WO2003106525A1 - Verfahren zur härtung von aminoplasten - Google Patents

Verfahren zur härtung von aminoplasten Download PDF

Info

Publication number
WO2003106525A1
WO2003106525A1 PCT/EP2003/006176 EP0306176W WO03106525A1 WO 2003106525 A1 WO2003106525 A1 WO 2003106525A1 EP 0306176 W EP0306176 W EP 0306176W WO 03106525 A1 WO03106525 A1 WO 03106525A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkyl
alkylene
chr
aminoplast
polycondensates
Prior art date
Application number
PCT/EP2003/006176
Other languages
English (en)
French (fr)
Inventor
Manfred Rätzsch
Hartmut Bucka
Martin Burger
Uwe Müller
Original Assignee
Agrolinz Melamin Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agrolinz Melamin Gmbh filed Critical Agrolinz Melamin Gmbh
Priority to AU2003276951A priority Critical patent/AU2003276951A1/en
Priority to EP03740231A priority patent/EP1517933A1/de
Priority to US10/517,963 priority patent/US20060084007A1/en
Publication of WO2003106525A1 publication Critical patent/WO2003106525A1/de

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/58Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
    • D01F6/76Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from other polycondensation products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/18Amines; Quaternary ammonium compounds with aromatically bound amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3477Six-membered rings
    • C08K5/3492Triazines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C09D161/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C09D161/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/20Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen
    • C08L61/26Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds
    • C08L61/28Condensation polymers of aldehydes or ketones with only compounds containing hydrogen attached to nitrogen of aldehydes with heterocyclic compounds with melamine
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2915Rod, strand, filament or fiber including textile, cloth or fabric

Definitions

  • the invention relates to a method for curing aminoplasts and aminoplastics products which are produced by the method.
  • Aminoplasts such as melamine-formaldehyde resins or melamine-urea-formaldehyde resins [Ullmanns Encyclopedia of Industrial Chemistry (1987), Vol. A2, 130-131] are known.
  • a disadvantage in the production of products from melamine resins is the difficult processability by conventional thermoplastic processing methods such as extrusion, injection molding or blow molding.
  • Low-molecular melamine resin precondensates have a melt viscosity that is too low for these processing methods and can only be processed as highly filled molding compounds with long cycle times while hardening the products (Woebcken, W., Kunststoff-Handbuch Vol. 10 "Duroplasts", Carl Hanser Verlag Kunststoff 1988 , Pp. 266-274).
  • Fibers [DE 195 15 277 A1, EP 0 093 965 A2], foams or coatings [DE 24 22 803 B1] made of melamine resins can only be produced starting from solutions of the melamine resin precondensates with hardening during the shaping because of the low melt viscosity of the melamine resin precondensates.
  • Known hardeners in the production of melamine resin fibers are organic acids such as formic acid, acetic acid, amidosulfonic acids or amino acids [DE 195 15 277 A1] or alkali salts such as alkali disulfites, alkali phosphates or alkali polyphosphates [EP 0 093 965 A2].
  • the use of iodonium salts (DE 100 63 066) or blocked sulfonic acids (WO 00 10 972) as a component of radiation-sensitive polymerizable or crosslinkable formulations is also known.
  • the object of the present invention is a method for curing aminoplasts, in which solvent-free thin aminoplast layers or aminoplast threads can be cured.
  • the object was achieved by a method for curing aminoplasts, in which layers according to the invention with layer thicknesses up to 300 ⁇ m or threads or fiber fibrids with a diameter up to 300 ⁇ m
  • hardener which can be activated by actinic light, consisting of b1) acidifiers of the blocked sulfonic acid type of the general formula (I) R 1 - sOr- O— R 2 (I)
  • R. unsubstituted or substituted aryl, biphenyl or alkyl, ⁇ CO-R 3
  • Suitable light sources are point light sources and surface radiators.
  • suitable light sources are carbon arc lamps, xenon arc lamps, low-pressure, medium-pressure and high-pressure mercury lamps, which can optionally be doped with metal halides, such as metal-halogen lamps, microwave-excited metal-vapor lamps, excimer lamps, superactinic fluorescent tubes, fluorescent lamps, argon lamps, fluorescent lamps , and laser light sources such as excimer lasers.
  • metal halides such as metal-halogen lamps, microwave-excited metal-vapor lamps, excimer lamps, superactinic fluorescent tubes, fluorescent lamps, argon lamps, fluorescent lamps , and laser light sources such as excimer lasers.
  • blocked sulfonic acid of the general formula are used as the acid generator blocked sulfonic acids preferred, in which the substituents
  • R 1 unsubstituted or by one or more of the substituents halogen, C r C 4 -haloalkyl, C r C 16 -alkyl, CC 4 -alkoxy, C r C 4 -alkyl-CO- NH-, phenyl-CO-NH- , Benzoyl- or nitro-substituted C 6 -C 10 aryl or C 7 - C 12 arylalkyl,
  • Z c & c M aryl, C2- c 4 alkyl, C2- c 4 alkenyl, C7- c 8 bicycloalkenyl, where
  • R 3 CC 12 alkyl, CC 4 haloalkyl, C 2 -C 6 alkenyl, C 5 -C 12 cycloalkyl, unsubstituted or by one or more of the substituents halogen, CC 4 haloalkyl, Crd ⁇ - ⁇ lky., CC 4 -alkoxy, C r C -alkyl-CO- NH-, phenyl-CO-NH-, benzoyl or nitro-substituted C 6 -C ⁇ 0 aryl and / or C 7 -C 12 arylalkyl, CrC 8 alkoxy, C 5 -C 8 cycloalkoxy, phenoxy or H 2 N-CO-NH-, -CN, C 2 -C 5 alkyloyl, benzoyl, C 2 -C 5 alkoxycarbonyl, phenoxycarbonyl, morpholino-, piperidino-, CC 12 Alkyl, CC
  • R 5 H, CC 12 alkyl or cyclohexyl, or R 3 and R 4 or R 5 together with the atoms to which they are attached form a 5- to 8-membered ring which is fused by 1 or 2 benzo radicals can.
  • blocked sulfonic acids examples include benzil monoxime tosylate, benzil monoxime p-dodecylbenzenesulfonate, 4-nitroacetophenone oxime tosylate, ⁇ -tosyloxyimino-caproic acid ethyl ester, ⁇ -cyclohexylsulfonyloxyimino-phenyl acetic acid (4-phenyl) phenyl-phenyl chloro-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-phenyl-
  • O Z G6 -C 24 aryl, C 2 -C 4 alkyl, C 2 -C 4 alkenyl, C 7 -C 8 bicycloalkenyl,
  • halogen-substituted triazine derivatives which can be used in the process according to the invention as hardeners which can be activated by actinic light are 1,3,5-tribromomethyl-2,4,6-triazine and 1,3,5-trichloromethyl-2,4 , 6-triazine.
  • onium salts which can be used in the process according to the invention as hardeners which can be activated by actinic light are examples of onium salts which can be used in the process according to the invention as hardeners which can be activated by actinic light are examples of onium salts which can be used in the process according to the invention as hardeners which can be activated by actinic light are examples of onium salts which can be used in the process according to the invention as hardeners which can be activated by actinic light are
  • Aryldiazonium salts such as phenyldiazonium hexafluoroarsenate, toluyldiazonium tetrafluoroborate and phenyldiazonium hexafluorophosphate,
  • Diarylhalonium salts such as 4-isobutylphenyl-4'-methylphenyliodonium hexafluorophosphate, 4-isobutylphenyl-4'-methylpheny) iodonium-4-chlorophenylsulfonate, 4 - (- methyl-but-2-yl) phenyl-4'- methylphenyliodonium nonafluoro-butyl sulfonate, diphenylbromonium hexafluoroantimonate, diphenyliodonium-8-anilinonaphthalene-1-sulfonate, diphenyl-iodonium-9,10-dimethoxyanthracene-2-sulfonate and diphenylchloronium hexafluoroantimonate,
  • Triarylsulfonium salts such as tris (4-methoxyphenyl) sulfonium hexafluoroarsenate, 3,5-dimethyl-4-hydroxyphenylsulfonium hexafluorophosphate and benzyl (p-hydroxyphenyl) methylsulfonium hexafluoroantimonate,
  • Triaryiselenonium salts such as 3,5-diphenyl-4-hydroxyphenylsulfonium tetrafluoroborate and tris (4-ethoxyphenyl) sulfonium hexafluorophosphate,
  • N-alkoxypyridinium salts such as N-ethoxypyridinium tetrafluoroborate or N-methoxy-pyridinium hexafluorophosphate.
  • the preferred onium salt as hardener is the onium salt of the formula
  • the aminoplast polycondensates with molar masses of 1000 to 300000 used in the process according to the invention for curing aminoplasts are preferably polycondensates of melamine resins, urea resins, cyanamide resins, dicyandiamide resins, sulfonamide resins and / or guanamine resins.
  • melamine resins polycondensates of melamine or melamine derivatives and d-C ⁇ -aldehydes with a molar ratio of melamine or melamine derivative / C Ca-aldehydes 1: 1, 5 to 1: 6 and their partial etherification products are preferred, the melamine derivatives by hydroxy-C -C 0 -alkyl groups, hydroxy-CrC 4 -alkyl- (oxa-C 2 -C -alkyl) 1 .
  • the melamine resins can also contain 0.1 to 10% by mass, based on the sum of melamine and melamine derivatives, of built-in phenols and / or urea.
  • Phenol, CrCg-alkylphenols, hydroxyphenols and / or bisphenols are suitable as phenol components.
  • urea resins optionally used in the process according to the invention are, in addition to urea-formaldehyde resins, also mixed condensates with phenols, acid amides or sulfonic acid amides.
  • sulfonamide resins optionally used in the process according to the invention are sulfonamide resins made from p-toluenesulfonamide and formaldehyde.
  • guanamine resins optionally used in the process according to the invention are resins which contain benzoguanamine, acetoguanamine, tetramethoxymethylbenzoguanamine, caprinoguanamine and / or butyroguanamine as guanamine component.
  • aniline resins optionally used in the process according to the invention are aniline resins which, in addition to aniline, may also contain toluidine and / or xylidines as aromatic diamines.
  • polycondensates of melamine resins which are mixtures of meltable 4 to 1000 core polytriazine ethers in the process according to the invention for curing aminoplasts, the triazine segments being in the polytriazine ether
  • R -NH 2 , -NH-CHR 2 -0-R 3 , -NH-CHR 2 -0-R -OH, -CH 3 , -C 3 H 7 , -C 6 H 5, -OH, P thalimido succinimido, -NH-CO- C5 -c ⁇ -alkyl, -NH-C 5 -C 18 -alkylene-OH, -NH-CHR 2 -0-C5-C 18 -alkylene-NH 2 , -NH- C 5 -C 18 alkylene-NH 2 , -NH-CHR2-0-R 4 -0-CHR 2 -NH-, -NH-CHR 2 -NH-, -NH-CHR 2 -0-C5-C 18 -Alkylene-NH-, -NH-C 5 -C 18 -alkylene-NH-, -NH-CHR 2 -0-CHR 2 -NH-,
  • R 2 H, C r C 7 alkyl
  • R 3 CC 18 alkyl, H
  • R 4 C 2 -C 18 alkylene, -CH (CH 3 ) -CH2-0- C 2-ci2-alkylene-0-CH 2 -CH (CH 3 ) -, -CH (CH 3 ) -CH2- 0- C 2.ci2-arylene-0-CH 2 -CH (CH 3 ) -, - [CH2-CH 2 -0-CH 2 -CH 2 ] n -, - [CH2-CH (CH 3 ) -0 -CH2-CH (CH 3 )] n -, - [- 0-CH 2 -CH2-CH2-CH 2 -] n-, - [(CH 2 ) 2.
  • Y - ⁇ c 6 -c ⁇ 4 arylene-CO-0 - ( ⁇ Si -0- [Si-0] y -CO- C6 - cw-arylene- ⁇ C ⁇ -C 4 -alkyl C ⁇ -C -alkyl
  • terminal trincine segments in the polytriazine ethers are triazine segments of the structure
  • Y -NH-CHR 2 -OR 3 , -NH-CHR 2 -0-R -OH and optionally -NH-CHR 2 -0-C 5 -C 18 alkylene-NH 2 , -NH-C5-C 18 -Alkylene-NH2, -NH-C 5 -C 18 -alkylene-OH,
  • R 1 -NH 2 , -NH-CHR 2 -OR 3 , -NH-CHR 2 -0-R 4 -OH, -CH 3 , -C 3 H 7 , -C 6 H 5 , -OH, phthalimido Succinimido, -NH-CO-R 3 , -NH-C 5 -C 18 alkylene-OH, -NH-C 5 -C ⁇ 8 alkylene-NH 2 , -NH-CHR 2 -0-C 5 -Ci 8- alkylene-NH 2 ,
  • R 2 H, CC 7 alkyl
  • R 3 C r C 18 alkyl, H
  • R 4 C 2 -C 18 alkylene, -CH (CH 3 ) -CH 2 -0- C2 .ci 2 -alkylene-0-CH 2 -CH (CH 3 ) -, -CH (CH 3 ) -CH2 -0-c2-ci2-arylene-0-CH 2 -CH (CH 3 ) -, - [CH2-CH2-0-CH 2 -CH 2 ] n -, - [CH 2 -CH (CH 3 ) -0 -CH 2 -CH (CH 3 )] n -, - [- O-CH2-CH2-CH2-CH2- -, - [(CH 2 ) 2 .
  • X ⁇ (CH 2 ) 2 . 8 -0-CO- C6 .c ⁇ 4 arylene-CO-0- (CH 2 ) 2-8- ⁇ or - ⁇ (CH2) 2-8-0-CO- C2 .c ⁇ 2 alkylene-CO-0- ( CH 2 ) 2 . 8 - ⁇ ;
  • the 4- employed in the invented method to 1,000 core polytriazine ethers can be prepared by etherification of melamine resin precondensates with -C 4 alcohols, optionally with subsequent partial transetherification with C 4 -C 18 alcohols, C 2 -C ⁇ 8 diols, polyhydric alcohols of Type glycerol or pentaerythritol, C 5 -C 18 amino alcohols, polyalkylene glycols, hydroxyl-containing polyesters, siloxane polyesters, siloxane polyethers, melamine-alkylene oxide adducts and / or dinuclear phenol-alkylene oxide adducts and / or reaction with C 5 -C 8 -diamines and / or , and subsequent thermal condensation of the modified melamine resin condensates are produced in the melt in a continuous cooler at temperatures of 140 to 220 ° C.
  • maleic anhydride copolymers optionally used in the process according to the invention are C 2 -C 20 olefin - maleic anhydride copolymers or copolymers of maleic anhydride and C 8 -C 20 - vinyl aromatics.
  • Examples of the C 2 -C 20 olefin components which may be contained in the maleic anhydride copolymers are ethylene, propylene, butene-1, isobutene, diisobutene, hexene-1, octene-1, heptene-1, pentene 1, 3-methylbutene-1, 4-methylpentene-1, methylethylpentene-1, ethylpentene-1, ethylhexene-1, octadecene-1 and 5,6-dimethylnorbornene.
  • Examples of the C 8 -C 20 vinylaromatic compounds which can be contained in the maleic anhydride copolymers are styrene, methylstyrene, dimethylstyrene, isopropenylstyrene, p-methylstyrene and vinylbiphenyl.
  • modified maleic anhydride copolymers optionally used in the process according to the invention are partially or completely esterified, amidated or imidized maleic anhydride copolymers.
  • Modified copolymers of maleic anhydride and C 2 -C 20 olefins or C 8 -C 2 o-vinyl aromatics with a molar ratio of 1: 1 to 1: 9 and molar mass weight averages of 5000 to 500000 which are mixed with ammonia, CrC 18 monoalkylamines, C 6 -C 18 aromatic monoamines, C 2 -C 18 monoamino alcohols, monoaminated poly (C 2 -C 4 alkylene) oxides with a molecular weight of 400 to 3000, and / or mono-etherified poly (C 2 -C 4- alkylene) oxides having a molar mass of 100 to 10,000 have been reacted, the molar ratio of anhydride groups copolymer / ammonia, amino groups CrC 18 /
  • nanoparticles in the form of layered silicates which may be used in the process according to the invention are montmorillonite, bentonite, kaolinite, muscovite, hectorite, fluorhectorite, kanemite, Revdit, grumantite, llerite, saponite, beidelite, nontronite, stevensite, laponite, taneolite, vermiculite , Volkonskoit, Magadit, Rectorit, Kenyait, Sauconit, Borfluorophlogopite and synthetic Smectite.
  • the meltable aminoplast polycondensates which may contain maleic anhydride copolymers and / or nanoparticles, are preferably used in the form of cylindrical, lenticular, pastille-shaped or spherical particles with an average diameter of 0.5 to 8 mm in the production of the aminoplast melts.
  • 5-zone screws with feed zone, compression zone, shear zone, decompression zone and homogenization zone are preferred. Screws with cutting depths of 1: 2.5 to 1: 3.5 are preferred.
  • the interposition of static mixers or melt pumps between the cylinder and the nozzle is particularly favorable.
  • Maleic anhydride copolymers and / or nanoparticles insofar as these components have not already been incorporated in the assembly of the aminoplast polycondensates, can also be added to the melt of the aminoplast polycondensates in a continuous kneader.
  • the processing temperatures of the aminoplast polycondensates containing light-activatable hardeners from the melt are determined by the temperature interval above the melting point of the aminoplast polycondensates and below the thermally induced decomposition temperature of the light-activatable hardeners.
  • a light-activatable hardener for an aminoplast polycondensate, the thermally induced decomposition temperature of which is at least 45 degrees above the melting temperature of the aminoplast polycondensate.
  • Usual residence times in the continuous kneader during the production and homogenization of the melt are 2 to 12 minutes.
  • layers of aminoplasts are preferably cured continuously by irradiation of the melt layer of the aminoplast polycondensate applied to moving carrier materials.
  • the aminoplast melt can be applied to the moving carrier material by means of a slot die or by spraying.
  • carrier materials to which the melt layer of the aminoplast polycondensate is applied in the process according to the invention for the subsequent curing by radiation are webs of textile fabrics such as nonwovens and woven fabrics, paper,. Cardboard or wood veneer, or Board material made of wood or plywood, chipboard, fibreboard or multi-layer composite panels.
  • Thin foamed layers on the support materials can be produced if the melts of the aminoplast polycondensates contain gas-releasing blowing agents such as sodium bicarbonate, azodicarbonamide, citric acid / bicarbonate blowing systems and / or cyanuric acid trihydrazide, or volatile hydrocarbons such as pentane, isopent into the melt before discharge , Propane and / or isobutane, or gases such as nitrogen, argon and / or carbon dioxide are metered, the layer being foamed when the melt is discharged from the slot die.
  • gas-releasing blowing agents such as sodium bicarbonate, azodicarbonamide, citric acid / bicarbonate blowing systems and / or cyanuric acid trihydrazide, or volatile hydrocarbons such as pentane, isopent into the melt before discharge , Propane and / or isobutane, or gases such as nitrogen, argon and / or carbon dioxide are metered, the layer being foamed when
  • threads or fiber fibrids made of aminoplasts are preferably hardened continuously by irradiation of the threads or fiber fibrids discharged as a viscous melt after fiber formation.
  • filament yarns according to the method of the invention can be carried out in short spinning systems by transferring the light-activating hardener-containing melt of the aminoplast polycondensates by means of a melt pump into the capillary tool, extruding the threads in the blow chute with simultaneous application of actinic light and drawing off the threads with the help of high-speed godets and further processing Successor devices from the thermal post-curing chamber, stretching device and winder take place.
  • Fiber fibrids and nonwovens according to the method according to the invention can be melt-blown by transferring the light-activable hardener-containing melt of the aminoplast polycondensates by means of a melt pump into the capillary tool, extrusion of the threads from the capillary tool into the blow chute with application of a hot air flow around the capillary nozzle openings be produced with simultaneous irradiation with actinic light.
  • the air flow simultaneously stretches the melted thread Divided into many individual fibers with fiber diameters from 0.5 to 12 ⁇ m. Further processing of the fiber fibrids deposited on the screen conveyor belt to form nonwovens can be carried out by applying thermal bonding or needling processes to achieve the required strength and dimensional stability.
  • aminoplastics preferably textile fabrics or coatings, which are produced by the method described above.
  • textile fabrics are fire protection and heat protection clothing containing aminoplast fibers, fire protection blankets, temperature-resistant electrical insulation fabrics, filter inserts for hot gases and felts for paper machines.
  • coatings are aminoplast-coated textile fabrics such as nonwovens and fabrics, and aminoplast-coated paper, cardboard or wood veneer, or coated board material made of wood or plywood, chipboard, wood fiber boards or multi-layer composite boards.
  • the surface of the hardened resin layer was scanned with a needle, the load of which is increased from 0 to 40 mN in 10 load steps. Is determined the force at which the surface of the hardened resin layer is permanently deformed.
  • a polycondensate of melamine and formaldehyde with a melamine / formaldehyde ratio of 1: 3 is used as the melamine resin.
  • the methylol groups of the melamine resin are predominantly etherified by methanol, the methoxy group content of the resin is 20% by mass.
  • the molar mass of the resin is around 2000 g / mol.
  • the plate is passed under the emitter on a conveyor belt and exposed with a power of 1.4 W / cm 2 at an oxygen concentration of 15% by volume and a temperature of 140.degree.
  • a tack-free, completely hardened surface is obtained.
  • the surface of the hardened resin layer is only permanently deformed when an applied force of 28 mN is applied.
  • a non-irradiated coated plate under the same test conditions shows a permanent deformation of the surface of the resin layer with a force of 4 mN.
  • Example 1 Carrying out the experiment as in Example 1. With a reduced oxygen concentration of 100 ppm, results as in Example 1 are obtained with the same light output.
  • Example 5 The melt of the resin-hardener mixture is applied with a layer thickness of 50 ⁇ m to a glass plate (thickness 6 mm) preheated to 140 ° C. Under irradiation conditions as in Example 1, a completely hardened surface is obtained with an output of 0.5 W / cm 2 . A permanent deformation of the surface of the resin layer is observed in the scratch test from a force of 30 mN.
  • Example 5
  • the melt of the resin-hardener mixture is applied with a layer thickness of 50 ⁇ m to a glass plate (thickness 6 mm) preheated to 140 ° C. A completely hardened surface is obtained under irradiation conditions as in Example 1.
  • the melamine resin used is a melamine-formaldehyde precondensate based on 2,4,6-tris-methoxymethylamino-1, 3,5-triazine which is re-etherified with an ethylene glycol diether of bisphenol A (Simulsol BPLE, Seppic SA, France).
  • the molecular weight determined by GPC is 1800, the content of non- set Simulsol BPLE after HPLC analysis (solution in THF, UV detection with external standard) is 14 mass%.
  • the proportion of the -OCH 3 groups in the re-etherified melamine resin (determined by GC analysis after cleavage of the polytriazine ether with mineral acid) is 14.5% by mass.
  • the viscosity at 140 ° C is 800 Pa.s.
  • the transetherification of the melamine-formaldehyde precondensate based on 2,4,6-tris-methoxymethylamino-1, 3,5-triazine and further condensation takes place at 200 ° C in the laboratory extruder GL 27 D44 with vacuum degassing (Leistritz) at a temperature profile of 100 ° C / 130 ° C / 130 ° C / 200 o C / 200 o C / 200 o C / 200 o C / 200 ° C / 200 ° C / 100 ° C / 100 ° C and an average residence time of 2 to 3 min instead.
  • the extruder speed is 150 min -1 .
  • 2,4,6-Tris-methoxymethylamino-1,3,5-triazine at 1.38 kg / h and the ethylene glycol diether of bisphenol A at 1.13 are fed into the feed zone of the extruder kg / h dosed gravimetrically by means of side-stream metering
  • the strand of the polytriazine ether emerging from the extruder is cut in a granulator.
  • the transetherified melamine resin is compounded at 130 ° C. with 1% by mass, based on the melamine resin, of 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1, 3,5-triazine as a light-activatable hardener.
  • the compound is melted in the extruder at a melt temperature of 150 ° C and spun into threads using a spinning pump and spinnerets at 145 ° C °.
  • the molten, highly viscous threads are irradiated at 135 ° C. in the exposure system with a power of 1 W / cm 2 .
  • the 35 ⁇ m thick fibers obtained in this way can be wound up without sticking, whereas unexposed fibers stick very quickly.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

In einem Verfahren zur Härtung von Aminoplasten werden Schichten mit Schichtdicken bis 300 mm oder Fäden bzw. Faserfibride mit einem Durchmesser bis 300 mm, die aus i) 95 bis 99,95 Masse% lösungsmittelfreien schmelzbaren Aminoplastpolykondensaten mit Molmassen von 1000 bis 300000, j) 5 bis 0,05 Masse% durch aktinisches Licht aktivierbare Härter, bestehend aus Säurebildnern vom Typ blockierte Sulfonsäure und/oder Halogensubstituierten Triazinderivaten und/oder Oniumsalzen, und gegebenenfalls k) 1 bis 20 Masse%, bezogen auf die schmelzbaren Aminoplastpolykondensate, nichtmodifizierte und/oder modifizierte Maleinsäureanhydrid-Copolymere, und/oder l) 0,1 bis 5 Masse%, bezogen auf die schmelzbaren Aminoplastpolykondensate, Nanopartikel bestehen, durch Bestrahlung mit aktinischem Licht bei einer Temperatur zwischen dem Schmelzpunkt des Aminoplastpolykondensats und der thermoinduzierten Zersetzungstemperatur der Licht aktivierbaren Härter gehärtet. Nach dem Verfahren können bevorzugt textile Flächengebilde oder Beschichtungen hergestellt werden.

Description

Verfahren zur Härtung von Aminoplasten
Die Erfindung betrifft ein Verfahren zur Härtung von Aminoplasten sowie Aminoplasterzeugnisse, die nach dem Verfahren hergestellt werden.
Aminoplaste wie Melamin-Formaldehyd-Harze oder Melamin-Harnstoff-Form- aldehyd-Harze [Ullmanns Encyclopedia of Industrial Chemistry (1987), Vol. A2, 130-131] sind bekannt. Von Nachteil bei der Herstellung von Erzeugnissen aus Melaminharzen ist die schwierige Verarbeitbarkeit nach üblichen thermoplastischen Verarbeitungsverfahren wie Extrusion, Spritzguss oder Blasformen. Niedermolekulare Melaminharz-Vorkondensate besitzen eine zu geringe Schmelz- viscosität für diese Verarbeitungsverfahren und können lediglich als hochgefüllte Formmassen bei langen Zykluszeiten unter Härtung der Erzeugnisse verarbeitet werden (Woebcken, W., Kunststoff-Handbuch Bd. 10 "Duroplaste", Carl Hanser Verlag München 1988, S. 266-274).
Fasern [DE 195 15 277 A1 , EP 0 093 965 A2], Schäume oder Beschichtungen [DE 24 22 803 B1] aus Melaminharzen können auf Grund der niedrigen Schmelzviscosität der Melaminharzvorkondensate nur ausgehend von Lösungen der Melaminharzvorkondensate unter Aushärtung während der Formgebung hergestellt werden.
Bekannte Härter bei der Herstellung von Melaminharzfasem sind organische Säuren wie Ameisensäure, Essigsäure, Amidosulfonsäuren oder Aminosäuren [DE 195 15 277 A1] oder Alkalisalze wie Alkalidisulfite, Alkaliphosphate oder Alkalipolyphosphate [EP 0 093 965 A2].
Weiterhin bekannt ist die Anwendung von lodoniumsalzen (DE 100 63 066) oder blockierter Sulfonsäuren (WO 00 10 972) als Komponente strahlungsempfindlicher polymerisierbarer oder vernetzbarer Rezepturen. Aufgabe der vorliegenden Erfindung ist ein Verfahren zur Härtung von Aminoplasten, bei dem lösungsmittelfreie dünne Aminoplastschichten oder Aminoplastfäden gehärtet werden können.
Die Aufgabe wurde durch ein Verfahren zur Härtung von Aminoplasten gelöst, bei dem erfindungsgemäss Schichten mit Schichtdicken bis 300 μm oder Fäden bzw. Faserfibride mit einem Durchmesser bis 300 μm aus
a) 95 bis 99,95 Masse% lösungsmittelfreien schmelzbaren Aminoplastpolykondensaten mit Molmassen von 300 bis 300000
b) 5 bis 0,05 Masse% durch aktinisches Licht aktivierbare Härter, bestehend aus b1) Säurebildnern vom Typ blockierte Sulfonsäure der allgemeinen Formel (l) R1 — sOr- O— R2 ( I )
R. = unsubstituiertes oder substituiertes Aryl, Biphenyl oder Alkyl, κ CO-R3
R2 = 4-Nitrobenzyl, Pentafluorbenzyl, - N = C - Substituenten,
N (R4)(R5)
O oder Z N - - Substituenten,
O Z = c6-c24-Aryl, C2-c4-Alkyl, C2-c -Alkenyl, c7-cs-Bicycloalkenyl, wobei R3 = nichtsubstituiertes oder substituiertes Alkyl oder Aryl, ι = H, C C12-Alkyl, Phenyl, C2-C9-Alkanoyl oder Benzyl, R5 = H, C C12-Alkyl oder Cyclohexyl, oder R3 und R4 oder R5 zusammen mit den Atomen, an die sie gebunden sind, einen 5- bis 8-gliedrigen Ring bilden, der durch 1 oder 2 Benzoreste anelliert sein kann, und/oder b2) Halogensubstituierten Triazinderivaten der allgemeinen Formel (II)
i6-Alkyl, CrC16- Biphenyl, Alkoxyl,
Figure imgf000004_0001
X3C Naphthyl, und/oder b3) Oniumsalzen vom Typ Aryldiazoniumsalze, Diarylhaloniumsalze, Tria- rylsulfoniumsalze, Triarylselenoniumsalze und/oder N-Alkoxypyridinium- salze, und gegebenenfalls c) 1 bis 20 Masse%, bezogen auf die schmelzbaren Aminoplastpolykondensate, nichtmodifizierte und/oder modifizierte Maleinsäureanhydrid- Copolymere, und/oder d) 0,1 bis 5 Masse%, bezogen auf die schmelzbaren Aminoplastpolykondensate, Nanopartikel in Form von Schichtsilikaten, hydrophilen oder hydrophoben synthetischen Kieselsäuren, Calciumcarbonat oder Metalloxiden vom Typ ZnO, SnO, AI2O3 oder TiO2,
durch Bestrahlung mit aktinischem Licht bei einer Temperatur zwischen dem Schmelzpunkt des Aminoplastpolykondensats und der thermoinduzierten Zersetzungstemperatur der Licht aktivierbaren Härter gehärtet und gegebenenfalls einer thermischen Nachhärtung unterhalb 250°C unterzogen werden.
Geeignete Lichtquellen sind Punktlichtquellen und flächenfömnige Strahler. Beispiele für geeignete Lichtquellen sind Kohlelichtbogenlampen, Xenon-Lichtbogenlampen, Quecksilberstrahler im Niederdruck, Mitteldruck- und Hochdruckbereich, die gegebenenfalls mit Metallhalogeniden dotiert sein können, wie Metall-Halogenlampen, mikrowellenangeregte Metalldampflampen, Excimer- Lampen, superaktinische Leuchtstoffröhren, Fluoreszenz-Lampen, Argonglühlampen, Blitzlampen, und Laserlichtquellen wie Excimer-Laser. Bei dem Verfahren zur Härtung von Aminoplasten werden als Säurebildner vom Typ blockierte Sulfonsäure der allgemeinen Formel
Figure imgf000005_0001
blockierte Sulfonsäuren bevorzugt, in denen die Substituenten
R1 = unsubstituiertes oder durch einen oder mehrere der Substituenten Halogen, CrC4-Halogenalkyl, CrC16-Alkyl, C C4-Alkoxy, CrC4-Alkyl-CO- NH-, Phenyl-CO-NH-, Benzoyl- oder Nitro- substituiertes C6-C10-Aryl oder C7- C12-Arylalkyl,
Figure imgf000005_0002
R2 = 4-Nitrobenzyl, Pentafluorbenzyl, - N = C - - Substituenten
\ N(R4)(R5)
oder - - Substituenten,
Figure imgf000005_0003
Z = c&cM-Aryl, C2-c4-Alkyl, C2-c4-Alkenyl, C7-c8-Bicycloalkenyl, wobei
R3 = C C12-Alkyl, C C4-Halogenalkyl, C2-C6-Alkenyl, C5-C12-Cycloalkyl, unsubstituiertes oder durch einen oder mehrere der Substituenten Halogen, C C4-Halogenalkyl, Crdβ-Älky., C C4-Alkoxy, CrC -Alkyl-CO- NH-, Phenyl-CO-NH-, Benzoyl oder Nitro- substituiertes C6-Cι0-Aryl und/oder C7-C12-Arylalkyl, CrC8-Alkoxy, C5-C8-Cycloalkoxy, Phenoxy oder H2N-CO-NH- ,-CN, C2-C5-Alkyloyl, Benzoyl, C2-C5-Alkoxycarbonyl, Phenoxycarbonyl, Morpholino-, Piperidino-, C C12-Alkyl, C C4- Halogenalkyl, C2-C6-Alkenyl, C5-C12-Cycloalkyl, unsubstituiertes oder durch einen oder mehrere der Substituenten Halogen, C C - Halogenalkyl, CrC16-Alkyl, C C4-Alkoxy, C C4-Alkyl-CO-NH-, Phenyl- CO-NH-, Benzoyl oder Nitro- substituiertes C6-C10-Aryl, C7-C 2-Arylalkyl, C C8-AIkoxy, C5-C8-Cycloalkoxy-, Phenoxy-, oder H2N-CO-NH-, R4 = H, Cι-C12-Alkyl, Phenyl, C2-C9-Alkanoyl oder Benzyl,
R5= H, C C12-Alkyl oder Cyclohexyl, oder R3 und R4 oder R5 zusammen mit den Atomen, an die sie gebunden sind, einen 5- bis 8-gliedrigen Ring bilden, der durch 1 oder 2 Benzoreste anelliert sein kann.
Beispiele für bevorzugte blockierte Sulfonsäuren sind Benzilmonoximtosylat, Benzil-monoxim-p-dodecylbenzolsulfonat, 4-Nitroacetophenonoximtosylat, α-To- syloxyimino-capronsäureethylester, α-Cyclohexylsulfonyloxyimino-phenylessig- säureethylester, α-(4-Chlorphenylsulfonyloxyiimino)capronsäure-phenylester, 4,4-Dimethylbenzilmonoxim-tosylat, Dibenzylketonoxim-tosylat, Acetonoxim-p- benzoylbenzolsulfonat, α-Tetralonoxim-tosylat, Anthrachinonmonoxim-tosylat, Thioxanthonoxim-tosylat, α-(p-Toluolsulfonyloxy-imino)benzylcyanid, α-(4-Nitro- benzolsulfonyloxyimino)benzylcyanid, α-(Benzolsulfonyl-oxyimino)-4-chlorben- zylcyanid, α-(Benzolsulfoxyimino)-2,6-dichlorbenzylcyanid, α-(2-Chlorbenzol- sulfonyloxyimino)-4-methoxybenzylcyanid, 4-Chlor-α-trifluor-acetophenon-oxim- benzolsulfonat, Fluorenoxim-tosylat, α-(Benzolsulfonyloxyimino)ureidocarbonyl- ace-tonitril, α-(p-Toluolsulfonyloxyimino)-benzoylacetonitril, 2,3-Dihydro-1 ,4- naphthochinon-monoxim-tosylat, Acetophenonoximtosylat, Chromanoximtosylat, 2-Nitrobenzylsulfonat, 2,6-Dinitrobenzylbenzolsulfonat, 4-Nitrobenzyl-9,10-di- methoxyanthracen-2-sulfonat, 2-Methylsulfonyloxyimino-4-phenyl-but-3-ennitril, 4-Cyclohex-1-enyl-2-methylsulfonyl-oxy-imino-but-3-ennitril, 4-Furan-2-yl-isopro- pylsulfonyloxyimino-but-3-ennitril und 2-Penta-fluoro-phenylsulfonyloxyimino-4- phenyl-but-3-ennitril.
Ein Beispiel für bevorzugte blockierte Sulfonsäuren, bei denen R2 ein
O
Z x N - - Substituent ist,
O Z = G6-c24-Aryl, C2-c4-Alkyl, C2-c4-Alkenyl, C7-c8-Bicycloalkenyl,
ist die blockierte Sulfonsäure der Struktur
Figure imgf000007_0001
Besonders bevorzugt werden bei dem erfindungsgemässen Verfahren zur Härtung von Aminoplasten Säurebildner vom Typ blockierte Sulfonsäure der allgemeinen Formel
Figure imgf000007_0002
bei denen die blockierten Sulfonsäuren Säurebildner der Formel
Figure imgf000007_0003
sind. Beispiele für Halogen-substituierte Triazinderivate, die bei dem erfindungsgemässen Verfahren als durch aktinisches Licht aktivierbare Härter eingesetzt werden können, sind 1 ,3,5-Tribrommethyl-2,4,6-triazin und 1 ,3,5-Trichlormethyl- 2,4,6-triazin.
Bei dem erfindungsgemässen Verfahren zur Härtung von Aminoplasten werden als Halogen-substituierte Triazinderivate der allgemeinen Formel (II)
Figure imgf000007_0004
Triazinderivate bevorzugt, bei denen
X = Cl und R7 = p-Methoxyphenyl - bedeuten.
Beispiele für Oniumsalze, die bei dem erfindungsgemässen Verfahren als durch aktini-sches Licht aktivierbare Härter eingesetzt werden können, sind
- Aryldiazoniumsalze wie Phenyldiazoniumhexafluoroarsenat, Toluyldiazonium- tetrafluoroborat und Phenyldiazoniumhexafluorophosphat,
- Diarylhaloniumsalze wie 4-lsobutylphenyl-4'-methylphenyliodonium-hexa- fluorophosphat, 4-lsobutylphenyl-4'-methylpheny)iodonium-4-chlorophenyl- sulfonat, 4-(-Methyl-but-2-yl)phenyl-4'-methylphenyliodonium-nonafluoro-bu- tylsulfonat, Diphenylbromoniumhexafluoroantimonat, Diphenyliodonium-8- anilinonaphthalin-1-sulfonat, Diphenyl-iodonium-9,10-dimethoxyanthracen-2- sulfonat und Diphenylchloroniumhexafluoroantimonat,
- Triarylsulfoniumsalze wie Tris(4-methoxyphenyl)sulfonium-hexafluoroarsenat, 3,5-Di-methyl-4-hydroxyphenylsulfonium-hexafluorophosphat und Benzyl(p- hydroxyphenyl)-methylsulfonium-hexafluoroantimonat,
- Triaryiselenoniumsalze wie 3,5-Diphenyl-4-hydroxyphenylsulfonium-tetra- fluoroborat und Tris(4-ethoxyphenyl)sulfonium-hexafluorophosphat,
- N-Alkoxypyridiniumsalze wie N-Ethoxypyridinium-tetrafluoroborat oder N- Methoxy-pyridinium-hexafluorophosphat.
Bevorzugtes Oniumsalz als Härter ist das Oniumsalz der Formel
Figure imgf000008_0001
Die bei dem erfindungsgemässen Verfahren zur Härtung von Aminoplasten eingesetzten Aminoplastpolykondensate mit Molmassen von 1000 bis 300000 sind bevorzugt Polykondensate von Melaminharzen, Harnstoffharzen, Cyanamid- harzen, Dicyandiamidharzen, Sulfonamidharzen und/oder Guanaminharzen. Als Melaminharze werden Polykondensate aus Melamin bzw. Melaminderivaten und d-Cβ-Aldehyden mit einem Molverhältnis Melamin bzw. Melaminderivat / C Ca-Aldehyden 1 : 1 ,5 bis 1 : 6 sowie deren partielle Veretherungsprodukte bevorzugt, wobei die Melaminderivate durch Hydroxy-C Cι0-alkylgruppen, Hydroxy-CrC4-alkyl-(oxa-C2-C -alkyl)1.5-gruppen und/oder durch Amino-CrC12- alkylgruppen substituierte Melamine, Ammeiin, Ammelid, Meiern, Melon, Melam, Benzoguanamin, Acetoguanamin, Tetramethoxymethylbenzoguanamin, Caprino- guanamin, und/oder Butyroguanamin sein können, und die Cι-C8-Aldehyde insbesondere Formaldehyd, Acetaldehyd, Trimethylolacetaldehyd, Acrolein, Furfurol, Glyoxal und/oder Glutaraldehyd, besonders bevorzugt Formaldehyd, sind.
Die Melaminharze können ebenfalls 0,1 bis 10 Masse%, bezogen auf die Summe von Melamin und Melaminderivaten, eingebaute Phenole und/oder Harnstoff enthalten. Als Phenolkomponenten sind dabei Phenol, CrCg-Alkylphenole, Hydroxyphenole und/oder Bisphenole geeignet.
Beispiele für die bei dem erfindungsgemässen Verfahren gegebenenfalls eingesetzten Harnstoffharze sind neben Harnstoff-Formaldehyd-Harzen ebenfalls Mischkondensate mit Phenolen, Säureamiden oder Sulfonsäureamiden.
Beispiele für die bei dem erfindungsgemässen Verfahren gegebenenfalls eingesetzten Sulfonamidharze sind Sulfonamidharze aus p-Toluolsulfonamid und Formaldehyd.
Beispiele für die bei dem erfindungsgemässen Verfahren gegebenenfalls eingesetzten Guanaminharze sind Harze, die als Guanaminkomponente Benzoguanamin, Acetoguanamin, Tetramethoxymethylbenzoguanamin, Caprinoguan- amin und/oder Butyroguanamin enthalten. Beispiele für die bei dem erfindungsgemässen Verfahren gegebenenfalls eingesetzten Anilinharze sind Anilinharze, die als aromatische Diamine neben Anilin ebenfalls Toluidin und/oder Xylidine enthalten können.
Mit besonderem Vorteil werden bei dem erfindungsgemässen Verfahren zur Härtung von Aminoplasten Polykondensate von Melaminharzen eingesetzt, die Mischungen aus schmelzbaren 4- bis 1000-Kern-Polytriazinethern sind, wobei in den Polytriazinethem die Triazinsegmente
Figure imgf000010_0001
R, = -NH2, -NH-CHR2-0-R3 ,-NH-CHR2-0-R -OH, -CH3, -C3H7, -C6H5, -OH, P thalimido- Succinimido-, -NH-CO-C5-cιβ-Alkyl, -NH-C5-C18-Alkylen-OH, -NH-CHR2-0-C5-C18-Alkylen-NH2, -NH-C5-C18-Alkylen-NH2, -NH-CHR2-0-R4-0-CHR2-NH-, -NH-CHR2-NH-, -NH-CHR2-0-C5-C18-Alkylen-NH-, -NH-C5-C18-Alkylen-NH-, -NH-CHR2-0-CHR2-NH-,
R2 = H, CrC7 - Alkyl;
R3 = C C18 - Alkyl, H;
R4 = C2-C18-Alkylen, -CH(CH3)-CH2-0-C2-ci2-Alkylen-0-CH2-CH(CH3)-, -CH(CH3)-CH2-0-C2.ci2-Arylen-0-CH2-CH(CH3)-, -[CH2-CH2-0-CH2-CH2]n -, -[CH2-CH(CH3)-0-CH2-CH(CH3)]n -, -[-0-CH2-CH2-CH2-CH2-]n-, -[(CH2)2.8-O-C0-c6-cι4Arylen-CO-0-(CH2)2-8-]n -, -[(CH2)2.s-O-C0-c2-ci2Alkylen-C0-0-(CH2)2.8-]n-, wobei n = 1 bis 200;
- Siloxangruppen enthaltende Polyestersequenzen des Typs
-[(X)r-0-CO-(Y)s-CO-0-(X)r]- , bei denen X = {(CH2)2.s-0-CO-c6.Gi -Arylen-CO-0-(CH2)2.8-} oder
-{(CH2)2-8-0-CO-c2.ci2Alkylen-CO-0-(CH2)2.8-};
d-C4-Alkyi C C -Alkyl
I I
Y = -{c6-cι4Arylen-CO-0-({Si -0-[Si-0]y-CO-C6- cw-Arylen-} Cι-C4-Alkyl Cι-C -Alkyl
oder
Cι-C4-Alkyl Cι-C4-Alkyl
I I
-{0-CO-c2-ci2-A!kylen-CO-0-({Si -0-[Si-0]z-CO-c2-ci2-Alkylen-CO-}
I I d-C4-Alkyl Cι-C4-Alkyl ; r = 1 bis 70; s = 1 bis 70 und y = 3 bis 50 bedeuten;
- Siloxangruppen enthaltende Polyethersequenzen des Typs
Cι-C4-Alkyl C C4-Alkyl
I l
-CH2-CHR2-0-({Si -0-[Si-0]y-CHR2-CH2-
I I
Cι-C4-Alkyl C C4-Alkyl wobei R2 = H; Cι-C4-Alkyl und y = 3 bis 50 bedeuten;
- Sequenzen auf Basis von Alkylenoxidaddukten des Melamins vom Typ 2-Amino-4,6-di-C2-c -alkylenamino-1 ,3,5-triazin - Sequenzen:
- Phenolethersequenzen auf Basis zweiwertiger Phenole und C2-C8-Diolen vom Typ
-c2-c8Alkylen-0-c6-ci8-Arylen-0-c2-c8-Alkylen- Sequenzen;
durch Brückenglieder -NH-CHR2-NH- oder -NH-CHR2-O-R4-O-CHR2-NH- und -NH-CHR2-NH- sowie gegebenenfalls -NH-CHR2-O-CHR2-NH-, -NH- CHR2-O-C5-C18-Alkylen-NH- bzw. -NH-C5-C18-Alkylen-NH- zu 4- bis 1000- Kern-Polytriazinethern mit linearer und/oder verzweigter Struktur verknüpft sind,
wobei in den Polytriazinethern das Molverhältnis der Substituenten R3 : R4 = 20 : 1 bis 1 : 20 beträgt, und der Anteil der Verknüpfungen der Triazinsegmente durch Brückenglieder -NH-CHR3-O-R4-O-CHR3-NH- 5 bis 95 Mol% beträgt.
Die endständigen Trinzinsegmente in den Polytriazinethern sind Triazinsegmente der Struktur
Figure imgf000012_0001
Y= -NH-CHR2-O-R3 ,-NH-CHR2-0-R -OH sowie gegebenenfalls -NH-CHR2-0-C5-C18-Alkylen-NH2, -NH-C5-C18-Alkylen-NH2, -NH-C5-C18-Alkylen-OH,
R1 = -NH2, -NH-CHR2-O-R3 ,-NH-CHR2-0-R4-OH, -CH3, -C3H7, -C6H5, -OH, Phthalimido- Succinimido-, -NH-CO-R3, -NH-C5-C18-Alkylen-OH, -NH-C5-Cι8-Alkylen-NH2, -NH-CHR2-0-C5-Ci8-Alkylen-NH2,
R2 = H, C C7 - Alkyl;
R3 = CrC18 - Alkyl, H;
R4 = C2-C18-Alkylen, -CH(CH3)-CH2-0-C2.ci2-Alkylen-0-CH2-CH(CH3)-, -CH(CH3)-CH2-0-c2-ci2-Arylen-0-CH2-CH(CH3)-, -[CH2-CH2-0-CH2-CH2]n -, -[CH2-CH(CH3)-0-CH2-CH(CH3)]n -, -[-O-CH2-CH2-CH2-CH2- -, -[(CH2)2.8-0-CO-c6-cι4Arylen-CO-0-(CH2)2.8-]n-, -[(CH2)2-8-0-CO-c2.ci2Alkylen-CO-0-(CH2)2-8-]n-, wobei n = 1 bis 200; Siloxangruppen enthaltende Polyestersequenzen des Typs
-[(X)r-0-CO-(Y)s-CO-0-(X)r]- , bei denen
X = {(CH2)2.8-0-CO-C6.cι4Arylen-CO-0-(CH2)2-8-} oder -{(CH2)2-8-0-CO-C2.cι2Alkylen-CO-0-(CH2)2.8-};
Cι-C -Alkyl Cι-C4-Alkyl
I I
Y = -{c6-cι Arylen-CO-0-({Si-0-[Si-0]y-CO-G6-cι4Arylen-}
I I
C C4-Alkyl Cι-C -Alkyl oder
Cι-C4-Alkyl Cι-C4-Alkyl
I I
-{0-CO-c2-ci2Alkylen-CO-0-({Si -0-[Si-0]z-CO-c2- cι2Alkylen-CO-}
I I
Cι-C -Alkyl C C4-Alkyl ; r = 1 bis 70; s = 1 bis 70 und y = 3 bis 50 bedeuten;
- Siloxangruppen enthaltende Polyethersequenzen des Typs
CrOt-Alkyl d-C -Alkyl
I I
-CH2-CHR2-0-({Si -0-[Si-0]y-CHR2-CH2-
C-ι-C4-Alkyl Cι-C4-Alkyl wobei R2 = H; C1-C4-Alkyl und y = 3 bis 50 bedeuten;
- Sequenzen auf Basis von Alkylenoxidaddukten des Melamins vom Typ 2-Amino-4,6-di-C2-c4-alkylenamino-1 ,3,5-thazin - Sequenzen,
- Phenolethersequenzen auf Basis zweiwertiger Phenole und C2-C8-Diolen vom Typ -C2-c8Alkylen-0-c6-ci8-Arylen-0-c2-c8-Alkylen- Sequenzen;
bilden. Die bei dem erfindunsgemässen Verfahren eingesetzten 4- bis 1000-Kern- Polytriazinether können durch Veretherung von Melaminharzvorkondensaten mit CrC4-Alkoholen, gegebenenfalls unter nachfolgender partieller Umetherung mit C4-C18-Alkoholen, C2-Cι8-Diolen, mehrwertigen Alkoholen vom Typ Glycerin oder Pentaerythrit, C5-C18-Aminoalkoholen, Polyalkylenglycolen, Hydroxyendgruppen enthaltenden Polyestern, Siloxanpolyestern, Siloxanpolyethern, Melamin- Alkylenoxid-Addukten und/oder Zweikernphenol-Alkylenoxidaddukten und/oder Umsetzung mit C5-Cι8-Diaminen und/oder Bisepoxiden, und nachfolgende thermische Kondensation der modifizierten Melaminharzkondensate in der Schmelze im kontinuierlichen Kήeter bei Temperaturen von 140 bis 220°C hergestellt werden.
Beispiele für die bei dem erfindungsgemässen Verfahren gegebenenfalls eingesetzten Maleinsäureanhydrid-Copolymere sind C2-C20-Olefin - Maleinsäureanhydrid-Copolymere oder Copolymere aus Maleinsäureanhydrid und C8-C20- Vinylaromaten.
Beispiele für die C2-C20-Olefin - Komponenten, die in den Maleinsäureanhydrid- Copolymeren enthaltenen sein können, sind Ethylen, Propylen, Buten-1 , Isobuten, Diisobuten, Hexen-1 , Octen-1, Hepten-1, Penten-1 , 3-Methylbuten-1 , 4- Methylpenten-1 , Methylethylpenten-1 , Ethylpenten-1 , Ethylhexen-1 , Octadecen-1 und 5,6-Dimethylnorbornen.
Beispiele für die C8-C20-Vinylaromaten - Komponenten, die in den Maleinsäure- anhydrid-Copolymeren enthaltenen sein können, sind Styren, -Methylstyren, Dimethylstyren, Isopropenylstyren, p-Methylstyren und Vinylbiphenyl.
Beispiele für die bei dem erfindungsgemässen Verfahren gegebenenfalls eingesetzten modifizierten Maleinsäureanhydrid-Copolymere sind partiell oder vollständig veresterte, amidierte bzw. imidierte Maleinsäureanhydrid-Copolymere. Besonders geeignet sind modifizierten Copolymere aus Maleinsäureanhydrid und C2-C20-Olefinen bzw. C8-C2o-Vinylaromaten mit einem Molverhältnis von 1 : 1 bis 1 : 9 und Molmassen-Gewichtsmitteln von 5000 bis 500000, die mit Ammoniak, CrC18-Monoalkylaminen, C6-C18-aromatischen Monoaminen, C2-C18- Monoaminoalkoholen, monoaminierten Poly(C2-C4-alkylen)oxiden einer Molmasse von 400 bis 3000, und/oder monoveretherten Poly(C2-C4-alkylen)oxiden einer Molmasse von 100 bis 10000 umgesetzt worden sind, wobei das Molverhältnis Anhydridgruppen Copolymer / Ammoniak, Aminogruppen CrC18- Monoalkylamine, C6-C18-aromatische Monoamine, C2-C18-Monoaminoalkohole bzw. monoaminiert.es Poly-(C2-C4-alkylen)oxid und/oder Hydroxygruppen Poly- (C2-C4-alkylen)oxid 1 : 1 bis 20 : 1 beträgt.
Beispiele für die bei dem erfindungsgemässen Verfahren gegebenenfalls eingesetzten Nanopartikel in Form von Schichtsilikaten sind Montmorillonit, Bentonit, Kaolinit, Muskovit, Hectorit, Fluorhectorit, Kanemit, Revdit, Grumantit, llerit, Saponit, Beidelit, Nontronit, Stevensit, Laponit, Taneolit, Vermiculit, Halloysit, Volkonskoit, Magadit, Rectorit, Kenyait, Sauconit, Borfluorophlogopite und synthetische Smectite.
Bei dem erfindungsgemässen Verfahren werden die schmelzbaren Aminoplastpolykondensate, die gegebenenfalls Maleinsäureanhydrid-Copolymere und/oder Nanopartikel enthalten, bevorzugt in Form von zylindrischen, linsenförmigen, pastillenförmigen oder kugelförmigen Partikeln mit einem mittleren Durchmesser von 0,5 bis 8 mm bei der Herstellung der Aminoplastschmelzen eingesetzt.
Für die Herstellung der Schmelzen der Aminoplastpolykondensate vor Applizierung der aktinischen Strahlung sind kontinuierliche Kneter, bevorzugt Extruder mit Kurzkompressionsschnecken oder Dreizonenschnecken mit L/D = 20-40 geeignet. Bevorzugt werden 5-Zonen-Schnecken mit Einzugszone, Kompressionszone, Scherzone, Dekompressionszone und Homogenisierungszone. Schnecken mit Schnitttiefen von 1 : 2,5 bis 1 : 3,5 sind bevorzugt geeignet. Besonders günstig ist die Zwischenschaltung von statischen Mischern oder Schmelzepumpen zwischen Zylinder und Düse.
Maleinsäureanhydrid-Copolymere und/oder Nanopartikel, insofern diese Komponenten nicht bereits bei der Konfektionierung der Aminoplast-Polykondensate eingearbeitet wurden, können ebenfalls im kontinuierlichen Kneter der Schmelze der Aminoplastpolykondensate zugesetzt werden.
Die Verarbeitungstemperaturen der Licht aktivierbare Härter enthaltenden Aminoplast-Polykondensate aus der Schmelze sind durch das Temperaturintervall oberhalb des Schmelzpunkts der Aminoplast-Polykondensate und unterhalb der thermoinduzierten Zersetzungstemperatur der Licht aktivierbaren Härter festgelegt.
Es ist von Vorteil, für ein Aminoplast-Polykondensat einen Licht aktivierbaren Härter einzusetzen, dessen thermoinduzierte Zersetzungstemperatur mindestens 45 grd oberhalb der Schmelztemperatur des Aminoplast-Polykondensats liegt. Übliche Verweilzeiten im kontinuierlichen Kneter bei der Herstellung und Homogenisierung der Schmelze sind 2 bis 12 min.
Bei dem erfindungsgemässen Verfahren zur Härtung von Aminoplasten erfolgt die Härtung von Schichten aus Aminoplasten bevorzugt kontinuierlich durch Bestrahlung der auf bewegte Trägermaterialien aufgebrachten Schmelzeschicht des Aminoplastpolykondensats.
Das Aufbringen der Aminoplastschmelze auf das bewegte Trägermaterial kann mittels Breitschlitzdüse oder durch Aufsprühen erfolgen.
Beispiele für Trägermaterialien, auf die die Schmelzeschicht des Aminoplastpolykondensats bei dem erfindungsgemässen Verfahren für die nachfolgende Härtung durch Bestrahlung aufgebracht ist, sind Bahnen aus textilen Flächengebilden wie Vliese und Gewebe, Papier,. Pappe oder Holzfurnier, oder Plattenmaterial aus Holz bzw. Sperrholz, Holzspanplatten, Holzfaserplatten oder Mehrschichtverbundplatten.
Dünne geschäumte Schichten auf den Trägermaterialien können hergestellt werden, wenn die Schmelzen der Aminoplast-Polykondensate gasabspaltende Treibmittel wie Natriumhydrogencarbonat, Azodicarbonamid, Zitronensäure/ Bicarbonat-Treibsysteme und/oder Cyanursäuretrihydrazid enthalten, oder in die Schmelze vor dem Austrag leichtflüchtige Kohlenwasserstoffe wie Pentan, Iso- pentan, Propan und/oder Isobutan, oder Gase wie Stickstoff, Argon und/oder Kohlendioxid dosiert werden, wobei beim Austrag der Schmelze aus der Breitschlitzdüse eine Verschäumung der Schicht erfolgt.
Bei dem erfindungsgemässen Verfahren zur Härtung von Aminoplasten erfolgt die Härtung von Fäden bzw. Faserfibriden aus Aminoplasten bevorzugt kontinuierlich durch Bestrahlung der als viscose Schmelze ausgetragenen Fäden bzw. Faserfibride nach der Faserbildung.
Die Herstellung von Filamentgarnen nach dem erfindungsgemässen Verfahren kann in Kurzspinnanlagen durch Überführung der Licht aktivierbare Härter enthaltenden Schmelze der Aminoplastpolykondensate mittels Schmelzepumpe in das Kapillarwerkzeug, Extrusion der Fäden in den Blasschacht unter gleichzeitiger Applizierung von aktinischem Licht und Abzug der Fäden mit Hilfe schnelllaufender Galetten und Weiterverarbeitung in Nachfolgeeinrichtungen aus thermischer Nachhärtungskammer, Reckeinrichtung und Wickler erfolgen.
Faserfibride und Vliese nach dem erfindungsgemässen Verfahren können nach dem Melt-Blow-Verfahren durch Überführung der Licht aktivierbare Härter enthaltenden Schmelze der Aminoplastpolykondensate mittels Schmelzepumpe in das Kapillarwerkzeug, Extrusion der Fäden aus dem Kapillarwerkzeug in den Blasschacht unter Applizierung eines heissen Luftstroms um die Kapillar- düsenöffnungen unter gleichzeitiger Bestrahlung mit aktinischem Licht hergestellt werden. Der Luftstrom verstreckt den geschmolzenen Faden unter gleichzeitiger Zerteilung in viele Einzelfäserchen mit Faserdurchmessern von 0,5 bis 12 μm. Eine Weiterverarbeitung der auf dem Siebtransportband abgelegten Faserfibride zu Vliesen kann durch Applikation von Thermobondier- oder Vernade- lungsprozessen zur Erzielung der erforderlichen Festigkeit und Dimensionsstabilität erfolgen.
Erfindungsgemäss sind weiterhin Aminoplasterzeugnisse, bevorzugt textile Flächengebilde oder Beschichtungen, die nach dem vorbeschriebenen Verfahren hergestellt werden.
Beispiele für textile Flächengebilde sind Brandschutz- und Hitzeschutzbekleidung, die Aminoplastfasern enthalten, Brandschutzdecken, temperaturbeständige Elektroisolationsgewebe, Filtereinsätze für heisse Gase und Filze für Papiermaschinen.
Beispiele für Beschichtungen sind Aminoplast-beschichtete textile Flächengebilde wie Vliese und Gewebe sowie Aminoplast-beschichtetes Papier, Pappe oder Hόlzfurnier, oder beschichtetes Plattenmaterial aus Holz bzw. Sperrholz, Holzspanplatten, Holzfaserplatten oder Mehrschichtverbundplatten.
Die Erfindung wird durch nachfolgende Beispiele erläutert :
Als Belichtungsanlage für die Bestrahlung mit aktinischem Licht wurde ein Fusion UV-System Modell F600s mit Strahlerteil I 600-44, Lampenleistung 240 W/cm, 6000 W total, mit mikrowellengepulstem H-Strahler (Hg-Spektrum, Hauptemissionen 200-320 nm und 365 nm), elliptischer Reflektorgeometrie und Kühlung durch externes Gebläse eingesetzt.
Für die Ermittlung der Kraft für die dauerhafte Verformung beim Kratztest wurde die Oberfläche der gehärteten Harzschicht mit einer Nadel abgetastet, deren Belastung in 10 Belastungsschritten von 0 auf 40 mN erhöht wird. Ermittelt wird diejenige Kraft, bei der eine dauerhafte Verformung der Oberfläche der gehärteten Harzschicht erfolgt.
Beispiel 1 :
Als Melaminharz wird ein Polykondensat aus Melamin und Formaldehyd mit einem Verhältnis Melamin/Formaldehyd von 1 :3 verwendet. Die Methylolgruppen des Melaminharzes sind überwiegend durch Methanol verethert, der Methoxygruppengehalt des Harzes beträgt 20 Masse%. Die Molmasse des Harzes beträgt rund 2000 g/mol.
Das veretherte Melaminharz wird mit 1 Masse%, bezogen auf das Melaminharz, 2-(4-Methoxyphenyl)-4,6-bis(trichlormet yl)-1 ,3,5-triazin als Licht aktivierbarer Härter in der Schmelze bei 140°C homogenisiert und die schmelzflüssige Mischung mittels einer Rakel in einer Schichtdicke von 50 μm auf die Oberfläche einer auf 140°C vortemperierten Fichtenholzplatte (Dicke 10 mm) aufgebracht und die beschichtete Platte in der Belichtungsanlage bestrahlt. Die Platte wird dazu auf einem Förderband unter dem Strahler hindurchgeführt und mit einer Leistung von 1 ,4 W/cm2 bei einer Sauerstoffkonzentration von 15 Vol.% und einer Temperatur von 140°C belichtet.
Man erhält eine klebfreie vollständig gehärtete Oberfläche. Beim Kratztest erfolgt eine dauerhafte Verformung der Oberfläche der gehärteten Harzschicht erst bei einer angelegten Kraft von 28 mN. Im Vergleichsversuch tritt bei einer unbe- strahlten beschichteten Platte unter gleichen Versuchsbedingungen bereits bei einer Kraft von 4 mN eine dauerhafte Verformung der Oberfläche der Harzschicht ein.
Beispiel 2:
Versuchsdurchführung wie in Beispiel 1 . Als Licht aktivierbarer Härter werden 2 Masse%, bezogen auf das Melaminharz, 2-(4-Methoxyphenyl)-4,6-bis(tri- chlormethyl)-1 ,3,5-triazin eingesetzt. Die Belichtung mit einer Leistung von 1 ,0 W/cm2 bei einer Sauerstoffkonzentration von 15 Vol.% und einer Temperatur von 140CC führt zu einer klebfreien vollständig gehärteten Oberfläche. Beim Kratztest wird ab einer Belastung von 32 mN eine dauerhafte Verformung der Oberfläche der Harzschicht erreicht.
Beispiel 3:
Versuchsdurchführung wie in Beispiel 1. Bei einer herabgesetzten Sauerstoffkonzentration von 100 ppm werden bei gleicher Lichtleistung Ergebnisse wie in Beispiel 1 erhalten.
Beispiel 4:
Versuchsdurchführung wie in Beispiel 1. Als Licht-aktivierbarer Härter wird eine blockierte Sulfonsäure der Formel
Figure imgf000020_0001
in einer Konzentration von 1 Masse%, bezogen auf das Melaminharz, verwendet.
Die Schmelze des Harz-Härter Gemischs wird mit einer Schichtdicke von 50 μm auf eine auf 140°C vortemperierte Glasplatte ( Dicke 6 mm) aufgebracht. Unter Bestrahlungs-bedingungen wie in Beispiel 1 wird bereits bei einer Leistung von 0,5 W/cm2 eine vollständig gehärtete Oberfläche erhalten. Im Kratztest wird ab einer Kraft von 30 mN eine dauerhafte Verformung der Oberfläche der Harzschicht beobachtet. Beispiel 5:
Versuchsdurchführung wie in Beispiel 1 , als Licht-aktivierbarer Härter wird ein Diazoniumsalz der Formel
Figure imgf000021_0001
in einer Konzentration von 1 Masse%, bezogen auf das Melaminharz, verwendet. Es wird eine vollständig gehärtete Oberfläche erhalten.
Beispiel 6:
Versuchsdurchführung wie in Beispiel 1 , als Licht-aktivierbarer Härter wird eine blockierte Sulfonsäure der Formel
Figure imgf000021_0002
in einer Konzentration von 1 Masse%, bezogen auf das Melaminharz, verwendet.
Die Schmelze des Harz-Härter Gemischs wird mit einer Schichtdicke von 50 μm auf eine auf 140°C vortemperierte Glasplatte (Dicke 6 mm) aufgebracht. Unter Bestrahlungsbedingungen wie in Beispiel 1 wird eine vollständig gehärtete Oberfläche erhalten.
Beispiel 7:
Als Melaminharz wird ein mit einem Ethylenglycol-Diether von Bisphenol A (Simulsol BPLE, Seppic S.A., Frankreich) umgeethert.es Melamin-Formaldehyd- Vorkondensat auf Basis 2,4,6-Tris-methoxymethylamino-1 ,3,5-triazin eingesetzt. Die durch GPC ermittelte Molmasse beträgt 1800, der Gehalt an nichtum- gesetztem Simulsol BPLE nach HPLC-Analyse (Lösung in THF, UV-Detektion mit externem Standard) beträgt 14 Masse%. Der Anteil der -OCH3 - Gruppen im umgeetherten Melaminharz (Ermittlung durch GC-Analyse nach Spaltung des Polytriazinethers mit Mineralsäure) beträgt 14,5 Masse%. Die Viscosität bei 140°C liegt bei 800 Pa.s.
Die Umetherung des Melamin-Formaldehyd-Vorkondensats auf Basis 2,4,6-Tris- methoxymethylamino-1 ,3,5-triazin und weitere Kondensation findet bei 200°C im Laborextruder GL 27 D44 mit Vacuumentgasung (Leistritz) bei einem Temperaturprofil von 100°C/130°C/130°C/200oC/200oC/200oC/200oC/200°C/ 200°C/100°C/100°C und einer durchschnittlichen Verweilzeit von 2 bis 3 min statt. Die Extruderdrehzahl beträgt 150 min"1. In die Einzugszone des Extruders werden 2,4,6-Tris-methoxymethylamino-1 ,3,5-triazin mit 1 ,38 kg/h und der Ethylenglycol-Diether von Bisphenol A mit 1 ,13 kg/h mittels Seitenstromdo- sierung gravimetrisch dosiert. Der aus dem Extruder austretende Strang des Polytriazinethers wird in einem Granulator geschnitten.
Das umgeetherte Melaminharz wird bei 130°C mit 1 Masse%, bezogen auf das Melaminharz, 2-(4-Methoxyphenyl)-4,6-bis(trichlormethyl)-1 ,3,5-triazin als Licht- aktivierbarer Härter compoundiert. Der Compound wird im Extruder bei einer Massetemperatur von 150°C aufgeschmolzen und über eine Spinnpumpe und Spinndüsen bei 145°C° zu Fäden versponnen. Die schmelzflüssigen hochvis- cosen Fäden werden bei 135°C in der Belichtungsanlage mit einer Leistung von 1 W/cm2 bestrahlt. Die so erhaltenen 35 μm starken Fasern lassen sich klebefrei aufwickeln, wohingegen unbelichtete Fasern sehr rasch verkleben.

Claims

Patentansprüche
1. Verfahren zur Härtung von Aminoplasten, dadurch gekennzeichnet, dass Schichten mit Schichtdicken bis 300 μm oder Fäden bzw. Faserfibride mit einem Durchmesser bis 300 μm aus
e) 95 bis 99,95 Masse% lösungsmittelfreien schmelzbaren Aminoplastpolykondensaten mit Molmassen von 1000 bis 300000
f) 5 bis 0,05 Masse% durch aktinisches Licht aktivierbare Härter, bestehend aus b1) Säurebildnern vom Typ blockierte Sulfonsäure der allgemeinen Formel (I) R1 — SO2— O— R2 ( I )
R = unsubstituiertes oder substituiertes Aryl, Biphenyl oder Alkyl,
R2 = 4-Nitrobenzyl, Pentafluorbenzyl, - N = C
Substituenten,
N (R4)(R5)
O oder Z X< N - - Substituenten,
O Z = C6-c24-Aryl, ∞-w-Alkyl, C2-c4-Alkenyl,
G7-c8-Bicycloalkenyl, wobei
R3 = nichtsubstituiertes oder substituiertes Alkyl oder Aryl,
R4 = H, C C12-Alkyl, Phenyl, C2-C9-Alkanoyl oder Benzyl,
R5 = H, CrC12-Alkyl oder Cyclohexyl, oder R3 und R4 oder R5 zusammen mit den Atomen, an die sie gebunden sind, einen 5- bis 8-gliedrigen Ring bilden, der durch 1 oder 2 Benzoreste anelliert sein kann, und/oder b2) Halogen-substituierten Triazinderivaten der allgemeinen Formel (II)
Alkoxyl,
Figure imgf000024_0001
X3C Biphenyl, Naphthyl,
und/oder b3) Oniumsalzen vom Typ Aryldiazoniumsalze, Diarylhaloniumsalze, Triarylsulfoniumsalze, Triarylselenoniumsalze und/oder N-Alkoxypyri- diniumsalze, und gegebenenfalls g) 1 bis 20 Masse%, bezogen auf die schmelzbaren Aminoplastpolykondensate, nichtmodifizierte und/oder modifizierte Maleinsäureanhydrid- Copolymere, und/oder h) 0,1 bis 5 Masse%, bezogen auf die schmelzbaren Aminoplastpolykondensate, Nanopartikel in Form von Schichtsilikaten, hydrophilen oder hydrophoben synthetischen Kieselsäuren, Calciumcarbonat oder Metalloxiden vom Typ ZnO, SnO, AI2O3 oder TiO2
durch Bestrahlung mit aktinischem Licht bei einer Temperatur zwischen dem Schmelzpunkt des Aminoplastpolykondensats und der thermoinduzierten Zersetzungstemperatur der Licht aktivierbaren Härter gehärtet, und gegebenenfalls einer thermischen Nachhärtung unterhalb 250°C unterzogen werden.
2. Verfahren zur Härtung von Aminoplasten nach Anspruch 1 , dadurch gekennzeichnet, dass die Säurebildner vom Typ blockierte Sulfonsäure der allgemeinen Formel
Figure imgf000024_0002
blockierte Sulfonsäuren sind, in denen die Substituenten R = unsubstituiertes oder durch einen oder mehrere der Substituenten Halogen, C d-Halogenalkyl, CrC16-Alkyl, C C4-Alkoxy, CrC4-AIkyl- CO-NH-, Phenyl-CO-NH-, Benzoyl- oder Nitro- substituiertes C6-C10-Aryl oder C7-C12-Arylalkyl,
Figure imgf000025_0001
R2 = 4-Nitrobenzyl, Pentafluorbenzyl, - N = C - Substituenten,
\
N (R4)(R5)
O
. '< oder Z N - - Substituenten,
C6-G24-Aryl, C2-c4-Alkyl, C2-c4-Alkenyl, c7.c8-Bicycloalkenyl,
sind, wobei
R3 = C C12-Alkyl, C C4-Halogenalkyl, C2-C6-Alkenyl, C5-C12-Cycloalkyl, unsubstituiertes oder durch einen oder mehrere der Substituenten Halogen, C C4-Halogenalkyl, Cι-C16-Alkyl, C C4-Alkoxy, C C4-Alkyl-CO- NH-, Phenyl-CO-NH-, Benzoyl oder Nitro- substituiertes C6-C10-Aryl und/oder C7-C12-Arylalkyl, C C8-Alkoxy, C5-C8-Cycloalkoxy, Phenoxy oder H2N-CO-NH- ,-CN, C2-C5-Alkyloyl, Benzoyl, C2-C5-Alkoxycarbonyl, Phenoxycarbonyl, Morpholino-, Piperidino-, C Ci2-Alkyl, CrC -Halogen- alkyl, C2-C6-Alkenyl, C5-C12-Cycloalkyl, unsubstituiertes oder durch einen oder mehrere der Substituenten Halogen, d-C -Halogenalkyl, d-Cι6- Alkyl, C C4-Alkoxy, C C4-Alkyl-CO-NH-, Phenyl-CO-NH-, Benzoyl oder Nitro- substituiertes C6-C10-Aryl, C7-C12-Arylalkyl, C C8-Alkoxy, C5-C8- Cycloalk-oxy-, Phenoxy-, oder H2N-CO-NH-,
P = H, C C12-Alkyl, Phenyl, C2-C9-Alkanoyl oder Benzyl
R5= H, C C12-Alkyl oder Cyclohexyl, oder R3 und R4 oder R5 zusammen mit den Atomen, an die sie gebunden sind, einen 5- bis 8-gliedrigen Ring bilden, der durch 1 oder 2 Benzoreste anelliert sein kann.
3. Verfahren zur Härtung von Aminoplasten nach Anspruch 2, dadurch gekennzeichnet, dass der Säurebildner vom Typ blockierte Sulfonsäure der allgemeinen Formel
R, — SOs— O— R2 ( I ) eine blockierte Sulfonsäure der Struktur
Figure imgf000026_0001
4. Verfahren zur Härtung von Aminoplasten nach Anspruch 1 , dadurch gekennzeichnet, dass die Säurebildner vom Typ Halogen-substituierte Triazinderivate der allgemeinen Formel (II)
Figure imgf000026_0002
Halogen-substituierte Triazinderivate sind, bei denen X = Cl und R7 = p-Methoxyphenyl bedeuten.
5. Verfahren zur Härtung von Aminoplasten nach Anspruch 1 , dadurch gekennzeichnet, dass das Oniumsalz ein Oniumsalz der Formel
Figure imgf000027_0001
ist.
6. Verfahren zur Härtung von Aminoplasten nach Anspruch 1 , dadurch gekennzeichnet, dass die Aminoplastpolykondensate Polykondensate von Melaminharzen, Harnstoffharzen, Cyanamidharzen, Dicyandiamidharzen, Sulfonamidharzen und/oder Guanaminharzen sind.
7. Verfahren zur Härtung von Aminoplasten nach Anspruch 1 , dadurch gekennzeichnet, dass die Polykondensate von Melaminharzen Mischungen aus schmelzbaren 4- bis 1000-Kern-Polytriazinethem sind,
wobei in den Polytriazinethern die Triazinsegmente
Figure imgf000027_0002
R! = -NH2, -NH-CHR2-O-R3 ,-NH-CHR2-0-R4-OH, -CH3, -C3H7, -C6H5, -OH, Phthalimido- Succinimido-, -NH-CO-C5-ci8-Alkyl, -NH-C5-C18-Alkylen-OH, -NH-CHR2-0-C5-C18-Alkylen-NH2, -NH-C5-C18-Alkylen-NH2, -NH-CHR2-0-R4-0-CHR2-NH-, -NH-CHR2-NH-, -NH-CHR2-0-C5-C18-Alkylen-NH-, -NH-C5-C18-Alkylen-NH-, -NH-CHR2-0-CHR2-NH-,
R2 = H, C,-C7 - Alkyl; R3 = C1-C18 - Alkyl, H;
R4 = C2-C18-Alkylen, -CH(CH3)-CH2-0-c2-ci2-AlkyIen-0-CH2-CH(CH3)-, -CH(CH3)-CH2-0-c2-ci2-AryIen-0-CH2-CH(CH3)-, -[CH2-CH2-0-CH2-CH2]n -, -[CH2-CH(CH3)-0-CH2-CH(CH3)]n -, -[-0-CH2-CH2-CH2-CH2-]n-, -[(CH2)2.8-0-CO-C6.cι Arylen-CO-0-(CH2)2-8-]n-, -[(CH2)2_8-0-CO-c2-ci2-Alkylen-CO-0-(CH2)2.8-]n -, wobei n = 1 bis 200;
- Siloxangruppen enthaltende Polyestersequenzen des Typs
-[(X)rO-CO-(Y)s-CO-0-(X)r]- , bei denen
X = {(CH2)2-8-0-CO-C6-cι4Arylen-CO-0-(CH2)2-8-} oder -{(CH2)2-8-0-CO-c2.cι2Alkylen-CO-0-(CH2)2.8-};
Cι-C -Alkyl Cι-C4-Alkyl
I I
Y = -{c6-cι4Arylen-CO-0-({Si -0-[Si-0]y-CO-C6.Cι4 rylen-}
CrC4-Alkyl Cι-C -Alkyl oder
Cι-C4-Alkyl d-C4-Alkyl
' I I
-{0-CO-C2-cι2Alkylen-CO-0-({Si -0-[Si-0]z-CO-C2.Ci2-Alkylen-CO-}
CrC -Alkyl Cι-C4-Alkyl ; r = 1 bis 70; s = 1 bis 70 und y = 3 bis 50 bedeuten;
- Siloxangruppen enthaltende Poiyethersequenzen des Typs
Figure imgf000028_0001
wobei R2 = H; C C -Alkyl und y = 3 bis 50 bedeuten;
- Sequenzen auf Basis von Alkylenoxidaddukten des Melamins vom Typ 2-Amino-4,6-di-C2-c4-alkylenamino-1 ,3,5-triazin - Sequenzen: - Phenolethersequenzen auf Basis zweiwertiger Phenole und C2-C8-Diolen vom Typ -c2-caAlkylen-0-C6.ci8-Arylen-0-C2-c8-Alkylen- Sequenzen;
durch Brückenglieder -NH-CHR2-NH- oder -NH-CHR2-O-R4-O-CHR2-NH- und -NH-CHR2-NH- sowie gegebenenfalls -NH-CHR2-O-CHR2-NH-, -NH- CHR2-O-C5-C18-Alkylen-NH- bzw. -NH-C5-C18-Alkylen-NH- zu 4- bis 1000- Kern-Polytriazinethern mit linearer und/oder verzweigter Struktur verknüpft sind,
wobei in den Polytriazinethern das Molverhältnis der Substituenten R3 : R4 = 20 : 1 bis 1 : 20 beträgt, und der Anteil der Verknüpfungen der Triazinsegmente durch Brückenglieder -NH-CHR3-O-R4-O-CHR3-NH- 5 bis 95 Mol% beträgt.
8. Verfahren zur Härtung von Aminoplasten nach Anspruch 1 , dadurch gekennzeichnet, dass die Härtung von Schichten aus Aminoplasten kontinuierlich durch Bestrahlung der auf bewegte Trägermaterialien aufgebrachten Schmelzeschicht des Aminoplastpolykondensats erfolgt.
9. Verfahren zur Härtung von Aminoplasten nach Anspruch 1 , dadurch gekennzeichnet, dass die Härtung von Fäden bzw. Faserfibriden aus Aminoplasten kontinuierlich durch Bestrahlung der als viscose Schmelze ausgetragenen Fäden bzw. Faserfibride nach der Faserbildung erfolgt.
10. Aminoplasterzeugnisse, bevorzugt textile Flächengebilde oder Beschichtungen, hergestellt nach einem oder mehreren der Ansprüche 1 bis 9.
PCT/EP2003/006176 2002-06-14 2003-06-12 Verfahren zur härtung von aminoplasten WO2003106525A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2003276951A AU2003276951A1 (en) 2002-06-14 2003-06-12 Method for curing aminoplasts
EP03740231A EP1517933A1 (de) 2002-06-14 2003-06-12 Verfahren zur härtung von aminoplasten
US10/517,963 US20060084007A1 (en) 2002-06-14 2003-06-12 Method for curing aminoplasts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0090302A AT500298A1 (de) 2002-06-14 2002-06-14 Verfahren zur härtung von aminoplasten
ATA903/2002 2002-06-14

Publications (1)

Publication Number Publication Date
WO2003106525A1 true WO2003106525A1 (de) 2003-12-24

Family

ID=29721126

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/006176 WO2003106525A1 (de) 2002-06-14 2003-06-12 Verfahren zur härtung von aminoplasten

Country Status (8)

Country Link
US (1) US20060084007A1 (de)
EP (1) EP1517933A1 (de)
AR (1) AR040185A1 (de)
AT (1) AT500298A1 (de)
AU (1) AU2003276951A1 (de)
CO (1) CO5470289A1 (de)
TW (1) TW200404839A (de)
WO (1) WO2003106525A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104449191A (zh) * 2014-10-23 2015-03-25 安徽省实防新型玻璃科技有限公司 一种具有磁疗作用的玻璃门用水性涂料及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6596628B2 (ja) * 2013-10-17 2019-10-30 日産化学株式会社 感光性繊維およびその製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430380A (en) * 1981-03-26 1984-02-07 Cassella Aktiengesellschaft Bonded structures of textile materials
US6017675A (en) * 1995-10-31 2000-01-25 Ciba Specialty Chemials Corporation Oximesulfonic acid esters and the use thereof as latent sulfonic acids
US20010036591A1 (en) * 1999-12-21 2001-11-01 Reinhard Schulz Iodonium salts as latent acid donors
WO2002046507A2 (en) * 2000-12-04 2002-06-13 Ciba Specialty Chemicals Holding Inc. Onium salts and the use therof as latent acids

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3535148A (en) * 1968-08-07 1970-10-20 Continental Can Co Process for preparing polymerized aminoplast surface coatings using ionizing radiation
DE1919678A1 (de) * 1969-04-18 1970-11-05 Bayer Ag Alpha-Methylol-benzoin-sulfonsaeureester
US4469832A (en) * 1982-09-29 1984-09-04 Ppg Industries, Inc. Aminoplast curable coating compositions containing polycyclic esters of sulfonic acids as latent acid catalysts
US4477618A (en) * 1982-09-29 1984-10-16 Ppg Industries, Inc. Aminoplast curable coating compositions containing sulfonic acid esters as latent acid catalysts
GB8332073D0 (en) * 1983-12-01 1984-01-11 Ciba Geigy Ag Polymerisable compositions
DE3702999C2 (de) * 1987-02-02 2003-03-06 Siemens Ag Vorrichtung zur Verarbeitung von UV-härtbaren Reaktionsharzmassen und deren Anwendung
US5047568A (en) * 1988-11-18 1991-09-10 International Business Machines Corporation Sulfonium salts and use and preparation thereof
CA2019693A1 (en) * 1989-07-07 1991-01-07 Karen Ann Graziano Acid-hardening photoresists of improved sensitivity
US5236472A (en) * 1991-02-22 1993-08-17 Minnesota Mining And Manufacturing Company Abrasive product having a binder comprising an aminoplast binder
US5916999A (en) * 1996-04-22 1999-06-29 Basf Aktiengesellschaft Process for producing filaments from melamine/formaldehyde condensation products
TW575792B (en) * 1998-08-19 2004-02-11 Ciba Sc Holding Ag New unsaturated oxime derivatives and the use thereof as latent acids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4430380A (en) * 1981-03-26 1984-02-07 Cassella Aktiengesellschaft Bonded structures of textile materials
US6017675A (en) * 1995-10-31 2000-01-25 Ciba Specialty Chemials Corporation Oximesulfonic acid esters and the use thereof as latent sulfonic acids
US20010036591A1 (en) * 1999-12-21 2001-11-01 Reinhard Schulz Iodonium salts as latent acid donors
WO2002046507A2 (en) * 2000-12-04 2002-06-13 Ciba Specialty Chemicals Holding Inc. Onium salts and the use therof as latent acids

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ASAKURA T ET AL: "NOVEL PHOTOACID GENERATORS", JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, CHIBA, JP, vol. 13, no. 2, 2000, pages 223 - 230, XP001021340, ISSN: 0914-9244 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104449191A (zh) * 2014-10-23 2015-03-25 安徽省实防新型玻璃科技有限公司 一种具有磁疗作用的玻璃门用水性涂料及其制备方法

Also Published As

Publication number Publication date
AR040185A1 (es) 2005-03-16
CO5470289A1 (es) 2004-12-30
AU2003276951A1 (en) 2003-12-31
AT500298A1 (de) 2005-11-15
US20060084007A1 (en) 2006-04-20
EP1517933A1 (de) 2005-03-30
TW200404839A (en) 2004-04-01

Similar Documents

Publication Publication Date Title
EP1448671B1 (de) Erzeugnisse, insbesondere formmassen aus triazinsegmente enthaltenden polymeren, verfahren zu deren herstellung und verwendungen
EP1521805B1 (de) Aminoplast-formmassen für erzeugnisse verbesserter flexibilität und aminoplasterzeugnisse verbesserter flexibilität
EP1699877A1 (de) Flammschutzmischung für lignocellulosische verbundstoffe
EP1519972B1 (de) Zusammensetzungen zur herstellung von aminoplasterzeugnissen
DE102006034608A1 (de) Thermoplastisch verarbeitbare Duroplastformmassen mit verbessertem Eigenschaftsspektrum
DE10056398B4 (de) Aus der Schmelze verarbeitbares Aminoharz auf Basis von 1,3,5-Triazinen und Aldehyden
DE10261804B4 (de) Direktsyntheseverfahren zur Herstellung von veretherten Melaminharzkondensaten, Melaminharzkondensate und deren Verwendung
WO2003106525A1 (de) Verfahren zur härtung von aminoplasten
EP1603969A1 (de) Prepregs für faserverbunde hoher festigkeit und elastizität
EP0822997B1 (de) Verfahren zur herstellung von endlosfasern aus melamin/formaldehyd-kondensationsprodukten
EP0910595B1 (de) Modifizierte melaminharze und deren verwendung zur herstellung von postforming-fähigen laminaten
JP2001200136A (ja) 難燃性ポリアセタール樹脂組成物
EP1403405A2 (de) Endlosfäden mit hoher Dimensionssabilität, Hydrolysebeständigkeit und Flammfestigkeit
EP0815151B1 (de) Modifizierte melaminharze und deren verwendung zur herstellung von post-forming-laminaten
EP1034328B1 (de) Verwendung von melaminharzfasern und isoliermaterialien auf basis von melaminharzfasern und poly(alkylenterephthalat)fasern
AT411684B (de) Erzeugnisse aus triazinsegmente enthaltenden polymeren
DE2364091C3 (de) Flammfeste, unschmelzbare Fasern und Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003740231

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003740231

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2006084007

Country of ref document: US

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10517963

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10517963

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003740231

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP