WO2003100838A1 - Scanning projection aligner and aligning method - Google Patents

Scanning projection aligner and aligning method Download PDF

Info

Publication number
WO2003100838A1
WO2003100838A1 PCT/JP2003/006342 JP0306342W WO03100838A1 WO 2003100838 A1 WO2003100838 A1 WO 2003100838A1 JP 0306342 W JP0306342 W JP 0306342W WO 03100838 A1 WO03100838 A1 WO 03100838A1
Authority
WO
WIPO (PCT)
Prior art keywords
mask
wafer
substrate
exposure
reticle
Prior art date
Application number
PCT/JP2003/006342
Other languages
French (fr)
Japanese (ja)
Inventor
Yuichi Shibazaki
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to JP2004508395A priority Critical patent/JPWO2003100838A1/en
Priority to AU2003242368A priority patent/AU2003242368A1/en
Publication of WO2003100838A1 publication Critical patent/WO2003100838A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70591Testing optical components
    • G03F7/706Aberration measurement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70058Mask illumination systems
    • G03F7/70125Use of illumination settings tailored to particular mask patterns
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control

Definitions

  • the present invention relates to a method for manufacturing a semiconductor device, a liquid crystal display device, an image pickup device (CCD, etc.), a thin film magnetic head, or the like by using a photolithographic process to form a pattern on a mask through a projection optical system.
  • the present invention relates to a scanning exposure apparatus and a scanning exposure method used for exposing a substrate.
  • the present invention is particularly suitable for a scanning exposure apparatus and a scanning exposure method in which a substantial illumination area on a mask is not rotationally symmetric with respect to the optical axis of the projection optical system.
  • a substantially square illumination area is set on a reticle as a mask, and a pattern in the illumination area is used as a photosensitive substrate via a projection optical system.
  • a batch exposure type projection exposure apparatus such as a stepper for exposing on a wafer (or a glass plate or the like) has been widely used.
  • a slit-shaped illumination area such as a rectangle or an arc is set on the reticle, and the pattern in the illumination area is projected onto the wafer via the projection optical system, and the reticle and the wafer are projected.
  • This scanning exposure type projection exposure apparatus exposes the slit-shaped exposure area almost inscribed in the effective exposure field of the projection optical system while scanning the wafer, so that the effective exposure field of the projection optical system
  • the length of the transfer pattern in the scanning direction can be longer than the diameter of the effective exposure field, resulting in the transfer of a large area reticle pattern onto the wafer with small aberrations. it can.
  • an illumination area that is not rotationally symmetric with respect to the optical axis of a projection optical system is set on a reticle during exposure. Therefore, even if the rate of absorption of the irradiation energy of the glass material constituting the lens of the projection optical system is small, a temperature distribution of the lens is generated due to the heat absorbed by the irradiation energy.
  • the lens thermally deforms non-rotationally symmetrically due to the temperature distribution of the lens, and the refractive index distribution of the glass material changes non-rotationally symmetrically due to a partial temperature rise. Thereby, the aberration of the projection optical system fluctuates.
  • i-line with a wavelength of 365 nm is mainly used as the illumination light for exposure using an ultra-high pressure mercury lamp as a light source, but recently, a wavelength in the far ultraviolet region shorter than the i-line is 248 ! 1 1113 ⁇ 4: F excimer laser light is being used, and the use of ArF excimer laser light with a wavelength of 193 nm is also being studied.
  • pulse laser light The lens of the projection optical system of a projection exposure system that uses such pulsed laser light (hereinafter referred to as “pulse laser light”) is irradiated with pulsed laser light at a high frequency, and only the irradiated part has a transmittance. Occurs. A phenomenon in which the refractive index increases only in the part of the lens that is irradiated with the pulsed laser light also occurs.
  • Such a change in the refractive index is caused by a chemical change in the glass, and a partial increase in the non-rotationally symmetric distribution of the refractive index of the lens is extremely bad particularly for the aberration of the projection optical system. affect. If the temperature distribution of the lens occurs in a non-rotationally symmetric distribution, it will cause a local increase in the temperature distribution in the lens, and as a result, the lens will be non-rotationally symmetrically thermally deformed, and further adversely affect the aberration. Become. An increase in temperature also causes an increase in the refractive index of the lens, which also adversely affects the aberration of the projection optical system.
  • conventional exposure equipment controls the pressure of the gas in contact with the lens in the projection optical system.
  • the aberration fluctuation of the projection optical system was corrected by moving or moving a part of the lens constituting the projection optical system.
  • the degree of non-rotational symmetry of the illumination area was low, so that aberration variation could be sufficiently corrected.
  • an illumination area on the reticle is slit-shaped such as a rectangle or an arc as in a scanning exposure type projection exposure apparatus, an illumination area that is not rotationally symmetrical with respect to the optical axis is used.
  • correction is made by applying non-rotationally symmetric external forces on the optical axis from two directions to the side surface of a given part of a certain lens in the projection optical system, and deforming that lens.
  • correcting the lens by deforming it with external force requires a considerable amount of pressure, which is not practical. For this reason, aberration fluctuations due to the slit-shaped illumination area cannot be completely canceled by deformation due to external force.
  • the scanning exposure is performed in a state where the aberration cannot be corrected, it is difficult to maintain the uniformity of the pattern line width, and the defect rate of the produced device may increase.
  • the present invention has been made in consideration of the above points, and suppresses non-rotationally symmetric aberrations generated in a projection optical system when a pattern on a reticle is transferred onto a wafer via a projection optical system. It is an object of the present invention to provide a scanning type exposure apparatus and a scanning type exposure method which can be performed. Disclosure of the invention
  • the scanning exposure apparatus of the present invention projects a mask pattern image onto a substrate via a projection optical system by synchronously moving the mask and the substrate in a first direction with respect to exposure light.
  • This apparatus includes a changing device for changing the setting of the exposure light irradiation area on the mask, and a changing device for the exposure light.
  • a switching device for switching the direction of synchronous movement between the mask and the substrate to a second direction different from the first direction in accordance with a change in the irradiation area.
  • the mask and the substrate are synchronously moved with respect to the exposure light in a first direction, and a pattern image of the mask is projected on the substrate via a projection optical system.
  • This method includes a step of changing the setting of the exposure light irradiation area on the mask, and a method of changing the direction of the synchronous movement between the mask and the substrate from the first direction in accordance with the change of the exposure light irradiation area. Switching the direction.
  • the illumination area with respect to the mask is changed at an arbitrary timing, and the synchronous movement direction between the mask and the substrate is switched according to the changed illumination area.
  • the direction (area) of illuminating the optical element of the optical system can be changed. Therefore, the non-rotational symmetry of the temperature distribution of the optical element due to the absorption heat of the irradiation energy can be reduced, and the non-rotational symmetry aberration caused by the temperature change can be suppressed.
  • the present invention by suppressing non-rotationally symmetric aberrations generated in the projection optical system in this way, it is possible to maintain excellent imaging characteristics, and have a uniform and desired line width on the substrate.
  • a highly integrated device can be manufactured by forming a fine pattern, and device defects caused by non-rotationally symmetric aberrations can be reduced.
  • the time required for substrate replacement alignment can be omitted, which can contribute to an improvement in throughput.
  • FIG. 1 is a schematic configuration diagram of a scanning exposure apparatus according to the present invention.
  • 2A to 2C are plan views of the reticle blind.
  • FIG. 3 is a schematic configuration diagram of a plane motor included in the traveling type exposure apparatus.
  • FIG. 4 is a control block diagram of the exposure apparatus.
  • FIG. 5 is a flowchart showing an embodiment of the present invention.
  • FIG. 6 is a diagram showing the second embodiment of the present invention, and is a plan view in which two wafer stages are provided.
  • FIG. 7 is a flowchart illustrating an example of a semiconductor device manufacturing process. BEST MODE FOR CARRYING OUT THE INVENTION
  • This embodiment is a step-and-scan scanning method in which a pattern on a reticle is sequentially transferred and exposed to each shot area on the wafer by scanning the reticle and wafer synchronously with respect to a projection optical system.
  • This is an example in which the present invention is applied to a ⁇ -type exposure apparatus and a scanning-type exposure method.
  • FIG. 1 shows a schematic configuration of a scanning exposure apparatus of the present embodiment.
  • the illumination optical system 1 includes a light source, an optical integrator (for example, an open lens or a fly-eye lens) for uniforming the illuminance distribution on the reticle, a reticle blind, a condenser lens, and the like.
  • the illumination light (exposure light) emitted from the illumination optical system 1 forms a slit-shaped illumination area on the pattern formation surface (lower surface) of the reticle (mask) 2 set by the reticle blind (change device) RB. Illuminate with a uniform illuminance distribution.
  • the pattern in the illumination area on the reticle 2 is inverted at a projection magnification (/ 3 is, for example, 1/4) through the projection optical system PL to form a slit on the wafer (substrate) 6.
  • the image is projected on the exposure area.
  • the illumination light K r F excimer laser light, or A r F E key Shimareza light, F 2 laser beam, harmonics of a copper vapor laser or YAG laser, or an ultra-high pressure mercury lamp bright line (g-line, i-line, etc.) are used.
  • the reticle blind RB has two L-shaped movable blades 11 and 12 and an actuator 13 that drives the movable blades.
  • the two movable blades 11 and 12 are arranged near a shared surface optically conjugate to the reticle 2 and the wafer 6, and are controlled by the main control system 20 (see FIG. 4).
  • the position and size of the rectangular illumination area of the illumination light on the reticle R are variably set on the XY plane by moving independently of each other in a plane orthogonal to the optical axis of the illumination light by the drive of 13. You can use four I-shaped movable blades.
  • the reticle 2 is connected to a reticle holder as a holding unit via a reticle holder (not shown).
  • (Mask stage) 3 The reticle stage 3 is supported above the reticle base (base) 4 in a plane (XY plane) perpendicular to the optical axis, and is supported two-dimensionally in the XY plane by driving a plane motor described later.
  • the reticle 2 is moved and positioned, and is movable at a predetermined scanning speed.
  • the reticle stage 3 has such a stroke that at least the entire pattern area of the reticle 2 can cross the illumination area in each of the X and Y scanning directions.
  • moving mirrors 5X and 5Y that reflect the laser beam from the laser interferometer 21 are fixed along the Y and X directions, respectively.
  • the position of the reticle stage 3 in the X and Y directions is constantly monitored by the laser interferometer 21.
  • the position information of the reticle stage 3 from the laser interferometer 21 is supplied to the main control system 20. Based on the position information, the main control system 20 passes through a drive system (not shown) on the reticle base 4. Controls the position and speed of the reticle stage 3.
  • the wafer 6 is held and mounted on a wafer stage (substrate stage) 7 as a holding unit via a wafer holder (not shown).
  • the wafer stage 7 is supported while floating above the wafer base (base) 8 in a plane (XY plane) perpendicular to the optical axis, and moves two-dimensionally in the XY plane ⁇ by driving a plane motor described later.
  • the wafer 6 is positioned and can be moved at a predetermined scanning speed.
  • a step-and-scan operation is repeated in which the wafer stage 7 repeats the operation of scanning exposure to each shot area on the wafer 6 and the operation of stepping to the next exposure start position.
  • the wafer 6 can be moved in the Z direction by the wafer stage 7 and tilted with respect to the XY plane.
  • movable mirrors 9X and 9Y for reflecting a laser beam from an external laser interferometer 22 are fixed along the Y and X directions, respectively.
  • the position of wafer stage 7 (wafer 6) is constantly monitored by laser interferometer 22.
  • the position information of the wafer stage 7 from the laser interferometer 22 is sent to the main control system 20, and the main control system 20 determines the position and speed of the wafer stage 7 via a plane motor based on the position information. Controlling.
  • the reticle 2 moves in the + Y direction (or For example, in synchronization with scanning at the speed VR, the shot area to be exposed on the wafer 6 moves in the one Y direction (or + Y direction) at a speed VW with respect to the exposure area. Is done.
  • the ratio between the scanning speed VR and the speed VW (VW / VR) is exactly the same as the projection magnification of the projection optical system PL, whereby the pattern image on the reticle 2 is It is accurately transferred to each shot area.
  • FIG. 3 is a schematic configuration diagram of the planar motors (driving devices) 3M and 7M used in the reticle stage 3 and the wafer stage 7, respectively. Since the configuration of the planar motors 3M and 7M in both stages 3 and 7 is the same, only the reference numerals are used for the planar motor 3M for the reticle stage 3, and only the planar motor 7M for the wafer 7 is described below. explain.
  • the planar motor 7M shown in this figure drives the wafer stage 7 using electromagnetic force (Lorentz force), and includes a magnet array 24 and a coil array 26.
  • the magnet array 24 is arranged adjacent to the coil array 26, supplies a permanent magnetic field that interacts with the current distribution of the coil array 26, and provides a thrust between the magnet array 24 and the coil array 26.
  • the interaction between the magnetic field and the current distribution enables one of the magnetic array 24 and the coil array 26 to move relative to the other in at least three and preferably six degrees of freedom.
  • the current in coil array 26 can interact with the magnetic field from magnet array 24 to produce forces in the X, Y, and ⁇ directions, and torque around the X, ⁇ , and ⁇ axes. it can.
  • the magnet array 24 is attached to the wafer stage 7 and moves with the wafer stage 7 relatively to the stationary coil array 26.
  • Such a configuration in which the magnet moves is preferable to a configuration in which the coils move, since the magnet array 24 does not require a current connection.
  • cooling tubes (not shown) are attached to the coil array 26, but electrical connections and cooling tubes may interfere with the movement of the coil array 26.
  • a configuration in which the coil array 26 is attached to the wafer stage 7 and is relatively moved with respect to the fixed magnet array 24 is also possible.
  • the coil array 26 is used to move the wafer stage 7 along the X axis.
  • a Y-coil array 52 for moving the wafer stage 7 along the Y-axis.
  • a rectifying circuit and a current source (not shown) supply two-phase, three-phase, or multi-phase rectified current to the X coil array 50 to apply a thrust in the X-axis direction to the wafer stage 7. .
  • a current rectified into two phases, three phases, or multiple phases is supplied to the Y coil array 52 by a rectifier circuit and a current source.
  • Rectified currents are individually supplied to coils 54 in X coil array 50 to provide rotation to wafer stage 7 in an XY plane parallel to the X and Y axes.
  • the current may be supplied to all the coils 54 of the X coil array 50 individually and in opposite polarities. In this case, one coil is supplied with force in one direction, and the other coil is supplied with force in the opposite direction, thereby generating a torque around the Z axis.
  • the driving of the planar motors 3M and 7M including the rectifier circuit and the current source is controlled by the main control system 20, and the switching device according to the present invention is controlled by the planar motors 3M and 7M and the main control system 20. Is composed.
  • the X coil array 50 is oriented so that the coil 54 becomes the major axis in a direction perpendicular to the X axis
  • the Y coil array 52 is oriented so that the coil 56 becomes the major axis in the direction perpendicular to the Y axis.
  • each coil 54, 56 produces a substantially constant thrust along each of the X or Y directions.
  • a coil 56 placed directly below the magnet array 24 and the wafer stage 7 is excited.
  • the magnet array 24 and the coil 54 placed directly below the wafer stage 7 are excited to generate a thrust in the X direction.
  • either a coil 54, 56 or a coil array 52, 54, or both the X and Y coil arrays are selectively energized.
  • FIG. 4 is a block diagram showing a main configuration of a control system of the exposure apparatus according to the present embodiment.
  • This control system is mainly composed of a main control system 20 composed of a microcomputer (or a workstation). As shown in this figure, the measurement results of the laser interferometers 21 and 22 are output to the main control system 20.
  • the main control system 20 includes the reticle laser interferometer system 21 and the wafer laser interferometer system 2
  • the drive of the planar motors 3M and 7M is controlled based on the measurement result of 2, and the drive of the actuator 13 is controlled based on the recipe (exposure data).
  • Step S 1 When the exposure process starts (Step S 0), the wafer 6 coated with the resist is transferred onto the wafer stage 7 (Step S 1) 0
  • Step S 2 the reticle 2 on the reticle stage 3 is moved. Align with the coordinate system (projection optical system PL).
  • the reticle alignment in step S2 may be performed anywhere after the reticle exchange processing until the completion of the wafer transfer processing. '
  • the main control system 20 drives the movable blades 11 and 12 via the actuator 13 to perform scanning exposure in the Y-axis direction (first direction).
  • a rectangular illumination area (irradiation area) SY extending in the X-axis direction is set (step S3).
  • the width of the rectangular illumination area in the Y-axis direction is set to be smaller than the width in the X-axis direction.
  • the exposure apparatus performs a wafer alignment in step S5 to perform alignment between the reticle 2 and the wafer 6.
  • the projection optical system PL is adjusted based on the EGA parameters (scaling parameters) calculated based on the wafer alignment mark position information measured by an alignment system (not shown). Adjust the imaging characteristics such as the projection magnification of.
  • the wafer 6 is positioned at the scanning exposure start position according to the position information (coordinate value) of each shot on the wafer 6 calculated based on the above-mentioned EGA parameters and the design coordinate value of each shot.
  • the scanning exposure of the reticle 2 and the wafer 6 is performed by driving the planar motors 3 M and 7 M to synchronously move the reticle stage 3 and the wafer stage 7 in the Y-axis direction with respect to the illumination area SY ( Step S7).
  • the projection optical system PL optical element constituting the projection optical system
  • the illumination light is applied to a range corresponding to the illumination area SY, and is formed on the reticle 2 on a predetermined shot area.
  • the resulting pattern is projected 'transferred.
  • step S8 it is determined whether or not the exposure processing has been completed in the exposure of this shot area. If the exposure processing has been completed, the processing is terminated (step S11). It is determined whether the exposure process for the wafer 6 being processed is completed and the wafer is replaced (step S 9). If the exposure process for another shot region remains, the exposure process is performed for all the shot regions. The sequence of the above steps S7 to S9 is sequentially repeated until the process is performed.
  • step S9 the process returns to step S1 to perform wafer transfer (unloading and loading), and changes the mounting direction of the reticle 2 in step S10.
  • the reticle 2 placed on the reticle stage 3 in response to the synchronous movement in the Y-axis direction is moved to the reticle stage 3 in order to correspond to the synchronous movement in the X-axis direction (second direction).
  • ° Rotate and place This change of the mounting direction is performed, for example, by detaching the reticle 2 from the reticle stage 3 by using a reticle transport device (not shown), and then setting the reticle 2 to 90. After rotation, a method of mounting the reticle on the reticle stage 3 again can be adopted.
  • the reticle 2 mounting direction can be changed before or after wafer transport if it is before the reticle alignment.
  • step S3 the main control system 20 drives the movable blades 11 and 12 via the actuator 13 and the X-axis
  • the setting is changed to a rectangular illumination area SX extending in the Y-axis direction as shown in FIG. 2C.
  • the rectangular illumination area is set to have a smaller width in the X-axis direction than in the Y-axis direction.
  • step S7 in response to the exchange of the wafer 6, the main control system 20 controls the driving of the planar motors 3M and 7M as a control device and a change device, thereby causing the reticle stage 2 and the wafer Change and switch the direction of synchronous movement with Tage 7 to X axis. That is, in the present embodiment, the main control system 20 alternately changes / switches the synchronous movement direction according to the number of processed wafers (here, each time the wafer is replaced).
  • the illumination light is applied to an area corresponding to the illumination area SX different from the illumination area SY, and the predetermined light is projected onto the reticle 2 on a predetermined shot area.
  • the pattern formed on is projected and transferred.
  • the illumination area and the synchronous movement direction are switched each time the wafer is replaced. Therefore, when the illumination area of the illumination light to the projection optical system PL is considered on a time average basis, the illumination areas SY and SX are combined. Can be made equivalent to a cross shape.
  • the heat of absorption of the irradiation energy in the optical element of the projection optical system PL can be dispersed, and the non-rotational symmetry of the temperature distribution of the optical element due to the heat of absorption can be reduced.
  • the present embodiment by suppressing non-rotationally symmetric aberrations generated in the projection optical system PL, it is possible to maintain excellent imaging characteristics, and achieve a uniform and desired line width on the wafer 6. It is possible to manufacture a highly integrated device by forming a fine pattern having a pattern, and reduce device defects due to non-rotationally symmetric aberrations.
  • FIG. 6 is a diagram showing a scanning exposure apparatus according to a second embodiment of the present invention.
  • the same elements as those of the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals, and description thereof will be omitted.
  • the difference between the second embodiment and the first embodiment is the configuration of the reticle stage 2, the wafer stage 7, and the configuration of the motor that drives these stages. Since the configurations of reticle stage 2 and wafer stage 7 are the same, only wafer stage 7 will be described below.
  • a wafer stage (holding unit) 7 Y which is supported above the wafer base 8 while floating above the wafer base 8 and synchronously moves and scans in the Y-axis direction, A wafer stage (holding unit) 7X that moves synchronously and runs is provided.
  • the wafer stage 7 ⁇ is movably supported by an X guide 31 extending in the X direction, and is moved in the X direction by driving the X linear motors 32, 32 using the X guide 31 as a guide.
  • a mover 33 is provided at one end of X guide 3 1 .
  • the mover 33 moves relative to a stator 34 provided on one side edge of the wafer base 8 along the Y direction.
  • the mover 33 and the stator 34 constitute a Y linear motor 35.
  • the wafer stage 7X is movably supported by a Y guide 41 extending in the Y direction, and is driven by the Y linear motors 42 and 42 so that the Y guide 41 guides the Y guide 41 to move in the Y direction. Go to At one end of Y guide 41. Mover 4 03 06342
  • the mover 43 moves relative to the stator 44 installed on one side edge of the wafer base 8 along the X direction.
  • the mover 43 and the stator 44 constitute an X linear motor 45.
  • Each of the wafer stages 7X and 7Y is set to be movable to a position directly below the projection optical system PL, and when the other stage moves to a position directly below the projection optical system PL, the other stage and the linear stage are moved. It is configured to be able to retreat to a position that does not interfere with the motor and guide.
  • the retracted position of each wafer stage is set to an alignment position by an alignment system (not shown). Other configurations are the same as those of the first embodiment.
  • the reticle 2 and the wafer 6 are moved by driving the ⁇ linear motor 35 to move the wafer stage 7Y in the Y-axis direction. Scanning exposure is performed by synchronously moving in the Y-axis direction. Then, when the exposure processing of the wafer held on the wafer stage 7Y is completed, the exposure processing is continuously performed on the wafer held on the wafer stage 7X. That is, by moving the wafer stage 7X in the X-axis direction by driving the X linear motor 45 while the wafer stage 7Y is retracted with respect to the wafer stage 7X, the reticle 2 and the wafer 6 are moved.
  • the illumination area is also switched by the movable blades 11 and 12 in accordance with the switching of the synchronous movement direction, and the reticle is also synchronized with the movement of the wafer by a not-shown remorse motor (which is different from the wafer 6). Move in the opposite direction). At the retracted wafer stage, wafer replacement, wafer alignment, etc. are performed.
  • the illumination area is changed according to the number of processed wafers (here, each time the wafer is replaced), and the wafer stage used for scanning exposure is switched for each wafer.
  • the absorption heat of the irradiation energy in the optical element of the projection optical system PL can be dispersed, so that the same effects as those of the first embodiment can be obtained. Time can be saved, which can contribute to an improvement in throughput.
  • both the reticle stage and the wafer stage are driven by the planar motor or the linear motor.
  • the present invention is not limited to this.
  • a configuration may be adopted in which one of the reticle stage and the wafer stage is driven by a planar motor, and the other is driven by a linear motor.
  • the illumination area and the synchronous movement direction are switched every time the wafer is exchanged at a predetermined timing.
  • the procedure is switched every time a plurality of wafers are exchanged, or every predetermined time elapses.
  • the switching may be performed based on the incident history (for example, the incident time) of the illumination light incident on the projection optical system.
  • a light quantity detector may be arranged in the illumination light path to monitor the integrated light quantity. It is also possible to switch the illumination area and the synchronous movement direction every time the integrated light amount exceeds a predetermined amount.
  • the illumination area and the synchronous movement direction are switched in the X-axis direction and the Y-axis direction, which are substantially orthogonal to each other, so that the configuration can be easily dealt with by a normally used linear motor. Instead, they may be moved synchronously in an oblique direction.
  • the synchronous movement direction By setting the synchronous movement direction to multiple directions in this way, the heat of absorption of irradiation energy in the optical element of the projection optical system PL can be further dispersed, and the non-rotational symmetry of the temperature distribution of the optical element can be reduced. It is possible to further ease.
  • the irradiation area is not limited to a rectangle, and may be an arc-shaped area.
  • the substrate of the present embodiment includes not only a semiconductor wafer 6 for manufacturing a semiconductor device, but also a glass substrate for a display device, a ceramic wafer for a thin-film magnetic head, or an original mask or reticle used in an exposure apparatus (synthesis). Quartz, silicon wafer, etc. are applied.
  • a step of scanning and exposing the pattern of the reticle R by synchronously moving the reticle R and the wafer W and a scanning type exposure apparatus of the scan type (scanning stepper; USP5,473,410).
  • the reticle R and the wafer W are stationary, the pattern of the reticle R is exposed, and the wafer W is sequentially step-moved.
  • a projection exposure apparatus stepper
  • the present invention can also be applied to a step-and-stitch type exposure apparatus in which at least two patterns are partially overlapped and transferred on a wafer W.
  • a semiconductor element for exposing a semiconductor element pattern It is not limited to an exposure apparatus for manufacturing a device, but also an exposure apparatus for manufacturing a liquid crystal display element or a display, an exposure apparatus for manufacturing a thin B-magnet magnetic head, an imaging device (CCD), a reticle or a mask, and the like. Widely applicable.
  • Light source g-line (436 nm), h-line (404 nm), i-if spring (365 nm)), KrF excimer laser (248 nm), ArF excimer laser (1 93 nm), F 2 laser (1 57 nm), not only a r 2 laser (1 2 6 nm), as possible out using a charged particle beam such as an electron beam or an ion beam.
  • a charged particle beam such as an electron beam or an ion beam.
  • thermionic emission type Kisaborai bets to lanthanum (L a B 6) can be used tantalum (T a).
  • a harmonic such as a YAG laser or a semiconductor laser may be used.
  • a single-wavelength laser in the infrared or visible range oscillated by a DFB semiconductor laser or fiber laser is amplified by a fiber amplifier doped with erbium (or both erbium and yttrium), and a nonlinear optical crystal is amplified.
  • a harmonic converted to ultraviolet light may be used as exposure light.
  • the oscillation wavelength of the single-wavelength laser is in the range of 1.544 to 1.553 m
  • the 8th harmonic in the range of 193 to 194 ⁇ m that is, the ultraviolet that has almost the same wavelength as the ArF excimer laser If light is obtained and the oscillation wavelength is in the range of 1.57 to 1.58 ⁇
  • the 10th harmonic in the range of 157 to 158 nm that is, ultraviolet light that has almost the same wavelength as the F 2 laser Light is obtained.
  • a laser plasma light source or a soft X-ray region having a wavelength of about 5 to 5 O nm generated from an SOR, for example, EUV (Extreme Ultra Violet) light having a wavelength of 13.4 nm or 11.5 nm is used as exposure light.
  • EUV Extreme Ultra Violet
  • the EUV exposure apparatus uses a reflective reticle, and the projection optical system is a reduction system including only a plurality of (eg, about 3 to 6) reflective optical elements (mirrors).
  • the projection optical system PL may be not only a reduction system but also an equal magnification system or an enlargement system. Further, the projection optical system PL may be any of a refractive system, a reflective system, and a catadioptric system. When the wavelength of the exposure light is less than about 200 nm, it is desirable to purge the optical path through which the exposure light passes with a gas that absorbs less exposure light (an inert gas such as nitrogen or helium). When an electron beam is used, an electron lens and a deflection An electron optical system consisting of a vessel may be used. The optical path through which the electron beam passes is evacuated.
  • each of the stages 3 and 7 may be of a type that moves along a guide or a guideless type that does not have a guide.
  • the reaction force generated by the movement of the wafer stage 7 is not transmitted to the projection optical system PL as described in Japanese Patent Application Laid-Open No. Hei 8-166475 (US Pat. No. 5,528,118). It may be used to mechanically escape to the floor (ground).
  • the reaction force generated by the movement of the reticle stage 3 is not transmitted to the projection optical system PL, as described in JP-A-8-330224 (US S / N 08 / 416,558). Alternatively, it may be mechanically released to the floor (ground) using a frame member.
  • the exposure apparatus performs various subsystems including each component listed in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. It is manufactured by assembling. To ensure these various precisions, before and after this lamination, adjustments to achieve optical precision for various optical systems, adjustments to achieve mechanical precision for various mechanical systems, Various electrical systems are adjusted to achieve electrical accuracy.
  • the process of assembling the exposure apparatus from various subsystems includes mechanical connections, wiring connections of electric circuits, and piping connections of pneumatic circuits among the various subsystems. It goes without saying that there is an individual assembly process for each subsystem before the assembly process from these various subsystems to the exposure apparatus.
  • step 201 for designing the function and performance of the microdevice step 202 for fabricating a mask (reticle) based on this design step, and silicon material Step of manufacturing wafer from wafer 203.
  • the reticle pattern is It is manufactured through an exposure processing step 204 for exposing to light, a device assembling step (including a dicing step, a bonding step, and a package step) 205, and an inspection step 206.
  • the present invention by suppressing non-rotationally symmetric aberrations generated in the projection optical system, it is possible to maintain excellent imaging characteristics, and have a uniform and desired line width on the substrate.
  • a highly integrated device can be manufactured by forming a fine pattern, and device defects due to non-rotationally symmetric aberrations can be reduced.
  • the time required for substrate exchange / alignment can be omitted, which can contribute to an improvement in throughput.

Abstract

A scanning projection aligner for projecting the pattern image of a mask (2) onto a substrate (6) through a projection optical system PL by moving the mask (2) and the substrate (6) synchronously in the first direction with respect to an exposing light. The aligner comprises a unit RB for altering the setting of the irradiation area of exposing light on the mask (2), and a unit for switching the synchronous movement direction of the mask (2) and the substrate (6) to a second direction different from the first direction as the irradiation area of exposing light is altered. According to the aligner, a non-rotationally symmetric aberration occurring in the projection optical system can be controlled when a pattern on a reticle is transferred onto a wafer through the projection optical system.

Description

明 細 書 走查型露光装置および走査型露光方法 技術分野  Description Scanning type exposure apparatus and scanning type exposure method
本発明は、 例えば半導体素子、 液晶表示素子、 撮像素子 (C C D等)、 又は薄膜 磁気へッド等を製造するためのフォトリソグラフイエ程でマスク上のパターンを 投影光学系を介して感光性の基板上に露光するために使用される走査型露光装置 および走査型露光方法に関する。 本発明は特に、 マスク上の実質的な照明領域が 投影光学系の光軸に関して非回転対称である走査型露光装置および走查型露光方 法に好適である。 背景技術  The present invention relates to a method for manufacturing a semiconductor device, a liquid crystal display device, an image pickup device (CCD, etc.), a thin film magnetic head, or the like by using a photolithographic process to form a pattern on a mask through a projection optical system. The present invention relates to a scanning exposure apparatus and a scanning exposure method used for exposing a substrate. The present invention is particularly suitable for a scanning exposure apparatus and a scanning exposure method in which a substantial illumination area on a mask is not rotationally symmetric with respect to the optical axis of the projection optical system. Background art
従来、 半導体素子等を製造するためのフォトリソグラフイエ程では、 マスク としてのレチクル上にほぼ正方形状の照明領域を設定し、 該照明領域内のパター ンを投影光学系を介して感光性基板としてのウェハ (又はガラスプレート等) 上 に露光するステッパー等の一括露光方式の投影露光装置が多用されていた。 これ に对して最近は、 半導体素子等のチップパターンの大型化に対応するために、 よ り大きなレチクルのパターンをウェハ上の各ショット領域に転写することが求め られている。 ところが、 広い露光フィールドの全面でディストーションや像面湾 曲等の収差を所定の許容値以下に抑制した投影光学系の設計及び製造は困難であ る。  Conventionally, in a photolithographic process for manufacturing a semiconductor device or the like, a substantially square illumination area is set on a reticle as a mask, and a pattern in the illumination area is used as a photosensitive substrate via a projection optical system. A batch exposure type projection exposure apparatus such as a stepper for exposing on a wafer (or a glass plate or the like) has been widely used. On the other hand, recently, in order to cope with an increase in the size of a chip pattern of a semiconductor device or the like, it is required to transfer a larger reticle pattern to each shot area on a wafer. However, it is difficult to design and manufacture a projection optical system in which aberrations such as distortion and curvature of field are suppressed to a predetermined allowable value or less over a wide exposure field.
そのため、 最近ではレチクル上に長方形又は円弧状等のスリット状の照明領域 を設定し、 該照明領域内のパターンを投影光学系を介してウェハ上に投影した状 態で、 レチクノレとウェハとを投影光学系に対して同期走査しながらレチクルのパ ターンをウェハ上の各ショット領域に逐次露光する、 ステップ 'アンド 'スキヤ ン方式等の走査露光型の投影露光装置が注目されている。 この走査露光型の投影 露光装置は投影光学系の有効露光フィールドにほぼ内接するスリット状の露光領 域に対してウェハを走査しながら露光'するため、 投影光学系の有効露光フィール ドの直径を最大限に利用できる他、 走査方向への転写パターンの長さはその有効 露光フィールドの直径よりも長くできるため、 結果として大面積のレチクルのパ ターンを小さい収差でウェハ上に転写できる。 Therefore, recently, a slit-shaped illumination area such as a rectangle or an arc is set on the reticle, and the pattern in the illumination area is projected onto the wafer via the projection optical system, and the reticle and the wafer are projected. Attention has been focused on scanning exposure type projection exposure apparatuses, such as a step-and-scan type, which sequentially exposes a reticle pattern to each shot area on a wafer while scanning synchronously with an optical system. This scanning exposure type projection exposure apparatus exposes the slit-shaped exposure area almost inscribed in the effective exposure field of the projection optical system while scanning the wafer, so that the effective exposure field of the projection optical system In addition to maximizing the use of the diameter of the reticle, the length of the transfer pattern in the scanning direction can be longer than the diameter of the effective exposure field, resulting in the transfer of a large area reticle pattern onto the wafer with small aberrations. it can.
しかしながら、 上述したような従来の走査型露光装置および走査型露光方法に は、 以下のような問題が存在する。  However, the conventional scanning exposure apparatus and scanning exposure method as described above have the following problems.
一般に走查型露光装置においては、 露光に際し、 .レチクル上に、 投影光学系の 光軸に関して非回転対称な照明領域が設定される。 そのため、 投影光学系のレン ズを構成する硝材の照射エネルギーの吸収率が僅かであっても、 照射エネルギー の吸収熱によりレンズの温度分布が発生する。 このレンズの温度分布によってレ ンズが非回転対称に熱変形したり、 部分的な温度上昇により硝材の屈折率分布が 非回転対称に変動する。 これにより、 投影光学系の収差が変動する。 このような 収差変動は、 今日のような高解像力、 且つ高精度な転写が要求される条件下では 容認できない状態となってきた。 - 現在、 露光用の照明光としては超高圧水銀ランプを光源とする波長 3 6 5 n m の i線が主に使用されているが、 最近ではその i線より短い遠紫外域の波長 2 4 8 !1 111の¾: Fエキシマレーザー光が使用されつつあり、 更に波長 1 9 3 n mの A r Fエキシマレーザー光等の使用も検討されている。 このようなパルス発光の レーザー光 (以下 「パルスレーザー光」 という) を使用する投影露光装置の投影 光学系のレンズには、 パルスレーザー光が高い周波数で照射され、 照射されてい る部分のみ透過率が低下する現象が起こる。 レンズ中でパルスレーザ光に照射さ れている部分のみ、 屈折率が上昇するという現象も起こる。  In general, in a scanning type exposure apparatus, an illumination area that is not rotationally symmetric with respect to the optical axis of a projection optical system is set on a reticle during exposure. Therefore, even if the rate of absorption of the irradiation energy of the glass material constituting the lens of the projection optical system is small, a temperature distribution of the lens is generated due to the heat absorbed by the irradiation energy. The lens thermally deforms non-rotationally symmetrically due to the temperature distribution of the lens, and the refractive index distribution of the glass material changes non-rotationally symmetrically due to a partial temperature rise. Thereby, the aberration of the projection optical system fluctuates. Such aberration fluctuations have become unacceptable under today's conditions requiring high resolution and high-accuracy transfer. -Currently, i-line with a wavelength of 365 nm is mainly used as the illumination light for exposure using an ultra-high pressure mercury lamp as a light source, but recently, a wavelength in the far ultraviolet region shorter than the i-line is 248 ! 1 111¾: F excimer laser light is being used, and the use of ArF excimer laser light with a wavelength of 193 nm is also being studied. The lens of the projection optical system of a projection exposure system that uses such pulsed laser light (hereinafter referred to as “pulse laser light”) is irradiated with pulsed laser light at a high frequency, and only the irradiated part has a transmittance. Occurs. A phenomenon in which the refractive index increases only in the part of the lens that is irradiated with the pulsed laser light also occurs.
このような屈折率変化は、 ガラス内の化学的な変化に起因するものであり、 レ ンズの屈折率の非回転対称な分布での部分的な上昇は、 特に投影光学系の収差に 極めて悪い影響を及ぼす。 レンズの温度分布が非回転対称な分布で発生すると、 レンズに局所的な温度分布の上昇をもたらすことになり、 その結果、 レンズが非 回転対称に熱変形し、 更に収差に悪影響を及ぼすことになる。 温度上昇もレンズ の屈折率の上昇をもたらし、 それも投影光学系の収差に悪影響を及ぼすことにな る。  Such a change in the refractive index is caused by a chemical change in the glass, and a partial increase in the non-rotationally symmetric distribution of the refractive index of the lens is extremely bad particularly for the aberration of the projection optical system. affect. If the temperature distribution of the lens occurs in a non-rotationally symmetric distribution, it will cause a local increase in the temperature distribution in the lens, and as a result, the lens will be non-rotationally symmetrically thermally deformed, and further adversely affect the aberration. Become. An increase in temperature also causes an increase in the refractive index of the lens, which also adversely affects the aberration of the projection optical system.
一方、 従来の露光装置では、 投影光学系内のレンズに接する気体の圧力を制御 したり、 投影光学系を構成する一部のレンズを移動したりすることにより、 投影 光学系の収差変動を補正していた。 この方法は、 ほぼ正方形の照明領域を使用す る一括露光型の場合には、 その照明領域の非回転対称性の程度が低いため、 収差 変動は充分に補正することが可能であった。 しかし、 走査露光型の投影露光装置 のようにレチクル上の照明領域を長方形又は円弧状等のスリット状にするという ような著しく光軸に関し非回転対称な照明領域を使用する場合には、 ディスト一 ションゃ像面湾曲等の収差の変動が許容値以内に収まらないおそれがでてきた。 特に非回転対称性が著しいときは、 投影光学系の露光フィールドの中心でメリジ ォナル方向のパターンの最良像面と、 それと垂直な方向のパターンの最良像面と が光軸方向に離れるというような非点収差 (以下、 「中心ァス」 という) が生じる という不都合もある。 ' On the other hand, conventional exposure equipment controls the pressure of the gas in contact with the lens in the projection optical system. In this case, the aberration fluctuation of the projection optical system was corrected by moving or moving a part of the lens constituting the projection optical system. With this method, in the case of a one-shot exposure type using a substantially square illumination area, the degree of non-rotational symmetry of the illumination area was low, so that aberration variation could be sufficiently corrected. However, when an illumination area on the reticle is slit-shaped such as a rectangle or an arc as in a scanning exposure type projection exposure apparatus, an illumination area that is not rotationally symmetrical with respect to the optical axis is used. There is a possibility that fluctuations in aberrations such as the curvature of field do not fall within an allowable value. In particular, when non-rotational symmetry is remarkable, the best image plane of the pattern in the meridional direction and the best image plane of the pattern in the direction perpendicular to the center of the exposure field of the projection optical system are separated in the optical axis direction. There is also the disadvantage that astigmatism (hereinafter referred to as “center ass”) occurs. '
これに関して、 中心ァスに対しては、 投影光学系内の或るレンズの所定部分の 側面に 2方向から、 光軸に関し非回転対称な外力を付加して、 そのレンズを変形 させることによって補正するという方法が知られている。 しかしながら、 外力に よってレンズを変形させることによつてそれを補正するのには、 かなり大きな圧 力を加える必要があり、 現実的ではない。 そのため、 スリッ ト状の照明領域によ る収差変動を外力による変形によって完全に打ち消すことはできない。 このよう に、 収差を補正できない状態で走査露光を実施した場合、 パターン線幅の均一性 を維持するのが困難になり、 生産したデバイスの不良率が増加するおそれもあつ た。  In this regard, correction is made by applying non-rotationally symmetric external forces on the optical axis from two directions to the side surface of a given part of a certain lens in the projection optical system, and deforming that lens. There is a known method. However, correcting the lens by deforming it with external force requires a considerable amount of pressure, which is not practical. For this reason, aberration fluctuations due to the slit-shaped illumination area cannot be completely canceled by deformation due to external force. As described above, when the scanning exposure is performed in a state where the aberration cannot be corrected, it is difficult to maintain the uniformity of the pattern line width, and the defect rate of the produced device may increase.
本発明は、 以上のような点を考慮してなされたもので、 レチクル上のパターン を投影光学系を介してウェハ上に転写する場合に、 投影光学系に発生する非回転 対称な収差を抑制できる走査型露光装置および走査型露光方法を提供することを 目的とする。 発明の開示  The present invention has been made in consideration of the above points, and suppresses non-rotationally symmetric aberrations generated in a projection optical system when a pattern on a reticle is transferred onto a wafer via a projection optical system. It is an object of the present invention to provide a scanning type exposure apparatus and a scanning type exposure method which can be performed. Disclosure of the invention
本発明の走査型露光装置は、 露光光に対してマスクと基板とを第 1の方向に同 期移動させてマスクのパターン像を投影光学系を介して基板に投影する。 この装 置は、 マスクにおける露光光の照射領域の設定を変更する変更装置と、 露光光の 照射領域の変更に伴い、 マスクと基板との同期移動の方向を第 1の方向とは異な る第 2の方向に切り替える切替装置とを備える。 The scanning exposure apparatus of the present invention projects a mask pattern image onto a substrate via a projection optical system by synchronously moving the mask and the substrate in a first direction with respect to exposure light. This apparatus includes a changing device for changing the setting of the exposure light irradiation area on the mask, and a changing device for the exposure light. A switching device for switching the direction of synchronous movement between the mask and the substrate to a second direction different from the first direction in accordance with a change in the irradiation area.
本発明の走查型露光方法は、 露光光に対してマスクと基板とを第 1の方向に同 期移動させてマスクのパターン像を投影光学系を介して基板に投影する。 この方 法は、 マスクにおける露光光の照射領域の設定を変更するステップと、 露光光の 照射領域の変更に伴い、 マスクと基板との同期移動の方向を第 1の方向とは異な る第 2の方向に切り替えるステップを含む。  In the scanning exposure method of the present invention, the mask and the substrate are synchronously moved with respect to the exposure light in a first direction, and a pattern image of the mask is projected on the substrate via a projection optical system. This method includes a step of changing the setting of the exposure light irradiation area on the mask, and a method of changing the direction of the synchronous movement between the mask and the substrate from the first direction in accordance with the change of the exposure light irradiation area. Switching the direction.
本発明では、任意のタイミングでマスクに対する照明領域を変更するとともに、 変更された照明領域に応じてマスクと基板との同期移動方向を切り替えることに より、' 走查露光に伴って照明光により投影光学系の光学素子を照明する方向 (領 域) を変更することができる。 そのため、 照射エネルギーの吸収熱による光学素 子の温度分布の非回転対称性を緩和することができ、 温度変化に起因する非回転 対称性な収差を抑制することが可能になる。  According to the present invention, the illumination area with respect to the mask is changed at an arbitrary timing, and the synchronous movement direction between the mask and the substrate is switched according to the changed illumination area. The direction (area) of illuminating the optical element of the optical system can be changed. Therefore, the non-rotational symmetry of the temperature distribution of the optical element due to the absorption heat of the irradiation energy can be reduced, and the non-rotational symmetry aberration caused by the temperature change can be suppressed.
本発明では、 このように投影光学系に発生する非回転対称な収差を抑制するこ とにより、 優れた結像特性を維持することが可能になり、 基板上に均一で所望の 線幅を有する微細パターンを形成して集積度の高いデバイスを製造することがで き、 非回転対称な収差に起因するデバイス不良を低減することが可能になる。 ス テージを複数設けた場合には、基板交換 'ァライメントに要する時間を省略して、 スループット向上にも寄与できる。 図面の簡単な説明  In the present invention, by suppressing non-rotationally symmetric aberrations generated in the projection optical system in this way, it is possible to maintain excellent imaging characteristics, and have a uniform and desired line width on the substrate. A highly integrated device can be manufactured by forming a fine pattern, and device defects caused by non-rotationally symmetric aberrations can be reduced. When a plurality of stages are provided, the time required for substrate replacement alignment can be omitted, which can contribute to an improvement in throughput. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明に係る走査型露光装置の概略構成図である。  FIG. 1 is a schematic configuration diagram of a scanning exposure apparatus according to the present invention.
図 2 A〜図 2 Cは、 レチクルブラインドの平面図である。  2A to 2C are plan views of the reticle blind.
図 3は、 走查型露光装置を構成する平面モータの概略構成図である。  FIG. 3 is a schematic configuration diagram of a plane motor included in the traveling type exposure apparatus.
図 4は、 同露光装置における制御プロック図である。  FIG. 4 is a control block diagram of the exposure apparatus.
図 5は、 本発明の実施形態を示すフローチャートである。  FIG. 5 is a flowchart showing an embodiment of the present invention.
図 6は、 本発明の第 2の実施形態を示す図であって、 2基のウェハステージが 設けられた平面図である。  FIG. 6 is a diagram showing the second embodiment of the present invention, and is a plan view in which two wafer stages are provided.
図 7は、 半導体デバイスの製造工程の一例を示すフローチャートである。 発明を実施するための最良の形態 FIG. 7 is a flowchart illustrating an example of a semiconductor device manufacturing process. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の走查型露光装置および走査型露光方法の第 1実施形態を、 図 1 ないし図 5を参照して説明する。 この実施形態は、 レチクル及びウェハを投影光 学系に対して同期して走査することにより、 レチクル上のパターンをそのウェハ 上の各ショット領域に逐次転写露光する、 ステップ .アンド ·スキャン方式の走 查型露光装置および走查型露光方法に本発明を適用した例である。  Hereinafter, a scanning exposure apparatus and a scanning exposure method according to a first embodiment of the present invention will be described with reference to FIGS. 1 to 5. This embodiment is a step-and-scan scanning method in which a pattern on a reticle is sequentially transferred and exposed to each shot area on the wafer by scanning the reticle and wafer synchronously with respect to a projection optical system. This is an example in which the present invention is applied to a 查 -type exposure apparatus and a scanning-type exposure method.
図 1は、 本実施形態の走査型露光装置の概略構成を示す。 図 1において、 照明 光学系 1は、 光源、 レチクル上の照度分布を均一にするオプティカルインテグレ ータ (例えば、 口ッドレンズやフライアイレンズ)、 レチクルブラインド、 コンテ' ンサレンズ等を含む。 照明光学系 1から射出された照明光 (露光光) は、 レチク ルブラインド (変更装置) R Bで設定されたレチクル (マスク) 2のパターン形 成面 (下面) のスリッ ト状の照明領域を、 均一な照度分布で照明する。 照明光の もとで、 レチクル 2上の照明領域内のパターンが投影光学系 P Lを介して投影倍 率 (/3は例えば 1 / 4 ) で反転されてウェハ (基板) 6上のスリット状の露光 領域に結像投影される。 照明光としては、 K r Fエキシマレーザ光や A r Fェキ シマレーザ光、 F 2 レーザ光、 銅蒸気レーザや Y A Gレーザの高調波、 あるいは 超高圧水銀ランプの輝線 (g線、 i線等) 等が用いられる。 以下、 投影光学系 P Lの光軸に平行に Z軸をとり、 その光軸に垂直な平面内で互いに直交する方向に Y軸及び X軸をとつて説明する。 FIG. 1 shows a schematic configuration of a scanning exposure apparatus of the present embodiment. In FIG. 1, the illumination optical system 1 includes a light source, an optical integrator (for example, an open lens or a fly-eye lens) for uniforming the illuminance distribution on the reticle, a reticle blind, a condenser lens, and the like. The illumination light (exposure light) emitted from the illumination optical system 1 forms a slit-shaped illumination area on the pattern formation surface (lower surface) of the reticle (mask) 2 set by the reticle blind (change device) RB. Illuminate with a uniform illuminance distribution. Under the illumination light, the pattern in the illumination area on the reticle 2 is inverted at a projection magnification (/ 3 is, for example, 1/4) through the projection optical system PL to form a slit on the wafer (substrate) 6. The image is projected on the exposure area. The illumination light, K r F excimer laser light, or A r F E key Shimareza light, F 2 laser beam, harmonics of a copper vapor laser or YAG laser, or an ultra-high pressure mercury lamp bright line (g-line, i-line, etc.) Are used. Hereinafter, the description will be made by taking the Z axis parallel to the optical axis of the projection optical system PL, and the Y axis and the X axis in directions perpendicular to each other in a plane perpendicular to the optical axis.
図 2 Aに示すように、 レチクルブラインド R Bは、 2枚の L字型の可動ブレー ド 1 1、 1 2と、 この可動ブレードを駆動するァクチユエータ 1 3とを有する。  As shown in FIG. 2A, the reticle blind RB has two L-shaped movable blades 11 and 12 and an actuator 13 that drives the movable blades.
2枚の可動ブレード 1 1、 1 2は、 レチクル 2及びウェハ 6と光学的に共役な共 役面近傍に配置されており、 主制御系 2 0 (図 4参照) の制御下でァクチユエ一 タ 1 3の駆動により、 照明光の光軸と直交する平面内で互いに独立して移動する ことで、 レチクル Rにおける照明光の矩形照明領域の位置、 大きさを X Y平面內 で可変に設定する。 可動ブレードとしては、 4枚の I字型のものを使用してもよ レ、。 The two movable blades 11 and 12 are arranged near a shared surface optically conjugate to the reticle 2 and the wafer 6, and are controlled by the main control system 20 (see FIG. 4). The position and size of the rectangular illumination area of the illumination light on the reticle R are variably set on the XY plane by moving independently of each other in a plane orthogonal to the optical axis of the illumination light by the drive of 13. You can use four I-shaped movable blades.
レチクル 2は、 不図示のレチクルホルダを介して保持部としてのレチクルステ ージ (マスクステージ) 3上に保持 '載置されている。 レチクルステージ 3は、 光軸に垂直な平面 (X Y平面) 内でレチクルベース (ベース) 4の上方に浮上し た状態で支持されて、 後述する平面モータの駆動により XY平面内を 2次元的に 移動してレチクル 2を位置決めすると共に、 所定の走査速度で移動可能となって いる。 レチクルステージ 3は X方向及び Y方向の各走査方向にレチクル 2のパタ ーン領域の全面が少なく とも照明領域を横切ることができるだけのストロークを 有している。 レチクルステージ 3の端部には、 レーザ干渉計 2 1 (図 4参照) か らのレーザビームを反射する移動鏡 5 X、 5 Yがそれぞれ Y方向、 X方向に沿つ て固定されており、 レチクルステージ 3の X方向及び Y方向の位置は、 レーザ干 渉計 2 1により常時モニタされている。 レーザ干渉計 2 1からのレチクルステー ジ 3の位置情報は主制御系 2 0に供給され、 主制御系 2 0はその位置情報に基づ き、 レチクルベース 4上の不図示の駆動系を介してレチクルステージ 3の位置及 び速度を制御している。 The reticle 2 is connected to a reticle holder as a holding unit via a reticle holder (not shown). (Mask stage) 3 The reticle stage 3 is supported above the reticle base (base) 4 in a plane (XY plane) perpendicular to the optical axis, and is supported two-dimensionally in the XY plane by driving a plane motor described later. The reticle 2 is moved and positioned, and is movable at a predetermined scanning speed. The reticle stage 3 has such a stroke that at least the entire pattern area of the reticle 2 can cross the illumination area in each of the X and Y scanning directions. At the end of the reticle stage 3, moving mirrors 5X and 5Y that reflect the laser beam from the laser interferometer 21 (see FIG. 4) are fixed along the Y and X directions, respectively. The position of the reticle stage 3 in the X and Y directions is constantly monitored by the laser interferometer 21. The position information of the reticle stage 3 from the laser interferometer 21 is supplied to the main control system 20. Based on the position information, the main control system 20 passes through a drive system (not shown) on the reticle base 4. Controls the position and speed of the reticle stage 3.
一方、 ウェハ 6は不図示のウェハホルダを介して保持部としてのウェハステー ジ (基板ステージ) 7上に保持 '載置されている。 ウェハステージ 7は、 光軸に 垂直な平面 (X Y平面) 内でウェハベース (ベース) 8の上方で浮上した状態で 支持されて、 後述する平面モータの駆動により X Y平面內を 2次元的に移動して ウェハ 6を位置決めすると共に、 所定の走査速度で移動可能となっている。 ゥェ ハステージ 7によりウェハ 6上の各ショッ ト領域へスキャン露光する動作と、 次 の露光開始位置までステツビングする動作とを繰り返すステップ ·アンド ·スキ ヤン動作が行われる。 ウェハ 6はウェハステージ 7により Z方向への移動、 及び X Y平面に対する傾斜が可能に構成されている。  On the other hand, the wafer 6 is held and mounted on a wafer stage (substrate stage) 7 as a holding unit via a wafer holder (not shown). The wafer stage 7 is supported while floating above the wafer base (base) 8 in a plane (XY plane) perpendicular to the optical axis, and moves two-dimensionally in the XY plane 內 by driving a plane motor described later. As a result, the wafer 6 is positioned and can be moved at a predetermined scanning speed. A step-and-scan operation is repeated in which the wafer stage 7 repeats the operation of scanning exposure to each shot area on the wafer 6 and the operation of stepping to the next exposure start position. The wafer 6 can be moved in the Z direction by the wafer stage 7 and tilted with respect to the XY plane.
ウェハステージ 7の端部には外部のレーザ干渉計 2 2 (図 4参照) からのレー ザビームを反射する移動鏡 9 X、 9 Yがそれぞれ Y方向、 X方向に沿って固定さ れており、 ウェハステージ 7 (ウェハ 6 ) の位置はレ一ザ干渉計 2 2により、 常 時モニタされている。 レーザ干渉計 2 2からのウェハステージ 7の位置情報は主 制御系 2 0に送られており、 主制御系 2 0はその位置情報に基づいて平面モータ を介してウェハステージ 7の位置及び速度を制御している。  At the end of the wafer stage 7, movable mirrors 9X and 9Y for reflecting a laser beam from an external laser interferometer 22 (see FIG. 4) are fixed along the Y and X directions, respectively. The position of wafer stage 7 (wafer 6) is constantly monitored by laser interferometer 22. The position information of the wafer stage 7 from the laser interferometer 22 is sent to the main control system 20, and the main control system 20 determines the position and speed of the wafer stage 7 via a plane motor based on the position information. Controlling.
本実施形態では走査露光時に、 レチクル 2が照明領域に対して + Y方向 (又は 一 Y方向) へ、 例えば速度 V Rで走査されるのと同期して、 ウェハ 6上の露光対 象のショット領域が露光領域に対して一 Y方向 (又は + Y方向) に速度 VWで走 查される。 走査速度 V Rと速度 VWとの比 (VW/V R) は投影光学系 P Lの投 影倍率 に正確に一致したものになっており、 これによつてレチクル 2上のパタ ーン像がウェハ 6の各ショット領域に正確に転写される。 In the present embodiment, at the time of scanning exposure, the reticle 2 moves in the + Y direction (or For example, in synchronization with scanning at the speed VR, the shot area to be exposed on the wafer 6 moves in the one Y direction (or + Y direction) at a speed VW with respect to the exposure area. Is done. The ratio between the scanning speed VR and the speed VW (VW / VR) is exactly the same as the projection magnification of the projection optical system PL, whereby the pattern image on the reticle 2 is It is accurately transferred to each shot area.
図 3は、 レチクルステージ 3及びウェハステージ 7でそれぞれ用いられる平面 モータ (駆動装置) 3 M、 7 Mの概略構成図である。 両ステージ 3 、 7における 平面モータ 3 M、 7 Mの構成は同様であるので、 レチクルステージ 3用平面モー タ 3 Mについては符号のみ図示し、 以下においてはウェハ 7用平面モータ 7 Mに ついてのみ説明する。  FIG. 3 is a schematic configuration diagram of the planar motors (driving devices) 3M and 7M used in the reticle stage 3 and the wafer stage 7, respectively. Since the configuration of the planar motors 3M and 7M in both stages 3 and 7 is the same, only the reference numerals are used for the planar motor 3M for the reticle stage 3, and only the planar motor 7M for the wafer 7 is described below. explain.
この図に示す平面モータ 7 Mは、 電磁力 (ローレンツ力) を用いてウェハステ ージ 7を駆動するものであって、 マグネットアレイ 2 4とコイルアレイ 2 6とを 備えている。 マグネッ トアレイ 2 4は、 コイルアレイ 2 6に隣接して配置され、 コイルアレイ 2 6の電流分布と相互に作用する永久磁界を供給し、 マグネットァ レイ 2 4とコイルアレイ 2 6との間に推力を生じさせる。 磁界と電流分布との相 互作用は、 少なくとも 3自由度、 好ましくは 6自由度において、 マグネッ トァレ ィ 2 4及びコイルアレイ 2 6のいずれか一方が他方に対して相対移動するのを可 能にしている。 例えば、 コイルアレイ 2 6の電流は、 マグネットアレイ 2 4から の磁界と相互に作用して、 X、 Y、 及び Ζ方向の力と、 X、 Υ及び Ζ軸周りのト ルクとを生み出すことができる。  The planar motor 7M shown in this figure drives the wafer stage 7 using electromagnetic force (Lorentz force), and includes a magnet array 24 and a coil array 26. The magnet array 24 is arranged adjacent to the coil array 26, supplies a permanent magnetic field that interacts with the current distribution of the coil array 26, and provides a thrust between the magnet array 24 and the coil array 26. Cause. The interaction between the magnetic field and the current distribution enables one of the magnetic array 24 and the coil array 26 to move relative to the other in at least three and preferably six degrees of freedom. ing. For example, the current in coil array 26 can interact with the magnetic field from magnet array 24 to produce forces in the X, Y, and Ζ directions, and torque around the X, Υ, and Ζ axes. it can.
マグネットアレイ 2 4は、 ウェハステージ 7に取り付けられ、 静止状態のコィ ルアレイ 2 6に対して相対的にウェハステージ 7とともに移動する。 こうしたマ グネットが移動する構成は、 マグネットアレイ 2 4が電流の接続を必要としない ことから、 コイルが移動する構成よりも好ましい。 コイルの冷却を必要とする場 合、 冷却管 (不図示) はコイルアレイ 2 6に取り付けられるが、 電気的な接続や 冷却管は、 コイルアレイ 2 6の移動と干渉する可能性がある。 しかしながら、 コ ィルアレイ 2 6をウェハステージ 7に取り付け、 固定されたマグネットアレイ 2 4と相対移動させる構成も採用可能である。  The magnet array 24 is attached to the wafer stage 7 and moves with the wafer stage 7 relatively to the stationary coil array 26. Such a configuration in which the magnet moves is preferable to a configuration in which the coils move, since the magnet array 24 does not require a current connection. If coil cooling is required, cooling tubes (not shown) are attached to the coil array 26, but electrical connections and cooling tubes may interfere with the movement of the coil array 26. However, a configuration in which the coil array 26 is attached to the wafer stage 7 and is relatively moved with respect to the fixed magnet array 24 is also possible.
コイルアレイ 2 6は、 X軸に沿ってウェハステージ 7を移動させるための Xコ ィルアレイ 5 0と、 Y軸に沿ってウェハステージ 7を移動させるための Yコイル アレイ 5 2とを備える。 ウェハステージ 7に X軸方向の推力を与えるために、 整 流回路及び電流源 (不図示) により、 二相、 三相、 または多重位相に整流された 電流が Xコイルアレイ 5 0に供給される。 ウェハステージ 7に Y軸方向の推力を 与えるために、 整流回路及び電流源により、 二相、 三相、 または多重位相に整流 された電流が Yコイルアレイ 5 2に供給される。 X軸及び Y軸に平行な X Y平面 内で、 ウェハステージ 7に対して回転を与えるために、 整流された電流が Xコィ ルアレイ 5 0中のコイル 5 4に個々に供給される。 別の方法としては、 電流を X コイルアレイ 5 0の全てのコィノレ 5 4に個々に、 且つ反対の極性で供給してもよ レ、。 この場合、 あるコイルには一つの方向に力が供給され、 他のコイルには反対 の方向に力が供給され、 これにより Z軸周りのトルクが発生する。 整流回路及び 電流源を含む平面モータ 3 M、 7 Mの駆動は、 主制御系 2 0によつて制御され、 これら平面モータ 3 M、 7 M及び主制御系 2 0によって本発明に係る切替装置が 構成される。 The coil array 26 is used to move the wafer stage 7 along the X axis. And a Y-coil array 52 for moving the wafer stage 7 along the Y-axis. A rectifying circuit and a current source (not shown) supply two-phase, three-phase, or multi-phase rectified current to the X coil array 50 to apply a thrust in the X-axis direction to the wafer stage 7. . In order to apply a thrust in the Y-axis direction to the wafer stage 7, a current rectified into two phases, three phases, or multiple phases is supplied to the Y coil array 52 by a rectifier circuit and a current source. Rectified currents are individually supplied to coils 54 in X coil array 50 to provide rotation to wafer stage 7 in an XY plane parallel to the X and Y axes. Alternatively, the current may be supplied to all the coils 54 of the X coil array 50 individually and in opposite polarities. In this case, one coil is supplied with force in one direction, and the other coil is supplied with force in the opposite direction, thereby generating a torque around the Z axis. The driving of the planar motors 3M and 7M including the rectifier circuit and the current source is controlled by the main control system 20, and the switching device according to the present invention is controlled by the planar motors 3M and 7M and the main control system 20. Is composed.
Xコイルアレイ 5 0は、 コイル 5 4が X軸に垂直な方向に長軸となるように方 向付けられ、 Yコイルァレイ 5 2は、 コイル 5 6が Y軸に垂直な方向に長軸とな るように方向付けられている。 動作時において、 各コイル 5 4、 5 6が Xまたは Y方向のそれぞれに沿って、 実質的に一定の推力を生じさせる。 Y方向の推力を 生じさせるために、 マグネットアレイ 2 4及ぴウェハステージ 7の真下に置かれ たコイル 5 6が励磁される。 同様に、 X方向の推力を生じさせるために、 マグネ ットアレイ 2 4及びウェハステージ 7の真下に置かれたコイル 5 4が励磁される。  The X coil array 50 is oriented so that the coil 54 becomes the major axis in a direction perpendicular to the X axis, and the Y coil array 52 is oriented so that the coil 56 becomes the major axis in the direction perpendicular to the Y axis. Oriented to In operation, each coil 54, 56 produces a substantially constant thrust along each of the X or Y directions. In order to generate a thrust in the Y direction, a coil 56 placed directly below the magnet array 24 and the wafer stage 7 is excited. Similarly, the magnet array 24 and the coil 54 placed directly below the wafer stage 7 are excited to generate a thrust in the X direction.
X Y平面に平行な回転を与えるために、 あるコイル 5 4、 5 6またはコイルァレ ィ 5 2、 5 4のいずれか、 あるいは X及び Yコイルァレイの双方が選択的に励磁 される。 To provide rotation parallel to the XY plane, either a coil 54, 56 or a coil array 52, 54, or both the X and Y coil arrays are selectively energized.
図 4には、 本実施形態に係る露光装置の制御系の主要な構成がプロック図にて 示されている。 この制御系は、 マイクロコンピュータ (あるいはワークステーシ ョン)から成る主制御系 2 0を中心として構成されている。この図に示すように、 レーザ干渉計 2 1、 2 2の計測結果は、 主制御系 2 0に出力される。 主制御系 2 0は、 レチクルレーザ干渉計システム 2 1およびウェハレーザ干渉計システム 2 2の計測結果に基づいて平面モータ 3 M、 7 Mの駆動を制御するとともに、 レシ ピ (露光データ) に基づいてァクチユエータ 1 3の駆動を制御する。 FIG. 4 is a block diagram showing a main configuration of a control system of the exposure apparatus according to the present embodiment. This control system is mainly composed of a main control system 20 composed of a microcomputer (or a workstation). As shown in this figure, the measurement results of the laser interferometers 21 and 22 are output to the main control system 20. The main control system 20 includes the reticle laser interferometer system 21 and the wafer laser interferometer system 2 The drive of the planar motors 3M and 7M is controlled based on the measurement result of 2, and the drive of the actuator 13 is controlled based on the recipe (exposure data).
続いて、 上記の構成の露光装置による露光シーケンスを図 5に示すフローチヤ ートを用いて説明する。  Next, an exposure sequence by the exposure apparatus having the above configuration will be described with reference to a flowchart shown in FIG.
露光処理がスタートすると (ステップ S 0 )、 レジストが塗布されたウェハ 6が ウェハステージ 7上に搬送される (ステップ S 1 ) 0 ステップ S 2では、 レチクノレ ステージ 3上のレチクル' 2をステージの移動座標系 (投影光学系 P L ) に対して 位置合わせ (ァライメント) する。 ステップ S 2におけるレチクル ·ァライメン トは、 レチクルの交換処理後からウェハ搬送処理の完了までの間であればどこで 実施してもよい。 ' When the exposure process starts (Step S 0), the wafer 6 coated with the resist is transferred onto the wafer stage 7 (Step S 1) 0 In Step S 2, the reticle 2 on the reticle stage 3 is moved. Align with the coordinate system (projection optical system PL). The reticle alignment in step S2 may be performed anywhere after the reticle exchange processing until the completion of the wafer transfer processing. '
レチクルァライメントが終了すると、 主制御系 2 0はァクチユエータ 1 3を介 して可動ブレード 1 1、 1 2を駆動レ、 Y軸方向 (第 1の方向) への走查露光を 行うために、 図 2 Bに示すように、 X軸方向に延在する矩形照明領域(照射領域) S Yを設定する (ステップ S 3 )。 この場合の矩形照明領域は、 Y軸方向の幅が X 軸方向の幅よりも狭く設定される。 ウェハ 6が搬送されると、 露光装置では、 ス テツプ S 4においてフォーカス調整が行われ、 ウェハ Wの光軸方向の位置決めを 実施する。 そして、 フォーカス調整が完了したら露光装置では、 ステップ S 5に おいてウェハ .ァライメントを実施して、 レチクノレ 2とウェハ 6との位置合わせ を行う。 露光装置は、 ウェハ 'ァライメント後に、 不図示のァライメント系で計 測したウェハァライメントマークの位置情報に基づいて算出された E G Aパラメ ータ (スケーリングパラメータ) に基づいてステップ S 6で投影光学系 P Lの投 影倍率等、 結像特性を調整する。  When the reticle alignment is completed, the main control system 20 drives the movable blades 11 and 12 via the actuator 13 to perform scanning exposure in the Y-axis direction (first direction). As shown in FIG. 2B, a rectangular illumination area (irradiation area) SY extending in the X-axis direction is set (step S3). In this case, the width of the rectangular illumination area in the Y-axis direction is set to be smaller than the width in the X-axis direction. When the wafer 6 is transported, the exposure apparatus performs focus adjustment in step S4, and performs positioning of the wafer W in the optical axis direction. Then, when the focus adjustment is completed, the exposure apparatus performs a wafer alignment in step S5 to perform alignment between the reticle 2 and the wafer 6. After the wafer alignment, in step S6, the projection optical system PL is adjusted based on the EGA parameters (scaling parameters) calculated based on the wafer alignment mark position information measured by an alignment system (not shown). Adjust the imaging characteristics such as the projection magnification of.
この後、 上記 E G Aパラメータと各ショットの設計上の座標値とに基づいて算 出されたウェハ 6上の各ショッ トの位置情報 (座標値) に応じてウェハ 6を走査 露光開始位置に位置決めし、 平面モータ 3 M、 7 Mを駆動してレチクルステージ 3とウェハステージ 7とを照明領域 S Yに対して Y軸方向に同期移動させること で、 レチクル 2とウェハ 6との走査露光を実施する (ステップ S 7 )。 このとき、 投影光学系 P L (投影光学系を構成する光学素子) においては、 照明領域 S Yに 対応した範囲に照明光が照射され、 所定のショッ ト領域上に、 レチクル 2上に形 成されたパターンが投影 '転写される。 Thereafter, the wafer 6 is positioned at the scanning exposure start position according to the position information (coordinate value) of each shot on the wafer 6 calculated based on the above-mentioned EGA parameters and the design coordinate value of each shot. The scanning exposure of the reticle 2 and the wafer 6 is performed by driving the planar motors 3 M and 7 M to synchronously move the reticle stage 3 and the wafer stage 7 in the Y-axis direction with respect to the illumination area SY ( Step S7). At this time, in the projection optical system PL (optical element constituting the projection optical system), the illumination light is applied to a range corresponding to the illumination area SY, and is formed on the reticle 2 on a predetermined shot area. The resulting pattern is projected 'transferred.
次に、このショット領域に対する露光で露光処理が完了したか否かを判断し(ス テツプ S 8 )、 完了の場合は処理を終え (ステップ S 1 1 )、 露光処理が未完であ れば、 処理中のウェハ 6に対する露光処理が完了してウェハ交換を行うか否かを 判断し (ステップ S 9 )、他のショット領域に対する露光処理が残っていれば、 全 てのショット領域に露光処理が施されるまで上記ステップ S 7〜S 9のシーケン スを順次繰り返す。  Next, it is determined whether or not the exposure processing has been completed in the exposure of this shot area (step S8). If the exposure processing has been completed, the processing is terminated (step S11). It is determined whether the exposure process for the wafer 6 being processed is completed and the wafer is replaced (step S 9). If the exposure process for another shot region remains, the exposure process is performed for all the shot regions. The sequence of the above steps S7 to S9 is sequentially repeated until the process is performed.
一方、 ステップ S 9でウェハ交換を実施する場合には、 ステップ S 1に戻りゥ ェハ搬送 (搬出及び搬入) を実施するとともに、 ステップ S 1 0においてレチク ル 2の搭載方向を変更する。 具体的には、 Y軸方向への同期移動に対応してレチ クルステージ 3に載置していたレチクル 2を、 X軸方向 (第 2の方向) への同期 移動に対応させるために 9 0 ° 回転させて載置する。 この载置方向の変更は、 例 えばレチクル搬送装置 (不図示) を用いてレチクルステージ 3からレチクル 2を 離脱させ、 9 0。 回転した後に、 再度レチクルステージ 3上に載置する方法が採 用可能である。レチクル 2の搭載方向変更は、レチクルァライメント前であれば、 ゥェハ搬送中でもゥェハ搬送後でもよレヽ。  On the other hand, when wafer replacement is performed in step S9, the process returns to step S1 to perform wafer transfer (unloading and loading), and changes the mounting direction of the reticle 2 in step S10. Specifically, the reticle 2 placed on the reticle stage 3 in response to the synchronous movement in the Y-axis direction is moved to the reticle stage 3 in order to correspond to the synchronous movement in the X-axis direction (second direction). ° Rotate and place. This change of the mounting direction is performed, for example, by detaching the reticle 2 from the reticle stage 3 by using a reticle transport device (not shown), and then setting the reticle 2 to 90. After rotation, a method of mounting the reticle on the reticle stage 3 again can be adopted. The reticle 2 mounting direction can be changed before or after wafer transport if it is before the reticle alignment.
続いて、 上記ステップ S 2〜S 7のシーケンスを実行するが、 ステップ S 3に おいては、 主制御系 2 0がァクチユエータ 1 3を介して可動ブレード 1 1、 1 2 を駆動し、 X軸方向への走査露光を行うために、 図 2 Cに示すように、 Y軸方向 に延在する矩形照明領域 S Xに設定を変更する。 この場合の矩形照明領域は、 X 軸方向の幅が Y軸方向の幅よりも狭く設定される。 ステップ S 7において、 主制 御系 2 0は、 ウェハ 6が交換されたことを受けて、 制御装置及び変更装置として 平面モータ 3 M、 7 Mの駆動を制御することで、 レチクルステージ 2とウェハス テージ 7との同期移動方向を X軸方向に変更 ·切り替える。 即ち、 本実施形態で は、 主制御系 2 0はウェハの処理枚数に応じて (ここではウェハの交換毎に) 上 記同期移動方向を交互に変更 ·切り替える。  Subsequently, the sequence of the above steps S2 to S7 is executed. In step S3, the main control system 20 drives the movable blades 11 and 12 via the actuator 13 and the X-axis In order to perform scanning exposure in the direction, the setting is changed to a rectangular illumination area SX extending in the Y-axis direction as shown in FIG. 2C. In this case, the rectangular illumination area is set to have a smaller width in the X-axis direction than in the Y-axis direction. In step S7, in response to the exchange of the wafer 6, the main control system 20 controls the driving of the planar motors 3M and 7M as a control device and a change device, thereby causing the reticle stage 2 and the wafer Change and switch the direction of synchronous movement with Tage 7 to X axis. That is, in the present embodiment, the main control system 20 alternately changes / switches the synchronous movement direction according to the number of processed wafers (here, each time the wafer is replaced).
これにより、 投影光学系 P L (投影光学系を構成する光学素子) においては、 照明領域 S Yとは異なる照明領域 S Xに対応した範囲に照明光が照射され、 所定 のショット領域上に、 レチクル 2上に形成されたパターンが投影 ·転写される。 このように、 本実施形態では、 ウェハ交換毎に照明領域及び同期移動方向を切 り替えるので、 投影光学系 P Lに対する照明光の照射領域を時間平均で考慮する と、照明領域 S Y、 S Xを合成した十字形と等価にすることができる。そのため、 本実施形態では、 投影光学系 P Lの光学素子における照射エネルギーの吸収熱を 分散させることができ、 吸収熱による光学素子の温度分布の非回転対称性を緩和 することが可能になる。 結果として本実施形態では、 投影光学系 P Lに発生する 非回転対称な収差を抑制することで、 優れた結像特性を維持することが可能にな り、 ウェハ 6上に均一で所望の線幅を有する微細パターンを形成して集積度の高 いデバイスを製造することができるとともに、 非回転対称な収差に起因するデバ ィス不良を低減することが可能になる。 As a result, in the projection optical system PL (optical element constituting the projection optical system), the illumination light is applied to an area corresponding to the illumination area SX different from the illumination area SY, and the predetermined light is projected onto the reticle 2 on a predetermined shot area. The pattern formed on is projected and transferred. As described above, in the present embodiment, the illumination area and the synchronous movement direction are switched each time the wafer is replaced. Therefore, when the illumination area of the illumination light to the projection optical system PL is considered on a time average basis, the illumination areas SY and SX are combined. Can be made equivalent to a cross shape. Therefore, in the present embodiment, the heat of absorption of the irradiation energy in the optical element of the projection optical system PL can be dispersed, and the non-rotational symmetry of the temperature distribution of the optical element due to the heat of absorption can be reduced. As a result, in the present embodiment, by suppressing non-rotationally symmetric aberrations generated in the projection optical system PL, it is possible to maintain excellent imaging characteristics, and achieve a uniform and desired line width on the wafer 6. It is possible to manufacture a highly integrated device by forming a fine pattern having a pattern, and reduce device defects due to non-rotationally symmetric aberrations.
図 6は、 本発明の走查型露光装置の第 2の実施形態を示す図である。  FIG. 6 is a diagram showing a scanning exposure apparatus according to a second embodiment of the present invention.
この図において、 図 1乃至図 5に示す第 1の実施形態の構成要素と同一の要素 については同一符号を付し、 その説明を省略する。 第 2の実施形態と上記の第 1 の実施形態とが異なる点は、 レチクルステージ 2、 ウェハステージ 7の構成及び これらのステージを駆動するモータの構成である。 レチクルステージ 2及びゥェ ハステージ 7の構成は同様であるので、 以下においてはウェハステージ 7につい てのみ説明する。  In this figure, the same elements as those of the first embodiment shown in FIGS. 1 to 5 are denoted by the same reference numerals, and description thereof will be omitted. The difference between the second embodiment and the first embodiment is the configuration of the reticle stage 2, the wafer stage 7, and the configuration of the motor that drives these stages. Since the configurations of reticle stage 2 and wafer stage 7 are the same, only wafer stage 7 will be described below.
図 6に示すように、 本実施形態では、 ウェハベース 8の上方に浮上した状態で 支持されて Y軸方向に同期移動して走査を行うウェハステージ(保持部) 7 Yと、 X軸方向に同期移動して走查を行うウェハステージ (保持部) 7 Xとがそれぞれ 設けられている。  As shown in FIG. 6, in the present embodiment, a wafer stage (holding unit) 7 Y, which is supported above the wafer base 8 while floating above the wafer base 8 and synchronously moves and scans in the Y-axis direction, A wafer stage (holding unit) 7X that moves synchronously and runs is provided.
ウェハステージ 7 γは、 X方向に延在する Xガイド 3 1に移動自在に支持され ており、 Xリニアモータ 3 2、 3 2の駆動によって Xガイド 3 1をガイドにして X方向に移動する。 Xガイド 3 1の一端には。 可動子 3 3が設けられている。 可 動子 3 3は、 ウェハベース 8の一側縁に Y方向に沿って設置された固定子 3 4に 対して相対移動する。 これら可動子 3 3及び固定子 3 4により Yリニアモータ 3 5が構成される。 同様に、 ウェハステージ 7 Xは、 Y方向に延在する Yガイド 4 1に移動自在に支持されており、 Yリニアモータ 4 2、 4 2の駆動によって Yガ イド 4 1をガイドにして Y方向に移動する。 Yガイド 4 1の一端には。 可動子 4 03 06342 The wafer stage 7γ is movably supported by an X guide 31 extending in the X direction, and is moved in the X direction by driving the X linear motors 32, 32 using the X guide 31 as a guide. At one end of X guide 3 1 A mover 33 is provided. The mover 33 moves relative to a stator 34 provided on one side edge of the wafer base 8 along the Y direction. The mover 33 and the stator 34 constitute a Y linear motor 35. Similarly, the wafer stage 7X is movably supported by a Y guide 41 extending in the Y direction, and is driven by the Y linear motors 42 and 42 so that the Y guide 41 guides the Y guide 41 to move in the Y direction. Go to At one end of Y guide 41. Mover 4 03 06342
12 12
3が設けられている。 可動子 4 3は、 ウェハベース 8の一側縁に X方向に沿って 設置された固定子 4 4に対して相対移動する。 これら可動子 4 3及び固定子 4 4 により Xリニァモータ 4 5が構成される。  Three are provided. The mover 43 moves relative to the stator 44 installed on one side edge of the wafer base 8 along the X direction. The mover 43 and the stator 44 constitute an X linear motor 45.
各ウェハステージ 7 X、 7 Yは、 それぞれ投影光学系 P Lの直下の位置に移動 可能に設定され、 且つ他方のステージが投影光学系 P Lの直下の位置に移動した 際に、 他方のステージ、 リニアモータ及びガイ ドと干渉しない位置に退避可能な 構成になっている。 各ウェハステージの退避位置は、 不図示のァライメント系に よるァライメント位置に設定される。 他の構成は、 上記第 1の実施形態と同様で める。  Each of the wafer stages 7X and 7Y is set to be movable to a position directly below the projection optical system PL, and when the other stage moves to a position directly below the projection optical system PL, the other stage and the linear stage are moved. It is configured to be able to retreat to a position that does not interfere with the motor and guide. The retracted position of each wafer stage is set to an alignment position by an alignment system (not shown). Other configurations are the same as those of the first embodiment.
上記の構成の露光装置では、 例えばウェハステージ 7 Xを退避させた状態で、 γリニアモータ 3 5の駆動によりウェハステージ 7 Yを Y軸方向に移動させるこ とで、 レチクル 2とウェハ 6とを Y軸方向に同期移動させて走査露光を行う。 そ して、 ウェハステージ 7 Yに保持されたウェハの露光処理が終了すると、 引き続 いてウェハステージ 7 Xに保持されたウェハに対して露光処理を実施する。 すな わち、 ウェハステージ 7 Yをウェハステージ 7 Xに対して退避させた状態で、 X リニアモータ 4 5の駆動によりウェハステージ 7 Xを X軸方向に移動させること で、 レチクル 2とウェハ 6とを X軸方向に同期移動させて走査露光を行う。 詳述 はしないが、 同期移動方向の切替に伴って可動ブレード 1 1、 1 2により照明領 域も切り替えられ、 またウェハの移動と同期してレチクルも不図示のリユアモー タにより (ウェハ 6とは逆方向) に移動する。 退避中のウェハステージにおいて は、 ウェハの交換 · ウェハァライメント等が実施される。  In the exposure apparatus having the above configuration, for example, while the wafer stage 7X is retracted, the reticle 2 and the wafer 6 are moved by driving the γ linear motor 35 to move the wafer stage 7Y in the Y-axis direction. Scanning exposure is performed by synchronously moving in the Y-axis direction. Then, when the exposure processing of the wafer held on the wafer stage 7Y is completed, the exposure processing is continuously performed on the wafer held on the wafer stage 7X. That is, by moving the wafer stage 7X in the X-axis direction by driving the X linear motor 45 while the wafer stage 7Y is retracted with respect to the wafer stage 7X, the reticle 2 and the wafer 6 are moved. Are moved synchronously in the X-axis direction to perform scanning exposure. Although not described in detail, the illumination area is also switched by the movable blades 11 and 12 in accordance with the switching of the synchronous movement direction, and the reticle is also synchronized with the movement of the wafer by a not-shown remorse motor (which is different from the wafer 6). Move in the opposite direction). At the retracted wafer stage, wafer replacement, wafer alignment, etc. are performed.
このように、 ウェハの処理枚数に応じて (ここではウェハの交換毎に) 照明領 域を変更するとともに、 走查露光に用いるウェハステージをウェハ毎に切り替え ることで、 本実施形態においても、 投影光学系 P Lの光学素子における照射エネ ルギ一の吸収熱を分散させることができ、 上記第 1の実施形態と同様の効果を得 ることが可能になることに加えて、 ウェハの交換'ァライメントに要する時間を 省略できるため、 スループット向上にも寄与できる。  As described above, the illumination area is changed according to the number of processed wafers (here, each time the wafer is replaced), and the wafer stage used for scanning exposure is switched for each wafer. The absorption heat of the irradiation energy in the optical element of the projection optical system PL can be dispersed, so that the same effects as those of the first embodiment can be obtained. Time can be saved, which can contribute to an improvement in throughput.
上記実施形態では、 レチクルステージとウェハステージの双方が平面モータま たはリニアモータで駆動される構成としたが、 これに限定されるものではなく、 例えばレチクルステージとウェハステージの一方が平面モータで駆動し、 他方が リニアモータで駆動する構成としてもよい。 In the above embodiment, both the reticle stage and the wafer stage are driven by the planar motor or the linear motor. However, the present invention is not limited to this. For example, a configuration may be adopted in which one of the reticle stage and the wafer stage is driven by a planar motor, and the other is driven by a linear motor.
また、 上記の実施形態では、 所定のタイミングにてウェハの交換毎に照明領域 及び同期移動方向を切り替える手順としたが、 この他にも複数枚のウェハ交換毎 に切り替えたり、 所定時間経過毎、 あるいは投影光学系に対して照明光が入射し た入射履歴 (例えば入射時間) に基づいて切り替える手順としてもよく、 さらに 照明光の光路に光量検出計 (ディテクタ) を配置して積算光量をモニタし、 積算 光量が所定量を超える毎に照明領域及び同期移動方向を切り替える手順とするこ とも可能である。  In the above-described embodiment, the illumination area and the synchronous movement direction are switched every time the wafer is exchanged at a predetermined timing. In addition, the procedure is switched every time a plurality of wafers are exchanged, or every predetermined time elapses. Alternatively, the switching may be performed based on the incident history (for example, the incident time) of the illumination light incident on the projection optical system. In addition, a light quantity detector (detector) may be arranged in the illumination light path to monitor the integrated light quantity. It is also possible to switch the illumination area and the synchronous movement direction every time the integrated light amount exceeds a predetermined amount.
また、 上記の実施形態では、 照明領域及び同期移動方向を互いに略直交する X 軸方向及ぴ Y軸方向に切り替えることで、 通常用いられるリニアモータで容易に 対応できる構成としたが、 これに限定されるものではなく、 斜め方向にも同期移 動させてもよい。 このように、 同期移動方向を多方向に設定することで、 投影光 学系 P Lの光学素子における照射エネルギーの吸収熱を一層分散させることがで き、 光学素子の温度分布の非回転対称性を一層緩和することが可能になる。 照射領域は矩形に限らず、 円弧状の領域であってもよい。  In the above embodiment, the illumination area and the synchronous movement direction are switched in the X-axis direction and the Y-axis direction, which are substantially orthogonal to each other, so that the configuration can be easily dealt with by a normally used linear motor. Instead, they may be moved synchronously in an oblique direction. By setting the synchronous movement direction to multiple directions in this way, the heat of absorption of irradiation energy in the optical element of the projection optical system PL can be further dispersed, and the non-rotational symmetry of the temperature distribution of the optical element can be reduced. It is possible to further ease. The irradiation area is not limited to a rectangle, and may be an arc-shaped area.
本実施形態の基板としては、 半導体デバイス製造用の半導体ウェハ 6のみなら ず、 ディスプレイデバイス用のガラス基板や、 薄膜磁気ヘッド用のセラミツクウ ェハ、 あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、 シリコンウェハ) 等が適用される。  The substrate of the present embodiment includes not only a semiconductor wafer 6 for manufacturing a semiconductor device, but also a glass substrate for a display device, a ceramic wafer for a thin-film magnetic head, or an original mask or reticle used in an exposure apparatus (synthesis). Quartz, silicon wafer, etc. are applied.
露光装置としては、 レチクル Rとウェハ Wとを同期移動してレチクル Rのバタ ーンを走査露光するステップ,アンド ·スキャン方式の走査型露光装置 (スキヤ ニング · ステッパー; USP5,473,410) の他に、 回転対称でない収差が生じる光 学素子を有する場合、 レチクル Rとウェハ Wとを静止した状態でレチクル Rのパ ターンを露光し、 ウェハ Wを順次ステップ移動させるステップ ' アンド ' リビー ト方式の投影露光装置 (ステッパー) にも適用することができる。 本発明はゥェ ハ W上で少なく とも 2つのパターンを部分的に重ねて転写するステップ .アン ド -スティツチ方式の露光装置にも適用できる。  As the exposure apparatus, a step of scanning and exposing the pattern of the reticle R by synchronously moving the reticle R and the wafer W, and a scanning type exposure apparatus of the scan type (scanning stepper; USP5,473,410). In addition, in the case of having an optical element that generates aberrations that are not rotationally symmetric, the reticle R and the wafer W are stationary, the pattern of the reticle R is exposed, and the wafer W is sequentially step-moved. It can also be applied to a projection exposure apparatus (stepper). The present invention can also be applied to a step-and-stitch type exposure apparatus in which at least two patterns are partially overlapped and transferred on a wafer W.
露光装置の種類としては、 ウェハ 6に半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、 液晶表示素子製造用又はデイスプレイ製造用の 露光装置や、 薄 B莫磁気ヘッド、 撮像素子 (CCD) あるいはレチクル又はマスク などを製造するための露光装置などにも広く適用できる。 As the type of the exposure apparatus, a semiconductor element for exposing a semiconductor element pattern It is not limited to an exposure apparatus for manufacturing a device, but also an exposure apparatus for manufacturing a liquid crystal display element or a display, an exposure apparatus for manufacturing a thin B-magnet magnetic head, an imaging device (CCD), a reticle or a mask, and the like. Widely applicable.
光源として、超高圧水銀ランプから発生する輝線(g線(436 nm)、 h線(4 04. nm)、 i if泉 (365 nm))、 K r Fエキシマレーザ (248 nm)、 A r Fエキシマレーザ (1 93 nm)、 F2レーザ ( 1 57 n m)、 A r 2レーザ (1 2 6 nm) のみならず、 電子線やイオンビームなどの荷電粒子線を用いることがで きる。 例えば、 電子線を用いる場合には電子銃として、 熱電子放射型のランタン へキサボライ ト (L a B6)、 タンタル (T a) を用いることができる。 YAGレ 一ザや半導体レーザ等の高調波などを用いてもよい。 Light source (g-line (436 nm), h-line (404 nm), i-if spring (365 nm)), KrF excimer laser (248 nm), ArF excimer laser (1 93 nm), F 2 laser (1 57 nm), not only a r 2 laser (1 2 6 nm), as possible out using a charged particle beam such as an electron beam or an ion beam. For example, as the electron gun in the case of using an electron beam, thermionic emission type Kisaborai bets to lanthanum (L a B 6), can be used tantalum (T a). A harmonic such as a YAG laser or a semiconductor laser may be used.
例えば、 D F B半導体レーザ又はフアイバーレーザから発振される赤外域又は 可視域の単一波長レーザを、 例えばエルビゥム (又はエルビウムとイットリビゥ ムの両方) がドープされたファイバーアンプで増幅し、 かつ非線形光学結晶を用 いて紫外光に波長変換した高調波を露光光として用いてもよい。 単一波長レーザ の発振波長を 1. 544〜1. 553 mの範囲内とすると、 1 93〜 1 94 η mの範囲内の 8倍高調波、 即ち Ar Fエキシマレーザとほぼ同一波長となる紫外 光が得られ、 発振波長を 1. 57〜1. 58 μπιの範囲内とすると、 1 5 7〜1 58 nmの範囲内の 1 0倍高調波、 即ち F 2レーザとほぼ同一波長となる紫外光 が得られる。 For example, a single-wavelength laser in the infrared or visible range oscillated by a DFB semiconductor laser or fiber laser is amplified by a fiber amplifier doped with erbium (or both erbium and yttrium), and a nonlinear optical crystal is amplified. Alternatively, a harmonic converted to ultraviolet light may be used as exposure light. Assuming that the oscillation wavelength of the single-wavelength laser is in the range of 1.544 to 1.553 m, the 8th harmonic in the range of 193 to 194 ηm, that is, the ultraviolet that has almost the same wavelength as the ArF excimer laser If light is obtained and the oscillation wavelength is in the range of 1.57 to 1.58 μπι, the 10th harmonic in the range of 157 to 158 nm, that is, ultraviolet light that has almost the same wavelength as the F 2 laser Light is obtained.
レーザプラズマ光源、 又は SORから発生する波長 5〜5 O nm程度の軟 X線 領域、例えば波長 1 3. 4 nm、又は 1 1. 5 nmの EUV (Extreme Ultra Violet) 光を露光光として用いてもよく、 EUV露光装置では反射型レチクルが用いられ、 かつ投影光学系が複数枚 (例えば 3〜 6枚程度) の反射光学素子 (ミラー) のみ からなる縮小系となっている。  A laser plasma light source or a soft X-ray region having a wavelength of about 5 to 5 O nm generated from an SOR, for example, EUV (Extreme Ultra Violet) light having a wavelength of 13.4 nm or 11.5 nm is used as exposure light. The EUV exposure apparatus uses a reflective reticle, and the projection optical system is a reduction system including only a plurality of (eg, about 3 to 6) reflective optical elements (mirrors).
投影光学系 P Lは、 縮小系のみならず等倍系および拡大系のいずれでもよい。 また、 投影光学系 PLは屈折系、 反射系、 及び反射屈折系のいずれであってもよ レ、。露光光の波長が 200 nm程度以下であるときは、露光光が通過する光路を、 露光光の吸収が少ない気体 (窒素、 ヘリウムなどの不活性ガス) でパージするこ とが望ましい。 また電子線を用いる場合には光学系として電子レンズおよび偏向 器からなる電子光学系を用いればよい。 電子線が通過する光路は、 真空状態にす る。 The projection optical system PL may be not only a reduction system but also an equal magnification system or an enlargement system. Further, the projection optical system PL may be any of a refractive system, a reflective system, and a catadioptric system. When the wavelength of the exposure light is less than about 200 nm, it is desirable to purge the optical path through which the exposure light passes with a gas that absorbs less exposure light (an inert gas such as nitrogen or helium). When an electron beam is used, an electron lens and a deflection An electron optical system consisting of a vessel may be used. The optical path through which the electron beam passes is evacuated.
ウェハステージ 7ゃレチクルステージ 3にリニアモータ (USP5,623,853 また は USP5,528,118参照) を用いる場合は、 エアベアリングを用いたエア浮上型お よびローレンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用いても よレ、。 各ステージ 3、 7は、 ガイ ドに沿って移動するタイプでもよく、 ガイ ドを 設けないガイ ドレスタイプであってもよい。  When a linear motor (see US Pat. No. 5,623,853 or US Pat. No. 5,528,118) is used for the wafer stage 7 ゃ reticle stage 3, an air levitation type using an air bearing and a magnetic levitation type using Lorentz force or reactance force are used. You can use either. Each of the stages 3 and 7 may be of a type that moves along a guide or a guideless type that does not have a guide.
ウェハステージ 7の移動により発生する反力は、 投影光学系 P Lに伝わらない ように、 特開平 8一 1 6 6 4 7 5号公報 (USP5,528,118) に記載されているよう に、 フレーム部材を用いて機械的に床 (大地) に逃がしてもよい。  The reaction force generated by the movement of the wafer stage 7 is not transmitted to the projection optical system PL as described in Japanese Patent Application Laid-Open No. Hei 8-166475 (US Pat. No. 5,528,118). It may be used to mechanically escape to the floor (ground).
レチクルステージ 3の移動により発生する反力は、 投影光学系 P Lに伝わらな いように、 特開平 8— 3 3 0 2 2 4号公報 (US S/N 08/416,558) に記載されて いるように、 フレーム部材を用いて機械的に床 (大地) に逃がしてもよい。  The reaction force generated by the movement of the reticle stage 3 is not transmitted to the projection optical system PL, as described in JP-A-8-330224 (US S / N 08 / 416,558). Alternatively, it may be mechanically released to the floor (ground) using a frame member.
以上のように、 本願実施形態の露光装置は、 本願特許請求の範囲に挙げられた 各構成要素を含む各種サブシステムを、 所定の機械的精度、 電気的精度、 光学的 精度を保つように、 組み立てることで製造される。 これら各種精度を確保するた めに、 この laみ立ての前後には、 各種光学系については光学的精度を達成するた めの調整、 各種機械系については機械的精度を達成するための調整、 各種電気系 については電気的精度を達成するための調整が行われる。 各種サブシステムから 露光装置への組み立て工程は、 各種サブシステム相互の、 機械的接続、 電気回路 の配線接続、 気圧回路の配管接続等が含まれる。 この各種サブシステムから露光 装置への組み立て工程の前に、 各サブシステム個々の組み立て工程があることは いうまでもない。 各種サブシステムの露光装置への組み立て工程が終了したら、 総合調整が =ί亍われ、 露光装置全体としての各種精度が確保される。 露光装置の製 造は温度およびクリーン度等が管理されたクリーンルームで行うことが望ましレ、。 半導体デバイス等のマイクロデバイスは、 図 7に示すように、 マイクロデバイ スの機能 ·性能設計を行うステップ 2 0 1、 この設計ステップに基づいたマスク (レチクル) を製作するステップ 2 0 2、 シリコン材料からウェハを製造するス テツプ 2 0 3、 前述した実施形態の露光装置により レチクルのパターンをウェハ に露光する露光処理ステップ 2 0 4、 デバイス組み立てステップ (ダイシングェ 程、 ボンディング工程、 パッケージ工程を含む) 2 0 5、 検査ステップ 2 0 6等 を経て製造される。 産業上の利用の可能性 As described above, the exposure apparatus according to the embodiment of the present invention performs various subsystems including each component listed in the claims of the present application so as to maintain predetermined mechanical accuracy, electrical accuracy, and optical accuracy. It is manufactured by assembling. To ensure these various precisions, before and after this lamination, adjustments to achieve optical precision for various optical systems, adjustments to achieve mechanical precision for various mechanical systems, Various electrical systems are adjusted to achieve electrical accuracy. The process of assembling the exposure apparatus from various subsystems includes mechanical connections, wiring connections of electric circuits, and piping connections of pneumatic circuits among the various subsystems. It goes without saying that there is an individual assembly process for each subsystem before the assembly process from these various subsystems to the exposure apparatus. When the process of assembling the various subsystems into the exposure apparatus is completed, comprehensive adjustment is performed, and various precisions of the entire exposure apparatus are secured. It is desirable to manufacture the exposure equipment in a clean room where the temperature and cleanliness are controlled. For microdevices such as semiconductor devices, as shown in Fig. 7, step 201 for designing the function and performance of the microdevice, step 202 for fabricating a mask (reticle) based on this design step, and silicon material Step of manufacturing wafer from wafer 203. Using the exposure apparatus of the above-described embodiment, the reticle pattern is It is manufactured through an exposure processing step 204 for exposing to light, a device assembling step (including a dicing step, a bonding step, and a package step) 205, and an inspection step 206. Industrial applicability
本発明によれば、 投影光学系に発生する非回転対称な収差を抑制することによ り、 優れた結像特性を維持することが可能になり、 基板上に均一で所望の線幅を 有する微細パターンを形成して集積度の高いデバイスを製造することができ、 非 回転対称な収差に起因するデバイス不良を低減することが可能になる。 ステージ を複数設けた場合には、 基板交換 ·ァライメントに要する時間を省略して、 スル ープッ ト向上にも寄与できる。  According to the present invention, by suppressing non-rotationally symmetric aberrations generated in the projection optical system, it is possible to maintain excellent imaging characteristics, and have a uniform and desired line width on the substrate. A highly integrated device can be manufactured by forming a fine pattern, and device defects due to non-rotationally symmetric aberrations can be reduced. When a plurality of stages are provided, the time required for substrate exchange / alignment can be omitted, which can contribute to an improvement in throughput.

Claims

請求の範囲 The scope of the claims
1 . 露光光に対してマスクと基板とを第 1の方向に同期移動させ、 前記マスクの パターン像を投影光学系を介して前記基板に投影する走査型露光装置であって、 前記マスクにおける前記露光光の照射領域の設定を変更する変更装置と、 前記露光光の照射領域の変更に伴い、 前記マスクと前記基板との同期移動の方 向を前記第 1の方向とは異なる第 2の方向に切り替える切替装置とを備える。 1. A scanning exposure apparatus that synchronously moves a mask and a substrate with respect to exposure light in a first direction, and projects a pattern image of the mask onto the substrate via a projection optical system, A changing device that changes a setting of an exposure light irradiation area, and a second direction different from the first direction in a direction of synchronous movement between the mask and the substrate with the change of the exposure light irradiation area. And a switching device for switching to.
2 . 請求項 1記載の走査型露光装置であって、 . 前記切替装置は、 前記マスクを保持して移動するマスクステージ、 及び前記基 板を保持して移動する基板ステージを、 前記変更された照射領域に対応させてそ れぞれ移動させる駆動装置を有する。 2. The scanning exposure apparatus according to claim 1, wherein the switching device includes: a mask stage that moves while holding the mask; and a substrate stage that moves while holding the substrate. It has a driving device that moves each corresponding to the irradiation area.
3 . 請求項 2記載の走査型露光装置であって、 3. The scanning exposure apparatus according to claim 2, wherein
前記駆動装置は、 ベースと、 前記マスクまたは前記基板を保持して前記ベース の上方に浮上される保持部と、 該保持部を前記ベースに沿つて平面駆動する平面 モータ装置とを備える。  The driving device includes: a base; a holding unit that holds the mask or the substrate and floats above the base; and a planar motor device that drives the holding unit in a plane along the base.
4 . 請求項 1記載の走査型露光装置であって、 4. The scanning exposure apparatus according to claim 1, wherein
前記切替装置は、 任意のタイミングで前記照射領域を変更する。  The switching device changes the irradiation area at an arbitrary timing.
5 . 請求項 4記載の走查型露光装置であって、 5. The running type exposure apparatus according to claim 4, wherein
前記任意のタイミングは、 前記投影光学系に前記露光光が入射した入射履歴、 あるいは前記基板の処理数を含む。  The arbitrary timing includes an incident history of the exposure light incident on the projection optical system, or the number of processed substrates.
6 . 請求項 2または 4記載の走査型露光装置であって、 6. The scanning exposure apparatus according to claim 2 or 4, wherein
前記マスクステージと前記基板ステージとの少なくとも一方は、 前記同期移動 の方向を互いに異ならせて複数設けられる。 A plurality of at least one of the mask stage and the substrate stage are provided so that the directions of the synchronous movement are different from each other.
7 . 請求項 1記載の走査型露光装置であって、 7. The scanning exposure apparatus according to claim 1, wherein
前記変更装置は、 前記第 2の方向に延びる前記露光光の照射領域を、 前記第 1 の方向に延びる前記露光光の照射領域に変更する。  The changing device changes an irradiation area of the exposure light extending in the second direction to an irradiation area of the exposure light extending in the first direction.
8 . 露光光に対してマスクと基板とを第 1の方向に同期移動させて前記マスクの パターン像を投影光学系を介して前記基板に投影する走査型露光方法であって、 前記マスクにおける前記露光光の照射領域の設定を変更するステップと、 前記露光光の照射領域の変更に伴い、 前記マスクと前記基板との同期移動の方 向を前記第 1の方向とは異なる第 2の方向に切り替えるステップを含む。 8. A scanning exposure method for projecting a pattern image of the mask onto the substrate via a projection optical system by synchronously moving a mask and a substrate in a first direction with respect to exposure light, Changing the setting of the exposure area of the exposure light, and changing the direction of the synchronous movement between the mask and the substrate in a second direction different from the first direction with the change of the exposure area of the exposure light. Including the step of switching.
9 . 請求項 8記載の走査型露光方法であって、 9. The scanning exposure method according to claim 8, wherein
任意のタイミングで前記照射領域を変更するステップをさらに含む。  The method further includes a step of changing the irradiation area at an arbitrary timing.
1 0 . 請求項 8記載の走査型露光方法であって、 10. The scanning exposure method according to claim 8, wherein
前記マスクステージと前記基板ステージとの少なくとも一方を複数設け、 複数のステージ間で前記同期移動の方向を互いに異ならせる。  A plurality of at least one of the mask stage and the substrate stage are provided, and directions of the synchronous movement are different between the plurality of stages.
1 1 . 請求項 8記載の走査型露光方法であって、 11. The scanning exposure method according to claim 8, wherein
前記照射領域は、 前記第 1の方向又は前記第 2の方向に対してそれぞれ略直交 する方向に延在する。  The irradiation area extends in a direction substantially orthogonal to the first direction or the second direction.
PCT/JP2003/006342 2002-05-23 2003-05-21 Scanning projection aligner and aligning method WO2003100838A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004508395A JPWO2003100838A1 (en) 2002-05-23 2003-05-21 Scanning exposure apparatus and scanning exposure method
AU2003242368A AU2003242368A1 (en) 2002-05-23 2003-05-21 Scanning projection aligner and aligning method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002149732 2002-05-23
JP2002-149732 2002-05-23

Publications (1)

Publication Number Publication Date
WO2003100838A1 true WO2003100838A1 (en) 2003-12-04

Family

ID=29561217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006342 WO2003100838A1 (en) 2002-05-23 2003-05-21 Scanning projection aligner and aligning method

Country Status (4)

Country Link
JP (1) JPWO2003100838A1 (en)
AU (1) AU2003242368A1 (en)
TW (1) TW200400545A (en)
WO (1) WO2003100838A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01120019A (en) * 1987-11-02 1989-05-12 Nec Corp Pattern formation of semiconductor device
JPH06151273A (en) * 1992-11-12 1994-05-31 Nikon Corp Projection aligner
JPH11288880A (en) * 1998-03-06 1999-10-19 Siemens Ag Scanning-type exposure system and control method for its scanning direction
WO2000011707A1 (en) * 1998-08-24 2000-03-02 Nikon Corporation Method and apparatus for scanning exposure, and micro device
WO2000046911A1 (en) * 1999-02-04 2000-08-10 Nikon Corporation Flat motor device and its driving method, stage device and its driving method, exposure apparatus and exposure method, and device and its manufacturing method
JP2001203140A (en) * 2000-01-20 2001-07-27 Nikon Corp Stage device, aligner and device manufacturing method
US6335785B1 (en) * 1998-03-12 2002-01-01 Fujitsu Limited Scan-type reducing projection exposure method and apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01120019A (en) * 1987-11-02 1989-05-12 Nec Corp Pattern formation of semiconductor device
JPH06151273A (en) * 1992-11-12 1994-05-31 Nikon Corp Projection aligner
JPH11288880A (en) * 1998-03-06 1999-10-19 Siemens Ag Scanning-type exposure system and control method for its scanning direction
US6335785B1 (en) * 1998-03-12 2002-01-01 Fujitsu Limited Scan-type reducing projection exposure method and apparatus
WO2000011707A1 (en) * 1998-08-24 2000-03-02 Nikon Corporation Method and apparatus for scanning exposure, and micro device
WO2000046911A1 (en) * 1999-02-04 2000-08-10 Nikon Corporation Flat motor device and its driving method, stage device and its driving method, exposure apparatus and exposure method, and device and its manufacturing method
JP2001203140A (en) * 2000-01-20 2001-07-27 Nikon Corp Stage device, aligner and device manufacturing method

Also Published As

Publication number Publication date
JPWO2003100838A1 (en) 2005-09-29
AU2003242368A1 (en) 2003-12-12
TW200400545A (en) 2004-01-01

Similar Documents

Publication Publication Date Title
JP6183418B2 (en) Exposure apparatus and device manufacturing method
KR100705497B1 (en) Apparatus, method for supporting and/or thermally conditioning a substrate, a support table, and a chuck
CN110716396B (en) Chuck and clamp for holding an object of a lithographic apparatus and method for controlling the temperature of an object held by a clamp of a lithographic apparatus
US7292317B2 (en) Lithographic apparatus and device manufacturing method utilizing substrate stage compensating
US20090009742A1 (en) Optical element driving apparatus, barrel, exposure apparatus and device manufacturing method
US20080012511A1 (en) Planar Motor Device, Stage Device, Exposure Device and Device Manufacturing Method
JP2002208562A (en) Aligner and method of exposure
JP2005019628A (en) Optical apparatus, aligner, manufacturing method of device
JP2005064391A (en) Method of cooling optical component, cooling device, exposure apparatus, and method of manufacturing device
US20030147155A1 (en) Optical element holding device
US7106413B2 (en) Cooling mechanism
JP2005057289A (en) Lithographic apparatus and device manufacturing method
WO1999036949A1 (en) Exposure method and lithography system, exposure apparatus and method of producing the apparatus, and method of producing device
JP2001093808A (en) Exposure method and aligner
JP2004246039A (en) Holding device, exposure device having same holding device and device manufacturing method
US20100151394A1 (en) System for Contactless Cleaning, Lithographic Apparatus and Device Manufacturing Method
JP2000286191A (en) Projection aligner, exposure method, and device- manufacturing method
JP4018564B2 (en) Optical system, exposure apparatus using the same, and device manufacturing method
JP5644416B2 (en) Optical unit, optical system, exposure apparatus, and device manufacturing method
JP5434498B2 (en) Optical element holding device, optical system, and exposure apparatus
WO2003100838A1 (en) Scanning projection aligner and aligning method
JP2005116849A (en) Electrostatic adsorption device and method therefor, exposure device, and device manufacturing method
CN113892061A (en) Split double-sided wafer and reticle chuck
JP2008235470A (en) Planar motor apparatus, stage apparatus, exposure apparatus, and device manufacturing method
JP2003031646A (en) Stage unit and aligner

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2004508395

Country of ref document: JP

122 Ep: pct application non-entry in european phase