WO2002020882A1 - Silicon sheet producing apparatus and solar cell comprising silicon sheet produced by the same - Google Patents

Silicon sheet producing apparatus and solar cell comprising silicon sheet produced by the same Download PDF

Info

Publication number
WO2002020882A1
WO2002020882A1 PCT/JP2001/007001 JP0107001W WO0220882A1 WO 2002020882 A1 WO2002020882 A1 WO 2002020882A1 JP 0107001 W JP0107001 W JP 0107001W WO 0220882 A1 WO0220882 A1 WO 0220882A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon sheet
silicon
cooling body
flat surface
rotary cooling
Prior art date
Application number
PCT/JP2001/007001
Other languages
French (fr)
Japanese (ja)
Inventor
Shuji Goma
Kazuto Igarashi
Kohzaburoh Yano
Hiroshi Taniguchi
Original Assignee
Sharp Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Kabushiki Kaisha filed Critical Sharp Kabushiki Kaisha
Priority to AU2001277784A priority Critical patent/AU2001277784A1/en
Publication of WO2002020882A1 publication Critical patent/WO2002020882A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/007Pulling on a substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a silicon sheet manufacturing apparatus and a solar cell using the silicon sheet.
  • the present invention relates to an apparatus for manufacturing a silicon sheet which can be mainly used for a solar cell and the like, and a solar cell using the silicon sheet.
  • a part of the cylindrical surface of the rotary cooling body is immersed in the melt, and while the rotary cooling body is rotating, a silicon solidified shell is grown on the cylindrical surface, which is then redissolved to take out liquid silicon. Thereby, the silicon melt from which impurities have been removed can be taken out.
  • a silicon ribbon disclosed in Japanese Patent Application Laid-Open No. 10-28995 is disclosed. There are manufacturing equipment.
  • the main part of the silicon ribbon manufacturing apparatus is composed of a heating and melting section for silicon and a cooling section including a rotary cooling body.
  • FIG. 6 shows a method of pulling out a silicon ribbon by this manufacturing apparatus. That is, a part of the cylindrical surface of the rotary cooling body 61 made of a heat-resistant material is immersed in the molten silicon 63 in the vertically movable crucible 64, and the rotary cooling body 61 is not rotated. At first, the silicon ribbon 62 is continuously taken out by using the carbon net 65 to draw it out. According to this method, both the process cost and the raw material cost can be reduced as compared with the conventional silicon wafer manufacturing method in which a silicon ingot is sliced with a wire and the like to obtain a wafer.
  • FIG. 7 shows a method of drawing a crystal sheet by this manufacturing apparatus.
  • the rotary cooling body 71 has a concavo-convex structure composed of annular convex portions 77 and concave portions 78 alternately formed on the peripheral surface in the direction of the rotation axis.
  • the concave portions 7 8 are not immersed in the melt 73, the adhesive strength between the rotary cooling body 71 and the crystal sheet 72 is reduced, and the crystal sheet 72 is easily separated from the rotary cooling body 71. Can be peeled.
  • the crystal nuclei can be controlled so as to be generated only in the convex portions 77, and relatively large crystal grains can be obtained.
  • the crystal sheet having the tip portion inserted into the concave portion 78 of the rotary cooling body 71 With the provision of the take-out portion 75, the crystal sheet 72 is easily and continuously brought into contact with the rotary cooling body 71 and peeled off.
  • the crystal growth is performed on the cylindrical rotary cooling body 71, so that the crystal along the cylinder is formed.
  • This is a method of stretching the sheet 72 to a flat surface. Therefore, when the crystal sheet 72 cannot be completely stretched, the crystal sheet 72 remains curved, and continuous extraction is impossible. Further, the crystal sheet 72 taken out does not become flat.
  • the crystal sheet 72 is completely stretched by optimizing the conditions, so that the internal stress remains in the crystal sheet 72, so that the strength of the crystal sheet 72 is reduced, and the drawing process and the slow cooling process are performed. In such a case, the crystal sheet 72 may be damaged, and stable continuous production of the crystal sheet 72 is difficult.
  • the subsequent silicon ribbon 62 is always pulled by the silicon ribbon 62 itself, and a large load is applied. Therefore, the silicon ribbon 62 is easily broken. In this case, since a rubber sheet or the like is used at the initial stage of the drawing, it is impossible to immediately resume the drawing of the silicon ribbon 62, and it is difficult to perform a stable continuous drawing. In addition, since the silicon ribbon 62 is pulled out in a plane by pulling the crystal grown on the rotary cooling body 61, internal stress remains in the silicon ribbon 62, and the strength of the silicon ribbon 62 is reduced. Therefore, the withdrawal process or In the slow cooling process, the silicon ribbon 62 may be damaged, and stable continuous production is difficult. The semiconductor characteristics of the semiconductor device manufactured from the silicon ribbon 62 are degraded by internal stress.
  • the silicon ribbon 62 cannot be completely stretched, the silicon ribbon 62 remains curved, cannot be continuously taken out, and the taken-out silicon ribbon 62 does not become flat.
  • the present invention has been made in view of such circumstances, and uses a silicon sheet manufacturing apparatus capable of continuously producing a large amount of a planar silicon sheet stably at a low cost and a silicon sheet produced thereby.
  • the purpose is to provide solar cells that have been used. Disclosure of the invention
  • a molten silicon storage portion for storing molten silicon, and at least one flat surface rotatably disposed above the molten silicon storage portion and for solidifying and growing the silicon sheet on the surface.
  • a rotary cooling body having a rotating cooling body having a rotating surface, the silicon being formed on the flat surface of the rotating cooling body once immersed in the molten silicon by rotation and then pulled up from the molten silicon before being immersed again in the molten silicon.
  • a peeling / unloading mechanism is provided to peel off the silicon sheet and take it out of the device by using the inertia and / or gravity of the rotating cooling body to drop it.
  • An apparatus for manufacturing a silicon sheet is provided.
  • the rotary cooling body solidifies and grows the silicon crystal ribbon on a flat surface, that is, a flat surface having no curvature, a mechanism for extending the curved silicon sheet into a planar shape becomes unnecessary, and no internal stress remains. Silicon sheets can be continuously manufactured in large quantities and stably.
  • the silicon sheet manufactured by the silicon sheet manufacturing apparatus of the present invention does not need to be sliced separately, and a flat silicon sheet can be directly obtained. Further, since there is no loss due to slicing, it contributes to cost reduction.
  • the silicon sheet in the present invention means a square or rectangular plate-like silicon whose size and shape are defined by the size and shape of the flat surface of the rotary cooling body.
  • FIG. 1 is a diagram illustrating a configuration of a silicon sheet manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a configuration of a silicon sheet manufacturing apparatus according to another embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a first step of a method of peeling a silicon sheet using the peeling member of FIG.
  • FIG. 4 is a diagram illustrating a second step of the method of peeling the silicon sheet using the peeling member of FIG.
  • FIG. 5 is a diagram illustrating a configuration of a carry-out auxiliary member included in the silicon sheet manufacturing apparatus of FIGS. 1 and 2.
  • FIG. 6 is a diagram illustrating the configuration of a conventional silicon sheet manufacturing apparatus.
  • Figure 7 is a best mode for carrying out the c invention is a diagram illustrating another structure of a conventional silicon sheet manufacturing apparatus
  • FIG. 1 shows a first example of the configuration of the silicon sheet manufacturing apparatus of the present invention.
  • a heat insulating material is stretched inside an outer wall of the apparatus made of stainless steel or the like, and, for example, a heater disposed oppositely and a central portion of these heaters And a rotary cooling body 11 disposed above the crucible 14 and supported by a shaft.
  • the flat surface 1 On the peripheral surface of the rotary cooling body 11, there are a plurality of The flat surface 1 is formed, and when the flat surface 1 is immersed in the molten silicon 13, a silicon sheet 12 is formed on the surface of the flat surface 1.
  • the flat surface 1 on which silicon is to be grown is set at the lowest point, and the flat surface 1 is immersed in molten silicon 13, the silicon sheet 12 grows on the surface of the flat surface 1.
  • the rotary cooling body 11 rotates from the 0 degree position, The silicon sheet 12 rotates together with the rotary cooling body 11.
  • the rotating cooling body 11 rotates 360 degrees, the flat surface 1 at the lowest point is immersed in the molten silicon 13 again. It is necessary to take out the silicon sheet 12 from it.
  • the silicon sheet 12 when the silicon sheet 12 is peeled off by the minute vibration caused by the rotation of the rotary cooling body 11, the silicon sheet 12 is positioned at 0 to 90 degrees (the rotation of the rotary cooling body 11 takes four minutes). (One round or less), the silicon sheet 12 falls immediately below the flat surface 1 because of the gravity. A gutter member 17 must be provided as a means for collecting the silicon sheet 12. In addition, the silicon sheet 12 that does not fall at a position within 0 to 180 degrees rotates while being placed on the flat surface 1. In particular, as described above, the silicon sheet 12 that does not peel off from the rotary cooling body 11 only by minute vibration caused by the rotation of the rotary cooling body 11 needs to be peeled off by applying an impact from the impact generating member 15 as described above.
  • the silicon sheet 12 When the silicon sheet 12 is peeled off at a position within 0 to 90 degrees using the impact generating member 15, the silicon sheet 12 is located below the flat surface 1 which is the silicon sheet generating portion. As it is located, the silicon sheet 12 falls immediately. Therefore, the silicon sheet 12 can be taken out by using the gutter member 17.
  • the gutter member 17 and the impact generating member 15 have a structure in which they approach each other.
  • the silicon sheet 12 When the silicon sheet 12 is peeled at a position between 90 degrees and 180 degrees, the silicon sheet 12 is on the flat surface 1, and the direction of the gravitational force due to rotation and the direction of gravity are Is reversed, so that the silicon sheet 1 2 does not fall from the flat surface 1 and moves to the uppermost point while remaining on the flat surface 1.
  • the result is equivalent to the case where the peeling is performed at the position of 180 degrees which is the highest point.
  • the silicon sheet 12 peels at a position between 180 degrees and 270 degrees, if the inertia force or gravity is larger than the static friction force between the silicon sheet 12 and the surface of the flat surface 1, At this point, the silicon sheet 1 2 falls off the flat surface 1. On the other hand, if the static friction force is larger than the inertial force or gravity, the silicon sheet 12 moves on the rotating cooling body 11 to a position of up to 270 degrees, When it reaches the position, it falls directly below regardless of the magnitude of the static friction coefficient.
  • the silicon sheet 12 when the silicon sheet 12 is peeled off by applying an impact in the position range of 90 degrees to 270 degrees, regardless of the relationship between the static friction force and the inertia force or gravity, The silicon sheet 12 falls apart from the rotary cooling body 11 in a position range of 180 degrees to 270 degrees.
  • silicon sheet 12 peels off at a position between 270 ° and 360 °, the silicon sheet 12 becomes flat as well as when the silicon sheet 12 peels off at a position between 0 ° and 90 °. Since it is located below surface 1, silicon sheet
  • the gutter member 16 needs to be installed immediately below the peeling position, and the gutter member 16 and the impact generating member 15 are arranged close to each other.
  • the position at which the film is peeled off be set in the range of 90 to 270 degrees.
  • the gutter member 16 be installed below the track on which the silicon sheet 12 separates from the flat surface 1 moved to the position range of 180 to 270 degrees and falls. .
  • one gutter member 17 is installed at a position of 60 degrees close to the rotating cooling body 11, and the impact generating member 15 is given a shock perpendicular to the silicon sheet surface.
  • the gutter member 16 is installed at an upper position of 180 degrees, which is the highest point, and the other gutter member 16 is installed close to the rotary cooling body 11 at a position of 270 degrees.
  • the configuration of the impact generating member 15 is not particularly limited, but a physical impact generating means for pressing a solid substance against the surface of the silicon sheet 12 with an appropriate force is the simplest and preferable.
  • the method of peeling the silicon sheet 12 by bringing the peeling member into contact with one side of the front end side in the traveling direction of the silicon sheet 12 (the end on the upstream side in the rotation direction) is also effective because there is no movable part. It is considered to be an effective means.
  • FIG. 2 shows a second example of the configuration of the silicon sheet manufacturing apparatus of the present invention.
  • the silicon sheet manufacturing apparatus of this example uses the rotation of the rotary cooling body 21 to apply an impact in a parallel direction using a peeling member.
  • the silicon sheet 12 is formed on the surface of the flat surface 1 and the silicon sheet 12 has a flat surface without the curve, and the silicon sheet 2 2 on the flat surface 1 is formed.
  • the sides 22 a and 22 b of the front end (front end) and the rear end (end) in the traveling direction have a larger turning radius than other parts of the silicon sheet 12. Therefore, the acute-angled peeling member 25 for promoting the peeling of the silicon sheet 22 is provided at the front end of the silicon sheet 22 in the traveling direction without contacting the edge of the flat surface 1 of the rotary cooling body 21 as the base.
  • the peeling member 25 effectively separates the silicon sheet 22.
  • the peeling tip of the peeling member 25 is formed by a circular orbit having a maximum radius of rotation passing through a corner on the front end side in the traveling direction on the flat surface 1 of the rotary cooling body 21 that generates the silicon sheet 22, It is necessary to install between the circular orbit located outside by the thickness of the sheet 22.
  • FIG. 3 shows a state immediately before the peeling member 25 and the silicon sheet 22 come into contact with each other.
  • the exfoliation tip of the exfoliation member 25 is located slightly outside the circular orbit 31 with the maximum turning radius through which the corner (ridge) 30 on the front end side in the traveling direction of the flat surface 1 that forms the silicon sheet 22 2 passes. Have been.
  • FIG. 4 shows a state immediately after the rotary cooling body 21 further rotates from the state shown in FIG. 3 and the peeling member 25 comes into contact with the silicon sheet 22.
  • the rotary cooling body 21 does not contact the peeling member 25 at all.
  • the silicon sheet 22 has a structure in which only one side 22 a on the front end side in the traveling direction comes into contact with the peeling member 25, peels off from the flat surface 1, slides down to the gutter member 26, and is carried out. ing.
  • the thickness of the silicon sheet 22 in FIG. 2 varies depending on the temperature conditions of the molten silicon 23 and the like, the number of revolutions and cooling conditions of the rotary cooling body 21, and the like. Since it is 0 m, the peeling member 25 can be installed with an accuracy of several 100 m.
  • the position at which the peeling member 25 is installed can be set based on substantially the same concept as in the case where an impact is applied to the surface of the silicon sheet 22 described above. As in the above case, assuming that the position of the flat surface 1 at the lowest point of the rotary cooling body 11 and immersed in the molten silicon 13 is 0 degrees, the rotary cooling body 11 rotates 360 degrees. It is necessary to take out the silicon sheet 22 before immersing it in the molten silicon 23 again.
  • the difference between the peeling member 25 and the impact generating member 15 is that the silicon sheet 22 peeled off from the flat surface 1 by the peeling member 25 does not move while remaining on the rotary cooling body 21 and the peeling member 2 Regardless of the installation position of 5, the separation member 25 can be immediately separated from the flat surface 1 at the installation position.
  • the peeling member 25 When the peeling member 25 is set at a position of 0 to 180 degrees, the silicon sheet 22 is separated from the rotating cooling body 21 while reversing the rotating direction of the rotating cooling body 21. Will fall. Therefore, the silicon sheet 22 slides down the gutter member 28 and can be taken out. However, the greater the distance between the separation position and the gutter member 28, the greater the impact due to the drop.
  • the separation member 25 and the gutter member 26 be close to each other or integrated.
  • the peeling member 25 is installed at a position of 180 degrees to 270 degrees, especially in a structure in which the peeling member 25 and the gutter member 26 are integrally installed, the silicon sheet 22 is peeled off after the peeling. Separate from the rotating cooling body 2 1 and smoothly slide down to the gutter member 26 Will be.
  • no special movable member other than the rotation of the rotary cooling body 21 is required to give an impact for peeling, which contributes to simplification of the apparatus, and improves durability and maintainability of the apparatus. .
  • the gutter member has a structure capable of being carried out by utilizing the weight of the silicon sheet in order to simplify the device configuration.
  • the silicon sheet is piled up due to friction with the gutter member and the gutter member is inclined at an angle greater than the angle at which the silicon sheet falls under its own weight. It is desirable to adopt a structure to be carried out.
  • Embodiment 1 is an example in which a method is used in which a flat surface and a planar silicon sheet of a rotary cooling body for producing a silicon sheet are subjected to impact from a vertical direction to peel off the silicon sheet from the flat surface. .
  • the silicon sheet manufacturing apparatus includes a square crucible 14, a heating crucible for melting silicon supplied to the crucible 14, and a silicon sheet generating unit.
  • a rotating cooling body 11 having a plurality of flat surfaces 1 formed thereon, a rotating shaft (not shown) rotatably supporting the rotating cooling body 11, and an impact giving an impact to peel off the silicon sheet 12. It consists of a generating member 15 and two gutter members 16 and 17 for carrying the peeled silicon sheet 12 out of the apparatus.
  • a rectangular parallelepiped device main body having an outer wall having a heat insulating material (not shown).
  • the device main body is sealed so that the inside can be maintained in an atmosphere of, for example, argon gas.
  • the rotary cooling body 11 has a hollow structure, and performs cooling by passing a gas or liquid cooling medium inside.
  • the method of applying a shock to peel off the silicon sheet 12 that does not peel due to minute vibrations caused by the rotation of the rotating cooling body 11 is to apply a specified impact force while synchronizing with the rotation of the rotating cooling body 11
  • the mechanism is not particularly limited as long as it can be given to the silicon sheet 12 on the surface 1.
  • a striking member such as a rod made of a carbon material is hung directly above the rotary cooling body 11 with a string or the like, and the silicon sheet 12 is moved upward in synchronization with the rotation of the rotary cooling body 11.
  • the impact member was dropped to make an impact generating member 15 that impacts the entire silicon sheet 12 on the flat surface 1.
  • the position at which the impact due to the falling weight of the striking member is given is 180 ° (the highest point) when the lowest point of the rotating cooling body 11 is 0 °, and the surface of the silicon sheet 12 is located at this position. Is subjected to a vertical shock.
  • the pulse motor for the rotary drive source of the rotary cooling body 11 the rotation state (rotation angle) of the rotary cooling body 11 is read by the pulse mode. Therefore, it is possible to drive the impact generating member 15 by grasping the timing when each flat surface 1 reaches the position of 180 degrees (the highest point).
  • the other end of the string connected to the striking member is fixed to a reel attached to the rotating shaft of the motor, and the reel is wound up and released by the reel by rotating the rotating shaft forward and backward.
  • the forward and reverse rotation of the rotating shaft is synchronized with the rotation of the rotary cooling body 11. That is, when each flat surface 1 reaches the position of 180 degrees (the highest point), the string wound on the reel is released, and the striking member falls on the silicon sheet 12 on the flat surface 1 by its own weight. Let it.
  • the impact generating member 15 is not limited to the configuration in which the impact member is dropped by its own weight as described above. By performing the conversion, it is possible to synchronize almost completely, and it is possible to arbitrarily set the position on the silicon sheet 12 to give an impact and the hitting angle.
  • the material of the impact member is a carbon rod.
  • the material is not particularly limited as long as it can withstand the temperature in the apparatus and has little influence on contamination of silicon.
  • the shape of the striking member is not particularly limited as long as it can apply a specified impact force, but the striking surface of the striking member has a large radius of curvature in order to prevent a single point of impact force. Alternatively, it preferably has a flat surface shape.
  • a plurality of striking members may be provided so that the impacts of these striking members are simultaneously applied to a plurality of locations on the silicon sheet surface. In this case, the concentration of impact force can be reduced.
  • Peeled gutter member 1 6, 1 7 for unloading the silicon sheet 1 2, as shown in the structure is preferably c Figure 5 having a plate-like running surface for silicon sheet 1 2 slides down by its own weight, the silicon sheet 1 2 gutter
  • a fall prevention guide 54 is installed on the side of the gutter members 16 and 17 as a carry-out auxiliary member. Is preferred.
  • a roller 53 as a carry-out assisting member on the sliding surface.
  • the gutter member 51 provided with such a guide 54 and a roller 53 as a carry-out auxiliary member is installed at both the positions of 60 degrees and 270 degrees.
  • the installation angle (inclination angle) of the gutter member 51 is inclined 30 degrees downward with respect to the horizontal,
  • the structure is such that the silicon sheet 12 is carried out of the apparatus by its own weight.
  • the installation angle must be set so that the silicon sheet 12 slides down by its own weight due to friction between the material of the gutter member 51 and the silicon sheet 12.
  • the surface configuration of the gutter member 51 (16, 17) it is preferable to select a surface having as smooth a surface as possible in order to reduce the frictional force with the silicon sheet 12.
  • the impact when the silicon sheet 12 slides down on the gutter members 16 and 17 can be reduced.
  • the silicon sheet 12 can be prevented from being broken, the durability is reduced. Even when a hard material such as a SiC coat is selected, it is possible to provide a structure in which the silicon sheet 12 is not broken by considering the installation angle and the installation position.
  • the rotary cooling body 11 preferably has a structure that is not immersed in the molten silicon 23 except for the flat surface 1 that generates the silicon sheet.
  • the simplest structure of a rotary cooling body is a structure in which the cross-sectional shape is a polygonal column. In this case, since the adjacent flat surfaces 1 are continuous with each other via the sides, the adjacent silicon sheets 1 There is a risk that the two will be integrated.
  • a gear-type rotary cooling body 11 in which vertices of a polygonal column are cut inward is applied.
  • the flat surface 1 is formed on the side surface of the polygonal prism, the flat surfaces 1 can be a simple structure that gives continuous shocks at a fixed time interval even for discontinuous shocks.
  • An example of a method for manufacturing the silicon sheet 12 using the above-described apparatus will be described.
  • a crucible 14 filled with solid silicon was heated all day long to melt the silicon.
  • the flat surface 1 of the subcooler 11 was immersed in molten silicon 13 and the rotary cooler 11 was rotated.
  • substantially the same silicon sheet 12 was formed on all the flat surfaces 1 of the gear-type rotary cooling body 11.
  • the impact generating member 15 is applied for a certain period of time so that when the flat silicon sheet 12 becomes horizontal on the flat surface 1 at the highest point, the silicon sheet 12 falls vertically and gives an impact to the silicon sheet 12. Control was performed so that falling and rising were repeated at intervals.
  • the remaining about 70% of the silicon sheet is peeled off from the flat surface 1 at the highest point (at the position of 180 degrees), then separated from the flat surface 1 and slid down to the other gutter member 16. It was carried out of the equipment and collected.
  • the recovered silicon sheet 12 had a smooth surface and a uniform thickness (average thickness of about 270 m), and became a columnar silicon sheet formed by stable and continuous crystal growth.
  • Example 2 is an example in which a method is used in which a silicon sheet is peeled off from a flat surface by applying an impact from a direction parallel to the flat surface and the planar silicon sheet of the rotary cooling body that generates the silicon sheet.
  • the silicon sheet manufacturing apparatus has substantially the same configuration as that of the first embodiment, but differs from the first embodiment in that an impact is applied to the surface of the planar silicon sheet 22.
  • the impact-generating member 15 has been removed, and the acute-angle peeling member 25 for peeling off the silicon sheet 22 at a position of 270 ° with respect to the lowest point 0 ° of the rotary cooling body 21 This is that the peeling member 25 is formed integrally with the gutter member 26 for carrying out the silicon sheet.
  • the peeling member 25 will be described with reference to FIG.
  • the peeling member 25 carbon whose tip was sharpened was used.
  • the peeling member 25 is formed by a tangent to the circular orbit 31 formed by the corner 30 of the flat surface 1 at a position that is 27 ° from the 0 ° position that is the lowest point of the rotary cooling body 21. It was installed in parallel and at a distance of 100 / / 1 from the circular orbit 31 outside. Thereby, the silicon sheet 22 having a thickness of 10 O ⁇ m or more can be separated from the flat surface 1.
  • the peeling member 25 was integrated with the tip of the gutter member 26 inclined 30 degrees with respect to the horizontal, thereby simplifying the device members.
  • the gutter members 26 and 28 for carrying out the peeled silicon sheet 22 shown in FIG. 2 were members provided with guides 54 and rollers 53 as in the first embodiment.
  • the installation positions, angles, surface forms, materials, and the like of the gutter members 26 and 28 can be set in the same manner as in the first embodiment.
  • the rotary cooling body 21 used was a gear-type cooling body in which the vertices of a polygonal prism were pressed inward.
  • the peeling member 25 when the adjacent silicon sheets 22 are integrated, the peeling member 25 is brought into contact with one side 22 a of the front end side in the traveling direction of the silicon sheet 22.
  • a gear-type structure such as the rotary cooling body 21 is desirable.
  • the flat surface 1 formed on the rotary cooling body 21 is periodically continuous. It does not need to be a structure, and the interval between adjacent flat surfaces 1 and the size of each flat surface 1 may be different.
  • the recovered silicon sheet 12 has a smooth surface and a uniform thickness (average thickness of about 270 m), as in Example 1, and is formed by stable and continuous crystal growth. It became a columnar silicon sheet.
  • Comparative Example 1 compares a silicon sheet manufactured by the conventional technique with a silicon sheet manufactured by using the silicon sheet manufacturing apparatus of the present invention.
  • Manufacturing of a silicon sheet according to the prior art is performed using a silicon sheet manufacturing apparatus having a rotary cooling body having an uneven structure on the peripheral surface as shown in FIG.
  • the silicon sheet manufacturing apparatus shown in FIG. 7 has almost the same configuration as that of the first embodiment, but differs from the apparatus of the first embodiment in that the rotary cooling body 71 is a cylindrical type, It is provided with a convex portion 77 and a concave portion 78, and is provided with a silicon sheet removing portion 75 in which the tip is inserted into the concave portion 78.
  • the convex portion 77 and the concave portion 78 are On the peripheral surface of the rotary cooling body 71, they are formed alternately and parallel to a direction orthogonal to the rotation axis.
  • a method for manufacturing a silicon sheet using the above apparatus will be described.
  • a crucible 74 filled with solid silicon was heated by a heater to melt the silicon.
  • the crucible 74 is raised, and as shown in FIG. 7, only the projections 77 of the rotary cooling body 71 are immersed in the molten silicon 73, and the rotary cooling is performed.
  • Body 7 1 was rotated.
  • a crystal nucleus was generated only at the convex portion 77 of the cylindrical cooling body 71, and the crystal grew from the nucleus as a starting point.
  • the silicon melt 73 comes into contact with the crystal growing from the adjacent convex portion 77, so that it does not contact the concave portion 78, but has a cavity between the rotary cooling body 71 and the silicon sheet. 7 2 was generated.
  • the silicon sheet 72 with the tip inserted therein is installed in the recess 78, that is, in the cavity between the silicon sheet 72 and the rotary cooling body 71, so that the silicon sheet 72 is It was forcibly deformed from a cylindrical shape to a planar shape, and was carried out of the apparatus along the silicon sheet take-out part 75.
  • the silicon sheet 72 was broken once every few minutes in the area along the cut-out part 75. This is because there was a portion in the silicon sheet 72 where the curve could not be completely stretched, which prevented the silicon sheet 72 from being carried out linearly.
  • the unloaded silicon sheet 72 grew thick at the portion corresponding to the convex portion 77, and grew thinly at the portion corresponding to the concave portion 78. Further, the average thickness of the silicon sheet 72 was about 250 m at the convex portion 77 and about 200 m at the concave portion 78.
  • the procedure for fabricating a solar cell is a known method consisting of the steps of cleaning a silicon sheet sample, texture etching, forming a diffusion layer, removing an oxide film, forming an antireflection film, back etching, forming a back electrode, and forming a light receiving surface electrode. It is.
  • the delivery of the above samples between each process was basically performed by an automatic transport mechanism.
  • the silicon sheets according to Example 1 and Example 2 were able to perform all automatic conveyance between the above-described steps, the silicon sheet according to Comparative Example 1 had a curvature in the generated silicon sheet. Remains and irregularities on the surface As a result, there was a silicon sheet that could not be transferred to the next step using the automatic transfer mechanism.
  • Table 1 shows the results of measuring the characteristics of the solar cells manufactured in Examples 1 and 2 and Comparative Example 1 using a solar simulator.
  • the short-circuit current densities of the solar cells according to Example 1 and Example 2 are both 27 mA / cm 2, which is larger than 25 mAZ cm 2 of Comparative Example 1. This is thought to be due to a defect due to distortion due to internal stress remaining in the silicon sheet.
  • the conversion efficiency (%) was 10% in Comparative Example 1, whereas it was significantly improved to 12% in Examples 1 and 2.
  • the silicon sheet manufacturing apparatus by growing silicon on the flat surface 1 of the rotary cooling body 11, a planar silicon sheet having no internal stress is obtained.
  • the silicon sheet can be taken out continuously and stably.
  • the removed silicon sheet has a smooth surface and a uniform thickness, so that a silicon wafer can be formed without a polishing step or a slicing step.
  • a low-cost silicon wafer can be provided.
  • a planar silicon sheet having no internal stress can be obtained, and the silicon sheet can be continuously and stably taken out.
  • the mechanically movable part (impact generating member 15) for peeling the silicon sheet in the first embodiment is not provided, the peeling operation is synchronized with the rotary cooling body 21. There is no need to perform this, and the device can be simplified. Therefore, it is possible to reduce the cost, improve the durability and maintainability of the device.
  • the rotary cooling body solidifies and grows the silicon crystal ribbon on a flat surface, that is, a flat surface having no curvature, a mechanism for extending the curved silicon sheet into a planar shape becomes unnecessary, and no internal stress remains. Silicon sheets can be continuously produced in large quantities and stably at low cost.
  • the manufactured silicon sheet has a smooth surface and a uniform thickness, a silicon wafer can be formed without a polishing step or a slicing step, thus providing a low-cost silicon wafer. Can be.
  • the silicon sheet can be easily peeled from the surface of the rotary cooling body.
  • the peeling / unloading mechanism has an acute-angled peeling member, there is no mechanically movable part in the peeling member, so a mechanism for synchronizing the peeling operation with the rotation of the rotary cooling body is omitted. Therefore, simplification and cost reduction of the device can be achieved, and durability and maintainability are improved.
  • the peeling / carrying-out mechanism peels the silicon sheet in the position range from 90 degrees to 270 degrees, so that the silicon sheet can be reliably carried out of the apparatus. Since the peeling and unloading mechanism has an unloading gutter member, the silicon sheet can be unloaded out of the apparatus with a simple configuration.
  • the gutter member is disposed at an angle such that the silicon sheet peeled off from the flat surface is piled up by the frictional force with the gutter member and can slide down by its own weight. Unloading is possible. Therefore, there is no need for forced conveyance means that requires complicated mechanisms such as a rotary power mechanism. Therefore, the device configuration can be simplified.
  • the unloading mechanism has an unloading auxiliary member in addition to the gutter member, it is possible to further promote the sliding of the silicon sheet due to its own weight.
  • the device members can be further simplified.
  • the silicon sheet is peeled by contacting the end of the silicon sheet on the upstream side in the rotation direction within a position range of 180 ° to 270 °, so the rotation
  • the silicon sheet separated from the cooling body can be smoothly slid down to the discharge gutter member.
  • the solar cell manufactured by using the silicon sheet manufacturing apparatus of the present invention has a higher short-circuit current density and a larger fill factor than the solar cell using the silicon sheet manufactured by the conventional silicon sheet manufacturing apparatus.
  • the manufacturing cost can be reduced while improving the manufacturing cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Silicon Compounds (AREA)
  • Continuous Casting (AREA)

Abstract

A silicon sheet producing apparatus comprising a crucible (14) containing fused silicon and a rotating cooling body (11) rotatably disposed above the crucible (14) and having at least one flat surface (1) for growing a solid silicon sheet (12) on the surface is characterized by comprising a separating/transfer out mechanism for separating a silicon sheet (12) formed on the flat surface (1) of the rotating cooling body (11) by dipping it in a fused silicon (13) by the rotation and then lifting it up from the fused silicon (13) and transferring the separated silicon sheet (12) by the inertia force by the rotation of the rotating cooling body (11) and/or the fall by the gravity out of the apparatus before the silicon sheet (12)is dipped again in the fused silicon (13). With this, a planar silicon sheet free of internal stress can be produced and the silicon sheet can be taken out continuously and stably.

Description

明細書  Specification
シリコンシ一ト製造装置およびそれによるシリコンシートを用いた太陽電 池 技術分野 TECHNICAL FIELD The present invention relates to a silicon sheet manufacturing apparatus and a solar cell using the silicon sheet.
この発明は、 主として太陽電池等に用いることができるシリコンシート の製造装置およびそのシリコンシ一トを用いた太陽電池に関するものであ る。 背景技術  The present invention relates to an apparatus for manufacturing a silicon sheet which can be mainly used for a solar cell and the like, and a solar cell using the silicon sheet. Background art
従来、 回転冷却体を溶融金属中に浸漬して、 冷却体表面に生成するシリ コンを取り出す方法として、 例えば、 米国特許第 4 2 3 1 7 5号公報に閧 示されたシリコン精製方法がある。  Conventionally, as a method of immersing a rotary cooling body in a molten metal to take out silicon generated on the cooling body surface, for example, there is a silicon purification method disclosed in US Pat. No. 4,231,755. .
この方法によると、 回転冷却体の円筒面の一部を融液中に浸潰し、 回転 冷却体を回転させながら、 円筒面にシリコン凝固殻を成長させ、 これを再 溶解して液体シリコンを取り出すことにより、 不純物が除去されたシリコ ン融液を取り出すことができる。  According to this method, a part of the cylindrical surface of the rotary cooling body is immersed in the melt, and while the rotary cooling body is rotating, a silicon solidified shell is grown on the cylindrical surface, which is then redissolved to take out liquid silicon. Thereby, the silicon melt from which impurities have been removed can be taken out.
また、 回転冷却体を溶融シリコン中に浸潰して、 回転冷却体の表面に生 成するシリコンシートを直接取り出す装置としては、 特開平 1 0— 2 9 8 9 5号公報に開示されたシリコンリボン製造装置がある。  Further, as a device for immersing a rotary cooling body in molten silicon to directly take out a silicon sheet generated on the surface of the rotary cooling body, a silicon ribbon disclosed in Japanese Patent Application Laid-Open No. 10-28995 is disclosed. There are manufacturing equipment.
このシリコンリボン製造装置の主要部分は、 シリコンの加熱溶解部と、 回転冷却体を含む冷却部とで構成されている。  The main part of the silicon ribbon manufacturing apparatus is composed of a heating and melting section for silicon and a cooling section including a rotary cooling body.
図 6は、 この製造装置によるシリコンリボンの引出方法を示す。 すなわ ち、 耐熱材で構成された回転冷却体 6 1の円筒面の一部を、 上下可動型る つぼ 6 4内の溶融シリコン 6 3中に浸漬し、 回転冷却体 6 1を回転させな がら最初はカーボンネット 6 5を利用して引き出すことによって、 シリコ ンリボン 6 2を連続的に取り出す。 この方法によると、 シリコンのィンゴットをワイヤ一ソ一等によりスラ イスしてウェハを得る従来のシリコンウェハの製造法よりも、 プロセスコ ストおよび原料費の双方を低減することができる。 FIG. 6 shows a method of pulling out a silicon ribbon by this manufacturing apparatus. That is, a part of the cylindrical surface of the rotary cooling body 61 made of a heat-resistant material is immersed in the molten silicon 63 in the vertically movable crucible 64, and the rotary cooling body 61 is not rotated. At first, the silicon ribbon 62 is continuously taken out by using the carbon net 65 to draw it out. According to this method, both the process cost and the raw material cost can be reduced as compared with the conventional silicon wafer manufacturing method in which a silicon ingot is sliced with a wire and the like to obtain a wafer.
この方法を改良した発明として、 特開 2 0 0 1 - 1 9 5 9 5号公報に開 示された結晶シート製造装置がある。  As an invention in which this method is improved, there is a crystal sheet manufacturing apparatus disclosed in Japanese Patent Application Laid-Open No. 2001-19595.
図 7は、 この製造装置による結晶シートの引出方法を示す。  FIG. 7 shows a method of drawing a crystal sheet by this manufacturing apparatus.
回転冷却体 7 1は、 その周面に回転軸の方向に交互に形成された、 環状 の凸部 7 7および凹部 7 8からなる凹凸構造を備えている。  The rotary cooling body 71 has a concavo-convex structure composed of annular convex portions 77 and concave portions 78 alternately formed on the peripheral surface in the direction of the rotation axis.
金属あるいは非鉄金属の溶融液 7 3に、 凹部 7 8の底部に溶融液 7 3が 付着しないように、 凸部 7 7のみ浸漬する。 これにより、 凸部 7 7に結晶 核が発生して成長し、 隣り合った凸部 7 7から成長した結晶と接触して結 晶シート 7 2が形成される。  Only the protrusions 77 are immersed in the metal or non-ferrous metal melt 73 so that the melt 73 does not adhere to the bottom of the recesses 78. As a result, a crystal nucleus is generated and grown in the convex portion 77, and a crystal sheet 72 is formed in contact with the crystal grown from the adjacent convex portion 77.
この方法によると、 凹部 7 8は溶融液 7 3に浸漬されないため、 回転冷 却体 7 1と結晶シート 7 2との接着強度が低下し、 結晶シート 7 2は回転 冷却体 7 1から容易に剥離することができる。 また、 結晶核が凸部 7 7の みで発生するように制御することができ、比較的大きな結晶粒が得られる さらに、 回転冷却体 7 1の凹部 7 8に先端部が挿入された結晶シート搔 取部 7 5を備えることによって、 結晶シート 7 2は容易かつ連続的に回転 冷却体 7 1から接き取られて剥離する。  According to this method, since the concave portions 7 8 are not immersed in the melt 73, the adhesive strength between the rotary cooling body 71 and the crystal sheet 72 is reduced, and the crystal sheet 72 is easily separated from the rotary cooling body 71. Can be peeled. In addition, the crystal nuclei can be controlled so as to be generated only in the convex portions 77, and relatively large crystal grains can be obtained. Further, the crystal sheet having the tip portion inserted into the concave portion 78 of the rotary cooling body 71 With the provision of the take-out portion 75, the crystal sheet 72 is easily and continuously brought into contact with the rotary cooling body 71 and peeled off.
前記の米国特許第 4 2 3 1 7 5号公報に開示された方法においては、 金 属を再融解させて液体状態で取り出す必要がある。 すなわち、 板状金属を 直接取り出すことは不可能であり、 再融解した金属を再結晶化させる必要 がある。 そのため、 この方法をシリコンリボンの製造に適用した場合は、 溶融、 凝固殻生成、 再溶融および再結晶化等と多数の過程が必要であり、 製造電力、 時間、 コストが大きくなる。 また、 シリコンリボンの連続製造 も不可能である。  In the method disclosed in the above-mentioned US Pat. No. 4,231,755, it is necessary to re-melt the metal and take it out in a liquid state. In other words, it is impossible to directly extract the plate-like metal, and it is necessary to recrystallize the re-melted metal. Therefore, when this method is applied to the production of silicon ribbons, many processes such as melting, solidification shell formation, remelting and recrystallization are required, and the production power, time, and cost increase. Also, continuous production of silicon ribbons is not possible.
前記の特開 2 0 0 1 - 1 9 5 9 5号公報に開示された結晶シート製造装 置においては、 円筒型回転冷却体 7 1上に生成したシリコン凝固殻を取り 出す構成を有し、 平面状のシリコンシートを直接引き出すことは不可能で ある。 また、 取り出されるシリコンシートが平面状でないため、 連続引き 出しが困難である。 In the crystal sheet manufacturing apparatus disclosed in the above-mentioned Japanese Patent Application Laid-Open No. 2001-195595, the silicon solidified shell formed on the cylindrical rotary cooling body 71 is removed. With this configuration, it is impossible to directly pull out a flat silicon sheet. In addition, since the silicon sheet to be taken out is not flat, it is difficult to continuously withdraw it.
また、 搔取部を延長し、 接取部に沿った平面状の結晶シート 7 2を引き 出す場合においても、結晶成長は円筒型回転冷却体 7 1上で行われるため、 円筒に沿った結晶シート 7 2を平面に引き伸ばす方法となる。 したがって、 結晶シ一ト 7 2を完全に引き伸ばせない場合には、 結晶シ一ト 7 2に湾曲 が残り、 連続取り出しは不可能となる。 さらに、 取り出された結晶シート 7 2は平面状にならない。  In addition, even when the flat portion is extended and the flat crystal sheet 72 along the contact portion is drawn out, the crystal growth is performed on the cylindrical rotary cooling body 71, so that the crystal along the cylinder is formed. This is a method of stretching the sheet 72 to a flat surface. Therefore, when the crystal sheet 72 cannot be completely stretched, the crystal sheet 72 remains curved, and continuous extraction is impossible. Further, the crystal sheet 72 taken out does not become flat.
さらに、 条件の最適化によって結晶シート 7 2を完全に引き伸ばせた場 合でも、 結晶シート 7 2に内部応力が残存するので、 結晶シート 7 2の強 度が低下し、 引出過程、 徐冷却過程において結晶シート 7 2が破損するお それがあり、 結晶シート 7 2の安定的な連続製造は困難である。  Furthermore, even if the crystal sheet 72 is completely stretched by optimizing the conditions, the internal stress remains in the crystal sheet 72, so that the strength of the crystal sheet 72 is reduced, and the drawing process and the slow cooling process are performed. In such a case, the crystal sheet 72 may be damaged, and stable continuous production of the crystal sheet 72 is difficult.
これらの問題点によって、 前記した従来の各技術では、 平面状シリコン シートを大量かつ安定的に低コストで連続生産を行うことは困難である。 前記の特閧平 1 0— 2 9 8 9 5号公報に開示されたシリコンリボン製造 装置においては、 円筒型の回転冷却体 6 1上に生成したシリコン凝固殻を、 引き出し初期に力一ボンシートで引っ張り、 引き伸ばすことによって、 力 —ボンネット 6 5に引き続き、 成長した平面状のシリコンリボン 6 2を連 続的に引き出す。  Due to these problems, it is difficult to continuously and stably produce a large amount of planar silicon sheets at low cost with the above-described conventional techniques. In the silicon ribbon manufacturing apparatus disclosed in the above-mentioned Japanese Patent Application Publication No. Hei 10-299895, the silicon solidified shell formed on the cylindrical rotary cooling body 61 is drawn with a force sheet at the initial stage of drawing. By pulling and stretching, the grown flat silicon ribbon 62 is continuously pulled out following the force—bonnet 65.
しかし、 連続的な引き出しを行う場合、 常時、 シリコンリボン 6 2自体 で後続のシリコンリボン 6 2を引っ張ることになり多大な負荷がかかるの で、 シリコンリボン 6 2が破損しやすい。 この場合、 引き出し初期に力一 ボンシートなどを使用するので、 シリコンリボン 6 2の引き出しを即座に 再開することが不可能であり、 安定的な連続した引き出しは困難である。 また、 回転冷却体 6 1に成長した結晶を引っ張ることによってシリコン リボン 6 2を平面状に引き出すため、 シリコンリボン 6 2に内部応力が残 存してシリコンリボン 6 2の強度が低下する。 したがって、 引出過程また は徐冷却過程において、 シリコンリボン 6 2が破損するおそれがあり、 安 定した連続製造は困難であり、 シリコンリボン 6 2から製造される半導体 装置の半導体特性は内部応力によって低下する。 However, when the continuous drawing is performed, the subsequent silicon ribbon 62 is always pulled by the silicon ribbon 62 itself, and a large load is applied. Therefore, the silicon ribbon 62 is easily broken. In this case, since a rubber sheet or the like is used at the initial stage of the drawing, it is impossible to immediately resume the drawing of the silicon ribbon 62, and it is difficult to perform a stable continuous drawing. In addition, since the silicon ribbon 62 is pulled out in a plane by pulling the crystal grown on the rotary cooling body 61, internal stress remains in the silicon ribbon 62, and the strength of the silicon ribbon 62 is reduced. Therefore, the withdrawal process or In the slow cooling process, the silicon ribbon 62 may be damaged, and stable continuous production is difficult. The semiconductor characteristics of the semiconductor device manufactured from the silicon ribbon 62 are degraded by internal stress.
さらに、 シリコンリボン 6 2が完全に引き伸ばせない場合には、 シリコ ンリボン 6 2に湾曲が残り、 連続取り出しは不可能であり、 取り出したシ リコンリボン 6 2は平面状にならない。  Further, when the silicon ribbon 62 cannot be completely stretched, the silicon ribbon 62 remains curved, cannot be continuously taken out, and the taken-out silicon ribbon 62 does not become flat.
この発明は、 このような実情に鑑みてなされたものであり、 平面状シリ コンシ一トを大量かつ安定的に低コストで連続生産することのできるシリ コンシート製造装置およびそれによるシリコンシートを用いた太陽電池を 提供することを目的とする。 発明の開示  The present invention has been made in view of such circumstances, and uses a silicon sheet manufacturing apparatus capable of continuously producing a large amount of a planar silicon sheet stably at a low cost and a silicon sheet produced thereby. The purpose is to provide solar cells that have been used. Disclosure of the invention
この発明によれば、 溶融シリコンを収納するための溶融シリコン収納部 と、 この溶融シリコン収納部の上方に回転可能に配設されかつシリコンシ ートを表面で固化成長させるための少なくとも 1つの平坦面を有する回転 冷却体とを備え、 回転によって溶融シリコンに一旦浸漬された後に溶融シ リコンから引き上げられた回転冷却体の平坦面が溶融シリコンに再び浸潰 される前にその平坦面に生成したシリコンシートを剥離するとともに、 剥 離したシリコンシートを回転冷却体の回転による慣性力および/または重 力による落下を利用して装置外へ搬出するための剥離 ·搬出機構が設けら れていることを特徴とするシリコンシート製造装置が提供される。  According to the present invention, a molten silicon storage portion for storing molten silicon, and at least one flat surface rotatably disposed above the molten silicon storage portion and for solidifying and growing the silicon sheet on the surface. A rotary cooling body having a rotating cooling body having a rotating surface, the silicon being formed on the flat surface of the rotating cooling body once immersed in the molten silicon by rotation and then pulled up from the molten silicon before being immersed again in the molten silicon. A peeling / unloading mechanism is provided to peel off the silicon sheet and take it out of the device by using the inertia and / or gravity of the rotating cooling body to drop it. An apparatus for manufacturing a silicon sheet is provided.
この発明では、 回転冷却体が平坦面、 すなわち、 湾曲のない平面でシリ コン結晶リボンを固化成長させるので、 湾曲したシリコンシートを平面状 に引き延ばすための機構が不要になり、 内部応力が残存しないシリコンシ —トを大量かつ安定的に連続して製造することができる。  According to the present invention, since the rotary cooling body solidifies and grows the silicon crystal ribbon on a flat surface, that is, a flat surface having no curvature, a mechanism for extending the curved silicon sheet into a planar shape becomes unnecessary, and no internal stress remains. Silicon sheets can be continuously manufactured in large quantities and stably.
この発明のシリコンシート製造装置により製造されるシリコンシートは、 別途にスライスする必要がなく、 平板型シリコンシートを直接、 得ること ができる。また、スライスによる損失がないため、低コスト化に寄与する。 なお、 この発明におけるシリコンシートとは、 回転冷却体の平坦面の大 きさおよび形状によってその大きさおよび形状が規定される方形または長 方形の板状シリコンを意味する。 図面の簡単な説明 The silicon sheet manufactured by the silicon sheet manufacturing apparatus of the present invention does not need to be sliced separately, and a flat silicon sheet can be directly obtained. Further, since there is no loss due to slicing, it contributes to cost reduction. The silicon sheet in the present invention means a square or rectangular plate-like silicon whose size and shape are defined by the size and shape of the flat surface of the rotary cooling body. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 この発明の実施の一形態によるシリコンシート製造装置の構成 を説明する図である。  FIG. 1 is a diagram illustrating a configuration of a silicon sheet manufacturing apparatus according to an embodiment of the present invention.
図 2は、 この発明の実施の他の形態によるシリコンシート製造装置の構 成を説明する図である。  FIG. 2 is a diagram illustrating a configuration of a silicon sheet manufacturing apparatus according to another embodiment of the present invention.
図 3は、 図 2の剥離部材によるシリコンシートの剥離方法の第 1段階を 説明する図である。  FIG. 3 is a diagram illustrating a first step of a method of peeling a silicon sheet using the peeling member of FIG.
図 4は、 図 2の剥離部材によるシリコンシートの剥離方法の第 2段階を 説明する図である。  FIG. 4 is a diagram illustrating a second step of the method of peeling the silicon sheet using the peeling member of FIG.
図 5は、 図 1および図 2のシリコンシート製造装置が具備する搬出補助 部材の構成を説明する図である。  FIG. 5 is a diagram illustrating a configuration of a carry-out auxiliary member included in the silicon sheet manufacturing apparatus of FIGS. 1 and 2.
図 6は、 従来のシリコンシート製造装置の構成を説明する図である。 図 7は、従来のシリコンシート製造装置の他の構成を説明する図である c 発明を実施するための最良の形態 FIG. 6 is a diagram illustrating the configuration of a conventional silicon sheet manufacturing apparatus. Figure 7 is a best mode for carrying out the c invention is a diagram illustrating another structure of a conventional silicon sheet manufacturing apparatus
添付の図面に従ってこの発明をより詳細に説明する。 なお、 この発明は これらによって限定されるものではない。  The present invention will be described in more detail with reference to the accompanying drawings. The present invention is not limited by these.
図 1は、 この発明のシリコンシート製造装置の構成の第 1例を示す。 この発明のシリコンシート製造装置は、 例えば、 ステンレス鋼等で構成 した装置外壁の内部に断熱材を張りめぐらせ、 この内部に、 例えば、 対向 配置されたヒータ一と、 これらのヒーターどうしの中央部に配置された、 シリコン溶解用のるっぽ 1 4 (溶融シリコン収納部) と、 るつぼ 1 4の上 方に配置され、 軸によって支持された回転冷却体 1 1とを有する。  FIG. 1 shows a first example of the configuration of the silicon sheet manufacturing apparatus of the present invention. In the silicon sheet manufacturing apparatus of the present invention, for example, a heat insulating material is stretched inside an outer wall of the apparatus made of stainless steel or the like, and, for example, a heater disposed oppositely and a central portion of these heaters And a rotary cooling body 11 disposed above the crucible 14 and supported by a shaft.
この回転冷却体 1 1の周面には、 シリコンシートの生成部となる複数の 平坦面 1が形成されており、 平坦面 1を溶融シリコン 1 3に浸漬すると、 平坦面 1の表面にシリコンシート 1 2が生成する。 On the peripheral surface of the rotary cooling body 11, there are a plurality of The flat surface 1 is formed, and when the flat surface 1 is immersed in the molten silicon 13, a silicon sheet 12 is formed on the surface of the flat surface 1.
平坦面 1に生成したシリコンシート 1 2は、 走査型電子顕微鏡による剥 離面観察によると、 平坦面 1の表面と固着している領域が、 生成されたシ リコンシートの面積に対して 5〜1 0 %であることが分かっている。 つま り、 シリコンシート 1 2はその全体が平坦面 1の表面に固着しているわけ ではないので、 結晶成長後に適切な衝撃を与えると、 シリコンシート 1 2 を平坦面 1から容易に剥離させることが可能である。  Observation of the peeled surface of the silicon sheet 12 formed on the flat surface 1 by a scanning electron microscope showed that the area fixed to the surface of the flat surface 1 was 5 to 5% of the area of the generated silicon sheet. It is known to be 10%. In other words, since the entire silicon sheet 1 2 is not fixed to the surface of the flat surface 1, if an appropriate impact is given after the crystal growth, the silicon sheet 1 2 can be easily separated from the flat surface 1. Is possible.
また、 外的衝撃を与えなくても、 回転冷却体 1 1の回転による微小振動 や重力の影響で、 回転冷却体 1 1から剥離して落下するシリコンシートも 存在する。  In addition, even if no external impact is applied, there is a silicon sheet that separates from the rotary cooling body 11 and falls under the influence of micro-vibration or gravity caused by the rotation of the rotary cooling body 11.
シリコンシート 1 2を回転冷却体 1 1から剥離させる際の重力の作用に ついて説明する。  The action of gravity when the silicon sheet 12 is separated from the rotary cooling body 11 will be described.
まず、 シリコンを成長させる平坦面 1を最下点にして、 この平坦面 1を 溶融シリコン 1 3に浸漬すると、 シリコンシート 1 2が前記平坦面 1の表 面に成長する。  First, when the flat surface 1 on which silicon is to be grown is set at the lowest point, and the flat surface 1 is immersed in molten silicon 13, the silicon sheet 12 grows on the surface of the flat surface 1.
ここで、 回転冷却体 1 1の最下点にあって溶融シリコン 1 3に浸漬され る平坦面 1の位置を 0度とすると、 0度の位置から、 回転冷却体 1 1は回 転し、 シリコンシート 1 2は回転冷却体 1 1とともに回転する。 回転冷却 体 1 1が 3 6 0度回転すると、 最下点にあった前記の平坦面 1は、 再び溶 融シリコン 1 3に浸漬されるので、 3 6 0度回転する前にこの平坦面 1か らシリコンシート 1 2を取り出す必要がある。  Here, assuming that the position of the flat surface 1 immersed in the molten silicon 13 at the lowest point of the rotary cooling body 11 is 0 degree, the rotary cooling body 11 rotates from the 0 degree position, The silicon sheet 12 rotates together with the rotary cooling body 11. When the rotating cooling body 11 rotates 360 degrees, the flat surface 1 at the lowest point is immersed in the molten silicon 13 again. It is necessary to take out the silicon sheet 12 from it.
上記したように、 回転冷却体 1 1の回転による微小振動によってシリコ ンシート 1 2を剥離する際、シリコンシート 1 2が 0度〜 9 0度の位置(回 転冷却体 1 1の回転が 4分の 1周以下) で剥離した場合は、 シリコンシ一 ト 1 2は平坦面 1よりも下方に位置するので、 重力によって直ちに落下す る。 このシリコンシート 1 2を回収する手段として、 樋部材 1 7を設置す る必要がある。 また、 0度〜 1 8 0度以内の位置で落下しないシリコンシート 1 2は、 平坦面 1に載ったまま回転する。 特に、 回転冷却体 1 1の回転による微小 振動だけでは回転冷却体 1 1から剥離しないシリコンシート 1 2は、 上記 したように、 衝撃発生部材 1 5による衝撃を与えて剥離する必要がある。 シリコンシート 1 2を回転による慣性力および重力による落下を利用して 剥離し取り出すためには、 シリコンシート 1 2を剥離した後も、 装置外へ 搬出するための樋部材 1 6を設置した位置まで、 シリコンシート 1 2を回 転冷却体 1 1の上に載った状態で移動する必要がある。 As described above, when the silicon sheet 12 is peeled off by the minute vibration caused by the rotation of the rotary cooling body 11, the silicon sheet 12 is positioned at 0 to 90 degrees (the rotation of the rotary cooling body 11 takes four minutes). (One round or less), the silicon sheet 12 falls immediately below the flat surface 1 because of the gravity. A gutter member 17 must be provided as a means for collecting the silicon sheet 12. In addition, the silicon sheet 12 that does not fall at a position within 0 to 180 degrees rotates while being placed on the flat surface 1. In particular, as described above, the silicon sheet 12 that does not peel off from the rotary cooling body 11 only by minute vibration caused by the rotation of the rotary cooling body 11 needs to be peeled off by applying an impact from the impact generating member 15 as described above. In order to peel and remove the silicon sheet 12 using the inertial force due to rotation and the drop due to gravity, after the silicon sheet 12 is peeled, it is necessary to reach the position where the gutter member 16 for carrying out the equipment is installed. However, it is necessary to move the silicon sheet 12 with the silicon sheet 12 resting on the rotary cooling body 11.
衝撃発生部材 1 5を用いて、 0度〜 9 0度以内の位置でシリコンシート 1 2が剥離した場合は、 シリコンシ一ト 1 2はそのシリコンシート生成部 となった平坦面 1よりも下方に位置するので、 シリコンシート 1 2は即座 に落下する。 したがって、 シリコンシート 1 2は樋部材 1 7を用いて取り 出すことが可能であるが、 この場合は樋部材 1 7と衝撃発生部材 1 5とが 接近する構造となる。  When the silicon sheet 12 is peeled off at a position within 0 to 90 degrees using the impact generating member 15, the silicon sheet 12 is located below the flat surface 1 which is the silicon sheet generating portion. As it is located, the silicon sheet 12 falls immediately. Therefore, the silicon sheet 12 can be taken out by using the gutter member 17. In this case, the gutter member 17 and the impact generating member 15 have a structure in which they approach each other.
シリコンシート 1 2が 9 0度〜 1 8 0度の位置で剥離した場合は、 シリ コンシート 1 2は平坦面 1に載った状態であり、 また回転による憒性力の 方向と重力の方向とが逆になるので、 シリコンシート 1 2は平坦面 1から 落下せずに、 平坦面 1に載ったまま最上点へ移動する。 つまり、 この場合 は最上点である 1 8 0度の位置で剥離した場合と同等の結果となる。  When the silicon sheet 12 is peeled at a position between 90 degrees and 180 degrees, the silicon sheet 12 is on the flat surface 1, and the direction of the gravitational force due to rotation and the direction of gravity are Is reversed, so that the silicon sheet 1 2 does not fall from the flat surface 1 and moves to the uppermost point while remaining on the flat surface 1. In other words, in this case, the result is equivalent to the case where the peeling is performed at the position of 180 degrees which is the highest point.
1 8 0度〜 2 7 0度の位置でシリコンシート 1 2が剥離した場合は、 シ リコンシート 1 2と平坦面 1の表面との静止摩擦力よりも慣性力または重 力が大きいと、 その時点でシリコンシート 1 2は平坦面 1を離れて落下す る。 これに対して、 慣性力または重力よりも静止摩擦力が大きいと、 シリ コンシート 1 2は、 最大 2 7 0度の位置まで回転冷却体 1 1に載ったまま 移動し、 2 7 0度の位置まで移動した時点で静止摩擦係数の大きさに関わ らず真下に落下する。  When the silicon sheet 12 peels at a position between 180 degrees and 270 degrees, if the inertia force or gravity is larger than the static friction force between the silicon sheet 12 and the surface of the flat surface 1, At this point, the silicon sheet 1 2 falls off the flat surface 1. On the other hand, if the static friction force is larger than the inertial force or gravity, the silicon sheet 12 moves on the rotating cooling body 11 to a position of up to 270 degrees, When it reaches the position, it falls directly below regardless of the magnitude of the static friction coefficient.
つまり、 9 0度〜 2 7 0度の位置範囲でシリコンシート 1 2に衝撃を与 えて剥離した場合、 静止摩擦力と慣性力または重力との関係に関わらず、 シリコンシ一ト 1 2は 1 8 0度〜 2 7 0度の位置範囲で回転冷却体 1 1か ら分離して落下することになる。 That is, when the silicon sheet 12 is peeled off by applying an impact in the position range of 90 degrees to 270 degrees, regardless of the relationship between the static friction force and the inertia force or gravity, The silicon sheet 12 falls apart from the rotary cooling body 11 in a position range of 180 degrees to 270 degrees.
2 7 0度〜 3 6 0度の位置でシリコンシート 1 2が剥離した場合は、 0 度〜 9 0度の位置でシリコンシート 1 2が剥離した場合と同様に、 シリコ ンシート 1 2がその平坦面 1よりも下方に位置するので、 シリコンシート When the silicon sheet 12 peels off at a position between 270 ° and 360 °, the silicon sheet 12 becomes flat as well as when the silicon sheet 12 peels off at a position between 0 ° and 90 °. Since it is located below surface 1, silicon sheet
1 2は即座に落下する。 したがって、 この場合は、 樋部材 1 6を剥離位置 の真下に設置する必要があり、 また、 樋部材 1 6と衝撃発生部材 1 5とが 接近して配置される。 1 2 falls instantly. Therefore, in this case, the gutter member 16 needs to be installed immediately below the peeling position, and the gutter member 16 and the impact generating member 15 are arranged close to each other.
装置の構成上、 剥離のために衝撃を与える衝撃発生装置 1 5と、 落下し たシリコンシートを搬出する樋部材 1 6とを接近させることは困難である ので、 衝撃を与えてシリコンシート 1 2を剥離する位置は 9 0度〜 2 7 0 度の範囲に設定することが望ましい。  Due to the configuration of the device, it is difficult to bring the impact generator 15 that gives an impact for peeling off and the gutter member 16 that carries out the dropped silicon sheet close to each other. It is desirable that the position at which the film is peeled off be set in the range of 90 to 270 degrees.
また、 上記の理由から、 樋部材 1 6は、 1 8 0度〜 2 7 0度の位置範囲 に移動した平坦面 1からシリコンシート 1 2が分離し落下する軌道の下方 に設置することが望ましい。  For the above reason, it is desirable that the gutter member 16 be installed below the track on which the silicon sheet 12 separates from the flat surface 1 moved to the position range of 180 to 270 degrees and falls. .
図 1では、 一方の樋部材 1 7を 6 0度の位置で回転冷却体 1 1に接近さ せて設置し、 衝撃発生部材 1 5をその衝撃がシリコンシート面に対して垂 直方向に与えられるように最上点である 1 8 0度の上方位置に設置し、 他 方の樋部材 1 6を 2 7 0度の位置で回転冷却体 1 1に接近させて設置した 場合を示す。  In Fig. 1, one gutter member 17 is installed at a position of 60 degrees close to the rotating cooling body 11, and the impact generating member 15 is given a shock perpendicular to the silicon sheet surface. In this case, the gutter member 16 is installed at an upper position of 180 degrees, which is the highest point, and the other gutter member 16 is installed close to the rotary cooling body 11 at a position of 270 degrees.
衝撃発生部材 1 5の構成は、 特に限定されないが、 固体物質をシリコン シート 1 2の表面に適切な力で押し当てる物理的衝撃発生手段がもっとも 簡単で好ましい。  The configuration of the impact generating member 15 is not particularly limited, but a physical impact generating means for pressing a solid substance against the surface of the silicon sheet 12 with an appropriate force is the simplest and preferable.
一方、 剥離部材をシリコンシート 1 2の進行方向の前端側の 1辺 (回転 方向上流側の端部) に接触させることによってシリコンシート 1 2を剥離 する方法も、 可動部が存在しない点から有効な手段と考えられる。  On the other hand, the method of peeling the silicon sheet 12 by bringing the peeling member into contact with one side of the front end side in the traveling direction of the silicon sheet 12 (the end on the upstream side in the rotation direction) is also effective because there is no movable part. It is considered to be an effective means.
シリコンシート 1 2の端部に、 シリコンシート面に対して平行な方向へ 衝撃を与える場合、 その衝撃力は、 上記のシリコンシート表面への垂直な 衝撃力に対して、 はるかに小さい力で足りることが容易に予想できる。 ま た、 シリコンシート 1 2が破壊される衝撃力の上限もはるかに大きい。 ただし、 平行方向に衝撃を与える場合、 回転冷却体 1 1には接触せずに シリコンシート 1 2にだけ衝撃を与える必要がある。 すなわち、 シリコン シート 1 2の厚みを構成する側面部分にのみ衝撃を与える必要がある。 図 2は、 この発明のシリコンシート製造装置の構成の第 2例を示す。 この例示のシリコンシ一ト製造装置は、 剥離部材を用いて平行方向に衝 撃を与えるために、 回転冷却体 2 1の回転を利用する。 When an impact is applied to the edge of the silicon sheet 12 in a direction parallel to the silicon sheet surface, the impact force is perpendicular to the silicon sheet surface. It is easy to expect that much less force is required for the impact force. In addition, the upper limit of the impact force at which the silicon sheet 12 is broken is much larger. However, when an impact is applied in the parallel direction, it is necessary to apply an impact only to the silicon sheet 12 without contacting the rotating cooling body 11. That is, it is necessary to apply an impact only to the side surface portion constituting the thickness of the silicon sheet 12. FIG. 2 shows a second example of the configuration of the silicon sheet manufacturing apparatus of the present invention. The silicon sheet manufacturing apparatus of this example uses the rotation of the rotary cooling body 21 to apply an impact in a parallel direction using a peeling member.
平坦面 1は、 湾曲のない平坦な表面からなるので、 平坦面 1の表面に形 成されシリコンシート 1 2は湾曲のない平坦な表面を有し、 平坦面 1上の シリコンシ一ト 2 2の進行方向の前端 (先端) および後端 (末端) の辺 2 2 a、 2 2 bは、シリコンシート 1 2の他の部位よりも回転半径が大きい。 したがって、 シリコンシ一ト 2 2の剥離を促すための鋭角状剥離部材 2 5 を、 下地である回転冷却体 2 1の平坦面 1の端には接触することなくシリ コンシート 2 2の進行方向前端側 (回転方向上流側) の 1辺 2 2 aにのみ 接触するよう固定しておけば、 剥離部材 2 5によってシリコンシート 2 2 の剥離が効果的に行われる。 すなわち、 剥離部材 2 5の剥離用先端は、 シ リコンシート 2 2を生成する回転冷却体 2 1の平坦面 1における進行方向 前端側の角部が通る最大回転半径の円軌道と、 そこからシリコンシート 2 2の厚さ分だけ外側に位置する円軌道との間に設置する必要がある。  Since the flat surface 1 is composed of a flat surface without a curve, the silicon sheet 12 is formed on the surface of the flat surface 1 and the silicon sheet 12 has a flat surface without the curve, and the silicon sheet 2 2 on the flat surface 1 is formed. The sides 22 a and 22 b of the front end (front end) and the rear end (end) in the traveling direction have a larger turning radius than other parts of the silicon sheet 12. Therefore, the acute-angled peeling member 25 for promoting the peeling of the silicon sheet 22 is provided at the front end of the silicon sheet 22 in the traveling direction without contacting the edge of the flat surface 1 of the rotary cooling body 21 as the base. If it is fixed so as to be in contact with only one side 22 a on the side (upstream in the rotational direction), the peeling member 25 effectively separates the silicon sheet 22. In other words, the peeling tip of the peeling member 25 is formed by a circular orbit having a maximum radius of rotation passing through a corner on the front end side in the traveling direction on the flat surface 1 of the rotary cooling body 21 that generates the silicon sheet 22, It is necessary to install between the circular orbit located outside by the thickness of the sheet 22.
図 3は、 その剥離部材 2 5とシリコンシート 2 2とが接触する直前の状 態を示す。 剥離部材 2 5の剥離用先端は、 シリコンシート 2 2を生成する 平坦面 1の進行方向前端側の角部 (稜線) 3 0が通る最大回転半径の円軌 道 3 1よりもやや外側に設置されている。  FIG. 3 shows a state immediately before the peeling member 25 and the silicon sheet 22 come into contact with each other. The exfoliation tip of the exfoliation member 25 is located slightly outside the circular orbit 31 with the maximum turning radius through which the corner (ridge) 30 on the front end side in the traveling direction of the flat surface 1 that forms the silicon sheet 22 2 passes. Have been.
図 3に示すように、 シリコンシート 2 2の進行方向前端側における辺 2 2 a以外の部位は、 軌道 3 1よりも内側を通ることがわかる。  As shown in FIG. 3, it can be seen that portions other than the side 22 a on the front end side in the traveling direction of the silicon sheet 22 pass inside the orbit 31.
図 4は、 回転冷却体 2 1が図 3の状態からさらに回転して、 剥離部材 2 5とシリコンシート 2 2とが接触した直後の状態を示す。 図 4において、 回転冷却体 2 1は剥離部材 2 5とは一切接触しない。 シ リコンシート 2 2は、 その進行方向前端側の 1辺 2 2 aのみが剥離部材 2 5と接触し、 平坦面 1から剥離して樋部材 2 6へ滑り落ちた後に搬出され る構造となっている。 FIG. 4 shows a state immediately after the rotary cooling body 21 further rotates from the state shown in FIG. 3 and the peeling member 25 comes into contact with the silicon sheet 22. In FIG. 4, the rotary cooling body 21 does not contact the peeling member 25 at all. The silicon sheet 22 has a structure in which only one side 22 a on the front end side in the traveling direction comes into contact with the peeling member 25, peels off from the flat surface 1, slides down to the gutter member 26, and is carried out. ing.
図 2におけるシリコンシート 2 2の厚さは、 溶融シリコン 2 3などの温 度条件、 回転冷却体 2 1の回転数や冷却条件などによって異なるが、 通常 の太陽電池用として用いる場合、 数 1 0 0 mであるので、 剥離部材 2 5 を数 1 0 0 mの精度で設置することが可能である。  The thickness of the silicon sheet 22 in FIG. 2 varies depending on the temperature conditions of the molten silicon 23 and the like, the number of revolutions and cooling conditions of the rotary cooling body 21, and the like. Since it is 0 m, the peeling member 25 can be installed with an accuracy of several 100 m.
また、 剥離部材 2 5を設置する位置は、 上記のシリコンシート 2 2の表 面に衝撃を与える場合とほぼ同様の考え方に基づいて設定できる。 上記し た場合と同様に、 回転冷却体 1 1の最下点にあって溶融シリコン 1 3に浸 潰される平坦面 1の位置を 0度とすると、 回転冷却体 1 1が 3 6 0度回転 して再び溶融シリコン 2 3に浸漬する前にシリコンシート 2 2を取り出す 必要がある。  Further, the position at which the peeling member 25 is installed can be set based on substantially the same concept as in the case where an impact is applied to the surface of the silicon sheet 22 described above. As in the above case, assuming that the position of the flat surface 1 at the lowest point of the rotary cooling body 11 and immersed in the molten silicon 13 is 0 degrees, the rotary cooling body 11 rotates 360 degrees. It is necessary to take out the silicon sheet 22 before immersing it in the molten silicon 23 again.
剥離部材 2 5が衝撃発生部材 1 5と異なる点は、 剥離部材 2 5によって 平坦面 1から剥離されたシリコンシート 2 2が、 回転冷却体 2 1に載った まま移動することなく、 剥離部材 2 5の設置位置に関わらず剥離部材 2 5 の設置位置で即座に平坦面 1から分離できることにある。  The difference between the peeling member 25 and the impact generating member 15 is that the silicon sheet 22 peeled off from the flat surface 1 by the peeling member 25 does not move while remaining on the rotary cooling body 21 and the peeling member 2 Regardless of the installation position of 5, the separation member 25 can be immediately separated from the flat surface 1 at the installation position.
剥離部材 2 5を 0度〜 1 8 0度の位置に設置した場合は、 シリコンシー ト 2 2は、 回転冷却体 2 1の回転方向と逆方向に反転しながら回転冷却体 2 1から分離して落下することになる。 このため、 樋部材 2 8にシリコン シート 2 2が滑り落ち、 取り出すことが可能である。 ただし、 剥離位置と 樋部材 2 8との距離が大きいほど、 落下による衝撃は大きくなる。  When the peeling member 25 is set at a position of 0 to 180 degrees, the silicon sheet 22 is separated from the rotating cooling body 21 while reversing the rotating direction of the rotating cooling body 21. Will fall. Therefore, the silicon sheet 22 slides down the gutter member 28 and can be taken out. However, the greater the distance between the separation position and the gutter member 28, the greater the impact due to the drop.
落下による衝撃緩和と装置の簡略化を図るためには、 剥離部材 2 5と樋 部材 2 6を接近させるか、 もしくは一体化することが望ましい。 剥離部材 2 5を 1 8 0度〜 2 7 0度の位置に設置する場合、 特に剥離部材 2 5と樋 部材 2 6とを一体化して設置する構造においては、 シリコンシート 2 2は 剥離後、 回転冷却体 2 1から分離してスムーズに樋部材 2 6へ滑り落ちる ことになる。 また、 剥離のための衝撃を与えるのに際し、 回転冷却体 2 1 の回転以外の特別な可動部材を必要としないので、装置の単純化に寄与し、 また装置の耐久性およびメンテナンス性が向上する。 In order to alleviate the impact due to the drop and simplify the apparatus, it is desirable that the separation member 25 and the gutter member 26 be close to each other or integrated. When the peeling member 25 is installed at a position of 180 degrees to 270 degrees, especially in a structure in which the peeling member 25 and the gutter member 26 are integrally installed, the silicon sheet 22 is peeled off after the peeling. Separate from the rotating cooling body 2 1 and smoothly slide down to the gutter member 26 Will be. In addition, no special movable member other than the rotation of the rotary cooling body 21 is required to give an impact for peeling, which contributes to simplification of the apparatus, and improves durability and maintainability of the apparatus. .
上記の第 1例および第 2例はともに、 樋部材を装置構成の単純化のため に、 シリコンシートの自重を利用して搬出できる構造にすることが望まし い。 すなわち、 回転動力機構などによる強制搬送ではなく、 シリコンシ一 トが樋部材との摩擦に杭して自重落下する角度以上に樋部材を傾斜させ、 シリコンシートが樋部材上を自重によって滑り落ちて装置外へ搬出される 構造にするのが望ましい。  In both the first and second examples, it is desirable that the gutter member has a structure capable of being carried out by utilizing the weight of the silicon sheet in order to simplify the device configuration. In other words, instead of forced conveyance by a rotating power mechanism, etc., the silicon sheet is piled up due to friction with the gutter member and the gutter member is inclined at an angle greater than the angle at which the silicon sheet falls under its own weight. It is desirable to adopt a structure to be carried out.
また、 ローラ一などの搬出補助部材を付加することによって、 シリコン シートをより効率的に搬出することも可能である。  Further, by adding a carry-out assisting member such as a roller, it is possible to carry out the silicon sheet more efficiently.
以下、 この発明の実施の形態に基づく実施例を説明する。 なお、 この発 明はこれらによって限定されるものではない。  Hereinafter, examples based on the embodiments of the present invention will be described. The invention is not limited by these.
実施例 1 Example 1
実施例 1は、 シリコンシートを生成する回転冷却体の平坦面および平面 状シリコンシ一トに対して垂直方向から衝撃を与えてシリコンシ一トを平 坦面から剥離する方法が用いられた例である。  Embodiment 1 is an example in which a method is used in which a flat surface and a planar silicon sheet of a rotary cooling body for producing a silicon sheet are subjected to impact from a vertical direction to peel off the silicon sheet from the flat surface. .
実施例 1に係るシリコンシート製造装置は、 図 1に示すように、 角型る つぼ 1 4、 このるつぼ 1 4に供給されたシリコンを溶融するための加熱ヒ —夕一、 シリコンシート生成部となる複数の平坦面 1が形成された回転冷 却体 1 1、 この回転冷却体 1 1を回転可能に支持する回転軸(図示せず)、 シリコンシート 1 2を剥離するために衝撃を与える衝撃発生部材 1 5、 剥 離したシリコンシート 1 2を装置の外へ搬出する 2つの樋部材 1 6、 1 7 で構成されている。  As shown in FIG. 1, the silicon sheet manufacturing apparatus according to the first embodiment includes a square crucible 14, a heating crucible for melting silicon supplied to the crucible 14, and a silicon sheet generating unit. A rotating cooling body 11 having a plurality of flat surfaces 1 formed thereon, a rotating shaft (not shown) rotatably supporting the rotating cooling body 11, and an impact giving an impact to peel off the silicon sheet 12. It consists of a generating member 15 and two gutter members 16 and 17 for carrying the peeled silicon sheet 12 out of the apparatus.
これらの構成要素は、 図示しない断熱材を有する外壁を備えた直方体状 の装置本体内に収納されている。 装置本体は、 内部を、 例えばアルゴンガ スの雰囲気に保持することができるようにシールが施されている。  These components are housed in a rectangular parallelepiped device main body having an outer wall having a heat insulating material (not shown). The device main body is sealed so that the inside can be maintained in an atmosphere of, for example, argon gas.
回転冷却体 1 1の表面に生成したシリコンシート 1 2のうち、 回転冷却 体 1 1の回転による微小振動で剥離するものは、 一方の樋部材 1 7によつ て搬出される。 Rotary cooling of the silicon sheet 1 2 generated on the surface of the rotating cooling body 1 1 What peels off due to minute vibrations caused by the rotation of the body 11 is carried out by one of the gutter members 17.
回転冷却体 1 1は、 中空構造となっており、 内部に気体または液体の冷 却媒体を通すことによって冷却を行う。  The rotary cooling body 11 has a hollow structure, and performs cooling by passing a gas or liquid cooling medium inside.
回転冷却体 1 1の回転による微小振動で剥離しないシリコンシート 1 2 を剥離するための衝撃を与える方法は、 回転冷却体 1 1の回転に同期させ ながら、 規定の衝撃力をすベての平坦面 1上のシリコンシート 1 2に対し て与えることができる機構であれば、 特に限定されない。  The method of applying a shock to peel off the silicon sheet 12 that does not peel due to minute vibrations caused by the rotation of the rotating cooling body 11 is to apply a specified impact force while synchronizing with the rotation of the rotating cooling body 11 The mechanism is not particularly limited as long as it can be given to the silicon sheet 12 on the surface 1.
本実施例では、 力一ボンを材料とする棒等の打撃部材を紐等で回転冷却 体 1 1の真上に吊し、 回転冷却体 1 1の回転に同期させてシリコンシート 1 2が最上点に到達すると同時に、 前記打撃部材を落下させて、 平坦面 1 上のシリコンシート 1 2の全体に衝撃を与える衝撃発生部材 1 5とした。 打撃部材の自重落下による衝撃を与える位置は、 回転冷却体 1 1の最下点 を 0度としたときの 1 8 0度(最上点)の位置となり、 この位置において、 シリコンシート 1 2の表面には垂直方向の衝撃が与えられる。  In the present embodiment, a striking member such as a rod made of a carbon material is hung directly above the rotary cooling body 11 with a string or the like, and the silicon sheet 12 is moved upward in synchronization with the rotation of the rotary cooling body 11. Upon reaching the point, the impact member was dropped to make an impact generating member 15 that impacts the entire silicon sheet 12 on the flat surface 1. The position at which the impact due to the falling weight of the striking member is given is 180 ° (the highest point) when the lowest point of the rotating cooling body 11 is 0 °, and the surface of the silicon sheet 12 is located at this position. Is subjected to a vertical shock.
この発明においては、 回転冷却体 1 1の回転駆動源にパルスモ一夕を使 用することにより、 回転冷却体 1 1の回転の状態 (回転角度) はパルスモ —夕から発信されるパルス信号の読み込みに基づいて把握できるので、 各 平坦面 1が 1 8 0度 (最上点) の位置に到達するタイミングを把握して衝 撃発生部材 1 5を駆動することが可能である。  In the present invention, by using the pulse motor for the rotary drive source of the rotary cooling body 11, the rotation state (rotation angle) of the rotary cooling body 11 is read by the pulse mode. Therefore, it is possible to drive the impact generating member 15 by grasping the timing when each flat surface 1 reaches the position of 180 degrees (the highest point).
具体的には、 打撃部材に接続された紐の他端を、 モ一夕の回転軸に取り 付けられたリールに固定し、 上記回転軸の正 ·逆回転でリールによる紐の 巻き取りおよび開放を行う。 上記回転軸の正 ·逆回転は、 回転冷却体 1 1 の回転と同期させる。 すなわち、 各平坦面 1が 1 8 0度 (最上点) の位置 に到達した時点で、 リールに卷き取られた紐を開放して打撃部材を平坦面 1上のシリコンシート 1 2に自重落下させる。  Specifically, the other end of the string connected to the striking member is fixed to a reel attached to the rotating shaft of the motor, and the reel is wound up and released by the reel by rotating the rotating shaft forward and backward. I do. The forward and reverse rotation of the rotating shaft is synchronized with the rotation of the rotary cooling body 11. That is, when each flat surface 1 reaches the position of 180 degrees (the highest point), the string wound on the reel is released, and the striking member falls on the silicon sheet 12 on the flat surface 1 by its own weight. Let it.
衝撃発生部材 1 5としては、 上記のような打撃部材を自重落下させる構 成に限定されることはなく、 回転軸とギアなどで連動した軸を直進運動に 変換することによって略完全に同期させることが可能であり、 衝撃を与え るシリコンシート 1 2上の位置および打撃角度は任意に設定することが可 能である。 The impact generating member 15 is not limited to the configuration in which the impact member is dropped by its own weight as described above. By performing the conversion, it is possible to synchronize almost completely, and it is possible to arbitrarily set the position on the silicon sheet 12 to give an impact and the hitting angle.
打撃部材の材料に関しては、 本実施例ではカーボン棒としたが、 装置内 の温度に耐え、 かつシリコンへの汚染の影響が少ない材料であれば、 特に 限定されるものではない。  In the present embodiment, the material of the impact member is a carbon rod. However, the material is not particularly limited as long as it can withstand the temperature in the apparatus and has little influence on contamination of silicon.
特に、 力一ボンに S i Cなどをコートした部材などのように、 シリコン よりも硬い部材により、 もしくはシリコンよりも硬い材料をコ一トした部 材により、 耐久性を向上させることも有効であり、 カーボン粉などによる 汚染防止の効果も得られる。  In particular, it is effective to improve the durability by using a member harder than silicon, such as a member coated with SiC or the like, or by coating a material harder than silicon. Yes, it also has the effect of preventing pollution by carbon powder.
また、 打撃部材の形状も規定の衝撃力を与えられる形状であれば、 特に 限定されるものではないが、 衝撃力の一点集中を防ぐためにも打撃部材の 打撃面は、 曲率半径が大きい曲面形状あるいは平坦面形状からなることが 好ましい。  The shape of the striking member is not particularly limited as long as it can apply a specified impact force, but the striking surface of the striking member has a large radius of curvature in order to prevent a single point of impact force. Alternatively, it preferably has a flat surface shape.
また、 複数の打撃部材を備え、 これらの打撃による衝撃を、 同時にシリ コンシート表面の複数箇所へ与えるように構成してもよい。 この場合、 衝 撃力の集中が緩和できる。  Further, a plurality of striking members may be provided so that the impacts of these striking members are simultaneously applied to a plurality of locations on the silicon sheet surface. In this case, the concentration of impact force can be reduced.
剥離したシリコンシート 1 2を搬出する樋部材 1 6、 1 7は、 シリコン シート 1 2が自重により滑り落ちる板状の滑走面を有する構造が好ましい c 図 5に示すように、 シリコンシート 1 2が樋部材 1 6、 1 7から外れて 横方向へ落下するのを防く、ために、 樋部材 1 6、 1 7の側部に搬出補助部 材としての落下防止用ガイ ド 5 4を設置するのが好ましい。 Peeled gutter member 1 6, 1 7 for unloading the silicon sheet 1 2, as shown in the structure is preferably c Figure 5 having a plate-like running surface for silicon sheet 1 2 slides down by its own weight, the silicon sheet 1 2 gutter In order to prevent them from falling off the members 16 and 17 and dropping in the horizontal direction, a fall prevention guide 54 is installed on the side of the gutter members 16 and 17 as a carry-out auxiliary member. Is preferred.
また、 図 5に示すように、 シリコンシート 1 2の自重による滑りをより 促進するために、 搬出補助部材としてのローラー 5 3を滑走面に設置する のが好ましい。  Further, as shown in FIG. 5, in order to further promote the sliding of the silicon sheet 12 by its own weight, it is preferable to install a roller 53 as a carry-out assisting member on the sliding surface.
本実施例では、 搬出補助部材としてこのようなガイド 5 4およびローラ —5 3を備えた樋部材 5 1を、 6 0度と 2 7 0度の双方の位置に設置した。 樋部材 5 1の設置角度(傾斜角度)は、水平に対して 3 0度下方へ傾け、 シリコンシート 1 2が自重で装置外へ搬出される構造とした。 In the present embodiment, the gutter member 51 provided with such a guide 54 and a roller 53 as a carry-out auxiliary member is installed at both the positions of 60 degrees and 270 degrees. The installation angle (inclination angle) of the gutter member 51 is inclined 30 degrees downward with respect to the horizontal, The structure is such that the silicon sheet 12 is carried out of the apparatus by its own weight.
樋部材 5 1の設置位置に関しては、 装置の構成や、 シリコンシート 1 2 が回転冷却体 1 1から分離、 落下する位置などを考慮する必要がある。 設 置角度に関しては、 樋部材 5 1の材料とシリコンシート 1 2との摩擦など から、 シリコンシート 1 2が自重により滑り落ちる条件内に設定する必要 がある。  Regarding the installation position of the gutter member 51, it is necessary to consider the configuration of the apparatus and the position where the silicon sheet 12 separates from the rotary cooling body 11 and falls. The installation angle must be set so that the silicon sheet 12 slides down by its own weight due to friction between the material of the gutter member 51 and the silicon sheet 12.
樋部材 5 1 ( 1 6、 1 7 ) の表面形態に関しては、 シリコンシート 1 2 との摩擦力を低減するために、 なるべく表面が平滑なものを選ぶことが好 ましい。  Regarding the surface configuration of the gutter member 51 (16, 17), it is preferable to select a surface having as smooth a surface as possible in order to reduce the frictional force with the silicon sheet 12.
このような材料として、 例えば、 シリコンシート 1 2よりも柔らかい材 質のものを選んだ場合は、 シリコンシート 1 2が樋部材 1 6、 1 7に滑り 落ちた際の衝撃を緩和することができ、 シリコンシート 1 2の破壊を防止 できるが、 耐久性は低下する。 S i Cコ一トのように硬い材料を選んだ場 合でも、 設置角度や設置位置を考慮することによって、 シリコンシート 1 2が破壊されない構造とすることが可能である。  If, for example, a material that is softer than the silicon sheet 12 is selected as such a material, the impact when the silicon sheet 12 slides down on the gutter members 16 and 17 can be reduced. Although the silicon sheet 12 can be prevented from being broken, the durability is reduced. Even when a hard material such as a SiC coat is selected, it is possible to provide a structure in which the silicon sheet 12 is not broken by considering the installation angle and the installation position.
回転冷却体 1 1は、 シリコンシートを生成する平坦面 1以外は、 溶融シ リコン 2 3に浸漬されない構造が好ましい。 なお、 もっとも単純な回転冷 却体の構造は横断面形状が多角柱となる構造であるが、 この場合は、 隣接 する平坦面 1どうしが互いに辺を介して連続するため、 隣り合うシリコン シート 1 2どうしが一体化するおそれがある。  The rotary cooling body 11 preferably has a structure that is not immersed in the molten silicon 23 except for the flat surface 1 that generates the silicon sheet. Note that the simplest structure of a rotary cooling body is a structure in which the cross-sectional shape is a polygonal column. In this case, since the adjacent flat surfaces 1 are continuous with each other via the sides, the adjacent silicon sheets 1 There is a risk that the two will be integrated.
そこで、 この発明では、 図 1に示すように、 多角柱の頂点を内側へカツ トした歯車型回転冷却体 1 1を適用した。 この構造では、 平坦面 1がこの 多角柱の側面に構成されるので、 平坦面 1どうしは不連続な衝撃に関して も一定時間間隔で連続して衝撃を与える単純な構造とすることができる。 前記の装置を用いて、 シリコンシート 1 2を製造する方法の一例を説明 する。  Therefore, in the present invention, as shown in FIG. 1, a gear-type rotary cooling body 11 in which vertices of a polygonal column are cut inward is applied. In this structure, since the flat surface 1 is formed on the side surface of the polygonal prism, the flat surfaces 1 can be a simple structure that gives continuous shocks at a fixed time interval even for discontinuous shocks. An example of a method for manufacturing the silicon sheet 12 using the above-described apparatus will be described.
まず、固体状シリコンを充填したるつぼ 1 4をヒ一夕一によつて加熱し、 シリコンを溶融させた。 次に、 るつぼ 1 4を上昇させ、 図 1のように、 回 転冷却体 1 1の平坦面 1を溶融シリコン 1 3中に浸潰し、 回転冷却体 1 1 を回転させた。 First, a crucible 14 filled with solid silicon was heated all day long to melt the silicon. Next, raise the crucible 14 and rotate it as shown in Figure 1. The flat surface 1 of the subcooler 11 was immersed in molten silicon 13 and the rotary cooler 11 was rotated.
これにより、 歯車型回転冷却体 1 1のすベての平坦面 1に略同一のシリ コンシート 1 2が生成された。 衝撃発生部材 1 5は、 平面状のシリコンシ —ト 1 2が最上点の平坦面 1上で水平になった瞬間に、 垂直に落下してシ リコンシート 1 2に衝撃を与えるように、 一定時間間隔で落下および上昇 を繰り返すように制御した。  As a result, substantially the same silicon sheet 12 was formed on all the flat surfaces 1 of the gear-type rotary cooling body 11. The impact generating member 15 is applied for a certain period of time so that when the flat silicon sheet 12 becomes horizontal on the flat surface 1 at the highest point, the silicon sheet 12 falls vertically and gives an impact to the silicon sheet 12. Control was performed so that falling and rising were repeated at intervals.
このようにしてシリコンシート 1 2を成長させ、 装置の靦き孔から確認 したところ、 シリコンシートのうちの約 3 0 %は 0度〜 1 8 0度の位置で 振動により平坦面 1から落下し、 一方の樋部材 1 7を滑り落ちて装置外へ 搬出され回収された。  When the silicon sheet 12 was grown in this way and checked through the drilled holes of the device, about 30% of the silicon sheet fell from the flat surface 1 due to vibration at the position of 0 to 180 degrees. However, one of the gutter members 17 was slid down and carried out of the apparatus and collected.
残りの約 7 0 %のシリコンシートは、 すべて最上点 ( 1 8 0度の位置) で平坦面 1から剥離し、 次いでこの平坦面 1から分離して他方の樋部材 1 6へ滑り落ちた後、 装置外へ搬出され回収された。  The remaining about 70% of the silicon sheet is peeled off from the flat surface 1 at the highest point (at the position of 180 degrees), then separated from the flat surface 1 and slid down to the other gutter member 16. It was carried out of the equipment and collected.
回収されたシリコンシート 1 2は、 平滑な表面を有するとともに厚さが 均一であり (平均厚さ約 2 7 0 m) 、 安定的な連続した結晶成長で形成 された柱状シリコンシートとなった。  The recovered silicon sheet 12 had a smooth surface and a uniform thickness (average thickness of about 270 m), and became a columnar silicon sheet formed by stable and continuous crystal growth.
実施例 2 Example 2
実施例 2は、 シリコンシートを生成する回転冷却体の平坦面および平面 状シリコンシートに対して平行する方向から衝撃を与えてシリコンシート を平坦面から剥離する方法が用いられた例である。  Example 2 is an example in which a method is used in which a silicon sheet is peeled off from a flat surface by applying an impact from a direction parallel to the flat surface and the planar silicon sheet of the rotary cooling body that generates the silicon sheet.
実施例 2に係るシリコンシート製造装置は、 図 2に示すように、 実施例 1とほぼ同等の構成からなるが、 実施例 1と異なる点は、 平面状シリコン シート 2 2の表面に衝撃を与える衝撃発生部材 1 5が削除されたこと、 お よび回転冷却体 2 1の最下点 0度に対して 2 7 0度の位置にシリコンシ一 ト 2 2を剥離するための鋭角状剥離部材 2 5が設けられ、 この剥離部材 2 5がシリコンシート搬出用樋部材 2 6と一体化されて形成されたことであ る。 図 3を用いて剥離部材 2 5を説明する。 As shown in FIG. 2, the silicon sheet manufacturing apparatus according to the second embodiment has substantially the same configuration as that of the first embodiment, but differs from the first embodiment in that an impact is applied to the surface of the planar silicon sheet 22. The impact-generating member 15 has been removed, and the acute-angle peeling member 25 for peeling off the silicon sheet 22 at a position of 270 ° with respect to the lowest point 0 ° of the rotary cooling body 21 This is that the peeling member 25 is formed integrally with the gutter member 26 for carrying out the silicon sheet. The peeling member 25 will be described with reference to FIG.
剥離部材 2 5には、 先端を鋭角加工したカーボンを使用した。 この剥離 部材 2 5は、 回転冷却体 2 1の最下点となる 0度の位置に対して 2 7 0度 となる位置における平坦面 1の角部 3 0が作る円軌道 3 1に対する接線と 平行に、 かつ、 円軌道 3 1から 1 0 0 / Π1外側に離れた位置に設置した。 これにより、 厚さ 1 0 O ^ m以上のシリコンシート 2 2を平坦面 1から剥 離できることになる。  As the peeling member 25, carbon whose tip was sharpened was used. The peeling member 25 is formed by a tangent to the circular orbit 31 formed by the corner 30 of the flat surface 1 at a position that is 27 ° from the 0 ° position that is the lowest point of the rotary cooling body 21. It was installed in parallel and at a distance of 100 / / 1 from the circular orbit 31 outside. Thereby, the silicon sheet 22 having a thickness of 10 O ^ m or more can be separated from the flat surface 1.
剥離部材 2 5は、 水平に対し 3 0度傾けた樋部材 2 6の先端部と一体化 されることにより、 装置部材の簡略化が図られた。  The peeling member 25 was integrated with the tip of the gutter member 26 inclined 30 degrees with respect to the horizontal, thereby simplifying the device members.
図 2に示した、 剥離したシリコンシート 2 2を搬出する樋部材 2 6、 2 8は、実施例 1と同様に、 ガイ ド 5 4、 ローラ一 5 3を備えた部材とした。 樋部材 2 6、 2 8の設置位置、 角度、 表面形態および材質等に関しても、 実施例 1と同様に設定できる。  The gutter members 26 and 28 for carrying out the peeled silicon sheet 22 shown in FIG. 2 were members provided with guides 54 and rollers 53 as in the first embodiment. The installation positions, angles, surface forms, materials, and the like of the gutter members 26 and 28 can be set in the same manner as in the first embodiment.
回転冷却体 2 1は、 実施例 1と同様に、 多角柱の頂点を内側へ力ットし た歯車型冷却体を用いた。 特に、 剥離部材 2 5を使用する場合は、 隣接す るシリコンシート 2 2どうしが一体化していると、 シリコンシート 2 2の 進行方向前端側の 1辺 2 2 aに剥離部材 2 5を接触させ、 平面状シリコン シート 2 2に対して平行する方向に衝撃を与えることが困難となるので、 回転冷却体 2 1のような歯車型の構造が望ましい。  As in the case of the first embodiment, the rotary cooling body 21 used was a gear-type cooling body in which the vertices of a polygonal prism were pressed inward. In particular, when the peeling member 25 is used, when the adjacent silicon sheets 22 are integrated, the peeling member 25 is brought into contact with one side 22 a of the front end side in the traveling direction of the silicon sheet 22. However, since it becomes difficult to apply an impact in a direction parallel to the planar silicon sheet 22, a gear-type structure such as the rotary cooling body 21 is desirable.
この例における装置構成では、 回転冷却体 2 1と同期して可動する衝撃 発生部材 1 5等の部材が存在しないので、 回転冷却体 2 1に形成された平 坦面 1は周期的に連続した構造でなくてもよく、 隣接する平坦面 1どうし の間隔および各平坦面 1の大きさは異なっていてもよい。  In the device configuration in this example, since there is no member such as the shock generating member 15 that moves in synchronization with the rotary cooling body 21, the flat surface 1 formed on the rotary cooling body 21 is periodically continuous. It does not need to be a structure, and the interval between adjacent flat surfaces 1 and the size of each flat surface 1 may be different.
前記の装置を用いて、 シリコンシート 2 2を製造する方法の一例を説明 する。 まず、 固体状シリコンを充填したるつぼ 2 4をヒーターによって加 熱し、 シリコンを溶融させた。 次に、 るつぼ 2 4を上昇させ、 図 2に示す ように、歯車型回転冷却体 2 1の平坦面 1を溶融シリコン 2 3中に浸潰し、 回転冷却体 2 1を回転させた。 これにより、 歯車型回転冷却体 2 1のすベ ての平坦面 1に略同一のシリコンシート 2 2が生成された。 An example of a method for manufacturing a silicon sheet 22 using the above-described apparatus will be described. First, a crucible 24 filled with solid silicon was heated by a heater to melt the silicon. Next, the crucible 24 was raised, and as shown in FIG. 2, the flat surface 1 of the gear-type rotary cooling body 21 was immersed in molten silicon 23, and the rotary cooling body 21 was rotated. As a result, the gear type rotary cooling body 21 Approximately the same silicon sheet 22 was formed on all the flat surfaces 1.
このようにしてシリコンシート 2 2を成長させ、 装置の ϋき孔から確認 したところ、 シリコンシート 2 2のうちの約 3 0 %は 0度〜 1 8 0度の位 置で振動により平坦面 1から落下し、 一方の樋部材 2 8を滑り落ちて装置 外へ搬出され回収された。  When the silicon sheet 22 was grown in this way and confirmed through the holes in the device, about 30% of the silicon sheet 22 was flat at a position between 0 ° and 180 ° due to vibration. , And slipped down one of the gutter members 28 to be carried out of the device and collected.
残りの約 7 0 %のシリコンシートは、 すべて剥離部材 2 5と接触して平 坦面 1から剥離し、 次いで回転冷却体 2 1から分離して他方の樋部材 2 6 へ滑り落ちた後、 装置外へ搬出され回収された。  The remaining about 70% of the silicon sheet comes into contact with the peeling member 25 and peels off from the flat surface 1, then separates from the rotary cooling body 21 and slides down to the other gutter member 26. It was carried out of the device and collected.
回収されたシリコンシート 1 2は、 実施例 1と同様に、 平滑な表面を有 するとともに厚さが均一であり (平均厚さ約 2 7 0 m) 、 安定的な連続 した結晶成長で形成された柱状シリコンシートとなった。  The recovered silicon sheet 12 has a smooth surface and a uniform thickness (average thickness of about 270 m), as in Example 1, and is formed by stable and continuous crystal growth. It became a columnar silicon sheet.
比較例 1 Comparative Example 1
比較例 1は、 従来技術により製造されたシリコンシートと、 この発明の シリコンシート製造装置を用いて製造されたシリコンシ一トとの比較を行 つ Tこ。  Comparative Example 1 compares a silicon sheet manufactured by the conventional technique with a silicon sheet manufactured by using the silicon sheet manufacturing apparatus of the present invention.
従来技術によるシリコンシートの製造は、 図 7に示したように、 周面に 凹凸構造を備えた回転冷却体を有するシリコンシート製造装置を用いて行 つに。  Manufacturing of a silicon sheet according to the prior art is performed using a silicon sheet manufacturing apparatus having a rotary cooling body having an uneven structure on the peripheral surface as shown in FIG.
図 7に示すシリコンシート製造装置は、 実施例 1とほぼ同様の構成を有 するが、 実施例 1の装置と異なる点は、 回転冷却体 7 1が円筒型であり、 その円筒の周面に凸部 7 7および凹部 7 8を備えていることと、 凹部 7 8 に先端部が挿入されたシリコンシート搔取部 7 5を備えていることである ( 凸部 7 7および凹部 7 8は、 回転冷却体 7 1の周面に、 回転軸と直交する 方向に交互にかつ平行に形成されている。  The silicon sheet manufacturing apparatus shown in FIG. 7 has almost the same configuration as that of the first embodiment, but differs from the apparatus of the first embodiment in that the rotary cooling body 71 is a cylindrical type, It is provided with a convex portion 77 and a concave portion 78, and is provided with a silicon sheet removing portion 75 in which the tip is inserted into the concave portion 78. (The convex portion 77 and the concave portion 78 are On the peripheral surface of the rotary cooling body 71, they are formed alternately and parallel to a direction orthogonal to the rotation axis.
上記の装置を用いて、シリコンシ一トを製造する方法の一例を説明する。 まず、固体状シリコンを充填したるつぼ 7 4をヒータ一によって加熱し、 シリコンを溶融した。 次に、 るつぼ 7 4を上昇させ、 図 7に示すように、 回転冷却体 7 1の凸部 7 7のみを溶融シリコン 7 3中に浸漬し、 回転冷却 体 7 1を回転させた。 これにより、 シリコンシート 7 2は、 円筒型冷却体 7 1の凸部 7 7のみで結晶核を生成し、 この核を起点にして結晶が成長し た。 An example of a method for manufacturing a silicon sheet using the above apparatus will be described. First, a crucible 74 filled with solid silicon was heated by a heater to melt the silicon. Next, the crucible 74 is raised, and as shown in FIG. 7, only the projections 77 of the rotary cooling body 71 are immersed in the molten silicon 73, and the rotary cooling is performed. Body 7 1 was rotated. As a result, in the silicon sheet 72, a crystal nucleus was generated only at the convex portion 77 of the cylindrical cooling body 71, and the crystal grew from the nucleus as a starting point.
さらに、 シリコン融液 7 3は、 隣り合う凸部 7 7から成長する結晶と接 触することによって、 凹部 7 8には接触せず、 回転冷却体 7 1との間に空 洞を有するシリコンシート 7 2が生成された。 また、 凹部 7 8、 すなわち シリコンシート 7 2と回転冷却体 7 1との間の空洞部に、 先端部を挿入し たシリコンシート搔取部 Ί 5が設置されているので、 シリコンシート 7 2 は円筒形状から平面形状へ強制的に変形させられ、 シリコンシート搔取部 7 5に沿うように装置外へ搬出された。  Further, the silicon melt 73 comes into contact with the crystal growing from the adjacent convex portion 77, so that it does not contact the concave portion 78, but has a cavity between the rotary cooling body 71 and the silicon sheet. 7 2 was generated. In addition, the silicon sheet 72 with the tip inserted therein is installed in the recess 78, that is, in the cavity between the silicon sheet 72 and the rotary cooling body 71, so that the silicon sheet 72 is It was forcibly deformed from a cylindrical shape to a planar shape, and was carried out of the apparatus along the silicon sheet take-out part 75.
シリコンシート 7 2を成長させる工程を IIき孔から確認したところ、 シ リコンシート 7 2は数分に一度、 搔取部 7 5に沿う領域で破損した。 これ は、 シリコンシート 7 2内に湾曲を完全に引き伸ばせない部分が存在し、 シリコンシート 7 2の直線的な搬出が阻まれたためである。  When the process of growing the silicon sheet 72 was confirmed from the hole II, the silicon sheet 72 was broken once every few minutes in the area along the cut-out part 75. This is because there was a portion in the silicon sheet 72 where the curve could not be completely stretched, which prevented the silicon sheet 72 from being carried out linearly.
搬出されたシリコンシート 7 2は、 凸部 7 7に相当する部分で厚く成長 し、 凹部 7 8に相当する部分で薄く成長していた。 また、 シリコンシート 7 2の平均厚さは凸部 7 7で約 2 5 0 m、 凹部 7 8で約 2 0 0〃mであ つた。  The unloaded silicon sheet 72 grew thick at the portion corresponding to the convex portion 77, and grew thinly at the portion corresponding to the concave portion 78. Further, the average thickness of the silicon sheet 72 was about 250 m at the convex portion 77 and about 200 m at the concave portion 78.
実施例 3 Example 3
実施例 1および 2ならびに比較例 1で製造されたシリコンシートを用い て、 太陽電池を作製した。  Using the silicon sheets produced in Examples 1 and 2 and Comparative Example 1, solar cells were produced.
太陽電池作製の手順は、 シリコンシート試料の洗浄、 テクスチャエッチ ング、 拡散層形成、 酸化膜除去、 反射防止膜形成、 バックエッチ、 裏面電 極形成および受光面電極形成の各工程からなる公知の方法である。 上記試 料の各工程間の受け渡しは、 基本的に、 自動搬送機構により行った。 実施例 1および実施例 2によるシリコンシートは、 前記の各工程間です ベての自動搬送を行うことができたが、 比較例 1によるシリコンシートに 関しては、 生成されたシリコンシートに湾曲が残るとともに、 表面に凹凸 が生じたので、 自動搬送機構を用いて次の工程へ搬送できないシリコンシ —トが生じた。 The procedure for fabricating a solar cell is a known method consisting of the steps of cleaning a silicon sheet sample, texture etching, forming a diffusion layer, removing an oxide film, forming an antireflection film, back etching, forming a back electrode, and forming a light receiving surface electrode. It is. The delivery of the above samples between each process was basically performed by an automatic transport mechanism. Although the silicon sheets according to Example 1 and Example 2 were able to perform all automatic conveyance between the above-described steps, the silicon sheet according to Comparative Example 1 had a curvature in the generated silicon sheet. Remains and irregularities on the surface As a result, there was a silicon sheet that could not be transferred to the next step using the automatic transfer mechanism.
次に、 実施例 1および 2ならびに比較例 1で作製された太陽電池の特性 をソーラーシミュレータによって測定した結果を表 1に示す。 表 1  Next, Table 1 shows the results of measuring the characteristics of the solar cells manufactured in Examples 1 and 2 and Comparative Example 1 using a solar simulator. table 1
Figure imgf000021_0001
表 1から明らかなように、 実施例 1および実施例 2による太陽電池の短 絡電流密度はいずれも 2 7 mA/ c m2 であり、 比較例 1の 2 5 mAZ c m2 よりも大きい。 これは、 内部応力がシリコンシート内に残留するため の歪みによる欠陥が原因であると考えられる。
Figure imgf000021_0001
As is clear from Table 1, the short-circuit current densities of the solar cells according to Example 1 and Example 2 are both 27 mA / cm 2, which is larger than 25 mAZ cm 2 of Comparative Example 1. This is thought to be due to a defect due to distortion due to internal stress remaining in the silicon sheet.
曲線因子については、 比較例 1では内部応力がシリコンシート内に残留 するための歪みによる欠陥の影響で大幅に低減している。  Regarding the fill factor, in Comparative Example 1, the internal stress was significantly reduced due to the influence of defects due to distortion due to remaining in the silicon sheet.
変換効率 (%) については、 比較例 1では 1 0 %であるのに対し、 実施 例 1および実施例 2ではいずれも 1 2 %と大幅に改善された。  The conversion efficiency (%) was 10% in Comparative Example 1, whereas it was significantly improved to 12% in Examples 1 and 2.
以上の説明から明らかなように、 実施例 1に係るシリコンシート製造装 置によれば、 回転冷却体 1 1の平坦面 1にシリコンを成長させることで、 内部応力のない平面状シリコンシートを得ることができ、 また、 連続して 安定的にシリコンシートを取り出すことが可能となる。  As is clear from the above description, according to the silicon sheet manufacturing apparatus according to the first embodiment, by growing silicon on the flat surface 1 of the rotary cooling body 11, a planar silicon sheet having no internal stress is obtained. In addition, the silicon sheet can be taken out continuously and stably.
取り出されたシリコンシートは、 その表面が平滑で、 厚さが均一である ため、 研磨工程やスライス工程がなくてもシリコンウェハを形成すること ができる。  The removed silicon sheet has a smooth surface and a uniform thickness, so that a silicon wafer can be formed without a polishing step or a slicing step.
また、 スライスロスがないので、 低コストのシリコンウェハを提供する ことができる。 実施例 2に係るシリコンシート製造装置によれば、 内部応力のない平面 状シリコンシートを得ることができ、 また、 連続して安定的にシリコンシ ートを取り出すことが可能となる。 Also, since there is no slice loss, a low-cost silicon wafer can be provided. According to the silicon sheet manufacturing apparatus according to the second embodiment, a planar silicon sheet having no internal stress can be obtained, and the silicon sheet can be continuously and stably taken out.
また、 実施例 2では、 実施例 1における、 シリコンシートを剥離するた めの機械的可動部 (衝撃発生部材 1 5 ) が配設されていないので、 剥離動 作を回転冷却体 2 1に同期させる必要がなく、 装置を簡略化できる。 した がって、装置の低コスト化、耐久性およびメンテナンス性の向上が図れる。 この発明では、 回転冷却体が平坦面、 すなわち、 湾曲のない平面でシリ コン結晶リボンを固化成長させるので、 湾曲したシリコンシートを平面状 に引き延ばすための機構が不要になり、 内部応力が残存しないシリコンシ —トを大量かつ安定的に低コストで連続して製造することができる。  In the second embodiment, since the mechanically movable part (impact generating member 15) for peeling the silicon sheet in the first embodiment is not provided, the peeling operation is synchronized with the rotary cooling body 21. There is no need to perform this, and the device can be simplified. Therefore, it is possible to reduce the cost, improve the durability and maintainability of the device. According to the present invention, since the rotary cooling body solidifies and grows the silicon crystal ribbon on a flat surface, that is, a flat surface having no curvature, a mechanism for extending the curved silicon sheet into a planar shape becomes unnecessary, and no internal stress remains. Silicon sheets can be continuously produced in large quantities and stably at low cost.
製造されたシリコンシートは、 その表面が平滑で、 厚さが均一であるた め、 研磨工程やスライス工程がなくてもシリコンウェハを形成することが できるので、 低コストのシリコンウェハを提供することができる。  Since the manufactured silicon sheet has a smooth surface and a uniform thickness, a silicon wafer can be formed without a polishing step or a slicing step, thus providing a low-cost silicon wafer. Can be.
剥離 ·搬出機構が衝撃発生部材を備えているので、 シリコンシートを回 転冷却体の表面から容易に剥離することが可能になる。  Peeling-Since the unloading mechanism has an impact generating member, the silicon sheet can be easily peeled from the surface of the rotary cooling body.
剥離 ·搬出機構が鋭角状剥離部材を備えているので、 剥離部材に機械的 可動部が存在しないので、 剥離動作を回転冷却体の回転に同期させる機構 が省略される。 したがって、 装置の簡略化および低コスト化が図れるとと もに、 耐久性およびメンテナンス性が向上する。  Since the peeling / unloading mechanism has an acute-angled peeling member, there is no mechanically movable part in the peeling member, so a mechanism for synchronizing the peeling operation with the rotation of the rotary cooling body is omitted. Therefore, simplification and cost reduction of the device can be achieved, and durability and maintainability are improved.
剥離 ·搬出機構は、 9 0度から 2 7 0度の位置範囲でシリコンシートを 剥離するので、 シリコンシートを確実に装置外に搬出することができる。 剥離 ·搬出機構が搬出用樋部材を備えているので、 簡単な構成でシリコ ンシートを装置外へ搬出することが可能になる。  The peeling / carrying-out mechanism peels the silicon sheet in the position range from 90 degrees to 270 degrees, so that the silicon sheet can be reliably carried out of the apparatus. Since the peeling and unloading mechanism has an unloading gutter member, the silicon sheet can be unloaded out of the apparatus with a simple configuration.
樋部材は、 平坦面から剥離されたシリコンシートがその樋部材との摩擦 力に杭して自重により滑り落ちることのできる角度に傾斜して配設されて いるので、 シリコンシートの自重を利用した自然搬出が可能となる。 した がって、 回転動力機構などの複雑な機構を要する強制搬送手段が不要にな り、 装置構成の単純化を図ることができる。 The gutter member is disposed at an angle such that the silicon sheet peeled off from the flat surface is piled up by the frictional force with the gutter member and can slide down by its own weight. Unloading is possible. Therefore, there is no need for forced conveyance means that requires complicated mechanisms such as a rotary power mechanism. Therefore, the device configuration can be simplified.
剥離 ·搬出機構が樋部材に加えて搬出補助部材を備えているので、 シリ コンシートの自重による滑りをさらに促進することが可能になる。  Separation · Since the unloading mechanism has an unloading auxiliary member in addition to the gutter member, it is possible to further promote the sliding of the silicon sheet due to its own weight.
樋部材が剥離部材と一体化されているので、 装置部材をさらに簡略化す ることができる。  Since the gutter member is integrated with the peeling member, the device members can be further simplified.
剥離部材と一体化された樋部材を用いて 1 8 0度から 2 7 0度の位置範 囲でシリコンシートの回転方向上流側の端部に接触することによってシリ コンシートを剥離するので、 回転冷却体から分離したシリコンシートをス ムーズに搬出用樋部材へ滑り落とすことができる。  Using the gutter member integrated with the peeling member, the silicon sheet is peeled by contacting the end of the silicon sheet on the upstream side in the rotation direction within a position range of 180 ° to 270 °, so the rotation The silicon sheet separated from the cooling body can be smoothly slid down to the discharge gutter member.
また、 剥離のための衝撃を与えるのに際し、 回転冷却体の回転以外の特 別な可動部材を必要としないので、 装置の単純化に寄与するとともに、 装 置の耐久性およびメンテナンス性が向上する。  In addition, no special movable member other than the rotation of the rotary cooling body is required to give an impact for peeling, which contributes to simplification of the device and improves durability and maintainability of the device. .
この発明のシリコンシート製造装置を用いて製造される太陽電池は、 従 来のシリコンシート製造装置により製造したシリコンシートを用いる太陽 電池に比べて、 短絡電流密度、 曲線因子が大きくなるので、 変換効率を向 上させつつ、 製造コストを低減することができる。  The solar cell manufactured by using the silicon sheet manufacturing apparatus of the present invention has a higher short-circuit current density and a larger fill factor than the solar cell using the silicon sheet manufactured by the conventional silicon sheet manufacturing apparatus. The manufacturing cost can be reduced while improving the manufacturing cost.

Claims

請 求 の 範 囲 The scope of the claims
1 . 溶融シリコンを収納するための溶融シリコン収納部と、 この溶融シリ コン収納部の上方に回転可能に配設されかつシリコンシートを表面で固化 成長させるための少なくとも 1つの平坦面を有する回転冷却体とを備え、 回転によって溶融シリコンに一旦浸潰された後に溶融シリコンから引き 上げられた回転冷却体の平坦面が溶融シリコンに再び浸漬される前にその 平坦面に生成したシリコンシートを剥離するとともに、 剥離したシリコン シートを回転冷却体の回転による慣性力および/または重力による落下を 利用して装置外へ搬出するための剥離 ·搬出機構が設けられていることを 特徴とするシリコンシート製造装置。 1. Rotary cooling having a molten silicon storage section for storing molten silicon, and at least one flat surface rotatably disposed above the molten silicon storage section for solidifying and growing a silicon sheet on the surface. After being once immersed in the molten silicon by rotation, the flat surface of the rotating cooling body pulled up from the molten silicon is peeled off before the flat surface of the rotating cooling body is immersed in the molten silicon again A silicon sheet manufacturing apparatus characterized in that a peeling / unloading mechanism is provided to carry the peeled silicon sheet out of the apparatus by utilizing the inertial force and / or the gravity force caused by the rotation of the rotary cooling body. .
2 . 剥離 ·搬出機構が、 回転冷却体に物理的衝撃を与えることによってシ リコンシートを剥離するための衝撃発生部材を備えていることを特徴とす る請求項 1に記載のシリコンシート製造装置。  2. The silicon sheet manufacturing apparatus according to claim 1, wherein the peeling / unloading mechanism includes an impact generating member for peeling the silicon sheet by applying a physical impact to the rotary cooling body. .
3 . 剥離■搬出機構が、 回転冷却体の平坦面に生成したシリコンシートの 回転方向上流側の端部に接触することによってシリコンシートを剥離する ための鋭角状剥離部材を備えていることを特徴とする請求項 1または 2に 記載のシリコンシート製造装置。  3. Peeling-off mechanism is equipped with an acute angle peeling member for peeling off the silicon sheet by contacting the end of the silicon sheet generated on the flat surface of the rotary cooling body on the upstream side in the rotation direction. The silicon sheet manufacturing apparatus according to claim 1 or 2, wherein:
4 . 剥離 ·搬出機構は、 回転冷却体の最下点にあって溶融シリコンに浸漬 される平坦面の位置を 0度とし、 0度の位置から回転冷却体が 1回転した 位置を 3 6 0度とした場合に、 9 0度から 2 7 0度の位置範囲でシリコン シートを剥離することを特徴とする請求項 1〜 3のいずれか 1つに記載の シリコンシ一ト製造装置。 4. The peeling and unloading mechanism sets the position of the flat surface at the lowest point of the rotary cooling body, which is immersed in the molten silicon, at 0 °, and the position at which the rotary cooling body makes one rotation from 0 ° is 360 ° The silicon sheet manufacturing apparatus according to any one of claims 1 to 3, wherein the silicon sheet is peeled in a position range from 90 to 270 degrees when the temperature is set to degrees.
5 . 剥離 ·搬出機構が、 平坦面から剥離されたシリコンシートを受けて装 置外へ搬出するための搬出用樋部材を備えていることを特徴とする請求項 1〜 4のいずれか 1つに記載のシリコンシ一ト製造装置。  5. The peeling / unloading mechanism is provided with an unloading gutter member for receiving the silicon sheet separated from the flat surface and unloading the silicon sheet outside the apparatus. 2. The silicon sheet manufacturing apparatus according to claim 1.
6 . 樋部材は、 平坦面から剥離されたシリコンシートがその樋部材との摩 擦力に杭して自重により滑り落ちることのできる角度に傾斜して配設され ていることを特徴とする請求項 5に記載のシリコンシート製造装置。 6. The gutter member has a silicon sheet that has been peeled off from a flat surface. 6. The silicon sheet manufacturing apparatus according to claim 5, wherein the silicon sheet manufacturing apparatus is arranged at an angle at which the pile can slide down by its own weight by being piled with frictional force.
7 . 剥離 '搬出機構が、 樋部材に加えて、 シリコンシートの搬出を補助す るための搬出補助部材を備えていることを特徴とする請求項 5または 6に 記載のシリコンシート製造装置。  7. The silicon sheet manufacturing apparatus according to claim 5, wherein the peeling-out mechanism has a carry-out assisting member for assisting carry-out of the silicon sheet, in addition to the gutter member.
8 . 樋部材が、 請求項 3に記載の鋭角状剥離部材と一体化されていること を特徴とする請求項 5〜 7のいずれか 1つに記載のシリコンシート製造装  8. The silicon sheet manufacturing apparatus according to any one of claims 5 to 7, wherein the gutter member is integrated with the acute-angled stripping member according to claim 3.
9 . 鋭角状剥離部材は、 回転冷却体の最下点にあって溶融シリコンに浸漬 される平坦面の位置を 0度とし、 0度の位置から回転冷却体が 1回転した 位置を 3 6 0度とした場合に、 1 8 0度から 2 7 0度の位置範囲でシリコ ンシートの回転方向上流側の端部に接触することによってシリコンシート を剥離することを特徴とする請求項 8に記載のシリコンシート製造装置。9. The position of the flat surface that is at the lowest point of the rotary cooling body and immersed in the molten silicon is 0 °, and the position where the rotary cooling body makes one rotation from the 0 ° position is 360 °. Wherein the silicon sheet is peeled off by contacting the end of the silicon sheet on the upstream side in the rotation direction in a position range from 180 degrees to 270 degrees. Silicon sheet manufacturing equipment.
1 0 . 回転冷却体が、 多角柱の頂点を内側へカットした歯車型回転体から なり、 平坦面がこの多角柱の側面に構成されてなる請求項 1に記載のシリ コンシート製造装置。 10. The silicon sheet manufacturing apparatus according to claim 1, wherein the rotary cooling body comprises a gear-type rotary body in which the vertices of the polygonal column are cut inward, and a flat surface is formed on a side surface of the polygonal column.
1 1 . 請求項 1〜 1 0のいずれか 1つに記載のシリコンシート製造装置に よるシリコンシ一トを用いて製造された太陽電池。  11. A solar cell manufactured using the silicon sheet by the silicon sheet manufacturing apparatus according to any one of claims 1 to 10.
PCT/JP2001/007001 2000-09-08 2001-08-13 Silicon sheet producing apparatus and solar cell comprising silicon sheet produced by the same WO2002020882A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001277784A AU2001277784A1 (en) 2000-09-08 2001-08-13 Silicon sheet producing apparatus and solar cell comprising silicon sheet produced by the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-273310 2000-09-08
JP2000273310A JP4451556B2 (en) 2000-09-08 2000-09-08 Silicon ribbon manufacturing apparatus and solar cell using the same

Publications (1)

Publication Number Publication Date
WO2002020882A1 true WO2002020882A1 (en) 2002-03-14

Family

ID=18759277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007001 WO2002020882A1 (en) 2000-09-08 2001-08-13 Silicon sheet producing apparatus and solar cell comprising silicon sheet produced by the same

Country Status (4)

Country Link
JP (1) JP4451556B2 (en)
AU (1) AU2001277784A1 (en)
TW (1) TWI251627B (en)
WO (1) WO2002020882A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003263A1 (en) * 2002-06-28 2004-01-08 Sharp Kabushiki Kaisha Thin sheet manufacturing method, thin sheet manufacturing apparatus, and base sheet
WO2004003264A1 (en) * 2002-06-28 2004-01-08 Sharp Kabushiki Kaisha Thin sheet manufacturing method, and thin sheet manufacturing apparatus
WO2004003262A1 (en) * 2002-06-28 2004-01-08 Sharp Kabushiki Kaisha Thin sheet production method and thin sheet production device
WO2014001886A1 (en) 2012-06-27 2014-01-03 Rgs Development B.V. Film of polycrystalline semiconductor material, method of making same and orienting/undercooling molds therefor, and electronic device
WO2014001888A1 (en) 2012-06-27 2014-01-03 Rgs Development B.V. Film of polycrystalline semiconductor material, method of making same and undercooling molds therefor, and electronic device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100747629B1 (en) 2006-08-07 2007-08-09 박재훈 Japanese Floor MatDadami Machine
KR20100123745A (en) 2008-02-29 2010-11-24 코닝 인코포레이티드 Methods of making an unsupported article of pure or doped semiconducting material
US7771643B1 (en) * 2009-02-27 2010-08-10 Corning Incorporated Methods of making an unsupported article of semiconducting material by controlled undercooling
US20110256377A1 (en) * 2009-11-18 2011-10-20 Shivkumar Chiruvolu Photovoltaic structures produced with silicon ribbons

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
TANIGUCHI H. ET AL.: "Crystal growth of silicon sheet for solar cell", NIPPON KESSHOU SEICHOU GAKKAISHI, vol. 27, no. 4, October 2000 (2000-10-01), pages 156 - 161 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004003263A1 (en) * 2002-06-28 2004-01-08 Sharp Kabushiki Kaisha Thin sheet manufacturing method, thin sheet manufacturing apparatus, and base sheet
WO2004003264A1 (en) * 2002-06-28 2004-01-08 Sharp Kabushiki Kaisha Thin sheet manufacturing method, and thin sheet manufacturing apparatus
WO2004003262A1 (en) * 2002-06-28 2004-01-08 Sharp Kabushiki Kaisha Thin sheet production method and thin sheet production device
US7186578B2 (en) 2002-06-28 2007-03-06 Sharp Kabushiki Kaisha Thin sheet production method and thin sheet production device
CN1324657C (en) * 2002-06-28 2007-07-04 夏普株式会社 Thin sheet production method and thin sheet production device
US7485477B2 (en) 2002-06-28 2009-02-03 Sharp Kabushiki Kaisha Thin plate manufacturing method and thin plate manufacturing apparatus
WO2014001886A1 (en) 2012-06-27 2014-01-03 Rgs Development B.V. Film of polycrystalline semiconductor material, method of making same and orienting/undercooling molds therefor, and electronic device
WO2014001888A1 (en) 2012-06-27 2014-01-03 Rgs Development B.V. Film of polycrystalline semiconductor material, method of making same and undercooling molds therefor, and electronic device

Also Published As

Publication number Publication date
JP4451556B2 (en) 2010-04-14
AU2001277784A1 (en) 2002-03-22
JP2002080295A (en) 2002-03-19
TWI251627B (en) 2006-03-21

Similar Documents

Publication Publication Date Title
JP4121697B2 (en) Crystal sheet manufacturing method and manufacturing apparatus thereof
JP6030672B2 (en) Method and apparatus for making a thin semiconductor body from molten material
JP4111669B2 (en) Sheet manufacturing method, sheet and solar cell
JP4569957B2 (en) Crucible for producing polycrystalline semiconductor and method for producing polycrystalline semiconductor
WO2002020882A1 (en) Silicon sheet producing apparatus and solar cell comprising silicon sheet produced by the same
TWI286166B (en) Substrate fabrication method and device
JP4132786B2 (en) Thin plate manufacturing method and solar cell
JP4807914B2 (en) Silicon sheet and solar cell including the same
JP4535959B2 (en) Solid phase sheet manufacturing method and solid phase sheet manufacturing apparatus
JP2002057116A (en) Device and method for manufacturing crystal sheet
JP5019398B2 (en) Thin plate manufacturing apparatus and manufacturing method
JPH0142339Y2 (en)
JPH07277870A (en) Method and device for growing single crystal
JP2010208868A (en) Apparatus and method for producing thin plate, thin plate, and solar cell
JP3837038B2 (en) Crystal sheet manufacturing apparatus, crystal sheet manufacturing method, substrate and solar cell
JP2014535162A (en) Method for forming a crystallized silicon layer on the surface of a plurality of substrates
JPH0936403A (en) Production of basic body and solar cell employing it
JP2004149375A (en) Method and apparatus for manufacturing thin plate
JPH08119791A (en) Method and apparatus for forming layer on base
JP2003267716A (en) Manufacturing device and manufacturing method using the same for polycrystalline semiconductor substrate
JP2004161583A (en) Method for manufacturing thin sheet, and solar battery
JP2002114597A (en) Method for manufacturing crystal sheet and solar cell which uses the crystal sheet
JP2002321908A (en) Device for manufacturing crystal sheet and silicon solar cell

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CN HR HU IN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase