WO2003102254A1 - Method of metal recovery - Google Patents

Method of metal recovery Download PDF

Info

Publication number
WO2003102254A1
WO2003102254A1 PCT/JP2003/007085 JP0307085W WO03102254A1 WO 2003102254 A1 WO2003102254 A1 WO 2003102254A1 JP 0307085 W JP0307085 W JP 0307085W WO 03102254 A1 WO03102254 A1 WO 03102254A1
Authority
WO
WIPO (PCT)
Prior art keywords
tantalum
wastewater
niobium
compound
compounds
Prior art date
Application number
PCT/JP2003/007085
Other languages
French (fr)
Japanese (ja)
Inventor
Norio Moriya
Hisashi Matsukawa
Original Assignee
Cabot Supermetals K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cabot Supermetals K.K. filed Critical Cabot Supermetals K.K.
Priority to AU2003242042A priority Critical patent/AU2003242042A1/en
Publication of WO2003102254A1 publication Critical patent/WO2003102254A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/16Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/44Treatment or purification of solutions, e.g. obtained by leaching by chemical processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/04Specific process operations in the feed stream; Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/04Oxidation reduction potential [ORP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for insolubilizing and recovering a tantalum compound and a niobium compound having high solubility in water.
  • niobium which is an element of the same family as tantalum, is cheaper than tantalum, and the dielectric constant of niobium oxide is large.
  • the anode electrode is formed by sintering a tantalum powder and a niobium powder into a porous sintered body, and subjecting the porous sintered body to chemical oxidation.
  • the tantalum powder and niobium powder used as the anode electrode raw material are obtained by mixing raw material compounds such as tantalum salt and niobium salt with molten dilute salts such as KC1, NaCl, KF and eutectic salts thereof. After the reduction reaction is completed, the reaction melt is cooled, and the obtained agglomerates are washed to remove dilute salts and the like.
  • the agglomerates are washed sequentially with water, with an acid such as hydrofluoric acid, and with hydrogen peroxide and nitric acid.
  • an acid such as hydrofluoric acid
  • hydrogen peroxide and nitric acid hydrogen peroxide and nitric acid.
  • an object of the present invention is to provide a method for insolubilizing and recovering an evening compound and a niobium compound dissolved in water such as a washing liquid. Disclosure of the invention
  • the tantalum compound is adjusted by adjusting the pH and the oxidation-reduction potential E of an aqueous solution in which the compound and the compound are dissolved so as to satisfy the following formula (1). And / or a step of insolubilizing the niobium compound.
  • 11 is adjusted to 1 or less, and the oxidation-reduction potential E is adjusted to 40 OmV or less.
  • adjust the pH to 6.5-9.0.
  • the method further comprises a step of separating and recovering the insolubilized tantalum compound and / or niobium compound by membrane treatment.
  • the method for recovering a metal according to the present invention comprises a step of insolubilizing the tantalum compound and / or the niobium compound by adjusting the pH and the oxidation-reduction potential of the aqueous solution in which the tantalum compound and / or the niobium compound are dissolved.
  • the aqueous solution in which the tantalum compound and the z or niobium compound are dissolved is not particularly limited, but the wastewater generated in the step of manufacturing the tantalum powder by reducing the tantalum raw material compound in a dilute salt is exemplified.
  • recovering tantalum from coal First, a method for producing a tantalum powder by reducing a tantalum raw material compound in a dilute salt will be described.
  • tantalum raw material compounds include potassium fluoride salts such as K 2 TaF 7 and the like, chlorides such as nanta pentachloride and lower tantalum chloride, and halides such as iodide and bromide. These starting compounds are dissolved in a diluted salt composed of KCl, NaCl, KF and their eutectic salts heated to a temperature of about 800 to 900 and mixed with alkali metals such as sodium, magnesium, and calcium. It is fed together with earth metal and a reducing agent such as hydride to perform a reduction reaction.
  • the raw material and the reducing agent may be charged at once, or may be added in small amounts alternately, and there is no particular limitation.
  • the reduction reaction is usually performed with stirring.
  • the mixture of diluted salts and reaction products in the molten state, that is, the reaction melt is cooled,
  • the obtained agglomerates are washed to remove dilute salts and the like, and purified to obtain a tantalum powder.
  • the reduction reaction is the reaction represented by the above formula (2) and KC 1 is used as a diluting salt
  • the obtained agglomerate is the target product
  • it contains KC 1 as a dilute salt, KF and NaF as by-products, and small amounts of K 2 TaF 7 and Na as unreacted residues.
  • Tanyu In order to remove as much as possible other elements than possible, and to make the surface state of the tantalum powder as smooth as possible and to reduce the amount of impurities, it is usual to first wash with water, and then use an acid such as hydrofluoric acid. Perform cleaning. Then, cleaning with a hydrogen peroxide solution and nitric acid is performed.
  • the wastewater generated by washing with water contains only diluting salts (KC1) and by-products (KF and NaF), which are highly soluble in water, and mainly dissolves them. Therefore, tantalum or tantalum compounds dissolve in trace amounts of less than 1 O ppm.
  • wastewater generated by washing with an acid such as hydrofluoric acid has high solubility due to the reaction of fluorine in hydrofluoric acid with a part of tantalum and potassium derived from dilute salt.
  • second wastewater wastewater generated by washing with an acid such as hydrofluoric acid
  • 2 T a F 2 ⁇ 4 K 3 T A_ ⁇ 2 F 4 is generated, these melts, in a state in which tantalum is relatively large dissolved about 500 ppm in terms of metal.
  • third wastewater wastewater generated by washing with hydrogen peroxide and nitric acid
  • third wastewater wastewater generated by washing with hydrogen peroxide and nitric acid
  • About 1500 ppm of tantalum compound is dissolved.
  • a method for insolubilizing a tantalum compound in the third wastewater having a high solubility of tantalum among the first to third wastewaters will be described.
  • Equation (1) the unit of E is [mV].
  • any pH and redox potential Even at redox potential E, at least 95% or more of the tantalum compounds dissolved in the third wastewater can be insolubilized.
  • the third effluent is usually acidic with a pH of 1 or less, even if the pH is not increased by adding an alkaline aqueous solution, for example, when the pH is 1, the formula (1) ),
  • the redox potential E is set to less than 540 mV.
  • the redox potential E is also set to less than 57 OmV from the equation (1) to obtain the tantalum dissolved in the third wastewater. At least 95% or more of the compound can be easily insolubilized.
  • the pH is 1 or less
  • most of the dissolved tantalum compounds are easily insolubilized by adjusting the oxidation-reduction potential E to 40 OmV or less, and more preferably to 35 OmV or less. be able to.
  • various reducing agents such as iron (III) chloride, sodium sulfite (Na 2 S 3 ), and hydrogen chloride may be appropriately added.
  • the oxidation-reduction potential E of the third waste liquid can be reduced from around 60 OmV before adjustment to a desired value.
  • the third waste liquid By adjusting only the oxidation-reduction potential E so as to satisfy the expression (1) while keeping the third waste liquid in an acidic state, at least 95% of the dissolved tantalum compound can be obtained. % Or more can be easily insolubilized.However, by setting the third waste liquid to pH 6.5 to 9, the liquid becomes stable and insolubilization can be performed stably, and it is handled near the neutral region. Therefore, the pH is adjusted to 6.5 to 9.0 by appropriately adding an alkaline aqueous solution such as sodium hydroxide, and then the oxidation-reduction potential E is adjusted to satisfy the expression (1). Is also good. Instead of adding sodium hydroxide or the like, an alkaline waste liquid generated in another process may be used.
  • the pH when the pH is adjusted to 6.5 to 9.0, about 30 to 50% of the water-soluble tantalum compound in the third wastewater becomes insoluble.
  • the oxidation-reduction potential E is set to less than 18 OmV according to the equation (1).
  • the oxidation-reduction potential E is also obtained from the equation (1).
  • E to 6 OmV When the content is less than 90%, at least 95% or more of the dissolved tantalum compound can be easily insolubilized.
  • the solution can be dissolved in the third wastewater It can insolubilize at least 95% or more of the unraveled tantalum compound, and reduce the solubility of tantalum in the third wastewater to about 10 ppm or less.
  • the form of the tantalum compound formed by insolubilization is not clear, it can be assumed that it is a tantalum pentoxide or a hydroxide that dissolves only a trace amount in water.
  • most of the insolubilized tantalum compound is present in the third wastewater as suspended matter having a particle size of about 0.3 to 10 / m. Therefore, it is appropriately separated and collected.
  • the method of separating and recovering such tantalum compounds may be sedimentation separation using thickener, foam separation using a surfactant, or centrifugation.However, according to membrane treatment, the separation efficiency should be close to 100%. Is preferred.
  • the membrane used here can be appropriately selected, but is preferably a Teflon (registered trademark) -based or polyethylene-based membrane having excellent chemical resistance and a pore diameter of 0.03 m or less.
  • a Teflon (registered trademark) -based or polyethylene-based membrane having excellent chemical resistance and a pore diameter of 0.03 m or less.
  • a hollow fiber membrane product name: UMF-212WFA, pore size: 0.03 m
  • tantalum has a large specific gravity, and its compound also has a large sedimentation property. Therefore, such membrane treatment and sedimentation separation may be used in combination. By using both membrane treatment and sedimentation separation, the load on the membrane can be reduced, and the frequency of washing and replacing the membrane can be reduced.
  • the tantalum compound dissolved in the washing liquid such as the third wastewater can be easily insolubilized and recovered, and these can be effectively reused. It is possible to improve the productivity of a process for manufacturing or using a hologram.
  • the method of recovering metal is to reduce the tantalum raw material compound in dilute salt to insolubilize and recover the tantalum compound in the third wastewater generated when manufacturing tantalum powder.
  • the method can be suitably applied to the case where the niobium raw material compound is reduced in a dilute salt to insolubilize the niobium compound in the third wastewater generated when producing niobium powder.
  • the niobium raw material compounds K 2 N b F 6, K 2 N b F 7 potassium fluoride salt such as, niobium pentachloride, chloride such as lower niobium chloride, and halides such as iodide, odor products .
  • a niobium fluoride such as potassium fluoroniobate can be used as the niobium raw material compound.
  • tantalum powder is used as an aqueous solution to be insolubilized in such a recovery method. It is not limited to wastewater for producing niobium or niobium powder, and may be any aqueous solution in which a tantalum compound and / or a diobium compound is dissolved. As described above, according to such a metal recovery method, the pH and the oxidation-reduction potential E of the aqueous solution in which the nantalum compound and Z or the niobium compound are dissolved are determined so that these have the relationship of the formula (1).
  • the tantalum raw material compound was charged together with a reducing agent into a diluted salt heated to about 870 and in a molten state, and a reduction reaction was performed.
  • the tantalum raw material compound K 2 TaF 7 was used, KF was used as a diluting salt, and Na was used as a reducing agent.
  • the reaction melt in a molten state was cooled, and the obtained agglomerates were first washed with water.
  • the wastewater obtained here is designated as the first wastewater. Then, it was washed with 3% hydrofluoric acid.
  • the wastewater obtained here is the second wastewater. Further, the substrate was washed with 1.5% hydrogen peroxide and 9% nitric acid.
  • the wastewater obtained here is the third wastewater.
  • the first wastewater was analyzed by ICP, the first wastewater contained 610 ppm of tantalum and Z or a tantalum compound in terms of metal, of which 10 t less than pm.
  • a 20% Na ⁇ H aqueous solution (A) was added to this third wastewater as a pH adjusting solution to adjust the pH from below 1.0 to 7.5, and as a redox potential adjusting solution.
  • the redox potential was adjusted from 600 mV to 1 O OmV by adding a 30 % NaHS03 aqueous solution (B).
  • a 30 % NaHS03 aqueous solution (B) As a result, dissolved tantalum and / or tantalum compounds were precipitated, and dissolved tantalum and / or tantalum compounds were reduced to less than 10 ppm.
  • the first wastewater, the second wastewater whose pH was adjusted as described above, and the third wastewater whose pH and oxidation-reduction potential were adjusted were mixed, and were collected by membrane treatment.
  • the membrane used here was a hollow fiber membrane (product name: UMF-20 12WFA, pore size 0.03 mm) manufactured by Mitsubishi Rayon Co., Ltd. It was used in the form of a hollow fiber membrane unit.
  • the first wastewater and the second wastewater were treated in the same manner as in Example 1.
  • the third wastewater was treated in the same manner as in Example 1 except that the pH and the oxidation-reduction potential of the third wastewater were set to the values shown in Table 1.
  • the first wastewater, the second wastewater, and the third wastewater are mixed in the same manner as in the first embodiment.
  • the first wastewater and the second wastewater were treated in the same manner as in Example 1.
  • the third wastewater was treated in the same manner as in Example 1 except that the pH and the oxidation-reduction potential of the third wastewater were set to the values shown in Table 1.
  • the first wastewater, the second wastewater, and the third wastewater are mixed in the same manner as in the first embodiment.
  • the first wastewater and the second wastewater were treated in the same manner as in Example 1.
  • the pH and the oxidation-reduction potential of the third wastewater are shown in Tables 2 and 3, without adding the pH-adjustment liquid to the third wastewater, and adding only the oxidation-reduction potential adjustment liquid while appropriately changing the amount. Except for the values, the third wastewater was treated in the same manner as in Example 1.
  • the first wastewater, the second wastewater, and the third wastewater are mixed in the same manner as in the first embodiment.
  • the first wastewater and the second wastewater were treated in the same manner as in Example 1.
  • the first wastewater, the second wastewater, and the third wastewater are mixed in the same manner as in the first embodiment.
  • the first wastewater and the second wastewater were treated in the same manner as in Example 1.
  • the first wastewater, the second wastewater, and the third wastewater were mixed in the same manner as in the example, and collected by membrane treatment.
  • a tantalum compound and a niobium compound having high solubility in water can be insolubilized only by changing the oxidation-reduction potential under an arbitrary pH, and can be recovered at a high rate.
  • these compounds which have often been discarded, can be reused, and the productivity of processes that produce or use tantalum or niobium can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Removal Of Specific Substances (AREA)

Abstract

A method by which tantalum compounds and niobium compounds dissolved in water such as a liquid detergent are insolubilized and recovered. An aqueous solution containing tantalum compounds and/or niobium compounds dissolved therein is regulated so as to have a pH and an oxidation-reduction potential E which satisfy E<60×(10-pH) to thereby insolubilize the tantalum compounds and/or niobium compounds. The tantalum compounds and/or niobium compounds thus insolubilized are recovered through a membrane treatment. Thus, the metal compounds can be more effectively recovered. This method is especially suitable for use in the treatment of a wastewater generated in the production of a tantalum powder or niobium powder through the reduction of a raw tantalum compound and/or raw niobium compound in a diluting salt.

Description

明 細 書 金属の回収方法 技術分野  Description Metal recovery method Technical field
本発明は水に対する溶解度の高いタンタル化合物、 ニオブ化合物を不溶化し、 回収する方法に関する。 背景技術  The present invention relates to a method for insolubilizing and recovering a tantalum compound and a niobium compound having high solubility in water. Background art
夕ンタルから形成されたァノ一ド電極を備えた固体電解コンデンサは、 小型で Solid electrolytic capacitors with anode electrodes formed of
、 低 E S R、 かつ高容量であるため、 携帯電話やパソコン等の部品として急速に 普及してきた。 また、 タンタルと同族元素であるニオブも、 タンタルよりも安価 であり、 また、 酸化ニオブの誘電率が大きいことから、 アノード電極への利用が 研究されている。 アノード電極は、 タンタル粉末およびニオブ粉末を焼結して多 孔質焼結体とし、 この多孔質焼結体を化成酸化することによって形成される。 このようにアノード電極原料として使用されるタンタル粉末およびニオブ粉末 は、 タンタル塩、 ニオブ塩などの原料化合物を、 K C 1、 N a C l、 K Fやこれ らの共晶塩などの溶融希釈塩中においてナトリウムなどの還元剤と反応させ、 還 元反応終了後、 反応融液を冷却し、 得られた集塊を洗浄して希釈塩などを除去す ることにより得られる。 Due to its low ESR and high capacity, it has rapidly spread as a component for mobile phones and personal computers. Also, niobium, which is an element of the same family as tantalum, is cheaper than tantalum, and the dielectric constant of niobium oxide is large. The anode electrode is formed by sintering a tantalum powder and a niobium powder into a porous sintered body, and subjecting the porous sintered body to chemical oxidation. As described above, the tantalum powder and niobium powder used as the anode electrode raw material are obtained by mixing raw material compounds such as tantalum salt and niobium salt with molten dilute salts such as KC1, NaCl, KF and eutectic salts thereof. After the reduction reaction is completed, the reaction melt is cooled, and the obtained agglomerates are washed to remove dilute salts and the like.
ここで集塊の洗浄には、 水による洗浄、 フッ酸などの酸による洗浄、 過酸化水 素水と硝酸による洗浄などを順次行う。 しかしな力 ら、 このように集塊を洗浄すると、 タンタルおよびニオブの一部が 、 水に溶解しやすい化合物の形態で洗浄液中に溶解し、 洗浄液とともに廃棄され てしまうという問題があった。  Here, the agglomerates are washed sequentially with water, with an acid such as hydrofluoric acid, and with hydrogen peroxide and nitric acid. However, when the agglomerates are washed in this manner, there is a problem that a part of tantalum and niobium is dissolved in the washing solution in the form of a compound which is easily dissolved in water, and is discarded together with the washing solution.
また、 このように溶解したタンタルやニオブの化合物を効果的に回収する方法 は従来見出されておらず、 その他の金属、 例えば重金属の回収について、 水性廃 液の p Hに着目した検討などがなされているだけであった (例えば、 特開 2 0 0 2 - 8 0 9 1 5号公報参照。 ) 。 本発明は上記事情に鑑みてなされたもので、 洗浄液などの水中に溶解している 夕ン夕ル化合物およびニオブ化合物を不溶化し、 回収する方法を提供することを 課題とする。 発明の開示 In addition, no method for effectively recovering such dissolved tantalum or niobium compounds has been found so far. Only a study focused on the pH of the liquid has been made (for example, see Japanese Patent Application Laid-Open No. 2002-80915). The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for insolubilizing and recovering an evening compound and a niobium compound dissolved in water such as a washing liquid. Disclosure of the invention
本発明者らは鋭意検討した結果、 タンタルやニオブが溶解している水溶液の酸 化還元電位および p Hを適切に制御することによって、 上記課題を解決可能であ ることを見出し、 本発明を完成するに至った。  As a result of intensive studies, the present inventors have found that the above problems can be solved by appropriately controlling the oxidation-reduction potential and pH of an aqueous solution in which tantalum or niobium is dissolved. It was completed.
本発明の金属の回収方法は、 夕ン夕ル化合物およびノまたはニオブ化合物が溶 解した水溶液の P Hと酸化還元電位 Eを、 下記式 (1 ) を満足するように調整し て、 前記タンタル化合物および またはニオブ化合物を不溶化する工程を有する ことを特徴とする。  In the method for recovering a metal according to the present invention, the tantalum compound is adjusted by adjusting the pH and the oxidation-reduction potential E of an aqueous solution in which the compound and the compound are dissolved so as to satisfy the following formula (1). And / or a step of insolubilizing the niobium compound.
E < 6 0 X ( 1 0 - p H) · · · ( 1 )  E <60 X (10-pH) (1)
(式 (1 ) 中、 Eの単位は [mV] である。 )  (In the equation (1), the unit of E is [mV].)
より好ましくは、 11を1以下、 かつ、 酸化還元電位 Eを 4 0 O mV以下に調 整する。 あるいは、 p Hを 6 . 5〜9 . 0に調整する。  More preferably, 11 is adjusted to 1 or less, and the oxidation-reduction potential E is adjusted to 40 OmV or less. Alternatively, adjust the pH to 6.5-9.0.
また、 前記不溶化されたタンタル化合物および またはニオブ化合物を、 膜処 理により分離回収する工程を有することが好ましい。  Preferably, the method further comprises a step of separating and recovering the insolubilized tantalum compound and / or niobium compound by membrane treatment.
本発明の金属の回収方法は、 前記水溶液が過酸化水素を含有するものである場 合に特にその有用性が発揮される。 発明を実施するための最良の形態  The utility of the metal recovery method of the present invention is particularly exhibited when the aqueous solution contains hydrogen peroxide. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.
本発明の金属の回収方法は、 タンタル化合物および/またはニオブ化合物が溶 解した水溶液の p Hと酸化還元電位とを調整することによって、 水溶液中の夕ン タル化合物および またはニオブ化合物を不溶化する工程を有する。 ここで、 タンタル化合物および zまたはニオブ化合物が溶解した水溶液として は特に制限はないが、 タンタル原料化合物を希釈塩中で還元して、 タンタル粉末 を製造する工程で発生した廃水を例示し、 この廃水からタンタルを回収する方法 について説明する。 まず、 タンタル原料化合物を希釈塩中で還元して、 タンタル粉末を製造する方 法について説明する。 The method for recovering a metal according to the present invention comprises a step of insolubilizing the tantalum compound and / or the niobium compound by adjusting the pH and the oxidation-reduction potential of the aqueous solution in which the tantalum compound and / or the niobium compound are dissolved. Having. Here, the aqueous solution in which the tantalum compound and the z or niobium compound are dissolved is not particularly limited, but the wastewater generated in the step of manufacturing the tantalum powder by reducing the tantalum raw material compound in a dilute salt is exemplified. Of recovering tantalum from coal. First, a method for producing a tantalum powder by reducing a tantalum raw material compound in a dilute salt will be described.
タンタル原料化合物としては、 K2TaF7等のフッ化カリウム塩や、 五塩化夕 ンタル、 低級塩化タンタル等の塩化物、 ヨウ化物、 臭化物などのハロゲン化物が 挙げられる。 これらの原料化合物を、 800〜900 程度に加熱されて溶融状態にある K C l、 NaC l、 KFやこれらの共晶塩などからなる希釈塩中に、 ナトリウム、 マグネシウム、 カルシウム等のアルカリ金属やアルカリ土類金属、 これらの水素 化物などの還元剤とともに投入し、 還元反応を行う。 ここで原料と還元剤とは一 括投入しても、 いずれも少量ずつを交互に投入してもよく、 特に制限はない。 ま た、 還元反応は通常撹拌しながら行う。 Examples of tantalum raw material compounds include potassium fluoride salts such as K 2 TaF 7 and the like, chlorides such as nanta pentachloride and lower tantalum chloride, and halides such as iodide and bromide. These starting compounds are dissolved in a diluted salt composed of KCl, NaCl, KF and their eutectic salts heated to a temperature of about 800 to 900 and mixed with alkali metals such as sodium, magnesium, and calcium. It is fed together with earth metal and a reducing agent such as hydride to perform a reduction reaction. Here, the raw material and the reducing agent may be charged at once, or may be added in small amounts alternately, and there is no particular limitation. The reduction reaction is usually performed with stirring.
例えば、 原料として K2TaF7を使用し、 還元剤としてナトリウムを使用した 場合には、 ここで進行する還元反応は以下の式 (2) で示される。 For example, when K 2 TaF 7 is used as a raw material and sodium is used as a reducing agent, the reduction reaction that proceeds here is represented by the following equation (2).
K2TaF7+5Na→2KF+5NaF + Ta · · · (2) このような還元反応終了後、 溶融状態にある希釈塩および反応生成物などの混 合物、 すなわち反応融液を冷却し、 得られた集塊を洗浄して、 希釈塩などを除去 、 精製することにより、 タンタル粉末を得ることができる。 ここで、 還元反応が上記 (2) 式で示される反応であって、 希釈塩として KC 1が使用された場合を例にあげると、 得られた集塊は、 目的生成物であるタン夕 ルの他、 希釈塩である KC 1と、 副生成物である KFおよび N a Fと、 未反応残 渣である少量の K2TaF7および Naとを含有することとなる。 そこで、 タン夕 ル以外のものをできるだけ除去するとともに、 タンタル粉末の表面状態をできる 限り平滑化しつつ、 不純物の少ない状態とするために、 通常、 まず、 水による洗 浄を行い、 ついで、 フッ酸などの酸による洗浄を行う。 そして、 さらに、 過酸化 水素水と硝酸による洗浄を行う。 K 2 TaF 7 + 5Na → 2KF + 5NaF + Ta (2) After the completion of such a reduction reaction, the mixture of diluted salts and reaction products in the molten state, that is, the reaction melt is cooled, The obtained agglomerates are washed to remove dilute salts and the like, and purified to obtain a tantalum powder. Here, taking as an example the case where the reduction reaction is the reaction represented by the above formula (2) and KC 1 is used as a diluting salt, the obtained agglomerate is the target product In addition, it contains KC 1 as a dilute salt, KF and NaF as by-products, and small amounts of K 2 TaF 7 and Na as unreacted residues. So, Tanyu In order to remove as much as possible other elements than possible, and to make the surface state of the tantalum powder as smooth as possible and to reduce the amount of impurities, it is usual to first wash with water, and then use an acid such as hydrofluoric acid. Perform cleaning. Then, cleaning with a hydrogen peroxide solution and nitric acid is performed.
その結果、 このような洗浄により発生する廃水としては、 水による洗浄と、 フ ッ酸などの酸による洗浄と、 過酸化水素水と硝酸による洗浄の、 3種類の廃水が 発生することとなる。 この場合、 水による洗浄で発生した廃水 (以下、 第 1廃水という。 ) には、 水 への溶解度の高い希釈塩 (KC 1) や副生成物 (KFおよび NaF) が主に溶解 するだけであって、 タンタルまたはタンタル化合物は 1 O ppm以下の極微量し か溶解しない。  As a result, three types of wastewater will be generated as wastewater generated by such cleaning: cleaning with water, cleaning with an acid such as hydrofluoric acid, and cleaning with a hydrogen peroxide solution and nitric acid. In this case, the wastewater generated by washing with water (hereinafter referred to as the first wastewater) contains only diluting salts (KC1) and by-products (KF and NaF), which are highly soluble in water, and mainly dissolves them. Therefore, tantalum or tantalum compounds dissolve in trace amounts of less than 1 O ppm.
一方、 フッ酸などの酸による洗浄で発生した廃水 (以下、 第 2廃水という。 ) は、 フッ酸中のフッ素とタンタルの一部と希釈塩に由来するカリウムとが反応し て溶解度の高い K2T a F24、 K3T a〇2F4などが生成することにより、 これ らが溶け、 タンタルが金属換算で 500 ppm程度と比較的多く溶解した状態と なっている。 On the other hand, wastewater generated by washing with an acid such as hydrofluoric acid (hereinafter referred to as “second wastewater”) has high solubility due to the reaction of fluorine in hydrofluoric acid with a part of tantalum and potassium derived from dilute salt. by such 2 T a F 24, K 3 T A_〇 2 F 4 is generated, these melts, in a state in which tantalum is relatively large dissolved about 500 ppm in terms of metal.
また、 過酸化水素水と硝酸による洗浄で発生した廃水 (以下、 第 3廃水という 。 ) にも、 タンタルが酸化されて水溶性の化合物を形成したことによると推測さ れる、 金属換算で 1000〜1500 p pm程度のタンタル化合物が溶解してい る。 以下、 このような第 1〜 3廃水のうち、 タンタルの溶解度が高い第 3廃水中の タンタル化合物を不溶化する方法を例示して説明する。  Also, wastewater generated by washing with hydrogen peroxide and nitric acid (hereinafter referred to as “third wastewater”) is considered to be due to oxidation of tantalum to form water-soluble compounds. About 1500 ppm of tantalum compound is dissolved. Hereinafter, a method for insolubilizing a tantalum compound in the third wastewater having a high solubility of tantalum among the first to third wastewaters will be described.
まず、 第 3廃水の pHと酸化還元電位 Eが、 下記式 (1) を満足する値となる ように、 pHと酸化還元電位 Eを調整する。 ただし、 式 (1) 中、 E の単位は [ mV] である。  First, the pH and the oxidation-reduction potential E are adjusted so that the pH and the oxidation-reduction potential E of the third wastewater satisfy the following expression (1). However, in Equation (1), the unit of E is [mV].
E<6 OX (10 -pH) · · · (1)  E <6 OX (10 -pH) (1)
pHと酸化還元電位 Eが式 (1) を満たす限りにおいては、 いかなる pHおよ び酸化還元電位 Eであっても、 第 3廃水中に溶解しているタンタル化合物の少な くとも 95 %以上を不溶化できる。 しかしながら、 第 3廃水は、 通常、 pHがl 以下の酸性であるため、 ここで敢えてアルカリ水溶液を添加して p Hを上げる操 作をしなくても、 例えば pHが 1の場合は式 (1) から酸化還元電位 Eを 540 mV未満とし、 例えば pHが 0. 5の場合は同じく式 (1) から酸化還元電位 E を 57 OmV未満とすることにより、 第 3廃水中に溶解しているタンタル化合物 の少なくとも 95 %以上を容易に不溶化することができる。 より好ましくは、 p Hが 1以下の場合、 酸化還元電位 Eを 40 OmV以下に調整し、 さらに好ましく は 35 OmV以下に調整することにより、 溶解しているタンタル化合物のほとん どを容易に不溶化することができる。 ここで、 酸化還元電位 Eを下げるためには、 例えば、 塩化鉄 (I I I) 、 亜硫 酸ナトリウム (Na2S〇3) 、 力タラ一ゼなどの各種還元剤を適宜添加すればよ い。 このように還元剤を適当量添加することによって、 第 3廃液の酸化還元電位 Eを調整前の 60 OmV前後から所望の値まで低下させることができる。 このように第 3廃液を酸性の状態としたまま、 酸化還元電位 Eのみを低下させ て、 式 (1) を満足するように調整することによつても、 溶解しているタンタル 化合物の少なくとも 95%以上を容易に不溶化することができるが、 第 3廃液を pH6. 5〜 9にすることにより、 液が安定となり不溶化を安定に行うことがで き、 かつ、 中性領域付近であるため取扱性にも優れるので、 水酸化ナトリウムな どのアルカリ水溶液を適宜添加して pHを 6. 5〜9. 0に調整してから、 式 ( 1) を満足するように酸化還元電位 Eを調整してもよい。 また、 水酸化ナトリウ ムなどを添加するかわりに、 他の工程で発生したアルカリ性廃液などを用いても い。 As long as the pH and redox potential E satisfy Equation (1), any pH and redox potential Even at redox potential E, at least 95% or more of the tantalum compounds dissolved in the third wastewater can be insolubilized. However, since the third effluent is usually acidic with a pH of 1 or less, even if the pH is not increased by adding an alkaline aqueous solution, for example, when the pH is 1, the formula (1) ), The redox potential E is set to less than 540 mV. For example, when the pH is 0.5, the redox potential E is also set to less than 57 OmV from the equation (1) to obtain the tantalum dissolved in the third wastewater. At least 95% or more of the compound can be easily insolubilized. More preferably, when the pH is 1 or less, most of the dissolved tantalum compounds are easily insolubilized by adjusting the oxidation-reduction potential E to 40 OmV or less, and more preferably to 35 OmV or less. be able to. Here, in order to lower the oxidation-reduction potential E, for example, various reducing agents such as iron (III) chloride, sodium sulfite (Na 2 S 3 ), and hydrogen chloride may be appropriately added. By adding an appropriate amount of the reducing agent in this way, the oxidation-reduction potential E of the third waste liquid can be reduced from around 60 OmV before adjustment to a desired value. By adjusting only the oxidation-reduction potential E so as to satisfy the expression (1) while keeping the third waste liquid in an acidic state, at least 95% of the dissolved tantalum compound can be obtained. % Or more can be easily insolubilized.However, by setting the third waste liquid to pH 6.5 to 9, the liquid becomes stable and insolubilization can be performed stably, and it is handled near the neutral region. Therefore, the pH is adjusted to 6.5 to 9.0 by appropriately adding an alkaline aqueous solution such as sodium hydroxide, and then the oxidation-reduction potential E is adjusted to satisfy the expression (1). Is also good. Instead of adding sodium hydroxide or the like, an alkaline waste liquid generated in another process may be used.
この場合、 pHを 6. 5〜9. 0に調整した時点で第 3廃水中の水溶性のタン タル化合物のおよそ 30〜 50 %程度が不溶化する。 ついで、 上述した還元剤を 添加して、 例えば pHが 7の場合は式 (1) から酸化還元電位 Eを 18 OmV未 満とし、 例えば pHが 9の場合は同じく式 (1) から酸化還元電位 Eを 6 OmV 未満とすることによって、 溶解しているタンタル化合物の少なくとも 9 5 %以上 を容易に不溶化することができる。 また、 第 3廃液を p Hが 9 . 0を超えるアル カリ性とした場合であっても、 p Hと酸化還元電位 Eが式 (1 ) を満たす限りは 、 同様に不溶化が可能である。 このように p Hの数値にかかわらず、 酸化還元電位 Eとの関係が式 (1 ) を満 たすように p Hに応じて酸化還元電位 Eを調整することにより、 第 3廃水中に溶 解していたタンタル化合物の少なくとも 9 5 %以上を不溶化することができ、 第 3廃水中のタンタルの溶解度を 1 0 p p m以下程度まで低下させられる。 不溶化 によって生成したタンタル化合物の形態は明らかでないが、 水には極微量しか溶 解しない五酸化タンタルか、 あるいは水酸化物であると推測できる。 こうして不溶化されたタンタル化合物は、 通常、 その大部分が粒径 0 . 3〜 1 0 / m程度の浮遊物として第 3廃水に存在しているので、 適宜これを分離回収す る。 このようなタンタル化合物を分離回収する方法としては、 シックナ一による 沈降分離、 界面活性剤による泡沫分離、 遠心分離などでもよいが、 膜処理によれ ば、 分離効率を 1 0 0 %近くとすることができ好ましい。 ここで使用される膜としては適宜選択することができるが、 耐薬品性に優れる テフロン (登録商標) 系、 ポリエチレン系であって、 孔径が 0 . 0 3 m以下の ものが好ましい。 このような膜としては、 例えば、 三菱レイヨン (株) 製の中空 糸膜 (製品名: UM F— 2 0 1 2 WF A、 孔径 0 . 0 3 m) が例示できる。 また、 特にタンタルは比重が大きく、 その化合物も沈降性が大きいため、 この ような膜処理と沈降分離とを併用してもよい。 膜処理と沈降分離とを併用するこ とにより膜に加わる負荷を低減でき、 膜の洗浄頻度や交換頻度を抑えることがで きる。 その際には、 上向硫全濾過方式とすることが好ましい。 このような方法によれば、 容易に、 第 3廃水などの洗浄液中に溶解している夕 ンタル化合物を不溶化、 回収でき、 これらを有効に再利用できるので、 タンタル を製造したり使用したりするプロセスの生産性を向上させることが可能となる。 なお、 以上の説明においては、 金属の回収方法として、 タンタル原料化合物を 希釈塩中で還元して、 タンタル粉末を製造する際に発生した第 3廃水中のタンタ ル化合物を不溶化し、 回収する場合について説明したが、 ニオブ粉末を製造する 場合であっても同様である。 すなわち、 ニオブ原料化合物を希釈塩中で還元して 、 ニオブ粉末を製造する際に発生した第 3廃水中のニオブ化合物を不溶化する場 合にも好適に行える。 ニオブ原料化合物としては、 K 2 N b F 6、 K 2 N b F 7等の フッ化カリウム塩、 五塩化ニオブ、 低級塩化ニオブなどの塩化物、 ヨウ化物、 臭 化物などのハロゲン化物が挙げられる。 また、 特にニオブの場合には、 ニオブ原 料化合物としてフッ化ニオブ酸カリウム等のフッ化ニオブ酸塩も使用可能である さらにこのような回収方法において不溶化の対象となる水溶液としては、 タン タル粉末やニオブ粉末を製造する際の廃水に限定されず、 タンタル化合物および /または二ォブ化合物が溶解した水溶液であればいかなるものであってもよい。 以上説明したようにこのような金属の回収方法によれば、 夕ンタル化合物およ び Zまたはニオブ化合物が溶解した水溶液の P Hと酸化還元電位 Eを、 これらが 式 (1 ) の関係となるように調整して、 タンタル化合物および またはニオブ化 合物を不溶化する工程を有し、 高い割合で回収可能であるので、 これら化合物を 再利用することができ、 夕ン夕ルやニオブを製造または使用するプロセスの生産 性を向上させることが可能となる。 また、 このような方法では p Hの範囲を限定 する必要がなく、 いかなる p Hにおいても酸化還元電位 Eをそれに応じて調整す るだけで不溶化が行え、 特に P Hが 1以下の強酸性領域でも中和などの操作が不 要であるため、 作業も簡便であり、 作業効率が優れる。 以下、 実施例を示して本発明を具体的に説明する。 In this case, when the pH is adjusted to 6.5 to 9.0, about 30 to 50% of the water-soluble tantalum compound in the third wastewater becomes insoluble. Then, by adding the above-mentioned reducing agent, for example, when the pH is 7, the oxidation-reduction potential E is set to less than 18 OmV according to the equation (1). For example, when the pH is 9, the oxidation-reduction potential E is also obtained from the equation (1). E to 6 OmV When the content is less than 90%, at least 95% or more of the dissolved tantalum compound can be easily insolubilized. Further, even when the third waste liquid has an alkaline property in which the pH exceeds 9.0, as long as the pH and the oxidation-reduction potential E satisfy the formula (1), insolubilization is possible. Thus, irrespective of the pH value, by adjusting the oxidation-reduction potential E according to the pH so that the relationship with the oxidation-reduction potential E satisfies the equation (1), the solution can be dissolved in the third wastewater It can insolubilize at least 95% or more of the unraveled tantalum compound, and reduce the solubility of tantalum in the third wastewater to about 10 ppm or less. Although the form of the tantalum compound formed by insolubilization is not clear, it can be assumed that it is a tantalum pentoxide or a hydroxide that dissolves only a trace amount in water. Usually, most of the insolubilized tantalum compound is present in the third wastewater as suspended matter having a particle size of about 0.3 to 10 / m. Therefore, it is appropriately separated and collected. The method of separating and recovering such tantalum compounds may be sedimentation separation using thickener, foam separation using a surfactant, or centrifugation.However, according to membrane treatment, the separation efficiency should be close to 100%. Is preferred. The membrane used here can be appropriately selected, but is preferably a Teflon (registered trademark) -based or polyethylene-based membrane having excellent chemical resistance and a pore diameter of 0.03 m or less. As such a membrane, for example, a hollow fiber membrane (product name: UMF-212WFA, pore size: 0.03 m) manufactured by Mitsubishi Rayon Co., Ltd. can be exemplified. In particular, tantalum has a large specific gravity, and its compound also has a large sedimentation property. Therefore, such membrane treatment and sedimentation separation may be used in combination. By using both membrane treatment and sedimentation separation, the load on the membrane can be reduced, and the frequency of washing and replacing the membrane can be reduced. In that case, it is preferable to use an upward sulfur total filtration system. According to such a method, the tantalum compound dissolved in the washing liquid such as the third wastewater can be easily insolubilized and recovered, and these can be effectively reused. It is possible to improve the productivity of a process for manufacturing or using a hologram. In the above description, the method of recovering metal is to reduce the tantalum raw material compound in dilute salt to insolubilize and recover the tantalum compound in the third wastewater generated when manufacturing tantalum powder. However, the same applies to the case of producing niobium powder. That is, the method can be suitably applied to the case where the niobium raw material compound is reduced in a dilute salt to insolubilize the niobium compound in the third wastewater generated when producing niobium powder. The niobium raw material compounds, K 2 N b F 6, K 2 N b F 7 potassium fluoride salt such as, niobium pentachloride, chloride such as lower niobium chloride, and halides such as iodide, odor products . In particular, in the case of niobium, a niobium fluoride such as potassium fluoroniobate can be used as the niobium raw material compound. Further, as an aqueous solution to be insolubilized in such a recovery method, tantalum powder is used. It is not limited to wastewater for producing niobium or niobium powder, and may be any aqueous solution in which a tantalum compound and / or a diobium compound is dissolved. As described above, according to such a metal recovery method, the pH and the oxidation-reduction potential E of the aqueous solution in which the nantalum compound and Z or the niobium compound are dissolved are determined so that these have the relationship of the formula (1). Process to insolubilize the tantalum compound and / or niobium compound, and can be recovered at a high rate, so that these compounds can be reused to produce or use It is possible to improve the productivity of the process. In addition, in such a method, it is not necessary to limit the range of pH, and at any pH, insolubilization can be performed only by adjusting the oxidation-reduction potential E accordingly. Since no operation such as neutralization is required, the work is simple and the work efficiency is excellent. Hereinafter, the present invention will be described specifically with reference to examples.
[実施例 1 ]  [Example 1]
タンタル原料化合物を、 8 7 0 程度に加熱されて溶融状態にある希釈塩中に 還元剤とともに投入し、 還元反応を行った。 ここでタンタル原料化合物としては K2TaF7を、 希釈塩としては KFを、 還元剤としては N aを使用した。 The tantalum raw material compound was charged together with a reducing agent into a diluted salt heated to about 870 and in a molten state, and a reduction reaction was performed. Here, the tantalum raw material compound K 2 TaF 7 was used, KF was used as a diluting salt, and Na was used as a reducing agent.
還元反応終了後、 溶融状態にある反応融液を冷却し、 得られた集塊を、 まず、 水で洗浄した。 ここで得られた廃水を第 1廃水とする。 ついで、 3%のフッ酸で 洗浄した。 ここで得られた廃水を第 2廃水とする。 さらに、 1. 5%の過酸化水 素水と 9 %の硝酸で洗浄した。 ここで得られた廃水を第 3廃水とする。 第 1廃水を I CPで分析したところ、 第 1廃水には金属換算で 610 p pmの タンタルおよび Zまたはタンタル化合物が含まれていたが、 そのうち、 溶解して いるタンタルおよび またはタンタル化合物は 10 p pm未満であった。  After the completion of the reduction reaction, the reaction melt in a molten state was cooled, and the obtained agglomerates were first washed with water. The wastewater obtained here is designated as the first wastewater. Then, it was washed with 3% hydrofluoric acid. The wastewater obtained here is the second wastewater. Further, the substrate was washed with 1.5% hydrogen peroxide and 9% nitric acid. The wastewater obtained here is the third wastewater. When the first wastewater was analyzed by ICP, the first wastewater contained 610 ppm of tantalum and Z or a tantalum compound in terms of metal, of which 10 t less than pm.
第 2廃水を I CPで分析したところ、 第 2廃水には金属換算で 14800 p p mのタンタルまたはタンタル化合物が含まれ、 そのうち、 14320 p pmが溶 解していた。 この第 2廃水に 20 %の N a OH水溶液を添加して、 1 を1. 0 から 7. 5へと調整したところ、 溶解していたタンタルおよび またはタンタル 化合物が析出し、 溶解しているタンタルおよび Zまたはタンタル化合物は 10 P pm未満まで低下した。 第 3廃水を I CPで分析したところ、 第 3廃水には 780 p pmのタンタルま たはタンタル化合物が含まれ、 そのうち 770 p pmが溶解していた。 そこで、 この第 3廃水に pH調整液として 20 %の N a〇H水溶液 (A) を添加して、 p Hを 1. 0以下から 7. 5へと調整するとともに、 酸化還元電位調整液として 3 0%の NaHS03水溶液 (B) を添加して、 酸化還元電位を 600 m Vから 1 O OmVへと調整した。 その結果、 溶解していたタンタルおよび またはタン夕 ル化合物が析出し、 溶解しているタンタルおよび/またはタンタル化合物は 10 p pm未満まで低下した。 ついで、 第 1廃水と、 上述したように pH調整された第 2廃水と、 pH調整お よび酸化還元電位調整された第 3廃水とを混合し、 これを膜処理して回収した。 ここで使用した膜は、 三菱レイヨン (株) 製の中空糸膜 (製品名: UMF— 20 12WFA、 孔径 0. 03 ΠΙ) であって、 この膜が多数本束ねられ形成された 中空糸膜ュニットの形態で使用した。 Analysis of the second wastewater by ICP revealed that the second wastewater contained 14800 ppm of tantalum or a tantalum compound in terms of metal, of which 14320 ppm was dissolved. A 20% NaOH aqueous solution was added to the second wastewater to adjust 1 from 1.0 to 7.5, and the dissolved tantalum and / or tantalum compound precipitated and dissolved tantalum And the Z or tantalum compounds dropped below 10 Ppm. Analysis of the third wastewater by ICP revealed that the third wastewater contained 780 ppm of tantalum or a tantalum compound, of which 770 ppm was dissolved. Therefore, a 20% Na〇H aqueous solution (A) was added to this third wastewater as a pH adjusting solution to adjust the pH from below 1.0 to 7.5, and as a redox potential adjusting solution. The redox potential was adjusted from 600 mV to 1 O OmV by adding a 30 % NaHS03 aqueous solution (B). As a result, dissolved tantalum and / or tantalum compounds were precipitated, and dissolved tantalum and / or tantalum compounds were reduced to less than 10 ppm. Next, the first wastewater, the second wastewater whose pH was adjusted as described above, and the third wastewater whose pH and oxidation-reduction potential were adjusted were mixed, and were collected by membrane treatment. The membrane used here was a hollow fiber membrane (product name: UMF-20 12WFA, pore size 0.03 mm) manufactured by Mitsubishi Rayon Co., Ltd. It was used in the form of a hollow fiber membrane unit.
このようにして、 当初、 第 1廃水と第 2廃水と第 3廃水に含まれていたタンタ ルおよび/またはタンタル化合物の 9 5 %を回収することができた (金属換算) 。 以上を表 1にまとめる。  In this way, 95% of the tantalum and / or tantalum compounds initially contained in the first, second and third wastewater could be recovered (metal equivalent). The above is summarized in Table 1.
[実施例 2〜 3 ] [Examples 2 and 3]
第 1廃水および第 2廃水については、 実施例 1と同様に処理した。  The first wastewater and the second wastewater were treated in the same manner as in Example 1.
一方、 第 3廃水に添加する p H調整液、 酸化還元電位調整液の量を変化させて On the other hand, by changing the amount of the pH adjustment liquid and the oxidation-reduction potential adjustment liquid added to the third wastewater,
、 第 3廃水の p Hと酸化還元電位を表 1に示す値とした以外は、 実施例 1と同様 にして、 第 3廃水を処理した。 The third wastewater was treated in the same manner as in Example 1 except that the pH and the oxidation-reduction potential of the third wastewater were set to the values shown in Table 1.
そして、 実施例 1と同様にして第 1廃水と、 第 2廃水と、 第 3廃水とを混合し Then, the first wastewater, the second wastewater, and the third wastewater are mixed in the same manner as in the first embodiment.
、 これを膜処理して回収した。 その結果、 当初、 第 1廃水と第 2廃水と第 3廃水 に含まれていた夕ンタルおよび/またはタンタル化合物の 9 5 %を回収すること ができた (金属換算) 。 This was recovered by membrane treatment. As a result, it was possible to recover 95% of the evening and / or tantalum compounds contained in the first, second and third wastewater (metal conversion).
[比較例 1〜2 ] [Comparative Examples 1-2]
第 1廃水および第 2廃水については、 実施例 1と同様に処理した。  The first wastewater and the second wastewater were treated in the same manner as in Example 1.
一方、 第 3廃水に添加する p H調整液、 酸化還元電位調整液の量を変化させて On the other hand, by changing the amount of the pH adjustment liquid and the oxidation-reduction potential adjustment liquid added to the third wastewater,
、 第 3廃水の p Hと酸化還元電位を表 1に示す値とした以外は、 実施例 1と同様 にして、 第 3廃水を処理した。 The third wastewater was treated in the same manner as in Example 1 except that the pH and the oxidation-reduction potential of the third wastewater were set to the values shown in Table 1.
そして、 実施例 1と同様にして第 1廃水と、 第 2廃水と、 第 3廃水とを混合し Then, the first wastewater, the second wastewater, and the third wastewater are mixed in the same manner as in the first embodiment.
、 これを膜処理して回収した。 しかしながら、 表 1に示すように、 当初、 第 1廃 水と第 2廃水と第 3廃水に含まれていた夕ン夕ルおよび/または夕ンタル化合物 のうち、 低い割合しか回収できなかった (金属換算) 。 This was recovered by membrane treatment. However, as shown in Table 1, only a small percentage of the evening and / or evening compounds contained in the first, second, and third wastewater could be recovered (metal Conversion).
(表 1 ) 実施例 実施例 実施例 比較例 比較例 (table 1 ) Example Example Example Comparative example Comparative example
1 2 3 1 2 調整後の pH 7.5 8 8 7.5 1 0 調整後の  1 2 3 1 2 Adjusted pH 7.5 8 8 7.5 1 0 Adjusted pH
1 00 80 60 250 60 第 3廃液 酸化還元電位(mV)  1 00 80 60 250 60 Third waste liquid Redox potential (mV)
Taおよび ま は  Ta and or
95 95 95 1 0 40 Ta化合物の回収率 (%)  95 95 95 1 0 40 Recovery rate of Ta compound (%)
[実施例 4〜 1 3 ] [Examples 4 to 13]
第 1廃水および第 2廃水については、 実施例 1と同様に処理した。  The first wastewater and the second wastewater were treated in the same manner as in Example 1.
一方、 第 3廃水に p H調整液を添加せず、 酸化還元電位調整液のみ、 その量を 適宜変化させて添加して、 第 3廃水の p Hと酸化還元電位を表 2〜 3に示す値と した以外は、 実施例 1と同様にして、 第 3廃水を処理した。  On the other hand, the pH and the oxidation-reduction potential of the third wastewater are shown in Tables 2 and 3, without adding the pH-adjustment liquid to the third wastewater, and adding only the oxidation-reduction potential adjustment liquid while appropriately changing the amount. Except for the values, the third wastewater was treated in the same manner as in Example 1.
そして、 実施例 1と同様にして第 1廃水と、 第 2廃水と、 第 3廃水とを混合し Then, the first wastewater, the second wastewater, and the third wastewater are mixed in the same manner as in the first embodiment.
、 これを膜処理して回収した。 その結果、 当初、 第 1廃水と第 2廃水と第 3廃水 に含まれていたタンタルおよび Zまたはタンタル化合物の 9 9 %を回収すること ができた (金属換算) 。 This was recovered by membrane treatment. As a result, it was possible to recover 99% of tantalum and Z or tantalum compounds contained in the first, second and third wastewaters (metal equivalent).
[比較例 3 ] [Comparative Example 3]
第 1廃水および第 2廃水については、 実施例 1と同様に処理した。  The first wastewater and the second wastewater were treated in the same manner as in Example 1.
一方、 第 3廃水に p H調整液を添加せず、 酸化還元電位調整液のみ少量添加し て、 第 3廃水の p Hと酸化還^ ¾電位を表 3に示す値とした以外は、 実施例 1と同 様にして、 第 3廃水を処理した。  On the other hand, except that the pH adjustment liquid was not added to the third wastewater but only a small amount of the oxidation-reduction potential adjustment liquid was added to adjust the pH and redox potential of the third wastewater to the values shown in Table 3, The third wastewater was treated in the same manner as in Example 1.
そして、 実施例 1と同様にして第 1廃水と、 第 2廃水と、 第 3廃水とを混合し Then, the first wastewater, the second wastewater, and the third wastewater are mixed in the same manner as in the first embodiment.
、 これを膜処理して回収した。 しかしながら、 表 3に示すように、 当初、 第 1廃 水と第 2廃水と第 3廃水に含まれていた夕ンタルおよび/または夕ン夕ル化合物 のうち、 低い割合しか回収できなかった (金属換算) 。 (表 2 )
Figure imgf000012_0001
This was recovered by membrane treatment. However, as shown in Table 3, only a small percentage of the evening tar and / or evening compounds contained in the first, second and third wastewaters was recovered (metal Conversion). (Table 2)
Figure imgf000012_0001
(表 3 )(Table 3)
Figure imgf000012_0002
Figure imgf000012_0002
[実施例 1 4 ] [Example 14]
第 1廃水および第 2廃水については、 実施例 1と同様に処理した。  The first wastewater and the second wastewater were treated in the same manner as in Example 1.
一方、 第 3廃水に添加する p H調整液、 酸化還元電位調整液の量を変化させて 、 第 3廃水の p Hと酸化還元電位を表 3に示す値とした以外は、 実施例 1と同様 にして、 第 3廃水を処理した。  On the other hand, except that the amounts of the pH adjusting solution and the oxidation-reduction potential adjusting solution added to the third wastewater were changed to adjust the pH and the oxidation-reduction potential of the third wastewater to the values shown in Table 3, Similarly, the third wastewater was treated.
そして、 実施例と同様にして第 1廃水と、 第 2廃水と、 第 3廃水とを混合し、 これを膜処理して回収した。 その結果、 当初、 第 1廃水と第 2廃水と第 3廃水に 含まれていたタンタルおよび/またはタンタル化合物の 9 9 %を回収することが できた (金属換算) 。  Then, the first wastewater, the second wastewater, and the third wastewater were mixed in the same manner as in the example, and collected by membrane treatment. As a result, it was possible to recover 99% of the tantalum and / or tantalum compounds contained in the first, second and third wastewater at first (metal conversion).
この結果から、 p Hをアルカリ性溶液としても、 回収可能であることが明らか となった。 産業上の利用の可能性 From this result, it was clarified that pH can be recovered even as an alkaline solution. Industrial applicability
以上説明したように本発明の回収方法によれば、 水に対する溶解度の高いタン タル化合物およびニオブ化合物を任意の p H下、 酸化還元電位を変化させること だけで不溶化し、 高い割合で回収可能であるので、 従来は廃棄されることの多か つたこれら化合物を再利用でき、 タンタルやニオブを製造または使用するプロセ スの生産性を向上させることが可能となる。  As described above, according to the recovery method of the present invention, a tantalum compound and a niobium compound having high solubility in water can be insolubilized only by changing the oxidation-reduction potential under an arbitrary pH, and can be recovered at a high rate. As a result, these compounds, which have often been discarded, can be reused, and the productivity of processes that produce or use tantalum or niobium can be improved.

Claims

請求の範囲 The scope of the claims
1. タンタル化合物および またはニオブ化合物が溶解した水溶液の PHと酸 化還元電位 Eを、 下記式 (1) を満足するように調整して、 前記タンタル化合物 および またはニオブ化合物を不溶化する工程を有することを特徴とする金属の 回収方法。  1. A step of adjusting the pH and the oxidation-reduction potential E of the aqueous solution in which the tantalum compound and / or the niobium compound is dissolved so as to satisfy the following formula (1) to insolubilize the tantalum compound and / or the niobium compound. A metal recovery method characterized by the following.
Eく 6 OX (10-ρΗ) · · · (1)  E 6 6 OX (10-ρΗ) (1)
(式 (1) 中、 Eの単位は [mV] である。 )  (In equation (1), the unit of E is [mV].)
2. pHを l以下、 かつ、 酸化還元電位 Eを 40 OmV以下に調整することを 特徴とする請求項 1に記載の金属の回収方法。  2. The method according to claim 1, wherein the pH is adjusted to 1 or less and the oxidation-reduction potential E is adjusted to 40 OmV or less.
3. pHを 6. 5〜9. 0に調整することを特徴とする請求項 1に記載の金属 の回収方法。  3. The method for recovering metal according to claim 1, wherein the pH is adjusted to 6.5 to 9.0.
4. 前記不溶化されたタンタル化合物および Zまたはニオブ化合物を、 膜処理 により分離回収する工程を有することを特徴とする請求項 1ないし 3のいずれか に記載の金属の回収方法。  4. The method for recovering a metal according to claim 1, further comprising a step of separating and recovering the insolubilized tantalum compound and Z or niobium compound by membrane treatment.
5. 前記水溶液は過酸化水素を含有することを特徴とする請求項 1ないし 4の いずれかに記載の金属の回収方法。  5. The method for recovering a metal according to claim 1, wherein the aqueous solution contains hydrogen peroxide.
6. 請求項 1ないし 5のいずれかに記載の金属の回収方法により回収された夕 ン夕ル又はニオブを使用したことを特徴とする金属。  6. A metal characterized by using evening water or niobium recovered by the metal recovery method according to any one of claims 1 to 5.
PCT/JP2003/007085 2002-06-04 2003-06-04 Method of metal recovery WO2003102254A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003242042A AU2003242042A1 (en) 2002-06-04 2003-06-04 Method of metal recovery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2002162769 2002-06-04
JP2002-162769 2002-06-04
JP2002-321166 2002-11-05
JP2002321166A JP4245899B2 (en) 2002-06-04 2002-11-05 Metal recovery method

Publications (1)

Publication Number Publication Date
WO2003102254A1 true WO2003102254A1 (en) 2003-12-11

Family

ID=29714334

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/007085 WO2003102254A1 (en) 2002-06-04 2003-06-04 Method of metal recovery

Country Status (4)

Country Link
JP (1) JP4245899B2 (en)
CN (1) CN100471968C (en)
AU (1) AU2003242042A1 (en)
WO (1) WO2003102254A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111099706A (en) * 2019-12-12 2020-05-05 贵州振华电子信息产业技术研究有限公司 Method for recycling tantalum in acid-containing waste liquid

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103194604B (en) * 2012-01-06 2014-09-17 深圳市格林美高新技术股份有限公司 Method for recovering tantalum, silver and manganese in waste and old tantalum capacitor
KR102314988B1 (en) * 2014-12-26 2021-10-21 솔브레인 주식회사 Graphene Membrane Film and Method for Solvent Purification and Solvent Purification System using the Same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990002823A1 (en) * 1988-09-06 1990-03-22 Institut National De Recherche Chimique Appliquee IMPROVED PROCESS FOR OBTAINING IMPURITY-FREE COMPOUNDS OF Ta AND/OR Nb FROM MATERIALS CONTAINING THESE METALS
JP2001163621A (en) * 1999-12-13 2001-06-19 Tokuyama Corp Method for crystallizing niobium and/or tantalum and oxide production process using the same method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19847012A1 (en) * 1998-10-13 2000-04-20 Starck H C Gmbh Co Kg Niobium powder and process for its manufacture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990002823A1 (en) * 1988-09-06 1990-03-22 Institut National De Recherche Chimique Appliquee IMPROVED PROCESS FOR OBTAINING IMPURITY-FREE COMPOUNDS OF Ta AND/OR Nb FROM MATERIALS CONTAINING THESE METALS
JP2001163621A (en) * 1999-12-13 2001-06-19 Tokuyama Corp Method for crystallizing niobium and/or tantalum and oxide production process using the same method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111099706A (en) * 2019-12-12 2020-05-05 贵州振华电子信息产业技术研究有限公司 Method for recycling tantalum in acid-containing waste liquid

Also Published As

Publication number Publication date
JP4245899B2 (en) 2009-04-02
CN1659294A (en) 2005-08-24
CN100471968C (en) 2009-03-25
AU2003242042A1 (en) 2003-12-19
JP2004060047A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP3879126B2 (en) Precious metal smelting method
JP5719972B2 (en) Metal recovery method and electrolysis apparatus for performing the method
JP2012107341A (en) Reduction of metal oxide in electrolytic cell
JP2004074041A (en) Recovering method of fluorine
TW201217542A (en) Valuable metal recovery method from lead-free waste solder
WO2005103338A1 (en) Production of iron/titanium alloys
JP2019173107A (en) Method of recovering tellurium
WO2003102254A1 (en) Method of metal recovery
JP4882125B2 (en) Silver recovery method
JP2012126952A (en) Chlorine-leaching method of copper electrolytic slime
JP2011179039A (en) Method for recovering useful metal
KR100991229B1 (en) Separation and recycling method of gold and silver from gold and silver alloy
JP6368672B2 (en) Silver smelting method
JPS59145739A (en) Method for recovering ruthenium and iridium from metallic electrode
JP5573763B2 (en) High purity silver production waste liquid treatment method
JP2010184835A (en) Method for recovering iodine
JP4193985B2 (en) Metal production method and apparatus by Ca reduction
JP2011068528A (en) Method for recovering tellurium from copper electrolysis precipitation
JP5145956B2 (en) Ruthenium separation and recovery method
JP3837029B2 (en) Silver recovery method
JP4505840B2 (en) Method for recovering valuable materials from molten fly ash
JP5565339B2 (en) Effective chlorine removal method and cobalt recovery method
JP2019135318A (en) Manufacturing method of gold dust
JP3709979B2 (en) Method for producing raw material solution used for collecting and purifying tantalum, niobium, etc.
JP7275608B2 (en) Method for recovering fluorine concentrates from solutions containing fluorine

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 20038127148

Country of ref document: CN

122 Ep: pct application non-entry in european phase