WO2004003259A1 - Method of forming polyimide coating containing dielectric filler on surface of metallic material, process for producing copper clad laminate for formation of capacitor layer for printed wiring board and copper clad laminate obtained by the process - Google Patents

Method of forming polyimide coating containing dielectric filler on surface of metallic material, process for producing copper clad laminate for formation of capacitor layer for printed wiring board and copper clad laminate obtained by the process Download PDF

Info

Publication number
WO2004003259A1
WO2004003259A1 PCT/JP2003/008194 JP0308194W WO2004003259A1 WO 2004003259 A1 WO2004003259 A1 WO 2004003259A1 JP 0308194 W JP0308194 W JP 0308194W WO 2004003259 A1 WO2004003259 A1 WO 2004003259A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric filler
polyimide
dielectric
forming
copper foil
Prior art date
Application number
PCT/JP2003/008194
Other languages
French (fr)
Japanese (ja)
Inventor
Toshiko Yokota
Susumu Takahashi
Hideaki Matsushima
Makoto Dobashi
Takuya Yamamoto
Original Assignee
Mitsui Mining & Smelting Co.,Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining & Smelting Co.,Ltd. filed Critical Mitsui Mining & Smelting Co.,Ltd.
Priority to US10/518,030 priority Critical patent/US20050161149A1/en
Publication of WO2004003259A1 publication Critical patent/WO2004003259A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/162Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed capacitors
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • C25D15/02Combined electrolytic and electrophoretic processes with charged materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/02Fillers; Particles; Fibers; Reinforcement materials
    • H05K2201/0203Fillers and particles
    • H05K2201/0206Materials
    • H05K2201/0209Inorganic, non-metallic particles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/03Conductive materials
    • H05K2201/0332Structure of the conductor
    • H05K2201/0335Layered conductors or foils
    • H05K2201/0355Metal foils
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/0929Conductive planes
    • H05K2201/09309Core having two or more power planes; Capacitive laminate of two power planes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0703Plating
    • H05K2203/0723Electroplating, e.g. finish plating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/13Moulding and encapsulation; Deposition techniques; Protective layers
    • H05K2203/1333Deposition techniques, e.g. coating
    • H05K2203/135Electrophoretic deposition of insulating material
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/384Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by plating

Definitions

  • the present invention relates to a method for forming a polyimide film containing a dielectric filler on the surface of a metal material such as copper, a method for manufacturing a copper-clad laminate for forming a capacitor layer for a printed wiring board, and a copper-clad laminate obtained by the method.
  • a capacitor structure using a copper-clad laminate uses a double-sided copper-clad laminate composed of a so-called copper foil layer on each side and a dielectric layer located between the copper foil layers, and a copper layer on both sides. This is performed by etching a foil layer into a capacitor electrode having a desired shape, and forming a capacitor structure in a state where a dielectric layer is sandwiched between capacitor electrodes on both sides at a target position.
  • Capacitors are required to have the largest possible capacitance as a basic quality.
  • the capacitance (C) of the capacitor is C- ⁇ ⁇ . It is calculated from the equation of (AZ d) ( ⁇ is vacuum permittivity). Therefore, in order to increase the capacitance of the capacitor, 1 Increase the surface area ( ⁇ ) of the capacitor electrode. (2) Reduce the thickness (d) of the dielectric layer. 3) Increase the dielectric constant ( ⁇ ) of the dielectric layer. Use one of these techniques You just have to use it.
  • the structure of the dielectric layer requires a skeletal material such as glass cloth as an indispensable material, and the thickness of the entire dielectric layer is reduced by reducing the thickness of the skeletal material by, for example, non-woven fabric.
  • a resin in which a dielectric filler is dispersed and contained in the material of the dielectric layer has been used to increase the capacitance of the capacitor.
  • the thickness of the dielectric layer is thinner and has excellent thickness accuracy, and is flexible enough to withstand the pressure of the etching solution during etching. It has been awaited to establish a method of manufacturing a copper-clad laminate for forming a capacitor layer having the following characteristics.
  • a dielectric filler-containing polyimide electrodeposition liquid in which a dielectric filler is contained in a polyimide electrodeposition liquid on one side of a copper foil is used.
  • JP-A-2001-158883 forming a dielectric layer containing a dielectric filler in a polyimide resin by an electrodeposition coating method, and further laminating a copper foil to this dielectric layer. Techniques such as those disclosed in the gazette have been studied.
  • forming a polyimide film directly on the copper surface by using an electrodeposition solution with a polyimide electrodeposition solution is extremely advantageous over the coating method in that the film thickness can be reduced.
  • the dielectric filler powder is included in the polyimide electrodeposition solution, and the dielectric filler powder particles are contained in the polyimide film to be electrodeposited. It is much more difficult to disperse them evenly, and mass production has not been achieved in actual operations.
  • the inventors of the present invention have conducted intensive studies and found that a method of forming a polyimide film containing a dielectric filler on the surface of a metal material such as copper and a copper-clad laminate for forming a capacitor layer for a printed wiring board as shown below.
  • a method of forming a polyimide film containing a dielectric filler on the surface of a metal material such as copper and a copper-clad laminate for forming a capacitor layer for a printed wiring board as shown below.
  • a dielectric filler-containing polyimide film is formed on a metal material surface by an electrodeposition coating method using a dielectric filler-containing polyimide electrodeposition liquid in which a dielectric filler is contained in a polyimide electrodeposition liquid.
  • a method of, the dielectric filler, the average particle diameter D IA is 0 0 5 ⁇ :.. 1 0 ⁇ a m
  • ⁇ 2 0 i is ni
  • D s oZD t cohesion values represented by a with an average particle diameter D IA obtained by the weight-cumulative particle diameter D 5 and the image analysis A method for forming a dielectric filler-containing polyimide film on a metal material, characterized by using a dielectric powder having a perovskite structure having a substantially spherical shape with a particle size of 4.5 or less.
  • the electrodeposition coating method of polyimide resin has been described as being able to form a uniform film on a metal without defects such as pinholes, and can also be used for forming a uniform film on a complicated shape.
  • Conventional polyimides hardly dissolve in solvents, so they were electrodeposited in the form of their precursors, polyamic acid, and dehydrated and cyclized by heating to form a polyimide film. .
  • polyamic acid is easily decomposed and unstable.
  • the electrodeposition property differs depending on the type of the metal. Therefore, it is necessary to prepare a polyimide electrodeposition solution depending on the type of the metal material which is the coated body for forming the polyimide film.
  • a polyimide coating is to be formed on a copper material as a metal material by an electrodeposition coating method, if the colloidal particles of the multiblock polyimide in the polyimide electrodeposition solution are not small, uniform and defective It seems that there is a tendency that no good film can be formed. Therefore, it is considered necessary to reduce the size of the colloid particles by increasing the amount of the solvent in accordance with the type of the electrodeposited polyimide.
  • the diameter of the colloidal particles in the polyimide electrodeposition liquid also has a relationship with the thickness of the polyimide film to be formed, it should be adjusted to an appropriate area where the balance between the target polyimide film thickness and electrodeposition properties is finally maintained. We need to do that.
  • the solution property of the polyimide electrolyte should be determined in consideration of the dispersibility of the dielectric filler dispersed and mixed in the polyimide electrolyte.
  • the type of polyimide electrodeposition solution containing multiblock polyimide that can form a uniform and good defect-free polyimide coating on metal materials, and the range of preparation of the composition is also limited. There is.
  • the present inventors have determined that the powder property of the dielectric filler is improved to ensure good dispersibility of the dielectric filler powder in the polyimide electrodeposition liquid.
  • the dielectric filler used in the present invention is to be dispersed and present in the polyimide film containing the dielectric boiler, and finally functions as a dielectric layer of the capacitor. It is used to increase the electrical capacity of the vehicle.
  • the powder properties of the dielectric filler must first be in the range of 0.05 to 1. ⁇ .
  • the particle size referred to here means that the particles form a certain secondary coagulation state, such as the laser diffraction scattering particle size distribution measurement method and the BET method. Indirect measurement, such as estimating the average particle size from the measured values of, cannot be used because the accuracy is inferior, and the dielectric filler is directly observed with a scanning electron microscope (SEM), and the SEM image is analyzed by image analysis The average particle size obtained. In this specification, the particle size at this time is indicated as DIA .
  • SEM scanning electron microscope
  • Circular particle analysis was performed with a threshold value of 10 and a degree of overlap of 20, and the average particle size A was determined. Further, the weight cumulative particle size D 5 by a laser diffraction scattering type particle size distribution measuring method. There 0.: - 2. a O ⁇ m, and, the value of cohesion represented an average particle size 0 obtained by the weight-cumulative particle diameter D 50 and the image analysis in use Ite 0 50/0 It is required that the dielectric powder has a perovskite structure with a substantially spherical shape and shape of 4.5 or less.
  • the weight cumulative particle diameter D 5 0 by a laser diffraction scattering particle size distribution measurement method is that the particle diameter at weight accumulation of 50% obtained by using a laser diffraction scattering particle size distribution measurement method, the weight-cumulative particle size D 5.
  • the dielectric layer of the double-sided copper-clad laminate used to form the built-in capacitor layer is usually 10 ⁇ ! The thickness is about 25 / m, and the upper limit is 2.0 ⁇ in order to uniformly disperse the dielectric filler.
  • the dielectric filler powder is mixed and dispersed in Mechiruechi ketone, the solution a laser diffraction scattering particle size distribution measuring apparatus ⁇ icro Tr ac HRA 9320- X 100 inch (Nikkiso stock Society Neighbors were placed in the circulator and a horizontal test was performed.
  • the concept of cohesion is used here, but the one adopted for the following reasons: It is. That is, the value of the weight-cumulative particle diameter D 5 0 obtained by using a laser diffraction scattering particle size distribution measurement method, the it is thought and not observed truly every single size of particulate directly. This is because most of the particles constituting the dielectric powder are not so-called monodispersed powders in which individual particles are completely separated, but a state in which a plurality of particles are aggregated and aggregated. This is because the laser diffraction scattering type particle size distribution measuring method regards the agglomerated particles as one particle (agglomerated particles) and calculates the weight cumulative particle size.
  • the average particle diameter D ⁇ A obtained by image-processing the observed image of the dielectric powder observed using a scanning electron microscope is obtained directly from the SEM observation image.
  • the particles are surely caught, and on the other hand, they do not reflect the existence of the aggregation state of the powder particles at all.
  • the present inventors have determined that the weight cumulative particle size D 5 of the laser diffraction scattering type particle size distribution measuring method. With an average particle diameter D z A obtained by image analysis and, D 5.
  • the value calculated by ZD z A was taken as the degree of aggregation. That is, on the assumption that the value of the copper powder Niore, Te D 5 0 and D j A in the same bite Tsu bets can be measured with the same accuracy, considering theory described above, determined that there is a cohesive state D 5 to be reflected in the value. Is likely to be greater than the value of DIA (similar results can be obtained in actual measurements).
  • D 5 if at all there is no granular state of aggregation of the dielectric filler powder, Yuki approaching the value of the infinitely D IA, D 5 is a degree of aggregation.
  • the value of ZD IA will be close to 1.
  • the degree of agglomeration reaches 1, it can be said that this is a monodispersed powder in which the state of agglomeration of the powder particles has completely disappeared.
  • the cohesion degree may show a value of less than 1. It is theoretically considered that in the case of a true sphere, the value does not become less than 1, but in reality, it seems that since the powder is not a true sphere, a value of less than 1 is obtained. is there.
  • the cohesion of the dielectric filler powder is 4.5 or less. If the agglomeration degree exceeds 4.5, the agglomeration level of the dielectric filler powder particles becomes too high, and it becomes difficult to uniformly mix the dielectric filler powder with the above-mentioned polyimide electrodeposition solution.
  • Alkoxide method, hydrothermal synthesis method, oxare Regardless of the production method such as the one-to-one method, a certain coagulated state is inevitably formed, so that a dielectric filler powder that does not satisfy the above coagulation degree can be generated.
  • the hydrothermal synthesis method which is a wet method
  • formation of an aggregated state tends to occur easily. Therefore, by performing a deagglomeration process of separating the aggregated powder into individual particles, it is possible to set the aggregation state of the dielectric filler powder within the above-described aggregation degree. It is possible.
  • the purpose is simply to perform the pulverization work, as a means to perform the pulverization, high-energy ball mill, high-speed conductor impingement type air flow type pulverizer, impact type pulverizer, gauge mill, medium stirring type mill, high water pressure It is possible to use various things such as a pulverizer.
  • a pulverizer in order to ensure the mixability and dispersibility of the dielectric filler powder and the polyimide electrodeposition solution, it is necessary to consider the viscosity reduction of the dielectric filler-containing polyimide electrodeposition solution described below. In order to reduce the viscosity of the dielectric filler-containing polyimide electrodeposition liquid, it is required that the specific surface area of the dielectric filler powder be small and smooth.
  • the crushing method must not damage the surface of the granules during crushing and increase the specific surface area.
  • the present inventors have conducted intensive studies and found that two methods are effective. What is common to these two methods is that it minimizes the contact between the particles of the dielectric filler powder and the parts such as the inner wall of the device, stirring blades, and the grinding media, and reduces the agglomerated particles.
  • This is a method that can be sufficiently disaggregated by causing mutual collision. That is, contact with the inner wall of the device, the stirring blades, the grinding media, etc. damages the surface of the granules, increases the surface roughness, deteriorates the sphericity, and prevents this. is there.
  • jet mill refers to the use of a high-speed air stream to put dielectric filler powder into this air stream and cause the powder particles to collide with each other in this high-speed air stream to perform a pulverizing operation.
  • the slurry dispersed in a solvent free from cracks is subjected to a granulation treatment using a fluid mill utilizing centrifugal force.
  • a fluid mill utilizing centrifugal force
  • the slurry flows at high speed in a circular orbit, and the powder particles agglomerated by the centrifugal force generated at this time mutually in the solvent.
  • the powder is then crushed to perform the pulverizing operation. In this way, the slurry that has been pulverized is washed, filtered, and dried to obtain a dielectric filler powder that has been pulverized.
  • the above-described polyimide electrodeposition solution and the dielectric filler are mixed to form a dielectric filler-containing polyimide electrodeposition solution.
  • the mixing ratio of the polyimide electrodeposition liquid and the dielectric filler was such that the content of the dielectric filler in the dielectric filler-containing polyimide electrodeposition liquid was 50 g. / L to 350 g ZL is desirable.
  • the dielectric constant of the capacitor is too low to satisfy the relative dielectric constant of 20 currently required in the market. If the dielectric filler content exceeds 350 g / L, the content of the polyimide resin in the dielectric filler-containing polyimide film to be formed will be too low, and the adhesion to the copper foil to be adhered to will be poor. They will be damaged and the formation of capacitors will be difficult.
  • barium titanate among composite oxides having a perovskite structure in consideration of the production accuracy as a powder at this stage.
  • the dielectric filler either calcined titanium titanate or uncalcined parium titanate can be used. In order to obtain a high dielectric constant, it is preferable to use calcined barium titanate. However, if it is selected and used in accordance with the design quality of the capacitor, it is preferable.
  • the dielectric filler of barium titanate has a cubic crystal structure.
  • the crystal structure of barium titanate has a cubic structure and a tetragonal structure.
  • the dielectric filler of the cubic structure is not the same as the dielectric filler of the barium titanate, which has only the tetragonal structure. Place using filler Compared with the case, the dielectric constant of the finally obtained dielectric layer is stabilized. Therefore, it can be said that it is necessary to use at least a barium titanate powder having both a cubic crystal structure and a tetragonal crystal structure.
  • a dielectric filler-containing polyimide film is formed on the surface of the copper material by an electrodeposition coating method.
  • the dielectric filler is uniformly dispersed without uneven distribution in the polyimide filler-containing polyimide coating, and the dielectric filler-containing polyimide coating itself has a smooth surface and a uniform film thickness without any defects. It becomes.
  • a dielectric filler-containing polyimide film is formed on a metal material surface by an electrodeposition coating method using a dielectric filler-containing polyimide electrodeposition solution in which a dielectric filler is contained in a polyimide electrodeposition solution.
  • a is 4.5 or less using for Metal surface by electrodeposition coating using a polyimide electrodeposition solution containing a dielectric filler
  • the method of forming the dielectric filler-containing polyimide film is different from the above-described method of forming the dielectric filler-containing polyimide film in that a metal seed layer of nickel or cobalt is previously formed on the surface of the metal material.
  • a polyimide film containing a dielectric filler is formed.
  • the metal material is provided with a very thin metal layer of nickel or cobalt which is excellent in electrodeposition of the polyimide film when using the electrodeposition coating method. This metal layer is called a metal seed layer in this specification. Formation of metal seed layer on metal surface Can employ various methods such as a dry method such as an electrolytic method and a sputtering vapor deposition method, and is not particularly limited.
  • an extremely good polyimide film can be formed even on a copper material surface where it is said to be difficult to form a polyimide film by the electrodeposition coating method.
  • the dielectric filler-containing polyimide film formed on the substrate has a very low possibility of occurrence of defects, and the film thickness uniformity can be remarkably improved.
  • the dielectric filler-containing polyimide film By using the method for forming a dielectric filler-containing polyimide film on a metal material as described above, the dielectric filler is uniformly dispersed without uneven distribution in the dielectric filler-containing polyimide film. It is possible to reduce the variation in the electrical conductivity depending on the location on the work size plane.
  • the dielectric filler-containing polyimide film itself has a smooth surface and a uniform film thickness, so when forming a capacitor, the electrode material such as copper foil bonded to the dielectric filler-containing polyimide film is formed. Uniform adhesion is easily obtained, and there are no manufacturing defects.
  • the thickness of the polyimide film containing the dielectric filler as the dielectric layer can be made freely, resulting in an excellent electric capacity. Therefore, it is possible to obtain a product having high-level capacitor quality.
  • the technical idea of the method of forming a dielectric filler-containing polyimide film on a metal material described above can be applied to a method of manufacturing a copper-clad laminate for forming a capacitor layer of a printed fine wire board. .
  • the claim includes a method of manufacturing a copper-clad laminate for forming a capacitor layer for a printed wiring board having a layer structure of a first copper foil Z dielectric filler-containing polyimide dielectric layer / second copper foil.
  • the average particle diameter D IA as a dielectric FILLER one is 0. 0 5 ⁇ 1.
  • weight cumulative particle diameter D 5 0 is 0:.!.
  • ⁇ 2 0 ⁇ m Ri der and, D so D with an average particle diameter D IA obtained by a weight cumulative particle diameter D 5 0 and the image analysis!
  • dielectric filler-containing polyimide electrodeposition liquid mixed with a dielectric powder having a substantially spherical shape and a mouth-cube structure having a cohesion degree represented by A of 4.5 or less
  • a dielectric filler-containing polyimide coating-coated copper foil with a dielectric filler-containing polyimide coating formed by a coating method and a second copper foil
  • Polyimide thin film on one surface
  • the dielectric filler-containing polyimide coating surface of the dielectric filler-containing copper foil and the polyimide thin film surface of the copper foil with the polyimide thin film are in contact with each other.
  • Copper foil for forming a capacitor layer for a printed wiring board with a layered structure of the first copper foil Z dielectric filler-containing polyimide dielectric layer / second copper foil A method for manufacturing a laminate.
  • FIG. 1 schematically shows the flow of this manufacturing method.
  • the drawings are extremely schematically shown as cross-sections so that the description of the manufacturing method is easy to understand, and the thickness, size, and the like do not accurately reflect the values of the objects actually implemented. This is clearly stated here. Since the basic concept is the same as the above-mentioned method of forming a dielectric filler-containing polyimide film on a metal material, only the procedure for manufacturing a copper-clad laminate will be described.
  • the dielectric filler-containing polyimide coating 2 is formed on the surface of the first copper foil CF1, and the resulting dielectric-filled polyimide foil-coated copper foil.
  • the dielectric filler-containing polyimide electrodeposition liquid used for forming the dielectric filler-containing polyimide coating 2 was added to the polyimide electrodeposition liquid as a dielectric filler having an average particle diameter D of 0.05 to It is 1.0 ⁇ m and has a cumulative weight particle size D 5 determined by laser diffraction / particle size distribution measurement. There 0. 1 to 2.
  • O iz is m, and, D 5 with an average particle diameter D IA obtained by a weight cumulative particle diameter D 5 0 and image analysis. / D!
  • a dielectric powder having a perovskite structure having a substantially spherical shape and a cohesion value represented by A of 4.5 or less was added and uniformly mixed.
  • a dielectric filler-containing polyimide coating-formed copper foil 3 having a dielectric filler-containing polyimide coating 2 formed by an electrodeposition coating method is obtained.
  • the polyimide thin film 4 with a thickness of 1 to 3 ⁇ m is to be left on one surface of the second copper foil CF2, taking solvent removal and resin flow occurring during drying and pressing into consideration.
  • a copper foil 5 with a polyimide thin film having a thickness of about two to three times the intended thickness is manufactured.
  • a thickness of about 2 to 3 times the final thickness is applied to one side of the second copper foil CF2 by electrolytic coating using a polyimide electrodeposition solution not containing the dielectric filler.
  • a polyimide thin film 4 is formed.
  • the polyimide thin film 4 functions as a binder at the time of bonding with the dielectric filler-containing polyimide film 2 described below.
  • the thickness of the polyimide thin film 4 is 3 zm or more.
  • the polyimide thin film 4 itself does not contain a dielectric filler, the dielectric constant of the finally formed dielectric layer is significantly reduced.
  • the first copper foil CF 1 / dielectric filler-containing polyimide dielectric layer 6 / second copper foil CF 2 thus, a copper-clad laminate for forming a capacitor layer for a printed wiring board having the above layer configuration can be obtained.
  • a metal shield layer of nickel or cobalt is formed on the surface of the first copper foil, and the surface on which the metal seed layer is formed has a polyimide electrodeposition solution and an average particle size A as a dielectric filler. 0.0 5 to 1. an O wm, the weight-cumulative particle diameter D 5 0 by turbulent particle size distribution measuring method dispersion laser diffraction is 0. 1 ⁇ 2. 0 m, and a weight cumulative particle diameter D 5.
  • dielectric powder having a perovskite structure in the form of substantially spherical values of cohesion represented by D 5 .ZD j a is 4.5 or less with an average particle diameter D IA obtained by an image analysis With a dielectric filler-containing polyimide electrodeposition solution mixed with Using a dielectric filler-containing polyimide coating-coated copper foil having a polyimide coating formed thereon, and a polyimide thin-film-forming copper foil having a polyimide thin film formed on one surface of a second copper foil, A first copper foil Z dielectric filler-containing polyimide dielectric, wherein the dielectric layer filler-containing polyimide coating surface and the polyimide thin film surface of the copper foil with the polyimide thin film are overlapped so as to be in contact with each other.
  • Body Layer Z A method for producing a copper-clad laminate for forming a capacitor layer of a printed wiring board having a layer structure of second copper foil. " This FIG. 2 schematically shows the flow of the manufacturing method.
  • the method of manufacturing the copper-clad laminate for forming the capacitor layer of the printed wiring board is basically the same as the method of manufacturing the copper-clad laminate for forming the capacitor layer of the printed wiring board described above. Only in that In the case of the first copper foil C F 1, the metal seed layer S is formed on the surface of the first copper foil C F 1 before the formation of the dielectric filler-containing polyimide film 2. Similarly, in the case of the second copper foil CF2, the metal seed layer S is formed on the surface of the second copper foil CF2 before forming the polyimide thin film 4. Since the method of forming the metal seed layer S is the same as the method of forming the dielectric film-containing polyimide coating on the metal material described above, redundant description is omitted to avoid duplication.
  • the bonding surface of the first copper foil CF1 and the second copper foil CF2 used in the above manufacturing method is a surface used for bonding with the dielectric layer 6, and usually causes the dielectric layer 6 to exert an anchor effect. With irregularities for the purpose. In the drawing, it is described as having fine copper particles attached.
  • the copper foil used for the copper-clad laminate constituting the capacitor layer preferably uses a product whose copper foil has a roughened surface as flat as possible in order to keep the thickness of the dielectric layer uniform. Therefore, it is preferable to use very rope mouth file (VLP) copper foil, rolled copper foil, or the like.
  • VLP very rope mouth file
  • the dielectric filler 1F is shown as a black dot in the drawing.
  • the dielectric layer containing the dielectric filler can be manufactured to have an arbitrary thickness and a uniform thickness. It became possible to form a dielectric layer.
  • the dielectric layer of the copper-clad laminate according to the present invention is a polyimide film in which a dielectric filler is dispersed, so that the dielectric layer is embrittled because of its high strength and flexibility characteristic of polyimide resin. This prevents the occurrence of damage due to the etchant shower when forming the capacitor circuit.
  • FIG. 1 is a schematic cross-sectional view illustrating a manufacturing flow of a copper-clad laminate for forming a capacitor layer of a printed wiring board.
  • FIG. 2 is a schematic cross-sectional view illustrating a manufacturing flow of a copper-clad laminate for forming a capacitor layer of a printed wiring board.
  • FIG. 3 is an optical microscope observation image of a copper-clad laminate for forming a capacitor layer of a printed wiring board.
  • a copper-clad laminate 1 for forming a capacitor layer of a printed wiring board is manufactured according to the manufacturing flow shown in FIG.
  • a belly rope mouth file (V L P) copper foil having a nominal thickness of 35 / im was used as the first copper foil C F 1.
  • the surface of the first copper foil CF1 is cleaned at the stage of FIG. 1 (a-1).
  • a pickling treatment and an electrolytic degreasing treatment were performed.
  • the pickling treatment was performed by immersing the first copper foil C F 1 in a 1 M sulfuric acid solution at a liquid temperature of 25 ° C. for 1 minute, followed by washing with water.
  • Barium titanate powder which is a dielectric filler F having the following powder properties, was mixed and dispersed in the polyimide electrodeposition solution.
  • the mixing ratio was such that barium titanate was 80 wt% of the solid content of the polyimide in the high-speed dielectric filler-containing polyimide electrodeposition solution.
  • the electrodeposition conditions at this time were as follows: the temperature of the dielectric filler-containing polyimide electrodeposition solution was 25 ° C, the first copper foil CF 1 was the anode, the stainless steel plate was the cathode, and a DC voltage of 5 V was applied. By performing electrolysis for 6 minutes, the polyimide resin and the dielectric filler F were simultaneously electrodeposited on the copper foil surface to form a dielectric filler-containing polyimide film 2 having a thickness of about 8 ⁇ , which was washed with water.
  • the second copper foil CF 2 is made of the same copper foil as the first copper foil CF 1, is subjected to the pickling treatment and the degreasing treatment at the stage of FIG. Then, using the above-mentioned polyimide electrodeposition solution containing no dielectric filler,
  • a 10 ⁇ m-thick polyimide thin film 4 was formed on the surface of the bonding surface so as to have a thickness of 3 ⁇ m. Then, as a final drying process, in the same temperature atmosphere of 120 ° C as described above,
  • the dielectric filler-containing polyimide coating layer 2 of the dielectric filler-containing polyimide coating-coated copper foil 3 and the polyimide thin film 4 of the polyimide foil-coated copper foil 5 obtained as described above are shown in FIG. 1 (c).
  • the copper-clad laminate 1 for forming the capacitor layer of the printed wiring board was manufactured by facing and laminating.
  • the laminated strip at this time The conditions were as follows: the press pressure was 5 kg / cm 2 , the press temperature was initially set to 250 ° C., the temperature was heated for 30 minutes, the temperature was raised to 300 ° C., and the temperature was maintained for 30 minutes.
  • FIG. 3 shows a cross section of the copper-clad laminate 1 for forming a capacitor layer of the printed wiring board thus obtained, which was observed with an optical microscope.
  • the dielectric layer 6 formed by laminating the dielectric filler-containing polyimide film layer 2 and the polyimide thin film 4 has an average thickness of 10 M Hi, and as shown in FIG. You can see that it has a thickness.
  • the first copper foil C F1 and the second copper foil C F2 on both surfaces of the copper-clad laminate 1 manufactured as described above were leveled, and a dry film was stuck on both surfaces to form an etching resist layer. Then, the capacitor circuit was exposed and developed on the etching resist layers on both sides to form an etching pattern. After that, circuit etching was performed with a copper chloride etching solution, and the etching resist was stripped to produce a capacitor circuit. During this etching, the dielectric layer 6 was not broken by the shower pressure of the etchant, and a printed wiring board in a good state was obtained.
  • Second Embodiment a copper clad laminate 1 for forming a capacitor layer of a printed wiring board was manufactured according to the manufacturing method shown in FIG.
  • a belly rope mouth file (VLP) copper foil having a nominal thickness of 35 was used as the first copper foil CF1.
  • the steps up to the pickling treatment and the degreasing treatment of the first copper foil CF1 performed in the stage of FIG. 2 (a-1) are the same as those of the first embodiment. 2)
  • a nickel metal seed layer S was provided as shown in FIG. 2), and then a dielectric filler-containing polyimide coating 2 was formed on the surface of the first copper foil CF1 as shown in FIG.
  • the body foil-containing copper foil with a polyimide coating 3 ′ was used.
  • the formation of the dielectric filler-containing polyimide film 2 after the provision of the metal shield layer S is also the same as in the first embodiment. Therefore, only the method for forming the Eckel metal seed layer s will be described.
  • the formation of the metal seed layer S in the present embodiment is performed using a nickel pet bath containing 240 g ZL of nickel sulfate hexahydrate, 45 g / L of nickel chloride hexahydrate, and 30 g ZL of boric acid, at pH 5, liquid temperature 55 ° C, in the electrolysis of 1 second at a current density of 2 a / dm 2, about
  • the 10 oA nickel layer was formed as the metal seed layer s.
  • the second copper foil CF2 uses the same copper foil as the first copper foil CF1, and performs pickling and degreasing at the stage of Fig. Then, a metal seed layer S is formed as shown in FIG. 2 (b-2), and thereafter, about 2-3; A 10 ⁇ m-thick polyimide thin film 4 was formed on the surface of the bonding surface so as to have a thickness. Then, the final drying treatment was performed by keeping the same temperature of 120 ° C. for 30 minutes as described above, and further raising the temperature of the atmosphere to 180 ° C. and holding for 30 minutes. In this way, as shown in FIG. 2 (b-3), a copper foil 5 ′ with a polyimide thin film was manufactured.
  • the lamination conditions at this time are the same as those in the first embodiment, and thus description thereof will be omitted here to avoid redundant description.
  • the dielectric layer 6 formed by laminating the dielectric filler-containing polyimide coating layer 2 and the polyimide thin film 4 has an average thickness of 9.5 ⁇ m, which is very smooth. It can be seen that it has a uniform thickness.
  • the first copper foil CF1 and the second copper foil CF2 on both sides of the copper-clad laminate 1 manufactured as described above are leveled, and a dry film is stuck on both sides thereof. Layer was formed.
  • a 1 cm ⁇ 1 cm capacitor circuit was exposed and developed on the etching resist layers on both sides to form an etching pattern. Thereafter, the circuit was etched with a copper chloride etchant, the etching resist was stripped, and a capacitor circuit was manufactured. During the etching, the dielectric layer 6 did not rupture due to the etching solution shear pressure, and a printed wiring board in a good state was obtained.
  • the method of forming the dielectric filler-containing polyimide coating according to the present invention on the surface of the metal material using the electrodeposition coating method it is possible to form a thin, uniform and smooth dielectric filler-containing polyimide coating.
  • a high dielectric constant can be achieved, and as a result, the capacitance of the capacitor can be improved, and the quality stability can be significantly improved due to fewer defects. become.
  • a high-quality component material for the capacitor layer of the printed wiring board can be obtained. Can be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)

Abstract

A method of forming a dielectric layer containing dielectric filler, which is excellent in film thickness uniformity, from a polyimide electrodeposition liquid containing dielectric filler. In particular, a method of forming a polyimide coating containing dielectric filler on a surface of metallic material according to the electrodeposition coating technique, characterized in that as the dielectric filler, use is made of dielectric powder of perovskite structure in approximately spherical form which has an average particle diameter (D1A) of 0.05 to 1.0 μm and a weight cumulative particle diameter (D50), measured in accordance with the laser diffraction scattering type particle size distribution measuring method, of 0.1 to 2.0 μm and further exhibits an aggregation degree, in terms of D50/D1A wherein D50 and D1A represent a weight cumulative particle diameter and an average particle diameter obtained by image analysis, respectively, of 4.5 or less.

Description

明 細 書 金属材表面への誘電体フィラー含有ポリィミド被膜の形成方法 並びにプリント配線板用のキャパシタ層形成用の銅張積層板の製造方法 及ぴその製造方法で得られた銅張積層板 技術分野  Description: A method for forming a polyimide film containing a dielectric filler on the surface of a metal material, a method for manufacturing a copper-clad laminate for forming a capacitor layer for a printed wiring board, and a copper-clad laminate obtained by the method
銅等の金属材表面への誘電体フィラー含有ポリィミド被膜の形成方法並びにプ リント配線板用のキャパシタ層形成用の銅張積層板の製造方法及びその製造方法 で得られた銅張積層板に関する。 背景技術  The present invention relates to a method for forming a polyimide film containing a dielectric filler on the surface of a metal material such as copper, a method for manufacturing a copper-clad laminate for forming a capacitor layer for a printed wiring board, and a copper-clad laminate obtained by the method. Background art
近年、 プリント配線板、 特に多層プリント配線板の内層部分に、 銅張積層板を用 いて回路形状を形成するのと同様の方法でキャパシタ構造を形成し、 これを内蔵 キャパシタとして使用することが一般ィヒしてきている。 多層プリント配線板の内 層部分にキャパシタ構造を形成することで、 外層面に配していたキャパシタを省 略することが可能となり、 外層回路の微細化、 高密度化が可能となり、 表面実装 部品数を減少させ、 ファインピッチ回路を備えたプリント配線板の製造を容易な ものとしてきた。 In recent years, it has become common practice to form a capacitor structure on the inner layer of a printed wiring board, especially a multilayer printed wiring board, in the same manner as forming a circuit shape using a copper-clad laminate, and use this as a built-in capacitor. I have been doing it. By forming a capacitor structure in the inner layer of the multilayer printed wiring board, it is possible to omit the capacitor disposed on the outer layer surface, and it is possible to miniaturize and increase the density of the outer layer circuit, and surface mount components It has reduced the number and made it easier to manufacture printed wiring boards with fine pitch circuits.
銅張積層板を用いたキャパシタ構造は、 所謂両面の各々の銅箔層とその両銅箔 層の間に位置する誘電体層と力 らなる両面銅張積層板を用いて、 その両面の銅箔 層を所望の形状のキャパシタ電極にエッチング加工して、 両面のキャパシタ電極 に誘電体層を挟み込んだ状態のキャパシタ構造を目的位置に形成することにより 行われる。  A capacitor structure using a copper-clad laminate uses a double-sided copper-clad laminate composed of a so-called copper foil layer on each side and a dielectric layer located between the copper foil layers, and a copper layer on both sides. This is performed by etching a foil layer into a capacitor electrode having a desired shape, and forming a capacitor structure in a state where a dielectric layer is sandwiched between capacitor electrodes on both sides at a target position.
そして、 キャパシタは可能な限り大きな電気容量を持つことが基本的な品質と して求められる。 キャパシタの容量 (C) は、 C - ε ε。 (AZ d ) の式 (ε。は 真空の誘電率)から計算される。従って、キャパシタ容量を増大させるためには、 ①キャパシタ電極の表面積 (Α) を大きくする。 ②誘電体層の厚さ (d ) を薄く する。 ③誘電体層の比誘電率 (ε ) を大きくする。 これらのいずれかの手法を採 用すればよいことになる。 Capacitors are required to have the largest possible capacitance as a basic quality. The capacitance (C) of the capacitor is C-ε ε. It is calculated from the equation of (AZ d) (ε is vacuum permittivity). Therefore, in order to increase the capacitance of the capacitor, ① Increase the surface area (表面積) of the capacitor electrode. (2) Reduce the thickness (d) of the dielectric layer. 3) Increase the dielectric constant (ε) of the dielectric layer. Use one of these techniques You just have to use it.
ところが、 ①の表面積 (A) に関しては、 最近の電子、 電気 βの軽薄短小化 の流れから、 プリント配線板にも同様の要求が行われることになり、 一定のプリ ント配線板面積の中で、 キャパシタ電極の面積を広く揉ることは殆ど不可能であ る。 ②の誘電体層の厚さ (d ) を薄くすることに関して、 誘電体層がプリプレダ に代表されるようにガラスクロス等の骨格材を含むものであれば、 薄層化に骨格 材があるが故の限界が生じる。 一方で、 従来の誘電体層構成材料を用いて単に骨 格材を省略すると、 キャパシタ電極をエッチングで作製する際、 銅箔層をエッチ ング除去した部位の誘電体層が、 エッチング液のシャワー圧で破壊されるという 不具合を生じていた。 これらのことから、 ③の誘電体層の比誘電率 (ε ) を大き くすることを考えるのが一般ィ匕してきた。  However, regarding the surface area (A) in (1), similar requirements have been imposed on printed wiring boards due to the recent trend of lighter and smaller electronic and electrical β, and within a certain printed wiring board area However, it is almost impossible to broaden the area of the capacitor electrode. Regarding the reduction of the thickness (d) of the dielectric layer in (2), if the dielectric layer includes a skeletal material such as glass cloth, as represented by a pre-preda, there is a skeletal material in the thinning. Therefore, a limitation arises. On the other hand, if the skeletal material is simply omitted using the conventional dielectric layer constituent material, when the capacitor electrode is manufactured by etching, the dielectric layer at the portion where the copper foil layer has been etched away is the shower pressure of the etching solution. Had to be destroyed. From these facts, it has generally been considered to increase the relative dielectric constant (ε) of the dielectric layer in (3).
即ち、 誘電体層の構成には、 ガラスクロス等の骨格材を必須のものとして、 骨 格材の不織化等により薄層化を図り、 誘電体層全体の厚さを薄くして、 且つ、 誘 電体層の構成材料に誘電体フィラーを分散含有させた樹脂を用いる等してキャパ シタ電気容量の増大が図られてきた。  That is, the structure of the dielectric layer requires a skeletal material such as glass cloth as an indispensable material, and the thickness of the entire dielectric layer is reduced by reducing the thickness of the skeletal material by, for example, non-woven fabric. The use of a resin in which a dielectric filler is dispersed and contained in the material of the dielectric layer has been used to increase the capacitance of the capacitor.
しかしながら、 更なる内蔵キャパシタの電気容量の大容量化とともに、 誘電体 層には、 厚さが薄く且つ厚さ精度に優れ、 しかも、 エッチング加工時のエツチン グ液のシャヮ一圧に負けないフレキシビリティを持つキャパシタ層形成用の銅張 積層板の製造方法の確立が待たれてきた。  However, as the electric capacity of the built-in capacitor is further increased, the thickness of the dielectric layer is thinner and has excellent thickness accuracy, and is flexible enough to withstand the pressure of the etching solution during etching. It has been awaited to establish a method of manufacturing a copper-clad laminate for forming a capacitor layer having the following characteristics.
このような条件を満たしうるキャパシタ層形成用の銅張積層板の製造には、 銅 箔の片面にポリイミド電着液中に誘電体フィラーを含有させた誘電体フィラー含 有ポリイミド電着液を用いて電着塗装法でポリイミド榭脂中に誘電体フィラーを 含んだ誘電体層を形成し、 この誘電体層に更に銅箔を張り合わせるという、 特開 2 0 0 1 - 1 5 8 8 3号公報に開示されたような手法が検討されてきた。  To manufacture a copper-clad laminate for forming a capacitor layer that can satisfy such conditions, a dielectric filler-containing polyimide electrodeposition liquid in which a dielectric filler is contained in a polyimide electrodeposition liquid on one side of a copper foil is used. JP-A-2001-158883, forming a dielectric layer containing a dielectric filler in a polyimide resin by an electrodeposition coating method, and further laminating a copper foil to this dielectric layer. Techniques such as those disclosed in the gazette have been studied.
ところが、 銅の表面に直接、 ポリイミド電着液を用いて電着塗装法でポリイミ ド被膜を形成することは、 膜厚を薄くすることが可能という点では塗工法に比べ て非常に有利であるが、 現実にはかなり困難であり、 ポリイミド電着のそのもの の安定した操業が困難であった。 しかも、 ポリイミド電着液中に誘電体フィラー 粉体を含ませて、 電着させるポリイミド被膜の中に誘電体フィラー粉体の粉粒を 均一に分散させることは、 更に非常に困難であり、 実操業では量産ィ匕には到って いなかった。 However, forming a polyimide film directly on the copper surface by using an electrodeposition solution with a polyimide electrodeposition solution is extremely advantageous over the coating method in that the film thickness can be reduced. However, in reality, it was quite difficult, and stable operation of polyimide electrodeposition itself was difficult. In addition, the dielectric filler powder is included in the polyimide electrodeposition solution, and the dielectric filler powder particles are contained in the polyimide film to be electrodeposited. It is much more difficult to disperse them evenly, and mass production has not been achieved in actual operations.
以上のことから、 キャパシタ層を形成するのに用いる銅張積層板の誘電体の形 成に、 誘電体フィラー含有ポリイミド電着液を用いて、 厚さ精度に優れた誘電体 層を形成する技術が求められてきた。 発明の開示  Based on the above, the technology for forming a dielectric layer with excellent thickness accuracy using a dielectric filler-containing polyimide electrodeposition solution for forming the dielectric of the copper-clad laminate used to form the capacitor layer Has been sought. Disclosure of the invention
そこで、 本件発明者等は、 鋭意研究の結果、 以下に示すような銅等の金属材表 面への誘電体フィラー含有ポリィミド被膜の形成方法並びにプリント配線板用の キャパシタ層形成用の銅張積層板の製造方法を採用することで、 従来にない銅張 積層板を提供できることに想到したのである。  Accordingly, the inventors of the present invention have conducted intensive studies and found that a method of forming a polyimide film containing a dielectric filler on the surface of a metal material such as copper and a copper-clad laminate for forming a capacitor layer for a printed wiring board as shown below. By adopting the board manufacturing method, they came up with the idea of providing an unprecedented copper-clad laminate.
請求項には、 「ポリイミド電着液中に誘電体フィラーを含有させた誘電体フィ ラー含有ポリイミド電着液を用いて電着塗装法で金属材表面に誘電体フィラー含 有ポリイミドネ皮膜を形成する方法において、誘電体フィラーには、 平均粒径 D I A が 0 . 0 5〜: 1 . 0 μ mであって、 レーザー回折散乱式粒度分布測定法による重 量累積粒径 D 5 0が 0 . :!〜 2 . 0 i niであり、 且つ、重量累積粒径 D 5。と画像解 析により得られる平均粒径 D I Aとを用いて D s oZD t Aで表される凝集度の値が 4 . 5以下である略球形の形状をしたぺロプスカイト構造を持つ誘電体粉末を用 いることを特徴とする金属材表面への誘電体フィラ一含有ポリイミド被膜の形成 方法。」 としている。 According to the claim, `` a dielectric filler-containing polyimide film is formed on a metal material surface by an electrodeposition coating method using a dielectric filler-containing polyimide electrodeposition liquid in which a dielectric filler is contained in a polyimide electrodeposition liquid. a method of, the dielectric filler, the average particle diameter D IA is 0 0 5~:.. 1 0 μ a m, weight cumulative particle diameter D 5 0 by a laser diffraction scattering particle size distribution measuring method 0 .:!. ~ 2 0 i is ni, and, D s oZD t cohesion values represented by a with an average particle diameter D IA obtained by the weight-cumulative particle diameter D 5 and the image analysis. A method for forming a dielectric filler-containing polyimide film on a metal material, characterized by using a dielectric powder having a perovskite structure having a substantially spherical shape with a particle size of 4.5 or less. "
ポリイミド樹脂の電着塗装法は、 金属上へ均一でピンホール等の欠陥のない被 膜を形成でき、 複雑な形状への均一被膜形成にも用いることが出来るものとされ てきた。 従来のポリイミドは、 溶剤に殆ど溶解しないため、 その前駆体であるポ リアミド酸の状態で、 電着塗装を行い、 高 ¾¾Π熱することで脱水環化してポリィ ミド膜を形成するものであった。 ところが、 ポリアミド酸が分解しやすく不安定 である。 従って、 本件発明では、 ペンダントカルボキシル基含有溶剤可溶性のマ ルチブ口ックポリイミドを用いたァニオン電着塗装用,組成等のポリイミド電着液 を用いて行うことが好ましいのである。 従って、 このような種類のポリイミド電 着液は、 巿場に於いて調達することが可能であり、 市販のポリイミド電着液にも 非常に優れた' 1·生能を備えたものがある。 The electrodeposition coating method of polyimide resin has been described as being able to form a uniform film on a metal without defects such as pinholes, and can also be used for forming a uniform film on a complicated shape. Conventional polyimides hardly dissolve in solvents, so they were electrodeposited in the form of their precursors, polyamic acid, and dehydrated and cyclized by heating to form a polyimide film. . However, polyamic acid is easily decomposed and unstable. Accordingly, in the present invention, it is preferable to use a polyimide electrodeposition solution for anion electrodeposition coating using a pendant carboxyl group-containing solvent-soluble multi-layer polyimide, such as a composition. Therefore, such a type of polyimide electrodeposition solution can be procured in the factory, and a commercially available polyimide electrodeposition solution can be obtained. Some have very good '1.
当該ポリイミド電着液を用いて金属上にポリイミド被膜を形成しようとする場 合、 金属の種類によっては、 電着性が異なる。 従って、 ポリイミド被膜を形成す る被覆体である金属材の種類によって、 ポリイミド電着液の調製を必要とするも のである。 特に、 金属材としての銅材上に電着塗装法でポリイミド被膜を形成し ようとする場合、 ポリイミド電着液中のマルチプロックポリイミドのコロイド粒 子の粒子径が細かくなければ、 均一で欠陥のない良好な被膜を形成することが出 来ない傾向があると思われる。 従って、 当該電着ポリイミドの種類に応じて、 溶 剤量を増量する等してコロイド粒子の微細化を図る必要があると考える。 但し、 ポリイミド電着液中のコロイド粒子の径は、 形成するポリイミド被膜の厚さとの 関係もあるため、 最終的に目的とするポリイミド被 厚さと電着性との均衡を保 てる適正領域に調製する必要があるのである。  When a polyimide film is to be formed on a metal by using the polyimide electrodeposition solution, the electrodeposition property differs depending on the type of the metal. Therefore, it is necessary to prepare a polyimide electrodeposition solution depending on the type of the metal material which is the coated body for forming the polyimide film. In particular, when a polyimide coating is to be formed on a copper material as a metal material by an electrodeposition coating method, if the colloidal particles of the multiblock polyimide in the polyimide electrodeposition solution are not small, uniform and defective It seems that there is a tendency that no good film can be formed. Therefore, it is considered necessary to reduce the size of the colloid particles by increasing the amount of the solvent in accordance with the type of the electrodeposited polyimide. However, since the diameter of the colloidal particles in the polyimide electrodeposition liquid also has a relationship with the thickness of the polyimide film to be formed, it should be adjusted to an appropriate area where the balance between the target polyimide film thickness and electrodeposition properties is finally maintained. We need to do that.
更に、 本件発明の場合、 このポリイミド電解液中に分散混合させる誘電体フィ ラーの分散性までもを考慮して、 ポリイミド電解液の溶液性状を決定すべきと考 えられる。 ところが、 現在の技術レベルで、 金属材上に均一で欠陥のない良好な ポリイミド被膜を形成できるマルチプロックポリイミドを含んだポリイミド電着 液の種類には限界があり、 その組成の調製範囲にも限界があるのである。  Further, in the case of the present invention, it is considered that the solution property of the polyimide electrolyte should be determined in consideration of the dispersibility of the dielectric filler dispersed and mixed in the polyimide electrolyte. However, at the current technical level, there is a limit to the type of polyimide electrodeposition solution containing multiblock polyimide that can form a uniform and good defect-free polyimide coating on metal materials, and the range of preparation of the composition is also limited. There is.
そこで、 本件発明者等は、 誘電体フィラーの粉体性状を改善することで、 ポリ ィミド電着液中への誘電体フィラー粉体の良好な分散性を確保することとしたの である。 本件発明で用いる誘電体フイラ一は、 誘電体ブイラ一含有ポリイミド被 膜中に分散して存在させるものであり、 最終的にキャパシタの誘電体層として機 能し、 キャパシタ形状に加工したときのキャパシタの電気容量を増大させるため に用いるのである。 この誘電体フィラーには、 B aT i〇3、 S rT i03、 P b (Z r— T i) 03 (通称 PZT)、 P b L a T i 03 · P b L a Z r O (通称 P LZT)、 S r B i 2Ta2Og (通称 SBT) 等のペブロスカイト構造を持つ複合 酸化物の誘電体粉を用いる。 Accordingly, the present inventors have determined that the powder property of the dielectric filler is improved to ensure good dispersibility of the dielectric filler powder in the polyimide electrodeposition liquid. The dielectric filler used in the present invention is to be dispersed and present in the polyimide film containing the dielectric boiler, and finally functions as a dielectric layer of the capacitor. It is used to increase the electrical capacity of the vehicle. The dielectric filler, B aT I_〇 3, S rT i0 3, P b (Z rT i) 0 3 ( commonly called PZT), P b L a T i 0 3 · P b L a Z r O (aka P LZT), using S r B i 2 Ta 2 O g ( aka SBT) dielectric powder of the complex oxide having a perovskite structure, such as.
そして、 この誘電体フィラーの粉体特性は、 まず粒径が 0. 05〜1. Ομπι の範囲のものである必要がある。 ここで言う粒径は、 粉粒同士がある一定の 2次 凝集状態を形成しているため、 レーザー回折散乱式粒度分布測定法や BET法等 の測定値から平均粒径を推測するような間接測定では精度が劣るものとなるため 用いることができず、 誘電体フィラーを走査型電子顕微鏡 (SEM) で直接観察 し、 その SEM像を画像解析し得られる平均粒径を言うものである。 本件明細書 ではこの時の粒径を DIAと表示している。 なお、 本件明細書における走查型電子 顕微鏡 (SEM) を用いて観察される誘電体フィラーの粉体の画像解析は、 旭ェ ンジニアリング株式会社製の I P— 1000 PCを用いて、 円度しきい値 10、 重なり度 20として円形粒子解析を行い、 平均粒径 Aを求めたものである。 更に、 レーザー回折散乱式粒度分布測定法による重量累積粒径 D5。が 0. :!〜 2. O^mであり、 且つ、 重量累積粒径 D50と画像解析により得られる平均粒径 0 とを用ぃて050/0 で表される凝集度の値が4.5以下である略球形の形 , 状をしたぺロブスカイト構造を持つ誘電体粉末であることが求められる。 The powder properties of the dielectric filler must first be in the range of 0.05 to 1.Ομπι. The particle size referred to here means that the particles form a certain secondary coagulation state, such as the laser diffraction scattering particle size distribution measurement method and the BET method. Indirect measurement, such as estimating the average particle size from the measured values of, cannot be used because the accuracy is inferior, and the dielectric filler is directly observed with a scanning electron microscope (SEM), and the SEM image is analyzed by image analysis The average particle size obtained. In this specification, the particle size at this time is indicated as DIA . The image analysis of the dielectric filler powder observed using a scanning electron microscope (SEM) in this specification was performed using an IP-1000 PC manufactured by Asahi Engineering Co., Ltd. Circular particle analysis was performed with a threshold value of 10 and a degree of overlap of 20, and the average particle size A was determined. Further, the weight cumulative particle size D 5 by a laser diffraction scattering type particle size distribution measuring method. There 0.: - 2. a O ^ m, and, the value of cohesion represented an average particle size 0 obtained by the weight-cumulative particle diameter D 50 and the image analysis in use Ite 0 50/0 It is required that the dielectric powder has a perovskite structure with a substantially spherical shape and shape of 4.5 or less.
レーザー回折散乱式粒度分布測定法による重量累積粒径 D 50とは、 レーザー回 折散乱式粒度分布測定法を用いて得られる重量累積 50 %における粒径のことで あり、 この重量累積粒径 D5。の値が小さいほど、誘電体フィラー粉の粒径分布の 中で微細な粉粒の占める割合が多いことになる。 本件発明では、 この値が 0. 1 μπι〜2. 0 mであることが求められる。 即ち、 重量累積粒径 D 50の値が 0. 1 H m未満の場合には、どのような製造方法を採用した誘電体フィラー粉であれ、 凝集の進行が著しく以下に述べる凝集度を満足するものとはならないのである。 一方、 重量累積粒径 D 50の値が 1. 0 μ mを越える場合には、 本件発明の目的と するところであるプリント配線板の内蔵キャパシタ層形成用の誘電体ブイラーと しての使用が不可能となるのである。 即ち、 内蔵キャパシタ層を形成するのに用 いる両面銅張積層板の誘電体層は、通常 10 μη!〜 25 / mの厚さのものであり、 ここに誘電体フィラーを均一に分散させるためには 2. 0 μπιが上限となるので ある。 The weight cumulative particle diameter D 5 0 by a laser diffraction scattering particle size distribution measurement method is that the particle diameter at weight accumulation of 50% obtained by using a laser diffraction scattering particle size distribution measurement method, the weight-cumulative particle size D 5. The smaller the value of, the larger the ratio of fine particles in the particle size distribution of the dielectric filler powder. In the present invention, this value is required to be 0.1 μπι to 2.0 m. That is, the value of the weight-cumulative particle diameter D 50 in the case of less than 0. 1 H m, whether any manufacturing method is adopted dielectric filler powder, satisfies the cohesion described below significantly the progress of aggregation It is not something. On the other hand, when the value of weight-cumulative particle diameter D 5 0 exceeds 1. 0 mu m, the use of as a dielectric Buira for built-in capacitor layer forming a printed wiring board is where an object of the present invention It becomes impossible. That is, the dielectric layer of the double-sided copper-clad laminate used to form the built-in capacitor layer is usually 10 μη! The thickness is about 25 / m, and the upper limit is 2.0 μπι in order to uniformly disperse the dielectric filler.
本件発明における重量累積粒径 D 50の測定は、誘電体フィラー粉をメチルェチ ルケトンに混合分散させ、 この溶液をレーザー回折散乱式粒度分布測定装置 Μ i c r o Tr a c HRA 9320— X 100型 (日機装株式会ネ ± ) の循 環器に投入して横」定を行つた。 Measurement of Weight cumulative particle diameter D 50 of the present invention, the dielectric filler powder is mixed and dispersed in Mechiruechi ketone, the solution a laser diffraction scattering particle size distribution measuring apparatus Μ icro Tr ac HRA 9320- X 100 inch (Nikkiso stock Society Neighbors were placed in the circulator and a horizontal test was performed.
ここで凝集度という概念を用いているが、 以下のような理由から採用したもの である。 即ち、 レーザー回折散乱式粒度分布測定法を用いて得られる重量累積粒 径 D 5 0の値は、真に粉粒の一つ一つの径を直接観察したものではないと考えられ る。 殆どの誘電体粉を構成する粉粒は、 個々の粒子が完全に分離した、 いわゆる 単分散粉ではなく、 複数個の粉粒が凝集して集合した状態になっているからであ る。 レーザー回折散乱式粒度分布測定法は、 凝集した粉粒を一個の粒子 (凝集粒 子) として捉えて、 重量累積粒径を算出していると言えるからである。 The concept of cohesion is used here, but the one adopted for the following reasons: It is. That is, the value of the weight-cumulative particle diameter D 5 0 obtained by using a laser diffraction scattering particle size distribution measurement method, the it is thought and not observed truly every single size of particulate directly. This is because most of the particles constituting the dielectric powder are not so-called monodispersed powders in which individual particles are completely separated, but a state in which a plurality of particles are aggregated and aggregated. This is because the laser diffraction scattering type particle size distribution measuring method regards the agglomerated particles as one particle (agglomerated particles) and calculates the weight cumulative particle size.
これに対して、 走査型電子顕微鏡を用レヽて観察される誘電体粉の観察像を画像 処理することにより得られる平均粒径 D∑ Aは、 S E M観察像から直接得るもので あるため、 一次粒子が確実に捉えられることになり、 反面には粉粒の凝集状態の 存在を全く反映させていないことになる。 On the other hand, the average particle diameter D ∑ A obtained by image-processing the observed image of the dielectric powder observed using a scanning electron microscope is obtained directly from the SEM observation image. The particles are surely caught, and on the other hand, they do not reflect the existence of the aggregation state of the powder particles at all.
以上のように考えると、 本件発明者等は、 レーザー回折散乱式粒度分布測定法 の重量累積粒径 D 5。と画像解析により得られる平均粒径 D z Aとを用いて、 D 5Considering the above, the present inventors have determined that the weight cumulative particle size D 5 of the laser diffraction scattering type particle size distribution measuring method. With an average particle diameter D z A obtained by image analysis and, D 5.
ZD z Aで算出される値を凝集度として捉えることとしたのである。 即ち、 同一口 ットの銅粉にぉレ、て D 5 0と D j Aとの値が同一精度で測定できるものと仮定して、 上述した理論で考えると、凝集状態のあることを測定値に反映させる D 5。の値は、 D I Aの値よりも大きな値になると考えられる (現実の測定に置いても、 同様の結 果が得られる)。 The value calculated by ZD z A was taken as the degree of aggregation. That is, on the assumption that the value of the copper powder Niore, Te D 5 0 and D j A in the same bite Tsu bets can be measured with the same accuracy, considering theory described above, determined that there is a cohesive state D 5 to be reflected in the value. Is likely to be greater than the value of DIA (similar results can be obtained in actual measurements).
このとき、 D 5 0の値は、誘電体フィラー粉の粉粒の凝集状態が全くなくなると すれば、限りなく D I Aの値に近づいてゆき、凝集度である D 5。ZD I Aの値は、 1 に近づくことになる。 凝集度が 1となった段階で、 粉粒の凝集状態が全く無くな つた単分散粉と言えるのである。 但し、 現実には、 凝集度が 1未満の値を示す場 合もある。 理論的に考え真球の場合には、 1未満の値にはならないのであるが、 現実には、 粉粒が真球ではないために 1未満の凝集度の値が得られることになる ようである。 At this time, the value of D 5 0, if at all there is no granular state of aggregation of the dielectric filler powder, Yuki approaching the value of the infinitely D IA, D 5 is a degree of aggregation. The value of ZD IA will be close to 1. At the stage when the degree of agglomeration reaches 1, it can be said that this is a monodispersed powder in which the state of agglomeration of the powder particles has completely disappeared. However, in reality, the cohesion degree may show a value of less than 1. It is theoretically considered that in the case of a true sphere, the value does not become less than 1, but in reality, it seems that since the powder is not a true sphere, a value of less than 1 is obtained. is there.
本件発明では、 この誘電体フィラー粉の凝集度が 4. 5以下であることが求め られる。 この凝集度が 4. 5を越えると、 誘電体フィラーの粉粒同士の凝集レべ ルが高くなりすぎて、 上述したポリイミド電着液との均一混合が困難となるので ある。  In the present invention, it is required that the cohesion of the dielectric filler powder is 4.5 or less. If the agglomeration degree exceeds 4.5, the agglomeration level of the dielectric filler powder particles becomes too high, and it becomes difficult to uniformly mix the dielectric filler powder with the above-mentioned polyimide electrodeposition solution.
誘電体フィラー粉の製造方法として、 アルコキシド法、 水熱合成法、 ォキサレ 一ト法等のいずれの製造方法を採用しても、 一定の凝集状態が不可避的に形成さ れるため、上述の凝集度を満足しなレ、誘電体フィラー粉が発生し得るものである。 特に、 湿式法である水熱合成法の場合には、 凝集状態の形成が起こりやすい傾向 にある。 そこで、 この凝集した状態の粉体を、 一粒一粒の粉粒に分離する解粒処 理を行うことで、 誘電体フィラー粉の凝集状態を、 上述の凝集度の範囲とするこ とが可能なのである。 Alkoxide method, hydrothermal synthesis method, oxare Regardless of the production method such as the one-to-one method, a certain coagulated state is inevitably formed, so that a dielectric filler powder that does not satisfy the above coagulation degree can be generated. In particular, in the case of the hydrothermal synthesis method, which is a wet method, formation of an aggregated state tends to occur easily. Therefore, by performing a deagglomeration process of separating the aggregated powder into individual particles, it is possible to set the aggregation state of the dielectric filler powder within the above-described aggregation degree. It is possible.
単に解粒作業を行うことを目的とするのであれば、 解粒の行える手段として、 高エネルギーボールミル、 高速導体衝突式気流型粉碎機、 衝撃式粉砕機、 ゲージ ミル、媒体攪拌型ミル、高水圧式粉砕装置等種々の物を用いることが可能である。 ところが、 誘電体フィラー粉とポリイミド電着液との混合性及び分散性を確保す るためには、 以下に述べる誘電体フィラー含有ポリイミド電着液としての粘度低 減を考えるべきである。 誘電体フィラー含有ポリイミド電着液の粘度の低減を図 る上では、 誘電体フィラーの粉粒の比表面積が小さく、 滑らかなものとすること が求められる。 従って、 解粒は可能であっても、 解粒時に粉粒の表面に損傷を与 え、 その比表面積を増加させるような解粒手法であってはならないのである。 このような認識に基づいて、 本件発明者等が鋭意研究した結果、 二つの手法が 有効であることが見いだされた。 この二つの方法に共通することは、 誘電体フィ ラーの粉体の粉粒が装置の内壁部、 攪拌羽根、 粉碎媒体等の部分と接触すること を最小限に抑制し、 凝集した粉粒同士の相互衝突を行わせることで、 解粒が十分 可能な方法という点である。 即ち、 装置の内壁部、 攪拌羽根、 粉碎媒体等の部分 と接触することは粉粒の表面を傷つけ、 表面粗さを増大させ、 真球度を劣化させ ることにつながり、 これを防止するのである。 そして、 十分な粉粒同士の衝突を 起こさせることで、 凝集状態にある粉粒を解粒し、 同時に、 粉粒同士の衝突によ る粉粒表面の平滑ィ匕の可能な手法を採用できるのである。  If the purpose is simply to perform the pulverization work, as a means to perform the pulverization, high-energy ball mill, high-speed conductor impingement type air flow type pulverizer, impact type pulverizer, gauge mill, medium stirring type mill, high water pressure It is possible to use various things such as a pulverizer. However, in order to ensure the mixability and dispersibility of the dielectric filler powder and the polyimide electrodeposition solution, it is necessary to consider the viscosity reduction of the dielectric filler-containing polyimide electrodeposition solution described below. In order to reduce the viscosity of the dielectric filler-containing polyimide electrodeposition liquid, it is required that the specific surface area of the dielectric filler powder be small and smooth. Therefore, even if crushing is possible, the crushing method must not damage the surface of the granules during crushing and increase the specific surface area. Based on such recognition, the present inventors have conducted intensive studies and found that two methods are effective. What is common to these two methods is that it minimizes the contact between the particles of the dielectric filler powder and the parts such as the inner wall of the device, stirring blades, and the grinding media, and reduces the agglomerated particles. This is a method that can be sufficiently disaggregated by causing mutual collision. That is, contact with the inner wall of the device, the stirring blades, the grinding media, etc. damages the surface of the granules, increases the surface roughness, deteriorates the sphericity, and prevents this. is there. Then, by causing sufficient collision between the particles, it is possible to employ a method capable of disintegrating the particles in the agglomerated state and, at the same time, smoothing the surface of the particles due to the collision between the particles. It is.
その一つは、 凝集状態にある誘電体フィラー粉を、 ジェットミルを利用して解 粒処理するのである。 ここで言う 「ジェットミル」 とは、 エアの高速気流を用い て、 この気流中に誘電体フィラー粉を入れ、 この高速気流中で粉粒同士を相互に 衝突させ、 解粒作業を行うのである。  One is to use a jet mill to pulverize the dielectric filler powder in the agglomerated state. The term "jet mill" here refers to the use of a high-speed air stream to put dielectric filler powder into this air stream and cause the powder particles to collide with each other in this high-speed air stream to perform a pulverizing operation. .
また、 凝集状態にある誘電体フィラー粉を、 そのストィキオメトリを崩すこと のない溶媒中に分散させたスラリ一を、 遠心力を利用した流体ミルを用いて解粒 処理するのである。 ここで言う 「遠心力を利用した流体ミル」 を用いることで、 当該スラリーを円周軌道を描くように高速でフローさせ、 このときに発生する遠 心力により凝集した粉粒同士を溶媒中で相互に衝突させ、 解粒作業を行うのであ る。 このようにすることで、 解粒作業の終了したスラリーを洗浄、 濾過、 乾燥す ることで解粒作業の終了した誘電体フイラ一粉が得られることになるのである。 以上に述べた方法で、 凝集度の調整及び誘電体フィラー粉の粉体表面の平滑ィ匕を 図ることができるのである。 It also breaks the stoichiometry of the dielectric filler powder in the aggregate state. The slurry dispersed in a solvent free from cracks is subjected to a granulation treatment using a fluid mill utilizing centrifugal force. By using the “fluid mill using centrifugal force” here, the slurry flows at high speed in a circular orbit, and the powder particles agglomerated by the centrifugal force generated at this time mutually in the solvent. The powder is then crushed to perform the pulverizing operation. In this way, the slurry that has been pulverized is washed, filtered, and dried to obtain a dielectric filler powder that has been pulverized. By the method described above, it is possible to adjust the degree of agglomeration and to smooth the powder surface of the dielectric filler powder.
以上述べてきたポリイミド電着液と誘電体フィラーとを混合して、 誘電体フィ ラー含有ポリイミド電着液とするのである。 このときの、 ポリイミド電着液と誘 電体フイラ一との配合割合は、 請求項に記載したように、 誘電体フィラー含有ポ リイミド電着液中の誘電体フィラーの含有量が、 5 0 g /L〜3 5 0 g ZLであ ることが望ましい。  The above-described polyimide electrodeposition solution and the dielectric filler are mixed to form a dielectric filler-containing polyimide electrodeposition solution. At this time, the mixing ratio of the polyimide electrodeposition liquid and the dielectric filler was such that the content of the dielectric filler in the dielectric filler-containing polyimide electrodeposition liquid was 50 g. / L to 350 g ZL is desirable.
誘電体フィラーの含有量が、 5 0 gZL未満の場合には、 キャパシタを構成し たときの誘電率が低くなりすぎて、 市場で現在要求されている比誘電率 2 0を満 足できず、 誘電体フィラーの含有量が 3 5 0 g /Lを越えると、 形成する誘電体 フィラー含有ポリイミド被膜中のポリイミド樹脂の含有率が低くなりすぎて、 そ こに張り合わせる銅箔との密着性が損なわれ、 キャパシタの形成が困難となるの である。  If the content of the dielectric filler is less than 50 gZL, the dielectric constant of the capacitor is too low to satisfy the relative dielectric constant of 20 currently required in the market. If the dielectric filler content exceeds 350 g / L, the content of the polyimide resin in the dielectric filler-containing polyimide film to be formed will be too low, and the adhesion to the copper foil to be adhered to will be poor. They will be damaged and the formation of capacitors will be difficult.
そして、 この誘電体フイラ一としては、 現段階において、 粉体としての製造精 度を考慮すると、 ペブロスカイト構造を持つ複合酸化物の内、 チタン酸バリウム を用いることが好ましい。 このときの誘電体フィラーには、 仮焼したチタン酸パ リゥム又は未仮焼のチタン酸パリゥムのいずれをも用いることが出来る。 高い誘 電率を得ようとする場合には仮焼したチタン酸バリゥムを用いることが好ましい のであるが、 キヤパシタの設計品質に応じて選択使用すればょレ、ものである。 また更に、 チタン酸バリウムの誘電体フィラーが、 立方晶の結晶構造を持つも のであることが最も好ましい。 チタン酸バリウムのもつ結晶構造には、 立方晶と 正方晶とが存在する力 立方晶の構造を持つチタン酸バリゥムの誘電体フィラー の方が、 正方晶の構造のみを持つチタン酸バリゥムの誘電体フィラーを用いた場 合に比べて、 最終的に得られる誘電体層の誘電率の値が安定化するのである。 従 つて、 少なくとも、 立方晶と正方晶との双方の結晶構造を併有したチタン酸バリ ゥム粉を用いる必要があると言えるのである。 At this stage, it is preferable to use barium titanate among composite oxides having a perovskite structure in consideration of the production accuracy as a powder at this stage. As the dielectric filler at this time, either calcined titanium titanate or uncalcined parium titanate can be used. In order to obtain a high dielectric constant, it is preferable to use calcined barium titanate. However, if it is selected and used in accordance with the design quality of the capacitor, it is preferable. Most preferably, the dielectric filler of barium titanate has a cubic crystal structure. The crystal structure of barium titanate has a cubic structure and a tetragonal structure. The dielectric filler of the cubic structure is not the same as the dielectric filler of the barium titanate, which has only the tetragonal structure. Place using filler Compared with the case, the dielectric constant of the finally obtained dielectric layer is stabilized. Therefore, it can be said that it is necessary to use at least a barium titanate powder having both a cubic crystal structure and a tetragonal crystal structure.
以上に説明してきた誘電体フィラー含有ポリイミド電着液を用いて、 銅材の表 面に電着塗装法で誘電体フィラー含有ポリイミド被膜を形成することで、 鋼材の 表面であっても、 その誘電体フィラー含有ポリィミドネ皮膜の中では誘電体フィラ 一が偏在することなく均一に分散しており、 且つ、 誘電体フィラー含有ポリイミ ド被膜自体も滑らかな表面と均一な膜厚を持ち、欠陥のないものとなるのである。 更に、請求項に記載したように、 「ポリイミド電着液中に誘電体フィラーを含有 させた誘電体フィラー含有ポリィミド電着液を用いて電着塗装法で金属材表面に 誘電体フィラー含有ポリイミドネ皮膜を形成する方法において、 銅材のュッケル若 しくはコバルトの金属シード層を形成し、 当該金属シード層上に、 誘電体フイラ 一として、 平均粒径 D I Aが 0 . 0 5〜1 . Ο μ ιηであって、 レーザー回折散乱式 粒度分布測定法による重量累積粒径 D 5 0が 0 . 1〜2 . 0 / mであり、 且つ、 重 量累積粒径 D 5。と画像解析により得られる平均粒径 D! Aとを用いて D 5。/D! A で表される凝集度の値が 4 . 5以下である略球形の形状をしたぺロブスカイト構 造を持つ誘電体粉末を含有した誘電体フィラー含有ポリィミド電着液用いて電着 塗装法で金属材表面へ誘電体フィラー含有ポリイミド被膜を形成することを特徴 とする金属材表面への誘電体フィラー含有ポリイミドネ皮膜の形成方法。」を採用す ることで、 金属材上への誘電体フィラー含有ポリイミド被膜の膜厚均一性を更に 良好なものとすることが可能となるのである。 Using the dielectric filler-containing polyimide electrodeposition solution described above, a dielectric filler-containing polyimide film is formed on the surface of the copper material by an electrodeposition coating method. The dielectric filler is uniformly dispersed without uneven distribution in the polyimide filler-containing polyimide coating, and the dielectric filler-containing polyimide coating itself has a smooth surface and a uniform film thickness without any defects. It becomes. Furthermore, as described in the claim, "a dielectric filler-containing polyimide film is formed on a metal material surface by an electrodeposition coating method using a dielectric filler-containing polyimide electrodeposition solution in which a dielectric filler is contained in a polyimide electrodeposition solution. a method of forming a film, Yukkeru young properly copper material to form a metal seed layer of cobalt to the metal seed layer, a dielectric FILLER one, the average particle diameter D IA is 0. 0 5~1. Ο a mu Iotaita obtained, the weight-cumulative particle diameter D 5 0 by laser diffraction scattering particle size distribution measurement method is 0. 1~2. 0 / m, and, by weight cumulative particle diameter D 5. and image analysis containing dielectric powder having an average particle diameter D! a and perovskite structures in the form of substantially spherical values of cohesion represented by D 5 ./D! a is 4.5 or less using for Metal surface by electrodeposition coating using a polyimide electrodeposition solution containing a dielectric filler A method of forming a dielectric filler-containing polyimide film on a metal material characterized by forming a dielectric filler-containing polyimide film. " It is possible to further improve the uniformity of the film thickness.
この誘電体フィラ一含有ポリイミド被膜の形成方法が、 上述した誘電体フィラ 一含有ポリイミド被膜の形成方法と異なるのは、 予め金属材の表面に-ッケル若 しくはコバルトの金属シード層の形成を行って、 誘電体フィラー含有ポリィミド 被膜を形成するのである。 その他の点に関しては、 同様であるため重複した記載 を避けるため、 異なる金属シード層の形成のみに関して説明する。 金属材には、 電着塗装法を用いた場合の、 ポリイミド被膜の電着性に優れたニッケル若しくは コバルトの非常に薄い金属層を設けるのである。 この金属層のことを、 本件明細 書では金属シード層と称しているのである。 金属材表面への金属シード層の形成 は、 電解法、 スパッタリング蒸着法等の乾式法等種々の方法を採用することが可 能であり、 特に限定はない。 The method of forming the dielectric filler-containing polyimide film is different from the above-described method of forming the dielectric filler-containing polyimide film in that a metal seed layer of nickel or cobalt is previously formed on the surface of the metal material. Thus, a polyimide film containing a dielectric filler is formed. In other respects, only the formation of a different metal seed layer will be described to avoid duplication of description. The metal material is provided with a very thin metal layer of nickel or cobalt which is excellent in electrodeposition of the polyimide film when using the electrodeposition coating method. This metal layer is called a metal seed layer in this specification. Formation of metal seed layer on metal surface Can employ various methods such as a dry method such as an electrolytic method and a sputtering vapor deposition method, and is not particularly limited.
この金属シード層を設けておくことで、 電着塗装法でポリイミド被膜の形成が 困難と言われる銅材表面であっても、 極めて良好なポリイミド被膜の形成が可能 であり、 本件発明で結果的に形成する誘電体フィラー含有ポリイミド被膜は、 欠 陥が発生する可能性も極めて低くなり、 膜厚均一性を格段に向上させることが可 能となるのである。  By providing this metal seed layer, an extremely good polyimide film can be formed even on a copper material surface where it is said to be difficult to form a polyimide film by the electrodeposition coating method. The dielectric filler-containing polyimide film formed on the substrate has a very low possibility of occurrence of defects, and the film thickness uniformity can be remarkably improved.
以上に述べたような金属材上への誘電体フィラー含有ポリィミド被膜の形成方 法を用いることで、 誘電体フィラー含有ポリィミド被膜の中では誘電体フィラー が偏在することなく均一に分散することで、 ワークサイズ平面での場所による誘 電率のバラツキを減少させることが可能となる。 そして、 誘電体フィラー含有ポ リイミド被膜自体が滑ら力、な表面と均一な膜厚を持っため、 キャパシタを形成す る場合に、 誘電体フィラー含有ポリイミドネ皮膜に張り合わせる銅箔等の電極材料 の均一な密着性が得られやすく、 製造欠陥のないものとなるのである。 このよう な金属材表面への誘電体層の形成方法を採用することで、 誘電体層としての誘電 体フイラ一含有ポリイミド被膜の厚さも自在とすることができ、 結果として優れ た電気容量を持ち、高レヽキャパシタ品質を持つ製品を得ることが出来るのである。 以上に述べた金属材上への誘電体フィラー含有ポリイミド被膜の形成方法の技 術的思想を、 プリント細線板のキャパシタ層形成用の銅張積層板の製造方法に応 用することが可能となる。即ち、請求項には、 「第 1銅箔 Z誘電体フィラー含有ポ リイミド誘電体層/第 2銅箔の層構成を備えたプリント配線板用のキャパシタ層 形成用の銅張積層板の製造方法において、 第 1銅箔の表面に、 ポリイミド電着液 と、 誘電体フイラ一として平均粒径 D I Aが 0 . 0 5〜1 . Ο μ πιであり、 レーザ 一回折散乱式粒度分布測定法による重量累積粒径 D 5 0が 0 . :!〜 2 . 0 μ mであ り、且つ、重量累積粒径 D 5 0と画像解析により得られる平均粒径 D I Aとを用いて D s o D ! Aで表される凝集度の値が 4 . 5以下である略球形の形状をしたべ口ブ スカイト構造を持つ誘電体粉末とを混合した誘電体フィラー含有ポリイミド電着 液を用いて、 電着塗装法で誘電体フィラー含有ポリイミド被膜を形成した誘電体 フィラー含有ポリイミド被膜付銅箔と、 第 2銅箔の片側表面にポリイミド薄膜を 形成したポリイミ ド薄膜付銅箔とを用いて、 前記誘電体フィラー含有ポリイミド 被膜付銅箔の誘電体層フイラ一含有ポリイミド被膜面と、 前記ポリイミド薄膜付 銅箔のポリイミド薄膜面とが当接するようにして重ね合わせて積層することを特 徴とした第 1銅箔 Z誘電体フィラ一含有ポリイミド誘電体層/第 2銅箔の層構成 を備えたプリント配線板用のキャパシタ層形成用の銅張積層板の製造方法。」とし ている。 By using the method for forming a dielectric filler-containing polyimide film on a metal material as described above, the dielectric filler is uniformly dispersed without uneven distribution in the dielectric filler-containing polyimide film. It is possible to reduce the variation in the electrical conductivity depending on the location on the work size plane. The dielectric filler-containing polyimide film itself has a smooth surface and a uniform film thickness, so when forming a capacitor, the electrode material such as copper foil bonded to the dielectric filler-containing polyimide film is formed. Uniform adhesion is easily obtained, and there are no manufacturing defects. By adopting such a method of forming a dielectric layer on the surface of a metal material, the thickness of the polyimide film containing the dielectric filler as the dielectric layer can be made freely, resulting in an excellent electric capacity. Therefore, it is possible to obtain a product having high-level capacitor quality. The technical idea of the method of forming a dielectric filler-containing polyimide film on a metal material described above can be applied to a method of manufacturing a copper-clad laminate for forming a capacitor layer of a printed fine wire board. . That is, the claim includes a method of manufacturing a copper-clad laminate for forming a capacitor layer for a printed wiring board having a layer structure of a first copper foil Z dielectric filler-containing polyimide dielectric layer / second copper foil. in the surface of the first copper foil, the polyimide electrodeposition solution, the average particle diameter D IA as a dielectric FILLER one is 0. 0 5~1. Ο μ πι , by laser first diffraction scattering particle size distribution measurement method weight cumulative particle diameter D 5 0 is 0:.!. ~ 2 0 μ m Ri der, and, D so D with an average particle diameter D IA obtained by a weight cumulative particle diameter D 5 0 and the image analysis! Using a dielectric filler-containing polyimide electrodeposition liquid mixed with a dielectric powder having a substantially spherical shape and a mouth-cube structure having a cohesion degree represented by A of 4.5 or less, A dielectric filler-containing polyimide coating-coated copper foil with a dielectric filler-containing polyimide coating formed by a coating method, and a second copper foil Polyimide thin film on one surface Using the formed polyimide foil with a polyimide thin film, the dielectric filler-containing polyimide coating surface of the dielectric filler-containing copper foil and the polyimide thin film surface of the copper foil with the polyimide thin film are in contact with each other. Copper foil for forming a capacitor layer for a printed wiring board with a layered structure of the first copper foil Z dielectric filler-containing polyimide dielectric layer / second copper foil A method for manufacturing a laminate. "
この製造方法のフローを図 1に模式的に示している。 なお、 製造方法の説明が 分かりやすいように、 図面は極めて模式的に断面として示すものであり、 特に厚 さ、 サイズ等は現実に実施する物の値を忠実に反映しているものでなレ、ことをこ こに明記しておく。 基本的な考え方は、 上述した金属材上への誘電体フィラー含 有ポリイミド被膜の形成方法と同様であるため、 銅張積層板の製造手順に関して のみ述べることとする。  FIG. 1 schematically shows the flow of this manufacturing method. In addition, the drawings are extremely schematically shown as cross-sections so that the description of the manufacturing method is easy to understand, and the thickness, size, and the like do not accurately reflect the values of the objects actually implemented. This is clearly stated here. Since the basic concept is the same as the above-mentioned method of forming a dielectric filler-containing polyimide film on a metal material, only the procedure for manufacturing a copper-clad laminate will be described.
図 1を参照して、 以下この製造方法に関して説明する。 第 1銅箔 C F 1の表面 に、 誘電体フィラー含有ポリイミド被膜 2を形成し、 誘電体フィラー含有ポリィ ミドネ皮膜付銅箔.3とするのである。 このときの、 誘電体フィラー含有ポリイミド 被膜 2の形成に用レ、る誘電体フィラ一含有ポリイミド電着液は、 ポリイミド電着 液に、 誘電体フイラ一として平均粒径 D が 0 . 0 5〜1 . 0 μ mであり、 レー ザ一回折散乱式粒度分布測定法による重量累積粒径 D 5。が 0 . 1〜2 . O iz mで あり、且つ、重量累積粒径 D 5 0と画像解析により得られる平均粒径 D I Aとを用い て D 5。/D! Aで表される凝集度の値が 4 . 5以下である略球形の形状をしたぺロ ブスカイト構造を持つ誘電体粉末を加え均一に混合したものである。 This manufacturing method will be described below with reference to FIG. The dielectric filler-containing polyimide coating 2 is formed on the surface of the first copper foil CF1, and the resulting dielectric-filled polyimide foil-coated copper foil. At this time, the dielectric filler-containing polyimide electrodeposition liquid used for forming the dielectric filler-containing polyimide coating 2 was added to the polyimide electrodeposition liquid as a dielectric filler having an average particle diameter D of 0.05 to It is 1.0 μm and has a cumulative weight particle size D 5 determined by laser diffraction / particle size distribution measurement. There 0. 1 to 2. O iz is m, and, D 5 with an average particle diameter D IA obtained by a weight cumulative particle diameter D 5 0 and image analysis. / D! A dielectric powder having a perovskite structure having a substantially spherical shape and a cohesion value represented by A of 4.5 or less was added and uniformly mixed.
そして、 この誘電体フィラー含有ポリイミド電着液を用いて、 電着塗装法で誘 電体フィラ一含有ポリイミド被膜 2を形成した誘電体フィラ一含有ポリイミド被 膜付銅箔 3を得るのである。  Then, using the dielectric filler-containing polyimide electrodeposition solution, a dielectric filler-containing polyimide coating-formed copper foil 3 having a dielectric filler-containing polyimide coating 2 formed by an electrodeposition coating method is obtained.
一方では、 第 2銅箔 C F 2の片側表面に、 最終的に 1〜 3 μ m厚のポリイミド 薄膜 4を残すものとし、 乾燥時及ぴプレス時におこる溶媒除去及ぴレジンフロー を考慮し、 一且目的厚さの約 2〜3倍の厚さのとしたポリイミド薄膜付銅箔 5を 製造するのである。 このときは、 第 2銅箔 C F 2の片面に、 前記の誘電体フイラ 一を含まないポリイミド電着液を用いて電解塗装法で、 最終厚さの約 2〜3倍厚 さのポリイミド薄膜 4を形成するのである。 このポリイミド薄膜 4は、 以下に述 ベる誘電体フィラー含有ポリイミド被膜 2との張り合わせ時に、 バインダーとし て機能するものである。 そして、 ここで、 プレス加工後の最終的なポリイミド薄 膜 4が 1 m未満の場合には、 銅箔の凹凸のある接着面を十分に被覆することが 困難となり、 ポリイミド薄膜 4が 3 z m以上になると、 ポリイミド薄膜 4自体に は誘電体フィラーが含まれていないため、 最終的に構成する誘電体層の誘電率の 低下が顕著になるのである。 On the other hand, the polyimide thin film 4 with a thickness of 1 to 3 μm is to be left on one surface of the second copper foil CF2, taking solvent removal and resin flow occurring during drying and pressing into consideration. In addition, a copper foil 5 with a polyimide thin film having a thickness of about two to three times the intended thickness is manufactured. At this time, a thickness of about 2 to 3 times the final thickness is applied to one side of the second copper foil CF2 by electrolytic coating using a polyimide electrodeposition solution not containing the dielectric filler. Thus, a polyimide thin film 4 is formed. The polyimide thin film 4 functions as a binder at the time of bonding with the dielectric filler-containing polyimide film 2 described below. If the final polyimide thin film 4 after pressing is less than 1 m, it is difficult to sufficiently cover the uneven adhesive surface of the copper foil, and the thickness of the polyimide thin film 4 is 3 zm or more. In this case, since the polyimide thin film 4 itself does not contain a dielectric filler, the dielectric constant of the finally formed dielectric layer is significantly reduced.
以上のようにして得られた誘電体フィラー含有ポリイミドネ皮膜付銅箔 3とポリ ィミド薄膜付銅箔 5の、 誘電体フィラー含有ポリイミド被膜付銅箔 3の誘電体フ ィラー含有ポリイミド被膜 2と、 ポリイミド薄膜付銅箔 5のポリイミド薄膜 4と が当接するように向かい合わせて、 重ね合わせて積層することで第 1銅箔 C F 1 /誘電体フィラー含有ポリイミド誘電体層 6 /第 2銅箔 C F 2の層構成を備えた プリント配線板用のキャパシタ層形成用の銅張積層板が得られるのである。 更に、他の請求項には、 「第 1銅箔 Z誘電体フィラー含有ポリイミド誘電体層 Z 第 2銅箔の層構成を備えたプリント配線板用のキャパシタ層形成用の銅張積層板 の製造方法において、 第 1銅箔の表面に、 ニッケル若しくはコバルトの金属シ 一ド層を形成し、 当該金属シード層を形成した面に、 ポリイミド電着液と、 誘電 体フイラ一として平均粒径 Aが 0 . 0 5〜1 . O w mであり、 レーザー回折散 乱式粒度分布測定法による重量累積粒径 D 5 0が 0 . 1 ~ 2. 0 mであり、且つ、 重量累積粒径 D 5。と画像解析により得られる平均粒径 D I Aとを用いて D 5。ZD j Aで表される凝集度の値が 4 . 5以下である略球形の形状をしたぺロブスカイト 構造を持つ誘電体粉末とを混合した誘電体フィラー含有ポリィミド電着液を用い て、 電着塗装法で誘電体フィラー含有ポリイミド被膜を形成した誘電体フィラー 含有ポリイミド被膜付銅箔と、 第 2銅箔の片側表面にポリイミド薄膜を形成した ポリイミド薄膜付銅箔とを用いて、 前記誘電体フィラー含有ポリイミド被膜付銅 箔の誘電体層フイラ一含有ポリイミド被膜面と、 前記ポリイミド薄膜付銅箔のポ リイミド薄膜面とが当接するようにして重ね合わせて積層することを特徴とした 第 1銅箔 Z誘電体フィラー含有ポリイミド誘電体層 Z第 2銅箔の層構成を備えた プリント配線板のキャパシタ層形成用の銅張積層板の製造方法。」 としている。こ の製造方法のフローを図 2に模式的に示している。 Dielectric filler-containing polyimide film 2 of dielectric filler-containing polyimide film 3 of copper foil 3 with dielectric filler-containing polyimide film and polyimide thin film 5 obtained as described above, The first copper foil CF 1 / dielectric filler-containing polyimide dielectric layer 6 / second copper foil CF 2 Thus, a copper-clad laminate for forming a capacitor layer for a printed wiring board having the above layer configuration can be obtained. Further, in another claim, there is provided a method for manufacturing a copper-clad laminate for forming a capacitor layer for a printed wiring board having a layer structure of a first copper foil Z dielectric filler-containing polyimide dielectric layer Z second copper foil. In the method, a metal shield layer of nickel or cobalt is formed on the surface of the first copper foil, and the surface on which the metal seed layer is formed has a polyimide electrodeposition solution and an average particle size A as a dielectric filler. 0.0 5 to 1. an O wm, the weight-cumulative particle diameter D 5 0 by turbulent particle size distribution measuring method dispersion laser diffraction is 0. 1 ~ 2. 0 m, and a weight cumulative particle diameter D 5. dielectric powder having a perovskite structure in the form of substantially spherical values of cohesion represented by D 5 .ZD j a is 4.5 or less with an average particle diameter D IA obtained by an image analysis With a dielectric filler-containing polyimide electrodeposition solution mixed with Using a dielectric filler-containing polyimide coating-coated copper foil having a polyimide coating formed thereon, and a polyimide thin-film-forming copper foil having a polyimide thin film formed on one surface of a second copper foil, A first copper foil Z dielectric filler-containing polyimide dielectric, wherein the dielectric layer filler-containing polyimide coating surface and the polyimide thin film surface of the copper foil with the polyimide thin film are overlapped so as to be in contact with each other. Body Layer Z A method for producing a copper-clad laminate for forming a capacitor layer of a printed wiring board having a layer structure of second copper foil. " This FIG. 2 schematically shows the flow of the manufacturing method.
このプリント配線板のキャパシタ層形成用の銅張積層板の製造方法は、 先に説 明したプリント配線板のキャパシタ層形成用の銅張積層板の製造方法と基本的に 同様であるが、 次の点でのみ異なるのである。 第 1銅箔 C F 1の場合には誘電体 フィラー含有ポリイミド被膜 2の形成前に、 第 1銅箔 C F 1の表面に予め、 金属 シード層 Sを形成するのである。 そして、 同様に、 第 2銅箔 C F 2の場合にはポ リイミド薄膜 4の形成前に、 第 2銅箔 C F 2の表面に予め、 金属シード層 Sを形 成するのである。 この金属シード層 Sの形成方法は、 上述した金属材上への誘電 体フイラ一含有ポリイミド被膜の形成方法と同様であるため、 重複した記载を避 けるため、 ここでの説明は省略する。  The method of manufacturing the copper-clad laminate for forming the capacitor layer of the printed wiring board is basically the same as the method of manufacturing the copper-clad laminate for forming the capacitor layer of the printed wiring board described above. Only in that In the case of the first copper foil C F 1, the metal seed layer S is formed on the surface of the first copper foil C F 1 before the formation of the dielectric filler-containing polyimide film 2. Similarly, in the case of the second copper foil CF2, the metal seed layer S is formed on the surface of the second copper foil CF2 before forming the polyimide thin film 4. Since the method of forming the metal seed layer S is the same as the method of forming the dielectric film-containing polyimide coating on the metal material described above, redundant description is omitted to avoid duplication.
以上の製造方法で用いる第 1銅箔 C F 1及び第 2銅箔 C F 2の接着面は、 誘電 体層 6との接着に用いる面であり、 通常は誘電体層 6に食い込みアンカー効果を 発揮させるための凹凸を備えたものである。 図面中では、 微細な銅粒の付着した ものとして記載している。 キャパシタ層を構成する銅張積層板に用いる銅箔は、 誘電体層の厚さを均一に維持するため、 銅箔の粗化面は可能な限り平坦な製品を 用いることが好ましい。 従って、 ベリーロープ口ファイル (V L P ) 銅箔、 圧延 銅箔等を用いることが好ましい。 なお、 図面中に黒点として示しているのが誘電 体フイラ一 Fである。  The bonding surface of the first copper foil CF1 and the second copper foil CF2 used in the above manufacturing method is a surface used for bonding with the dielectric layer 6, and usually causes the dielectric layer 6 to exert an anchor effect. With irregularities for the purpose. In the drawing, it is described as having fine copper particles attached. The copper foil used for the copper-clad laminate constituting the capacitor layer preferably uses a product whose copper foil has a roughened surface as flat as possible in order to keep the thickness of the dielectric layer uniform. Therefore, it is preferable to use very rope mouth file (VLP) copper foil, rolled copper foil, or the like. The dielectric filler 1F is shown as a black dot in the drawing.
確かに、 上述した誘電体フィラ一含有ポリイミド被膜付銅箔の 2枚を用レ、て、 それぞれの誘電体フィラー含有ポリイミド被膜同士を重ねてプレスすることでも 銅張積層扳を製造することは可能である。 しかし、 以上に述べた銅張積層板の製 造方法を採用することで、 誘電体フィラーを含有する誘電体層が任意の厚さで、 均一な厚さとして製造することが可能となり、 極めて薄い誘電体層を形成するこ とが可能となったのである。 また、 本件発明に係る、 銅張積層板の誘電体層は、 誘電体フィラーが分散したポリイミド被膜であるため、 ポリイミド樹脂の特徴で ある高強度且つフレキシビティに富むため、誘電体層が脆化することが無くなり、 キャパシタ回路を形成する際のエッチング液シャワーによる損傷の発生を防止で きるものとなるのである。 図面の簡単な説明 Certainly, it is also possible to manufacture copper-clad laminate 用 by using two pieces of the above-mentioned copper foil with a dielectric filler-containing polyimide coating and overlaying and pressing each dielectric filler-containing polyimide coating. It is. However, by employing the above-described method of manufacturing a copper-clad laminate, the dielectric layer containing the dielectric filler can be manufactured to have an arbitrary thickness and a uniform thickness. It became possible to form a dielectric layer. In addition, the dielectric layer of the copper-clad laminate according to the present invention is a polyimide film in which a dielectric filler is dispersed, so that the dielectric layer is embrittled because of its high strength and flexibility characteristic of polyimide resin. This prevents the occurrence of damage due to the etchant shower when forming the capacitor circuit. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 プリント配線板のキャパシタ層形成用の銅張積層板の製造フローを表 す断面模式図である。 図 2は、 プリント配線板のキャパシタ層形成用の銅張積層 板の製造フローを表す断面模式図である。 図 3は、 プリント配線板のキャパシタ 層形成用の銅張積層板の光学顕微鏡観察像である。 発明を実施するための最良の形態  FIG. 1 is a schematic cross-sectional view illustrating a manufacturing flow of a copper-clad laminate for forming a capacitor layer of a printed wiring board. FIG. 2 is a schematic cross-sectional view illustrating a manufacturing flow of a copper-clad laminate for forming a capacitor layer of a printed wiring board. FIG. 3 is an optical microscope observation image of a copper-clad laminate for forming a capacitor layer of a printed wiring board. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 プリント配線板のキャパシタ層形成用の銅張積層板の製造を通して、 本件発明を説明する。 第 1実施形態: 本実施形態においては、 図 1に示した製造フローに従いプリン ト配線板のキャパシタ層形成用の銅張積層板 1を製造した。 本実施形態では、 第 1銅箔 C F 1として、 公称厚さ 3 5 /i mのべリーロープ口ファイル (V L P ) 銅 箔を用いた。  Hereinafter, the present invention will be described through the manufacture of a copper-clad laminate for forming a capacitor layer of a printed wiring board. First Embodiment In this embodiment, a copper-clad laminate 1 for forming a capacitor layer of a printed wiring board is manufactured according to the manufacturing flow shown in FIG. In the present embodiment, as the first copper foil C F 1, a belly rope mouth file (V L P) copper foil having a nominal thickness of 35 / im was used.
まず、 第 1銅箔 C F 1の表面に誘電体フィラー含有ポリイミド被膜 2を形成す る前に、 図 1 ( a— 1 ) の段階で、 第 1銅箔 C F 1の表面の清浄化を行うための 酸洗処理と、電解脱脂処理を行つた。酸洗処理は、第 1銅箔 C F 1を、液温 2 5 °C、 1 M濃度の硫酸溶液中に 1分間浸漬することにより行い、 水洗した。  First, before the dielectric filler-containing polyimide film 2 is formed on the surface of the first copper foil CF1, the surface of the first copper foil CF1 is cleaned at the stage of FIG. 1 (a-1). A pickling treatment and an electrolytic degreasing treatment were performed. The pickling treatment was performed by immersing the first copper foil C F 1 in a 1 M sulfuric acid solution at a liquid temperature of 25 ° C. for 1 minute, followed by washing with water.
そして、 続いて 2 0 g ZLの炭酸ナトリウム、 5 gZLのリン酸三ナトリウム のアル力リ脱脂水溶液を用いて、 これを液温 5 0 °Cとして、 電解電流 5 A/ d m 2で、 1分間の脱脂処理を行い、 水洗し、 乾燥した。  Then, using an aqueous solution of 20 g ZL sodium carbonate and 5 g ZL trisodium phosphate, the solution temperature was set to 50 ° C, and the electrolytic current was 5 A / dm2 for 1 minute. Was degreased, washed with water and dried.
次に、 誘電体フィラー含有ポリイミド電着液の調製に関して説明する。 本実施 形態では、 ポリイミド電着液に、 株式会社ピーアイ技術研究所製のポリイミド電 着液 Q— E D— 2 2 - 1 0にシクロへキサノンを 2 5 w t %添加して、 コロイド 粒径の調製を行つたものを用レヽた。  Next, preparation of a dielectric filler-containing polyimide electrodeposition solution will be described. In this embodiment, 25 wt% of cyclohexanone was added to the polyimide electrodeposition solution Q-ED-22-10 manufactured by PI Technology Laboratory Co., Ltd. to adjust the colloid particle size. Was used.
そして、 このポリイミド電着液中に、 以下に示す粉体特性を持つ誘電体フイラ 一 Fであるチタン酸バリウム粉を混合分散させた。 混合割合は、 チタン酸バリウ ムが、 上速の誘電体フィラー含有ポリイミド電着液のポリイミド固形分の 8 0 w t %となるようにした。 誘電体フィラーの粉体特性 Barium titanate powder, which is a dielectric filler F having the following powder properties, was mixed and dispersed in the polyimide electrodeposition solution. The mixing ratio was such that barium titanate was 80 wt% of the solid content of the polyimide in the high-speed dielectric filler-containing polyimide electrodeposition solution. Powder properties of dielectric filler
平均粒径 (DIA) 0. 25 μπχ Average particle size (D IA ) 0.25 μπχ
重量累積粒径 (D50) 0. 5 m Weight cumulative particle size (D 50 ) 0.5 m
凝集度 (D50/DIA) 2. 0 以上のようにして製造した誘電体フィラー含有ポリイミド電着液を用いて、 前 記第 1銅箔 CF 1の接着面に、 電着塗装法で誘電体フィラー含有ポリイミド被膜Using cohesion (D 50 / D IA) 2. 0 or more way dielectric filler-containing polyimide electrodeposition solution, prepared prior Symbol first bonding surface of the copper foil CF 1, dielectric in electrodeposition coating method Body containing polyimide coating
2を形成した。 このときの電着塗装条件は、 誘電体フィラー含有ポリイミド電着 液の液温を 25 °Cとし、 第 1銅箔 CF 1を陽極、 ステンレス板を陰極とし、 5V の直流電圧を印加して、 6分間電解することで、 ポリイミド樹脂と誘電体フィラ 一 Fとを同時に銅箔表面に電着させ、 約 8 μπι厚の誘電体フィラー含有ポリイミ ド被膜 2を形成し、 水洗したのである。 Formed two. The electrodeposition conditions at this time were as follows: the temperature of the dielectric filler-containing polyimide electrodeposition solution was 25 ° C, the first copper foil CF 1 was the anode, the stainless steel plate was the cathode, and a DC voltage of 5 V was applied. By performing electrolysis for 6 minutes, the polyimide resin and the dielectric filler F were simultaneously electrodeposited on the copper foil surface to form a dielectric filler-containing polyimide film 2 having a thickness of about 8 μπι, which was washed with water.
そして、 最終的に乾燥処理として、 120°Cの温度雰囲気中で 30分間保持し て、 更に当該雰囲気温度を 180°Cに昇温して 30分間保持することにより行つ' た。 このようにして、 図 1 (a— 2) に示したような、 誘電体フィラー含有ポリ ィミド被膜付銅箔 3を製造した。  Then, finally, as a drying treatment, the drying was carried out by holding the film in an atmosphere at a temperature of 120 ° C. for 30 minutes, and further raising the temperature of the atmosphere to 180 ° C. and holding it for 30 minutes. In this way, a copper foil 3 with a polyimide coating containing a dielectric filler as shown in FIG. 1 (a-2) was produced.
一方、 第 2銅箔 CF 2は、 第 1銅箔 CF 1と同じ銅箔を用い、 上述したと同様 に図 1 (b— 1) の段階で酸洗処理、 脱脂処理を行い水洗後乾燥させ、 その後、 上述した誘電体フィラーを含まないポリイミド電着液を用いて、 最終的に約 2〜 On the other hand, the second copper foil CF 2 is made of the same copper foil as the first copper foil CF 1, is subjected to the pickling treatment and the degreasing treatment at the stage of FIG. Then, using the above-mentioned polyimide electrodeposition solution containing no dielectric filler,
3 μ厚さとなるように、 10 μ m厚のポリイミド薄膜 4を接着面表面に形成した。 そして、 最終的な乾燥処理として、 上述したと同様の 120°Cの温度雰囲気中でA 10 μm-thick polyimide thin film 4 was formed on the surface of the bonding surface so as to have a thickness of 3 μm. Then, as a final drying process, in the same temperature atmosphere of 120 ° C as described above,
30分間保持して、 更に当該雰囲気温度を 180°Cに昇温して 30分間保持する ことにより行った。 このようにして、 図 1 (b— 2) に示したように、 ポリイミ ド薄膜付銅箔 5を製造した。 The temperature was maintained for 30 minutes, and the ambient temperature was further increased to 180 ° C. and the temperature was maintained for 30 minutes. Thus, as shown in FIG. 1 (b-2), a copper foil 5 with a polyimide thin film was manufactured.
以上のようにして得られた誘電体フィラー含有ポリィミド被膜付銅箔 3の誘電 体フィラー含有ポリイミド被膜層 2と、 ポリイミド薄膜付銅箔 5のポリイミド薄 膜 4とを、 図 1 (c) に示したように対向させ、 積層することで、 プリント配線 板のキャパシタ層形成用の銅張積層板 1を製造したのである。 このときの積層条 件は、 プレス圧 5 k g / c m2として、 プレス温度を、 最初 2 5 0 °Cの温度とし て 3 0分間加熱し、 3 0 0 °Cに昇温後 3 0分間保持するものとした。 The dielectric filler-containing polyimide coating layer 2 of the dielectric filler-containing polyimide coating-coated copper foil 3 and the polyimide thin film 4 of the polyimide foil-coated copper foil 5 obtained as described above are shown in FIG. 1 (c). As described above, the copper-clad laminate 1 for forming the capacitor layer of the printed wiring board was manufactured by facing and laminating. The laminated strip at this time The conditions were as follows: the press pressure was 5 kg / cm 2 , the press temperature was initially set to 250 ° C., the temperature was heated for 30 minutes, the temperature was raised to 300 ° C., and the temperature was maintained for 30 minutes.
このようにして得られたプリント配線板のキャパシタ層形成用の銅張積層板 1 の断面を光学顕微鏡で観察したのが図 3である。 このとき誘電体フィラー含有ポ リイミドネ皮膜層 2とポリイミド薄膜 4とが張り合わされて出来た誘電体層 6の厚 さは、 平均 1 0 M Hiであり、 図 3から明らかなように非常に均一な厚さを備えて いることが分かるのである。  FIG. 3 shows a cross section of the copper-clad laminate 1 for forming a capacitor layer of the printed wiring board thus obtained, which was observed with an optical microscope. At this time, the dielectric layer 6 formed by laminating the dielectric filler-containing polyimide film layer 2 and the polyimide thin film 4 has an average thickness of 10 M Hi, and as shown in FIG. You can see that it has a thickness.
上述のようにして製造した銅張積層板 1の両面の第 1銅箔 C F 1と第 2銅箔 C F 2を整面し、 その両面にドライフィルムを張り合わせて、 エッチングレジスト 層を形成した。 そして、 その両面のエッチングレジスト層に、 キャパシタ回路を 露光現像し、 エッチングパターンを形成した。 その後、 塩化銅エッチング液で回 路エッチングを行い、 エッチングレジスト剥離を行い、 キャパシタ回路を製造し た。 このエッチング時にエッチング液シャワー圧による誘電体層 6の破壊は起き おらず、 良好な状態のプリント配線板が得られた。  The first copper foil C F1 and the second copper foil C F2 on both surfaces of the copper-clad laminate 1 manufactured as described above were leveled, and a dry film was stuck on both surfaces to form an etching resist layer. Then, the capacitor circuit was exposed and developed on the etching resist layers on both sides to form an etching pattern. After that, circuit etching was performed with a copper chloride etching solution, and the etching resist was stripped to produce a capacitor circuit. During this etching, the dielectric layer 6 was not broken by the shower pressure of the etchant, and a printed wiring board in a good state was obtained.
そして、そのキャパシタ回路を構成した誘電体層 6の比誘電率を測定した結果、 ε = 2 4 . 7と非常に良好な値を示し、 電気容量の高いキャパシタが得られたこ とが分かった。 第 2実施形態: この実施形態では、 図 2に示した製造フ口一に従レ、プリント 配線板のキャパシタ層形成用の銅張積層板 1, を製造した。 本実施形態では、 第 1実施形態と同様に、 第 1銅箔 C F 1として、 公称厚さ 3 5 のべリーロープ 口ファイル (V L P ) 銅箔を用いた。  Then, as a result of measuring the relative permittivity of the dielectric layer 6 constituting the capacitor circuit, a very good value of ε = 24.7 was obtained, and it was found that a capacitor having a high capacitance was obtained. Second Embodiment In this embodiment, a copper clad laminate 1 for forming a capacitor layer of a printed wiring board was manufactured according to the manufacturing method shown in FIG. In the present embodiment, similarly to the first embodiment, a belly rope mouth file (VLP) copper foil having a nominal thickness of 35 was used as the first copper foil CF1.
まず、 図 2 ( a— 1 ) の段階で行う第 1銅箔 C F 1の酸洗処理、 脱脂処理まで の工程は、 第 1実施形態と同様であり、 脱脂処理が終了すると図 2 ( a— 2 ) に 示したようにニッケルの金属シード層 Sを設け、 その後図 2 ( a— 3 ) に示すよ うに第 1銅箔 C F 1の表面に誘電体フィラー含有ポリイミド被膜 2を形成し、 誘 電体フイラ一含有ポリイミド被膜付銅箔 3 ' としたのである。 このときの金属シ 一ド層 Sを設けて以降の誘電体フィラー含有ポリイミド被膜 2の形成も第 1実施 形態と同様である。 従って、 エッケルの金属シード層 sの形成方法に関してのみ説明する。 本実施 形態における金属シード層 Sの形成は、硫酸ニッケル '六水和物を 240 gZL、 塩化ニッケル .六水和物を 45 g/L、 ホウ酸を 30 gZL含むニッケルヮット 浴を用いて、 pH5、 液温 55°C、 電流密度 2 A/ dm2で 1秒間の電解で、 約First, the steps up to the pickling treatment and the degreasing treatment of the first copper foil CF1 performed in the stage of FIG. 2 (a-1) are the same as those of the first embodiment. 2) A nickel metal seed layer S was provided as shown in FIG. 2), and then a dielectric filler-containing polyimide coating 2 was formed on the surface of the first copper foil CF1 as shown in FIG. The body foil-containing copper foil with a polyimide coating 3 ′ was used. At this time, the formation of the dielectric filler-containing polyimide film 2 after the provision of the metal shield layer S is also the same as in the first embodiment. Therefore, only the method for forming the Eckel metal seed layer s will be described. The formation of the metal seed layer S in the present embodiment is performed using a nickel pet bath containing 240 g ZL of nickel sulfate hexahydrate, 45 g / L of nickel chloride hexahydrate, and 30 g ZL of boric acid, at pH 5, liquid temperature 55 ° C, in the electrolysis of 1 second at a current density of 2 a / dm 2, about
10 oAのニッケル層を金属シード層 sとして形成したのである。 The 10 oA nickel layer was formed as the metal seed layer s.
—方、 第 2銅箔 CF 2は、 第 1銅箔 CF 1と同じ銅箔を用い、 上述したと同様 に図 2 (b-1) の段階で酸洗処理、 脱脂処 を行い水洗後乾燥させ、 図 2 (b -2) に示したように金属シード層 Sを形成し、 その後、 上述した誘電体フイラ 一を含まないポリイミド電着液を用いて、 最終的に約 2〜3;ζπι厚さとなるよう に、 10 μ m厚のポリイミド薄膜 4を接着面表面に形成した。 そして、 最終的な 乾燥処理として、上述したと同様の 120°Cの温度雰囲気中で 30分間保持して、 更に当該雰囲気温度を 180°Cに昇温して 30分間保持することにより行った。 このようにして、 図 2 (b-3) に示したように、 ポリイミド薄膜付銅箔 5' を 製造した。  —The second copper foil CF2 uses the same copper foil as the first copper foil CF1, and performs pickling and degreasing at the stage of Fig. Then, a metal seed layer S is formed as shown in FIG. 2 (b-2), and thereafter, about 2-3; A 10 μm-thick polyimide thin film 4 was formed on the surface of the bonding surface so as to have a thickness. Then, the final drying treatment was performed by keeping the same temperature of 120 ° C. for 30 minutes as described above, and further raising the temperature of the atmosphere to 180 ° C. and holding for 30 minutes. In this way, as shown in FIG. 2 (b-3), a copper foil 5 ′ with a polyimide thin film was manufactured.
以上のようにして得られた誘電体フィラー含有ポリイミドネ皮膜付銅箔 3 ' の誘 電体フィラー含有ポリイミド被膜層 2と、 ポリイミド薄膜付銅箔 5, のポリイミ ド薄膜 4とを、 図 2 (c) に示したように対向させ、 積層することで、 プリント 配線板のキャパシタ層形成用の銅張積層板 1, を製造したのである。 このときの 積層条件は、 第 1実施形態と同様であるため、 重複した記載を避けるためここで の説明は省略する。  The dielectric filler-containing copper foil 3 ′ of the dielectric filler-containing polyimide film 3 ′ obtained as described above, and the polyimide thin film 4 of the copper foil 5 with the polyimide thin film 5 and the polyimide thin film 4 of FIG. As shown in c), by facing and laminating, a copper-clad laminate 1 for forming a capacitor layer of a printed wiring board was manufactured. The lamination conditions at this time are the same as those in the first embodiment, and thus description thereof will be omitted here to avoid redundant description.
このようにして得られたプリント配線板のキャパシタ層形成用の銅張積層板 Copper-clad laminate for forming a capacitor layer of a printed wiring board thus obtained
1' の断面を、 光学顕微鏡で観察すると、 金属シード層 sは非常に薄いため観察 は不可能であるため図 3に示したと同様の状態が観察できるのである。 従って、 この銅張積層板 1,の光学顕微鏡を用レ、た断面観察状態の掲載は省略する。但し、 本実施形態でも、 誘電体フィラ一含有ポリイミド被膜層 2とポリイミド薄膜 4と が張り合わされて出来た誘電体層 6の厚さは、 平均 9. 5 μ mであり、 非常に滑 らかで均一な厚さを備えていることが分かるのである。 When the cross section of 1 ′ is observed with an optical microscope, it is impossible to observe the metal seed layer s because it is extremely thin, so that the same state as shown in FIG. 3 can be observed. Accordingly, the use of an optical microscope for the copper-clad laminate 1 to omit a section observation state is omitted. However, also in this embodiment, the dielectric layer 6 formed by laminating the dielectric filler-containing polyimide coating layer 2 and the polyimide thin film 4 has an average thickness of 9.5 μm, which is very smooth. It can be seen that it has a uniform thickness.
上述のようにして製造した銅張積層板 1, の両面の第 1銅箔 CF 1と第 2銅箔 CF2を整面し、 その両面にドライフィルムを張り合わせて、 エッチングレジス ト層を开成した。 そして、 その両面のエッチングレジスト層に、 1 c m X 1 c m サイズのキャパシタ回路を露光現像し、エッチングパターンを形成した。その後、 塩化銅エッチング液で回路エッチングを行い、 エッチングレジスト剥離を行い、 キャパシタ回路を製造した。 このェツチング時にェッチング液シャヮー圧による 誘電体層 6の破壌は起きおらず、 良好な状態のプリント配線板が得られた。 The first copper foil CF1 and the second copper foil CF2 on both sides of the copper-clad laminate 1 manufactured as described above are leveled, and a dry film is stuck on both sides thereof. Layer was formed. A 1 cm × 1 cm capacitor circuit was exposed and developed on the etching resist layers on both sides to form an etching pattern. Thereafter, the circuit was etched with a copper chloride etchant, the etching resist was stripped, and a capacitor circuit was manufactured. During the etching, the dielectric layer 6 did not rupture due to the etching solution shear pressure, and a printed wiring board in a good state was obtained.
そして、そのキャパシタ回路を構成した誘電体層 6の比誘電率を測定した結果、 ε = 3 3 . 6と非常に良好な値を示し、 電気容量の高いキャパシタが得られたこ とが分かった。 産業上の利用可能性  Then, as a result of measuring the relative permittivity of the dielectric layer 6 constituting the capacitor circuit, a very good value of ε = 33.6 was obtained, and it was found that a capacitor having a high capacitance was obtained. Industrial applicability
本件発明に係る誘電体フィラー含有ポリイミド被膜を電着塗装法を用いて金属 材表面に形成する方法を用いることで、 薄くとも均一で滑らかな誘電体フィラー 含有ポリイミド被膜の形成が可能となり、 この層をキャパシタの誘電体層として 用いれば、 高い誘電率を達成することができ、 結果としてキャパシタとしての静 電容量の向上が図れることになり、 欠陥も少ないことから品質安定性が著しく向 上することになる。 また、 同様の技術的思想を応用して、 誘電体フィラー含有ポ リイミド被膜を誘電体層として用いる銅張積層板を製造することで、 プリント配 線板のキャパシタ層の構成材料として高品質のものを提供することが可能となる のである。  By using the method of forming the dielectric filler-containing polyimide coating according to the present invention on the surface of the metal material using the electrodeposition coating method, it is possible to form a thin, uniform and smooth dielectric filler-containing polyimide coating. When used as a dielectric layer of a capacitor, a high dielectric constant can be achieved, and as a result, the capacitance of the capacitor can be improved, and the quality stability can be significantly improved due to fewer defects. become. By applying the same technical concept to manufacture copper-clad laminates that use a dielectric filler-containing polyimide film as the dielectric layer, a high-quality component material for the capacitor layer of the printed wiring board can be obtained. Can be provided.

Claims

請 求 の 範 囲 The scope of the claims
1. ポリイミド電着液中に誘電体フィラーを含有させた誘電体フィラー含有ポ リイミド電着液を用いて電着塗装法で金属材表面に誘電体フィラー含有ポリィミ ドネ皮膜を形成する方法において、  1. A method for forming a dielectric filler-containing polyimide film on a metal material surface by an electrodeposition coating method using a dielectric filler-containing polyimide electrodeposition liquid in which a dielectric filler is contained in a polyimide electrodeposition liquid;
誘電体フィラーには、 平均粒径 Aが 0. 05〜1. 0/zmであって、 レーザ 一回折散乱式粒度分布測定法による重量累積粒径 D 50が 0. 1〜2. Ομηιであ り、且つ、重量累積粒径 D50と画像解析により得られる平均粒径 DIAとを用いて D 5。ZD t Aで表される凝集度の値が 4. 5以下である略球形の形状をしたべロブ スカイ ト構造を持つ誘電体粉末を用いることを特徴とする金属材表面への誘電体 フイラ一含有ポリイミド被膜の形成方法。 The dielectric filler, the average particle diameter A is from 0.05 to 1.0 / A zm, weight cumulative particle diameter D 50 by laser first diffraction scattering particle size distribution measuring method 0. 1~2. Ομηι Der Ri, and, D 5 with an average particle diameter D IA obtained by a weight cumulative particle diameter D 50 and the image analysis. A dielectric powder having a substantially spherically shaped perovskite structure having an agglomeration degree of 4.5 or less expressed by ZD t A; Method of forming containing polyimide coating.
2. ポリイミド電着液中に誘電体フィラーを含有させた誘電体フィラー含有ポ リイミド電着液を用いて電着塗装法で金属材表面に誘電体フィラー含有ポリィミ ドネ皮膜を形成する方法において、  2. A method for forming a dielectric filler-containing polyimide film on a metal material surface by an electrodeposition coating method using a dielectric filler-containing polyimide electrodeposition liquid in which a dielectric filler is contained in a polyimide electrodeposition liquid;
銅材の上に二ッケル若しくはコパルトの金属シード層を形成し、  Form a nickel seed or co-part metal seed layer on copper material,
当該金属シード層上に、誘電体フィラーとして、平均粒径 D が 0.05〜: L . 0 μπιであって、 レーザー回折散乱式粒度分布測定法による重量累積粒径 D 50が 0. ;!〜 2. 0 mであり、 且つ、重量累積粒径 D50と画像解析により得られる 平均粒径 Dr Aとを用いて D 5 o/D Aで表される凝集度の値が 4.5以下である略 球形の形状をしたぺロブスカイ ト構造を持つ誘電体粉末を含有した誘電体フイラ 一含有ポリイミド電着液を用いて電着塗装法で銅材表面へ誘電体フィラー含有ポ リイミド被膜を形成することを特徴とする金属材表面への誘電体フィラー含有ポ リイミド被膜の形成方法。 On the metal seed layer, a dielectric filler, the average particle diameter D of 0.05~:.! L 0 a Myupaiiota, 0. weight cumulative particle diameter D 50 by laser diffraction scattering particle size distribution measuring method; ~ 2 . 0 m, and and substantially the value of cohesion represented by D 5 o / D a with an average particle diameter D r a obtained by the weight-cumulative particle diameter D 50 and the image analysis is 4.5 or less A dielectric filler containing a dielectric powder having a perovskite structure with a spherical shape is used. A polyimide filler-containing polyimide electrodeposition solution is used to form a polyimide filler-containing polyimide film on a copper material surface by electrodeposition coating. Characteristic method for forming a dielectric filler-containing polyimide film on a metal material surface.
3. 誘電体フィラー含有ポリイミド電着液中の誘電体フィラーの含有量が、 5 0 g/L〜350 gZLである請求項 1又は請求項 2に記載の金属材表面への誘 電体フィラー含有ポリイミド被膜の形成方法。  3. The dielectric filler content on the surface of the metal material according to claim 1 or 2, wherein the content of the dielectric filler in the dielectric filler-containing polyimide electrodeposition liquid is 50 g / L to 350 gZL. A method for forming a polyimide film.
4. 誘電体フィラーが、 仮焼したチタン酸バリウム又は未仮焼のチタン酸バリ . ゥムである請求項 1〜請求項 3のいずれかに記載の金属材表面への誘電体フイラ 一含有ポリイミド被膜の形成方法。  4. The dielectric filler mono-containing polyimide on the surface of a metal material according to any one of claims 1 to 3, wherein the dielectric filler is calcined barium titanate or uncalcined barium titanate. The method of forming the coating.
5. 誘電体フィラーが、 立方晶のみ又は立方晶と正方晶との混合状態の結晶構 造を持つチタン酸パリゥムである請求項 1〜請求項 4のいずれかに記載の金属材 表面への誘電体フィラー含有ポリィミド被膜の形成方法。 5. The crystal structure of the dielectric filler is only cubic or a mixture of cubic and tetragonal. 5. The method for forming a polyimide film containing a dielectric filler on a surface of a metal material according to any one of claims 1 to 4, wherein the film is parium titanate having a structure.
6 . 第 1銅箔 Z誘電体フィラー含有ポリイミド誘電体層/第 2銅箔の層構成を 備えたプリント配線板用のキャパシタ層形成用の銅張積層板の製造方法において、 第 1銅箔の表面に、 ポリイミド電着液と、誘電体フィラーとして平均粒径 D I A が 0 . 0 5〜: L . 0 μ mであり、 レーザー回折散乱式粒度分布測定法による重量 累積粒径 D 5 0が 0 . 1〜 2 . 0 μ mであり、 且つ、 重量累積粒径 D 5。と画像解析 により得られる平均粒径 D! Aとを用いて D 5。ZD! Aで表される凝集度の値が 4 . 5以下である略球形の形状をしたべロプスカイト構造を持つ誘電体粉末とを混合 した誘電体フィラー含有ポリィミド電着液を用いて、 電着塗装法で誘電体フイラ 一含有ポリイミド被膜を形成した誘電体フィラ一含有ポリイミド被膜付銅箔と、 第 2銅箔の片側表面にポリイミド薄膜を形成したポリイミド薄膜付銅箔とを用 いて、 6. First copper foil In a method of manufacturing a copper-clad laminate for forming a capacitor layer for a printed wiring board having a layered structure of a Z dielectric filler-containing polyimide dielectric layer / second copper foil, on the surface, the polyimide electrodeposition solution, the average particle diameter D IA as a dielectric filler 0 0 5:.. a L 0 mu m, a weight cumulative particle diameter D 5 0 by a laser diffraction scattering particle size distribution measurement method from 0.1 to 2. a 0 mu m, and a weight cumulative particle diameter D 5. And average particle size D obtained by image analysis! A and D 5 . ZD! An electrodeposition coating method using a dielectric filler-containing polyimide electrodeposition liquid mixed with a dielectric powder having a substantially spherical shape and a perovskite structure having a cohesion value of 4.5 or less. Using a copper foil with a polyimide filler-containing polyimide coating formed with a dielectric filler-containing polyimide coating with a polyimide foil with a polyimide thin film formed on one surface of a second copper foil,
前記誘電体フィラ一含有ポリイミド被膜付銅箔の誘電体層フイラ一含有ポリィ ミド被膜面と、 前記ポリイミド薄膜付銅箔のポリイミド薄膜面とが当接するよう にして重ね合わせて積層することを特徴とした第 1銅箔 Z誘電体フィラー含有ポ リイミド誘電体層/第 2銅箔の層構成を備えたプリント配線板用のキャパシタ層 形成用の銅張積層板の製造方法。  It is characterized in that the dielectric filler-containing polyimide coating surface of the dielectric filler-containing polyimide coating copper foil and the polyimide thin film surface of the polyimide thin film-containing copper foil are overlapped and laminated so that they come into contact with each other. A method for producing a copper-clad laminate for forming a capacitor layer for a printed wiring board having a layered structure of the first copper foil Z dielectric filler-containing polyimide dielectric layer / second copper foil.
7 . 第 1銅箔/誘電体フィラー含有ポリイミド誘電体層/第 2銅箔の層構成を . 備えたプリント配線板用のキャパシタ層形成用の銅張積層板の製造方法において、 第 1銅箔の表面に、 ニッケル若しくはコバルトの金属シード層を形成し、 当該 金属シード層を形成した面に、 ポリイミド電着液と、 誘電体フィラーとして平均 粒径 D Aが 0 . 0 5〜: 1 . 0 μ mであり、 レーザー回折散乱式粒度分布測定法に よる重量累積粒径 D 5。が 0 . 1〜2 . Ο μ ηιであり、 且つ、 重量累積粒径 D 5。 と画像解析により得られる平均粒径 D r Aとを用いて D 5 oZD t Aで表される凝集 度の値が 4 . 5以下である略球形の形状をしたぺロブスカイト構造を持つ誘電体 粉末とを混合した誘電体フィラー含有ポリイミド電着液を用いて、 電着塗装法で 誘電体フィラー含有ポリイミド被膜を形成した誘電体フィラー含有ポリイミド被 膜付銅箔と、 第 2銅箔の片側表面にポリイミド薄膜を形成したポリイミド薄膜付銅箔とを用 いて、 7. The method for manufacturing a copper-clad laminate for forming a capacitor layer for a printed wiring board, comprising a layer structure of a first copper foil / a dielectric filler-containing polyimide dielectric layer / a second copper foil. on the surface of, a metal seed layer of nickel or cobalt, the surface forming the metal seed layer, and the polyimide electrodeposition solution, the average particle size D a as dielectric filler 0 0 5:.. 1 0 μm, and the cumulative weight particle size D 5 by a laser diffraction scattering particle size distribution measuring method. Is 0.1 to 2.Ομηι and the cumulative weight particle size D 5 . Dielectric powder having a D 5 OZD t values of cohesion represented by A is 4.5 or less perovskite structure in the form of substantially spherical is used the average particle diameter D r A obtained by image analysis and Using a dielectric filler-containing polyimide electrodeposition solution obtained by mixing a dielectric filler-containing polyimide coating with an electrodeposition coating method, Using a copper foil with a polyimide thin film having a polyimide thin film formed on one surface of the second copper foil,
前記誘電体フィラ一含有ポリイミド被膜付銅箔の誘電体層フイラ一含有ポリィ ミド被膜面と、 前記ポリイミド薄膜付銅箔のポリイミド薄膜面とが当接するよう にして重ね合わせて積層することを特徴とした第 1銅箔 Z誘電体フィラー含有ポ リイミド誘電体層/第 2銅箔の層構成を備えたプリント配線板のキャパシタ層形 成用の銅張積層板の製造方法。  It is characterized in that the dielectric filler-containing polyimide coating surface of the dielectric filler-containing polyimide coating copper foil and the polyimide thin film surface of the polyimide thin film-containing copper foil are overlapped and laminated so that they come into contact with each other. A method of manufacturing a copper-clad laminate for forming a capacitor layer of a printed wiring board having a layered structure of a first copper foil Z dielectric filler-containing polyimide dielectric layer / second copper foil.
8 . 誘電体フィラー含有ポリイミド電着液中の誘電体フィラーの含有量が、 5 0 g /L〜3 5 0 g / Lである請求項 6又は請求項 7に記載のプリント配線板の キャパシタ層形成用の銅張積層板の製造方法。  8. The capacitor layer of the printed wiring board according to claim 6 or 7, wherein the content of the dielectric filler in the dielectric filler-containing polyimide electrodeposition liquid is 50 g / L to 350 g / L. A method for producing a copper-clad laminate for forming.
9 . 誘電体フィラーが、 仮焼したチタン酸パリゥム又は未仮焼のチタン酸バリ ゥムである請求項 6〜請求項 8のいずれかに記載のプリント配線板のキャパシタ 層形成用の銅張積層板の製造方法。  9. The copper clad laminate for forming a capacitor layer of a printed wiring board according to any one of claims 6 to 8, wherein the dielectric filler is calcined parium titanate or uncalcined barrier titanate. Plate manufacturing method.
1 0 · 誘電体フィラ一が、 立方晶のみ又は立方晶と正方晶との混合状態の結晶 構造を持つチタン酸パリゥムである請求項 6〜請求項 9のいずれかに記載のプリ ント配線板のキャパシタ層形成用の銅張積層板の製造方法。  10.The printed wiring board according to any one of claims 6 to 9, wherein the dielectric filler is a palladium titanate having a crystal structure of a cubic crystal alone or a mixed state of a cubic crystal and a tetragonal crystal. A method for producing a copper-clad laminate for forming a capacitor layer.
1 1 . 請求項 6〜請求項 1 0に記載のプリント配線板のキャパシタ層形成用の 銅張積層板の製造方法で得られたプリント配線板のキャパシタ層形成用の銅張積  11. A copper-clad product for forming a capacitor layer of a printed wiring board obtained by the method for producing a copper-clad laminate for forming a capacitor layer of a printed wiring board according to any one of claims 6 to 10.
PCT/JP2003/008194 2002-06-28 2003-06-27 Method of forming polyimide coating containing dielectric filler on surface of metallic material, process for producing copper clad laminate for formation of capacitor layer for printed wiring board and copper clad laminate obtained by the process WO2004003259A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US10/518,030 US20050161149A1 (en) 2002-06-28 2003-06-27 Method of forming polymide coating containing dielectric filler on surface of metallic material process for producing copper clad laminate for formation of capacitor layer for printed wiring board and copper clad laminate obtained by the process

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002191517A JP4080799B2 (en) 2002-06-28 2002-06-28 Method for forming polyimide film containing dielectric filler on metal material surface, method for producing copper clad laminate for forming capacitor layer for printed wiring board, and copper clad laminate obtained by the method
JP2002-191517 2002-06-28

Publications (1)

Publication Number Publication Date
WO2004003259A1 true WO2004003259A1 (en) 2004-01-08

Family

ID=29996933

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/008194 WO2004003259A1 (en) 2002-06-28 2003-06-27 Method of forming polyimide coating containing dielectric filler on surface of metallic material, process for producing copper clad laminate for formation of capacitor layer for printed wiring board and copper clad laminate obtained by the process

Country Status (5)

Country Link
US (1) US20050161149A1 (en)
JP (1) JP4080799B2 (en)
CN (1) CN100357496C (en)
TW (1) TWI270580B (en)
WO (1) WO2004003259A1 (en)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7875347B2 (en) 2003-12-29 2011-01-25 General Electric Company Composite coatings for groundwall insulation, method of manufacture thereof and articles derived therefrom
DE102005026203B4 (en) * 2005-06-07 2007-08-09 Siemens Ag Capacitor with variable capacitance, method of manufacturing the capacitor and use of the capacitor
US7465497B2 (en) * 2005-11-23 2008-12-16 General Electric Company High dielectric constant nanocomposites, methods of manufacture thereof, and articles comprising the same
US7741396B2 (en) * 2005-11-23 2010-06-22 General Electric Company Composites having tunable dielectric constants, methods of manufacture thereof, and articles comprising the same
US7923497B2 (en) 2005-11-23 2011-04-12 General Electric Company Antiferroelectric polymer composites, methods of manufacture thereof, and articles comprising the same
US7989530B2 (en) * 2005-11-23 2011-08-02 General Electric Company Nonlinear polymer composites and methods of making the same
JP4827011B2 (en) * 2006-03-10 2011-11-30 Tdk株式会社 Ceramic powder, dielectric paste using the same, multilayer ceramic electronic component, and manufacturing method thereof
CN100440388C (en) * 2006-09-01 2008-12-03 天津理工大学 Producing ABO3 type perrovskite structure double oxide ion conductor by laser fusion synthetic method
US20090156715A1 (en) * 2007-12-14 2009-06-18 Thomas Eugene Dueber Epoxy compositions comprising at least one elastomer and methods relating thereto
US8247484B2 (en) * 2008-06-12 2012-08-21 General Electric Company High temperature polymer composites and methods of making the same
US20090309259A1 (en) * 2008-06-12 2009-12-17 General Electric Company High temperature polymer composites comprising antiferroelectric particles and methods of making the same
US9390857B2 (en) * 2008-09-30 2016-07-12 General Electric Company Film capacitor
JP5385625B2 (en) * 2008-12-08 2014-01-08 株式会社Jcu Two-layer flexible copper-clad laminate and method for producing the same
US20100240804A1 (en) * 2009-03-17 2010-09-23 General Electric Company In-situ polymerized nanocomposites
WO2013170052A1 (en) 2012-05-09 2013-11-14 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
DK2251453T3 (en) 2009-05-13 2014-07-07 Sio2 Medical Products Inc container Holder
US7985188B2 (en) 2009-05-13 2011-07-26 Cv Holdings Llc Vessel, coating, inspection and processing apparatus
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US11624115B2 (en) 2010-05-12 2023-04-11 Sio2 Medical Products, Inc. Syringe with PECVD lubrication
US9878101B2 (en) 2010-11-12 2018-01-30 Sio2 Medical Products, Inc. Cyclic olefin polymer vessels and vessel coating methods
US9272095B2 (en) 2011-04-01 2016-03-01 Sio2 Medical Products, Inc. Vessels, contact surfaces, and coating and inspection apparatus and methods
AU2012318242A1 (en) 2011-11-11 2013-05-30 Sio2 Medical Products, Inc. Passivation, pH protective or lubricity coating for pharmaceutical package, coating process and apparatus
US11116695B2 (en) 2011-11-11 2021-09-14 Sio2 Medical Products, Inc. Blood sample collection tube
US9664626B2 (en) 2012-11-01 2017-05-30 Sio2 Medical Products, Inc. Coating inspection method
WO2014078666A1 (en) 2012-11-16 2014-05-22 Sio2 Medical Products, Inc. Method and apparatus for detecting rapid barrier coating integrity characteristics
WO2014085348A2 (en) 2012-11-30 2014-06-05 Sio2 Medical Products, Inc. Controlling the uniformity of pecvd deposition on medical syringes, cartridges, and the like
US9764093B2 (en) 2012-11-30 2017-09-19 Sio2 Medical Products, Inc. Controlling the uniformity of PECVD deposition
EP2961858B1 (en) 2013-03-01 2022-09-07 Si02 Medical Products, Inc. Coated syringe.
EP2971228B1 (en) 2013-03-11 2023-06-21 Si02 Medical Products, Inc. Coated packaging
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
US9863042B2 (en) 2013-03-15 2018-01-09 Sio2 Medical Products, Inc. PECVD lubricity vessel coating, coating process and apparatus providing different power levels in two phases
EP3693493A1 (en) 2014-03-28 2020-08-12 SiO2 Medical Products, Inc. Antistatic coatings for plastic vessels
BR112018003051B1 (en) 2015-08-18 2022-12-06 Sio2 Medical Products, Inc VACUUM BLOOD COLLECTION TUBE
WO2017154167A1 (en) * 2016-03-10 2017-09-14 三井金属鉱業株式会社 Multilayer laminate plate and production method for multilayered printed wiring board using same
US20180097322A1 (en) * 2016-09-30 2018-04-05 Faraday&Future Inc. Flexible bus bar
US10964476B2 (en) 2018-12-27 2021-03-30 Industrial Technology Research Institute Capacitor with multiple dielectric layers having dielectric powder and polyimide
TWI725538B (en) * 2019-09-04 2021-04-21 台燿科技股份有限公司 Metal-clad laminate, printed circuit board, and method for manufacturing the same
CN114381782B (en) * 2021-12-29 2022-10-21 江苏诺德新材料股份有限公司 Environment-friendly high-Tg low-dielectric copper-clad plate and preparation process thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356653A (en) * 2001-05-30 2002-12-13 Jsr Corp Electrodepositing water dispersion, high dielectric constant film and electronic part

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5322976A (en) * 1987-02-24 1994-06-21 Polyonics Corporation Process for forming polyimide-metal laminates
EP0663417B1 (en) * 1993-08-03 2000-03-29 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Polyimide laminate comprising thermoplastic polyimide polymer or thermoplastic polyimide film, and process for producing the laminate
DE69832444T2 (en) * 1997-09-11 2006-08-03 E.I. Dupont De Nemours And Co., Wilmington Flexible polyimide film with high dielectric constant
JP3391268B2 (en) * 1998-01-20 2003-03-31 株式会社村田製作所 Dielectric ceramic and its manufacturing method, and multilayer ceramic electronic component and its manufacturing method
JP4265048B2 (en) * 1999-10-06 2009-05-20 Jsr株式会社 Aqueous dispersion for electrodeposition, high dielectric constant film and electronic component
US6657849B1 (en) * 2000-08-24 2003-12-02 Oak-Mitsui, Inc. Formation of an embedded capacitor plane using a thin dielectric

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002356653A (en) * 2001-05-30 2002-12-13 Jsr Corp Electrodepositing water dispersion, high dielectric constant film and electronic part

Also Published As

Publication number Publication date
CN1665966A (en) 2005-09-07
JP2004035917A (en) 2004-02-05
JP4080799B2 (en) 2008-04-23
TW200402481A (en) 2004-02-16
CN100357496C (en) 2007-12-26
US20050161149A1 (en) 2005-07-28
TWI270580B (en) 2007-01-11

Similar Documents

Publication Publication Date Title
WO2004003259A1 (en) Method of forming polyimide coating containing dielectric filler on surface of metallic material, process for producing copper clad laminate for formation of capacitor layer for printed wiring board and copper clad laminate obtained by the process
TWI711584B (en) MXene particle material, slurry, secondary battery, transparent electrode, manufacturing method of MXene particle material
JPWO2004040604A1 (en) Copper foil with dielectric layer for forming capacitor layer, copper clad laminate for forming capacitor layer using copper foil with dielectric layer, and method for producing copper foil with dielectric layer for forming capacitor layer
JP2003292733A (en) Resin containing dielectric filler for forming built-in capacitor layer of printed circuit board, double-side copper clad laminated board having dielectric layer formed by using the resin, and method for producing the laminated board
KR100988298B1 (en) Conductive powder and process for producing the same, conductive powder paste, and process for producing the conductive powder paste
TWI568523B (en) Copper powder, copper paste, conductive film manufacturing method and conductive coating
KR102050124B1 (en) Ultrathin flake-type silver powder and manufacturing method therefor
US6632265B1 (en) Nickel powder, method for preparation thereof and conductive paste
JP4178374B2 (en) Silver coated flake copper powder, method for producing the silver coated flake copper powder, and conductive paste using the silver coated flake copper powder
JP4144695B2 (en) Two-layer coated copper powder, method for producing the two-layer coated copper powder, and conductive paste using the two-layer coated copper powder
JP2010135140A (en) Flaky metal fine powder of conductive paint, and manufacturing method thereof
JP4144694B2 (en) Tin-coated copper powder, method for producing the tin-coated copper powder, and conductive paste using the tin-coated copper powder
JP4227373B2 (en) Flake copper powder and copper paste using the flake copper powder
JP2005101398A (en) Copper foil with silver coating layer and copper clad laminate using it
JP2004200556A (en) Withstand voltage test roll for laminated material for capacitor, and method of measuring withstand voltage using the same
JP2007197836A (en) Nickel powder
JP2015084301A (en) Conductive sheet and method for manufacturing conductive sheet
JP2005187914A (en) Smoothing heat treatment method for polyimide resin film formed by electrodeposition coating method, polyimide resin film subjected to the smoothing heat treatment, and flexible copper-clad laminate using the polyimide resin film as insulative layer
JP2004050809A (en) Double-sided copper clad laminate and its manufacturing process
TW201619401A (en) Copper powder
JP2006131978A (en) SPHERICAL NiP FINE PARTICLE, METHOD FOR PRODUCING THE SAME AND ELECTRICALLY CONDUCTIVE PARTICLE FOR ANISOTROPIC ELECTRICALLY CONDUCTIVE FILM
JP2012045470A (en) Method of manufacturing conductive coating film, and conductive coating film
JP2012174375A (en) Method for producing conductive coating film and conductive coating film
JP3948243B2 (en) Method for producing nickel powder for internal electrode of multilayer ceramic capacitor and nickel paste
TWI541305B (en) Copper powder and the use of its copper paste, conductive paint, conductive film

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

WWE Wipo information: entry into national phase

Ref document number: 10518030

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020047021084

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 20038152487

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047021084

Country of ref document: KR