JP3948243B2 - Method for producing nickel powder for internal electrode of multilayer ceramic capacitor and nickel paste - Google Patents

Method for producing nickel powder for internal electrode of multilayer ceramic capacitor and nickel paste Download PDF

Info

Publication number
JP3948243B2
JP3948243B2 JP2001324701A JP2001324701A JP3948243B2 JP 3948243 B2 JP3948243 B2 JP 3948243B2 JP 2001324701 A JP2001324701 A JP 2001324701A JP 2001324701 A JP2001324701 A JP 2001324701A JP 3948243 B2 JP3948243 B2 JP 3948243B2
Authority
JP
Japan
Prior art keywords
nickel
nickel powder
ceramic capacitor
multilayer ceramic
paste
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001324701A
Other languages
Japanese (ja)
Other versions
JP2003129107A (en
Inventor
洋孝 高橋
匡邦 納谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2001324701A priority Critical patent/JP3948243B2/en
Publication of JP2003129107A publication Critical patent/JP2003129107A/en
Application granted granted Critical
Publication of JP3948243B2 publication Critical patent/JP3948243B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Powder Metallurgy (AREA)
  • Ceramic Capacitors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、積層セラミックコンデンサー(以下、MLCCともいう。)の内部電極用ニッケル粉に関し、特に、表面状態の均一なMLCC内部電極用ニッケル粉の製造方法、及び当該方法により得られるMLCC内部電極用ニッケルペーストに関する。
【0002】
【従来の技術】
MLCC内部電極用金属ペーストに供せられるニッケル粉の特性を評価する指標としてレーザー光散乱法による粒度分布が広く用いられている。この測定においては、多くの場合、超音波分散機等を用いて水中にニッケル粉を分散させた後、測定に供されるが、ニッケル粉の場合は、時折その電子顕微鏡観察結果とはかけ離れた粒度分布の測定結果を示すことがある。
【0003】
例えば、ニッケル塩を水素還元して得られるニッケル粉や、ニッケル粉に焼結防止のための有機物を被覆したのち窒素水素気流中で加熱処理し、その後解砕して得られるニッケル粉では、電子顕微鏡での観察で焼結による凝集は殆ど見られないにも関わらず、このニッケル粉を水分散させたスラリーのレーザー光散乱法による粒度分布測定結果は電子顕微鏡から求めた粒径の数倍もの大きさを示す場合がある。
【0004】
電子顕微鏡により観察される粒径とレーザー光散乱法による粒度分布の値に隔たりがあるのは珍しいことではないが、電子顕微鏡によりはるかに大きい粒径が観察される他のニッケル粉に比べても、著しく粒度分布が大粒径側にシフトしているような場合は、やはりニッケル粉の性質に起因する測定値の差異と推定される。
【0005】
このようなニッケル粉を用いてMLCC内部電極用ペーストを作成し印刷すると、ペーストシステムによってはその乾燥膜密度が低くなり、それを焼成して得られる電極の連続性も低下する場合があった。この場合、電子顕微鏡観察上は単分散しているように見えるニッケル粒子であっても、ペースト中で凝集体を形成しているものと解釈される。
【0006】
ここで、乾燥膜密度とはニッケルペーストをPETフィルム上にアプリケータを用いて100μmの厚さに塗布し、90℃で180分間乾燥させた膜について厚み、面積および重量から乾燥膜密度を求めた密度である。
【0007】
乾燥膜密度が低くなると、積層セラミックコンデンサー作製工程において焼結される際に、その収縮量が増大するため、誘電体シートの収縮挙動とのミスマッチが大きくなり、それが積層セラミックコンデンサー素体のクラック発生の原因となる。また、ニッケル粒子間の空隙が多いため、ニッケル粒子が焼結の進行に伴って再配列しやすくなりその結果、最終的に得られる電極面の連続性が悪化し、そのため積層セラミックコンデンサーの静電容量低下や容量抜けが発生しやすくなる。
【0008】
【発明が解決しようとする課題】
本発明は、ニッケル粒子表面の不均一を解消し、分散媒との親和性に劣る部分同士が凝集することなくペースト分散性に優れたニッケル粉を得て、乾燥膜密度の高いニッケルペーストを得ることを課題とする。
【0009】
【課題を解決するための手段】
本発明の積層セラミックコンデンサー内部電極用ニッケル粉の製造方法は、SEM写真から測定した粒径が0.1〜1.0μmのニッケル粉に水を加え、ニッケル粉の粒子表面に存在する有機物皮膜および/または酸化物皮膜が剥離するまで、湿式粉砕機を用いてニッケル粉の粒子表面の湿式研磨処理を行う
【0010】
さらに、X線光電子分光法(XPS)を用いた表面層の解析によるニッケル粉の粒子表面のニッケルの存在形態全て水酸化ニッケルとすることが望ましい。前記湿式粉砕機として、湿式ジェットミルまたは高速分散機を用いることが望ましい
【0011】
本発明の積層セラミックコンデンサー内部電極用ニッケルペーストは、前記の何れかの方法で得られたニッケル粉を使用し、乾燥膜密度が5.0g/cm3以上である。前記乾燥膜密度が5.2g/cm 3 を超えることが望ましい
本発明の積層セラミックコンデンサー内部電極用ニッケル粉は、X線光電子分光法(XPS)を用いた表面層の解析において金属ニッケルに起因するピークが存在せず、ニッケル粉の粒子表面のニッケルの存在形態が、全て水酸化ニッケルである。
【0012】
【発明の実施の形態】
本発明者らは、上記粒度分布の測定時に分散媒に十分に分散されない現象や、ペースト中での凝集に起因すると思われる現象が、ニッケル粒子表面の性状によるものと考え、検討を重ねた結果、上記のような問題を有するニッケル粉のXPSによるニッケル粒子表面のニッケルの存在状態が特異的であることを見出した。すなわち、ニッケル粒子表面のXPSによる解析により粒子表面層に金属ニッケルのピークが観察されるという特異点を有していることが判明したのである。ここで、ニッケル粒子の表面に全く酸化されていない金属ニッケルが露出しているとは考えにくいので、この解析結果から非常に薄い酸化物皮膜、あるいは残存有機物皮膜に覆われた部分が存在すると推定解釈されるが、いずれにせよニッケル粒子表面が不均一な状態であることは間違いない事実である。
【0013】
この粒子表面の不均一が、ニッケル粒子表面と分散媒あるいはペースト溶剤との親和性に不均一を生じさせ、不均一な部分のうち分散媒との親和性に劣る部分同士が凝集することによって安定化することが、ニッケル粒子が十分に分散されなかったり、凝集したりするような上記不具合の原因と推定されるのである。
【0014】
そこで、本発明者らは、ニッケル粉の粒子表面に存在する有機物皮膜や酸化物皮膜を水中で物理的に剥離させ、水中の溶存酸素により薄く均一な酸化物皮膜を形成させることとした。
【0015】
表面剥離のためには、スラリーをマイクロフルイダイザーやナノマイザーのように硬質のプレートに衝突させる方法や、TKフィルミックス(特殊機化工業)のように高速で器壁に押し付けられながら旋回させる方法、あるいはビーズミル、ボールミルやその改良型の湿式粉砕機を用いることが出来るが、その効率、効果の点から、高圧で圧送されるスラリーを2流路に分岐し、左右対称に配置された加圧ノズルの左右入り口から中央部に加速しながら導入し、中央部において対向衝突させる方式の湿式ジェットミルがより好ましい。
【0016】
上記に挙げたような湿式粉砕機を用いて、ニッケル粉の粒子表面を水中で研磨させると、ニッケル粉の粒子表面の不均一な酸化物や、有機物が剥離し、金属ニッケルの新生表面が現れるが、水中の溶存酸素によってこれらは速やかに酸化し、均一な水酸化物皮膜を形成する。XPSによる解析の結果によれば、このような処理により水酸化ニッケルだけが検出される状態となる。ここで、湿式粉砕機による表面均一化処理が適用されるニッケル粉は、ニッケル塩を水素還元する等のいわゆる乾式還元法で得たものが望ましい。乾燥の有無は問わない。
【0017】
湿式粉砕機で、均一な膜を形成するためには、ニッケル粒子にかかる圧力や、処理回数が最適化される必要がある。圧力、回数が少ないと、粒子表面の不均一な酸化物皮膜や有機物皮膜が完全に剥離されないため、粒子表面が均一とはならない。その最適条件は、処理されるニッケル粒子や粉砕装置によって異なるが、例えば、上記の湿式ジェットミルの場合、2000気圧で5〜20回が好ましい。
【0018】
こうして得られたニッケル粉を水に分散して粒度分布を測定すると、D50、D90の値ともに大幅に小粒径側にシフトしていることが確認された。ここで、D50、D90は、累積粒度分布と粒度との関係で、累積粒度がそれぞれ50、90質量%となる粒径をいう。
【0019】
SEM観察により求められる粒径は上記の表面均一化処理を施す前後において全く変化していないことから、粒度分布の大幅な変化は、粒子表面が均一に水酸化ニッケル(Ni(OH)2)の膜に覆われ、表面状態の不均一が解消されたことによるものと考えられる。
【0020】
表面均一化処理されたニッケル粉は、粒子の表面状態が均一になっていて、その親和性は水に対して非常に良好になっている。MLCC内部電極用ペーストに使われる溶剤は主として極性の弱い有機溶媒が用いられるため、一見するとペースト分散の点では不利のように思われるが、実際にペースト化し、印刷するとその乾燥膜密度は10%程度向上しており、その結果、積層セラミックコンデンサー(MLCC)としたときに得られる静電容量値は10%程度向上する。
【0021】
これは、均一な親水性表面を有するニッケル粉は、ペーストに一般的に添加される親水性表面を親油性に変える界面活性剤により均一に親油化するため、分散状態が改善され、乾燥膜中におけるニッケル粒子の充填度も改善され、それゆえ、焼成時の焼結に伴う収縮とそれに起因する電極途切れも抑制され、有効な電極面積が増加する結果、静電容量が大きくなるものと思われる。
【0022】
【実施例】
以下に実施例を記す。
【0023】
(実施例1)
ニッケル粉として住友金属鉱山株式会社製SNP−YH6を用いた。該ニッケル粉をSEM写真に撮り、該写真において2本の対角線を引き、この対角線に接した全てのニッケル粒子についてその寸法を測定したところ、その平均値は0.4μmであった。
【0024】
該ニッケル粉を水に投入し、通常の攪拌機を用いて懸濁させた。この懸濁したニッケル粉を湿式ジェットミル(スギノマシン株式会社 アルティマイザー)で2000気圧で加圧し5回対向衝突させることで粒子表面の均一化処理を行った。
【0025】
均一化処理後にニッケル粉を常圧濾過し、100℃で真空乾燥することで、粒子表面が均一化されたニッケル粉を得た。得られたニッケル粉の粒子表面におけるNiの存在状態をXPSで観察したところ、Ni(OH)2に起因するピークのみが検出された。これを図1(均一化処理後)示す。
【0026】
得られたニッケル粉をターピネオールとエチルセルロースと混合し、3本ロールミルを用いてペースト化し、これをアプリケータを用いてPETフィルム上に乾燥厚みで50μmに印刷し、90℃で180分乾燥させ、厚みを測定し(約50μm)、切断機を用いて所定の寸法(1cm2)に切断しその重量(PETフィルムを除く)と乾燥膜の体積から乾燥膜密度を算出した。このときの乾燥膜密度は5.5g/cm3であった。
【0027】
また、前記均一化処理済みニッケル粉を0.2%ヘキサメタリン酸溶液に超音波分散し、マイクロトラックFRA(日機装株式会社製)を用いて、粒度分布を測定した。このときのD10は0.48μm、D50値は0.75μm、D90値は1.10μmであった。この結果を図3に示す。
【0028】
比較例1(図2)で示すように均一化処理前のD10は0.88μm、D50は1.44μm、D90は2.59μmであったから、均一化処理後のD50、D90の値ともに大幅に小粒径側にシフトしていることが確認された。
【0029】
前記均一化処理済みニッケル粉を用いて積層セラミックコンデンサーチップ(電極膜厚み1.5μm、0.8μm)を作成した。電極膜厚み1.5μmの時は均一化処理前のニッケル粉(比較例1)を用いたときの102%の静電容量となったので、均一化処理の有無で静電容量に変化は無いと推定された。なお、電極膜厚みを0.8μmとしたときには、均一化処理前のニッケル粉(比較例1)を用いたときの静電容量は1.5μmに対して60%に低下したのに対し、均一化処理後のニッケル粉を用いたときの静電容量は1.5μmに対して75%に保たれていることが確認された。これに関し、次のように考察された。膜厚0.8μmのときは、表面均一化処理によりペースト中のニッケル粒子の分散状態が改善され、塗布時に粒子が充填しやすくなる。その結果、ペーストを乾燥したときの膜の密度、すなわち、乾燥密度が高くなり、従って、焼成時の焼結収縮が小さくなり、電極の途切れが起こりにくくなる。その結果、電極の面積低下が抑制され、MLCCの容量低下が抑制される。
【0030】
(実施例2)
実施例1において湿式ジェットミルによる対向衝突回数を2回とした以外は同様にして処理を行った。XPSによる表面解析の結果、粒子表面のNiの存在状態としては大部分がNi(OH)2に起因するものであったが、わずかに金属Niに起因するピークが残っていた。マイクロトラックによる粒度分布測定の結果はD50が0.85μm、D90が1.3μmであった。乾燥膜密度は5.2 g/cm3であった。なお、0.8μm電極厚みでの静電容量は電極膜厚み1.5μmのときの66%であった。
【0031】
(実施例3)
実施例1においてアルティマイザーのかわりにナノマイザーを用いて、10回処理を行った。XPSによる表面解析の結果、粒子表面のニッケルの存在状態としては、全てNi(OH)2に起因するものであった。マイクロトラックによる粒度分布測定の結果はD50が0.8μm、D90が1.4μmであった。乾燥膜密度は5.1 g/cm3であった。
【0032】
(実施例4)
実施例1においてアルティマイザーのかわりにTKフィルミックス(特殊機化工業)を用いて、容量2リットルの容器内において1000RPMで懸濁液を攪拌し、粒子と器壁の摩擦により表面の研磨を行った。処理回数は容器内滞留時間10秒としこれを8回繰り返した。XPSによる表面解析の結果、表面のNiの存在状態としてはNi(OH)2に起因するピークのみが見られた。マイクロトラックによる粒度分布測定の結果はD50が0.72μm、D90が1.21μmであった。乾燥膜密度は5.5 g/cm3であった。
【0033】
(実施例5)
実施例1においてアルティマイザーの代わりに、ビーズミル(浅田鉄工製)(ジルコニアボール径2mm)を使用し、液の滞留時間30秒で15回処理を行った。XPSによる表面解析の結果、粒子表面のニッケルの存在状態としては全てNi(OH)2に起因するものであった。マイクロトラックによる粒度分布測定の結果はD50が0.80μm、D90が1.6μmであった。乾燥膜密度は5.1 g/cm3であった。
【0034】
(比較例1)
実施例1において通常の攪拌機を用いて懸濁させたニッケル粉(SEM粒径0.4μm)を常圧濾過し、100℃で真空乾燥することでニッケル粉を得た。得られたニッケル粉の粒子表面におけるNiの存在状態をXPSで観察したところ、水酸化ニッケル(Ni(OH)2)に起因するピークのほか、酸化ニッケル(NiO)に起因するピークおよび金属ニッケルに起因するピークも検出された。これを図1(均一化処理前)示す
【0035】
前記ニッケル粉をターピネオールとエチルセルロースと混合し、3本ロールミルを用いてペースト化し、これをアプリケータを用いてPETフィルム上に乾燥厚みで50μmに印刷し、90℃で180分乾燥させ、厚みを測定し(約50μm)、切断機を用いて所定の寸法(1cm2)に切断しその重量(PETフィルムを除く)と乾燥膜の体積から乾燥膜密度を算出した。このときの乾燥膜密度は4.8g/cm3であった。
【0036】
前記ニッケル粉を0.2%ヘキサメタリン酸溶液に超音波分散し、マイクロトラックFRA(日機装株式会社製)を用いて、粒度分布を測定した。このときのD50は1.44μm、D90は2.59μmであった(図2)。
【0037】
前記ニッケル粉を用いて積層セラミックコンデンサーチップを作製した(電極厚み1.5μm、0.8μm)。0.8μmの電極厚みでは1.5μm時の60%にまで静電容量が低下した。
【0038】
(比較例2)
実施例1において用いた住友金属鉱山製ニッケル粉SNP−YH6(SEM粒径0.4μm)を乾式のカウンタージェットミル(ホソカワミクロン100AFG)で処理した。前記ニッケル粉を0.2%ヘキサメタリン酸溶液に超音波分散し、マイクロトラックFRA(日機装株式会社製)を用いて、粒度分布を測定した。D50は1.1μm、D90は1.8μmであった。
【0039】
前記ニッケル粉をターピネオールとエチルセルロースと混合し、3本ロールミルを用いてペースト化し、これをアプリケータを用いてPETフィルム上に乾燥厚みで50μmに印刷し、90℃で180分乾燥させ、厚みを測定し(約50μm)、切断機を用いて所定の寸法(1cm2)に切断しその重量(PETフィルムを除く)と乾燥膜の体積から乾燥膜密度を算出した。このときの乾燥膜密度は4.8g/cm3であった。
【0041】
前記ニッケル粉を用いて積層セラミックコンデンサーチップを作製した(電極厚み1.5μm、0.8μm)。0.8μmの電極厚みでは1.5μm時の60%にまで静電容量が低下した。
【0042】
【発明の効果】
本発明は以上のように構成されているので、ニッケル粉の粒子表面の不均一を解消し、ペースト分散性に優れたニッケル粉が得られ、乾燥膜密度の高い積層セラミックコンデンサーに適したニッケルペーストを得ることができる。
【図面の簡単な説明】
【図1】 表面均一化処理を行ったニッケル粉(実施例1)と、表面均一化処理を行わないニッケル粉(比較例1)のXPS観察のグラフである。
【図2】 均一化処理前のニッケル粉(比較例1)のマイクロトラックFRAによる粒度分布を示すグラフである。
【図3】 表面均一化処理を行ったニッケル粉(実施例1)のマイクロトラックFRAによる粒度分布を示すグラフである。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nickel powder for internal electrodes of a multilayer ceramic capacitor (hereinafter also referred to as MLCC), and in particular, a method for producing nickel powder for MLCC internal electrodes having a uniform surface state, and an MLCC internal electrode obtained by the method. It relates to nickel paste.
[0002]
[Prior art]
A particle size distribution by a laser light scattering method is widely used as an index for evaluating the characteristics of nickel powder used for the metal paste for MLCC internal electrodes. In this measurement, in many cases, nickel powder is dispersed in water using an ultrasonic disperser, etc., and then subjected to measurement. However, in the case of nickel powder, it is sometimes far from the electron microscope observation result. The measurement result of particle size distribution may be shown.
[0003]
For example, nickel powder obtained by hydrogen reduction of nickel salt, or nickel powder obtained by coating nickel powder with an organic substance to prevent sintering, heat treatment in a nitrogen-hydrogen stream, and then crushing, The particle size distribution measured by the laser light scattering method of the slurry in which this nickel powder is dispersed in water is several times the particle size obtained from the electron microscope, despite the fact that there is almost no aggregation due to sintering. May indicate size.
[0004]
It is not unusual that there is a gap between the particle size observed by the electron microscope and the particle size distribution by the laser light scattering method, but even compared to other nickel powders where a much larger particle size is observed by the electron microscope. In the case where the particle size distribution is significantly shifted to the large particle size side, it is presumed that the difference in the measured value is attributed to the properties of the nickel powder.
[0005]
When a paste for MLCC internal electrodes is prepared and printed using such nickel powder, the dry film density is lowered depending on the paste system, and the continuity of the electrode obtained by firing the paste may be lowered. In this case, even nickel particles that appear to be monodispersed under electron microscope observation are interpreted as forming aggregates in the paste.
[0006]
Here, the dry film density was obtained by applying a nickel paste on a PET film to a thickness of 100 μm using an applicator and drying the film at 90 ° C. for 180 minutes from the thickness, area and weight. Density.
[0007]
When the dry film density is low, the amount of shrinkage increases when sintered in the multilayer ceramic capacitor manufacturing process, and therefore the mismatch with the shrinkage behavior of the dielectric sheet increases, which is a crack in the multilayer ceramic capacitor body. Causes the occurrence. In addition, since there are many voids between the nickel particles, the nickel particles are easily rearranged as the sintering progresses, and as a result, the continuity of the finally obtained electrode surface is deteriorated. Capacitance drop and capacity loss are likely to occur.
[0008]
[Problems to be solved by the invention]
The present invention eliminates non-uniformity on the surface of nickel particles and obtains nickel powder having excellent paste dispersibility without agglomeration of inferior parts with a dispersion medium, thereby obtaining a nickel paste having a high dry film density. This is the issue.
[0009]
[Means for Solving the Problems]
The method for producing a nickel powder for an internal electrode of a multilayer ceramic capacitor according to the present invention comprises adding water to a nickel powder having a particle size of 0.1 to 1.0 μm measured from an SEM photograph , Until the oxide film is peeled off, wet polishing is performed on the surface of the nickel powder particles using a wet pulverizer .
[0010]
Further, it is desirable that all nickel hydroxide existence form of nickel on the particle surface of the nickel powder by the analysis of the surface layer using X-ray photoelectron spectroscopy (XPS). It is desirable to use a wet jet mill or a high-speed disperser as the wet pulverizer .
[0011]
The nickel paste for a multilayer ceramic capacitor internal electrode of the present invention uses the nickel powder obtained by any of the above methods, and has a dry film density of 5.0 g / cm 3 or more . It is desirable that the dry film density exceeds 5.2 g / cm 3 .
Multilayer ceramic capacitor internal electrode the nickel powder of the present invention, there is no peak attributed to Oite metallic nickel on the analysis of the surface layer using X-ray photoelectron spectroscopy (XPS), the particle surfaces of the nickel powder Nickel All existing forms are nickel hydroxide.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present inventors considered that the phenomenon of not being sufficiently dispersed in the dispersion medium during the measurement of the particle size distribution and the phenomenon considered to be caused by aggregation in the paste are due to the properties of the nickel particle surface, and the results of repeated studies The present inventors have found that the presence state of nickel on the surface of nickel particles by XPS of nickel powder having the above problems is specific. That is, it was found that the nickel particle surface has a peculiar point that a nickel nickel peak is observed in the particle surface layer by analysis by XPS. Here, it is unlikely that metallic nickel that is not oxidized at all is exposed on the surface of the nickel particles, and it is estimated from this analysis result that there is a very thin oxide film or a portion covered with a residual organic film. It is interpreted that there is no doubt that the surface of the nickel particles is non-uniform anyway.
[0013]
This non-uniformity of the particle surface causes non-uniformity in the affinity between the surface of the nickel particle and the dispersion medium or paste solvent, and the non-uniform parts are stabilized by agglomeration of inferior parts with the dispersion medium. This is presumed to be the cause of the above-mentioned problem that nickel particles are not sufficiently dispersed or agglomerated.
[0014]
Accordingly, the present inventors, the organic substances film or oxide film present on the particle surfaces of the nickel powder physically detached in water, it was decided to form a thin uniform water oxide film by water of dissolved oxygen.
[0015]
For surface peeling, a method of causing the slurry to collide with a hard plate such as a microfluidizer or a nanomizer, a method of rotating while being pressed against the wall at a high speed, such as a TK film mix (Special Machine Industries), Alternatively, a bead mill, a ball mill or an improved wet pulverizer can be used. From the viewpoint of efficiency and effectiveness, the slurry fed under high pressure is divided into two channels, and the pressure nozzles are arranged symmetrically. A wet jet mill of a type that is introduced while accelerating from the left and right entrances to the central portion and collides oppositely in the central portion is more preferable.
[0016]
When the surface of nickel powder particles is polished in water using a wet pulverizer as mentioned above, non-uniform oxides and organic substances on the particle surface of nickel powder are peeled off and a new surface of metallic nickel appears. but it was rapidly oxidized by water dissolved oxygen, to form a uniform hydroxides skin membrane. According to the analysis result by XPS, only nickel hydroxide is detected by such processing. Here, the nickel powder to which the surface homogenization treatment by a wet pulverizer is applied is preferably obtained by a so-called dry reduction method such as hydrogen reduction of a nickel salt. It does not matter whether or not it is dried.
[0017]
In order to form a uniform film with a wet pulverizer, the pressure applied to the nickel particles and the number of treatments need to be optimized. When the pressure and number of times are small, the uneven oxide film or organic film on the particle surface is not completely peeled off, and the particle surface is not uniform. The optimum conditions vary depending on the nickel particles to be treated and the pulverizer, but for example, in the case of the above-described wet jet mill, 5 to 20 times at 2000 atmospheric pressure is preferable.
[0018]
When the thus obtained nickel powder was dispersed in water and the particle size distribution was measured, it was confirmed that both the values of D50 and D90 were significantly shifted to the small particle size side. Here, D50 and D90 are the particle sizes at which the cumulative particle size is 50 and 90% by mass, respectively, due to the relationship between the cumulative particle size distribution and the particle size.
[0019]
Since the particle size required by SEM observation does not change at all before and after the surface homogenization treatment, a large change in the particle size distribution is caused by the uniform surface of the nickel hydroxide (Ni (OH) 2 ). This is considered to be due to the fact that the unevenness of the surface state was solved by being covered with the film.
[0020]
The nickel powder subjected to the surface homogenization treatment has a uniform surface state of particles, and the affinity for water is very good. The solvent used for the MLCC internal electrode paste is mainly a weakly polar organic solvent, so it seems disadvantageous in terms of paste dispersion at first glance, but when it is actually pasted and printed, its dry film density is 10%. As a result, the capacitance value obtained by using a multilayer ceramic capacitor (MLCC) is improved by about 10%.
[0021]
This is because the nickel powder having a uniform hydrophilic surface is uniformly oleophilic by a surfactant that changes the hydrophilic surface generally added to the paste to oleophilic, so the dispersion state is improved and the dried film The filling degree of nickel particles in the inside is also improved. Therefore, the shrinkage and sintering caused by sintering during sintering are suppressed, and the effective electrode area increases, resulting in an increase in capacitance. It is.
[0022]
【Example】
Examples will be described below.
[0023]
Example 1
SNP-YH6 manufactured by Sumitomo Metal Mining Co., Ltd. was used as the nickel powder. The nickel powder was taken in an SEM photograph, two diagonal lines were drawn in the photograph, and the dimensions of all the nickel particles in contact with the diagonal line were measured. The average value was 0.4 μm.
[0024]
The nickel powder was put into water and suspended using a normal stirrer. The suspended nickel powder was pressurized at 2000 atmospheres with a wet jet mill (Sugino Machine Co., Ltd., optimizer), and the particles were made to collide with each other five times, thereby homogenizing the particle surface.
[0025]
After the homogenization treatment, the nickel powder was filtered at atmospheric pressure and vacuum dried at 100 ° C. to obtain a nickel powder having a uniform particle surface. When the presence state of Ni on the particle surface of the obtained nickel powder was observed by XPS, only the peak due to Ni (OH) 2 was detected. This is shown in FIG. 1 (after homogenization).
[0026]
The obtained nickel powder was mixed with terpineol and ethyl cellulose, made into a paste using a three-roll mill, printed on a PET film with a dry thickness of 50 μm using an applicator, dried at 90 ° C. for 180 minutes, Was measured (about 50 μm), cut into a predetermined dimension (1 cm 2 ) using a cutting machine, and the dry film density was calculated from the weight (excluding the PET film) and the volume of the dry film. The dry film density at this time was 5.5 g / cm 3 .
[0027]
The homogenized nickel powder was ultrasonically dispersed in a 0.2% hexametaphosphoric acid solution, and the particle size distribution was measured using Microtrac FRA (Nikkiso Co., Ltd.). At this time, D10 was 0.48 μm, D50 value was 0.75 μm, and D90 value was 1.10 μm. The result is shown in FIG.
[0028]
As shown in Comparative Example 1 (FIG. 2), D10 before the homogenization treatment was 0.88 μm, D50 was 1.44 μm, and D90 was 2.59 μm. Therefore, both the values of D50 and D90 after the homogenization treatment were greatly increased. It was confirmed that it shifted to the small particle size side.
[0029]
A multilayer ceramic capacitor chip (electrode film thickness: 1.5 μm, 0.8 μm) was prepared using the homogenized nickel powder. When the electrode film thickness was 1.5 μm, the capacitance was 102% when the nickel powder before the homogenization treatment (Comparative Example 1) was used, so there was no change in the capacitance with or without the homogenization treatment. It was estimated. When the thickness of the electrode film was 0.8 μm, the electrostatic capacity when using nickel powder before the homogenization treatment (Comparative Example 1) was reduced to 60% with respect to 1.5 μm. It was confirmed that the electrostatic capacity when using the nickel powder after the chemical treatment was maintained at 75% with respect to 1.5 μm. This was considered as follows. When the film thickness is 0.8 μm, the dispersion state of the nickel particles in the paste is improved by the surface homogenization treatment, and the particles are easily filled during coating. As a result, the density of the film when the paste is dried, that is, the dry density is increased, and therefore, the shrinkage of sintering during firing is reduced, and the electrode is less likely to be interrupted. As a result, the electrode area reduction is suppressed, and the MLCC capacity reduction is suppressed.
[0030]
(Example 2)
In Example 1, the treatment was performed in the same manner except that the number of opposing collisions by the wet jet mill was set to two. As a result of the surface analysis by XPS, the presence of Ni on the particle surface was mostly due to Ni (OH) 2 , but a slight peak due to metal Ni remained. As a result of the particle size distribution measurement by Microtrac, D50 was 0.85 μm and D90 was 1.3 μm. The dry film density was 5.2 g / cm 3 . The capacitance at the 0.8 μm electrode thickness was 66% when the electrode film thickness was 1.5 μm.
[0031]
(Example 3)
In Example 1, the treatment was performed 10 times using a nanomizer instead of the optimizer. As a result of the XPS surface analysis, the presence of nickel on the particle surface was all attributable to Ni (OH) 2 . As a result of the particle size distribution measurement by Microtrac, D50 was 0.8 μm and D90 was 1.4 μm. The dry film density was 5.1 g / cm 3 .
[0032]
Example 4
In Example 1, instead of the optimizer, the suspension was stirred at 1000 RPM in a 2 liter container using TK fill mix (Special Machine Industries), and the surface was polished by friction between the particles and the vessel wall. It was. The number of treatments was 10 seconds in the container, and this was repeated 8 times. As a result of XPS surface analysis, only the peak due to Ni (OH) 2 was observed as the state of Ni on the surface. As a result of the particle size distribution measurement by Microtrac, D50 was 0.72 μm and D90 was 1.21 μm. The dry film density was 5.5 g / cm 3 .
[0033]
(Example 5)
In Example 1, a bead mill (manufactured by Asada Teiko) (zirconia ball diameter: 2 mm) was used instead of the optimizer, and the treatment was performed 15 times with a liquid residence time of 30 seconds. As a result of the XPS surface analysis, the presence of nickel on the particle surface was all attributable to Ni (OH) 2 . As a result of the particle size distribution measurement by Microtrac, D50 was 0.80 μm and D90 was 1.6 μm. The dry film density was 5.1 g / cm 3 .
[0034]
(Comparative Example 1)
The nickel powder (SEM particle size 0.4 μm) suspended in Example 1 using an ordinary stirrer was filtered under normal pressure and vacuum dried at 100 ° C. to obtain nickel powder. When the presence state of Ni on the particle surface of the obtained nickel powder was observed by XPS, in addition to the peak attributed to nickel hydroxide (Ni (OH) 2 ), the peak attributed to nickel oxide (NiO) and metallic nickel The resulting peak was also detected. This is shown in Figure 1 (uniformization process before).
[0035]
The nickel powder is mixed with terpineol and ethyl cellulose, made into a paste using a three-roll mill, this is printed on a PET film with a dry thickness of 50 μm using an applicator, dried at 90 ° C. for 180 minutes, and the thickness is measured. Then, it was cut into a predetermined size (1 cm 2 ) using a cutting machine, and the dry film density was calculated from the weight (excluding the PET film) and the dry film volume. The dry film density at this time was 4.8 g / cm 3 .
[0036]
The nickel powder was ultrasonically dispersed in a 0.2% hexametaphosphoric acid solution, and the particle size distribution was measured using Microtrac FRA (Nikkiso Co., Ltd.). At this time, D50 was 1.44 μm and D90 was 2.59 μm (FIG. 2).
[0037]
A multilayer ceramic capacitor chip was produced using the nickel powder (electrode thickness 1.5 μm, 0.8 μm). With an electrode thickness of 0.8 μm, the capacitance decreased to 60% at 1.5 μm.
[0038]
(Comparative Example 2)
The nickel powder SNP-YH6 (SEM particle size 0.4 μm) manufactured by Sumitomo Metal Mining used in Example 1 was treated with a dry counter jet mill (Hosokawa Micron 100 AFG). The nickel powder was ultrasonically dispersed in a 0.2% hexametaphosphoric acid solution, and the particle size distribution was measured using Microtrac FRA (Nikkiso Co., Ltd.). D50 was 1.1 μm and D90 was 1.8 μm.
[0039]
The nickel powder is mixed with terpineol and ethyl cellulose, made into a paste using a three-roll mill, this is printed on a PET film with a dry thickness of 50 μm using an applicator, dried at 90 ° C. for 180 minutes, and the thickness is measured. Then, it was cut into a predetermined size (1 cm 2 ) using a cutting machine, and the dry film density was calculated from the weight (excluding the PET film) and the dry film volume. The dry film density at this time was 4.8 g / cm 3 .
[0041]
A multilayer ceramic capacitor chip was produced using the nickel powder (electrode thickness 1.5 μm, 0.8 μm). With an electrode thickness of 0.8 μm, the capacitance decreased to 60% at 1.5 μm.
[0042]
【The invention's effect】
Since the present invention is configured as described above, the nickel paste is suitable for multilayer ceramic capacitors with high dry film density, which can eliminate the non-uniformity of the nickel powder particle surface and can obtain nickel powder with excellent paste dispersibility. Can be obtained.
[Brief description of the drawings]
FIG. 1 is a graph of XPS observation of nickel powder (Example 1) subjected to surface homogenization treatment and nickel powder (Comparative Example 1) not subjected to surface homogenization treatment.
FIG. 2 is a graph showing a particle size distribution by Microtrac FRA of nickel powder (Comparative Example 1) before homogenization treatment.
FIG. 3 is a graph showing the particle size distribution by microtrack FRA of nickel powder (Example 1) subjected to surface homogenization treatment.

Claims (6)

SEM写真から測定した粒径が0.1〜1.0μmのニッケル粉に水を加え、ニッケル粉の粒子表面に存在する有機物皮膜および/または酸化物皮膜が剥離するまで、湿式粉砕機を用いてニッケル粉の粒子表面の湿式研磨処理を行うことを特徴とする積層セラミックコンデンサー内部電極用ニッケル粉の製造方法。  Using a wet pulverizer until water is added to the nickel powder having a particle size of 0.1 to 1.0 μm measured from the SEM photograph and the organic film and / or oxide film present on the surface of the nickel powder particle is peeled off. A method for producing nickel powder for an internal electrode of a multilayer ceramic capacitor, characterized by performing wet polishing on the surface of the nickel powder particles. X線光電子分光法(XPS)を用いた表面層の解析によるニッケル粉の粒子表面のニッケルの存在形態を全て水酸化ニッケルとすることを特徴とする請求項1に記載の積層セラミックコンデンサー内部電極用ニッケル粉の製造方法。2. The multilayer ceramic capacitor internal electrode according to claim 1, wherein the presence of nickel on the surface of the nickel powder particles is nickel hydroxide by analyzing the surface layer using X-ray photoelectron spectroscopy (XPS). 3 . Method for producing nickel powder. 前記湿式粉砕機として、湿式ジェットミルまたは高速分散機を用いる請求項1または2に記載の積層セラミックコンデンサー内部電極用ニッケル粉の製造方法。  The manufacturing method of the nickel powder for multilayer ceramic capacitor internal electrodes of Claim 1 or 2 which uses a wet jet mill or a high-speed disperser as said wet crusher. 請求項1〜3の何れかに記載の方法で得られたニッケル粉を使用し、乾燥膜密度が5.0g/cm3以上である積層セラミックコンデンサー内部電極用ニッケルペースト。A nickel paste for an internal electrode of a multilayer ceramic capacitor, which uses the nickel powder obtained by the method according to claim 1 and has a dry film density of 5.0 g / cm 3 or more. 前記乾燥膜密度が5.2g/cm3を超える請求項4に記載の積層セラミックコンデンサー内部電極用ニッケルペースト。The nickel paste for a multilayer ceramic capacitor internal electrode according to claim 4, wherein the dry film density exceeds 5.2 g / cm 3 . X線光電子分光法(XPS)を用いた表面層の解析において金属ニッケルに起因するピークが存在せず、ニッケル粉の粒子表面のニッケルの存在形態が、全て水酸化ニッケルである積層セラミックコンデンサー内部電極用ニッケル粉。X-ray photoelectron spectroscopy is absent peaks due to Oite metallic nickel on the analysis of the surface layer using (XPS), the laminated ceramic capacitor existence form of nickel on the particle surface of the nickel powder, are all nickel hydroxide Nickel powder for internal electrodes.
JP2001324701A 2001-10-23 2001-10-23 Method for producing nickel powder for internal electrode of multilayer ceramic capacitor and nickel paste Expired - Lifetime JP3948243B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001324701A JP3948243B2 (en) 2001-10-23 2001-10-23 Method for producing nickel powder for internal electrode of multilayer ceramic capacitor and nickel paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001324701A JP3948243B2 (en) 2001-10-23 2001-10-23 Method for producing nickel powder for internal electrode of multilayer ceramic capacitor and nickel paste

Publications (2)

Publication Number Publication Date
JP2003129107A JP2003129107A (en) 2003-05-08
JP3948243B2 true JP3948243B2 (en) 2007-07-25

Family

ID=19141384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001324701A Expired - Lifetime JP3948243B2 (en) 2001-10-23 2001-10-23 Method for producing nickel powder for internal electrode of multilayer ceramic capacitor and nickel paste

Country Status (1)

Country Link
JP (1) JP3948243B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4635445B2 (en) * 2004-02-02 2011-02-23 パナソニック株式会社 Method for producing aqueous nickel electrode ink, aqueous nickel electrode ink produced thereby, and method for producing multilayer ceramic capacitor using the same

Also Published As

Publication number Publication date
JP2003129107A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
EP2796231B1 (en) Spherical silver powder and method for producing same
TWI580741B (en) Inkjet ink, printing method and manufacturing method of ceramic electronic parts
US20060137488A1 (en) Copper flake powder, method for producing copper flake powder, and conductive paste using copper flake powder
TWI286331B (en) Method production of peeling layer paste and method of production of a multilayer type electronic device
TW202026246A (en) MXene particulate material, slurry, secondary battery, transparent electrode, and method for producing MXene particulate material
JP2004035917A (en) Method of forming dielectric filler-containing polyimide film on metal material surface, method of producing copper clad laminate for forming capacitor layer of printed circuit board and copper clad lamiante obtained thereby
SI20069A (en) Dispersible, metal oxide-coated, barium titanate materials
JP2006063441A (en) Ultrafine metal powder slurry
JP2011228106A (en) Method for manufacturing conductive paste
KR100480866B1 (en) Nickel powder, method for preparation thereof and conductive paste
JP5323461B2 (en) Fine metal powder for conductive paint and method for producing the same
CN1313842A (en) Barium titanate dispersions
WO2019117234A1 (en) Spherical silver powder
KR20060090935A (en) A manufacturing process of conductive composition and a manufacturing process of conductive paste
WO2022024520A1 (en) Ptfe powder, method for producing electrode, and electrode
JP3948243B2 (en) Method for producing nickel powder for internal electrode of multilayer ceramic capacitor and nickel paste
WO2021181887A1 (en) Method for producing electrode and electrode mixture
JP4859362B2 (en) Flake nickel powder, method for producing the same, and conductive paste
JP4244583B2 (en) Conductive paste, method for producing conductive paste, and multilayer ceramic electronic component
JPH07330337A (en) Dispersion of electro-conductive fine powder and its production
JP2020050947A (en) Easily crushable copper powder and method for producing the same
JP5018542B2 (en) Plate-like nickel powder, plate-like nickel powder organic slurry, production method thereof, and conductive paste using them
KR20100015792A (en) Method for producing liquid dispersion of solid fine particle, method for producing electrode and method for manufacturing electric double layer capacitor
JP3979344B2 (en) Dispersed aqueous solution and dispersed organic solvent of nickel powder, method for producing them, and conductive paste using them
JP2017199672A (en) Nickel paste and method for producing nickel paste

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20020115

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20020115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070327

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070409

R150 Certificate of patent or registration of utility model

Ref document number: 3948243

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100427

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110427

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120427

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130427

Year of fee payment: 6

EXPY Cancellation because of completion of term