的強度の 試験を行なうことが好ましい。 たとえばシリコン薄板について試験を行ない合格 品を次工程に回すことにより、 たとえば、 後の太陽電池製造工程における処理工 数を無駄にすることがなくなる。 It is preferable to conduct a mechanical strength test on all the thin sheets whose peripheral edges have been cut out or withdrawn. For example, by conducting a test on a silicon thin plate and passing a passed product to the next process, for example, a processing step in a later solar cell manufacturing process No wasted numbers.
上記の浸漬処理の後、 下地板の結晶成長面に生成した薄板は下地板の上に る 姿勢で移送されるのがよい。 この方法により、 薄板が下地板から脱落するのを防 止することができる。  After the above-described immersion treatment, the thin plate formed on the crystal growth surface of the base plate is preferably transported in an attitude above the base plate. With this method, it is possible to prevent the thin plate from falling off the base plate.
上記の薄板の少なくとも周縁部を切断するとき、 薄板を、 その薄板成長時の自 由表面を上向きにして、 平面上に載置して、 切断するのがよい。 上記のように、 薄板成長時の自由表面を上向きにすることにより、 切断歩留りを向上させること ができる。  When cutting at least the peripheral portion of the above-mentioned thin plate, it is preferable that the thin plate is placed on a flat surface with the free surface during growth of the thin plate facing upward, and cut. As described above, the cutting yield can be improved by turning the free surface upward when growing a thin plate.
本発明の薄板製造装置は、 融液に下地板の表層部を浸し、 その下地板の表面に 薄板を付着させる浸漬処理により薄板を製造する薄板製造装置である。 この薄板 製造装置では、 下地板に付着している薄板をその下地板から分離する分離装置と、 下地板から分離された薄板の少なくとも周縁部を切断する切断装置とを備える。 この構成により、 太陽電池等に組み込まれて十分な性能を発揮することができる 薄板を供給することができる。  The thin sheet manufacturing apparatus of the present invention is a thin sheet manufacturing apparatus for manufacturing a thin plate by immersing a surface layer portion of a base plate in a melt and attaching the thin plate to the surface of the base plate. The apparatus for manufacturing a thin plate includes a separating device for separating a thin plate adhered to the base plate from the base plate, and a cutting device for cutting at least a peripheral portion of the thin plate separated from the base plate. With this configuration, it is possible to supply a thin plate that can be incorporated into a solar cell or the like and exhibit sufficient performance.
さらに、 薄板の形状を検査する検査装置とを備えてもよい。  Further, an inspection device for inspecting the shape of the thin plate may be provided.
このため、 たとえばシリコン薄板の品質を確認しながら薄板を次工程に送るこ とができる。 このため太陽電池に組みあがってから、 シリコン薄板の性能が劣る というような事態を避けることができる。  For this reason, for example, the thin sheet can be sent to the next process while checking the quality of the silicon sheet. For this reason, it is possible to avoid a situation in which the performance of a silicon thin plate is inferior after being assembled into a solar cell.
また、 さらに薄板の機械的強度を試験する強度試験装置を備えることが望まし い。  It is also desirable to provide a strength test device for testing the mechanical strength of the thin plate.
この構成により、 外観に現れずに、 たとえばシリコン薄板に内在する脆弱部な どを検出して、 次工程への投入を防止することができる。 図面の簡単な説明  With this configuration, it is possible to detect, for example, a fragile portion or the like existing in the silicon thin plate without appearing in the external appearance, and prevent input to the next process. BRIEF DESCRIPTION OF THE FIGURES
図 1 Aおよぴ図 1 Bは、 本発明の実施の形態における浸漬機構の装置を例示す る図であり、 図 1 Aは配置図であり、 図 1 Bは浸漬機構の斜視図である。  1A and 1B are diagrams illustrating an example of an apparatus of an immersion mechanism according to an embodiment of the present invention. FIG. 1A is a layout view, and FIG. 1B is a perspective view of the immersion mechanism. .
図 2 Aおよび図 2 Bは、 本発明の実施の形態における別の浸漬機構の装置を示 す図であり、 図 2 Aは浸漬のための昇降動作を示す図であり、 図 2 Bは回転機構 により付着したシリコン薄板を台座に載せた姿勢を示す図である。 図 3は、 本発明の実施の形態における薄板製造工程を示す図である。 2A and 2B are diagrams showing a device of another immersion mechanism according to the embodiment of the present invention, FIG. 2A is a diagram showing an elevating operation for immersion, and FIG. It is a figure which shows the attitude | position which mounted the silicon thin plate adhered by the mechanism on the pedestal. FIG. 3 is a diagram showing a thin plate manufacturing process according to the embodiment of the present invention.
図 4は、 図 3の薄板製造工程における下地板判別装置を示す図でおる。  FIG. 4 is a diagram showing a base plate discriminating apparatus in the thin plate manufacturing process of FIG.
図 5は、 下地板の表面に形成されるシリコン薄板を示す図である。  FIG. 5 is a diagram showing a silicon thin plate formed on the surface of the base plate.
図 6は、 シリコン薄板を下地板から分離する工程の図である。  FIG. 6 is a diagram of a process of separating a silicon thin plate from a base plate.
図 7は、 シリコン薄板の端部を切断した状態の図である。  FIG. 7 is a view showing a state in which the end of the silicon thin plate is cut.
図 8 Aおよび図 8 Bはシリコン薄板の端縁を切断する方法を示す図であり、 図 8 Aは斜視図であり、 図 8 Bは断面図である。  8A and 8B are views showing a method of cutting the edge of the silicon thin plate, FIG. 8A is a perspective view, and FIG. 8B is a sectional view.
図 9は、 シリコン薄板が载つていない状態の X Yステージを示す図である。 図 1 0は、 端部が除かれたシリコン薄板を移送する工程の図である。  FIG. 9 is a view showing the XY stage in a state where no silicon thin plate is provided. FIG. 10 is a diagram showing a process of transferring a silicon thin plate whose end has been removed.
図 1 1は、 1枚のシリコン薄板から 4枚のシリコン薄板を切り出す方法を示す 図である。  FIG. 11 is a diagram illustrating a method of cutting out four silicon thin plates from one silicon thin plate.
図 1 2は、 端部が除かれたシリコン薄板を検査する工程の図である。  FIG. 12 is a diagram of a process of inspecting a silicon thin plate from which an end has been removed.
図 1 3は、 本発明の実施の形態において、 浸漬機構の他の装置を钶示する図で ある。  FIG. 13 is a diagram showing another device of the immersion mechanism in the embodiment of the present invention.
図 1 4は、 本発明の実施の形態において、 浸漬機構のさらに他の装置を例示す る図である。 発明を実施するための最良の形態  FIG. 14 is a view illustrating still another device of the immersion mechanism in the embodiment of the present invention. BEST MODE FOR CARRYING OUT THE INVENTION
次に図面を用いて本発明の実施の形態について説明する。 図 1 Aおよび図 1 B は、 本発明の実施の形態における薄板製造装置を説明する図である。 図 1 Aに示 す薄板製造装置は、 るつぼ 9が配置された主室 6 1と、 その主室に連読して設け られた 2つの副室 6 3 , 6 4とを有する。 主室 6 1のるつぼ 9にはシリコン融液 1 0が貯留され、 そのシリコン融液 1 0に下地板 2の表層部を浸漬させる浸漬機 構 7 0が配置されている。 主室には不活性ガスが導入され、 大気圧よりもやや低 い圧力、 すなわち負圧に保たれる。 図 1 Aおよび図 1 Bの薄板製造装置では、 A rガスが導入され、 圧力 7 0 O Torrとされている。  Next, embodiments of the present invention will be described with reference to the drawings. 1A and 1B are diagrams illustrating a thin plate manufacturing apparatus according to an embodiment of the present invention. The thin plate manufacturing apparatus shown in FIG. 1A has a main chamber 61 in which a crucible 9 is arranged, and two sub-chambers 63 and 64 provided continuously in the main chamber. The silicon melt 10 is stored in the crucible 9 of the main chamber 61, and an immersion mechanism 70 for immersing the surface layer of the base plate 2 in the silicon melt 10 is arranged. An inert gas is introduced into the main chamber and maintained at a pressure slightly lower than atmospheric pressure, that is, a negative pressure. 1A and 1B, Ar gas is introduced and the pressure is set to 70 O Torr.
副室 6 3は下地板を搬入するための装入用副室である。 また、 副室 6 4は、 シ リコンを付着された下地板 2を主室 6 1から取り出すための取出用副室である。 装入用副室と取出用副室とは、 るつぼ 9をはさんで対面するように位置すること により、 下地板の流れが簡単になる。 し力 し、 必ずしもるつぼをはさんで対面す る必要はない。 この後、 説明する浸漬機構の構成や形状により、 2つの副室が主 室の同じ壁側に配置される場合もある。 その場合、 副室を 2つ設ける必要はなく、 1つの副室に搬入用ラインと搬出用ラインとを設けてもよい。 副室の雰囲気は、 主室と同じ雰囲気、 すなわち不活性ガス雰囲気で負圧とされている。 The sub-chamber 63 is a charging sub-chamber for loading the base plate. The sub-chamber 64 is a take-out sub-chamber for taking out the base plate 2 to which the silicon is attached from the main chamber 61. The loading sub-chamber and the unloading sub-chamber should be located so as to face each other with the crucible 9 therebetween. This simplifies the flow of the base plate. It is not necessary to face each other with a crucible. Thereafter, depending on the configuration and shape of the immersion mechanism to be described, the two sub-chambers may be arranged on the same wall side of the main chamber. In this case, it is not necessary to provide two sub-chambers, and one sub-chamber may be provided with a carry-in line and a carry-out line. The atmosphere in the sub-chamber is the same as that in the main chamber, that is, the atmosphere is inert gas and has a negative pressure.
次に、 薄板製造方法について説明する。 主室 6 1が稼動中のとき、 副室 6 3と 主室 6 1との間の気密性扉 8 3を閉めた状態で、 気密性扉 8 1を開け、 下地板 2 を副室 6 3に搬入する。 次いで、 気密性扉 8 1を閉め、 副室 6 3の雰囲気を主室 6 1と同様にする。 この後、 主室における浸漬機構の稼動にしたがって、 主室と の間の気密性扉 8 3を開け、 下地板 2を主室 6 1に装入する。  Next, a method of manufacturing a thin plate will be described. When the main chamber 6 1 is in operation, the airtight door 8 1 is opened with the airtight door 8 3 between the sub chamber 6 3 and the main chamber 6 1 closed, and the base plate 2 is moved to the sub chamber 6 3 Carry in. Next, the airtight door 81 is closed, and the atmosphere of the sub chamber 63 is made the same as that of the main chamber 61. Thereafter, according to the operation of the immersion mechanism in the main room, the hermetic door 83 between the main room and the main room is opened, and the base plate 2 is inserted into the main room 61.
主室 6 1では、 浸漬機構 7 0が下地板 2を把握して、 るつぼ 9の上に移送する。 次いで、 下地板を下降させ、 下地板の表層部をシリコン融液 1 0に浸漬し、 下地 板の表面にシリコン層を付着させる。 この後、 シリコンを付着させた下地板 2は 上昇し、 るつぼ 9の上を離れる。 この間、 付着されたシリコンは自然冷却され、 固相が成長し、 所定のシリコン薄板 1が形成される。  In the main room 61, the immersion mechanism 70 grasps the base plate 2 and transfers it onto the crucible 9. Next, the base plate is lowered, and the surface layer of the base plate is immersed in a silicon melt 10 to adhere a silicon layer to the surface of the base plate. Thereafter, the base plate 2 on which the silicon is adhered rises and leaves the crucible 9. During this time, the attached silicon is naturally cooled, a solid phase grows, and a predetermined silicon thin plate 1 is formed.
下地板に付着して形成されたシリコン薄板は、 下地板の上に載せられた状態で 移送されるように、 シリコン薄板を付けたまま下地板は何らかの回転機構により 回転されることが望ましい。  It is desirable that the base plate is rotated by some rotating mechanism while the silicon base plate is attached so that the silicon thin plate formed by attaching to the base plate is transported while being mounted on the base plate.
シリコン薄板 1が形成された下地板 2は、 副室 6 4の気密性扉 8 1が閉められ ていることを確認して開けられた気密' (·生扉 8 3を通り取出用副室 6 4に移送され る。 取出用副室 6 4の雰囲気は、 主室 6 1の雰囲気と同じになるように制御され ている。 この後、 シリコン薄板が形成された下地板は、 気密性扉 8 3が閉められ た状態で気密性扉 8 1を開けて外に搬出される。 下地板の表面に形成されたシリ コン薄板を冷却するために、 主室 6 1、 副室 6 4または外部において、 少なくと も 1箇所に冷却を加速する冷却装置を設け、 その冷却装置によって、 シリコンを 付着した下地板を冷却してもよい。  The base plate 2 on which the silicon thin plate 1 is formed is airtightly opened after confirming that the airtight door 8 1 of the sub chamber 6 4 is closed. The atmosphere in the sub-chamber 64 is controlled so as to be the same as the atmosphere in the main chamber 61. Thereafter, the base plate on which the silicon thin plate is formed is sealed with an airtight door 8. With the 3 closed, open the airtight door 81 and carry it out.To cool the silicon thin plate formed on the surface of the base plate, the main chamber 61, sub chamber 64, or outside At least one cooling device for accelerating the cooling may be provided, and the cooling device may be used to cool the silicon-adhered base plate.
主室において下地板を移送し、 シリコン融液 1◦に浸漬する浸漬機構 7 0には、 どのような搬送機構を用いてもよい。  Any transport mechanism may be used as the immersion mechanism 70 for transporting the base plate in the main chamber and immersing it in the silicon melt 1 °.
図 1 Bに示す薄板作製装置では、 支持板 5 6をレール 5 2に沿って走行させ、 水平方向の移送を行なう。 また、 上下方向の移送は、 レーノレ 5 2を支持し、 ポー ルに沿つて上下する昇降装置 5 3を昇降させることによって行なう。 In the thin plate manufacturing apparatus shown in FIG. 1B, the support plate 56 is run along the rail 52, Perform horizontal transfer. The transfer in the vertical direction is performed by raising and lowering a lifting device 53 that supports the reynole 52 and moves up and down along the pole.
下地板 2は、 ロッド 5 8により支持板 5 6に連結された台座 5 1に取り付けら れ、 支持板 5 6のレール 5 2上の走行にしたがって移動する。 るつぼ 9のシリコ ン融液 1 0の上で水平方向の移動を止め、 昇降装置 5 3が下降することにより、 レール 5 2とともに支持板 5 6、 ロッド 5 8、 台座 5 1および下地板 2が下降し、 下地板の表層部がシリコン融液に浸潰される。 この結果、 下地板の表面にシリコ ンが付着される。 この後、 昇降装置 5 3は上昇し、 下地板はシリコン融液から離 脱する。 さらに、 上記上昇後に水平運動になり、 るつぼから離れた位置でシリコ ンを付着した下地板を台座から外す。 シリコン融液は 1 4 0 0〜 1 5 0 0 °Cの高 温であり、 またシリコンの蒸着もあるので、 レールなどの浸漬機構を保護するた め、 断熱性の遮蔽板 5 7をるつぼ上に配置する。  The base plate 2 is attached to a pedestal 51 connected to a support plate 56 by a rod 58, and moves as the support plate 56 runs on the rail 52. The horizontal movement is stopped on the silicon melt 10 in the crucible 9 and the elevating device 53 descends, so that the support plate 56, the rod 58, the pedestal 51, and the base plate 2 are moved together with the rail 52. It descends, and the surface layer of the base plate is immersed in the silicon melt. As a result, silicon adheres to the surface of the base plate. Thereafter, the elevating device 53 ascends and the base plate separates from the silicon melt. Furthermore, after the above-mentioned ascent, horizontal movement is made, and the base plate on which the silicon is adhered is removed from the pedestal at a position away from the crucible. Since the silicon melt is at a high temperature of 140 to 150 ° C and silicon is deposited, the heat insulating shield plate 57 is placed on the crucible to protect the immersion mechanism such as rails. To place.
図 2 Aおよび図 2 Bは、 上記の浸漬機構と異なる別の浸漬機構を示す図である。 下地板 2は台座 5 1に保持され、 駆動機構 7 6に連結されている。 駆動機構 7 6 は軸 7 2に沿って移動するだけでなく、 それ自身回転する回転運動機構を有して いる。 るつぼ内のシリコン融液に下地板を浸漬する際には、 昇降駆動機構 7 3が 軸 7 2を含めて駆動機構 7 6や下地板 2などの部材をまとめて下降させて下地板 にシリコン融液を付着させてシリコン薄板 1を作製することができる。  2A and 2B are diagrams showing another immersion mechanism different from the above immersion mechanism. The base plate 2 is held by a pedestal 51 and connected to a drive mechanism 76. The drive mechanism 76 has a rotary motion mechanism that not only moves along the axis 72 but also rotates by itself. When the base plate is immersed in the silicon melt in the crucible, the elevating drive mechanism 73 lowers the drive mechanism 76 and the base plate 2 including the shaft 72 together and melts the silicon plate on the base plate. By attaching the liquid, the silicon thin plate 1 can be manufactured.
シリコン融液を付着させシリコン薄板 1が形成された後、 移送の際には駆動機 構 7 6は図 2 Bに示すように回転し、 シリコン薄板 1が下地板 2の上に載るよう な姿勢をとる。 この姿勢により、 万一シリコン薄板の付着力が低下してもシリコ ン薄板が下地板 2から離脱して落下することを避けることができる。 繰り返しに なるが、 台座を回転させる機構は、 移送にあたって下地板がシリコン薄板を載せ て移動することができればどのような機構を用いてもよい。  After the silicon melt is applied and the silicon thin plate 1 is formed, during transfer, the driving mechanism 76 rotates as shown in Figure 2B, and the silicon thin plate 1 is placed on the ground plate 2 Take. With this position, even if the adhesive force of the silicon thin plate is reduced, the silicon thin plate can be prevented from detaching from the base plate 2 and dropping. Again, any mechanism for rotating the pedestal may be used as long as the base plate can move with a thin silicon plate placed on it during transfer.
次に本発明の特徴となる、 下地板とシリコン薄板の処理工程について説明する。 図 3において、 薄板作製装置で作製されたシリコン薄板はカーボン製の下地板に 付着した状態で冷却工程に移送される。 冷却工程で冷却されたシリコン薄板と下 地板とは、 薄板分離装置において分離される。  Next, processing steps of the base plate and the silicon thin plate, which are features of the present invention, will be described. In FIG. 3, a silicon thin plate manufactured by the thin plate manufacturing apparatus is transferred to a cooling process while being attached to a carbon base plate. The silicon thin plate and the lower plate cooled in the cooling step are separated by a thin plate separating device.
シリコン薄板と分離された下地板は、 下地板判別工程に移送され、 3種類の判 定がなされる。 3種類の判定とは、 (a l) そのまま浸漬処理に再び用いること ができる、 (a 2) 浸漬処理に用いる前に加工処理が必要である、 および (a 3) 廃棄処分とする、 の 3つの判定である。 シリコン融液に浸漬されるカーボン製の 下地板は、 浸漬処理の回数の増大につれ、 その表面の畝状凹凸の高さが減少する。 畝状凹凸の高さが減少すると、 均一な厚みの高品質のシリコン薄板が形成されな い。 また、 使用回数の增大につれ、 下地板の表面には孔状凹部が形成される。 こ の孔状凹部も、 シリコン薄板の表面性状を劣化させる。 The base plate separated from the silicon thin plate is transferred to the base plate determination process, Is determined. The three types of judgment are: (al) can be used again for immersion treatment, (a 2) processing is required before use for immersion treatment, and (a 3) is disposed of It is a judgment. The height of the ridges on the surface of the carbon base plate immersed in the silicon melt decreases as the number of immersion treatments increases. If the height of the ridges is reduced, a high-quality silicon sheet with a uniform thickness cannot be formed. Further, as the number of uses increases, a hole-shaped concave portion is formed on the surface of the base plate. These hole-shaped recesses also deteriorate the surface properties of the silicon thin plate.
( a 2) の浸漬処理に用いる前に加工処理が必要であるとする判定は、 下地板 の表面に再び所定高さの畝状凹凸を形成し、 力つ孔状凹部を除去するために切削 加工を行なう必要があることを意味する。 切削加工により下地板の表面は新たな 畝状凹凸が形成され、 切削により厚みが減少する。 所定範囲の厚み減少の場合に は、 下地板をシリコン融液に浸漬する軌道を修正することによりシリコン薄板を 支障なく製造することができる。 このとき、 通常は、 パソコンにより、 水平方向 移動指令と、 昇降動作移動指令と、 傾斜動作指令とを、 それぞれプログラミング し、 それをコントローラに送信しておくことにより、 プログラム通りの任意軌道 'を実現する。 上記の水平方向移動と、 昇降動作移動と、 傾斜動作とは、 それぞれ の動作に 1つのモータを割り当てられ、 合計 3つのモータによって個別に駆動さ れる。 上記のプログラムは、 (s i) 融液の液面の変動および (s 2) 下地板の板 厚の変動、 に対応して所定の厚さのシリコン薄板が得られるよう、 上記の 3つの 独立した移動 (動作) を制御する。  The determination that processing was necessary before use in the immersion treatment in (a2) was made by forming ridges and depressions of a predetermined height again on the surface of the base plate and cutting to remove the pits. It means that processing must be performed. New ridge-like irregularities are formed on the surface of the base plate by cutting, and the thickness is reduced by cutting. In the case where the thickness is reduced within a predetermined range, a silicon thin plate can be manufactured without any trouble by modifying the trajectory of dipping the base plate in the silicon melt. At this time, usually, the horizontal movement command, the vertical movement movement command, and the tilt movement command are each programmed by a personal computer, and transmitted to the controller, thereby realizing an arbitrary trajectory according to the program. I do. One motor is assigned to each of the horizontal movement, the vertical movement, and the tilt movement described above, and each is individually driven by a total of three motors. The above-mentioned program is used to obtain a silicon thin plate with a predetermined thickness corresponding to (si) fluctuations in the liquid level of the melt and (s 2) fluctuations in the thickness of the base plate. Control movement (movement).
( a 3) の廃棄処分は、 上記の切削加工を繰り返した結果、 下地板の厚みが減 少し、 加工限界を超えた下地板をさす。 このような下地板は切削加工の余地がな いので、 廃棄処分とする。 廃棄処理された下地板は、 下地板の新品を投入するこ とにより補給される。  The disposal in (a3) refers to a base plate whose thickness has decreased beyond the processing limit as a result of repeating the above cutting process. There is no room for cutting such a base plate, so it is discarded. The discarded base plate is replenished by adding a new base plate.
図 4は下地板の判別工程において用いられる下地板判別装置を示す図である。 図 4において、 シリコン薄板を分離された下地板 2が、 奥から手前側に順送りさ れてくる。 順送りされてきた下地板は、 まず表面状態測定ュニット 1 1および側 面状態測定ュニット 1 2による測定が行なわれる。 表面状態測定ュニット 1 1は、 下地板の結晶成長面の畝状凹凸の高さや、 孔状凹部などを観察し所定の指標に表 し、 また、 結晶成長面の形状が測定される。 側面状態測定ュニット 1 2は、 下地 板の厚みを測定し、 側面に形成された識別マークや使用履歴マーキングを読み取 る。 上記の結晶成長面の表面性状、 形状、 厚み、 マーキング等は下地板情報伝達 経路 1 6を経て、 下地板管理 P C 1 4に送られる。 この下地板管理 P C 1 4によ り、 対象となる下地板の状態と使用履歴が把握され、 その情報を基に、 上記の判 定 (a l) , ( a 2) , ( a 3) のいずれかに該当するか判定がなされる。 FIG. 4 is a diagram showing a base plate discriminating apparatus used in the base plate discriminating step. In FIG. 4, the base plate 2 from which the silicon thin plate has been separated is sequentially fed from the back to the near side. The base plate that has been fed forward is measured by the surface state measurement unit 11 and the side surface state measurement unit 12 first. The surface condition measurement unit 11 observes the height of the ridge-shaped irregularities on the crystal growth surface of the base plate, the hole-shaped concave portions, etc. In addition, the shape of the crystal growth surface is measured. The side surface measurement unit 12 measures the thickness of the base plate and reads the identification mark and the usage history marking formed on the side surface. The surface properties, shape, thickness, markings, etc. of the crystal growth surface are sent to the base plate management PC 14 via the base plate information transmission path 16. The base board management PC 14 ascertains the state and use history of the target base board, and based on the information, determines which of the above judgments (al), (a2), and (a3) Is determined.
この判定の内容が、 判定伝達経路 1 7を経て振り分け装置 1 5に送られる。 振 り分け装置 1 5は、 対象となる下地板をその判定に対応した移送経路に振り分け る。 また、 下地板管理 P C 1 4からマーキング装置 1 3に、 マーキング情報伝達 経路 1 8を経てマーキング情報が送られる。 マーキング装置 1 3は、 そのマーキ ング情報に基づいて、 下地板の側面にマーキングをする。 マーキングの形状は、 どのような形状でも構わない。 たとえば、 文字や記号を使用するごとに刻印する などの方法がある。  The content of this determination is sent to the sorting device 15 via the determination transmission path 17. The sorting device 15 sorts the target base plate to a transfer path corresponding to the determination. Also, the marking information is sent from the base plate management PC 14 to the marking device 13 via the marking information transmission path 18. The marking device 13 performs marking on the side surface of the base plate based on the marking information. The marking may be of any shape. For example, there is a method of engraving each time a character or symbol is used.
また、 下地板は、 それ自身を識別するための識別マークを備えてもよい。 識別 マークは、 下地板ごとに異なる、 下地板固有の識別マークを使用してもよいし、 複数枚の下地板を 1ロットとし、 ロット識別マークを使用してもよい。 下地板に 識別マークを有することで、 上記下地板の使用履歴集中管理をより精度よく行な い、 なおかつ、 マーキングは使用前に一度行なうだけでよい。 識別マークの形状 は、 どのような形状でも構わない。 たとえば、 文字や記号、 連番、 バーコードな .どを刻印する方法がある。  Further, the base plate may be provided with an identification mark for identifying itself. As the identification mark, an identification mark unique to the base plate, which differs for each base plate, may be used, or a lot of base plates may be used as one lot and a lot identification mark may be used. By having the identification mark on the base plate, the use history central management of the base plate can be more accurately managed, and the marking need only be performed once before use. The shape of the identification mark may be any shape. For example, there is a method of engraving characters, symbols, serial numbers, bar codes, etc.
上記マーキングは、 薄板を成長させる面以外、 具体的には側面または裏面に行 なうことが望ましい。 ただし、 マーク形状によっては、 成長面にマーキングを行 なうことも可能である。 この場合、 薄板にマークが転写されることになり、 薄板 を見ただけで使用した下地板またはその履歴を把握することが可能となる。 上記マーキングによって、 予想外の事態が発生して下地板の素性が混乱した際 にも使用履歴を把握しなおすことが可能となる。  The above marking is desirably made on a surface other than the surface on which the thin plate is grown, specifically on the side surface or the back surface. However, depending on the mark shape, it is also possible to mark the growth surface. In this case, the mark is transferred to the thin plate, and it is possible to grasp the used base plate or its history just by looking at the thin plate. The above marking makes it possible to reconsider the usage history even when an unexpected situation occurs and the identity of the base plate is confused.
上記の下地板再使用システムにより、 下地板の再使用をはかりながら一定レべ ル以上の品質のシリコン薄板を高い歩留りを維持して製造することができる。 次に、 シリコン薄板について説明する。 図 3において、 薄板分離装置によって下地板から分離されたシリコン薄板は、 端部切断装置に移送され、 端部のばりを切断される。 端部のばりは、 破材として シリコン融液の原料に用いられる。 また、 端部を除去された製品部分のシリコン 薄板は、 薄板検査工程に移送され、 検査を受け、 合格品は太陽電池作製工程に投 入される。 また、 不合格品は破材とされ、 シリコン融液の原料に用いられる。 次に、 シリコン薄板の端部の切断工程について説明する。 図 5は、 下地板 2の 結晶成長面にシリコン薄板 1が形成された状態を示す図である。 シリコン薄板の 最も上の表面はシリコンが付着する際にシリコン融液と最後まで接していた面で あり、 自由表面 l aである。 シリコンは下地板の 1つの表面だけでなく、 その周 囲の側面にも形成されている。 側面の部分は、 端部ばりである。 次に、 図 6に示 すように、 このシリコン薄板 1を真空吸引装置 3により持ち上げることにより、 下地板 2から分離する。 下地板の結晶成長面 2 aとシリコン薄板とは離れた状態 となる。 次いで、 図 7に示すように、 角皿状のシリコン薄板の端部 4を、 切断部 2 9により切り離すことにより製品となるシリコン薄板 5を得る。 With the above-mentioned base plate reuse system, it is possible to manufacture a silicon thin plate of a certain level or higher while maintaining a high yield while reusing the base plate. Next, the silicon thin plate will be described. In FIG. 3, the silicon thin plate separated from the base plate by the thin plate separating device is transferred to the edge cutting device, where the flash at the end is cut. The burrs at the end are used as a raw material for silicon melt as broken material. Also, the silicon thin plate of the product part whose end has been removed is transferred to the thin plate inspection process, where it is inspected, and passed products are put into the solar cell manufacturing process. Rejected products are considered to be broken materials and used as raw materials for silicon melts. Next, the step of cutting the edge of the silicon thin plate will be described. FIG. 5 is a view showing a state where the silicon thin plate 1 is formed on the crystal growth surface of the base plate 2. The uppermost surface of the silicon thin plate is the surface that was in contact with the silicon melt to the end when the silicon adhered, and is the free surface la. Silicon is formed not only on one surface of the base plate, but also on the surrounding side surfaces. The side part is an end beam. Next, as shown in FIG. 6, the silicon thin plate 1 is lifted up by the vacuum suction device 3 to be separated from the base plate 2. The crystal growth surface 2a of the base plate is separated from the silicon thin plate. Next, as shown in FIG. 7, the end 4 of the square silicon thin plate is cut off by a cutting portion 29 to obtain a silicon thin plate 5 as a product.
図 8 Aおよび図 8 Bを用いて、 端部を切断する工程を詳しく説明する。 図 8 A は端部切断装置の吸着ステージ 2 5上に置かれたシリコン薄板の斜視図を、 図 8 Bはその断面図を模式的に示したものである。 図 8 Aの点線に沿って端部ばりは 切断される。 図 8 A、 図 8 Bに示すシリコン薄板は端部のばり 4を含んでおり、 シリコン薄板は自由表面 1 aを天側にして、 端部切断装置の吸着ステージ 2 5上 に载せられている。 図 9は、 シリコン薄板が載っていない状態の X Yステージを 示す図である。 この図 9に示すように、 吸着ステージは、 X Yステージ 2 3と一 体となっている。 吸着ステージの外形は、 端部ばりの高さより高く、 端部ばりの 内周よりは小さく、 かつシリコン薄板の切断四周よりは大きい。 したがって、 シ リコン薄板が吸着ステージに固定されたとき、 端部ばりが X Yステージ 2 3およ び吸着ステージと干渉することはない。  The step of cutting the end will be described in detail with reference to FIGS. 8A and 8B. FIG. 8A is a perspective view of a silicon thin plate placed on the suction stage 25 of the end cutting device, and FIG. 8B is a schematic sectional view thereof. The end beam is cut along the dotted line in FIG. 8A. The silicon thin plate shown in FIGS. 8A and 8B includes an end burr 4, and the silicon thin plate is placed on the suction stage 25 of the end cutting device with the free surface 1a on the top side. I have. FIG. 9 is a diagram showing the XY stage where no silicon thin plate is placed. As shown in FIG. 9, the suction stage is integrated with the XY stage 23. The outer shape of the suction stage is higher than the height of the end beam, smaller than the inner circumference of the end beam, and larger than the four rounds of cutting the thin silicon plate. Therefore, when the silicon thin plate is fixed to the suction stage, the end burrs do not interfere with the XY stage 23 and the suction stage.
図 8 Aおよび図 8 Bにおいて、 端部にばりが付いたシリコン薄板 1は X Yステ ージ 2 3に搭載されている。 このシリコン薄板 1は、 X Yテーブルを操作しなが ら、 その端部を切断ュニット 2 2から出射されるレーザービーム 2 1により切断 される。 図 1 0は、 端部が切断された後のシリコン薄板を示す図である。 製品と なるシリコン薄板 5は真空吸引装置 2 4により引き上げられ、 所定の処理工程へ と移送される。 また、 端部のばり 4はシリコン融液の原科として用いられる。 図 1 1を用いて、 1枚の下地板から分離された 1枚のシリコン薄板から 4枚の シリコン薄板に成型する切断工程を説明する。 この場合、 図 8 A、 8 Bと同様の 端部切断装置を用いて、 X Yステージ 2 3を走査させながら切断ユニット 2' 2か ら出射されるレーザービーム 2 1を用いることにより、 端部ばり 4の切断と同じ 工程において 4枚のシリコン薄板に成型される。 成型後、 図 1 0と同様にして、 4枚のシリコン薄板はそれぞれ真空吸引装置によって引き上げられ、 所定の処理 工程へと移送される。 8A and 8B, the silicon thin plate 1 with the burrs at the ends is mounted on the XY stage 23. FIG. The silicon thin plate 1 is cut at its end by a laser beam 21 emitted from a cutting unit 22 while operating an XY table. FIG. 10 is a diagram showing the silicon thin plate after the end is cut. Products and The silicon thin plate 5 is pulled up by the vacuum suction device 24 and transferred to a predetermined processing step. The burrs 4 at the end are used as a raw material for silicon melt. The cutting step of forming one silicon thin plate separated from one base plate into four silicon thin plates will be described with reference to FIG. In this case, the laser beam 21 emitted from the cutting unit 2'2 is used while scanning the XY stage 23 using the same end cutting device as that shown in FIGS. 8A and 8B. In the same process as the cutting in step 4, it is molded into four thin silicon plates. After molding, each of the four silicon thin plates is pulled up by a vacuum suction device and transferred to a predetermined processing step in the same manner as in FIG.
別の実施形態としては、 切断ユニット 2 2から出射されるレーザービーム 2 1 を走査させることで上記の切断を行なっても良い。  As another embodiment, the above cutting may be performed by scanning the laser beam 21 emitted from the cutting unit 22.
別の実施形態としては、 端部の切断と成型の切断を別の切断装置を用いて行な つても良い。 この場合、 1つの切断装置を用いるよりも切断に要するタクトタイ ムが短縮することが可能となる。  In another embodiment, the cutting of the end portion and the cutting of the molding may be performed using different cutting devices. In this case, the tact time required for cutting can be reduced as compared with using one cutting device.
なお、 シリコン薄板の切断手段はレーザーに限定されず、 ダイサー、 プラズマ 切断、 電子ビーム切断、 その他の任意の切断手段を用いることができる。  The means for cutting the silicon thin plate is not limited to a laser, and a dicer, plasma cutting, electron beam cutting, or any other cutting means can be used.
図 1 2は、 端部をカットされたシリコン薄板の検査工程を示す図である。 シリ コン薄板 5は、 図の左端から右へと順送りされるものとする。 XYステージ 3 2 に搭載されたシリコン薄板 5は、 形状検查ュニット 3 1によりその形状が検査さ れる。 次いで、 シリコン薄板 5は、 強度試験ュニット 3 3に移送され、 そこで所 定の曲げ応力を負荷され破壊に至るかどう力、試験される。 この強度試験は破壊試 験なので、 1ロットの中から所定数のシリコン薄板のみ抜き取り試験することが 好ましい。 また、 正常なシリコン薄板の場合には、 破壌にいたらない曲げ応力を 負荷する試験であれば、 全数試験であってもよい。 これら形状検査および強度試 験の結果は、 ともに情報伝達経路 3 6を経て、 薄板管理 P C 3 5に送られる。 薄 板管理 P C 3 5は、 上記の検査結果を基に合否を判定し、 合否判定伝達経路 3 7 を経て合否振り分け装置 3 4に伝達する。 合否振り分け装置 3 4は、 上記の合否 判定に基づいて対象となるシリコン薄板をその判定に対応した移送経路に振り分 ける。 図 1 3および 1 4に薄板作製装置を例示する。 図 1 3に示す浸漬機構では、 ガ ィド孔を有する支持板 5 6をレール 5 2に沿って走行させる。 昇降レール 5 4, 5 5は、 シリコン融液 1 0の上で台座がシリコン融液に近づくように、 るつぼ上 で浅い U字状の軌道を形成している。 ロッド 5 8の上端部は走行自由にレール 5 4, 5 5に取り付けられている。 FIG. 12 is a view showing an inspection process of a silicon thin plate whose end has been cut. It is assumed that the silicon thin plate 5 is sequentially fed from the left end of the figure to the right. The shape of the silicon thin plate 5 mounted on the XY stage 32 is inspected by the shape inspection unit 31. Next, the silicon thin plate 5 is transferred to a strength test unit 33, where it is subjected to a predetermined bending stress and subjected to a test to determine whether it will be broken. Since this strength test is a destructive test, it is preferable that only a predetermined number of silicon thin plates be extracted from one lot and tested. In addition, in the case of a normal silicon thin plate, a 100% test may be used as long as the test applies a bending stress that does not cause crushing. The results of these shape inspection and strength test are both sent to the sheet management PC 35 via the information transmission path 36. The thin plate management PC 35 determines pass / fail based on the above inspection result, and transmits the result to the pass / fail sorting device 34 via the pass / fail determination transmission path 37. The pass / fail sorting device 34 sorts the target silicon thin plate to the transfer path corresponding to the judgment based on the pass / fail judgment. FIGS. 13 and 14 show examples of a thin plate manufacturing apparatus. In the immersion mechanism shown in FIG. 13, a support plate 56 having a guide hole runs along the rail 52. The lifting rails 54 and 55 form a shallow U-shaped orbit on the crucible so that the pedestal approaches the silicon melt on the silicon melt 10. The upper end of the rod 58 is freely mounted on the rails 54, 55.
下地板 2を台座 5 1に取り付け、 レール 5 2 , 5 4, 5 5に沿って走行させる。 るつぼに近づくとレール 5 4 , 5 5は滑らかな弧を描いてシリコン融液 1 0に近 づく軌道をとる。 このとき、 支持板 5 6に開けられたガイド孔を通ってロッドが シリコン融液側に近づき、 その結果、 下地板 2の表層部がシリコン融液に浸潰さ れる。 この後は、 レール 5 4, 5 5は上昇する軌道をとる。 この後の動きは、 図 1 Bの場合と同様である。  The base plate 2 is mounted on the pedestal 51 and run along the rails 52, 54, 55. When approaching the crucible, the rails 54 and 55 draw a smooth arc and follow a trajectory approaching the silicon melt 10. At this time, the rod approaches the silicon melt through the guide hole formed in the support plate 56, and as a result, the surface layer of the base plate 2 is immersed in the silicon melt. After this, the rails 54, 55 take an ascending trajectory. The subsequent movement is the same as in FIG. 1B.
図 1 4の薄板作製装置は、 回転軸 4 1の回りに配置された下地板連結器 4 2に 下地板 2が取り付けられる。 回転軸 4 1の回転に応じて下地板連結器が移動する。 回転軸を断続的に回転させながら回転軸 4 1をシリコン融液に近づけることによ り、 下地板 2の表面にシリコン薄板を形成する。  In the thin plate manufacturing apparatus shown in FIG. 14, the base plate 2 is attached to a base plate coupler 42 arranged around the rotation axis 41. The base plate coupler moves according to the rotation of the rotating shaft 41. By bringing the rotating shaft 41 closer to the silicon melt while intermittently rotating the rotating shaft, a silicon thin plate is formed on the surface of the base plate 2.
(実施例)  (Example)
次に、 実施例について説明する。  Next, examples will be described.
実施例 1  Example 1
実施例 1では、 下地板の使用回数について調査を行なった。 すなわち、 所定回 数、 シリコン融液に浸漬したカーボン製の下地板を使用して作製された薄板を、 図 1 2に示す方法で検査し、 合否を判定した。  In Example 1, the number of times the base plate was used was investigated. That is, a thin plate manufactured using a carbon base plate immersed in a silicon melt a predetermined number of times was inspected by the method shown in FIG. 12 to determine pass / fail.
本実施例では、 薄板を下地板から取り外し、 切断された後に、 表面うねり、 厚 み、 および厚み分布を調べるための形状検査を実施した。 表面うねりは、 J I S B 0 6 0 1— 1 9 9 4によって定義されるろ波最大うねりが 3 0 0 μ πι以下であ ることを合格の基準とした。 厚みおよび厚み分布は、 板全体の厚みが 3 5 0 μ m ± 5 0 mであることを合格の基準とした。 また、 薄板成長不良や落下、 割れ、 欠けなどのために、 検査工程まで到達しなかった薄板は、 不合格としてカウント した。 結果を表 1に示す。 下地板使用回数 1回 10回 50回 100回 500回 1000回 In this example, after the thin plate was removed from the base plate and cut, a shape inspection was performed to check the surface undulation, thickness, and thickness distribution. For surface waviness, the passing criterion was that the maximum filtered waviness defined by JISB 0601-1994 be less than or equal to 300 μπι. For the thickness and thickness distribution, the acceptance criteria were that the thickness of the entire plate was 350 μm ± 50 m. Sheets that did not reach the inspection process due to poor sheet growth, dropping, cracking, or chipping were counted as rejected. Table 1 shows the results. Number of times of base plate use 1 time 10 times 50 times 100 times 500 times 1000 times
シリコン薄板の合格率 98% 98% 98% 98% 97% 83% 表 1によれば、 下地板は 5 0 0回使用しても 9 7 %の合格率を有する。 このた め、 大部分の下地板を 5 0 0回程度使用できることが確認された。  98% 98% 98% 98% 97% 83% According to Table 1, the pass rate of silicon substrate is 97% even after 500 times use. Therefore, it was confirmed that most of the base plate could be used about 500 times.
実施例 2  Example 2
実施例 2では、 下地板の切削加工回数と下地板の厚みの変化について調査を行 なった。 表 2に切削加工回数にともなう下地板の厚みと、 それによる薄板検查結 果の経過を示す。 薄板の検査方法は、 実施例 1と同様である。  In Example 2, the number of times of cutting the base plate and the change in the thickness of the base plate were investigated. Table 2 shows the thickness of the base plate according to the number of times of cutting and the progress of the thin plate inspection results. The method of inspecting a thin plate is the same as in Example 1.
表 2  Table 2
Figure imgf000014_0001
表 2によれば、 切削加工の回数の増大につれ下地板の厚みは減少する。 その減 少の割合は、 1回の切削加工当り厚みが 2 mm減少すると見積もることができる。 逆に、 1回当りの切削加工の切削代を 2 mmとしているといえる。 表 2によれば、 下地板の浸漬時に軌道修正しない場合には、 切削加工回数が 2回になるとシリコ ン薄板の合格率は 7 5 %となり、 歩留りはかなり劣化する。 また、 軌道修正する 場合には、 6回の切削加工を行なっても、 9 7 %の合格率を維持することが確認 された。 8回の切削加工の場合には、 厚みが薄くなりすぎ、 浸漬が不可能となる。 実施例 3
Figure imgf000014_0001
According to Table 2, the thickness of the base plate decreases as the number of cutting operations increases. The rate of reduction can be estimated to be 2 mm in thickness per cut. Conversely, it can be said that the cutting allowance per cutting is 2 mm. According to Table 2, when the trajectory is not corrected when the base plate is immersed, the pass rate of the silicon thin plate becomes 75% when the number of cutting operations is two, and the yield is considerably deteriorated. In addition, when correcting the trajectory, it was confirmed that a pass rate of 97% was maintained even after six cutting operations. In the case of eight cuttings, the thickness becomes too thin and immersion is impossible. Example 3
実施例 3では、 シリコン薄板の端部の切断の有無、 および切断後の検査の有無 と、 製品における良品率との関係について調査を行なった。  In Example 3, the relationship between the presence / absence of cutting of the end of the silicon thin plate, the presence / absence of inspection after cutting, and the non-defective product ratio was investigated.
切断後の検査方法は、 実施例 1と同様である。  The inspection method after cutting is the same as in Example 1.
次に、 太陽電池作製プロセスの一例を説明する。 薄板を洗浄し、 テクスチャェ ツチング、 拡散層形成、 酸化膜除去、 反射防止膜形成、 バックエッチ、 裏面電極 形成、 受光面電極形成の順序で行なう一般的な手法を適用した。 この際、 プロセ ス中での割れ欠けや、 作製後の性能 (変換効率) が 1 2 %を下回った薄板を、 不 合格とした。 結果を表 3に示す。 Next, an example of a solar cell manufacturing process will be described. Wash and texture the sheet A general method was applied in the order of tuning, diffusion layer formation, oxide film removal, antireflection film formation, back etch, backside electrode formation, and light-receiving surface electrode formation. At this time, cracks in the process and thin sheets whose performance (conversion efficiency) after fabrication was less than 12% were rejected. Table 3 shows the results.
表 3  Table 3
Figure imgf000015_0001
シリコン薄板の端部を切断することにより、 太陽電池作製プロセス後の製品良 品率は向上する。 端部が残存している場合、 電極印刷時のスクリーンを下地板と 接していた面に接触できないために、 電極印刷不良が生じ、 特性を悪化させてい る。 また、 検査の有無によっては、 全体良品率は変わらない。 また、 検査の有無 によっては、 全体良品率は変わらない。 し力 し、 太陽電池作製工程における良品 率は検查無しのほうが劣る結果となっている。 シリコン薄板のうねりや厚み分布 が合格基準外の場合、 反射防止膜が均一に形成できないこと、 電極を均一に形成 できないことから、 特性不良の原因となる。 そのため、 太陽電池作製プロセスに 投入する前に、 あらかじめ検査を行ない、 不良品のシリコン薄板を除去すること により、 後の工程における無駄を省くことができる。
Figure imgf000015_0001
By cutting the edge of the silicon thin plate, the product yield after the solar cell fabrication process is improved. If the edges remain, the screen during electrode printing cannot contact the surface that was in contact with the base plate, resulting in poor electrode printing and deteriorating the characteristics. Also, the overall rate of non-defective products does not change depending on the presence or absence of inspection. Also, depending on the presence or absence of the inspection, the overall non-defective rate does not change. However, the non-defective rate in the solar cell fabrication process was inferior to that without inspection. If the undulation or thickness distribution of the silicon thin plate is out of the acceptable standard, the anti-reflection film cannot be formed uniformly and the electrodes cannot be formed uniformly, which causes poor characteristics. For this reason, before conducting the solar cell fabrication process, the inspection is performed in advance and the defective silicon thin plate is removed, so that waste in subsequent steps can be reduced.
実施例 4  Example 4
本実施例では、 浸漬処理直後の搬送時のシリコン薄板と下地板との上下関係、 およびシリコン薄板の端部切断時のシリコン薄板の姿勢について調査を行なった 結果を表 4に示す。 表 4 In this example, Table 4 shows the results of investigations on the vertical relationship between the silicon thin plate and the base plate during transport immediately after the immersion treatment, and the attitude of the silicon thin plate when cutting the edge of the silicon thin plate. Table 4
Figure imgf000016_0001
Figure imgf000016_0001
搬送時の成長面:下地板の結晶成長面  Growth surface during transport: Crystal growth surface of base plate
融液面:シリコン薄板の自由表面 表 4によれば、 浸漬後の搬送時には薄板を下側にすると、 シリコン薄板が下地 板から脱落する。 このため、 シリコン薄板を下地板の上がわに配置して搬送する ことにより、 脱落を防止できることを確認することができた。 また、 X Yステー ジ上でシリコン薄板の端部を切断する場合には、 シリコン薄板の融液面 (フリー 側) を上向きにすることにより、 全体の良品率を大幅に上げることができる。 上記において、 本発明の実施の形態について説明を行なったが、 上記に開示さ れた本発明の実施の形態は、 あくまで例示であって、 本発明の範囲はこれら発明 の実施の形態に限定されることはない。 本発明の範囲は、 特許請求の範囲の記載 によって示され、 さらに特許請求の範囲の記載と均等の意味および範囲内でのす ベての変更を含むものである。  Melt surface: Free surface of silicon sheet According to Table 4, if the sheet is placed on the lower side during transportation after immersion, the silicon sheet falls off the base sheet. For this reason, it was confirmed that dropping can be prevented by arranging the silicon thin plate on the base plate and transporting it. Also, when cutting the edge of a silicon thin plate on the XY stage, by turning the melt surface (free side) of the silicon thin plate upward, the overall non-defective rate can be greatly increased. Although the embodiments of the present invention have been described above, the embodiments of the present invention disclosed above are merely examples, and the scope of the present invention is limited to these embodiments. Never. The scope of the present invention is indicated by the description of the claims, and further includes meanings equivalent to the description of the claims and all modifications within the scope.
本発明の薄板製造方法および薄板製造装置を用いることにより、 薄板の製造効 率を高めることができ、 製造コストを低減することができる。 産業上の利用可能性  By using the thin plate manufacturing method and the thin plate manufacturing apparatus of the present invention, the manufacturing efficiency of the thin plate can be increased, and the manufacturing cost can be reduced. Industrial applicability
本発明の薄板製造方法および薄板製造装置を用いることにより、 たとえば高品 質のシリコン薄板を高い効率で製造することができるので製造コストを低減する ことができる。 このため、 たとえば太陽光発電など他の発電方式とのコスト競争 が厳しい分野で広範に利用されることが期待される。  By using the thin plate manufacturing method and the thin plate manufacturing apparatus of the present invention, for example, a high quality silicon thin plate can be manufactured with high efficiency, so that the manufacturing cost can be reduced. For this reason, it is expected to be widely used in fields where cost competition with other power generation methods such as solar power generation is severe.

Claims

請求の範囲 The scope of the claims
1 . 金属材料および半導体材料のうち少なくとも一方を含む融液に下地板の表 層部を浸し、 その下地板の表面に薄板を付着させる浸漬処理により薄板を製造す る方法であって、 1. A method for producing a thin plate by immersing a surface layer of a base plate in a melt containing at least one of a metal material and a semiconductor material and attaching the thin plate to the surface of the base plate,
前記下地板の表面に形成された前記薄板を、 前記下地板と分離した後、 その薄 板の少なくとも周縁部を切断する、 薄板製造方法。  A method for manufacturing a thin plate, comprising: separating the thin plate formed on the surface of the base plate from the base plate; and cutting at least a peripheral portion of the thin plate.
2 . 前記切断された周縁部を回収し、 前記融液の原料に用いる、 請求項 1に記 載の薄板製造方法。  2. The thin plate manufacturing method according to claim 1, wherein the cut peripheral portion is collected and used as a raw material of the melt.
3 . 前記切断された薄板について、 全数または抜き取りで形状検査を行なう、 請求項 1に記載の薄板製造方法。 3. The method of manufacturing a thin plate according to claim 1, wherein the cut thin plate is subjected to a shape inspection by a whole or a sampling.
4 . 前記形状検査では、 前記薄板における、 表面うねり、 表面粗さ、 厚み、 お よび厚み分布、 のうちの少なくとも 1つが検査される、 請求項 3に記載の薄板製 造方法。  4. The thin plate manufacturing method according to claim 3, wherein in the shape inspection, at least one of surface undulation, surface roughness, thickness, and thickness distribution of the thin plate is inspected.
5 . 前記切断された薄板について、 全数または抜き取りで機械的強度の試験を 行なう、 請求項 1に記載の薄板製造方法。 5. The method for producing a thin plate according to claim 1, wherein a test for mechanical strength is performed on all or all of the cut thin plates.
6 . 前記浸漬処理の後、 前記下地板の結晶成長面に生成した薄板は前記下地板 の上に載る姿勢で移送される、 請求項 1に記載の薄板製造方法。  6. The method of manufacturing a thin plate according to claim 1, wherein after the immersion treatment, the thin plate formed on the crystal growth surface of the base plate is transferred in a posture of resting on the base plate.
7 . 前記薄板の少なくとも周縁部を切断するとき、 前記薄板を、 その薄板成長 時の自由表面を上向きにして、 平面上に載置して、 切断する、 請求項 1に記載の 薄板製造方法。 7. The thin plate manufacturing method according to claim 1, wherein when cutting at least a peripheral portion of the thin plate, the thin plate is placed on a flat surface with the free surface during growth of the thin plate facing upward, and cut.
8 . - 金属材料および半導体材料のうち少なくとも一方を含む融液に下地板の表 層部を浸し、 その下地板の表面に薄板を付着させる浸漬処理により薄板を製造す る方法であって、  8.- A method of manufacturing a thin plate by immersing a surface layer of a base plate in a melt containing at least one of a metal material and a semiconductor material and attaching the thin plate to the surface of the base plate,
前記下地板の表面に形成された前記薄板を、 前記下地板と分離した後、 その薄 板を所定の寸法となるように、 成形の切断を行なう、 薄板製造方法。  A method for manufacturing a thin plate, comprising: separating the thin plate formed on the surface of the base plate from the base plate, and cutting the thin plate into a predetermined size.
9 . 前記切断された周縁部を回収し、 前記融液の原料に用いる、 請求項 8に記 載の薄板製造方法。  9. The thin plate manufacturing method according to claim 8, wherein the cut peripheral portion is collected and used as a raw material of the melt.
1 0 . 前記切断された薄板について、 全数または抜き取りで形状検查を行なう、 請求項 8に記載の薄板製造方法。 10 0. For the cut thin plate, perform a shape inspection by extracting all or 9. The method for producing a thin plate according to claim 8.
1 1 . 前記形状検査では、 前記薄板における、 表面うねり、 表面粗さ、 厚み、 および厚み分布、 のうちの少なくとも 1つが検査される、 請求項 1 0に記載の薄 板製造方法。  11. The thin plate manufacturing method according to claim 10, wherein in the shape inspection, at least one of surface waviness, surface roughness, thickness, and thickness distribution of the thin plate is inspected.
1 2 . 前記切断された薄板について、 全数または抜き取りで機械的強度の試験 を行なう、 請求項 8に記載の薄板製造方法。  12. The method of manufacturing a thin plate according to claim 8, wherein a test of mechanical strength is performed on all or all of the cut thin plates by pulling.
1 3 . 前記浸漬処理の後、 前記下地板の結晶成長面に生成した薄板は前記下地 板の上に載る姿勢で移送される、 請求項 8に記載の薄板製造方法。  13. The method of manufacturing a thin plate according to claim 8, wherein after the immersion treatment, the thin plate formed on the crystal growth surface of the base plate is transferred in a posture of resting on the base plate.
1 . 前記薄板の少なくとも周縁部を切断するとき、 前記薄板を、 その薄板成 長時の自由表面を上向きにして、 平面上に載置して、 切断する、 請求項 8に記載 の薄板製造方法。  9. The thin plate manufacturing method according to claim 8, wherein when cutting at least the peripheral portion of the thin plate, the thin plate is placed on a flat surface with the free surface during the growth of the thin plate facing upward, and cut. .
1 5 . 融液に下地板の表層部を浸し、 その下地板の表面に薄板を付着させる浸 漬処理により薄板を製造する薄板製造装置であって、  15. A thin plate manufacturing apparatus for manufacturing a thin plate by immersing a surface layer portion of a base plate in a melt and attaching the thin plate to the surface of the base plate,
前記下地板に付着している前記薄板をその下地板から分離する分離装置と、 前記下地板から分離された薄板の少なくとも周縁部を切断する切断装置とを備 える、 薄板製造装置。  A thin plate manufacturing apparatus comprising: a separating device that separates the thin plate adhered to the base plate from the base plate; and a cutting device that cuts at least a peripheral portion of the thin plate separated from the base plate.
1 6 . さらに前記薄板の形状を検查する検査装置と備える、 請求項 1 5に記載  16. The apparatus according to claim 15, further comprising an inspection device for inspecting a shape of the thin plate.
1 7 . さらに前記薄板の機械的強度を試験する強度試験装置を備える、 請求項 1 5に記載の薄板製造装置。 17. The thin plate manufacturing apparatus according to claim 15, further comprising a strength test device for testing a mechanical strength of the thin plate.
PCT/JP2003/008056 2002-06-28 2003-06-25 Thin sheet manufacturing method, and thin sheet manufacturing apparatus WO2004003264A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004517275A JP4105158B2 (en) 2002-06-28 2003-06-25 Thin plate manufacturing method and thin plate manufacturing apparatus
AU2003244062A AU2003244062A1 (en) 2002-06-28 2003-06-25 Thin sheet manufacturing method, and thin sheet manufacturing apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002191144 2002-06-28
JP2002-191144 2002-06-28

Publications (1)

Publication Number Publication Date
WO2004003264A1 true WO2004003264A1 (en) 2004-01-08

Family

ID=29996908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008056 WO2004003264A1 (en) 2002-06-28 2003-06-25 Thin sheet manufacturing method, and thin sheet manufacturing apparatus

Country Status (4)

Country Link
JP (1) JP4105158B2 (en)
AU (1) AU2003244062A1 (en)
TW (1) TWI234592B (en)
WO (1) WO2004003264A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007017856A1 (en) * 2005-08-06 2007-02-15 Secured Dimensions Ltd. Method for preventing software reverse engineering, unauthorized modification, and runtime data interception
JP2008019100A (en) * 2006-07-10 2008-01-31 Sharp Corp Sheet-form substrate separating device and sheet-form substrate separating method
US8377528B2 (en) 2004-07-22 2013-02-19 Cryovac, Inc. Additive delivery laminate, process for making and using same and article employing same
WO2014001888A1 (en) 2012-06-27 2014-01-03 Rgs Development B.V. Film of polycrystalline semiconductor material, method of making same and undercooling molds therefor, and electronic device
WO2014001886A1 (en) 2012-06-27 2014-01-03 Rgs Development B.V. Film of polycrystalline semiconductor material, method of making same and orienting/undercooling molds therefor, and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010044163A1 (en) * 1999-11-30 2001-11-22 Yoshihiro Tsukuda Sheet manufacturing method, sheet, sheet manufacturing apparatus, and solar cell
JP2002009320A (en) * 2000-06-23 2002-01-11 Nippei Toyama Corp Method for manufacturing solar battery
WO2002020882A1 (en) * 2000-09-08 2002-03-14 Sharp Kabushiki Kaisha Silicon sheet producing apparatus and solar cell comprising silicon sheet produced by the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010044163A1 (en) * 1999-11-30 2001-11-22 Yoshihiro Tsukuda Sheet manufacturing method, sheet, sheet manufacturing apparatus, and solar cell
JP2002009320A (en) * 2000-06-23 2002-01-11 Nippei Toyama Corp Method for manufacturing solar battery
WO2002020882A1 (en) * 2000-09-08 2002-03-14 Sharp Kabushiki Kaisha Silicon sheet producing apparatus and solar cell comprising silicon sheet produced by the same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8377528B2 (en) 2004-07-22 2013-02-19 Cryovac, Inc. Additive delivery laminate, process for making and using same and article employing same
WO2007017856A1 (en) * 2005-08-06 2007-02-15 Secured Dimensions Ltd. Method for preventing software reverse engineering, unauthorized modification, and runtime data interception
US8352929B2 (en) 2005-08-06 2013-01-08 Microsoft Corporation Method for preventing software reverse engineering, unauthorized modification, and runtime data interception
US8938727B2 (en) 2005-08-06 2015-01-20 Microsoft Corporation Method for preventing software reverse engineering, unauthorized modification, and runtime data interception
JP2008019100A (en) * 2006-07-10 2008-01-31 Sharp Corp Sheet-form substrate separating device and sheet-form substrate separating method
WO2014001888A1 (en) 2012-06-27 2014-01-03 Rgs Development B.V. Film of polycrystalline semiconductor material, method of making same and undercooling molds therefor, and electronic device
WO2014001886A1 (en) 2012-06-27 2014-01-03 Rgs Development B.V. Film of polycrystalline semiconductor material, method of making same and orienting/undercooling molds therefor, and electronic device

Also Published As

Publication number Publication date
JPWO2004003264A1 (en) 2005-10-27
TWI234592B (en) 2005-06-21
AU2003244062A1 (en) 2004-01-19
TW200407469A (en) 2004-05-16
JP4105158B2 (en) 2008-06-25

Similar Documents

Publication Publication Date Title
EP1113096B1 (en) Method of producing a crystal sheet
US8481357B2 (en) Thin film solar cell with ceramic handling layer
EP1544172B1 (en) Mechanical scribe device
TWI391540B (en) Baffle wafers and randomly oriented polycrystalline silicon used therefor
US20100043972A1 (en) Apparatus for harvesting polycrystalline silicon rods and methods of using the same
CN1151543C (en) Crystal growth technology and semiconductor device and its producing method
WO2004003264A1 (en) Thin sheet manufacturing method, and thin sheet manufacturing apparatus
JP4212555B2 (en) Thin plate manufacturing method, thin plate manufacturing apparatus, and base plate
JP4073941B2 (en) Substrate for solid phase sheet growth and method for producing solid phase sheet
Belouet Growth of silicon ribbons by the RAD process
JP4925752B2 (en) Sheet-like substrate peeling apparatus and sheet-like substrate peeling method
JP4132786B2 (en) Thin plate manufacturing method and solar cell
CN219861568U (en) Vacuum coating equipment
CN1308689A (en) Method and apparatus for increasing wafer throughput between cleanings in semiconductor processing reactors
CN115626646B (en) Growth system of polycrystalline silicon reduction furnace
JP2003054932A (en) Manufacturing device of semiconductor substrate, semiconductor substrate and manufacturing method thereof and solar cell
JP2003100648A (en) Heat treatment jig of semiconductor wafer
JP4141697B2 (en) Method for producing polycrystalline sheet
CN118156200A (en) Precise loading device for silicon carbide epitaxial substrate slice and application method
EP2034516A1 (en) Method for producing solid phase sheet and solar cell utilizing solid phase sheet
JPH0936403A (en) Production of basic body and solar cell employing it
CN2765322Y (en) Wafer pedestal
CN1617319A (en) Wafer base
CN1577790A (en) Wafer base and plasma technology using the same
Tsuji et al. Epitaxial Lift-off Technology for Solar Cell Application

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004517275

Country of ref document: JP

122 Ep: pct application non-entry in european phase