WO2003106975A1 - Gas detection device - Google Patents

Gas detection device Download PDF

Info

Publication number
WO2003106975A1
WO2003106975A1 PCT/JP2003/006472 JP0306472W WO03106975A1 WO 2003106975 A1 WO2003106975 A1 WO 2003106975A1 JP 0306472 W JP0306472 W JP 0306472W WO 03106975 A1 WO03106975 A1 WO 03106975A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
sensor
detection device
test
inspection
Prior art date
Application number
PCT/JP2003/006472
Other languages
French (fr)
Japanese (ja)
Inventor
井本 努
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to AU2003242433A priority Critical patent/AU2003242433A1/en
Priority to US10/515,280 priority patent/US7216527B2/en
Publication of WO2003106975A1 publication Critical patent/WO2003106975A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • G01N1/24Suction devices
    • G01N2001/247Syringes

Definitions

  • the present invention relates to a portable gas detection device capable of detecting a specific component in an atmosphere to identify, for example, an odor.
  • FIG. 14 is a configuration diagram of a conventional odor discriminating device 31.
  • gas from the outside world is taken in from the intake port 36, is sent to the exhaust port 37 by the pump 33 through the sensor 34 installed in the path of the pipe 38, and is also discharged. And returned to the atmosphere.
  • an electric signal corresponding to the type and concentration of the odor contained in the introduced gas is extracted from the sensor 34, and the data processing device 35 identifies the odor and measures the concentration.
  • FIG. 15 is a schematic external view of a conventional odor discriminating device 31 configured as described above.
  • the sensor 34, the data processing device 35, the pump 33, etc. in FIG. 14 are built, and the intake port 36 at the tip of the sample probe protruding from the main body 32 is connected.
  • the surrounding gas taken as zero gas (reference gas) 4 2 and the test gas (inspection gas) 43 contained in the test gas container 44 are taken into the sensor 34 alternately to detect the odor in the test gas. The type and concentration are measured.
  • the odor component adheres to the sensor 34, and the zero level of the sensor 34 gradually changes from the initial state, making it impossible to perform an accurate measurement. 3 4 zero
  • the bell is adjusted.
  • the operation of the odor identification device is performed by operating the measurement start button 41, and the measured value is displayed on the meter 40.
  • the conventional odor discriminating apparatus 31 analyzes odors by detecting physical changes or chemical changes that occur when odor constituent molecules are adsorbed on the sensor material.
  • adsorbents are applied to the surface of a crystal oscillator, and the mass change that occurs when odor molecules are adsorbed to the adsorbent is determined by the change in the frequency of the crystal oscillator. Since the types of chemical substances that can be easily adsorbed differ depending on the nature of the odor molecules, for example, the polarity, the odor can be measured by measuring how much mass change has occurred in which adsorbent. It is possible to estimate the types and amounts of the constituent odor molecules.
  • Adsorption of odor molecules can be detected not only as a change in mass but also as a change in electrical resistance or a change in light absorption wavelength, and various sensors using such a method have been proposed. For example, sensors that use a change in electric resistance when odor molecules are adsorbed to a conductive polymer or a composite material in which conductive particles are dispersed in an insulating polymer have been put into practical use.
  • a sensor signal vibration frequency for a crystal oscillator type, electrical resistance value for a cheoresistor type, or optical type.
  • relative change is mainly used instead of the absolute value of light absorption wavelength. Since such a relative change is measured as a signal intensity difference between a reference gas (zero gas) containing no odor and a test gas (test gas) containing the odor to be measured, For odor identification, it is necessary to measure both the zero gas and the test gas signals.
  • the odor discriminator 31 shown in Fig. 15 first measure the outside air such as room air as zero gas, and then insert the inlet 36 into a container 44 such as a flask containing a sample. Then, the odor is identified by measuring the odor of the sample.
  • the odor identification device when the odor is identified by the odor identification device, it is necessary to measure both the test gas and the mouth gas, and the odor of the substance entering the container by the odor identification device 31 in FIG. 15 is determined.
  • the relative change in the sensor signal is obtained by inserting the inlet 36 into the container as the test gas and setting the inlet 36 out of the container as the zero gas. Can be measured, and the odor in the container can be identified.
  • Japanese Patent Application Laid-Open No. 9-250979 discloses an odor discriminating apparatus using a zero gas container. However, it is not intended to discriminate the odor of the atmosphere. Similarly, the test gas is also introduced from a container connected to the device, and is not intended to be carried to identify the smell of the atmosphere. In addition, the piping for switching between zero gas and test gas is complicated, and switching is cumbersome, so it seems difficult to construct a size suitable for carrying.
  • Japanese Patent Application Laid-Open No. Hei 9-304424 discloses an odor discriminating apparatus that purifies the outside air and uses it as a zero gas so that the odor of the atmosphere can be discriminated.
  • portability and odor identification in the atmosphere are being considered here, the measurement and purification of outside air are performed by switching valves, so The structure is complicated and switching is troublesome, so it seems difficult to construct a size that can be incorporated into a small household mouth pot.
  • Japanese Patent Application Laid-Open No. 2000-155017 discloses an odor discriminating device using a zero gas container together, and qualitatively or quantitatively determines a sample gas based on a detection signal regarding the sample gas and a detection signal regarding the zero gas.
  • the zero gas container is not built-in, the suction and discharge of gas is performed by a pump, so the intake and discharge volume varies, which is accompanied by noise, and the purpose is to measure the smell of the atmosphere while carrying it. is not.
  • the structure is complicated and it is necessary to switch the valve, so operability is lacking, and it is difficult to construct a portable size.
  • Some conventional odor discriminating devices use a fan-diaphragm pump to draw in gas. Because of their large external dimensions and high noise during operation, they are not necessarily suitable for use in portable or small pots that can be used in homes where quietness is required. .
  • an object of the present invention is to accurately measure a specific component (smell, etc.) contained in the ambient gas to be measured, and to be compact and easy to be constructed in a mobile manner, or to have low noise and small size.
  • An object of the present invention is to provide a gas detection device which can be used for gasification. Disclosure of the invention
  • the present invention provides a gas detection device that alternately introduces a reference gas and a test gas into a sensor in a housing, and detects a specific component in the test gas.
  • a supply source for the reference gas is provided therein, and the inspection gas is introduced from outside the housing.
  • a first gas detection device of the present invention a gas detection device that alternately introduces a reference gas and a test gas into a sensor in a housing, and detects a specific component in the test gas.
  • the reference gas supply source is provided in the housing and the inspection gas is introduced from outside the housing, the surrounding gas in the region to be inspected is used as the inspection gas.
  • Ambient gas can be measured by introducing it from outside the housing, and this test gas or reference gas is alternately introduced into the sensor built into the housing, and the measurement results of these gases are relatively measured for each measurement. In comparison, the measurement of the test gas can be performed more accurately.
  • the reference gas is introduced from the reference gas supply source installed in the housing.
  • the present invention provides a gas detection device for alternately introducing a reference gas and an inspection gas to a sensor in a housing, and detecting a specific component in the inspection gas, wherein a supply source of the reference gas to the sensor is provided.
  • the detection gas is introduced from the outside of the housing, and the reference is obtained by reciprocating pistons of a cylinder mechanism composed of a combination of a piston and a cylinder that sucks or discharges gas by expanding or reducing the internal volume.
  • the present invention relates to a gas detection device (hereinafter, referred to as a second gas detection device of the present invention) in which gas or the inspection gas is introduced into the sensor.
  • the reference gas from the reference gas supply source or the inspection gas from outside the housing is introduced into the sensor 1 by the forward and backward movement of the piston of the cylinder mechanism.
  • the ambient gas can be measured by introducing the surrounding gas from the outside of the housing as a gas, and the inspection gas and the reference gas from the reference gas supply source are alternately introduced into the sensor to measure these gases. Accurate measurement of test gas by comparing results relative to each other. Since these gases are sucked or exhausted by the reciprocating motion of the piston in the cylinder, the amount of gas suction and exhaust is quantified, and at the same time, a low-noise, compact gas detector is provided. Can be.
  • the present invention further provides a gas detection device that alternately introduces a reference gas and a test gas into a sensor and detects a component contained in the test gas, wherein the sensor and a supply source of the reference gas are integrated.
  • the present invention also provides a gas detection device characterized by the following (hereinafter, referred to as a third gas detection device of the present invention).
  • the third gas detection device of the present invention since the sensor and the supply source of the reference gas are integrated, the same effects as those of the first gas detection device of the present invention can be obtained, It can be configured to be portable (in particular, mountable on a movable mouth pot) integrally having the sensor and the reference gas supply source.
  • FIG. 1 is a schematic configuration diagram of a gas detection device according to Embodiment 1 of the present invention.
  • FIG. 2 is a graph showing a principle diagram of a signal waveform detected according to the first embodiment.
  • FIG. 3 is a principle diagram showing a sensor structure and a function of the gas detection device according to the first embodiment.
  • 4A to 4C are diagrams showing a structure of a sensor of the gas detection device.
  • FIG. 5A to 5B are diagrams showing the configuration of the sensor unit of the gas detection device, FIG. 5A is a schematic diagram, and FIG. 5B is a line bb in FIG. 5A. It is sectional drawing.
  • FIG. 6 is a measurement circuit diagram of the same sensor.
  • FIG. 7 is a graph showing a specific example of the measurement by the gas detection device
  • FIG. 8 is a graph showing another specific example of the measurement by the gas detection device.
  • FIG. 9 is a schematic configuration diagram of the gas detection device according to the second embodiment
  • FIG. 10 is a schematic configuration diagram of a modification example of the gas detection device according to the second embodiment.
  • FIG. 11 is a schematic diagram showing another example of the purifying device of the gas detection device according to the second embodiment.
  • FIG. 12 is a schematic view showing still another example of the gas detecting device purifying apparatus according to the second embodiment.
  • FIG. 13 is a schematic configuration diagram showing a modification of the gas detection device according to the first embodiment.
  • FIG. 14 is a schematic configuration diagram of a conventional gas detection device.
  • FIG. 15 is a schematic external view of the gas detector. BEST MODE FOR CARRYING OUT THE INVENTION
  • the case is portable, and that the inspection gas is the ambient gas outside the case. It is desirable because the gas around the place can be inspected.
  • the supply source of the reference gas is a container containing the reference gas, because it can be easily installed in the housing, and the entire apparatus can be configured to be compact and easily moved.
  • the sensor and the supply source of the reference gas are included in, for example, a self-contained robot device that operates independently, and the sensor and the supply source of the reference gas are included in the same housing.
  • the inspection gas is supplied from around the robot device, for example, from outside the housing.
  • the reference gas supply source for determining a zero level at the time of detection, the sensor for measuring the reference gas and the inspection gas, and processing of output data of the sensor and control of operation of each unit.
  • a control unit for performing one of the operations is provided, and the inspection gas or the reference gas is supplied to the sensor by an intake or exhaust operation of the intake / exhaust mechanism, and the intensity of the measured signal causes the inspection gas or the reference gas to be included in the inspection gas. It is desirable to configure so that a specific component is identified.
  • the reference gas or the inspection gas is introduced into the sensor by reciprocating motion of a piston of a cylinder mechanism composed of a combination of a piston and a cylinder. This is desirable in that the apparatus can be easily reduced in size.
  • a one-way valve that guides gas only in one direction from the sensor to the cylinder mechanism is used during gas suction, and a one-way valve that guides gas only in one direction from the cylinder mechanism to a discharge outlet is used during discharge.
  • the one-way valve for gas suction is connected between the sensor and both chambers of the cylinder mechanism partitioned by the piston.
  • one side of the two chambers of the cylinder mechanism is connected to the sensor 1 and the exhaust port via the one-way valve, and the other side is connected to the sensor via the one-way valve, respectively.
  • the one-way valve connected to the sensor and the exhaust port, and connecting the sensor and the cylinder mechanism,
  • the one-way valve connecting the cylinder mechanism and the exhaust port opens and closes so that gas flows only from the cylinder mechanism to the cylinder mechanism, and the one-way valve opens and closes such that gas flows only from the cylinder mechanism to the exhaust port.
  • the gas can be drawn into the sensor without interruption by one cylinder mechanism.
  • a first valve is provided between the sensor and the intake port for sucking the inspection gas from outside the housing to the inside thereof
  • a second valve is provided between the reference gas supply source and the sensor.
  • the first valve opens and the test gas is taken into the sensor
  • the second valve is opened and the reference gas is drawn into the sensor
  • the reference gas and the test gas are alternately sent to the sensor by one cylinder mechanism without interruption.
  • the supply source of the reference gas is a means for purifying the gas for detection, and after the gas for detection after detection is purified by the means for purifying, the gas is used as the reference gas. They may be reused. This is desirable in that a supply source for generating and supplying a reference gas without a reference gas storage container can be built in.
  • the inspection gas is passed through the purifying means to be purified, and then passed through the purifying means again to be used as the reference gas. You may do so.
  • the gas when the inspection gas is sucked into the cylinder mechanism from the gas inlet, after being subjected to the detection by the sensor, the gas is supplied to the purification unit. It is further purified and temporarily stored in the cylinder mechanism, and when discharged from the cylinder mechanism, is passed again through the purification means to be purified to generate the reference gas, and the reference gas is introduced into the sensor. It is desirable to configure as follows.
  • the purifying means is deodorizing or Z and dehydrating means, and that the introduced test gas is deodorized and / or dehydrated or converted into a reference gas by performing both.
  • a portable inspection gas is configured by being installed in a housing of a container containing the reference gas or in a housing of a purification device that generates the reference gas, It can be suitably used for odor identification.
  • This gas detector measures a specific component (smell) contained in a test gas (hereinafter sometimes referred to as a test gas), its amount, concentration, and the like.
  • a test gas hereinafter sometimes referred to as a test gas
  • the difference between the basic configuration of the first and second gas detectors 1 ′ is that the first gas detector 1 has a reference gas (hereinafter sometimes referred to as “zero gas”) supply source installed in the housing. That is, the second gas detector 1 'specifies that a cylinder mechanism is provided as a gas intake / exhaust mechanism.
  • first and second gas detectors are common to both unless otherwise noted.
  • drawings are also used for description as drawings common to both.
  • the schematic configuration of the first gas detection device 1 is as follows: a cylinder 9 as a zero gas supply source, and a sensor unit for gas detection 7 and a data processing device 11 for controlling data processing and operation of each unit.
  • a gas intake / exhaust mechanism for example, a cylinder mechanism (syringe) 3 composed of a combination of a piston and a cylinder is provided inside, and by the operation of the cylinder mechanism 3, external air and a cylinder introduced as test gas from the intake port 14 are introduced.
  • Zero gas from 9 through regulation 10 is supplied to sensor part 7 by opening and closing first and second pulp 8a and 8b through piping 12a or 12b. After the measurement, these gases are sucked into the cylinder mechanism 3 through the one-way valve 6a or 6b, and discharged through the one-way valve 6c or 6d.
  • the operation of each unit is controlled by the data processing device 11.
  • the syringe 3 as a gas suction / discharge mechanism may be an essential component.
  • the first gas detector 1 measures the outside air widely drifting around the area introduced as the test gas and the zero gas supplied inside, and relatively compares the measurement results of the sensor one signal for each measurement.
  • accurate measurement of the difference is always possible, so that it is possible to easily identify the odor of the environment. Therefore, it is not necessary to switch the valve as in the conventional example, so that the operability is good.
  • the structure is simplified, and a small-sized odor discriminator suitable for carrying or embedding can be realized, and the device itself can be moved to a required place.
  • a schematic configuration of the second gas detection device 1 ′ includes a sensor 7 for gas detection, a data processing and a data processing for controlling the operation of each part inside the housing 2.
  • a device 11 and a cylinder mechanism (syringe) 3 composed of a combination of a piston and a cylinder are provided.
  • the zero gas is supplied from, for example, a zero gas cylinder 9 provided in the housing, and outside air is introduced from an intake port 14 as a test gas. Then, by the operation of the cylinder mechanism 3, the outside air introduced from the intake port 14 and the zero gas passing through the cylinder 10 from the cylinder 9 are supplied to the pipe 1. After passing through 2a or 12b, the first and second valves 8a and 8b are opened and closed to supply the sensor part 7 and measured, and the gas after measurement passes through the one-way valve 6a or 6b to the cylinder. It is sucked into the mechanism 3 and discharged through the one-way valve 6c or 6d. The operation of each unit is controlled by the data processing device 11. However, the internal configuration of the zero gas cylinder 9 as a zero gas supply source may be an essential configuration requirement.
  • the second gas detection device 1 ′ can reduce noise during operation by using a syringe (or a bellows pump) 3 instead of a conventional pump.
  • Ambient gas is introduced from outside the housing 2. Zero gas and this gas are alternately introduced into the sensor, and the measurement results of these gases are relatively compared to each other for accurate measurement.
  • the sensor used may be the same as the conventional one.
  • a suction or exhaust means a syringe 3 having an intake port and an exhaust port on both sides of the cylinder 4 is used, and a first valve 8a is provided between the intake port 14 and the sensor section 7, The second pulp 8b is also provided between the zero gas cylinder 9 and the sensor unit 7.
  • the first valve 8a and the second valve 8b are valves that alternately switch between the zero gas from the zero gas cylinder 9 and the test gas from the intake port 14.
  • the control signal 16 from the data processor 11 The opening and closing are controlled, so there is no need to switch valves.
  • the zero gas cylinder 9 is a container filled with dry air, nitrogen, etc., which can be replaced after the zero gas inside the container is exhausted, or can be refilled with the internal gas. It is. Regyuray 10 is used to adjust the zero gas pressure applied to the second valve 8b side. is there.
  • the test gas can be separately collected at a place to be measured, packed in a container such as a cylinder, and connected to the intake port 14 to supply the test gas.
  • the third gas detection device 1 (1 ′) operates, for example, in the following order.
  • FIG. 2 is a principle diagram of odor identification by the gas detection device, and shows signal waveforms of sensors 30a, 30b, and 30c arranged in the sensor unit 7 for detecting different gas components. . That is, for each zero level of the sensor signal 17 measured by the zero gas inhaled in Step 1, each sensor 30a, 30b, The change in electrical resistance of 30 c is measured as signal waveforms A, B, and C. Therefore, by taking this waveform into the data processing device 11 and analyzing it, it is possible to identify the color.
  • FIG. 3 shows a principle diagram of a sensor structure for odor discrimination in such sensors 30a, 30b, and 30c.
  • this sensor 30 ′ for example, electrodes 46 are provided on both sides of a polymer 45 in which carbon black is dispersed, and the polymer 45 is exposed to gas introduced into one chamber. As a result, the odor component adheres to the polymer 45 and swells to change the electric resistance. The change in the electric resistance is measured by a measuring circuit via wiring, and the result is a signal waveform as shown in FIG. Is measured as
  • the sensor 30 is provided with electrodes 26 at both ends on a glass substrate (for example, about 300 xm thick) 25 and excluding the upper surface of the electrode 26
  • a glass substrate 25 is a support material for the sensor material thin film 28 and the electrode 26,
  • the material may be a silicon substrate or a plastic substrate having an oxide film formed on the surface.
  • the sensor-material thin film 28 is a thin film whose electrical resistance changes when a certain type of odor molecule is adsorbed, as shown in Figs. 4B and 4C as an enlarged cross-sectional view of part b in Fig. 4A.
  • An organic molecule having a functional group that forms a coordination bond with the metal fine particles 49 (for example, _SH group for Au particles), such as l, 9-nonanedithiol (nonandithiol) or Biphenyl dithiol (biphenyl dithiol) is used.
  • FIG. 5A is a schematic cross-sectional view of a sensor part 7 containing the sensor 30 as described above, and FIG. 5B is a cross-sectional view taken along the line bb of FIG. 5A.
  • the number of types of the sensor 130 may be one or more.
  • the stored sensors 30a, 30b, and 30c are used until the gas introduced from the intake port 47 provided in the sensor chamber 27 is exhausted from the exhaust port 48 force. In addition, it is exposed to the introduced gas and changes its electrical resistance.
  • the change in the electric resistance of each sensor is measured by a sensor-measurement circuit through electric wires 29 connected to the sensors 30a, 30b, and 30c.
  • Figure 6 is a diagram showing a measurement circuit of each sensor-and have use of this circuit, the partial pressure V. the reference resistance R u
  • the UT may be measured to determine the relative change. In this case, V. UT has the following relationship with RD .
  • V. Measuring UT gives the relative change in RD .
  • the measurement voltage is within the specified range (0 to V DD ) regardless of the resistance value of the sensor, so there is no need to switch the measurement range, thus simplifying the voltage measurement circuit. There is an advantage that can be made.
  • the reference resistance Ru is preferably adjusted such that its resistance is approximately equal to the resistance RD of the respective sensor. At this time, the maximum voltage sensitivity is obtained.
  • the voltage V DD is a fixed voltage for generating the V QUT. The voltage V DD is determined in consideration of the withstand voltage and life of the sensor, the measurement accuracy of the V QUT , noise, and the like (for example, 50 to 200 mV). ).
  • FIG. 7 and 8 are examples of measurement by the gas detection device 1 of the present embodiment, and show actual measurement graphs of signal waveforms by this measurement.
  • FIG. 7 shows coffee beans
  • FIG. 8 shows whiskey. These are measurement examples, all of which are measurement results of signal waveforms measured with the same sensor array.
  • sensor part 7 is composed of three different types of sensors 30a.30b and 30c, so that the response waveform and signal amplitude of each sensor are Now you can see that they are different. Thus, it is possible to distinguish between coffee and whiskey from the difference in signal patterns.
  • sensors since the components that react more strongly differ from sensor to sensor, for example, a sensor that reacts more strongly with hydrophilic molecules or a sensor that reacts more strongly with hydrophobic molecules is installed. The performance of the sensors that make up the sensor array can be changed according to the composition of the odor components that are considered to be contained in the object.
  • each sensor in FIGS. 7 and 8 The height of the measured waveform of each sensor decreases with time, and a change in the amplitude of the waveform is observed (each sensor in FIGS. 7 and 8). Also, a shift in the zero-level position of each sensor is observed (for example, sensors 30a and 30c in FIG. 7 have a reduced zero-level position and 3Ob has increased). This phenomenon is because the function of the sensor decreases due to the adhesion of the smell molecules of coffee beans and whiskey and the hydrophilic molecules, which are considered to be contained in coffee beans and whiskey, to the surface of the sensor material. Therefore, by introducing the zero gas and the test gas alternately into a part of the sensor, the signal level difference between the zero gas and the test gas can be measured as a relative change while the zero level of the sensor is adjusted.
  • the gas detection device of the present embodiment it is possible to measure the gas at the place to be measured, and to determine the type and amount of the specific component contained in the surrounding atmosphere of the object. Concentration can be measured easily and accurately.
  • a cylinder 9 containing a vent gas as a reference gas is provided in the housing 2, and ambient gas is introduced from the intake port 14 as a test gas.
  • These gases are alternately introduced into the sensor — and the measurement results are compared relatively for each measurement to enable accurate measurement of phrases in the surrounding gas, as well as operability.
  • Move the gas detector 1 to the place where you want to measure and measure it on site the measurement can be performed with this device fixed at a place other than the site.
  • the second gas detector 1 ′ can measure by introducing a surrounding gas outside the housing as a test gas.
  • the test gas and the zero gas are alternately introduced into the sensor, and the measurement result is obtained. Accurate measurement of test gas length can be made by comparing each measurement relatively.
  • the intake and discharge of these gases are performed by the syringe 3
  • the amount of intake and exhaust of the gas can be quantified, and the operation can be performed with low noise.
  • the operability of the apparatus is good, and it is also possible to install a zero gas cylinder 9 in the housing as a zero gas supply source.
  • the test gas can be moved and measured on the spot, or it can be measured at another location by sampling and supplying only the test gas.
  • Figure 9 is, t the gas detection device 1 A showing a schematic configuration of a gas detection device 1 A according to this embodiment, as in the first embodiment described above, Tesutoga scan capture the ambient gas in the housing
  • the first embodiment differs from the first embodiment in the reference gas supply source, the cylinder mechanism, and the pipes and valves associated therewith. It functions in the same way as the first and second gas detectors.
  • the gas intake / exhaust mechanism includes a cylinder 4a and a piston 5a that inhale or exhaust from the same side.
  • Syringe 21 is installed inside housing 2 and As a reference gas supply source, a used test gas is purified by a purifier 19 to be converted into a reference gas.
  • the outside air introduced from the intake / exhaust port 23 through the pipe 12 a is purified by the purifier 19 after the data on the test gas is measured by the sensor part 7, and the cylinder of the syringe 21 is
  • the gas is once contained in 4a, and when this gas is discharged, the gas is purified again by the purifier 19 to be a reference gas, and this gas is supplied to the sensor unit 7 as a reference gas. Therefore, the test gas and the reference gas are alternately introduced into the sensor part 7 and the measurement results of the gas in the sensor part 7 are relatively compared for each measurement.
  • the intake / exhaust mechanism consisting of 1 quantifies the amount of gas intake and exhaust, making it possible to construct a portable, low-noise, compact gas detector. However, in this case as well, the test gas is supplied in a sampled manner, and the measurement can be performed with the device fixed.
  • the gas detection device 1A purifies and reuses the test gas subjected to the odor measurement as the zero gas, thereby making the components such as valves necessary for switching to the zero gas.
  • the structure can be simplified by reducing the size, and a small-sized odor discriminator suitable for carrying or incorporating can be obtained.
  • the purifying device 19 is a device that removes moisture and odor molecules in the test gas.For example, it is a filtration device that is configured so that the gas passes through individual containers containing silica gel, activated carbon, and various catalysts in order. is there.
  • the syringe 21 includes a cylinder 4a, a piston 5a, and a driving device for a piston.
  • the piston 5a reciprocates according to a control signal 18 from the data processing device 11. Therefore, there is no need to switch valves. First, when the piston 5a draws in the test gas, environmental gas is taken in from the intake / exhaust port 23 and sent to the sensor unit 7.
  • the test gas sent to the sensor section 7 causes a change in the sensor signal 17 characteristic of the test gas, and this data is measured by the data processing device 11. It is sent to 9 to remove odor molecules and water contained in the gas. The gas thus purified is temporarily taken into the syringe 4a of the syringe 21.
  • the piston 5a pushes out the purified gas taken into the syringe 21.
  • the purified gas taken in the cylinder 4a is sent to the sensor part 7 again through the purification device 19.
  • the gas sent to the sensor part 7 is zero gas due to the two purifications.By comparing the response of the sensor part 7 to the zero gas and the response to the test gas, the characteristic of the test gas is obtained. It is possible to obtain a unique signal pattern and to accurately identify the test gas.
  • the gas detector 1A Since the gas detector 1A generates zero gas internally by purifying the test gas, accurate identification is possible even for test gases that are widely distributed in the environment surrounding the gas detector 1A. is there.
  • FIG. 10 is a schematic configuration diagram of a gas detection device 1B according to a modification of the second embodiment.
  • the purifying device 20 can increase the purifying ability by the material and the internal structure to be contained, and can generate zero gas as a reference gas by one filtration. Therefore, a purifying device 20 having high purifying performance is provided, and the necessary piping 12b and valves 8a and 8b are provided in a configuration different from that of FIG.
  • This device can be applied to the above-described first and second gas detection devices, similarly to the device shown in FIG. Since this gas detector 1B can generate the reference gas by one-time filtration by the purifier 20, the valve 8a is opened when the syringe 21 is inhaled, the valve 8b is closed, and the gas is inhaled.
  • test gas passes through the sensor unit 7 and the purifying device 20, and the generated reference gas is temporarily stored in the cylinder 4a of the syringe 21, and at the time of discharge, the valve 8a is closed and the valve 8b is opened.
  • the reference gas is supplied to the sensor unit 7 via the pipe 12b.
  • FIGS. 11 and 12 are diagrams showing other examples of the filtering structure of the purifying device 20 in the gas detection device 1B.
  • 20b and 20c in which a plurality of purifying devices are arranged in parallel.
  • FIG. 12 shows a structure (for example, 20 c may be added) in which purifiers 20 a 20 b similar to those described above are arranged in series. I can show my ability.
  • the gas around the housing 2 can be introduced and its odor can be measured, and the purifier 19 (or 20) is provided inside the housing 2. Since the reference gas is generated internally by purifying the test gas introduced from the outside, the test gas and the reference gas are alternately introduced into the sensor so that accurate measurement can be performed. If the test device is supplied from a cylinder with the discharge device 1 A (or 1 B) and can be measured on site, this device can be fixed and measured at a location other than the site. .
  • a syringe was used as the intake / exhaust means, but these may be replaced with a bellows pump.
  • the bellows pump can achieve the same low noise and compactness as a syringe.
  • FIG. 13 is a schematic configuration diagram showing a gas detector 1C according to a modification of the first embodiment.
  • the gas detector 1C can be applied to the first and second gas detectors. it can. That is, as shown in FIG. 13, this gas detection device 1C is provided with a pump similar to the conventional example as a gas intake / exhaust means.
  • the configuration is the same as that of the first embodiment, and by handling it in the same manner as the first embodiment, sufficient performance can be exhibited and the device can be formed in a portable manner. It can be taken to the site where it is to be used for on-site measurement, while the test gas can be supplied from a cylinder to fix this device to a location other than the site for measurement.
  • the zero gas is generated inside the housing or inside the housing by the purifying device, so that the odor identification can be performed anywhere without restriction on the measurement place.
  • the smell of the environment surrounding the device can be identified.
  • the mouth pot analyzes the smell around it, and detects fires in a separate room of a house or a neighborhood, the state of cooking, the return of a family member, illegal invasion, etc. It is also possible to analyze the odor of the environment by taking this device to streets, forests, and the seaside.
  • test gas used for measurement by the sensor by purifying and accumulating the test gas used for measurement by the sensor and reusing it as a zero gas, it is possible to reduce parts such as valves required for switching between the zero gas and the test gas, and to further improve the entire device. It can be downsized.
  • a test gas can be measured by bringing the device to the site to measure the environmental gas at the place where the measurement is to be performed, and then inhaling the test gas at the place, but measuring only the test gas.
  • the sample can be separately collected in a container such as a cylinder, and the device can be fixed at another place for measurement.
  • the first gas detection device is limited to the inside of the zero gas cylinder, and the gas suction / discharge mechanism may be a syringe.
  • the second gas detection device may be limited to the gas suction / discharge mechanism with a syringe.
  • the zero gas may be provided inside the zero gas cylinder, both the first and second gas detectors may use the zero gas cylinder and the syringe together.
  • an intake / exhaust means using a piezoelectric element or other intake / exhaust means other than the above-described syringe, pump or port-and-mouth pump can be used.
  • the present invention can also be applied to, for example, measurement of the type, quantity, concentration, and physical properties of a gas.
  • each unit of the device described in the embodiment can be appropriately implemented in addition to the embodiment.
  • the above-described gas detection device can be incorporated in a independently driven ropot device.
  • the reference gas supply source is provided inside the housing, the inspection gas is introduced from outside the housing, or the reference gas supply source Since the sensor and the sensor are integrated, the surrounding gas in the area to be inspected can be introduced as a test gas from the outside of the housing to measure the surrounding gas.
  • the test gas can be accurately measured by alternately introducing the sensor into the sensor built into the body, and comparing the measurement results of these gases with each other for each measurement. Since the gas is introduced from the internal reference gas supply source, the reference gas supply The entire apparatus can be made compact as compared with the case where the apparatus is provided, and it is easy to move the apparatus itself to a required place together with the reference gas supply source.
  • the reference gas from the reference gas supply source or the inspection gas from outside the housing is introduced into the sensor 1 by the reciprocating movement of the piston of the cylinder mechanism.
  • Ambient gas can be measured from the outside of the enclosure as an inspection gas to measure the ambient gas.
  • the inspection gas and the reference gas from the reference gas supply source are alternately introduced into the sensor to measure these gases. Inspection gases can be measured accurately by comparing the results relative to each measurement, and these gases are sucked or exhausted by the reciprocating motion of the piston in the cylinder.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

A gas detection device capable of accurately measuring specific components (odor, etc.) contained in measured ambient gas, and easily formable in a mobile type due to a compactness or allowed to be reduced in size with low noise, wherein a zero gas cylinder (9) as zero gas supply means and the other component parts are disposed in a casing (2), and test gas obtained by leading ambient gas on the outside of the casing (2) through pipes (12a) and zero gas fed from the zero gas cylinder (9) are alternately led into a sensor part (7) using a syringe (3) as a gas suction and exhaust means, the test gas is measured, and the operations of these parts are controlled by a data processing device (11), whereby the test gas can be accurately measured by comparing the measured results of the test gas with each other for each measurement, the test gas can be measured at a measured site by moving the gas detection device (1) there, the suction and exhaust amounts of these gases can be kept constant by a cylinder mechanism with less noise, and the device can be formed compact.

Description

明細 : ガス検出装置 技術分野 Item : Gas detector Technical field
本発明は、 雰囲気中の特定成分を検出して、 例えば匂いを識別できる 携帯可能なガス検出装置に関するものである。 背景技術  The present invention relates to a portable gas detection device capable of detecting a specific component in an atmosphere to identify, for example, an odor. Background art
第 1 4図は、 従来の匂い識別装置 3 1の構成図である。 第 1 4図にお いて、 外界の気体は吸気口 3 6から取り込まれ、 配管 3 8の経路に設置 されたセンサ一 3 4を経由し、 ポンプ 3 3によって排気口 3 7に送られ- もとの雰囲気中に戻される。 このとき、 センサー 3 4から、 取り込まれ た気体が有する匂いの種類や濃度に応じた電気信号が取り出され、 デー 夕処理装置 3 5で匂いの同定や濃度測定が行われる。  FIG. 14 is a configuration diagram of a conventional odor discriminating device 31. As shown in FIG. In FIG. 14, gas from the outside world is taken in from the intake port 36, is sent to the exhaust port 37 by the pump 33 through the sensor 34 installed in the path of the pipe 38, and is also discharged. And returned to the atmosphere. At this time, an electric signal corresponding to the type and concentration of the odor contained in the introduced gas is extracted from the sensor 34, and the data processing device 35 identifies the odor and measures the concentration.
第 1 5図は、 上記のように構成された従来の匂い識別装置 3 1の外観 概略図である。 本体 3 2内には、 第 1 4図におけるセンサー 3 4、 デー タ処理装置 3 5及びポンプ 3 3等が内蔵され、 本体 3 2に突設されたサ ンプルプローブの先端の吸気口 3 6を介して、 ゼロガス (基準ガス) 4 2として取り込む周囲の気体とテストガス容器 4 4に収容されたテスト ガス (検査用ガス) 4 3とを交互にセンサー 3 4に取り込み、 テストガ ス中の匂いの種類や濃度等が測定される。  FIG. 15 is a schematic external view of a conventional odor discriminating device 31 configured as described above. Inside the main body 32, the sensor 34, the data processing device 35, the pump 33, etc. in FIG. 14 are built, and the intake port 36 at the tip of the sample probe protruding from the main body 32 is connected. Through the sensor, the surrounding gas taken as zero gas (reference gas) 4 2 and the test gas (inspection gas) 43 contained in the test gas container 44 are taken into the sensor 34 alternately to detect the odor in the test gas. The type and concentration are measured.
しかし、 測定を重ねるに伴い匂い成分がセンサー 3 4に付着し、 セン サー 3 4のゼロレベルが初期状態から次第に変化して正確な測定ができ なくなるため、 毎回交互にゼロガスが導入され、 センサ一 3 4のゼロレ ベルが調整される。 この匂い識別装置の運転は、 測定開始ポタン 4 1の 操作により行われ、 測定値がメーター 4 0に表示される。 However, as the measurement is repeated, the odor component adheres to the sensor 34, and the zero level of the sensor 34 gradually changes from the initial state, making it impossible to perform an accurate measurement. 3 4 zero The bell is adjusted. The operation of the odor identification device is performed by operating the measurement start button 41, and the measured value is displayed on the meter 40.
ところで、 従来の匂い識別装置 3 1は、 匂いの構成分子がセンサー材 料に吸着するときに生じる物理的変化、 或いは化学的変化を検出するこ とによって、 匂いの分析を行っている。  By the way, the conventional odor discriminating apparatus 31 analyzes odors by detecting physical changes or chemical changes that occur when odor constituent molecules are adsorbed on the sensor material.
例えば、 水晶振動式センサー (Q C M ) では、 水晶振動子の表面に種 類の異なる吸着剤を塗布し、 匂い分子が吸着剤に吸着したときに生じる 質量変化を水晶振動子の振動数の変化で検出するものであり、 匂い分子 の性質、 例えば極性の強さによって、 吸着レ易い化学物質の種類が異な るため、 どの吸着剤にどれだけの質量変化が起きたかを測定すれば、 匂 いを構成している匂い分子の種類と量を見積もることができる。  For example, in a crystal vibration sensor (QCM), different types of adsorbents are applied to the surface of a crystal oscillator, and the mass change that occurs when odor molecules are adsorbed to the adsorbent is determined by the change in the frequency of the crystal oscillator. Since the types of chemical substances that can be easily adsorbed differ depending on the nature of the odor molecules, for example, the polarity, the odor can be measured by measuring how much mass change has occurred in which adsorbent. It is possible to estimate the types and amounts of the constituent odor molecules.
匂い分子の吸着は、 質量変化以外にも、 電気抵抗の変化や光吸収波長 の変化などの変化としても検出でき、 そのような方式のセンサーが種々 提案されている。 例えば、 導電性ポリマーや、 導体粒子を絶縁性ポリマ 一に分散した複合材料に、 匂い分子が吸着したときの電気抵抗の変化を 用いたセンサーなどが実用化されている。  Adsorption of odor molecules can be detected not only as a change in mass but also as a change in electrical resistance or a change in light absorption wavelength, and various sensors using such a method have been proposed. For example, sensors that use a change in electric resistance when odor molecules are adsorbed to a conductive polymer or a composite material in which conductive particles are dispersed in an insulating polymer have been put into practical use.
しかし、 句い分子を吸着させるセンサー材料では、 匂い分子がセンサ —材料の表面に残留したり、 或いは気体中に含まれる高活性の分子がセ ンサー材料と化合してセンサー材料が変質したりすることが避けられな い。  However, in a sensor material that adsorbs odor molecules, odor molecules remain on the surface of the sensor—or highly active molecules contained in the gas combine with the sensor material to alter the sensor material. Is inevitable.
このようなセンサーでは、 センサー特性が使用履歴によって変化する ため、 匂いの識別には、 センサー信号 (水晶振動子式であれば振動数、 c h ei o r e s i s t o r 型であれば電気抵抗値、 光学式であれば光吸収波長. など) の絶対値ではなく、 相対変化が主に利用される。 このような相対 変化は、 匂いを含まない基準ガス (ゼロガス) と、 測定したい匂いを含 む検査用ガス (テストガス) との信号強度の差として測定されるため、 匂いの識別に当っては、 ゼロガスとテストガスの両方の信号を測定する 必要がある。 In such a sensor, the sensor characteristics change depending on the usage history. Therefore, to identify the odor, it is necessary to use a sensor signal (vibration frequency for a crystal oscillator type, electrical resistance value for a cheoresistor type, or optical type). For example, relative change is mainly used instead of the absolute value of light absorption wavelength. Since such a relative change is measured as a signal intensity difference between a reference gas (zero gas) containing no odor and a test gas (test gas) containing the odor to be measured, For odor identification, it is necessary to measure both the zero gas and the test gas signals.
そのため、 第 1 5図に示した匂い識別装置 3 1の場合は、 まずゼロガ スとして室内気などの外気を測定し、 次に吸気口 3 6をサンプルを入れ たフラスコなどの容器 4 4に差し込んで、 サンプルの匂いを測定する、 という手順で匂いを識別する。  Therefore, in the case of the odor discriminator 31 shown in Fig. 15, first measure the outside air such as room air as zero gas, and then insert the inlet 36 into a container 44 such as a flask containing a sample. Then, the odor is identified by measuring the odor of the sample.
このように、 匂い識別装置で匂いを識別する場合は、 テストガスとゼ 口ガスの両方を測定する必要があり、 第 1 5図の匂い識別装置 3 1で容 器に入った物質の匂いを識別する場合は、 吸気口 3 6をその容器に挿入 して得られるガスをテストガスとし、 吸気口 3 6を容器の外に出して得 られるガスをゼロガスとすることにより、 センサー信号の相対変化を測 定でき、 容器内の匂いを識別することが可能である。  As described above, when the odor is identified by the odor identification device, it is necessary to measure both the test gas and the mouth gas, and the odor of the substance entering the container by the odor identification device 31 in FIG. 15 is determined. When identifying, the relative change in the sensor signal is obtained by inserting the inlet 36 into the container as the test gas and setting the inlet 36 out of the container as the zero gas. Can be measured, and the odor in the container can be identified.
しかしながら、 匂い識別装置を取り巻く環境に広く漂っている匂いを 識別する場合は、 ゼロガスを周囲から取り込むことができないので、 周 囲に広く漂う匂いは識別ができない、 という問題点があった。  However, when identifying odors that are widely drifting in the environment surrounding the odor identification device, there is a problem in that zero gas cannot be taken in from the surroundings, so that odors that are widely drifting around cannot be identified.
この種の装置として、 特開平 9— 2 5 0 9 7 9号公報には、 ゼロガス 容器を用いた匂い識別装置が開示されているが、 雰囲気の匂いの識別を 目的としたものではなく、 ゼロガス同様、 テストガスも、 装置に接続さ れた容器から導入する構成になっており、 携帯して雰囲気の匂いを識別 することを目的としたものではない。 また、 ゼロガスとテストガスの切 り替えを行うための配管も複雑、 切り替えも面倒であり、 携帯に適した 大きさに構成することは困難と思われる。  As this type of apparatus, Japanese Patent Application Laid-Open No. 9-250979 discloses an odor discriminating apparatus using a zero gas container. However, it is not intended to discriminate the odor of the atmosphere. Similarly, the test gas is also introduced from a container connected to the device, and is not intended to be carried to identify the smell of the atmosphere. In addition, the piping for switching between zero gas and test gas is complicated, and switching is cumbersome, so it seems difficult to construct a size suitable for carrying.
また、 特開平 9一 3 0 4 2 4 4号公報には、 外気を純化してゼロガス として使用することにより、 雰囲気の匂いを識別可能とした匂い識別装 置が開示されている。 ここでは、 携帯性と雰囲気中の匂い識別が検討さ れているものの、 外気の測定と純化をバルブの切り替えで行うため、 機 構が複雑、 切り替えが面倒であり、 小型の家庭用口ポットに組み込むこ とが可能なサイズに構成することは困難と思われる。 Also, Japanese Patent Application Laid-Open No. Hei 9-304424 discloses an odor discriminating apparatus that purifies the outside air and uses it as a zero gas so that the odor of the atmosphere can be discriminated. Although portability and odor identification in the atmosphere are being considered here, the measurement and purification of outside air are performed by switching valves, so The structure is complicated and switching is troublesome, so it seems difficult to construct a size that can be incorporated into a small household mouth pot.
また、 特開 2 0 0 0— 1 5 5 1 0 7号公報には、 ゼロガス容器を併用 する匂い識別装置が開示され、 サンプルガスに関する検出信号とゼロガ スに関する検出信号からサンプルガスの定性又は定量を行うものである が、 ゼロガス容器は内蔵式ではなく、 ガスの吸入 ·排出はポンプによる ため、 吸排量がばらつき、 騒音を伴うことと、 携帯して雰囲気の匂い測 定を目的としたものではない。 また構造も複雑であり、 バルブの切り替 えが必要なため操作性に欠け、 携帯性のある大きさに構成することは困 難と思われる。  Further, Japanese Patent Application Laid-Open No. 2000-155017 discloses an odor discriminating device using a zero gas container together, and qualitatively or quantitatively determines a sample gas based on a detection signal regarding the sample gas and a detection signal regarding the zero gas. However, since the zero gas container is not built-in, the suction and discharge of gas is performed by a pump, so the intake and discharge volume varies, which is accompanied by noise, and the purpose is to measure the smell of the atmosphere while carrying it. is not. In addition, the structure is complicated and it is necessary to switch the valve, so operability is lacking, and it is difficult to construct a portable size.
また、 従来の匂い識別装置では、 ガスを引き込むために、 ファンゃダ ィャフラムポンプを使用するものもある。 これらは、 外形寸法が大きく また運転時の騒音も大きいため、 携帯用、 或いは静粛性が求められる家 庭で使用可能な小型ロポットなどへの組み込み用としては、 必ずしも適 しているとはいえない。  Some conventional odor discriminating devices use a fan-diaphragm pump to draw in gas. Because of their large external dimensions and high noise during operation, they are not necessarily suitable for use in portable or small pots that can be used in homes where quietness is required. .
そこで本発明の目的は、 測定したい周囲ガス中に含まれる特定成分 (匂い等) を正確に測定でき、 またコンパクトであって移動式に構成す るのが容易であるか、 或いは低騒音で小型化が可能なガス検出装置を提 供することにある。 発明の開示  Therefore, an object of the present invention is to accurately measure a specific component (smell, etc.) contained in the ambient gas to be measured, and to be compact and easy to be constructed in a mobile manner, or to have low noise and small size. An object of the present invention is to provide a gas detection device which can be used for gasification. Disclosure of the invention
即ち、 本発明は、 基準ガスと検査用ガスとを筐体内のセンサーに交互 に導入し、 前記検査用ガス中の特定成分を検出するガス検出装置におい て、 前記センサーを内蔵した前記筐体内に、 前記基準ガスの供給源が内 設され、 かつ前記筐体外から前記検査用ガスが導入されることを特徴と する、 ガス検出装置 (以下、 本発明の第 1のガス検出装置と称する。 ) に係るものである。 That is, the present invention provides a gas detection device that alternately introduces a reference gas and a test gas into a sensor in a housing, and detects a specific component in the test gas. A supply source for the reference gas is provided therein, and the inspection gas is introduced from outside the housing. (Hereinafter referred to as a first gas detection device of the present invention).
本発明の第 1のガス検出装置によれば、 基準ガスの供給源が筐体に内 設され、 検査用ガスが筐体外から導入されるので、 検査したい領域の周 囲ガスを検査用ガスとして筐体外から導入して周囲ガスを測定すること ができ、 またこの検査用ガス又は基準ガスを筐体に内蔵したセンサーに 交互に導入して、 これらのガスの測定結果を測定毎に相対的に比較して 検査用ガスの測定を正確に行え、 この際に、 基準ガスは筐体に内設され た基準ガス供給源から導入しているので、 基準ガス供給源を外設する場 合に比べて装置全体をコンパクトに構成することができ、 しかも基準ガ ス供給源と共に装置自体を所要の場所に移動させるように構成すること が容易となる。  According to the first gas detection device of the present invention, since the reference gas supply source is provided in the housing and the inspection gas is introduced from outside the housing, the surrounding gas in the region to be inspected is used as the inspection gas. Ambient gas can be measured by introducing it from outside the housing, and this test gas or reference gas is alternately introduced into the sensor built into the housing, and the measurement results of these gases are relatively measured for each measurement. In comparison, the measurement of the test gas can be performed more accurately.In this case, the reference gas is introduced from the reference gas supply source installed in the housing. Thus, the entire apparatus can be made compact, and the apparatus itself can be easily moved to a required place together with the reference gas supply source.
また、 本発明は、 基準ガスと検査用ガスとを筐体内のセンサーに交互 に導入し、 前記検査用ガス中の特定成分を検出するガス検出装置におい て、 前記センサーに前記基準ガスの供給源が接続され、 前記筐体外から 前記検查用ガスが導入され、 かつ内容積の拡大若しくは縮小によりガス を吸入又は排出するピストン及びシリンダの組合せからなるシリンダ機 構のピストンの往復動によって、 前記基準ガス又は前記検査用ガスが前 記センサーに導入される、 ガス検出装置 (以下、 本発明の第 2のガス検 出装置と称する。 ) に係るものである。  Further, the present invention provides a gas detection device for alternately introducing a reference gas and an inspection gas to a sensor in a housing, and detecting a specific component in the inspection gas, wherein a supply source of the reference gas to the sensor is provided. The detection gas is introduced from the outside of the housing, and the reference is obtained by reciprocating pistons of a cylinder mechanism composed of a combination of a piston and a cylinder that sucks or discharges gas by expanding or reducing the internal volume. The present invention relates to a gas detection device (hereinafter, referred to as a second gas detection device of the present invention) in which gas or the inspection gas is introduced into the sensor.
本発明の第 2のガス検出装置によれば、 シリンダ機構のピストンの往 復動によって、 基準ガス供給源からの基準ガス又は筐体外からの検査用 ガスがセンサ一に導入されるので、 検査用ガスとして筐体外から周囲ガ スを導入して周囲ガスを測定することができ、 またこの検査用ガス及び 基準ガス供給源からの基準ガスをセンサ一に交互に導入して、 これらの ガスの測定結果を測定毎に相対的に比較して検査用ガスの測定を正確に 行え、 更にこれらのガスがシリンダ内におけるピストンの往復動により 吸入又は排気されるため、 ガスの吸入量及び排気量が定量化されると共 に、 低騒音で小型のガス検出装置を提供することができる。 According to the second gas detection device of the present invention, the reference gas from the reference gas supply source or the inspection gas from outside the housing is introduced into the sensor 1 by the forward and backward movement of the piston of the cylinder mechanism. The ambient gas can be measured by introducing the surrounding gas from the outside of the housing as a gas, and the inspection gas and the reference gas from the reference gas supply source are alternately introduced into the sensor to measure these gases. Accurate measurement of test gas by comparing results relative to each other In addition, since these gases are sucked or exhausted by the reciprocating motion of the piston in the cylinder, the amount of gas suction and exhaust is quantified, and at the same time, a low-noise, compact gas detector is provided. Can be.
本発明は更に、 基準ガスと検査用ガスとをセンサ一に交互に導入し、 前記検査用ガスに含まれる成分を検出するガス検出装置において、 前記 センサーと前記基準ガスの供給源とが一体化されていることを特徴とす るガス検出装置 (以下、 本発明の第 3のガス検出装置と称する。 ) も提 供するものである。  The present invention further provides a gas detection device that alternately introduces a reference gas and a test gas into a sensor and detects a component contained in the test gas, wherein the sensor and a supply source of the reference gas are integrated. The present invention also provides a gas detection device characterized by the following (hereinafter, referred to as a third gas detection device of the present invention).
本発明の第 3のガス検出装置によれば、 前記センサーと前記基準ガス の供給源とが一体化されているので、 本発明の第 1のガス検出装置と同 等の効果が得られると共に、 前記センサーと前記基準ガスの供給源とを 一体に有する可搬式に (特に可動口ポットに搭載可能に) 構成すること ができる。 図面の簡単な説明  According to the third gas detection device of the present invention, since the sensor and the supply source of the reference gas are integrated, the same effects as those of the first gas detection device of the present invention can be obtained, It can be configured to be portable (in particular, mountable on a movable mouth pot) integrally having the sensor and the reference gas supply source. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 本発明の実施の形態 1によるガス検出装置の概略構成図で ある。  FIG. 1 is a schematic configuration diagram of a gas detection device according to Embodiment 1 of the present invention.
第 2図は、 同、 実施の形態 1により検出した信号波形の原理図を示す グラフである。  FIG. 2 is a graph showing a principle diagram of a signal waveform detected according to the first embodiment.
第 3図は、 同、 実施の形態 1によるガス検出装置のセンサー構造及び 機能を示す原理図である。  FIG. 3 is a principle diagram showing a sensor structure and a function of the gas detection device according to the first embodiment.
第 4 A図乃至第 4 C図は、 同、 ガス検出装置のセンサ一構造を示す図 である。  4A to 4C are diagrams showing a structure of a sensor of the gas detection device.
第 5 A図乃至第 5 B図は、 同、 ガス検出装置のセンサー部の構成を示 す図であり、 第 5 A図は概略図、 第 5 B図は第 5 A図の b— b線断面図 である。 第 6図は、 同、 センサ一の測定回路図である。 5A to 5B are diagrams showing the configuration of the sensor unit of the gas detection device, FIG. 5A is a schematic diagram, and FIG. 5B is a line bb in FIG. 5A. It is sectional drawing. FIG. 6 is a measurement circuit diagram of the same sensor.
第 7図は、 同、 ガス検出装置による測定の具体例を示すグラフである 第 8図は、 同、 ガス検出装置による測定の他の具体例を示すグラフで ある  FIG. 7 is a graph showing a specific example of the measurement by the gas detection device, and FIG. 8 is a graph showing another specific example of the measurement by the gas detection device.
第 9図は、 同、 実施の形態 2によるガス検出装置の概略構成図である, 第 1 0図は、 同、 実施の形態 2によるガス検出装置の変形例の概略構 成図である。  FIG. 9 is a schematic configuration diagram of the gas detection device according to the second embodiment, and FIG. 10 is a schematic configuration diagram of a modification example of the gas detection device according to the second embodiment.
第 1 1図は、 同、 実施の形態 2によるガス検出装置の純化装置の他の 例を示す概略図である。  FIG. 11 is a schematic diagram showing another example of the purifying device of the gas detection device according to the second embodiment.
第 1 2図は、 同、 実施の形態 2によるガス検出装置の純化装置の更に 他の例を示す概略図である。  FIG. 12 is a schematic view showing still another example of the gas detecting device purifying apparatus according to the second embodiment.
第 1 3図は、 同、 実施の形態 1によるガス検出装置の変形例を示す概 略構成図である。  FIG. 13 is a schematic configuration diagram showing a modification of the gas detection device according to the first embodiment.
第 1 4図は、 従来例によるガス検出装置の概略構成図である。  FIG. 14 is a schematic configuration diagram of a conventional gas detection device.
第 1 5図は、 同、 ガス検出装置の外観概略図である。 発明を実施するための最良の形態  FIG. 15 is a schematic external view of the gas detector. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の好ましい実施の形態を説明する。  Hereinafter, preferred embodiments of the present invention will be described.
上記した本発明の第 1、 第 2及び第 3のガス検出装置においては、 前 記筐体が可搬式であり、 検査用ガスが筐体外の周囲ガスであることが、 測定したい場所において、 その場所の周囲ガスを検査できる点で望まし い。  In the first, second, and third gas detection devices of the present invention described above, it is determined that the case is portable, and that the inspection gas is the ambient gas outside the case. It is desirable because the gas around the place can be inspected.
この場合、 前記基準ガスの供給源が、 前記基準ガスを収容した容器で あることが筐体に内設し易く、 装置全体をコンパク卜に構成して移動し 易くできる点で望ましい。 特に、 前記センサ一と前記基準ガスとの供給源とが例えば自立的に駆 動する自立型のロポット装置に含まれ、 また前記センサ一と前記基準ガ スの供給源とが同一筐体に含まれていて前記検査用ガスは前記ロポット 装置の周辺、 例えば前記筐体外から供給されるのがよい。 In this case, it is desirable that the supply source of the reference gas is a container containing the reference gas, because it can be easily installed in the housing, and the entire apparatus can be configured to be compact and easily moved. In particular, the sensor and the supply source of the reference gas are included in, for example, a self-contained robot device that operates independently, and the sensor and the supply source of the reference gas are included in the same housing. Preferably, the inspection gas is supplied from around the robot device, for example, from outside the housing.
そして、 内容積の拡大若しくは縮小によりガスを吸入又は排出する吸 入 ·排気機構と、 この吸入 ·排気機構に通じる前記基準ガス又は前記検 査用ガスの流路と、 前記検査用ガスについての前記検出時のゼロレベル を決めるための前記基準ガス供給源と、 前記基準ガス及び前記検査用ガ スを測定する前記センサ一と、 前記センサ一の出力データの処理及び各 部の動作の制御の少なくとも一方を行う制御部とが設けられ、 前記吸 入 ·排気機構の吸入又は排出動作によって前記検査用ガス又は前記基準 ガスが前記センサーに供され、 測定された信号の強度によって前記検査 用ガス中の特定成分が識別されるように構成することが望ましい。  An intake / exhaust mechanism for inhaling or exhausting gas by increasing or decreasing the internal volume; a flow path of the reference gas or the inspection gas communicating with the intake / exhaust mechanism; The reference gas supply source for determining a zero level at the time of detection, the sensor for measuring the reference gas and the inspection gas, and processing of output data of the sensor and control of operation of each unit. A control unit for performing one of the operations is provided, and the inspection gas or the reference gas is supplied to the sensor by an intake or exhaust operation of the intake / exhaust mechanism, and the intensity of the measured signal causes the inspection gas or the reference gas to be included in the inspection gas. It is desirable to configure so that a specific component is identified.
更に、 前記基準ガス又は前記検査用ガスが、 ピストン及びシリンダの 組合せからなるシリンダ機構のピストンの往復動によって前記センサー に導入されることが、 吸入量及び排気量が定量化されると共に、 低騒音 で装置を小型化し易くできる点で望ましい。  Further, the reference gas or the inspection gas is introduced into the sensor by reciprocating motion of a piston of a cylinder mechanism composed of a combination of a piston and a cylinder. This is desirable in that the apparatus can be easily reduced in size.
この場合、 ガス吸入時は前記センサ一から前記シリンダ機構へ一方向 のみガスを導く一方向弁が用いられ、 排出時は前記シリンダ機構から排 出口へ一方向のみガスを導く一方向弁が用いられ、 ガス吸入用の前記一 方向弁が前記センサーと前記ビストンで仕切られた前記シリンダ機構の 両室との間にそれぞれ接続されていることが望ましい。  In this case, a one-way valve that guides gas only in one direction from the sensor to the cylinder mechanism is used during gas suction, and a one-way valve that guides gas only in one direction from the cylinder mechanism to a discharge outlet is used during discharge. Preferably, the one-way valve for gas suction is connected between the sensor and both chambers of the cylinder mechanism partitioned by the piston.
即ち、 前記シリンダ機構の前記両室の一方の側が、 それぞれ前記一方 向弁を介して前記センサ一と排気口とに接続され、 もう一方の側が、 そ れぞれ前記一方向弁を介して前記センサ一と排気口に接続され、 前記セ ンサ一と前記シリンダ機構とを結ぶ前記一方向弁は、 いずれも前記セン サ一から前記シリンダ機構にのみガスを流すように開閉し、 前記シリン ダ機構と排気口とを結ぶ前記一方向弁は、 いずれも前記シリンダ機構か ら排気口にのみガスを流すように開閉することにより、 1つのシリンダ 機構で、 間断なく前記センサーにガスを引き込むように構成することが できる。 That is, one side of the two chambers of the cylinder mechanism is connected to the sensor 1 and the exhaust port via the one-way valve, and the other side is connected to the sensor via the one-way valve, respectively. The one-way valve connected to the sensor and the exhaust port, and connecting the sensor and the cylinder mechanism, The one-way valve connecting the cylinder mechanism and the exhaust port opens and closes so that gas flows only from the cylinder mechanism to the cylinder mechanism, and the one-way valve opens and closes such that gas flows only from the cylinder mechanism to the exhaust port. Thus, the gas can be drawn into the sensor without interruption by one cylinder mechanism.
この場合、 前記筐体外からその内部へ前記検査用ガスを吸引する吸気 口と、 前記センサーとの間に第 1の弁を設けると共に、 前記基準ガスの 供給源と前記センサーとの間に第 2の弁を設け、 前記ピストンがある 1 つの向きに運動するとき、 前記第 1の弁が開いて前記検査用ガスが前記 センサ一に取り込まれ、 前記ピストンがそれとは逆の向きに運動すると き、 前記第 2の弁が開いて前記基準ガスが前記センサーに引き込まれる ことにより、 1つのシリンダ機構で、 間断なく前記基準ガスと前記検査 用ガスとを交互に前記センサーに送り込むようにするのが望ましい。 また、 このガス検出装置においては、 前記基準ガスの供給源が前記検 查用ガスの純化手段であり、 この純化手段によって前記検出後の前記検 査用ガスが純化された後に、 前記基準ガスとして再使用するようにして もよい。 これにより、 基準ガス収納容器なしで基準ガスを生成して供給 する供給源を内蔵できる点で望ましい。  In this case, a first valve is provided between the sensor and the intake port for sucking the inspection gas from outside the housing to the inside thereof, and a second valve is provided between the reference gas supply source and the sensor. When the piston moves in one direction, the first valve opens and the test gas is taken into the sensor, and when the piston moves in the opposite direction, When the second valve is opened and the reference gas is drawn into the sensor, it is preferable that the reference gas and the test gas are alternately sent to the sensor by one cylinder mechanism without interruption. . Further, in this gas detection device, the supply source of the reference gas is a means for purifying the gas for detection, and after the gas for detection after detection is purified by the means for purifying, the gas is used as the reference gas. They may be reused. This is desirable in that a supply source for generating and supplying a reference gas without a reference gas storage container can be built in.
また純化手段による 1回の純化工程では純化ができない場合は、 前記 検出後に前記検査用ガスが前記純化手段に通されて純化された後、 再び 前記純化手段に通されて前記基準ガスとされるようにしてもよい。  In the case where purification cannot be performed in one purification step by the purifying means, after the detection, the inspection gas is passed through the purifying means to be purified, and then passed through the purifying means again to be used as the reference gas. You may do so.
この場合、 前記純化手段を通した前記検査用ガスを一時的に収容して おく容器を設け、 この容器から前記検査用ガスが再度前記センサーに導 入されるように構成するのが望ましい。  In this case, it is desirable to provide a container for temporarily storing the test gas passed through the purifying means, and to introduce the test gas from the container into the sensor again.
即ち、 前記検査用ガスがガス導入口から前記シリンダ機構へ吸入され る時に、 前記センサーにおいて前記検出に供された後、 前記純化手段に より純化されて前記シリンダ機構に一時的に収容され、 このシリンダ機 構からの排出時に、 前記純化手段に再び通され純化されて前記基準ガス を生成し、 この基準ガスが前記センサーに導入されるように構成するの が望ましい。 That is, when the inspection gas is sucked into the cylinder mechanism from the gas inlet, after being subjected to the detection by the sensor, the gas is supplied to the purification unit. It is further purified and temporarily stored in the cylinder mechanism, and when discharged from the cylinder mechanism, is passed again through the purification means to be purified to generate the reference gas, and the reference gas is introduced into the sensor. It is desirable to configure as follows.
更に、 前記純化手段が脱臭又は Z及び脱水手段であり、 導入した検査 用ガスを脱臭又は脱水、 又はこの両方を行うことにより基準ガス化され ることが望ましい。  Further, it is preferable that the purifying means is deodorizing or Z and dehydrating means, and that the introduced test gas is deodorized and / or dehydrated or converted into a reference gas by performing both.
上記の如く、 基準ガスの供給源として、 基準ガスを収容した容器の筐 体への内設または基準ガスを生成する純化装置の筐体への内設により、 可搬式検査用ガスを構成し、 匂い識別に好適に用いることができる。 次に、 上記した第 1、 第 2及び第 3のガス検出装置の好ましい実施の 形態を図面参照下で具体的に説明する。  As described above, as a reference gas supply source, a portable inspection gas is configured by being installed in a housing of a container containing the reference gas or in a housing of a purification device that generates the reference gas, It can be suitably used for odor identification. Next, preferred embodiments of the above-described first, second and third gas detectors will be specifically described with reference to the drawings.
実施の形態 1  Embodiment 1
このガス検出装置は、 検査用ガス (以下、 テストガスと称することが ある。 ) に含まれている特定成分 (匂い) 、 その量、 濃度等を測定する ものであり、 第 1のガス検出装置 1と第 2のガス検出装置 1 ' の基本的 構成の違いは、 第 1のガス検出装置 1が、 基準ガス (以下、 ゼロガスと 称することがある。 ) の供給源が筐体に内設されることを特定したもの であり、 第 2のガス検出装置 1 ' が、 ガスの吸入 ·排気機構としてシリ ンダ機構を設けることを特定していることである。  This gas detector measures a specific component (smell) contained in a test gas (hereinafter sometimes referred to as a test gas), its amount, concentration, and the like. The difference between the basic configuration of the first and second gas detectors 1 ′ is that the first gas detector 1 has a reference gas (hereinafter sometimes referred to as “zero gas”) supply source installed in the housing. That is, the second gas detector 1 'specifies that a cylinder mechanism is provided as a gas intake / exhaust mechanism.
従って、 以下の説明 (後述する他の実施の形態を含む。 ) において、 第 1又は第 2のガス検出装置とことわり書きがない場合は双方に共通す る。 なお、 以下の各図も双方に共通の図として説明に用いる。  Therefore, in the following description (including other embodiments to be described later), the first and second gas detectors are common to both unless otherwise noted. In addition, the following drawings are also used for description as drawings common to both.
第 1のガス検出装置 1の概略構成は、 第 1図に示すように、 筐体 2の 内部に、 ゼロガス供給源としてのボンべ 9と、 ガス検出用のセンサー部 7と、 データ処理及び各部の動作を制御するデータ処理装置 1 1とが配 される。 As shown in Fig. 1, the schematic configuration of the first gas detection device 1 is as follows: a cylinder 9 as a zero gas supply source, and a sensor unit for gas detection 7 and a data processing device 11 for controlling data processing and operation of each unit.
ガスの吸排機構としては、 例えばピストンとシリンダとの組合せから なるシリンダ機構 (シリンジ) 3が内設され、 シリンダ機構 3の動作に より、 テストガスとして吸気口 1 4から導入される外気及びボンべ 9か らレギュレ一夕一 1 0を経由するゼロガスが、 配管 1 2 a、 又は 1 2 b を通り、 第 1及び第 2パルプ 8 a、 8 bの開閉によってセンサ一部 7に 供給されて測定され、 測定後のこれらのガスが一方向弁 6 a又は 6 bを 経てシリンダ機構 3に吸入され、 一方向弁 6 c又は 6 dを経て排出され る。 そして各部の動作は、 データ処理装置 1 1によって制御される。 但 し、 ガス吸排機構としてのシリンジ 3は必須の構成要件であってよい。 これにより、 第 1のガス検出装置 1は、 テストガスとして導入した周 囲に広く漂う外気と、 内部で供給したゼロガスとを測定し、 センサ一信 号の測定結果を測定毎に相対的に比較し、 その差異の正確な測定が常時 可能となるため、 環境の匂いを識別することを簡単に行うことができる, 従って、 従来例のようにバルブを切り替える必要がないため、 操作性が 良く、 構造が簡素化され、 携帯や組み込みに適した小型の匂い識別装置 が実現でき、 しかも装置自体を所要の場所に移動することができる。  As a gas intake / exhaust mechanism, for example, a cylinder mechanism (syringe) 3 composed of a combination of a piston and a cylinder is provided inside, and by the operation of the cylinder mechanism 3, external air and a cylinder introduced as test gas from the intake port 14 are introduced. Zero gas from 9 through regulation 10 is supplied to sensor part 7 by opening and closing first and second pulp 8a and 8b through piping 12a or 12b. After the measurement, these gases are sucked into the cylinder mechanism 3 through the one-way valve 6a or 6b, and discharged through the one-way valve 6c or 6d. The operation of each unit is controlled by the data processing device 11. However, the syringe 3 as a gas suction / discharge mechanism may be an essential component. As a result, the first gas detector 1 measures the outside air widely drifting around the area introduced as the test gas and the zero gas supplied inside, and relatively compares the measurement results of the sensor one signal for each measurement. However, accurate measurement of the difference is always possible, so that it is possible to easily identify the odor of the environment. Therefore, it is not necessary to switch the valve as in the conventional example, so that the operability is good. The structure is simplified, and a small-sized odor discriminator suitable for carrying or embedding can be realized, and the device itself can be moved to a required place.
また、 第 2のガス検出装置 1 ' の概略構成は第 1図に示すように、 筐 体 2の内部に、 ガス検出用のセンサー部 7と、 データ処理及び各部の動 作を制御するデータ処理装置 1 1と、 ピストンとシリンダの組合せから なるシリンダ機構 (シリンジ) 3とが配される。  As shown in FIG. 1, a schematic configuration of the second gas detection device 1 ′ includes a sensor 7 for gas detection, a data processing and a data processing for controlling the operation of each part inside the housing 2. A device 11 and a cylinder mechanism (syringe) 3 composed of a combination of a piston and a cylinder are provided.
ゼロガスは、 例えば筐体に内設したゼロガスボンベ 9から供給され、 テストガスとしては、 吸気口 1 4から外気が導入される。 そして、 これ らのガスはシリンダ機構 3の動作により、 吸気口 1 4から導入される外 気及びボンべ 9からレギユレ一夕一 1 0を経由するゼロガスが、 配管 1 2 a又は 1 2 bを通り、 第 1及び第 2バルブ 8 a、 8 bの開閉によって センサ一部 7に供給されて測定され、 測定後のガスは一方向弁 6 a又は 6 bを経てシリンダ機構 3に吸入され、 一方向弁 6 c又は 6 dを経て排 出される。 そして各部の動作はデータ処理装置 1 1によって制御される, 但し、 ゼロガス供給源としてのゼロガスボンベ 9の内設は必須の構成要 件であってよい。 The zero gas is supplied from, for example, a zero gas cylinder 9 provided in the housing, and outside air is introduced from an intake port 14 as a test gas. Then, by the operation of the cylinder mechanism 3, the outside air introduced from the intake port 14 and the zero gas passing through the cylinder 10 from the cylinder 9 are supplied to the pipe 1. After passing through 2a or 12b, the first and second valves 8a and 8b are opened and closed to supply the sensor part 7 and measured, and the gas after measurement passes through the one-way valve 6a or 6b to the cylinder. It is sucked into the mechanism 3 and discharged through the one-way valve 6c or 6d. The operation of each unit is controlled by the data processing device 11. However, the internal configuration of the zero gas cylinder 9 as a zero gas supply source may be an essential configuration requirement.
このように、 第 2のガス検出装置 1 ' は、 従来のポンプの代りにシリ ンジ (ベローズポンプでもよい) 3を使用することにより、 運転時の騒 音を低減することが可能となると共に、 筐体 2外から周囲ガスを導入し. これとゼロガスをセンサーに交互に導入して、 これらのガスの測定結果 を測定毎に相対的に比較して正確な測定ができる。 しかも、 従来のよう にバルブの切り替えも必要がなく、 簡素化された構造であるため操作性 が良く、 携帯や組み込みに適した小型の匂い識別装置が構成され、 装置 自体を測定したい場所に移動することができる。  As described above, the second gas detection device 1 ′ can reduce noise during operation by using a syringe (or a bellows pump) 3 instead of a conventional pump. Ambient gas is introduced from outside the housing 2. Zero gas and this gas are alternately introduced into the sensor, and the measurement results of these gases are relatively compared to each other for accurate measurement. In addition, there is no need to switch valves as in the past, and the simplified structure makes it easy to operate, and a small odor discriminator suitable for carrying or embedding is configured, and the device itself is moved to the place where measurement is desired. can do.
第 1図において、 使用するセンサ一は従来と同じものでよい。 吸入又 は排気手段としては、 シリンダ 4の両側に吸入口及び排気口を設けたシ リンジ 3を使用し、 吸気口 1 4とセンサー部 7との間には、 第 1バルブ 8 aを設け、 ゼロガスボンベ 9とセンサー部 7との間にも第 2パルプ 8 bを設ける。 第 1バルブ 8 aと第 2バルブ 8 bは、 ゼロガスボンベ 9か らのゼロガスと、 吸気口 1 4からのテストガスを交互に切り替えるバル ブであり、 データ処理装置 1 1からの制御信号 1 6で開閉が制御される, 従って、 バルブを切り替える必要がない。  In FIG. 1, the sensor used may be the same as the conventional one. As a suction or exhaust means, a syringe 3 having an intake port and an exhaust port on both sides of the cylinder 4 is used, and a first valve 8a is provided between the intake port 14 and the sensor section 7, The second pulp 8b is also provided between the zero gas cylinder 9 and the sensor unit 7. The first valve 8a and the second valve 8b are valves that alternately switch between the zero gas from the zero gas cylinder 9 and the test gas from the intake port 14.The control signal 16 from the data processor 11 The opening and closing are controlled, so there is no need to switch valves.
また、 ゼロガスボンベ 9は、 乾燥エアや窒素などを充填した容器であ り、 容器内部のゼロガスを使いきつた後は容器ごと交換も可能であり、 或いは内部気体を再充填することも可能なものである。 レギユレ一夕 1 0は、 第 2バルブ 8 b側にかかるゼロガス圧力を調整するためのもので ある。 また、 テストガスは、 測定したい場所のガスを別途採取してボン ベ等の容器に詰め、 これを吸気口 1 4に接続して供給することもできる, 本実施の形態の第 1、 第 2又は第 3のガス検出装置 1 ( 1 ' ) は、 例 えば、 以下の順序で運転する。 The zero gas cylinder 9 is a container filled with dry air, nitrogen, etc., which can be replaced after the zero gas inside the container is exhausted, or can be refilled with the internal gas. It is. Regyuray 10 is used to adjust the zero gas pressure applied to the second valve 8b side. is there. In addition, the test gas can be separately collected at a place to be measured, packed in a container such as a cylinder, and connected to the intake port 14 to supply the test gas. Alternatively, the third gas detection device 1 (1 ′) operates, for example, in the following order.
ステップ 1  step 1
第 1バルブ 8 aを閉、 第 2バルブ 8 bを開とし、 シリンジ 3のピスト ン 5を図中左から右に動かす。 このとき、 ゼロガスは、 ボンべ 9から第 2バルブ 8 bを通ってセンサー部 7に導入され、 センサー信号 1 7のゼ 口点が測定される。 シリンジ 3のピストン 5の右側にあったガスは、 排 気口 1 5 bから外部に排出される。  Close the first valve 8a, open the second valve 8b, and move the piston 5 of the syringe 3 from left to right in the figure. At this time, the zero gas is introduced into the sensor section 7 from the cylinder 9 through the second valve 8b, and the zero point of the sensor signal 17 is measured. The gas on the right side of the piston 5 of the syringe 3 is exhausted to the outside through the exhaust port 15b.
ステップ 2  Step 2
第 1バルブ 8 aを開、 第 2バルブ 8 bを閉とし、 シリンジ 3のピスト ン 5を図中右から左に動かす。 このとき、 テストガスが吸気口 1 4から 第 1バルブ 8 aを通ってセンサ一部 7に導入され、 センサー信号 1 7の 立ち上がりの変化が測定される。 センサー部 7に導入されたテストガス は、 そのままシリンジ 3のピストン 5の右側の体積に取り込まれる。 ピ ストン 5の移動に伴い左側のガスは、 排気口 1 5 aから外部に排出され る。  Open the first valve 8a, close the second valve 8b, and move the piston 5 of the syringe 3 from right to left in the figure. At this time, a test gas is introduced into the sensor part 7 from the intake port 14 through the first valve 8a, and a change in the rise of the sensor signal 17 is measured. The test gas introduced into the sensor unit 7 is directly taken into the volume on the right side of the piston 5 of the syringe 3. With the movement of piston 5, the gas on the left side is exhausted to the outside through the exhaust port 15a.
ステップ 3  Step three
第 1バルブ 8 aを閉、 第 2バルブ 8 bを開とし、 シリンジ 3のピスト ン 5を図中左から右に動かす。 このとき、 ゼロガスがボンべ 9から第 2 バルブ 8 bを通ってセンサー部 7に導入され、 センサー信号 1 7の立ち 下りの変化が測定される。 シリンジ 3のピストン 5の右側にあったガス は、 排気口 1 5 bから外部に排出される。 上記の運転によって、 例えば第 2図のような信号波形を観測すること ができる。 この波形をデータ処理装置に取り込み、 分析することによつ て、 正確にテストガスの匂いの識別を行うことができる。 Close the first valve 8a, open the second valve 8b, and move the piston 5 of the syringe 3 from left to right in the figure. At this time, zero gas is introduced from the cylinder 9 through the second valve 8b into the sensor unit 7, and the change of the falling edge of the sensor signal 17 is measured. The gas on the right side of the piston 5 of the syringe 3 is discharged to the outside through the exhaust port 15b. By the above operation, for example, a signal waveform as shown in FIG. 2 can be observed. By taking this waveform into a data processor and analyzing it, the smell of the test gas can be accurately identified.
第 2図は、 このガス検出装置による匂い識別の原理図であり、 センサ —部 7に配されたそれぞれ異なるガス成分を検出するセンサー 3 0 a、 3 0 b、 3 0 cによる信号波形である。 即ち、 ステップ 1において吸入 したゼロガスにより測定されたセンサ一信号 1 7のゼロレベルに対し、 ステップ 2において吸入したテストガス中の或る種の成分により、 各セ ンサー 3 0 a、 3 0 b、 3 0 cの電気的抵抗の変化が信号波形 A、 B、 Cの如く測定される。 従って、 この波形をデータ処理装置 1 1に取り込 み、 分析することによって、 匄いの識別を行うことができる。  FIG. 2 is a principle diagram of odor identification by the gas detection device, and shows signal waveforms of sensors 30a, 30b, and 30c arranged in the sensor unit 7 for detecting different gas components. . That is, for each zero level of the sensor signal 17 measured by the zero gas inhaled in Step 1, each sensor 30a, 30b, The change in electrical resistance of 30 c is measured as signal waveforms A, B, and C. Therefore, by taking this waveform into the data processing device 11 and analyzing it, it is possible to identify the color.
第 3図は、 このようなセンサー 3 0 a、 3 0 b、 3 0 cにおいて、 匂 い識別するためのセンサー構造の原理図を示す。  FIG. 3 shows a principle diagram of a sensor structure for odor discrimination in such sensors 30a, 30b, and 30c.
即ち、 このセンサー 3 0 ' は、 例えばカーボンブラックが分散された 高分子体 4 5の両側に電極 4 6が設けられ、 チャンバ一内に導入される ガスに高分子体 4 5が曝されることにより、 高分子体 4 5に匂い成分が 付着して膨潤し、 電気抵抗を変化させるため、 電気抵抗の変化が配線を 介して測定回路によって測定され、 その結果が第 2図のような信号波形 として測定される。  That is, in this sensor 30 ′, for example, electrodes 46 are provided on both sides of a polymer 45 in which carbon black is dispersed, and the polymer 45 is exposed to gas introduced into one chamber. As a result, the odor component adheres to the polymer 45 and swells to change the electric resistance.The change in the electric resistance is measured by a measuring circuit via wiring, and the result is a signal waveform as shown in FIG. Is measured as
次に、 第 4 A図〜第 8図に示す具体例により、 本実施の形態によるガ ス検出装置 1 ( 1 ' ) におけるセンサ一部 7内のセンサーの構造及び機 能を説明する。  Next, the structure and function of the sensor in the sensor part 7 in the gas detection device 1 (1 ′) according to the present embodiment will be described with reference to specific examples shown in FIGS. 4A to 8.
第 4 A図に示すように、 センサー 3 0は、 ガラス基板 (例えば、 厚さ 3 0 0 x m程度) 2 5上の両端部に電極 2 6を配し、 この電極 2 6の上 面を除く全面にセンサー材料薄膜 2 8を設けた構造である。 このガラス 基板 2 5はセンサー材料薄膜 2 8及び電極 2 6の支持材であり、 基板材 料としては、 表面に酸化膜を形成したシリコン基板又はプラスチック基 板でもよい。 また、 電極 2 6はセンサー材料薄膜 2 8と外部配線との電 気的接点であり、 例えば、 T i (チタン) /Au (金) = 5 0 nm/2 0 0 nmの蒸着膜をリフトオフでパターンニングしたものである。 As shown in FIG. 4A, the sensor 30 is provided with electrodes 26 at both ends on a glass substrate (for example, about 300 xm thick) 25 and excluding the upper surface of the electrode 26 This is a structure in which a sensor material thin film 28 is provided on the entire surface. This glass substrate 25 is a support material for the sensor material thin film 28 and the electrode 26, The material may be a silicon substrate or a plastic substrate having an oxide film formed on the surface. The electrode 26 is an electrical contact between the sensor material thin film 28 and the external wiring. For example, a deposited film of Ti (titanium) / Au (gold) = 50 nm / 200 nm is lifted off. Patterned.
センサ一材料薄膜 2 8は決まった種類の匂い分子が吸着すると、 電気 抵抗が変化する薄膜であり、 第 4 A図の b部の拡大断面図として第 4 B 図及び第 4 C図に示すように、 金属微粒子 4 9 (例えば φ = 4 ηπι程 度の Au粒子) がリンカ一分子 5 0で相互に結合された積層構造を有す る薄膜であり、 リンカ一分子 5 0は、 少なくとも 2箇所に金属微粒子 4 9と配位結合を形成する官能基 (例えば、 Au粒子に対しては、 _ SH 基) を有する有機分子であって、 例えば、 l,9-nonane dit iol (ノナ ンジチオール) や Biphenyl dithiol (ビフエ二ルジチオール) など が使われる。  The sensor-material thin film 28 is a thin film whose electrical resistance changes when a certain type of odor molecule is adsorbed, as shown in Figs. 4B and 4C as an enlarged cross-sectional view of part b in Fig. 4A. In addition, a metal thin film 49 (for example, Au particles having a diameter of about φ = 4ηπι) is a thin film having a laminated structure in which the linker molecules 50 are bonded to each other. An organic molecule having a functional group that forms a coordination bond with the metal fine particles 49 (for example, _SH group for Au particles), such as l, 9-nonanedithiol (nonandithiol) or Biphenyl dithiol (biphenyl dithiol) is used.
第 5 A図は、 上記の如きセンサー 3 0を収容したセンサ一部 7の概略 断面図であり、 第 5 B図は、 第 5 A図の b _ b線断面図である。  FIG. 5A is a schematic cross-sectional view of a sensor part 7 containing the sensor 30 as described above, and FIG. 5B is a cross-sectional view taken along the line bb of FIG. 5A.
第 5 B図に示すように、 センサー部 7内には例えば 3種類のセンサ一 3 0 a、 3 0 b、 3 0 cが配列され、 これらのセンサー 3 0 a、 3 0 b 3 0 cは密閉性のあるセンサ一チャンパ一 2 7 (例えば、 テフロン (登 録商標) 製) に収納されている。 このセンサ一 3 0の種類は、 1種類以 上何種類でもよい。  As shown in FIG. 5B, for example, three types of sensors 30a, 30b, and 30c are arranged in the sensor unit 7, and these sensors 30a, 30b30c are It is housed in an airtight sensor-chamber 27 (for example, made of Teflon (registered trademark)). The number of types of the sensor 130 may be one or more.
収納されたセンサ一 3 0 a、 3 0 b、 3 0 cは、 センサーチャンバ一 2 7に設けられた吸気口 4 7より導入されたガスが、 排気口 48力ゝら排 出されるまでの間に、 導入されたガスに暴露され、 電気抵抗を変化させ る。 各センサーの電気抵抗の変化は、 センサ一 3 0 a、 3 0 b、 3 0 c に接続された電気配線 2 9を通して、 センサ一測定回路で測定される。 第 6図は、 個々のセンサ一の測定回路を示す図であり、 この回路を用 いて、 基準抵抗 R uとの分圧 V。UTを測定して、 相対変化値を求めてもよ い。 この場合、 V。UTは、 R Dと次の関係にある。 The stored sensors 30a, 30b, and 30c are used until the gas introduced from the intake port 47 provided in the sensor chamber 27 is exhausted from the exhaust port 48 force. In addition, it is exposed to the introduced gas and changes its electrical resistance. The change in the electric resistance of each sensor is measured by a sensor-measurement circuit through electric wires 29 connected to the sensors 30a, 30b, and 30c. Figure 6 is a diagram showing a measurement circuit of each sensor-and have use of this circuit, the partial pressure V. the reference resistance R u The UT may be measured to determine the relative change. In this case, V. UT has the following relationship with RD .
OUT = DD X 但し、 VDD、 —定, OUT = DD X where V DD ,
即ち、 V。UTを測定すれば、 R Dの相対変化値が分かる。 この回路を用 いた場合、 センサーの抵抗値によらず、 測定電圧が所定の範囲 (0〜V DD) に収まるので、 測定レンジの切り替えを行う必要がなくなるので、 電圧測定回路を簡略化 ·高速化できる利点がある。 That is, V. Measuring UT gives the relative change in RD . When this circuit is used, the measurement voltage is within the specified range (0 to V DD ) regardless of the resistance value of the sensor, so there is no need to switch the measurement range, thus simplifying the voltage measurement circuit. There is an advantage that can be made.
基準抵抗 R uは、 好ましくは、 その抵抗値がそれぞれのセンサーの抵 抗 R Dとほぼ等しくなるように調整される。 このとき、 最大の電圧感度 が得られる。 電圧 V DDは、 V QUT を発生させるための固定電圧であって. センサーの耐圧や寿命、 V QUTの測定精度や雑音などを勘案して定めら れる (例えば、 5 0〜 2 0 0 m V ) 。 The reference resistance Ru is preferably adjusted such that its resistance is approximately equal to the resistance RD of the respective sensor. At this time, the maximum voltage sensitivity is obtained. The voltage V DD is a fixed voltage for generating the V QUT. The voltage V DD is determined in consideration of the withstand voltage and life of the sensor, the measurement accuracy of the V QUT , noise, and the like (for example, 50 to 200 mV). ).
第 7図及び第 8図は、 本実施の形態のガス検出装置 1による測定例で あり、 この測定による信号波形の実測グラフを示し、 例えば、 第 7図は コーヒー豆、 第 8図はウィスキーの測定例であり、 いずれも同一のセン サーアレイで測定した信号波形の測定結果である。  7 and 8 are examples of measurement by the gas detection device 1 of the present embodiment, and show actual measurement graphs of signal waveforms by this measurement. For example, FIG. 7 shows coffee beans, and FIG. 8 shows whiskey. These are measurement examples, all of which are measurement results of signal waveforms measured with the same sensor array.
上記したように、 センサ一部 7は 3つの異なる種類のセンサー 3 0 a . 3 0 b、 3 0 cから構成されているため、 それぞれのセンサーの応答波 形や信号振幅が、 コーヒー豆とウイスキーでは異なっていることが分か る。 このように信号パターンの相違から、 コーヒーとウイスキーを識別 することが可能である。 これらのセンサーにおいては、 より強く反応する成分がセンサー毎に 異なっているため、 例えば、 親水性の分子により強く反応するセンサー や、 疎水性の分子により強く反応するセンサ一等を配置するなど、 測定 対象物が含んでいると考えられる匂いの成分構成に応じて、 センサーァ レイを構成するセンサーの性能を変えることができる。 As described above, sensor part 7 is composed of three different types of sensors 30a.30b and 30c, so that the response waveform and signal amplitude of each sensor are Now you can see that they are different. Thus, it is possible to distinguish between coffee and whiskey from the difference in signal patterns. In these sensors, since the components that react more strongly differ from sensor to sensor, for example, a sensor that reacts more strongly with hydrophilic molecules or a sensor that reacts more strongly with hydrophobic molecules is installed. The performance of the sensors that make up the sensor array can be changed according to the composition of the odor components that are considered to be contained in the object.
いずれのセンサーの測定波形も時間の経過と共に波形の高さが小さく なっており、 波形振幅の変化が観察される (第 7図及び第 8図の各セン サ一) 。また、 各センサーのゼロレベルの位置のシフトが観察される (例えば、第 7図のセンサー 3 0 a及び 3 0 cはゼロレベルの位置が低 下し、 3 O bは増加している) 。 この現象はコーヒー豆及びウィスキー の匂い分子や、 コーヒー豆及びウィスキーに多く含まれると考えられる 親水性分子等が、 センサー材料の表面に付着する等により、 センサ一の 機能が低下するためである。 従って、 ゼロガスとテストガスを交互にセ ンサ一部に導入することにより、 センサーのゼロレベルが調整されなが ら、 ゼロガスとテストガスとの信号強度の差が相対変化として測定でき る。  The height of the measured waveform of each sensor decreases with time, and a change in the amplitude of the waveform is observed (each sensor in FIGS. 7 and 8). Also, a shift in the zero-level position of each sensor is observed (for example, sensors 30a and 30c in FIG. 7 have a reduced zero-level position and 3Ob has increased). This phenomenon is because the function of the sensor decreases due to the adhesion of the smell molecules of coffee beans and whiskey and the hydrophilic molecules, which are considered to be contained in coffee beans and whiskey, to the surface of the sensor material. Therefore, by introducing the zero gas and the test gas alternately into a part of the sensor, the signal level difference between the zero gas and the test gas can be measured as a relative change while the zero level of the sensor is adjusted.
上記したように、 本実施の形態のガス検出装置を用い、 測定したい場 所の気体の測定ができると共に、 物を対象としてその周囲の雰囲気中に 含まれている特定成分の種類とその量、 濃度等を簡単で正確に測定する ことができる。  As described above, by using the gas detection device of the present embodiment, it is possible to measure the gas at the place to be measured, and to determine the type and amount of the specific component contained in the surrounding atmosphere of the object. Concentration can be measured easily and accurately.
本実施の形態によれば、 第 1のガス検出装置 1は、 基準ガスとしてゼ 口ガスを収容したボンべ 9が筐体 2に内設され、 テストガスとして吸気 口 1 4から周囲ガスを導入して測定できるので、 これらのガスをセンサ —に交互に導入し、 その測定結果を測定毎に相対的に比較して、 周囲ガ ス中の句いの正確な測定ができることに加え、 操作性が良く、 測定した い場所にこのガス検出装置 1を移動させ、 現場で測定することができる と共に、 テストガスを別途採取した容器から供給する場合は、 この装置 は現場以外の場所に固定したままで測定することができる。 更にガスの 吸入、 排出にシリンジ 3を筐体 2に内設することも可能であり、 これに よりガスの吸入量及び排気量の定量化と共に低騷音な運転ができる。 According to the present embodiment, in the first gas detection device 1, a cylinder 9 containing a vent gas as a reference gas is provided in the housing 2, and ambient gas is introduced from the intake port 14 as a test gas. These gases are alternately introduced into the sensor — and the measurement results are compared relatively for each measurement to enable accurate measurement of phrases in the surrounding gas, as well as operability. Move the gas detector 1 to the place where you want to measure and measure it on site In addition, when the test gas is supplied from a separately collected container, the measurement can be performed with this device fixed at a place other than the site. Further, it is possible to install a syringe 3 in the housing 2 for gas inhalation and exhaustion, whereby quantification of the gas intake and exhaust volumes and low noise operation can be performed.
また、 第 2のガス検出装置 1 ' は、 テストガスとして筐体外の周囲ガ スを導入して測定することができ、 このテストガス及びゼロガスをセン サ一に交互に導入し、 その測定結果を測定毎に相対的に比較してテスト ガスの匄いの正確な測定ができる。 しかも、 これらのガスの吸入 ·排出 がシリンジ 3によって行われるので、 ガスの吸入量及び排気量が定量化 されると共に、 低騒音で運転することができる。 更に装置の操作性が良 く、 また、 ゼロガスの供給源としてゼロガスボンベ 9を筐体に内設する ことも可能であり、 このゼロガスボンベ 9を内設することにより、 測定 したい場所にこの装置 1を移動させ、 その場で測定することもでき、 テ ストガスのみをサンプリングして供給することにより、 別の場所で測定 することもできる。  In addition, the second gas detector 1 ′ can measure by introducing a surrounding gas outside the housing as a test gas.The test gas and the zero gas are alternately introduced into the sensor, and the measurement result is obtained. Accurate measurement of test gas length can be made by comparing each measurement relatively. In addition, since the intake and discharge of these gases are performed by the syringe 3, the amount of intake and exhaust of the gas can be quantified, and the operation can be performed with low noise. Further, the operability of the apparatus is good, and it is also possible to install a zero gas cylinder 9 in the housing as a zero gas supply source. The test gas can be moved and measured on the spot, or it can be measured at another location by sampling and supplying only the test gas.
実施の形態 2  Embodiment 2
第 9図は、 本実施の形態によるガス検出装置 1 Aの概略構成図を示す t このガス検出装置 1 Aは、 上記した実施の形態 1と同様に、 テストガ スは周囲ガスを筐体に取り込むようになっているが、 実施の形態 1とは 基準ガス供給源、 シリンダ機構及びこれらに付随する配管やバルブが異 なり、 これ以外は実施の形態 1と同様な構成であり、 実施の形態 1にお ける第 1及び第 2のガス検出装置と同等に機能する。 そして、 このよう な構成は上記した第 1又は第 2のガス検出装置に適用することができる ガスの吸入 ·排気機構としては、 同一側から吸入又は排気するシリン ダ 4 a及びピストン 5 aからなるシリンジ 2 1が筐体 2に内設され、 基 準ガス供給源としては、 使用後のテス卜ガスを純化装置 1 9で純化して 基準ガス化するようになつている。 Figure 9 is, t the gas detection device 1 A showing a schematic configuration of a gas detection device 1 A according to this embodiment, as in the first embodiment described above, Tesutoga scan capture the ambient gas in the housing However, the first embodiment differs from the first embodiment in the reference gas supply source, the cylinder mechanism, and the pipes and valves associated therewith. It functions in the same way as the first and second gas detectors. Such a configuration can be applied to the above-described first or second gas detection device. The gas intake / exhaust mechanism includes a cylinder 4a and a piston 5a that inhale or exhaust from the same side. Syringe 21 is installed inside housing 2 and As a reference gas supply source, a used test gas is purified by a purifier 19 to be converted into a reference gas.
即ち、 吸排気口 2 3から配管 1 2 aを通って導入される外気が、 セン サ一部 7においてテストガスに関するデータが測定された後、 純化装置 1 9によって純化されてシリンジ 2 1のシリンダ 4 a内に一旦収容され、 この排出時に再び純化装置 1 9により純化されて基準ガス化し、 このガ スが基準ガスとしてセンサー部 7に供給される。 従って、 テストガスと 基準ガスがセンサ一部 7に交互に導入され、 センサー部 7におけるガス の測定結果を測定毎に相対的に比較することにより、 テストガスの正確 な測定ができると共に、 シリンジ 2 1からなる吸入 ·排気機構により、 ガスの吸入量及び排気量が定量化され、 低騒音で小型のガス検出装置を 可搬式に構成することができる。 伹し、 この場合もテストガスはサンプ リングしたものを供給し、 装置は固定して測定することもできる。  That is, the outside air introduced from the intake / exhaust port 23 through the pipe 12 a is purified by the purifier 19 after the data on the test gas is measured by the sensor part 7, and the cylinder of the syringe 21 is The gas is once contained in 4a, and when this gas is discharged, the gas is purified again by the purifier 19 to be a reference gas, and this gas is supplied to the sensor unit 7 as a reference gas. Therefore, the test gas and the reference gas are alternately introduced into the sensor part 7 and the measurement results of the gas in the sensor part 7 are relatively compared for each measurement. The intake / exhaust mechanism consisting of 1 quantifies the amount of gas intake and exhaust, making it possible to construct a portable, low-noise, compact gas detector. However, in this case as well, the test gas is supplied in a sampled manner, and the measurement can be performed with the device fixed.
このように、 本実施の形態のガス検出装置 1 Aは、 ゼロガスとして、 匂いの測定に供したテストガスを純化して再利用することにより、 ゼロ ガスとの切り替えに必要な弁などの部品を減らして構造を簡素化するこ とができ、 携帯や組み込みに適した小型の匂い識別装置とすることがで さる。  As described above, the gas detection device 1A according to the present embodiment purifies and reuses the test gas subjected to the odor measurement as the zero gas, thereby making the components such as valves necessary for switching to the zero gas. The structure can be simplified by reducing the size, and a small-sized odor discriminator suitable for carrying or incorporating can be obtained.
本実施の形態においても、 センサーは従来と同じものを使用すること ができる。 純化装置 1 9は、 テストガス中の水分や匂い分子を除去する 装置であり、 例えば、 シリカゲルや活性炭及び種々の触媒を収めた個々 の容器を、 ガスが順に経由するように構成した濾過装置である。 シリン ジ 2 1は、 シリンダ 4 aとピストン 5 a及びビストンの駆動装置からな り、 ピストン 5 aは、 データ処理装置 1 1からの制御信号 1 8によって 往復運動する。 従って、 バルブを切り替える必要はない。 まず、 ピストン 5 aがテストガスを引き込むときは、 環境の気体が吸 排気口 2 3から取り込まれ、 センサー部 7に送られる。 センサー部 7に 送られたテストガスは、 テストガスに特徴的なセンサ一信号 1 7の変化 を引きおこし、 このデ一夕がデータ処理装置 1 1で測定され、 続いてこ のガスが純化装置 1 9に送られ、 ガスに含まれる匂い分子や水分が除去 される。 このようにして純化されたガスは、 一時的にシリンジ 2 1のシ リンダ 4 aに取り込まれる。 Also in the present embodiment, the same sensor as in the related art can be used. The purifying device 19 is a device that removes moisture and odor molecules in the test gas.For example, it is a filtration device that is configured so that the gas passes through individual containers containing silica gel, activated carbon, and various catalysts in order. is there. The syringe 21 includes a cylinder 4a, a piston 5a, and a driving device for a piston. The piston 5a reciprocates according to a control signal 18 from the data processing device 11. Therefore, there is no need to switch valves. First, when the piston 5a draws in the test gas, environmental gas is taken in from the intake / exhaust port 23 and sent to the sensor unit 7. The test gas sent to the sensor section 7 causes a change in the sensor signal 17 characteristic of the test gas, and this data is measured by the data processing device 11. It is sent to 9 to remove odor molecules and water contained in the gas. The gas thus purified is temporarily taken into the syringe 4a of the syringe 21.
次に、 ピストン 5 aがシリンジ 2 1に取り込んだ純化されたガスを押 し出す。 このとき、 シリンダ 4 a内に取り込まれていた純化されたガス は、 再度純化装置 1 9を通ってセンサ一部 7に送られる。 このとき、 セ ンサ一部 7に送られるガスは 2度の純化によってゼロガスとなっている ので、 ゼロガスに対するセンサ一部 7の応答と、 テストガスに対する応 答を比較することによって、 テストガスに特徴的な信号パターンを得る ことができ、 テストガスの正確な識別が可能となる。  Next, the piston 5a pushes out the purified gas taken into the syringe 21. At this time, the purified gas taken in the cylinder 4a is sent to the sensor part 7 again through the purification device 19. At this time, the gas sent to the sensor part 7 is zero gas due to the two purifications.By comparing the response of the sensor part 7 to the zero gas and the response to the test gas, the characteristic of the test gas is obtained. It is possible to obtain a unique signal pattern and to accurately identify the test gas.
このガス検出装置 1 Aは、 ゼロガスをテストガスの純化によって内部 で生成しているので、 このガス検出装置 1 Aを取り巻く環境に広く分布 しているテストガスであっても正確な識別が可能である。  Since the gas detector 1A generates zero gas internally by purifying the test gas, accurate identification is possible even for test gases that are widely distributed in the environment surrounding the gas detector 1A. is there.
第 1 0図は、 実施の形態 2の変形例によるガス検出装置 1 Bの概略構 成図である。  FIG. 10 is a schematic configuration diagram of a gas detection device 1B according to a modification of the second embodiment.
即ち、 純化装置 2 0は、 内容される材料や内部構造等により純化能力 を高めることができ、 1回の濾過により、 基準ガスとしてのゼロガスを 生成することも可能である。 従って、 純化性能の高い純化装置 2 0を配 し、 これに必要な配管 1 2 b及びバルブ 8 a、 8 bが、 第 9図とは異な る構成で設けられている。 そして、 この装置は第 9図に示した装置と同 様に、 上記した第 1及び第 2のガス検出装置に適用することができる。 このガス検出装置 1 Bは、 純化装置 2 0による 1回の濾過により基準 ガスが生成可能であるので、 シリンジ 2 1の吸入時にはバルブ 8 aが開 バルブ 8 bが閉となって、 吸入されたテストガスはセンサー部 7及び純 化装置 2 0を経由し、 生成された基準ガスがシリンジ 2 1のシリンダ 4 aに一旦収容され、 この排出時にはバルブ 8 aが閉、 バルブ 8 bが開と なり、 基準ガスが配管 1 2 bを経由してセンサー部 7に供される。 That is, the purifying device 20 can increase the purifying ability by the material and the internal structure to be contained, and can generate zero gas as a reference gas by one filtration. Therefore, a purifying device 20 having high purifying performance is provided, and the necessary piping 12b and valves 8a and 8b are provided in a configuration different from that of FIG. This device can be applied to the above-described first and second gas detection devices, similarly to the device shown in FIG. Since this gas detector 1B can generate the reference gas by one-time filtration by the purifier 20, the valve 8a is opened when the syringe 21 is inhaled, the valve 8b is closed, and the gas is inhaled. The test gas passes through the sensor unit 7 and the purifying device 20, and the generated reference gas is temporarily stored in the cylinder 4a of the syringe 21, and at the time of discharge, the valve 8a is closed and the valve 8b is opened. The reference gas is supplied to the sensor unit 7 via the pipe 12b.
第 1 1図及び第 1 2図は、 このガス検出装置 1 Bにおける純化装置 2 0の濾過構造の他の例を示す図であり、 例えば第 1 1図に示すように、 純化装置 2 0 a、 2 0 b及び 2 0 cの如く複数の純化装置を並列に配し た構造である。 また、 第 1 2図は、 例えば上記と同様の純化装置 2 0 a 2 0 bを直列に配した構造 (2 0 cを加えてもよい) であり、 いずれも 第 1 1図と同等の純化能力を発揮することができる。  FIGS. 11 and 12 are diagrams showing other examples of the filtering structure of the purifying device 20 in the gas detection device 1B. For example, as shown in FIG. , 20b and 20c, in which a plurality of purifying devices are arranged in parallel. FIG. 12 shows a structure (for example, 20 c may be added) in which purifiers 20 a 20 b similar to those described above are arranged in series. I can show my ability.
本実施の形態によれば、 テストガスとして、 筐体 2の周囲ガスを導入 してその匂いを測定することができ、 しかも筐体 2の内部に純化装置 1 9 (又は 2 0 ) を設けて、 外部から導入したテストガスを純化して基準 ガスが内部で生成されるので、 テストガスと基準ガスを交互にセンサー に導入して正確に測定できる上に、 測定しょうとする場所にこのガス検 出装置 1 A (又は 1 B ) を持って行き、 現場で測定することができると 共に、 テストガスをボンベから供給する場合は、 この装置は現場以外の 場所に固定して測定することができる。  According to the present embodiment, as a test gas, the gas around the housing 2 can be introduced and its odor can be measured, and the purifier 19 (or 20) is provided inside the housing 2. Since the reference gas is generated internally by purifying the test gas introduced from the outside, the test gas and the reference gas are alternately introduced into the sensor so that accurate measurement can be performed. If the test device is supplied from a cylinder with the discharge device 1 A (or 1 B) and can be measured on site, this device can be fixed and measured at a location other than the site. .
上記した各例では、 吸気 ·排気手段としてシリンジを用いたが、 これ らは、 ベローズポンプに置き換えてもよい。 ベローズポンプでも、 シリ ンジと同じ低騒音性、 小型性を得ることができる。  In each of the above examples, a syringe was used as the intake / exhaust means, but these may be replaced with a bellows pump. The bellows pump can achieve the same low noise and compactness as a syringe.
第 1 3図は、 実施の形態 1の変形例によるガス検出装置 1 Cを示す概 略構成図であり、 実施の形態 1と同様に、 第 1及び第 2のガス検出装置 に適用することができる。 即ち、 第 1 3図に示すように、 このガス検出装置 1 Cは、 ガスの吸 入 ·排気手段として従来例と同様のポンプを設けたものである。 従って. これ以外は実施の形態 1と同様な構成になっており、 実施の形態 1と同 様に取扱うことにより、 十分な性能を発揮できると共に、 可搬式に形成 することができるので、 測定しょうとする現場に持って行き、 現場測定 ができる一方、 テストガスをボンベから供給することにより、 現場以外 の場所にこの装置を固定して測定することもできる。 FIG. 13 is a schematic configuration diagram showing a gas detector 1C according to a modification of the first embodiment. As in the first embodiment, the gas detector 1C can be applied to the first and second gas detectors. it can. That is, as shown in FIG. 13, this gas detection device 1C is provided with a pump similar to the conventional example as a gas intake / exhaust means. Other than this, the configuration is the same as that of the first embodiment, and by handling it in the same manner as the first embodiment, sufficient performance can be exhibited and the device can be formed in a portable manner. It can be taken to the site where it is to be used for on-site measurement, while the test gas can be supplied from a cylinder to fix this device to a location other than the site for measurement.
上記した各実施の形態によれば、 ゼロガスは、 その供給源を筐体に内 設、 又は純化装置によって筐体の内部で生成するので、 測定場所が制約 されることなく、 どこででもこの匂い識別装置を取り巻く環境の匂いを 識別することができる。  According to each of the above-described embodiments, the zero gas is generated inside the housing or inside the housing by the purifying device, so that the odor identification can be performed anywhere without restriction on the measurement place. The smell of the environment surrounding the device can be identified.
従って、 例えば、 この装置を口ポットに組み込んだ場合、 口ポットが 自分の周囲の匂いを分析することにより、 例えば家屋別室や近隣の火災, 料理の出来具合、 家族の帰宅、 不法侵入などを検知することが可能とな り、 また、 この装置を街路や森林、 海辺に持って行くことにより、 その 環境の匂いを分析することが可能となる。  Therefore, for example, when this device is installed in a mouth pot, the mouth pot analyzes the smell around it, and detects fires in a separate room of a house or a neighborhood, the state of cooking, the return of a family member, illegal invasion, etc. It is also possible to analyze the odor of the environment by taking this device to streets, forests, and the seaside.
更に、 吸気 ·排気機構として、 シリンジまたはべローズポンプを用い たことにより、 吸排気動作で発生する騒音が低減され、 携帯や組み込み に適した小型の匂い識別装置を実現することができる。  Furthermore, by using a syringe or a bellows pump as the intake / exhaust mechanism, noise generated by the intake / exhaust operation is reduced, and a small-sized odor discriminating device suitable for carrying or assembling can be realized.
また、 センサーによる測定に用いたテストガスを純化して蓄積し、 ゼ 口ガスとして再利用することにより、 ゼロガスとテストガスの切り替え に必要なバルブ等の部品を減らすことができ、 装置全体を一層小型化す ることができる。  In addition, by purifying and accumulating the test gas used for measurement by the sensor and reusing it as a zero gas, it is possible to reduce parts such as valves required for switching between the zero gas and the test gas, and to further improve the entire device. It can be downsized.
上記した各実施の形態は、 本発明の技術的思想に基づいて変形するこ とが可能である。 例えば、 テストガスは、 測定しょうとする場所の環境ガスを測定する ために、 装置をその現場に持って行き、 その場所においてテストガスを 吸入して測定できるものであるが、 テス卜ガスのみをボンべ等の容器に 別途採取し、 装置は別の場所に固定して測定することもできる。 Each of the above embodiments can be modified based on the technical idea of the present invention. For example, a test gas can be measured by bringing the device to the site to measure the environmental gas at the place where the measurement is to be performed, and then inhaling the test gas at the place, but measuring only the test gas. The sample can be separately collected in a container such as a cylinder, and the device can be fixed at another place for measurement.
また、 第 1のガス検出装置は、 ゼロガスボンベの内設を限定してガス の吸排機構はシリンジでもよいとし、 第 2のガス検出装置は、 ガスの吸 排機構にシリンジの設置を限定して、 ゼロガスはゼロガスボンベの内設 でもよいとしているが、 第 1及び第 2のガス検出装置のいずれも、 ゼロ ガスボンベ及びシリンジを併用してもよい。  Further, the first gas detection device is limited to the inside of the zero gas cylinder, and the gas suction / discharge mechanism may be a syringe.The second gas detection device may be limited to the gas suction / discharge mechanism with a syringe. Although the zero gas may be provided inside the zero gas cylinder, both the first and second gas detectors may use the zero gas cylinder and the syringe together.
また、 ガスの吸入 ·排気手段としては、 上記したシリンジ、 ポンプ又 はべ口一ズポンプ以外にも圧電素子を用いた吸入 ·排気手段又は、 その 他の吸入 ·排気手段を用いることができる。  In addition, as the gas intake / exhaust means, an intake / exhaust means using a piezoelectric element or other intake / exhaust means other than the above-described syringe, pump or port-and-mouth pump can be used.
また、 実施の形態はテストガス中の匂いの識別用として記述したが、 これ以外にも、 例えばガスの種類、 その量や濃度及び物性値の測定用に 適用することができる。  Although the embodiment has been described for identification of odors in a test gas, the present invention can also be applied to, for example, measurement of the type, quantity, concentration, and physical properties of a gas.
また、 実施の形態に示した装置の各部の構造や配置等についても、 実 施の形態以外に適宜に実施することができる。 上述したガス検出装置は、 自立的に駆動されるロポット装置に組み込むことが可能である。  Further, the structure, arrangement, and the like of each unit of the device described in the embodiment can be appropriately implemented in addition to the embodiment. The above-described gas detection device can be incorporated in a independently driven ropot device.
上述した如く、 本発明の第 1及び第 3のガス検出装置によれば、 基準 ガスの供給源が筐体に内設され、 検査用ガスが筐体外から導入され、 或 いは基準ガス供給源とセンサ一とを一体化しているので、 検査したい領 域の周囲ガスを検査用ガスとして筐体外から導入して周囲ガスを測定す ることができ、 また、 この検査用ガス又は基準ガスを筐体に内蔵したセ ンサ一に交互に導入して、 これらのガスの測定結果を測定毎に相対的に 比較して検査用ガスの測定を正確に行え、 この際に、 基準ガスは筐体に 内設された基準ガス供給源から導入しているので、 基準ガス供給源を外 設する場合に比べて装置全体をコンパクトに構成することができ、 しか も基準ガス供給源と共に装置自体を所要の場所に移動させるように構成 することが容易となる。 As described above, according to the first and third gas detectors of the present invention, the reference gas supply source is provided inside the housing, the inspection gas is introduced from outside the housing, or the reference gas supply source Since the sensor and the sensor are integrated, the surrounding gas in the area to be inspected can be introduced as a test gas from the outside of the housing to measure the surrounding gas. The test gas can be accurately measured by alternately introducing the sensor into the sensor built into the body, and comparing the measurement results of these gases with each other for each measurement. Since the gas is introduced from the internal reference gas supply source, the reference gas supply The entire apparatus can be made compact as compared with the case where the apparatus is provided, and it is easy to move the apparatus itself to a required place together with the reference gas supply source.
また、 本発明の第 2のガス検出装置によれば、 シリンダ機構のピスト ンの往復動によって、 基準ガス供給源からの基準ガス又は筐体外からの 検査用ガスがセンサ一に導入されるので、 検査用ガスとして筐体外から 周囲ガスを導入して周囲ガスを測定することができ、 また、 この検査用 ガス及び基準ガス供給源からの基準ガスをセンサーに交互に導入して、 これらのガス測定結果を測定毎に相対的に比較して検査用ガスの測定を 正確に行え、 更にこれらのガスがシリンダ内におけるピストンの往復動 により吸入又は排気されるため、 ガスの吸入量及び排気量が定量化され ると共に、 低騒音で小型のガス検出装置を提供することができる。  According to the second gas detection device of the present invention, the reference gas from the reference gas supply source or the inspection gas from outside the housing is introduced into the sensor 1 by the reciprocating movement of the piston of the cylinder mechanism. Ambient gas can be measured from the outside of the enclosure as an inspection gas to measure the ambient gas.The inspection gas and the reference gas from the reference gas supply source are alternately introduced into the sensor to measure these gases. Inspection gases can be measured accurately by comparing the results relative to each measurement, and these gases are sucked or exhausted by the reciprocating motion of the piston in the cylinder. In addition, it is possible to provide a low-noise, compact gas detector.

Claims

請求の範囲 The scope of the claims
1 . 基準ガスと検査用ガスとを筐体内のセンサーに交互に導入し、 前 記検査用ガス中の特定成分を検出するガス検出装置において、 前記セン サ一を内蔵した前記筐体内に、 前記基準ガスの供給源が内設され、 かつ 前記筐体外から前記検査用ガスが導入されることを特徴とする、 ガス検 出装置。 1. In a gas detection device for introducing a reference gas and a test gas alternately into a sensor in a housing to detect a specific component in the test gas, the gas detection device includes: A gas detection device, wherein a reference gas supply source is provided inside, and the inspection gas is introduced from outside the housing.
2 . 前記筐体が可搬式である、 請求の範囲第 1項に記載したガス検出 2. The gas detection according to claim 1, wherein the housing is portable.
3 . 前記検査用ガスが前記筐体外の周囲ガスである、 請求の範囲第 1 項に記載したガス検出装置。 3. The gas detection device according to claim 1, wherein the inspection gas is a surrounding gas outside the housing.
4 . 前記基準ガスの供給源が、 前記基準ガスを収容した容器である、 請求の範囲第 1項に記載したガス検出装置。  4. The gas detection device according to claim 1, wherein the supply source of the reference gas is a container containing the reference gas.
5 . 前記基準ガスの供給源が前記検査用ガスの純化手段であり、 この 純化手段によって前記検出後の前記検査用ガスが純化された後に、 前記 基準ガスとして再使用される、 請求の範囲第 1項に記載したガス検出装 置。  5. The supply source of the reference gas is a purifying means for the inspection gas, and the inspection gas after the detection is purified by the purifying means, and then is reused as the reference gas. Gas detection device described in paragraph 1.
6 . 前記検出後に前記検査用ガスが前記純化手段に通されて純化され た後、 再び前記純化手段に通されて前記基準ガスとされる、 請求の範囲 第 5項に記載したガス検出装置。  6. The gas detection device according to claim 5, wherein, after the detection, the inspection gas is passed through the purification unit to be purified, and then passed through the purification unit again to be used as the reference gas.
7 . 前記純化手段を通した前記検査用ガスを一時的に収容しておく容 器を有し、 この容器から前記検査用ガスが再度前記センサーに導入され る、 請求の範囲第 5項又は 6項に記載したガス検出装置。  7. The container according to claim 5, further comprising a container for temporarily storing the test gas passed through the purifying means, wherein the test gas is introduced again into the sensor from the container. The gas detector described in the paragraph.
8 . 前記純化手段が脱臭又は Z及び脱水手段である、 請求の範囲第 5 項又は 6項に記載したガス検出装置。 8. The gas detection device according to claim 5, wherein the purification means is a deodorizing or Z and dehydrating means.
9 . 内容積の拡大若しくは縮小によりガスを吸入又は排出する吸入 · 排気機構と、 この吸入 ·排気機構に通じる前記基準ガス又は前記検査用 ガスの流路と、 前記検査用ガスについての前記検出時のゼロレベルを決 めるための前記基準ガス供給源と、 前記基準ガス及び前記検査用ガスを 測定する前記センサ一と、 前記センサ一の出力データの処理及び各部の 動作の制御の少なくとも一方を行う制御部とを有し、 前記吸入 ·排気機 構の吸入又は排出動作によって前記検査用ガス又は前記基準ガスが前記 センサーに供され、 測定された信号の強度によって前記検査用ガス中の 特定成分が識別される、 請求の範囲第 1項に記載したガス検出装置。 9. Intake / exhaust mechanism that inhales or exhausts gas by increasing or decreasing the internal volume, the flow path of the reference gas or the inspection gas that communicates with the intake / exhaust mechanism, and the time of the detection of the inspection gas At least one of the reference gas supply source for determining the zero level of the sensor, the sensor for measuring the reference gas and the test gas, and processing of output data of the sensor and control of operation of each unit. A control unit for performing the above operation, wherein the test gas or the reference gas is supplied to the sensor by the suction or discharge operation of the suction / exhaust mechanism, and a specific component in the test gas is determined based on a measured signal intensity. The gas detection device according to claim 1, wherein is identified.
1 0 . 前記基準ガス又は前記検査用ガスが、 ピストン及びシリンダの 組合せからなるシリンダ機構のピストンの往復動によって前記センサー に導入される、 請求の範囲第 9項に記載したガス検出装置。 10. The gas detection device according to claim 9, wherein the reference gas or the inspection gas is introduced into the sensor by reciprocating a piston of a cylinder mechanism including a combination of a piston and a cylinder.
1 1 . ガス吸入時は前記センサーから前記シリンダ機構へ一方向のみ ガスを導く一方向弁が用いられ、 排出時は前記シリンダ機構から排出口 へ一方向のみガスを導く一方向弁が用いられている、 請求の範囲第 1 0 項に記載したガス検出装置。 1 1. A one-way valve that guides gas from the sensor to the cylinder mechanism only in one direction during gas suction is used, and a one-way valve that guides gas only from the cylinder mechanism to the discharge port is used during discharge. The gas detection device according to claim 10, wherein:
1 2 . ガス吸入用の前記一方向弁が前記センサ一と前記ピストンで仕 切られた前記シリンダ機構の両室との間にそれぞれ接続されている、 請 求の範囲第 1 1項に記載したガス検出装置。  12. The claim according to claim 11, wherein the one-way valve for gas suction is connected between the sensor and both chambers of the cylinder mechanism partitioned by the piston. Gas detector.
1 3 . 前記シリンダ機構の前記両室の一方の側が、 それぞれ前記一方 向弁を介して前記センサ一と排気口とに接続され、 もう一方の側が、 そ れぞれ前記一方向弁を介して前記センサ一と排気口に接続され、 前記セ ンサ一と前記シリンダ機構とを結ぶ前記一方向弁は、 いずれも前記セン サ一から前記シリンダ機構にのみガスを流すように開閉し、 前記シリン ダ機構と排気口とを結ぶ前記一方向弁は、 いずれも前記シリンダ機構か ら排気口にのみガスを流すように開閉することにより、 1つのシリンダ 機構で、 間断なく前記センサ一にガスを引き込むように構成した、 請求 の範囲第 1 2項に記載したガス検出装置。 13. One side of each of the two chambers of the cylinder mechanism is connected to the sensor 1 and the exhaust port via the one-way valve, and the other side is respectively connected to the one-way valve via the one-way valve. The one-way valve, which is connected to the sensor and the exhaust port and connects the sensor and the cylinder mechanism, opens and closes so that gas flows only from the sensor to the cylinder mechanism. The one-way valve that connects the mechanism and the exhaust port opens and closes so that gas flows only from the cylinder mechanism to the exhaust port, so that one cylinder The gas detection device according to claim 12, wherein a mechanism is configured to draw a gas into the sensor without interruption.
1 4 . 前記筐体外からその内部へ前記検査用ガスを吸引する吸気口と. 前記センサーとの間に第 1の弁を有し、 前記基準ガスの供給源と前記セ ンサ一との間に第 2の弁を有し、 前記ピストンがある 1つの向きに運動 するとき、 前記第 1の弁が開いて前記検査用ガスが前記センサーに取り 込まれ、 前記ピストンがそれとは逆の向きに運動するとき、 前記第 2の 弁が開いて前記基準ガスが前記センサ一に引き込まれることにより、 1 つのシリンダ機構で、 間断なく前記基準ガスと前記検査用ガスとが交互 に前記センサ一に送り込まれる、 請求の範囲第 1 3項に記載したガス検 出装置。  14. An intake port for sucking the test gas from the outside of the housing into the inside thereof. A first valve is provided between the sensor and the sensor, and between the reference gas supply source and the sensor. A second valve, wherein when the piston moves in one direction, the first valve opens and the test gas is taken into the sensor, and the piston moves in the opposite direction; In this case, the second valve is opened and the reference gas is drawn into the sensor 1 so that the reference gas and the test gas are alternately sent to the sensor 1 without interruption by one cylinder mechanism. The gas detection device according to claim 13.
1 5 . 請求の範囲第 5項に記載した純化手段を有する、 請求の範囲第 9項に記載したガス検出装置。  15. The gas detection device according to claim 9, comprising the purifying means according to claim 5.
1 6 . 請求の範囲第 6項に記載した純化手段を有する、 請求の範囲第 1 5項に記載したガス検出装置。  16. The gas detection device according to claim 15, comprising the purifying means according to claim 6.
1 7 . 前記検査用ガスがガス導入口から前記シリンダ機構へ吸入され る時に、 前記センサーにおいて前記検出に供された後、 前記純化手段に より純化されて前記シリンダ機構に収容され、 このシリンダ機構からの 排出時に、 前記純化手段に再び通され純化されて前記基準ガスを生成し. この基準ガスが前記センサ一に導入される、 請求の範囲第 1 5項又は 1 6項に記載したガス検出装置。  17. When the inspection gas is sucked into the cylinder mechanism from the gas inlet, after being subjected to the detection by the sensor, the gas is purified by the purification means and stored in the cylinder mechanism. The gas detection according to claim 15 or 16, wherein the reference gas is passed through the purification means and purified again to generate the reference gas. apparatus.
1 8 . 前記検査用ガスの匂い識別に用いられる、 請求の範囲第 1項に 記載したガス検出装置。 ·  18. The gas detection device according to claim 1, wherein the gas detection device is used for identifying an odor of the inspection gas. ·
1 9 . 基準ガスと検査用ガスとを筐体内のセンサーに交互に導入し、 前記検査用ガス中の特定成分を検出するガス検出装置において、 前記セ ンサ一に、 前記基準ガスの供給源が接続され、 前記筐体外から前記検査 用ガスが導入され、 かつ内容積の拡大若しくは縮小によりガスを吸入又 は排出するピストン及びシリンダの組合せからなるシリンダ機構のピス トンの往復動によって、 前記基準ガス又は前記検査用ガスが前記センサ —に導入される、 ガス検出装置。 1 9. In a gas detection device that alternately introduces a reference gas and an inspection gas into a sensor in a housing and detects a specific component in the inspection gas, the supply source of the reference gas is provided to the sensor. Connected, the inspection from outside the enclosure The reference gas or the test gas is supplied to the sensor by the reciprocating movement of the piston of a cylinder mechanism composed of a combination of a piston and a cylinder, which introduces a test gas and sucks or discharges the gas by increasing or decreasing the internal volume. Introduced into the gas detector.
2 0 . 前記シリンダ機構に通じる前記基準ガス又は前記検査用ガスの 流路と、 前記検查用ガスについての前記検出時のゼロレベルを決めるた めの前記基準ガス供給源と、 前記基準ガス及び前記検査用ガスを測定す る前記センサーと、 前記センサーの出力データの処理及び各部の動作の 制御の少なくとも一方を行う制御部とを有し、 前記シリンダ機構の吸入 又は排出動作によって前記検査用ガス又は前記基準ガスが前記センサー に供され、 測定された信号の強度によって前記検査用ガス中の特定成分 が識別される、 請求の範囲第 1 9項に記載したガス検出装置。 20. A flow path of the reference gas or the test gas communicating with the cylinder mechanism, the reference gas supply source for determining a zero level of the test gas at the time of the detection, the reference gas and The sensor for measuring the test gas; and a control unit for performing at least one of processing of output data of the sensor and control of operation of each unit. 10. The gas detection device according to claim 19, wherein the reference gas is provided to the sensor, and a specific component in the test gas is identified based on a measured signal intensity.
2 1 . ガス吸入時は前記センサーから前記シリンダ機構へ一方向のみ ガスを導く一方向弁が用いられ、 排出時は前記シリンダ機構から排出口 へ一方向のみガスを導く一方向弁が用いられている、 請求の範囲第 1 9 項に記載したガス検出装置。  21. A one-way valve that guides gas from the sensor to the cylinder mechanism only in one direction during gas suction is used, and a one-way valve that guides gas from the cylinder mechanism to the outlet only in one direction is used during discharge. The gas detector according to claim 19, wherein
2 2 . ガス吸入用の前記一方向弁が前記センサ一と前記ピストンで仕 切られた前記シリンダ機構の両室との間にそれぞれ接続されている、 請 求の範囲第 2 1項に記載したガス検出装置。  22. The range of claim 21 wherein the one-way valve for gas suction is connected between the sensor 1 and both chambers of the cylinder mechanism separated by the piston. Gas detector.
2 3 . 前記シリンダ機構の前記両室の一方の側が、 それぞれ前記一方 向弁を介して前記センサ一と排気口とに接続され、 もう一方の側が、 そ れぞれ前記一方向弁を介して前記センサ一と排気口に接続され、 前記セ ンサ一と前記シリンダ機構とを結ぶ前記一方向弁は、 いずれも前記セン サ一から前記シリンダ機構にのみガスを流すように開閉し、 前記シリン ダ機構と排気口とを結ぶ前記一方向弁は、 いずれも前記シリンダ機構か ら排気口にのみガスを流すように開閉することにより、 1つのシリンダ 機構で、 間断なく前記センサーにガスを引き込むように構成した、 請求 の範囲第 2 2項に記載したガス検出装置。 23. One side of each of the two chambers of the cylinder mechanism is connected to the sensor and the exhaust port via the one-way valve, and the other side is respectively connected to the one-way valve via the one-way valve. The one-way valve, which is connected to the sensor and the exhaust port and connects the sensor and the cylinder mechanism, opens and closes so that gas flows only from the sensor to the cylinder mechanism. The one-way valve that connects the mechanism and the exhaust port opens and closes so that gas flows only from the cylinder mechanism to the exhaust port, so that one cylinder The gas detection device according to claim 22, wherein a gas is continuously drawn into the sensor by a mechanism.
2 4 . 前記筐体外からその内部へ前記検査用ガスを吸引する吸気口と 前記センサーとの間に第 1の弁を有し、 前記基準ガスの供給源と前記セ ンサ一との間に第 2の弁を有し、 前記ピストンがある 1つの向きに運動 するとき、  24. A first valve is provided between the inlet and the sensor for sucking the inspection gas from outside the housing to the inside thereof, and a first valve is provided between the reference gas supply source and the sensor. With two valves, the piston moves in one direction,
前記第 1の弁が開いて前記検査用ガスが前記センサーに取り込まれ、 前記ピストンがそれとは逆の向きに運動するとき、 前記第 2の弁が開い て前記基準ガスが前記センサ一に引き込まれることにより、 1つのシリ ンダ機構で、 間断なく前記基準ガスと前記検査用ガスとが交互に前記セ ンサ一に送り込まれる、 請求の範囲第 2 3項に記載したガス検出装置。  When the first valve is opened and the test gas is taken into the sensor, and when the piston moves in the opposite direction, the second valve is opened and the reference gas is drawn into the sensor. 24. The gas detection device according to claim 23, wherein the reference gas and the inspection gas are alternately sent to the sensor by a single cylinder mechanism without interruption.
2 5 . 請求の範囲第 5項に記載した純化手段を有する、 請求の範囲第 1 9項に記載したガス検出装置。 25. The gas detection device according to claim 19, comprising the purification means according to claim 5.
2 6 . 請求の範囲第 6項に記載した純化手段を有する、 請求の範囲第 2 5項に記載したガス検出装置。  26. The gas detection device according to claim 25, comprising the purification means according to claim 6.
2 7 . 前記検査用ガスがガス導入口から前記シリンダ機構へ吸入され る時に、 前記センサ一において前記検出に供された後、 前記純化手段に より純化されて前記シリンダ機構に収容され、 このシリンダ機構からの 排出時に、 前記純化手段に再び通され純化されて前記基準ガスを生成し. この基準ガスが前記センサーに導入される、 請求の範囲第 2 5項又は 2 6項に記載したガス検出装置。  27. When the inspection gas is sucked into the cylinder mechanism from the gas inlet, after being subjected to the detection by the sensor 1, the gas is purified by the purification means and stored in the cylinder mechanism. The gas detection according to claim 25 or 26, wherein upon discharge from the mechanism, said reference gas is again passed through said purifying means and purified to generate said reference gas. This reference gas is introduced into said sensor. apparatus.
2 8 . 前記純化手段が脱臭又は Z及び脱水手段である、 請求の範囲第 2 5項又は 2 6項に記載したガス検出装置。  28. The gas detection device according to claim 25 or 26, wherein said purification means is deodorization or Z and dehydration means.
2 9 . 前記基準ガスの供給源が前記筐体に内設され、 この筐体が可搬 式である、 請求の範囲第 1 9項に記載したガス検出装置。 29. The gas detection device according to claim 19, wherein a supply source of the reference gas is provided in the housing, and the housing is portable.
3 0 . 前記検査用ガスが前記筐体外の周囲ガスである、 請求の範囲第 1 9項に記載したガス検出装置。 30. The gas detection device according to claim 19, wherein the inspection gas is a surrounding gas outside the housing.
3 1 . 前記基準ガスの供給源が、 前記基準ガスを収容した容器である 請求の範囲第 1 9項に記載したガス検出装置。  31. The gas detection device according to claim 19, wherein the reference gas supply source is a container containing the reference gas.
3 2 . 前記検査用ガスの匂い識別に用いられる、 請求の範囲第 1 9項 に記載したガス検出装置。 32. The gas detection device according to claim 19, wherein the gas detection device is used for identifying an odor of the inspection gas.
3 3 . 基準ガスと検査用ガスとをセンサーに交互に導入し、 前記検査 用ガスに含まれる成分を検出するガス検出装置において、 前記センサ一 と前記基準ガスの供給源とが一体化されていることを特徴とするガス検 出装置。  33. In a gas detection device that alternately introduces a reference gas and a test gas into a sensor and detects a component contained in the test gas, the sensor and the supply source of the reference gas are integrated. A gas detection device.
3 4 . 前記センサ一と前記基準ガスの供給源とがロポット装置に含ま れている、 請求の範囲第 3 3項に記載したガス検出装置。  34. The gas detection device according to claim 33, wherein the sensor and the reference gas supply source are included in a robot device.
3 5 . 前記ロポット装置は自立的に駆動する自立型のロポット装置で ある、 請求の範囲第 3 4項に記載したガス検出装置。 35. The gas detection device according to claim 34, wherein the robot device is a self-supporting robot device that is driven independently.
3 6 . 前記検査用ガスは前記口ポット装置の周辺から供給される、 請 求の範囲第 3 4項に記載したガス検出装置。 36. The gas detector according to claim 34, wherein the inspection gas is supplied from around the mouth pot device.
3 7 . 前記センサーと前記基準ガスの供給源とが同一筐体に含まれて いる、 請求の範囲第 3 3項に記載したガス検出装置。  37. The gas detection device according to claim 33, wherein the sensor and the supply source of the reference gas are contained in the same housing.
3 8 . 前記検査用ガスは前記筐体外から供給される、 請求の範囲第 3 7項に記載したガス検出装置。 38. The gas detection device according to claim 37, wherein the inspection gas is supplied from outside the housing.
PCT/JP2003/006472 2002-05-28 2003-05-23 Gas detection device WO2003106975A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2003242433A AU2003242433A1 (en) 2002-05-28 2003-05-23 Gas detection device
US10/515,280 US7216527B2 (en) 2002-05-28 2003-05-23 Gas detection device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002-153862 2002-05-28
JP2002153862 2002-05-28
JP2003-117715 2003-04-23
JP2003117715A JP3912317B2 (en) 2002-05-28 2003-04-23 Gas detector

Publications (1)

Publication Number Publication Date
WO2003106975A1 true WO2003106975A1 (en) 2003-12-24

Family

ID=29738305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006472 WO2003106975A1 (en) 2002-05-28 2003-05-23 Gas detection device

Country Status (4)

Country Link
US (1) US7216527B2 (en)
JP (1) JP3912317B2 (en)
AU (1) AU2003242433A1 (en)
WO (1) WO2003106975A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111766339A (en) * 2020-07-06 2020-10-13 南京信云智能制造科技有限公司 Industrial intelligent environment detection device and system thereof
WO2022158424A1 (en) * 2021-01-21 2022-07-28 パナソニックIpマネジメント株式会社 Gas detection method, program, control system, and gas detection system

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1388766A1 (en) * 2002-08-09 2004-02-11 Asulab S.A. Device and method for testing watertightness of an enclosure such as a watch case
NO326482B1 (en) * 2005-05-31 2008-12-15 Integrated Optoelectronics As A new infrared laser based alarm
US20070028668A1 (en) * 2005-07-20 2007-02-08 National Institute Of Advanced Industrial Science And Technology Molecule detection sensor, detection sensor, and gas transferring pump
DE102005062005A1 (en) * 2005-12-22 2007-06-28 Innovative Sensor Technology Ist Ag Device for determining and/or monitoring process parameter(s), especially moisture or temperature, has supply channel(s) configured, positioned and adapted to sensor unit so medium passes through channel(s) essentially only to sensor unit
US7886577B2 (en) * 2006-03-30 2011-02-15 Oakland University Devices with surface bound ionic liquids and method of use thereof
US8375768B2 (en) * 2006-03-30 2013-02-19 Oakland University Ionic liquid thin layer sensor for electrochemical and/or piezoelectric measurements
JP2008256387A (en) * 2007-04-02 2008-10-23 Seems Inc Apparatus for avoiding trouble of car
DE102009039886B3 (en) * 2009-09-03 2010-10-07 Dräger Safety AG & Co. KGaA Device for gas analysis
DE102010002424A1 (en) * 2010-02-26 2011-09-01 Robert Bosch Gmbh Device for measuring a particle concentration in automotive exhaust gases
CN103328968B (en) * 2010-11-01 2017-06-09 皇家飞利浦电子股份有限公司 The method for calibrating air borne sensor
RU2608922C2 (en) * 2010-11-01 2017-01-26 Конинклейке Филипс Электроникс Н.В. Method of calibrating air sensor
JP5888919B2 (en) * 2010-11-04 2016-03-22 キヤノン株式会社 Film forming apparatus and film forming method
CN102087179B (en) * 2011-01-20 2012-11-14 北京雪迪龙科技股份有限公司 Infrared gas analysis pretreatment system
US20130067987A1 (en) * 2011-09-19 2013-03-21 Attila Grieb High sensitivity artificial olfactory system and it's uses
US9057712B1 (en) 2011-10-27 2015-06-16 Copilot Ventures Fund Iii Llc Methods of delivery of encapsulated perfluorocarbon taggants
CN107422067A (en) * 2016-05-24 2017-12-01 西原环保工程(上海)有限公司 Cesspool foul smell analoging detecting device
US10672203B2 (en) * 2017-07-07 2020-06-02 Toyota Jidosha Kabushiki Kaisha Olfactory-based vehicle diagnostics
US11534632B2 (en) 2017-09-01 2022-12-27 3M Innovative Properties Company Fit-test method for respirator with sensing system
BR112020004199A2 (en) * 2017-09-01 2020-09-08 3M Innovative Properties Company fitting test method for respirator with detection system
WO2019043581A1 (en) 2017-09-01 2019-03-07 3M Innovative Properties Company Sensing system for respirator
EP3676607A4 (en) 2017-09-01 2021-06-30 3M Innovative Properties Company Sensing element for respirator
WO2019187671A1 (en) * 2018-03-29 2019-10-03 太陽誘電株式会社 Sensing system, information processing device, program, and information collection method
WO2020153020A1 (en) * 2019-01-22 2020-07-30 ソニー株式会社 Control device, control method, and program
WO2020189785A1 (en) * 2019-03-20 2020-09-24 京セラ株式会社 Gas detecting system
JP7211885B2 (en) * 2019-04-22 2023-01-24 太陽誘電株式会社 Arithmetic device, arithmetic method and gas detection system
JPWO2021024828A1 (en) * 2019-08-08 2021-02-11
US20230063005A1 (en) * 2020-02-27 2023-03-02 Panasonic Intellectual Property Management Co., Ltd. Gas detection system and control method for gas detection system
CN113466093A (en) * 2020-03-31 2021-10-01 比亚迪半导体股份有限公司 Aerosol detection device
US11636870B2 (en) 2020-08-20 2023-04-25 Denso International America, Inc. Smoking cessation systems and methods
US11881093B2 (en) 2020-08-20 2024-01-23 Denso International America, Inc. Systems and methods for identifying smoking in vehicles
US11828210B2 (en) 2020-08-20 2023-11-28 Denso International America, Inc. Diagnostic systems and methods of vehicles using olfaction
US11813926B2 (en) 2020-08-20 2023-11-14 Denso International America, Inc. Binding agent and olfaction sensor
US11760170B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Olfaction sensor preservation systems and methods
US11932080B2 (en) 2020-08-20 2024-03-19 Denso International America, Inc. Diagnostic and recirculation control systems and methods
US11760169B2 (en) 2020-08-20 2023-09-19 Denso International America, Inc. Particulate control systems and methods for olfaction sensors
EP4184089A4 (en) * 2020-08-31 2023-12-27 Daikin Industries, Ltd. Air composition adjustment device, refrigeration device, and transportation container
CN113030403A (en) * 2021-05-28 2021-06-25 北京万维盈创科技发展有限公司 Whole-course calibration type remote quality control device and method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124932Y2 (en) * 1980-02-01 1986-07-26
JPH0245445U (en) * 1988-09-20 1990-03-28
JPH0572094A (en) * 1991-09-10 1993-03-23 Amenitec:Kk Continuous measurement system for polution gas
JPH06198586A (en) * 1993-01-07 1994-07-19 Toshiba Corp Moving robot
JPH09250979A (en) * 1996-03-14 1997-09-22 Toshiba Corp Gas detecting device
JPH09304244A (en) * 1996-05-10 1997-11-28 Nourinsuisan Sentan Gijutsu Sangyo Shinko Center Gas detector
JPH1183702A (en) * 1997-09-09 1999-03-26 Esupo Kk Apparatus and method for measuring concentration of air contaminated gas
JP2000155107A (en) * 1998-11-20 2000-06-06 Shimadzu Corp Gas measuring apparatus
JP2001041916A (en) * 1999-05-21 2001-02-16 Daikin Ind Ltd Gas detector
JP2002036158A (en) * 2000-07-27 2002-02-05 Yamaha Motor Co Ltd Electronic appliance having autonomous function

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1598332C3 (en) * 1965-08-11 1974-02-14 Draegerwerk Ag, 2400 Luebeck Gas detector
JPS6124932A (en) 1984-07-13 1986-02-03 Hitachi Ltd Clean working chamber device
DE3821389A1 (en) 1988-06-24 1989-12-28 Bayer Ag 1,7-DIOXY-NAPHTHALINE DERIVATIVES
JP2542259B2 (en) * 1989-05-19 1996-10-09 株式会社若林商店 Method and apparatus for measuring odor concentration
JP3694804B2 (en) * 1999-07-28 2005-09-14 株式会社日立製作所 Internal combustion engine
CA2388870A1 (en) * 1999-11-18 2001-05-25 The Procter & Gamble Company Home cleaning robot
AU2002334708A1 (en) * 2001-10-01 2003-04-14 Kline And Walker, Llc Pfn/trac system faa upgrades for accountable remote and robotics control

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6124932Y2 (en) * 1980-02-01 1986-07-26
JPH0245445U (en) * 1988-09-20 1990-03-28
JPH0572094A (en) * 1991-09-10 1993-03-23 Amenitec:Kk Continuous measurement system for polution gas
JPH06198586A (en) * 1993-01-07 1994-07-19 Toshiba Corp Moving robot
JPH09250979A (en) * 1996-03-14 1997-09-22 Toshiba Corp Gas detecting device
JPH09304244A (en) * 1996-05-10 1997-11-28 Nourinsuisan Sentan Gijutsu Sangyo Shinko Center Gas detector
JPH1183702A (en) * 1997-09-09 1999-03-26 Esupo Kk Apparatus and method for measuring concentration of air contaminated gas
JP2000155107A (en) * 1998-11-20 2000-06-06 Shimadzu Corp Gas measuring apparatus
JP2001041916A (en) * 1999-05-21 2001-02-16 Daikin Ind Ltd Gas detector
JP2002036158A (en) * 2000-07-27 2002-02-05 Yamaha Motor Co Ltd Electronic appliance having autonomous function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111766339A (en) * 2020-07-06 2020-10-13 南京信云智能制造科技有限公司 Industrial intelligent environment detection device and system thereof
WO2022158424A1 (en) * 2021-01-21 2022-07-28 パナソニックIpマネジメント株式会社 Gas detection method, program, control system, and gas detection system

Also Published As

Publication number Publication date
JP3912317B2 (en) 2007-05-09
JP2004053582A (en) 2004-02-19
AU2003242433A1 (en) 2003-12-31
US20050252273A1 (en) 2005-11-17
US7216527B2 (en) 2007-05-15

Similar Documents

Publication Publication Date Title
WO2003106975A1 (en) Gas detection device
US7640783B2 (en) Self-calibrating gas detector and method
Korotcenkov et al. Engineering approaches for the improvement of conductometric gas sensor parameters: Part 1. Improvement of sensor sensitivity and selectivity (short survey)
Zohora et al. Chemical sensors employed in electronic noses: a review
JP2003536068A (en) 3D integrated cell array for sampling and detecting chemical and biological species in air
Fleischer Advances in application potential of adsorptive-type solid state gas sensors: high-temperature semiconducting oxides and ambient temperature GasFET devices
US6374662B1 (en) Devices and methods for measuring odor
JPS60228950A (en) Method and device for detecting reducing gas in gas mixture
JP6983748B2 (en) Molecule detector
WO2005075962A1 (en) Fluid analyser systems
CN106970182A (en) A kind of apparatus and method of on-line checking mixed gas concentration
JP2001318069A (en) Expired gas analytical device
US10866204B2 (en) Method and apparatus for vapor signature with heat differential
Groves et al. Analysis of solvent vapors in breath and ambient air with a surface acoustic wave sensor array
JPS60228949A (en) Method and device for detecting reducing gas in mixed gas tobe detected
JP2002350299A (en) Odor measurement method and device
Patel et al. Electronic nose sensor response and qualitative review of e-nose sensors
US11536644B2 (en) Gas detection device
JP7155185B2 (en) MOLECULAR DETECTION DEVICE AND MOLECULAR DETECTION METHOD
EP1099949B1 (en) Device for measuring gases with odors
CN114487190B (en) Medical human body exhale VOC gas detection device based on light PID sensor
Schambach et al. Micromachined mercury sensor
JPH05223722A (en) Odorant sensor
WO2023187218A1 (en) Diffusion discriminating gas sensors
Lin Novel colorimetric sensors with extended lifetime for personal exposure monitoring

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10515280

Country of ref document: US

122 Ep: pct application non-entry in european phase