WO2000011707A1 - Method and apparatus for scanning exposure, and micro device - Google Patents

Method and apparatus for scanning exposure, and micro device Download PDF

Info

Publication number
WO2000011707A1
WO2000011707A1 PCT/JP1999/004285 JP9904285W WO0011707A1 WO 2000011707 A1 WO2000011707 A1 WO 2000011707A1 JP 9904285 W JP9904285 W JP 9904285W WO 0011707 A1 WO0011707 A1 WO 0011707A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
reticle
pattern
exposure apparatus
stage
Prior art date
Application number
PCT/JP1999/004285
Other languages
French (fr)
Japanese (ja)
Inventor
Masaichi Murakami
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to AU50667/99A priority Critical patent/AU5066799A/en
Publication of WO2000011707A1 publication Critical patent/WO2000011707A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70358Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • G03F7/70725Stages control

Definitions

  • the present invention relates to a scanning type exposure apparatus, a scanning type exposure method, and a micro device.
  • the present invention relates to a scanning type exposure apparatus and a method for exposing a pattern formed on a reticle to the substrate by synchronously moving a reticle and a substrate in a predetermined direction, and a manufacturing method including an exposure step using the scanning type exposure apparatus.
  • a scanning type exposure apparatus and a method for exposing a pattern formed on a reticle to the substrate by synchronously moving a reticle and a substrate in a predetermined direction
  • a manufacturing method including an exposure step using the scanning type exposure apparatus.
  • liquid crystal display substrates that can be made thinner have been frequently used.
  • This type of liquid crystal display substrate is manufactured by patterning a transparent thin-film electrode into a desired shape on a photosensitive substrate having a rectangular shape in plan view by photolithography.
  • an exposure apparatus for exposing a pattern formed on a reticle to a photoresist layer on a photosensitive substrate via a projection optical system is used.
  • the above-mentioned liquid crystal display substrate (glass plate) has been increasing in size due to the ease of viewing the screen, and recently, a substrate with a size of about 60 Omm x 700 mm is required.
  • An exposure apparatus that responds to this demand is an LCD (Liquid Crystal Disp 1 ay) pattern formed on a reticle by moving a reticle and a glass substrate synchronously in a predetermined direction and scanning the projection optical system.
  • a scanning exposure apparatus for sequentially transferring light to an exposure area on a glass substrate is used.
  • step-and-scan in which scanning exposure is performed a plurality of times to cope with an increase in the size of a glass substrate.
  • the use of a screen synthesis method in which the LCD pattern transferred onto a glass substrate is superimposed or divided into multiple patterns for exposure is under consideration. Have been.
  • This screen synthesis method uses a plurality of reticles corresponding to each of the divided LCD patterns, scans and exposes the reticle pattern to the exposure area of the glass substrate corresponding to one reticle, and then steps the glass substrate.
  • the reticle is moved and exchanged for another reticle, and the reticle pattern is scanned and exposed on the exposure area corresponding to the reticle, thereby forming an LCD pattern in which a plurality of patterns are synthesized on a glass substrate. is there.
  • the projection optical system has non-uniform imaging characteristics due to distortion and the like, and has directivity. Therefore, in the above-described scanning exposure apparatus, there are cases where there are directions in which magnification correction is difficult and directions in which scanning of the reticle and the glass substrate are difficult.
  • the LCD pattern for example, a pattern for a TFT (ThinFilmTransistor) substrate, there may be a direction in which structural superposition is more important, such as having a large effect on transistor characteristics.
  • the scanning direction is limited to one direction regardless of the magnification correction characteristic and the LCD pattern characteristic.
  • Steps may occur at the seams, degrading the characteristics of the device.
  • the screen-synthesized divided patterns are superimposed in multiple layers, the overlapping error in the unit area of each layer and the line width difference of the patterns may cause the seams in the patterns.
  • the contrast changes discontinuously at the pattern joint, and the quality of the device is degraded.
  • the present invention has been made in consideration of the above points, and it is an object of the present invention to change a scanning direction according to a situation at the time of exposure to improve overlay accuracy, seam accuracy, and seam accuracy at seam portions.
  • Another object of the present invention is to provide a microphone device that can prevent a decrease in device characteristics. Disclosure of the invention
  • the present invention employs the following configuration corresponding to FIGS. 1 to 13 showing the embodiment.
  • the scanning exposure apparatus of the present invention comprises a reticle (R) on which a pattern is formed and a substrate.
  • a scanning reticle stage that moves along a predetermined direction while holding a reticle (R) in a scanning exposure apparatus (1) that exposes the pattern onto a substrate (P) by synchronously moving the reticle (P) with the substrate (P).
  • a substrate stage (6) holding the substrate (P) and moving in a predetermined direction, and synchronizing the reticle stage (5) with the substrate stage (6) by changing the predetermined direction.
  • a change device (18) for moving for moving. Therefore, in the scanning exposure apparatus of the present invention, the direction in which the reticle stage (5) and the substrate stage (6) are synchronously moved is changed by operating the change device (18) according to the situation at the time of exposure.
  • the scanning exposure method of the present invention provides a scanning exposure method in which a reticle (R) on which a pattern is formed and a substrate (P) are synchronously moved in a predetermined direction, and the pattern is exposed on a substrate (P).
  • the method is characterized in that a pattern is exposed on a substrate (P) by changing a predetermined direction and synchronously moving a reticle (R) and a substrate (P). Therefore, in the scanning exposure method of the present invention, the pattern of the reticle (R) is changed to the substrate (P) while the direction in which the reticle (R) and the substrate (P) are synchronously moved is changed according to the situation at the time of exposure. Can be exposed.
  • the micro device of the present invention is a micro device manufactured through an exposure step of exposing a pattern of a mask to a substrate, wherein the exposure step is performed by the exposure apparatus according to claim 1. It is characterized by being performed. Therefore, in the micro device of the present invention, in the exposure step, the reticle stage (5) and the substrate stage (6) move synchronously by operating the change device (18) according to the situation at the time of exposure. The reticle (R) pattern on the substrate (P) can be exposed.
  • FIG. 1 is a view showing an embodiment of the present invention, and is a schematic configuration diagram of a scanning exposure apparatus provided with a control unit, a scanning direction changing unit, and an energy setting unit.
  • FIG. 2 is a view showing an embodiment of the present invention, and is a plan view of a fly-eye integrator that changes an illumination area by rotating.
  • FIG. 3 is an external perspective view of a reticle stage constituting the scanning exposure apparatus of the present invention.
  • FIG. 4 is an explanatory diagram for explaining the direction of distortion of the projection optical system.
  • FIG. 5 is a diagram showing the embodiment of the present invention, and is an explanatory diagram for explaining the direction of distortion of the projection optical system when the scanning direction is the Y direction.
  • FIG. 6 is a diagram showing the embodiment of the present invention, and is an explanatory diagram for explaining the direction of distortion of the projection optical system when the scanning direction is the X direction.
  • FIG. 1 is a schematic configuration diagram of a TFT / LCD display pixel formed on a glass substrate.
  • FIG. 8 is a plan view showing another configuration of the fly-eye integrator constituting the scanning exposure apparatus of the present invention.
  • FIG. 9 is a schematic configuration diagram of a substrate stage constituting the scanning exposure apparatus of the present invention.
  • FIG. 10 is a plan view of the substrate stage.
  • FIG. 11 is a sectional view taken along line AA in FIG.
  • FIG. 12 is a flowchart illustrating an example of a manufacturing process of a liquid crystal display device.
  • a pattern to be exposed on a glass substrate for a liquid crystal display element is formed by a plurality of patterns.
  • a description will be given using an example in which a screen synthesis method in which a pattern is divided into turns and exposure is performed using a reticle corresponding to the divided pattern can be adopted.
  • FIG. 1 is a schematic configuration diagram of the scanning exposure apparatus 1.
  • the scanning exposure apparatus 1 exposes a pattern formed on a reticle R onto a glass substrate (substrate) P, and includes a mercury lamp 2, which is a light source for exposure, an illumination optical system 3, and a projection optical system. 4, a reticle stage 5, and a substrate stage 6.
  • the mercury lamp 2 emits a beam B as exposure light.
  • the mercury lamp 2 is provided with an elliptical mirror 7.
  • the elliptical mirror 7 focuses the exposure light emitted from the mercury lamp 2.
  • the illumination optical system 3 is roughly composed of reflection mirrors 8 and 9, a wavelength selection filter (not shown), a fly-eye integrator 10, a blind 11, and a lens system 12.
  • the reflecting mirror 8 reflects the beam B collected by the elliptical mirror 7 toward the wavelength selection filter.
  • the reflection mirror 9 reflects the beam B passing through the blind 11 toward the lens system 12.
  • the wavelength selection filter allows only the wavelength (line ⁇ ⁇ ) of the beam B necessary for exposure to pass.
  • the lens system 12 forms an image of the illumination area set by the fly-eye integrator 10 and the blind 11 with a reticle: R.
  • the fly eye integrator 10 uniformizes the illuminance distribution of the beam B that has passed through the wavelength selection filter into a band shape, and as shown in Fig. 2, each covers the above-mentioned illumination area.
  • the blind 11 sets a substantially rectangular illumination area in which the beam B passing through the fly-eye integrator 10 illuminates the reticle R.
  • the fly-eye integrator 10 and the blind 11 are rotated 90 ° according to the instruction of the scanning direction changing unit (change device) 13, so that the illumination area extends in the X direction (a ) And a position (b) extending in the Y direction.
  • the projection optical system 4 forms an image of a pattern existing in the illumination area of the reticle R on the glass substrate P.
  • reticle stage 5 holds reticle R.
  • the linear motors 14 and 14 and the linear motors 15 and 15 can move freely in the X direction and the Y direction which are orthogonal to each other.
  • movable mirrors 16 and 17 are provided on the reticle stage 5.
  • Laser light is emitted from a laser interferometer (not shown) to the movable mirrors 16 and 17, and the movable mirrors 16 and 17 and the laser interferometer are combined based on the interference between the reflected light and the incident light. , That is, the position in the X direction and the position in the Y direction of the reticle stage 5 are each detected.
  • Each of the reticle stages 5 is provided with a reticle library (not shown) and a reticle exchange device (reticle exchange means).
  • the reticle library accommodates a plurality of reticles each having a pattern obtained by dividing a pattern exposed on a glass substrate P.
  • the reticle exchange device takes out a predetermined reticle R from the reticle library and exchanges it with the reticle on the reticle stage 5.
  • the reticle stage 5 is provided with an opening for projecting the pattern of the reticle R onto the glass substrate P.
  • the substrate stage 6 holds the glass substrate P, and is movable in the X and Y directions orthogonal to each other by a linear motor (not shown), like the reticle stage 5 described above.
  • a movable mirror (not shown) is provided on the substrate stage 6.
  • Laser light is emitted from a laser interferometer (not shown) to the movable mirror, and the distance between the movable mirror and the laser interferometer, that is, the substrate stage 6 is determined based on the interference between the reflected light and the incident light. In this configuration, the position in the X direction and the position in the Y direction are detected.
  • the reticle stage 5 and the substrate stage 6 are provided with a control unit (control device) 18.
  • the control unit 18 controls the movement of the reticle stage 5 and the substrate stage 6 so that a part of the patterns of the plurality of reticles R are connected and exposed.
  • the scanning direction changing unit 13 is connected to the control unit 18.
  • the scanning direction changing unit 13 changes the scanning direction in which the reticle stage 5 and the substrate stage 6 are synchronously moved according to the pattern formed on the reticle R or the imaging characteristics of the projection optical system 4 in the X direction or the X direction.
  • an instruction to synchronously move in one of these directions and then synchronously move in the other direction is output to the control unit 18.
  • an energy setting unit (setting device) 19 is attached to the scanning direction changing unit 13.
  • the energy setting unit 19 exposes the pattern of the reticle R on the glass substrate P when the reticle stage 5 and the substrate stage 6 are synchronously moved in both the X and Y directions according to the instruction of the scanning direction changing unit 13. For this purpose, an energy amount during the movement in the Y direction (first energy amount) and an energy amount during the movement in the X direction (second energy amount) are set.
  • the imaging characteristics of the projection optical system 4 for example, the distortions 4a to 4m of the projection optical system 4 have the directions shown in FIG.
  • the illumination area becomes a substantially rectangular shape extending in the X direction as shown in FIG. . Therefore, the distortion of the projection optical system 4 at this time has a distribution of 4a to 4f.
  • the fly eye integrator 10 when the fly eye integrator 10 is at the position shown in Fig. 2 (b) (when the scanning direction is the X direction and the step direction is the Y direction), the illumination area is as shown in Fig. 6. It becomes a substantially rectangular shape extending in the Y direction. Therefore, the distortion of the projection optical system 4 at this time has a distribution of 4 g to 4 m.
  • the dispositions 4a to 4c and the dispositions 4d to 4f along the Y direction shown in FIG. 5 are averaged during scanning, respectively, since the scanning direction is the Y direction. Therefore, the position of the pattern of the reticle R exposed through the projection optical system 4 is the average position of the vectors of the distortions 4a to 4c and the distortions 4d to 4f.
  • the distances 4 g to 4 i and distortions 4 j to 4 m along the X direction shown in FIG. 6 are each averaged during scanning since the scanning direction is the X direction. Then, the position of the pattern of the reticle R exposed through the projection optical system 4 is the average position of the vectors of the respective distances 4 g to 4 i and the distances 4 j to 4 m.
  • the position of the pattern of the reticle R exposed through the projection optical system 4 is the average position of the vectors of the respective distances 4 g to 4 i and the distances 4 j to 4 m.
  • magnification correction is performed evenly from the center of the lens of the projection optical system 4, so it is difficult to correct different magnifications at the same image height.In many cases, correction with an average value of the different magnifications is difficult. Will be applied.
  • the scanning direction changing unit 13 rotates the fly-eye integrator 10 and the blind 11 so that the illumination area of the beam passing through the blind 10 and the blind 11 extends in the Y direction.
  • the scanning direction changing unit 13 issues an instruction to the control unit 18 to change the setting so that the reticle stage 5 and the substrate stage 6 move synchronously in the X direction.
  • the exposure light beam B emitted from the mercury lamp 2 has a uniform illuminance distribution by the fly-eye integrator 10 and the blind 11, and the illumination area on the reticle R set by these is adjusted.
  • Light up When the reticle stage 5 and the substrate stage 6 move synchronously with respect to the projection optical system 4 in the X direction, the pattern of the reticle R corresponding to the above-mentioned illumination area is formed through the projection optical system 4 through the glass.
  • the substrate P is exposed.
  • FIG. 7 is an enlarged plan view of a part of a TFT / LCD pattern formed on a glass substrate P.
  • a gate line 20 On the glass substrate P, a gate line 20, a signal line 21, a drain 22, and a pixel electrode 23 are formed.
  • the electrical characteristics of the TFT are affected by the area S 1 where the gate line 20 and the signal line 21 overlap and the area S 2 where the gate line 20 and the drain 22 overlap.
  • the gate line 20, the signal line 21, and the drain 22 are formed by overlapping patterns formed on different reticles R. Therefore, when the position of the signal line 21 and the position of the drain 22 are shifted with respect to the gate line 20, the area S 1 and S 2 of the overlapping portion with respect to the shift in the Y direction hardly fluctuate. Is large.
  • the shift amounts cause variations in the areas S 1 and S 2 of the overlapping portions.
  • the change in the electrical characteristics of the TFT is manifested as element characteristics of the TFT, for example, flickering and burning of the LCD screen.
  • the scanning direction changing unit 13 adjusts the fly direction so that the illumination area of the beam passing through the fly-eye integration 10 and the blind 11 extends in the Y direction. Rotate eye integrator 10 and blind 11.
  • the scanning direction changing unit 13 issues an instruction to the control unit 18 to change the setting so that the reticle stage 5 and the substrate stage 6 move synchronously in the X direction.
  • the scanning direction changing unit 13 By instructing the substrate stage 6 to move synchronously in both directions, the energy setting section 19 allows the energy amount for exposing the pattern of the reticle R on the glass substrate P to be the energy amount in the Y direction movement and the X direction movement. The energy amount at the time is set.
  • the energy setting unit 19 calculates the magnification error of the distance in each direction based on the directionality of the distortion in the X direction and the Y direction of the projection optical system 4, and calculates the calculation result. Therefore, the energy amount ratio in each direction, that is, the exposure amount ratio is set so that the energy amount in the direction in which the magnification error is large is reduced. Then, the scanning direction changing unit 13 rotates the fly eye integrator 10 and the blind 11 so that the scanning direction is in the X direction, and issues an instruction to the control unit 18 so that the reticle stage 5 and the substrate The stage 6 moves synchronously with respect to the projection optical system 4 in the X direction. As a result, the pattern of the reticle R is exposed on the glass substrate P with the X direction as the scanning direction with the energy amount at the time of moving in the X direction set by the energy setting unit 19, that is, the exposure amount.
  • the scanning direction is changed by moving the reticle stage 5 and the substrate stage 6 with respect to the projection optical system 4 to Y. Move synchronously in the direction.
  • the pattern of the reticle R is exposed on the glass substrate P using the exposure amount at the time of movement in the Y direction set by the energy setting section 19 with the Y direction as the scanning direction.
  • the pattern formed on the reticle R is exposed on the glass substrate P by combining the patterns in both the X and Y scanning directions.
  • the reticle stage 5 and the substrate stage 6 are configured to synchronously move and expose in the X direction and the Y direction, but may be synchronously moved in the Y direction and the X direction.
  • the fly-eye integrator 10 and the blind 11 rotate, so that it is possible to cope with either the X direction or the Y direction in the scanning direction.
  • the scanning direction changing unit 13 changes the scanning direction of the reticle stage 5 and the substrate stage 6, the scanning direction changing unit 13 appropriately changes the scanning direction of the reticle R, the imaging characteristics of the projection optical system 4, etc.
  • the scanning direction can be selected. Therefore, in the scanning exposure apparatus and the scanning exposure method of the present embodiment, by selecting a scanning direction that is advantageous for exposure, High-precision exposure can be performed at the joint and at the overlap of the joint.
  • control unit 18 controls the reticle stage 5 and the substrate stage 6 so as to connect a part of the patterns of the plurality of reticles R. Therefore, it is possible to easily and reliably perform exposure using a screen composition method for combining a single pattern of the glass substrate P with a plurality of reticle R patterns.
  • the reticle stage 5 and the substrate stage 6 are synchronously moved and exposed, and then the scanning direction is changed.
  • the energy setting section 19 calculates and sets the energy amount in each direction when the pattern is exposed on the glass substrate P based on the directional characteristics of the distortion of the projection optical system 4, so that the exposure apparatus is used. Even when the exposure is changed, the exposure can be performed with an appropriate amount of energy each time according to the projection optical system 4 mounted on the apparatus.
  • the liquid crystal display element that has been subjected to the exposure processing using such a scanning type exposure apparatus 1 has a desired device by superimposing the pattern, splicing, and superimposing the spliced portion with high precision. It becomes possible to express characteristics.
  • FIG. 9 to FIG. 11 are diagrams showing a second embodiment of the scanning exposure apparatus, the scanning exposure method, and the microphone port device of the present invention.
  • the same elements as those of the first embodiment shown in FIGS. 1 to 8 are denoted by the same reference numerals, and description thereof will be omitted.
  • the difference between the second embodiment and the first embodiment is that the reticle stage 5 and the substrate stage 6 are driven by the electromagnetic force of the planar motor.
  • the reticle stage 5 and the substrate stage 6 have almost the same configuration except that the reticle stage 5 has an opening for projecting (passing) the pattern image of the reticle R.
  • the substrate stage 6 is shown and described.
  • the substrate stage 6 of the present embodiment includes an air slide (to be described later) via a base 71 and a clearance of about several meters above the upper surface of the base 71.
  • a substrate table (holding unit) 68 is supported by a lifter, and a driving device 50 drives the substrate table 68 two-dimensionally in the XY plane.
  • the driving device 50 includes a stator 60 provided (embedded) on the top of the base 71 and a movable member 51 fixed on the bottom (the base facing surface side) of the substrate table 68.
  • a planar motor is used.
  • the mover 51, the base 71, and the driving device 50 constitute a planar motor device.
  • the driving device 50 will be referred to as a plane motor 50 for convenience.
  • a glass substrate P is fixed by, for example, vacuum suction.
  • a movable mirror 27 for reflecting the laser beam from the laser interferometer 31 is fixed on the substrate table 68, and the laser interferometer 31 disposed outside is used to fix the substrate.
  • the position of the table 68 in the XY plane is constantly detected with a resolution of, for example, about 0.5 to 1 nm.
  • a movable mirror 27 Y having a reflecting surface orthogonal to the Y-axis direction on the substrate table 68 and a moving mirror having a reflecting surface orthogonal to the X-axis direction
  • a mirror 27X is a mirror 27X.
  • the position information (or speed information) of the substrate table 68 is sent to the control unit 18 and to the scanning direction changing unit 13 via this.
  • the control unit 18 controls the movement of the substrate table 68 in the XY plane via the plane motor 50 based on the position information (or the speed information) according to the support from the scanning direction changing unit 13. I do.
  • FIG. 10 shows a plan view of the substrate stage 6, and FIG. 11 shows an enlarged cross-sectional view taken along line AA of FIG. 10 in FIG.
  • the substrate table 68 is provided with a voice coil motor on the upper surface (the surface opposite to the surface facing the base 71) of the mover 51 constituting the plane motor 50. It is supported at three different points by the support mechanisms 32a, 32b, and 32c, and can be tilted with respect to the XY plane and driven in the Z-axis direction. Although not shown in FIG. 9, the support mechanisms 32 to 32 2 are actually driven and controlled independently by the control unit 18 via a drive mechanism (not shown).
  • the mover 51 includes an air slider 57, which is an aerostatic bearing, and an air slider A planar magnet 53, a part of which is fitted into the die 57 from above and integrally formed, and a magnetic member 5 made of a magnetic material engaged with the planar magnet 53 from above And 2.
  • the magnetic member 52 and the planar magnet 53 constitute a magnet unit.
  • a substrate table 68 is provided on the upper surface of the magnetic member 52 via the support mechanisms 32a to 32c.
  • the air slider 57 has a supply passage for pressurized air, a passage for vacuum, and the like formed therein.
  • the supply path of the pressurized air is connected to an air pump 59 (see FIG. 9) via a tube 33, and a passage for vacuum is connected to a vacuum pump (not shown).
  • an air pad connected to the supply path of the pressurized air and an air pocket connected to the vacuum path are provided.
  • the upward force caused by the pressure of the pressurized air that is, the thickness of the air layer is determined by the balance between the static pressure of the air layer between the bottom surface of the mover 5 1 and the top surface of the base 7 1 (so-called gap pressure).
  • the air slider 57 constitutes a kind of a vacuum pressurized air static pressure bearing, and the movable slider 51 and the substrate table 68 are entirely formed on the upper surface of the base 71 by the air slider 57. Is supported above, for example, with a clearance of about 5> m (see Figs. 9 and 11).
  • the base 71 is attached to the base body 72 having a square shape in a plan view, and both ends of the base body 72 in the ⁇ direction. It is composed of a pair of joint mounting members 73 ⁇ and 73 ⁇ ⁇ for supplying and discharging a coolant for cooling the slave coil 38 to and from the base 71.
  • the base body 72 is engaged with a hollow box-shaped container 35 having a small thickness with an open upper surface and a first stepped portion 35 a formed on the inner side of the peripheral wall of the container 35 from above. Then, the heat disposed parallel to the bottom wall of the container 35 with a predetermined gap (for example, a gap of about 2 mm) separated from the bottom wall of the container 35
  • a flat stator yoke 43 made of a magnetic material having a high conductivity, specifically, a thermal conductivity of 30 [W / m ⁇ K] or more, and an upper end (opening) of the peripheral wall of the container 35
  • a ceramic plate 36 that engages from above with a second step 35b formed on the inner side of the end) and closes the opening.
  • a moving surface 71 a of the mover 51 is formed on a surface (upper surface) of the ceramic plate 36 opposite to the mover 51.
  • the internal space of the base 71 formed by the container 35 and the ceramic plate 36 is vertically divided by a stator yoke 43, and a first chamber 41 as a vacuum chamber is formed above the upper part thereof, A second chamber 42 is formed on the side.
  • the stator shake 43 and the moving surface 71a are parallel.
  • a predetermined gap for example, a gap of about 2 mm
  • 81 armature coils 38 are arranged in a matrix of 9 rows and 9 columns in the XY two-dimensional direction along the moving surface 7 la (see FIG. 10).
  • a hollow square coil is used as the armature coil 38.
  • the stator 60 of the plane motor 50 described above is constituted by the stator yoke 43, the armature coil 38, and the ceramic plate 36.
  • protrusions 36 a On the opposite side (lower side) of the moving surface 7 la of the ceramic plate 36, as shown in FIG. 11, there are a large number of (in this case, 144) protrusions 36 a having a circular cross section at predetermined intervals. It is formed. As shown in FIG. 10, when the ceramic plate 36 is assembled to the container 35, these protrusions 36a are located at positions corresponding to the centers of the hollow portions of the armature coils 38. There are 64 pieces each provided at a position corresponding to the space between the adjacent four armature coils 38.
  • the scanning direction changing unit 13 is controlled by the armature coil 38 facing the planar magnet 53 through the control unit 18.
  • the substrate table 68 holding the glass substrate P integrally with the mover 51 can be moved in a desired direction.
  • the coolant for cooling the armature coil 38 may be supplied to the upper surface of the armature coil 38, or may be supplied to both the upper surface and the lower surface of the armature coil.
  • the current supplied to the armature coil 38 must be controlled. Can be easily implemented.
  • the same operation and effect as those of the first embodiment can be obtained.
  • the thermal effect on the reticle R and the glass substrate P due to the heat generated by the armature coil 38 can be effectively reduced, the interference for measuring the positions of the reticle R and the glass substrate P can be reduced. Air fluctuation of the measuring beam can be suppressed. Therefore, high-speed and high-precision position control of the reticle R and the glass substrate P can be performed, and as a result, exposure can be performed with high exposure accuracy while improving throughput.
  • the configuration is such that the planar module is provided on both the reticle stage 5 and the substrate stage 6, but it may be provided on only one of the stages.
  • the reticle stage 5 and the substrate stage 6 are not limited to one, and may be a plurality. By arranging multiple reticle stages 5 and substrate stages 6 in one exposure apparatus, the throughput of the exposure apparatus can be increased.o
  • the pattern of the plurality of reticles R is exposed on the glass substrate P by the screen combining method.
  • the configuration is not limited, and the entire surface of the glass substrate P may be exposed by one reticle R.
  • the substrate on which the pattern of the reticle R is exposed is a glass substrate for a liquid crystal display element.
  • a wafer for a semiconductor device, a ceramic wafer for a thin film magnetic head, or A configuration in which an original mask (synthetic quartz, silicon wafer) of a mask or a reticle used in an optical device is exposed may be used.
  • the scanning direction of both stages 5 and 6 is set to the X direction or the Y direction
  • the present invention is not limited to this.
  • a so-called multi-lens in which a plurality of rows of projection optical systems are provided in one direction.
  • a configuration may be adopted in which a direction deviated by a small angle from a direction orthogonal to this direction is set as the scanning direction.
  • the fly eye integrator 1 Although the direction of the illumination area is changed by rotating 0 by 90 °, for example, as shown in FIG. 8, an optical element in which a lens is arranged so that the illumination area extends in the X direction
  • this fly-eye integrator 10 is arranged in the X direction according to the scanning direction. It may be configured to reciprocate. (In this case, the blind-11 has the same configuration.)
  • the type of the exposure apparatus is not limited to an exposure apparatus for a liquid crystal display device.
  • an exposure apparatus for manufacturing a semiconductor device, a thin film magnetic head, an imaging device (CCD), or a reticle R is manufactured. Widely applicable to all types of exposure equipment o
  • the light source of the illumination optical system 3 is a bright line (g-line (4
  • thermionic emission type lanthanum hexaborite (L a B 6 ) or tantalum (T a) can be used as the electron gun.
  • a configuration using a reticle R may be used, or a configuration in which a pattern is formed directly on the glass substrate P without using the reticle R may be used.
  • a high frequency such as a YAG laser or a semiconductor laser may be used.
  • the magnification of the projection optical system 4 may be not only the same magnification system but also any of a reduction system and an enlargement system. Further, as the projection optical system 4, using a material which transmits far ultraviolet rays such as quartz and fluorite as the glass material when using far ultraviolet rays such as excimer one
  • the catadioptric system when using the F 2 laser or X-ray Alternatively, a refraction type optical system may be used (a reticle of a reflection type may be used).
  • an electron optical system including an electron lens and a deflector may be used as the optical system. It goes without saying that the optical path through which the electron beam passes is in a vacuum state. Further, the present invention can also be applied to a proximity exposure apparatus that exposes the pattern of the reticle R to the glass substrate P by bringing the reticle R and the glass substrate P into close contact with each other without using the projection optical system 4.
  • Reynamo stage for reticle stage 5 and substrate stage 6 (See P5, 528, 118), either an air levitation type using air pairing or a magnetic levitation type using mouth-Lenz force or reactance force may be used.
  • Each of the stages 5 and 6 may be of a type that moves along a guide, or may be a guideless evening without a guide.
  • a reaction force generated by movement of the substrate stage 6 is described in Japanese Patent Application Laid-Open No. 8-166645 (US Pat. No. 5,528,118) so that the reaction force is not transmitted to the projection optical system 4.
  • a frame member may be used to mechanically escape to the floor (ground).
  • the present invention is also applicable to a scanning exposure apparatus having such a structure.
  • a reaction force generated by movement of the reticle stage 5 is described in Japanese Patent Application Laid-Open No. H08-330224 (US S / N 08/416, 558) so as not to be transmitted to the projection optical system 4.
  • the material may be mechanically released to the floor (ground) using a frame member.
  • the present invention is also applicable to a scanning exposure apparatus having such a structure.
  • the illumination optical system 3 and the projection optical system 4 were incorporated into the main body of the exposure apparatus for optical adjustment, and the reticle stage 5 and the substrate stage 6 composed of many mechanical parts were attached to the main body of the exposure apparatus, and wiring and piping were connected. Further, by performing comprehensive adjustment (electrical adjustment, operation check, etc.), the scanning exposure apparatus of the present embodiment can be manufactured. It is desirable that the manufacture of this scanning type exposure apparatus be performed in a clean room where the temperature and cleanliness are controlled.
  • the liquid crystal display device has a step 201 for designing the function and performance of the liquid crystal display device, a step 202 for manufacturing a reticle R (mask) based on this design step, quartz, etc.
  • Step 203 of fabricating a wafer from a glass substrate P or a silicon material from a silicon material Step of exposing the pattern of a reticle R to a glass substrate P (wafer) by the scanning exposure apparatus 1 of the above-described embodiment It is manufactured through a step of assembling a liquid crystal display lens (in the case of a wafer, including a dicing step, a bonding step, and a package step) 205, an inspection step 206, and the like.
  • the present invention relates to a scanning type exposure apparatus and method for synchronously moving a reticle and a substrate in a predetermined direction and exposing a pattern formed on the reticle to the substrate, and a scanning exposure apparatus.
  • the present invention relates to a micro device manufactured through an exposure process using a check type exposure apparatus.
  • the reticle stage holding the reticle and the substrate stage holding the substrate are synchronously moved to expose the pattern formed on the reticle onto the substrate in a predetermined direction. Since the changing device changes the scanning direction, it is possible to appropriately change the scanning direction according to the situation at the time of exposure, and it is possible to improve each accuracy in the overlapping of the patterns, the joining, and the overlapping of the joining portions. In addition, since the changing device changes the predetermined direction according to the pattern formed on the reticle, the scanning direction can be changed as appropriate according to the pattern of the reticle. Each accuracy is improved in the superposition.
  • the projection optical system is arranged between the reticle and the substrate, and the changing device is configured to change the predetermined direction according to the imaging characteristics of the projection optical system.
  • the scanning direction can be appropriately changed according to the characteristics, and the accuracy of each of the overlapping of the patterns, the joining, and the overlapping of the joints is improved.
  • the changing device synchronously moves the reticle stage and the substrate stage in a predetermined direction and then changes the predetermined direction to synchronously move the reticle stage and the substrate stage, a magnification error in one direction is obtained. Dispersion and relaxation can be achieved by scanning in two directions.
  • the setting device determines a first energy amount for exposing the pattern to the substrate during the synchronous movement in the predetermined direction and a second energy amount for exposing the pattern to the substrate during the synchronous movement in the predetermined direction. Since the setting is made, for example, even when exposing by changing the exposure apparatus, it is possible to perform exposure with an appropriate energy amount each time according to the projection optical system mounted on the apparatus. Since the control device controls the reticle stage and the substrate stage so as to connect a part of the patterns of the plurality of reticles, a screen combining method for combining one pattern of the substrate with the patterns of the plurality of reticles is used. Exposure by adoption can be performed easily and reliably.
  • the position of the reticle is measured. Air fluctuations of the interferometer beam can be suppressed. Accordingly, high-speed and high-accuracy position control of the reticle and the substrate can be performed, and as a result, exposure can be performed with high exposure accuracy while improving throughput.
  • the microdevice of the present invention since the microdevice is manufactured through the exposure process by the above-mentioned scanning exposure apparatus, the pattern is superimposed, spliced, and superimposed at the spliced portion with high accuracy. Desired device characteristics can be exhibited without deteriorating device characteristics.

Abstract

A scanning exposure device (1) comprises a reticle stage (5) for holding a reticle (R) while moving along a predetermined direction, a substrate stage (6) for holding a substrate (P) while moving along a predetermined direction, and a device (18) for changing the predetermined directions to move the reticle stage (5) and the substrate stage (6) synchronously. The scanning direction can thus be properly changed depending on the exposure conditions, resulting in improved accuracy of the superposition, connection and overlap of patterns.

Description

明細書  Specification
走査型露光装置および走査型露光方法並びにマイクロデバイス 技術分野  TECHNICAL FIELD The present invention relates to a scanning type exposure apparatus, a scanning type exposure method, and a micro device.
本発明は、 レチクルと基板とを所定方向に同期移動して、 ンチクルに形成され たパターンを前記基板に露光する走査型露光装置およびその方法、 並びにこの走 査型露光装置による露光工程を経て製造されるマイクロデバイスに関するもので める。  The present invention relates to a scanning type exposure apparatus and a method for exposing a pattern formed on a reticle to the substrate by synchronously moving a reticle and a substrate in a predetermined direction, and a manufacturing method including an exposure step using the scanning type exposure apparatus. Related to microdevices to be used.
なお、 本出願は、 日本国への特許出願 (特願平 10— 237806) に基づく ものであり、 当該日本出願の記載内容は本明細書の一部として取り込まれるもの とする。 背景技術  This application is based on a patent application to Japan (Japanese Patent Application No. 10-237806), and the contents of the Japanese application are incorporated as a part of this specification. Background art
近年、 パソコンやテレビ等の表示素子 (マイクロデバイス) としては、 薄型化 を可能とする液晶表示基板が多用されるようになつている。 この種の液晶表示基 板は、 平面視矩形状の感光基板上に透明薄膜電極をフオトリソグラフィの手法で 所望の形状にパ夕一ニングすることにより製造されている。 そして、 このフォト リソグラフィの装置として、 レチクル上に形成されたパターンを投影光学系を介 して感光基板上のフォトレジスト層に露光する露光装置が用いられている。 ところで、 上記の液晶表示基板 (ガラスプレート) は、 画面の見やすさから大 面積化が進んでおり、 最近では 60 Ommx 700 mm程度のものが要求されて いる。 この要請に応える露光装置としては、 レチクルとガラス基板とを所定方向 に同期移動して、 投影光学系に対して走査することによって、 レチクルに形成さ れた LCD (Liquid Crystal D i s p 1 a y ) パターンをガラ ス基板上の露光領域に順次転写する走査型露光装置が多く用いられている。 この走査型露光装置では、 走査露光を複数回行う、 いわゆるステップ 'アンド •スキャンによってガラス基板の大型化に対応することが提案されている。 すな わち、 この種の走査型露光装置では、 ガラス基板に転写される LCDパターンを 重ね合わせたり、 複数のパターンに分割して露光する画面合成法の採用が検討さ れている。 In recent years, as display elements (microdevices) for personal computers, televisions, and the like, liquid crystal display substrates that can be made thinner have been frequently used. This type of liquid crystal display substrate is manufactured by patterning a transparent thin-film electrode into a desired shape on a photosensitive substrate having a rectangular shape in plan view by photolithography. As an apparatus for this photolithography, an exposure apparatus for exposing a pattern formed on a reticle to a photoresist layer on a photosensitive substrate via a projection optical system is used. By the way, the above-mentioned liquid crystal display substrate (glass plate) has been increasing in size due to the ease of viewing the screen, and recently, a substrate with a size of about 60 Omm x 700 mm is required. An exposure apparatus that responds to this demand is an LCD (Liquid Crystal Disp 1 ay) pattern formed on a reticle by moving a reticle and a glass substrate synchronously in a predetermined direction and scanning the projection optical system. In many cases, a scanning exposure apparatus for sequentially transferring light to an exposure area on a glass substrate is used. In this scanning type exposure apparatus, it has been proposed that so-called “step-and-scan” in which scanning exposure is performed a plurality of times to cope with an increase in the size of a glass substrate. In other words, for this type of scanning exposure apparatus, the use of a screen synthesis method in which the LCD pattern transferred onto a glass substrate is superimposed or divided into multiple patterns for exposure is under consideration. Have been.
この画面合成法は、 分割された L C Dパターンのそれそれに対応する複数のレ チクルを用い、 一枚のレチクルに対応するガラス基板の露光領域に該レチクルの パターンを走査露光した後に、 ガラス基板をステップ移動させるとともにレチク ルを別のものに交換し、 このレチクルに対応する露光領域に該レチクルのパター ンを走査露光することにより、 ガラス基板に複数のパターンが合成された L C D パターンを形成するものである。  This screen synthesis method uses a plurality of reticles corresponding to each of the divided LCD patterns, scans and exposes the reticle pattern to the exposure area of the glass substrate corresponding to one reticle, and then steps the glass substrate. The reticle is moved and exchanged for another reticle, and the reticle pattern is scanned and exposed on the exposure area corresponding to the reticle, thereby forming an LCD pattern in which a plurality of patterns are synthesized on a glass substrate. is there.
しかしながら、 上述したような従来の走査型露光装置および走査型露光方法並 びにマイクロデバイスには、 以下のような問題が存在する。  However, the conventional scanning exposure apparatus, scanning exposure method, and microdevice as described above have the following problems.
投影光学系は、 その結像特性がディストーション等により一様でなく、 方向性 を有している。 そのため、 上記走査型露光装置には、 レチクルとガラス基板とを 走査する際に倍率補正が困難な方向と容易な方向とが存在する場合がある。 一方、 上記 L C Dパターン、 例えば T F T ( T h i n F i l m T r a n s i s t o r ) 基板用のパターンには、 トランジスタの特性に大きな影響を与える 等、 構造上重ね合わせがより重要な方向が存在する場合がある。  The projection optical system has non-uniform imaging characteristics due to distortion and the like, and has directivity. Therefore, in the above-described scanning exposure apparatus, there are cases where there are directions in which magnification correction is difficult and directions in which scanning of the reticle and the glass substrate are difficult. On the other hand, in the LCD pattern, for example, a pattern for a TFT (ThinFilmTransistor) substrate, there may be a direction in which structural superposition is more important, such as having a large effect on transistor characteristics.
ところが、 従来の走査型露光装置では、 走査方向が上記倍率補正特性や L C D パターン特性に関係なく一方向に限定されている。 そのため、 露光に有利な走査 方向を選択することができず、 精度上不利な状況下での露光を余儀なくされてし まう。 その結果、 分割されたパターンの隣接する領域においてレチクルの描画誤 差や投影光学系のレンズの収差系のレンズの収差、 ガラス基板を位置決めする基 板ステージの位置決め誤差等が起因して、 パターンの継ぎ目部に段差が発生し、 デバイスの特性が損なわれたり、 さらに、 画面合成された分割パターンを多層に 重ね合わせた場合、 各層の単位領域の重ね誤差やパターンの線幅差がパターンの 継ぎ目部分で不連続に変化し、 特にァクティブマトリックス液晶デバイスでは、 パターン継ぎ目部でコントラス卜が不連続に変化してデバイスの品質が低下する ことになる。  However, in the conventional scanning type exposure apparatus, the scanning direction is limited to one direction regardless of the magnification correction characteristic and the LCD pattern characteristic. As a result, it is not possible to select a scanning direction that is advantageous for exposure, and it is necessary to perform exposure in a situation where accuracy is disadvantageous. As a result, in the area adjacent to the divided pattern, there is a drawing error of the reticle, an aberration of a lens of an aberration system of a projection optical system, a positioning error of a substrate stage for positioning a glass substrate, and the like. Steps may occur at the seams, degrading the characteristics of the device.In addition, when the screen-synthesized divided patterns are superimposed in multiple layers, the overlapping error in the unit area of each layer and the line width difference of the patterns may cause the seams in the patterns. In contrast, in an active matrix liquid crystal device, the contrast changes discontinuously at the pattern joint, and the quality of the device is degraded.
本発明は、 以上のような点を考慮してなされたもので、 露光時の状況に応じて 走査方向を変更して、 重ね合わせ精度、 継ぎ精度および継ぎ部の重ね合わせ精度 を向上させることのできる走査型露光装置および走査型露光方法を提供すること を目的とする。 また、 本発明の別の目的は、 デバイス特性の低下を防止できるマ イク口デバイスを提供することである。 発明の開示 The present invention has been made in consideration of the above points, and it is an object of the present invention to change a scanning direction according to a situation at the time of exposure to improve overlay accuracy, seam accuracy, and seam accuracy at seam portions. To provide a scanning type exposure apparatus and a scanning type exposure method With the goal. Another object of the present invention is to provide a microphone device that can prevent a decrease in device characteristics. Disclosure of the invention
上記の目的を達成するために本発明は、 実施の形態を示す図 1ないし図 13に 対応付けした以下の構成を採用している。  In order to achieve the above object, the present invention employs the following configuration corresponding to FIGS. 1 to 13 showing the embodiment.
本発明の走査型露光装置は、 パターンが形成されたレチクル (R) と基板 The scanning exposure apparatus of the present invention comprises a reticle (R) on which a pattern is formed and a substrate.
(P) とを所定方向に同期移動して、 前記パターンを基板 (P) に露光する走査 型露光装置 (1) において、 レチクル (R) を保持して所定方向に沿って移動す るレチクルステージ (5) と、 基板 (P) を保持して所定方向に沿って移動する 基板ステージ (6) と、 前記所定方向を変更して、 レチクルステージ (5) と基 板ステージ (6) とを同期移動させる変更装置 (18) とを備えたことを特徴と するものである。 従って、 本発明の走査型露光装置では、 露光時の状況に応じて 変更装置 (18) を操作することにより、 レチクルステージ (5) と基板ステー ジ (6) とが同期移動する方向を変更して、 レチクル (R) のパターンを基板A scanning reticle stage that moves along a predetermined direction while holding a reticle (R) in a scanning exposure apparatus (1) that exposes the pattern onto a substrate (P) by synchronously moving the reticle (P) with the substrate (P). (5), a substrate stage (6) holding the substrate (P) and moving in a predetermined direction, and synchronizing the reticle stage (5) with the substrate stage (6) by changing the predetermined direction. And a change device (18) for moving. Therefore, in the scanning exposure apparatus of the present invention, the direction in which the reticle stage (5) and the substrate stage (6) are synchronously moved is changed by operating the change device (18) according to the situation at the time of exposure. The reticle (R) pattern on the substrate
(P) に露光することができる。 (P) can be exposed.
また、 本発明の走査型露光方法は、 パターンが形成されたレチクル (R) と基 板 (P) とを所定方向に同期移動して、 前記パターンを基板 (P) に露光する走 査型露光方法において、 所定方向を変更して、 レチクル (R) と基板 (P) とを 同期移動させてパターンを基板 (P) に露光することを特徴とするものである。 従って、 本発明の走査型露光方法では、 露光時の状況に応じてレチクル (R) と 基板 (P) とが同期移動する方向を変更した状態で、 レチクル (R) のパターン を基板 (P) に露光することができる。  In addition, the scanning exposure method of the present invention provides a scanning exposure method in which a reticle (R) on which a pattern is formed and a substrate (P) are synchronously moved in a predetermined direction, and the pattern is exposed on a substrate (P). The method is characterized in that a pattern is exposed on a substrate (P) by changing a predetermined direction and synchronously moving a reticle (R) and a substrate (P). Therefore, in the scanning exposure method of the present invention, the pattern of the reticle (R) is changed to the substrate (P) while the direction in which the reticle (R) and the substrate (P) are synchronously moved is changed according to the situation at the time of exposure. Can be exposed.
そして、 本発明のマイクロデバイスは、 マスクのパターンを基板に露光する露 光工程を経て製造されるマイクロデバイスであって、 請求の範囲第 1項に記載さ れた露光装置により前記露光工程が施されることを特徴とするものである。 従つ て、 本発明のマイクロデバイスでは、 露光工程において、 露光時の状況に応じて 変更装置 (18) を操作することにより、 レチクルステージ (5) と基板ステ一 ジ (6) とが同期移動する方向を変更して、 レチクル (R) のパターンを基板 ( P ) に露光することができる。 図面の簡単な説明 Further, the micro device of the present invention is a micro device manufactured through an exposure step of exposing a pattern of a mask to a substrate, wherein the exposure step is performed by the exposure apparatus according to claim 1. It is characterized by being performed. Therefore, in the micro device of the present invention, in the exposure step, the reticle stage (5) and the substrate stage (6) move synchronously by operating the change device (18) according to the situation at the time of exposure. The reticle (R) pattern on the substrate (P) can be exposed. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の実施の形態を示す図であって、 制御部、 走査方向変更部お よびエネルギ設定部が設けられた走査型露光装置の概略構成図である。  FIG. 1 is a view showing an embodiment of the present invention, and is a schematic configuration diagram of a scanning exposure apparatus provided with a control unit, a scanning direction changing unit, and an energy setting unit.
図 2は、 本発明の実施の形態を示す図であって、 回転することで照明領域を 変更するフライアイインテグレー夕の平面図である。  FIG. 2 is a view showing an embodiment of the present invention, and is a plan view of a fly-eye integrator that changes an illumination area by rotating.
図 3は、 本発明の走査型露光装置を構成するレチクルステージの外観斜視図 である。  FIG. 3 is an external perspective view of a reticle stage constituting the scanning exposure apparatus of the present invention.
図 4は、 投影光学系のディストーションの方向を説明する説明図である。 図 5は、 本発明の実施の形態を示す図であって、 走査方向を Y方向としたと きの投影光学系のディストーションの方向を説明する説明図である。  FIG. 4 is an explanatory diagram for explaining the direction of distortion of the projection optical system. FIG. 5 is a diagram showing the embodiment of the present invention, and is an explanatory diagram for explaining the direction of distortion of the projection optical system when the scanning direction is the Y direction.
図 6は、 本発明の実施の形態を示す図であって、 走査方向を X方向としたと きの投影光学系のディストーシヨンの方向を説明する説明図である。  FIG. 6 is a diagram showing the embodiment of the present invention, and is an explanatory diagram for explaining the direction of distortion of the projection optical system when the scanning direction is the X direction.
図 Ίは、 ガラス基板上に構成される T F T/ L C Dの表示画素の概略構成図 である。  FIG. 1 is a schematic configuration diagram of a TFT / LCD display pixel formed on a glass substrate.
図 8は、 本発明の走査型露光装置を構成するフライアイインテグレー夕の別 の構成を示す平面図である。  FIG. 8 is a plan view showing another configuration of the fly-eye integrator constituting the scanning exposure apparatus of the present invention.
図 9は、 本発明の走査型露光装置を構成する基板ステージの概略構成図であ る,  FIG. 9 is a schematic configuration diagram of a substrate stage constituting the scanning exposure apparatus of the present invention.
図 1 0は、 同基板ステージの平面図である。  FIG. 10 is a plan view of the substrate stage.
図 1 1は、 図 1 0における A— A線視断面図である。  FIG. 11 is a sectional view taken along line AA in FIG.
図 1 2は、 液晶表示デバイスの製造工程の一例を示すフローチャート図であ る, 発明を実施するための最良の形態  FIG. 12 is a flowchart illustrating an example of a manufacturing process of a liquid crystal display device.
以下、 本発明の走査型露光装置および走査型露光方法並びに'  Hereinafter, the scanning exposure apparatus and the scanning exposure method of the present invention, and
の実施の形態を、 図 1ないし図 1 3を参照して説明する。 ここでは、 例えば、 液 晶表示素子 (マイクロデバイス) 用のガラス基板に露光するパターンを複数のパ ターンに分割し、 分割されたパターンに対応するレチクルを用いて露光する画面 合成法を採用可能な場合の例を用いて説明する。 The embodiment will be described with reference to FIG. 1 to FIG. Here, for example, a pattern to be exposed on a glass substrate for a liquid crystal display element (micro device) is formed by a plurality of patterns. A description will be given using an example in which a screen synthesis method in which a pattern is divided into turns and exposure is performed using a reticle corresponding to the divided pattern can be adopted.
[第 1の実施の形態]  [First Embodiment]
まず、 図 1ないし図 8により、 第 1の実施の形態について説明する。 図 1は、 走査型露光装置 1の概略構成図である。 走査型露光装置 1は、 レチクル Rに形成 されたパターンをガラス基板 (基板) P上へ露光するものであって、 露光用照明 光源である水銀ランプ 2と、 照明光学系 3と、 投影光学系 4と、 レチクルステー ジ 5と、 基板ステージ 6とから構成されている。  First, a first embodiment will be described with reference to FIGS. FIG. 1 is a schematic configuration diagram of the scanning exposure apparatus 1. The scanning exposure apparatus 1 exposes a pattern formed on a reticle R onto a glass substrate (substrate) P, and includes a mercury lamp 2, which is a light source for exposure, an illumination optical system 3, and a projection optical system. 4, a reticle stage 5, and a substrate stage 6.
水銀ランプ 2は、 露光光としてのビーム Bを発するものである。 この水銀ラン プ 2には、 楕円鏡 7が付設されている。 楕円鏡 7は、 水銀ランプ 2が発する露光 光を集光するものである。 照明光学系 3は、 反射ミラー 8 , 9と、 波長選択フィ ル夕 (不図示) と、 フライアイインテグレー夕 1 0と、 ブラインド 1 1と、 レン ズ系 1 2とから概略構成されている。 反射ミラー 8は、 楕円鏡 7で集光されたビ —ム Bを波長選択フィル夕へ向けて反射するものである。 反射ミラー 9は、 ブラ インド 1 1を通過したビーム Bをレンズ系 1 2へ向けて反射するものである。 波 長選択フィルタは、 ビーム Bのうち露光に必要な波長 ( 線ゃ丄線) のみを通過 させるものである。 レンズ系 1 2は、 フライアイインテグレー夕 1 0およびブラ インド 1 1で設定された照明領域の像をレチクル: Rで結像させるものである。 フ ライアイインテグレ一夕 1 0は、 波長選択フィル夕を通過したビーム Bの照度分 布を帯状に均一化するものであって、 図 2に示すように、 それそれが上記照明領 域をカバーする複数のレンズ 1 0 a— 1 0 aを備えている。 ブラインド 1 1は、 フライアイインテグレー夕 1 0を通過したビーム Bがレチクル Rに対して照明す る、 略長方形の照明領域を設定するものである。  The mercury lamp 2 emits a beam B as exposure light. The mercury lamp 2 is provided with an elliptical mirror 7. The elliptical mirror 7 focuses the exposure light emitted from the mercury lamp 2. The illumination optical system 3 is roughly composed of reflection mirrors 8 and 9, a wavelength selection filter (not shown), a fly-eye integrator 10, a blind 11, and a lens system 12. The reflecting mirror 8 reflects the beam B collected by the elliptical mirror 7 toward the wavelength selection filter. The reflection mirror 9 reflects the beam B passing through the blind 11 toward the lens system 12. The wavelength selection filter allows only the wavelength (line ゃ 丄) of the beam B necessary for exposure to pass. The lens system 12 forms an image of the illumination area set by the fly-eye integrator 10 and the blind 11 with a reticle: R. The fly eye integrator 10 uniformizes the illuminance distribution of the beam B that has passed through the wavelength selection filter into a band shape, and as shown in Fig. 2, each covers the above-mentioned illumination area. A plurality of lenses 10a-10a. The blind 11 sets a substantially rectangular illumination area in which the beam B passing through the fly-eye integrator 10 illuminates the reticle R.
また、 これらフライアイインテグレー夕 1 0およびブラインド 1 1は、 走査方 向変更部 (変更装置) 1 3の指示により 9 0 ° 回転することによって、 上記照明 領域を X方向に延在させる位置 (a ) と、 Y方向に延在させる位置 (b ) との間 で変更自在の構成になっている。 投影光学系 4は、 レチクル Rの照明領域に存在 するパターンの像をガラス基板 P上に結像させるものである。  In addition, the fly-eye integrator 10 and the blind 11 are rotated 90 ° according to the instruction of the scanning direction changing unit (change device) 13, so that the illumination area extends in the X direction (a ) And a position (b) extending in the Y direction. The projection optical system 4 forms an image of a pattern existing in the illumination area of the reticle R on the glass substrate P.
図 3に示すように、 レチクルステージ 5は、 レチクル Rを保持するものであつ て、 リニアモ一夕 1 4 , 1 4およびリニアモー夕 1 5 , 1 5によって、 互いに直 交する X方向および Y方向へそれそれ移動自在とされている。 このレチクルステ —ジ 5上には、 移動鏡 1 6 , 1 7が設けられている。 移動鏡 1 6 , 1 7には、 不 図示のレーザ干渉計からレーザ光が射出され、 その反射光と入射光との干渉に基 づいて移動鏡 1 6 , 1 7とレ一ザ干渉計との間の距離、 すな ちレチクルステー ジ 5の X方向の位置および Y方向の位置がそれそれ検出される構成になっている。 また、 このレチクルステージ 5には、 いずれも不図示のレチクルライブラリと レチクル交換装置 (レチクル交換手段) とが付設されている。 レチクルライブラ リは、 ガラス基板 Pに露光されるパ夕一ンを分割したパターンがそれそれ形成さ れた複数のレチクルを収納するものである。 レチクル交換装置は、 レチクルライ ブラリから所定のレチクル Rを取り出してレチクルステージ 5上のレチクルと交 換するものである。 なお、 レチクルステージ 5には、 レチクル Rのパターンをガ ラス基板 Pに投影するための開口が設けられている。 As shown in FIG. 3, reticle stage 5 holds reticle R. Thus, the linear motors 14 and 14 and the linear motors 15 and 15 can move freely in the X direction and the Y direction which are orthogonal to each other. On the reticle stage 5, movable mirrors 16 and 17 are provided. Laser light is emitted from a laser interferometer (not shown) to the movable mirrors 16 and 17, and the movable mirrors 16 and 17 and the laser interferometer are combined based on the interference between the reflected light and the incident light. , That is, the position in the X direction and the position in the Y direction of the reticle stage 5 are each detected. Each of the reticle stages 5 is provided with a reticle library (not shown) and a reticle exchange device (reticle exchange means). The reticle library accommodates a plurality of reticles each having a pattern obtained by dividing a pattern exposed on a glass substrate P. The reticle exchange device takes out a predetermined reticle R from the reticle library and exchanges it with the reticle on the reticle stage 5. The reticle stage 5 is provided with an opening for projecting the pattern of the reticle R onto the glass substrate P.
基板ステージ 6は、 ガラス基板 Pを保持するものであって、 上記レチクルステ ージ 5と同様に不図示のリニアモータによって互いに直交する X方向および Y方 向へ移動自在とされている。 この基板ステージ 6上には、 移動鏡 (不図示) が設 けられている。 移動鏡には、 不図示のレーザ干渉計からレーザ光が射出され、 そ の反射光と入射光との干渉に基づいて移動鏡とレーザ干渉計との間の距離、 すな わち基板ステージ 6の X方向の位置および Y方向の位置がそれぞれ検出される構 成になっている。  The substrate stage 6 holds the glass substrate P, and is movable in the X and Y directions orthogonal to each other by a linear motor (not shown), like the reticle stage 5 described above. A movable mirror (not shown) is provided on the substrate stage 6. Laser light is emitted from a laser interferometer (not shown) to the movable mirror, and the distance between the movable mirror and the laser interferometer, that is, the substrate stage 6 is determined based on the interference between the reflected light and the incident light. In this configuration, the position in the X direction and the position in the Y direction are detected.
また、 上記レチクルステージ 5および基板ステージ 6には、 制御部 (制御装 置) 1 8が付設されている。 制御部 1 8は、 複数のレチクル Rのパターンの一部 をつなぎ合わせて露光するように、 レチクルステージ 5と基板ステージ 6との移 動を制御するものである。 そして、 この制御部 1 8には、 上記走査方向変更部 1 3が接続されている。 走査方向変更部 1 3は、 レチクル Rに形成されたパターン に応じて、 または投影光学系 4の結像特性に応じて、 レチクルステージ 5および 基板ステージ 6とが同期移動する走査方向を X方向または Y方向に変更するとと もに、 これらの方向のうち、 一方の方向に同期移動した後に他方の方向に同期移 動する指示を制御部 1 8に出力する構成になっている。 また、 走査方向変更部 1 3には、 エネルギ設定部 (設定装置) 1 9が付設され ている。 エネルギ設定部 1 9は、 走査方向変更部 1 3の指示によりレチクルステ ージ 5および基板ステージ 6が X方向および Y方向の両方向に同期移動するとき に、 ガラス基板 Pにレチクル Rのパターンを露光するためのエネルギ量として、 Y方向移動時のエネルギ量 (第 1エネルギ量) と、 X方向移動時のエネルギ量 (第 2エネルギ量) とを設定するものである。 The reticle stage 5 and the substrate stage 6 are provided with a control unit (control device) 18. The control unit 18 controls the movement of the reticle stage 5 and the substrate stage 6 so that a part of the patterns of the plurality of reticles R are connected and exposed. The scanning direction changing unit 13 is connected to the control unit 18. The scanning direction changing unit 13 changes the scanning direction in which the reticle stage 5 and the substrate stage 6 are synchronously moved according to the pattern formed on the reticle R or the imaging characteristics of the projection optical system 4 in the X direction or the X direction. In addition to changing to the Y direction, an instruction to synchronously move in one of these directions and then synchronously move in the other direction is output to the control unit 18. In addition, an energy setting unit (setting device) 19 is attached to the scanning direction changing unit 13. The energy setting unit 19 exposes the pattern of the reticle R on the glass substrate P when the reticle stage 5 and the substrate stage 6 are synchronously moved in both the X and Y directions according to the instruction of the scanning direction changing unit 13. For this purpose, an energy amount during the movement in the Y direction (first energy amount) and an energy amount during the movement in the X direction (second energy amount) are set.
上記の構成の走査型露光装置を用いた種々の走査型露光方法について以下に説 明する。  Various scanning exposure methods using the scanning exposure apparatus having the above configuration will be described below.
ぐ投影光学系の結像特性に応じて走査方向を変更する場合 > When changing the scanning direction according to the imaging characteristics of the projection optical system>
図 4に示すように、 投影光学系 4の結像特性、 例えば投影光学系 4のディスト ーシヨン 4 a〜4 mが図に示すような方向性を有し、 フライアイインテグレー夕 1 0が図 2 ( a ) に示す位置にある場合 (走査方向が Y方向であり、 ステップ方 向が X方向である場合) 、 照明領域は図 5に示すように X方向に延在する略長方 形になる。 そのため、 このときの投影光学系 4のディストーションは、 4 a〜4 fの分布になる。  As shown in FIG. 4, the imaging characteristics of the projection optical system 4, for example, the distortions 4a to 4m of the projection optical system 4 have the directions shown in FIG. When it is at the position shown in (a) (when the scanning direction is the Y direction and the step direction is the X direction), the illumination area becomes a substantially rectangular shape extending in the X direction as shown in FIG. . Therefore, the distortion of the projection optical system 4 at this time has a distribution of 4a to 4f.
一方、 フライアイインテグレー夕 1 0が図 2 ( b ) に示す位置にある場合 (走 査方向が X方向であり、 ステップ方向が Y方向である場合) 、 照明領域は、 図 6 に示すように Y方向に延在する略長方形になる。 そのため、 このときの投影光学 系 4のディストーションは、 4 g〜4 mの分布になる。  On the other hand, when the fly eye integrator 10 is at the position shown in Fig. 2 (b) (when the scanning direction is the X direction and the step direction is the Y direction), the illumination area is as shown in Fig. 6. It becomes a substantially rectangular shape extending in the Y direction. Therefore, the distortion of the projection optical system 4 at this time has a distribution of 4 g to 4 m.
ここで、 図 5に示す Y方向に沿ったデイストーシヨン 4 a〜4 cおよびデイス ト一シヨン 4 d〜4 fは、 走査方向が Y方向なのでそれぞれ走査中に平均される。 そのため、 投影光学系 4を介して露光されたレチクル Rのパターンの位置は、 各 デイストーシヨン 4 a ~ 4 cおよびデイスト一シヨン 4 d〜4 fのべクトルの平 均的位置となる。  Here, the dispositions 4a to 4c and the dispositions 4d to 4f along the Y direction shown in FIG. 5 are averaged during scanning, respectively, since the scanning direction is the Y direction. Therefore, the position of the pattern of the reticle R exposed through the projection optical system 4 is the average position of the vectors of the distortions 4a to 4c and the distortions 4d to 4f.
同様に、 図 6に示す X方向に沿ったデイスト一シヨン 4 g〜4 iおよびデイス トーシヨン 4 j〜4 mは、 走査方向が X方向なのでそれそれ走査中に平均される。 そして、 投影光学系 4を介して露光されたレチクル: Rのパターンの位置は、 各デ イスト一シヨン 4 g〜 4 iおよびディスト一シヨン 4 j〜4 mのべクトルの平均 的位置となる。 ここで、 走査方向が Y方向に設定された図 5において、 ディストーション 4 a ~ 4 fの X方向に倍率に着目すると、 左側 (― X側) のディストーション 4 a〜 4 cと、 右側 (+ X側) のディストーション 4 d〜4 f とでは、 平均ディスト一 シヨンの倍率分が異なる。 一般に行われる倍率補正は、 投影光学系 4のレンズ中 心から均等に施されるため、 同一像高で異なる倍率を補正することが困難であり、 多くの場合それら異なる倍率の平均値での補正が施される。 Similarly, the distances 4 g to 4 i and distortions 4 j to 4 m along the X direction shown in FIG. 6 are each averaged during scanning since the scanning direction is the X direction. Then, the position of the pattern of the reticle R exposed through the projection optical system 4 is the average position of the vectors of the respective distances 4 g to 4 i and the distances 4 j to 4 m. Here, in FIG. 5 in which the scanning direction is set in the Y direction, focusing on the magnification in the X direction of the distortions 4a to 4f, the distortions 4a to 4c on the left side (−X side) and the right side (+ X The distortion of 4 d to 4 f on the side) differs in the magnification of the average distortion. In general, magnification correction is performed evenly from the center of the lens of the projection optical system 4, so it is difficult to correct different magnifications at the same image height.In many cases, correction with an average value of the different magnifications is difficult. Will be applied.
—方、 走査方向が X方向に設定された図 6において、 ディストーション 4 g〜 4 mの Y方向の倍率は、 上側 (+ Y側) のディストーション 4 g〜4 iと、 下側 (—Y側) のディストーション 4 j ~ 4 mとで、 それそれの平均から得られる倍 率誤差の傾向が似ている。 そのため、 この場合シフトオフセットでの補正が可能 になる。  On the other hand, in Fig. 6 where the scanning direction is set to the X direction, the magnification in the Y direction for the distortion 4 g to 4 m is the upper (+ Y side) distortion 4 g to 4 i and the lower (—Y side) ), The tendency of the multiplication error obtained from the average of the distortions 4 j to 4 m is similar. Therefore, in this case, the correction with the shift offset becomes possible.
したがって、 投影光学系 4が図 4に示すような方向性を有する際には、 倍率誤 差をより小さい値に補正するために、 図 2 ( b ) に示すように、 フライアイイン テグレ一夕 1 0およびブラインド 1 1を通過したビームの照明領域が Y方向に延 在するように、 走査方向変更部 1 3がこれらフライアイインテグレー夕 1 0およ びブラインド 1 1を回転させる。 加えて、 走査方向変更部 1 3は、 制御部 1 8に 指示を出して、 レチクルステージ 5および基板ステージ 6が X方向に同期移動す るように設定を変更する。  Therefore, when the projection optical system 4 has a directionality as shown in FIG. 4, in order to correct the magnification error to a smaller value, as shown in FIG. The scanning direction changing unit 13 rotates the fly-eye integrator 10 and the blind 11 so that the illumination area of the beam passing through the blind 10 and the blind 11 extends in the Y direction. In addition, the scanning direction changing unit 13 issues an instruction to the control unit 18 to change the setting so that the reticle stage 5 and the substrate stage 6 move synchronously in the X direction.
これにより、 水銀ランプ 2から発せられた露光光のビーム Bは、 フライアイイ ンテグレー夕 1 0およびブラインド 1 1で照度分布を均一化されるとともに、 こ れらで設定されたレチクル R上の照明領域を照明する。 そして、 レチクルステ一 ジ 5と基板ステージ 6とが投影光学系 4に対して X方向に同期移動することによ り、 上記照明領域に対応するレチクル Rのパターンが投影光学系 4を介してガラ ス基板 P上に露光される。  As a result, the exposure light beam B emitted from the mercury lamp 2 has a uniform illuminance distribution by the fly-eye integrator 10 and the blind 11, and the illumination area on the reticle R set by these is adjusted. Light up. When the reticle stage 5 and the substrate stage 6 move synchronously with respect to the projection optical system 4 in the X direction, the pattern of the reticle R corresponding to the above-mentioned illumination area is formed through the projection optical system 4 through the glass. The substrate P is exposed.
次に、 レチクル交換装置が、 レチクルライブラリから所定のレチクル Rを取り 出してレチクルステージ 5上のレチクルと交換する。 そして、 制御部 1 8が、 基 板ステージ 6を Y方向にステップ移動させた後に、 交換前と交換後のレチクル R のパターン同士の一部がガラス基板 P上でつなぎ合わされるように、 すなわち X 方向に沿ったパターン同士の隣接部がつなぎ合わされて露光するように、 レチク ルステージ 5と基板ステージ 6とを同期移動させる。 これにより、 複数のレチク ル Rを用いた画面合成法で、 ガラス基板 P上に所定のパターンが露光される。 <レチクルに形成されたパターンの特性に応じて走査方向を変更する場合〉 図 7は、 ガラス基板 P上に構成される T F T/L C Dパターンの一部を拡大し た平面図である。 ガラス基板 P上には、 ゲート線 2 0、 信号線 2 1、 ドレイン 2 2および画素電極 2 3が形成されている。 Next, the reticle exchanging device takes out a predetermined reticle R from the reticle library and exchanges it with the reticle on the reticle stage 5. Then, after the control unit 18 moves the substrate stage 6 in the Y direction stepwise, the patterns of the reticle R before and after replacement are partly joined on the glass substrate P, that is, X Reticle so that adjacent parts of the pattern along the direction are joined and exposed. The stage 5 and the substrate stage 6 are moved synchronously. As a result, a predetermined pattern is exposed on the glass substrate P by a screen synthesis method using a plurality of reticles R. <Case of Changing Scanning Direction According to Characteristics of Pattern Formed on Reticle> FIG. 7 is an enlarged plan view of a part of a TFT / LCD pattern formed on a glass substrate P. On the glass substrate P, a gate line 20, a signal line 21, a drain 22, and a pixel electrode 23 are formed.
ここで、 この T F Tの電気的特性は、 ゲート線 2 0と信号線 2 1とが重なり合 う部分の面積 S 1、 ゲート線 2 0とドレイン 2 2とが重なり合う部分の面積 S 2 によって影響される。 ゲート線 2 0と信号線 2 1、 ドレイン 2 2とは、 異なるレ チクル Rに形成されたパターンが重ね合わされることにより形成されている。 そ のため、 ゲート線 2 0に対して信号線 2 1、 ドレイン 2 2の位置がずれた場合、 Y方向のずれに関しては重なり合う部分の面積 S 1, S 2はほとんど変動するこ となく、 ずれに対する許容値が大きい。  Here, the electrical characteristics of the TFT are affected by the area S 1 where the gate line 20 and the signal line 21 overlap and the area S 2 where the gate line 20 and the drain 22 overlap. You. The gate line 20, the signal line 21, and the drain 22 are formed by overlapping patterns formed on different reticles R. Therefore, when the position of the signal line 21 and the position of the drain 22 are shifted with respect to the gate line 20, the area S 1 and S 2 of the overlapping portion with respect to the shift in the Y direction hardly fluctuate. Is large.
一方、 ゲート線 2 0に対する信号線 2 1、 ドレイン 2 2の位置が X方向にずれ た場合、 そのずれ量がそのまま重なり合う部分の面積 S 1、 S 2の変動になって しまう。 これにより、 T F Tの電気的特性が変動は、 T F Tの素子特性、 例えば L C D画面のフリッカゃ焼き付けとなって現れてしまう。  On the other hand, when the position of the signal line 21 and the position of the drain 22 with respect to the gate line 20 are shifted in the X direction, the shift amounts cause variations in the areas S 1 and S 2 of the overlapping portions. As a result, the change in the electrical characteristics of the TFT is manifested as element characteristics of the TFT, for example, flickering and burning of the LCD screen.
したがって、 ガラス基板 P上に構成される T F T/L C Dパターンが上記の特 性を有しており、 信号線 2 1、 ドレイン 2 2に対応するパターンを有するレチク ル Rを用いて露光する場合には、 図 2 ( b ) に示すように、 フライアイインテグ レ一夕 1 0およびブラインド 1 1を通過したビームの照明領域が Y方向に延在す るように、 走査方向変更部 1 3がこれらフライアイインテグレー夕 1 0およびブ ラインド 1 1を回転させる。 加えて、 走査方向変更部 1 3は、 制御部 1 8に指示 を出して、 レチクルステージ 5および基板ステージ 6が X方向に同期移動するよ うに設定を変更する。  Therefore, when the TFT / LCD pattern formed on the glass substrate P has the above characteristics, and the exposure is performed using the reticle R having the pattern corresponding to the signal line 21 and the drain 22, As shown in FIG. 2 (b), the scanning direction changing unit 13 adjusts the fly direction so that the illumination area of the beam passing through the fly-eye integration 10 and the blind 11 extends in the Y direction. Rotate eye integrator 10 and blind 11. In addition, the scanning direction changing unit 13 issues an instruction to the control unit 18 to change the setting so that the reticle stage 5 and the substrate stage 6 move synchronously in the X direction.
< X方向および Y方向の二度の走査で露光を行う場合 >  <When exposure is performed by two scans in the X and Y directions>
ガラス基板 P上に構成されるパターンの特性および投影光学系 4の結像特性に 応じて、 X方向および Y方向の走査を一度ずつ行い、 両方向の合成で露光を行う ことも可能である。 この場合、 走査方向変更部 1 3がレチクルステージ 5および 基板ステージ 6が両方向に同期移動する指示を出すことにより、 エネルギ設定部 1 9はガラス基板 Pにレチクル Rのパターンを露光するためのエネルギ量として、 Y方向移動時のエネルギ量と、 X方向移動時のエネルギ量とを設定する。 According to the characteristics of the pattern formed on the glass substrate P and the imaging characteristics of the projection optical system 4, it is also possible to perform scanning in the X and Y directions once, and to perform exposure in a combination of both directions. In this case, the scanning direction changing unit 13 By instructing the substrate stage 6 to move synchronously in both directions, the energy setting section 19 allows the energy amount for exposing the pattern of the reticle R on the glass substrate P to be the energy amount in the Y direction movement and the X direction movement. The energy amount at the time is set.
ここで、 エネルギ設定部 1 9は、 投影光学系 4の X方向、 Y方向それそれのデ イストーシヨンの方向性に基づいて、 デイスト一シヨンの倍率誤差を各方向で算 出するとともに、 この算出結果から倍率誤差が大きい方向のエネルギ量が少なく なるように各方向におけるエネルギ量比率、 すなわち露光量比率を設定する。 そして、 走査方向変更部 1 3が走査方向が X方向になるようにフライアイイン テグレ一夕 1 0およびブラインド 1 1を回転させるとともに、 制御部 1 8に指示 を出して、 レチクルステージ 5および基板ステージ 6が投影光学系 4に対して X 方向に同期移動させる。 これにより、 エネルギ設定部 1 9で設定された X方向移 動時のエネルギ量、 すなわち露光量で、 レチクル Rのパターンが X方向を走査方 向としてガラス基板 Pに露光される。  Here, the energy setting unit 19 calculates the magnification error of the distance in each direction based on the directionality of the distortion in the X direction and the Y direction of the projection optical system 4, and calculates the calculation result. Therefore, the energy amount ratio in each direction, that is, the exposure amount ratio is set so that the energy amount in the direction in which the magnification error is large is reduced. Then, the scanning direction changing unit 13 rotates the fly eye integrator 10 and the blind 11 so that the scanning direction is in the X direction, and issues an instruction to the control unit 18 so that the reticle stage 5 and the substrate The stage 6 moves synchronously with respect to the projection optical system 4 in the X direction. As a result, the pattern of the reticle R is exposed on the glass substrate P with the X direction as the scanning direction with the energy amount at the time of moving in the X direction set by the energy setting unit 19, that is, the exposure amount.
続いて、 走査方向が Y方向になるようにフライアイインテグレー夕 1 0および ブラインド 1 1を回転させた後に、 レチクルステージ 5および基板ステージ 6を 投影光学系 4に対して走査方向を変更して Y方向に同期移動させる。 ここでは、 エネルギ設定部 1 9で設定された Y方向移動時の露光量でレチクル Rのパターン を、 Y方向を走査方向としてガラス基板 Pに露光する。 これにより、 レチクル R に形成されたパターンが X方向、 Y方向の両走査方向の合成によりガラス基板 P に露光される。 なお、 ここでは、 レチクルステージ 5および基板ステージ 6を X 方向、 Y方向の順に同期移動して露光する構成としたが、 Y方向、 X方向の順に 同期移動してもよい。  Subsequently, after rotating the fly-eye integrator 10 and the blind 11 so that the scanning direction is in the Y direction, the scanning direction is changed by moving the reticle stage 5 and the substrate stage 6 with respect to the projection optical system 4 to Y. Move synchronously in the direction. Here, the pattern of the reticle R is exposed on the glass substrate P using the exposure amount at the time of movement in the Y direction set by the energy setting section 19 with the Y direction as the scanning direction. As a result, the pattern formed on the reticle R is exposed on the glass substrate P by combining the patterns in both the X and Y scanning directions. Here, the reticle stage 5 and the substrate stage 6 are configured to synchronously move and expose in the X direction and the Y direction, but may be synchronously moved in the Y direction and the X direction.
本実施の形態の走査型露光装置および走査型露光方法では、 フライアイインテ グレー夕 1 0およびブラインド 1 1が回転することにより、 X方向、 Y方向のい ずれが走査方向であっても対応できるとともに、 走査方向変更部 1 3がレチクル ステージ 5および基板ステージ 6の走査方向を変更するので、 レチクル Rのパ夕 —ン、 投影光学系 4の結像特性等、 露光時の状況に応じて適宜走査方向を選択す ることができる。 そのため、 本実施の形態の走査型露光装置および走査型露光方 法では、 露光上有利な走査方向を選択することにより、 パターンの重ね合わせ、 継ぎ、 および継ぎ部の重ね合わせにおいて高精度の露光を行うことができる。 また、 本実施の形態の走査型露光装置および走査型露光方法では、 制御部 1 8 が複数のレチクル Rのパターンの一部をつなぎ合わせるように、 レチクルステー ジ 5と基板ステージ 6とを制御するので、 複数のレチクル Rのパターンでガラス 基板 Pのパターン一層分を合成する画面合成法を採用しての露光も容易、 且つ確 実に行うことができる。 In the scanning exposure apparatus and the scanning exposure method according to the present embodiment, the fly-eye integrator 10 and the blind 11 rotate, so that it is possible to cope with either the X direction or the Y direction in the scanning direction. At the same time, since the scanning direction changing unit 13 changes the scanning direction of the reticle stage 5 and the substrate stage 6, the scanning direction changing unit 13 appropriately changes the scanning direction of the reticle R, the imaging characteristics of the projection optical system 4, etc. The scanning direction can be selected. Therefore, in the scanning exposure apparatus and the scanning exposure method of the present embodiment, by selecting a scanning direction that is advantageous for exposure, High-precision exposure can be performed at the joint and at the overlap of the joint. Further, in the scanning exposure apparatus and the scanning exposure method of the present embodiment, the control unit 18 controls the reticle stage 5 and the substrate stage 6 so as to connect a part of the patterns of the plurality of reticles R. Therefore, it is possible to easily and reliably perform exposure using a screen composition method for combining a single pattern of the glass substrate P with a plurality of reticle R patterns.
さらに、 本実施の形態の走査型露光装置および走査型露光方法では、 レチクル ステージ 5と基板ステージ 6とを同期移動させて露光した後に、 走査方向を変更 して露光するので、 一方向における倍率誤差等を二方向の走査を行うことで分散、 緩和することができる。 また、 このとき、 エネルギ設定部 1 9がガラス基板 Pに パターンを露光する際の各方向におけるエネルギ量を、 投影光学系 4のディスト ーシヨンの方向特性に基づいて算出、 設定するので、 露光装置を変えて露光する 際にも、 その装置に装着された投影光学系 4に応じて、 その都度適正なエネルギ 量で露光することができる。  Furthermore, in the scanning exposure apparatus and the scanning exposure method of the present embodiment, the reticle stage 5 and the substrate stage 6 are synchronously moved and exposed, and then the scanning direction is changed. By performing scanning in two directions, dispersion and relaxation can be achieved. At this time, the energy setting section 19 calculates and sets the energy amount in each direction when the pattern is exposed on the glass substrate P based on the directional characteristics of the distortion of the projection optical system 4, so that the exposure apparatus is used. Even when the exposure is changed, the exposure can be performed with an appropriate amount of energy each time according to the projection optical system 4 mounted on the apparatus.
そして、 このような走査型露光装置 1を用いての露光処理が施された液晶表示 素子は、 パターンの重ね合わせ、 継ぎ、 および継ぎ部の重ね合わせが高精度に行 われることで、 所望のデバイス特性を発現することが可能になる。  The liquid crystal display element that has been subjected to the exposure processing using such a scanning type exposure apparatus 1 has a desired device by superimposing the pattern, splicing, and superimposing the spliced portion with high precision. It becomes possible to express characteristics.
[第 2の実施の形態]  [Second embodiment]
図 9ないし図 1 1は、 本発明の走査型露光装置および走査型露光方法並びにマ イク口デバイスの第 2の実施の形態を示す図である。 これらの図において、 図 1 ないし図 8に示す第 1の実施の形態の構成要素と同一の要素については同一符号 を付し、 その説明を省略する。 第 2の実施の形態と上記の第 1の実施の形態とが 異なる点は、 レチクルステージ 5および基板ステ一ジ 6が平面モ一夕装置による 電磁力で駆動することである。 なお、 レチクルステージ 5と基板ステージ 6とは、 レチクルステージ 5がレチクル Rのパターン像を投影 (通過) するための開口部 を有している点を除いては、 ほぼ同様の構成であるため、 ここでは基板ステージ 6についてのみ図示、 説明する。  FIG. 9 to FIG. 11 are diagrams showing a second embodiment of the scanning exposure apparatus, the scanning exposure method, and the microphone port device of the present invention. In these drawings, the same elements as those of the first embodiment shown in FIGS. 1 to 8 are denoted by the same reference numerals, and description thereof will be omitted. The difference between the second embodiment and the first embodiment is that the reticle stage 5 and the substrate stage 6 are driven by the electromagnetic force of the planar motor. The reticle stage 5 and the substrate stage 6 have almost the same configuration except that the reticle stage 5 has an opening for projecting (passing) the pattern image of the reticle R. Here, only the substrate stage 6 is shown and described.
図 9に示すように、 本実施の形態の基板ステージ 6は、 ベース 7 1と、 このべ —ス 7 1の上面の上方に数 m程度のクリアランスを介して後述するエアスライ ダによって浮上支持された基板テーブル (保持部) 6 8と、 この基板テーブル 6 8を X Y面内で 2次元方向に駆動する駆動装置 5 0とを備えている。 駆動装置 5 0としては、 ここではベース 7 1の上部に設けられた (埋め込まれた) 固定子 6 0と、 基板テーブル 6 8の底部 (ベース対向面側) に固定された可動子 5 1とか らなる平面モータが使用されている。 また、 可動子 5 1とベース 7 1と駆動装置 5 0とによって平面モ一夕装置が構成されている。 以下の説明においては、 便宜 上、 上記の駆動装置 5 0を平面モー夕 5 0と呼ぶものとする。 As shown in FIG. 9, the substrate stage 6 of the present embodiment includes an air slide (to be described later) via a base 71 and a clearance of about several meters above the upper surface of the base 71. A substrate table (holding unit) 68 is supported by a lifter, and a driving device 50 drives the substrate table 68 two-dimensionally in the XY plane. Here, the driving device 50 includes a stator 60 provided (embedded) on the top of the base 71 and a movable member 51 fixed on the bottom (the base facing surface side) of the substrate table 68. A planar motor is used. The mover 51, the base 71, and the driving device 50 constitute a planar motor device. In the following description, the driving device 50 will be referred to as a plane motor 50 for convenience.
基板テーブル 6 8上には、 ガラス基板 Pが例えば真空吸着によって固定されて いる。 また、 この基板テ一ブル 6 8上には、 レ一ザ干渉計 3 1からのレ一ザビー ムを反射する移動鏡 2 7が固定され、 外部に配置されたレーザ干渉計 3 1により、 基板テーブル 6 8の X Y面内での位置が、 例えば 0 . 5〜 1 nm程度の分解能で 常時検出されている。 ここで、 実際には図 1 0に示されるように、 基板テーブル 6 8上には Y軸方向に直交する反射面を有する移動鏡 2 7 Yと、 X軸方向に直交 する反射面を有する移動鏡 2 7 Xとが設けられている。 基板テーブル 6 8の位置 情報 (または速度情報) は制御部 1 8およびこれを介して走査方向変更部 1 3に 送られる。 制御部 1 8は、 走査方向変更部 1 3からの支持に応じて上記位置情報 (または速度情報) に基づいて平面モー夕 5 0を介して基板テーブル 6 8の XY 面内での移動を制御する。  On the substrate table 68, a glass substrate P is fixed by, for example, vacuum suction. A movable mirror 27 for reflecting the laser beam from the laser interferometer 31 is fixed on the substrate table 68, and the laser interferometer 31 disposed outside is used to fix the substrate. The position of the table 68 in the XY plane is constantly detected with a resolution of, for example, about 0.5 to 1 nm. Here, actually, as shown in FIG. 10, a movable mirror 27 Y having a reflecting surface orthogonal to the Y-axis direction on the substrate table 68 and a moving mirror having a reflecting surface orthogonal to the X-axis direction There is a mirror 27X. The position information (or speed information) of the substrate table 68 is sent to the control unit 18 and to the scanning direction changing unit 13 via this. The control unit 18 controls the movement of the substrate table 68 in the XY plane via the plane motor 50 based on the position information (or the speed information) according to the support from the scanning direction changing unit 13. I do.
ここで、 平面モー夕 5 0およびその近傍の構成部分を中心として、 基板ステー ジ 6の構成各部について、 図 1 0〜図 1 1に基づいて詳述する。 図 1 0には、 こ の基板ステージ 6の平面図が示され、 図 1 1には、 図 1 0の A— A線視断面図が 一部省略して拡大して示されている。  Here, the components of the substrate stage 6 will be described in detail with reference to FIGS. 10 to 11, focusing on the plane motor 50 and its neighboring components. FIG. 10 shows a plan view of the substrate stage 6, and FIG. 11 shows an enlarged cross-sectional view taken along line AA of FIG. 10 in FIG.
図 1 0および図 1 1に示されるように、 基板テーブル 6 8は、 平面モー夕 5 0 を構成する可動子 5 1の上面 (ベース 7 1対向面と反対側の面) にボイスコイル モー夕等を含む支持機構 3 2 a、 3 2 b、 3 2 cによって異なる 3点で支持され ており、 X Y面に対して傾斜および Z軸方向の駆動が可能になっている。 支持機 構3 2 〜3 2〇は、 図 9では図示されていないが、 実際には不図示の駆動機構 を介して制御部 1 8によって独立に駆動制御される。  As shown in FIGS. 10 and 11, the substrate table 68 is provided with a voice coil motor on the upper surface (the surface opposite to the surface facing the base 71) of the mover 51 constituting the plane motor 50. It is supported at three different points by the support mechanisms 32a, 32b, and 32c, and can be tilted with respect to the XY plane and driven in the Z-axis direction. Although not shown in FIG. 9, the support mechanisms 32 to 32 2 are actually driven and controlled independently by the control unit 18 via a drive mechanism (not shown).
可動子 5 1は、 空気静圧軸受装置であるエアスライダ 5 7と、 このエアスライ ダ 5 7にその一部が上方から嵌合して一体ィ匕される平面状発磁体 5 3と、 この平 面状発磁体 5 3に上方から係合する磁性体材料からなる磁性体部材 5 2とを備え ている。 この中、 磁性体部材 5 2と平面状発磁体 5 3とによって磁石ユニットが 構成される。 磁性体部材 5 2の上面に上記支持機構 3 2 a〜3 2 cを介して基板 テーブル 6 8が設けられている。 The mover 51 includes an air slider 57, which is an aerostatic bearing, and an air slider A planar magnet 53, a part of which is fitted into the die 57 from above and integrally formed, and a magnetic member 5 made of a magnetic material engaged with the planar magnet 53 from above And 2. Among them, the magnetic member 52 and the planar magnet 53 constitute a magnet unit. A substrate table 68 is provided on the upper surface of the magnetic member 52 via the support mechanisms 32a to 32c.
エアスライダ 5 7は、 その内部に加圧空気の供給路およびバキューム用の通路 等が形成されている。 そして、 この加圧空気の供給路がチューブ 3 3を介して空 気ポンプ 5 9 (図 9参照) に接続され、 また、 バキューム用の通路が不図示の真 空ポンプに接続されている。 一方、 エアスライダ 5 7の底面には、 上記加圧空気 の供給路に接続されたエアパッドと、 上記バキューム用の通路に接続されたエア ポケットとがそれそれ設けられている。  The air slider 57 has a supply passage for pressurized air, a passage for vacuum, and the like formed therein. The supply path of the pressurized air is connected to an air pump 59 (see FIG. 9) via a tube 33, and a passage for vacuum is connected to a vacuum pump (not shown). On the other hand, on the bottom surface of the air slider 57, an air pad connected to the supply path of the pressurized air and an air pocket connected to the vacuum path are provided.
このため、 本実施の形態では、 可動子 5 1および基板テーブル 6 8等の全体の 自重と、 磁石ュニットを構成する平面状発磁体 5 3と後述する固定子ヨーク 4 3 との間の磁気的吸引力と、 不図示の真空ポンプによる真空吸引力 (与圧力) との 総和に相当する下向きの力と、 空気ポンプ 5 9から供給されエアパッドを介して ペース 7 1の上面に向かって吹き出される加圧空気の圧力による上向きの力、 す なわち、 可動子 5 1底面とベース 7 1上面との間の空気層の静圧 (いわゆるすき ま内圧力) とのバランスによって、 その空気層の厚さ、 すなわち軸受隙間が所望 の値に維持されるようになっている。 このように、 エアスライダ 5 7は、 一種の 真空与圧型の空気静圧軸受を構成しており、 このエアスライダ 5 7によって可動 子 5 1および基板テーブル 6 8等の全体がベース 7 1の上面の上方に、 例えば 5 > m程度のクリアランスを介して浮上支持されている (図 9、 図 1 1参照) 。 ベース 7 1は、 図 1 0および図 1 1に示されるように、 平面視で見て正方形状 のべ一ス本体 7 2と、 このベース本体 7 2の Υ方向両端に取り付けられ、 後述の 電機子コイル 3 8を冷却するための冷却液をベース 7 1に供給 ·排出するための 一対のジョイント取付部材 7 3 Α、 7 3 Βとから構成されている。 ベース本体 7 2は、 上面が開口した厚さの薄い中空の箱型の容器 3 5と、 この容器 3 5の周壁 の内部側に形成された第 1の段部 3 5 aに上方から係合し、 容器 3 5の底壁から 所定の空隙 (例えば、 2 mm程度の空隙) を隔てて該底壁に平行に配置された熱 伝導率の高い、 具体的には、 熱伝導率が 3 0 [W/m · K] 以上の磁性体材料か らなる平板状の固定子ヨーク 4 3と、 容器 3 5の周壁の上端 (開口端) の内部側 に形成された第 2の段部 3 5 bに上方から係合して、 開口部を閉塞するセラミツ ク板 3 6とを備えている。 セラミック板 3 6の可動子 5 1対向側の面 (上面) に は、 可動子 5 1の移動面 7 1 aが形成されている。 For this reason, in the present embodiment, the overall weight of the mover 51, the substrate table 68, etc., and the magnetic force between the planar magnet 53 constituting the magnet unit and a stator yoke 43 described later. A downward force corresponding to the sum of the suction force and the vacuum suction force (pressurized force) by a vacuum pump (not shown), and is supplied from the air pump 59 and blown out toward the upper surface of the pace 71 via the air pad. The upward force caused by the pressure of the pressurized air, that is, the thickness of the air layer is determined by the balance between the static pressure of the air layer between the bottom surface of the mover 5 1 and the top surface of the base 7 1 (so-called gap pressure). That is, the bearing clearance is maintained at a desired value. As described above, the air slider 57 constitutes a kind of a vacuum pressurized air static pressure bearing, and the movable slider 51 and the substrate table 68 are entirely formed on the upper surface of the base 71 by the air slider 57. Is supported above, for example, with a clearance of about 5> m (see Figs. 9 and 11). As shown in FIGS. 10 and 11, the base 71 is attached to the base body 72 having a square shape in a plan view, and both ends of the base body 72 in the Υ direction. It is composed of a pair of joint mounting members 73 Α and 73 た め for supplying and discharging a coolant for cooling the slave coil 38 to and from the base 71. The base body 72 is engaged with a hollow box-shaped container 35 having a small thickness with an open upper surface and a first stepped portion 35 a formed on the inner side of the peripheral wall of the container 35 from above. Then, the heat disposed parallel to the bottom wall of the container 35 with a predetermined gap (for example, a gap of about 2 mm) separated from the bottom wall of the container 35 A flat stator yoke 43 made of a magnetic material having a high conductivity, specifically, a thermal conductivity of 30 [W / m · K] or more, and an upper end (opening) of the peripheral wall of the container 35 A ceramic plate 36 that engages from above with a second step 35b formed on the inner side of the end) and closes the opening. A moving surface 71 a of the mover 51 is formed on a surface (upper surface) of the ceramic plate 36 opposite to the mover 51.
容器 3 5とセラミック板 3 6とによって形成されるベース 7 1の内部空間は、 固定子ヨーク 4 3によって上下に区画され、 その上側に真空室としての第 1室 4 1が形成され、 その下側に第 2室 4 2が形成されている。 この場合、 固定子ョー ク 4 3と移動面 7 1 aとは平行になっている。 第 1室 4 1内には、 図 1 1に示さ れるように、 セラミック板 3 6との間に所定の空隙 (例えば、 2 mm程度の空 隙) を介して、 且つ固定子ヨーク 4 3に接した状態で、 移動面 7 l aに沿って X Y 2次元方向に 9行 9列のマトリクス状に 8 1個の電機子コイル 3 8が配置され ている (図 1 0参照) 。 電機子コイル 3 8としては、 図に示すように、 中空の正 方形状コイルが用いられている。 なお、 本実施の形態では、 固定子ヨーク 4 3と 電機子コイル 3 8とセラミック板 3 6とによって、 上述した平面モー夕 5 0の固 定子 6 0が構成されている。  The internal space of the base 71 formed by the container 35 and the ceramic plate 36 is vertically divided by a stator yoke 43, and a first chamber 41 as a vacuum chamber is formed above the upper part thereof, A second chamber 42 is formed on the side. In this case, the stator shake 43 and the moving surface 71a are parallel. As shown in FIG. 11, in the first chamber 41, a predetermined gap (for example, a gap of about 2 mm) is provided between the first chamber 41 and the ceramic plate 36 and the stator yoke 43. In contact with each other, 81 armature coils 38 are arranged in a matrix of 9 rows and 9 columns in the XY two-dimensional direction along the moving surface 7 la (see FIG. 10). As shown in the figure, a hollow square coil is used as the armature coil 38. In the present embodiment, the stator 60 of the plane motor 50 described above is constituted by the stator yoke 43, the armature coil 38, and the ceramic plate 36.
セラミック板 3 6の移動面 7 l aと反対側 (下面側) には、 図 1 1に示される ように、 所定間隔で断面円形の多数 (ここでは 1 4 5個) の突起部 3 6 aが形成 されている。 これらの突起部 3 6 aは、 図 1 0に示されるように、 セラミック板 3 6を容器 3 5に組み付けた場合に、 各電機子コイル 3 8の中空部の中央に対応 する位置に 8 1個、 隣接する 4つの電機子コイル 3 8相互間の空間に対応する位 置に 6 4個それそれ設けられている。  On the opposite side (lower side) of the moving surface 7 la of the ceramic plate 36, as shown in FIG. 11, there are a large number of (in this case, 144) protrusions 36 a having a circular cross section at predetermined intervals. It is formed. As shown in FIG. 10, when the ceramic plate 36 is assembled to the container 35, these protrusions 36a are located at positions corresponding to the centers of the hollow portions of the armature coils 38. There are 64 pieces each provided at a position corresponding to the space between the adjacent four armature coils 38.
上記の構成の基板ステージ 6においてガラス基板 Pを移動させる場合には、 走 査方向変更部 1 3が制御部 1 8を介して、 平面状発磁体 5 3に対向する電機子コ ィル 3 8に供給する電流値、 および電流方向の少なくとも一方を制御することに より、 可動子 5 1と一体的にガラス基板 Pを保持する基板テーブル 6 8を所望の 方向に移動させることができる。 なお、 電機子コイル 3 8を冷却する冷却液は、 電機子コイル 3 8の上面側に供給してもよいし、 更に、 電機子コイルの上面側と 下面側の両方に供給してもよい。 上記の構成のレチクルステージ 5、 基板ステージ 6では、 投影光学系 4の結像 特性やパターンの特性に応じて走査方向を変更する際には、 電機子コイル 3 8に 供給する電流を制御することで容易に実施できる。 従って、 本実施の形態の走査 型露光装置および走査型露光方法並びにマイクロデバィスでは、 上記第 1の実施 の形態と同様の作用 ·効果を得ることができる。 加えて、 本実施の形態では、 電 機子コイル 3 8の発熱によるレチクル Rやガラス基板 P側への熱的影響を効果的 に低減できるので、 レチクル Rやガラス基板 Pの位置を計測する干渉計ビームの 空気揺らぎ等を抑制することができる。 従って、 レチクル Rやガラス基板 Pに対 して高速且つ高精度の位置制御が可能になり、 結果的にスループットを向上しつ つ高い露光精度で露光を行うことが可能になる。 When the glass substrate P is moved on the substrate stage 6 having the above configuration, the scanning direction changing unit 13 is controlled by the armature coil 38 facing the planar magnet 53 through the control unit 18. By controlling at least one of the current value supplied to the substrate and the current direction, the substrate table 68 holding the glass substrate P integrally with the mover 51 can be moved in a desired direction. The coolant for cooling the armature coil 38 may be supplied to the upper surface of the armature coil 38, or may be supplied to both the upper surface and the lower surface of the armature coil. In the reticle stage 5 and the substrate stage 6 having the above-described configuration, when changing the scanning direction according to the imaging characteristics and pattern characteristics of the projection optical system 4, the current supplied to the armature coil 38 must be controlled. Can be easily implemented. Therefore, in the scanning exposure apparatus, the scanning exposure method, and the micro device according to the present embodiment, the same operation and effect as those of the first embodiment can be obtained. In addition, in the present embodiment, since the thermal effect on the reticle R and the glass substrate P due to the heat generated by the armature coil 38 can be effectively reduced, the interference for measuring the positions of the reticle R and the glass substrate P can be reduced. Air fluctuation of the measuring beam can be suppressed. Therefore, high-speed and high-precision position control of the reticle R and the glass substrate P can be performed, and as a result, exposure can be performed with high exposure accuracy while improving throughput.
なお、 上記実施の形態では、 レチクルステージ 5と基板ステージ 6との双方に 平面モ一夕装置を設ける構成としたが、 どちらか一方のステージにのみ設ける構 成であってもよい。 更に、 レチクルステージ 5と基板ステージ 6とは、 1つに限 らず複数配置してもよい。 1台の露光装置に複数のレチクルステージ 5と基板ス テージ 6とを配設することにより、 露光装置のスループットを上げることができ る o  In the above-described embodiment, the configuration is such that the planar module is provided on both the reticle stage 5 and the substrate stage 6, but it may be provided on only one of the stages. Further, the reticle stage 5 and the substrate stage 6 are not limited to one, and may be a plurality. By arranging multiple reticle stages 5 and substrate stages 6 in one exposure apparatus, the throughput of the exposure apparatus can be increased.o
また、 上記実施の形態において、 投影光学系 4の結像特性に応じて走査方向を 変更する場合に画面合成法により複数のレチクル Rのパターンをガラス基板 Pに 露光する構成としたが、 これに限られることなく、 1枚のレチクル Rでガラス基 板 P全面を露光する構成であってもよい。 また、 上記実施の形態において、 レチ クル Rのパターンが露光される基板を液晶表示素子用のガラス基板としたが、 半 導体デバイス用のウェハや、 薄膜磁気へヅ ド用のセラミックウェハ、 あるいは露 光装置で用いられるマスクまたはレチクルの原版 (合成石英、 シリコンウェハ) に露光するような構成でもよい。  Further, in the above embodiment, when the scanning direction is changed according to the imaging characteristics of the projection optical system 4, the pattern of the plurality of reticles R is exposed on the glass substrate P by the screen combining method. The configuration is not limited, and the entire surface of the glass substrate P may be exposed by one reticle R. In the above embodiment, the substrate on which the pattern of the reticle R is exposed is a glass substrate for a liquid crystal display element. However, a wafer for a semiconductor device, a ceramic wafer for a thin film magnetic head, or A configuration in which an original mask (synthetic quartz, silicon wafer) of a mask or a reticle used in an optical device is exposed may be used.
そして、 両ステージ 5 , 6の走査方向を X方向または Y方向とする構成とした が、 これに限定されるものではなく、 例えば、 一方向に投影光学系が複数列設さ れる、 いわゆるマルチレンズ式の場合、 各投影光学系の位置ずれを補正するため に、 この方向と直交する方向に対して微小角度ずれた方向を走査方向とする構成 であってもよい。 また、 上記実施の形態において、 フライアイインテグレ一夕 1 0が 9 0 ° 回転することで照明領域の方向を変更する構成としたが、 例えば図 8 に示すように、 照明領域が X方向に延在するようにレンズが配置された光学素子Although the scanning direction of both stages 5 and 6 is set to the X direction or the Y direction, the present invention is not limited to this. For example, a so-called multi-lens in which a plurality of rows of projection optical systems are provided in one direction. In the case of the formula, in order to correct the positional deviation of each projection optical system, a configuration may be adopted in which a direction deviated by a small angle from a direction orthogonal to this direction is set as the scanning direction. In the above embodiment, the fly eye integrator 1 Although the direction of the illumination area is changed by rotating 0 by 90 °, for example, as shown in FIG. 8, an optical element in which a lens is arranged so that the illumination area extends in the X direction
2 4と、 照明領域が Y方向に延在するようにレンズが配置された光学素子 2 5と を X方向に並列配置して、 このフライアイインテグレー夕 1 0を走査方向に応じ て X方向に往復移動させるような構成であってもよい。 (この場合、 ブラインド - 1 1も同様の構成とする。 ) 24 and an optical element 25 in which a lens is arranged so that the illumination area extends in the Y direction are arranged in parallel in the X direction, and this fly-eye integrator 10 is arranged in the X direction according to the scanning direction. It may be configured to reciprocate. (In this case, the blind-11 has the same configuration.)
なお、 露光装置の種類としては、 液晶表示デバイス用の露光装置に限定される ことなく、 例えば、 半導体デバイス製造用の露光装置や、 薄膜磁気ヘッド、 撮像 素子 (C C D ) あるいはレチクル Rを製造するための露光装置にも広く適用でき る o  The type of the exposure apparatus is not limited to an exposure apparatus for a liquid crystal display device. For example, an exposure apparatus for manufacturing a semiconductor device, a thin film magnetic head, an imaging device (CCD), or a reticle R is manufactured. Widely applicable to all types of exposure equipment o
また、 照明光学系 3の光源としては、 水銀ランプから発生する輝線 (g線 (4 The light source of the illumination optical system 3 is a bright line (g-line (4
3 6 nm)、 h線 ( 4 0 4 . 7 nm) 、 i線 (3 6 5 nm) }、 K r Fエキシマ レ一ザ (2 4 8 nm) 、 A r Fエキシマレ一ザ ( 1 9 3 nm) 、 F 2レーザ ( 1 5 7 nm) のみならず、 X線や電子線などの荷電粒子線を用いることができる。 例 えば、 電子線を用いる場合には電子銃として、 熱電子放射型のランタンへキサボ ライ ト (L a B 6 ) 、 タンタル (T a ) を用いることができる。 さらに、 電子線を 用いる場合は、 レチクル Rを用いる構成としてもよいし、 レチクル Rを用いずに 直接ガラス基板 P上にパターンを形成する構成としてもよい。 また、 Y A Gレー ザや半導体レーザ等の高周波などを用いてもよい。 36 nm), h-line (404.7 nm), i-line (365 nm)}, KrF excimer laser (248 nm), ArF excimer laser (1933) nm), not only the F 2 laser (1 5 7 nm), it is possible that uses charged particle beams such as X-ray or electron beam. For example, when an electron beam is used, thermionic emission type lanthanum hexaborite (L a B 6 ) or tantalum (T a) can be used as the electron gun. Further, when an electron beam is used, a configuration using a reticle R may be used, or a configuration in which a pattern is formed directly on the glass substrate P without using the reticle R may be used. Alternatively, a high frequency such as a YAG laser or a semiconductor laser may be used.
投影光学系 4の倍率は、 等倍系のみならず縮小系および拡大系のいずれでもよ い。 また、 投影光学系 4としては、 エキシマレ一ザなどの遠紫外線を用いる場合 は硝材として石英や蛍石などの遠紫外線を透過する材料を用い、 F 2レーザや X線 を用いる場合は反射屈折系または屈折系の光学系にし (レチクルも反射型タイプ のものを用いる。 ) 、 また電子線を用いる場合には光学系として電子レンズおよ び偏向器からなる電子光学系を用いればよい。 なお、 電子線が通過する光路は、 真空状態にすることはいうまでもない。 また、 投影光学系 4を用いることなく、 レチクル Rとガラス基板 Pとを密接させてレチクル Rのパターンをガラス基板 P に露光するプロキシミティ露光装置にも適用することができる。 The magnification of the projection optical system 4 may be not only the same magnification system but also any of a reduction system and an enlargement system. Further, as the projection optical system 4, using a material which transmits far ultraviolet rays such as quartz and fluorite as the glass material when using far ultraviolet rays such as excimer one The catadioptric system when using the F 2 laser or X-ray Alternatively, a refraction type optical system may be used (a reticle of a reflection type may be used). When an electron beam is used, an electron optical system including an electron lens and a deflector may be used as the optical system. It goes without saying that the optical path through which the electron beam passes is in a vacuum state. Further, the present invention can also be applied to a proximity exposure apparatus that exposes the pattern of the reticle R to the glass substrate P by bringing the reticle R and the glass substrate P into close contact with each other without using the projection optical system 4.
レチクルステージ 5や基板ステージ 6にリ二ァモ一夕 (USP5,623,853または US P5, 528, 118参照) を用いる場合は、 エアペアリングを用いたエア浮上型および口 —レンツ力またはリアクタンス力を用いた磁気浮上型のどちらを用いてもよい。 また、 各ステージ 5 , 6は、 ガイ ドに沿って移動するタイプでもよく、 ガイ ドを 設けないガイ ドレス夕イブであってもよい。 Reynamo stage (USP5,623,853 or USP) for reticle stage 5 and substrate stage 6 (See P5, 528, 118), either an air levitation type using air pairing or a magnetic levitation type using mouth-Lenz force or reactance force may be used. Each of the stages 5 and 6 may be of a type that moves along a guide, or may be a guideless evening without a guide.
この場合、 基板ステージ 6の移動により発生する反力は、 投影光学系 4に伝わ らないように、 特開平 8— 1 6 6 4 7 5号公報 (USP5, 528,118) に記載されてい るように、 フレーム部材を用いて機械的に床 (大地) に逃がしてもよい。 本発明 はこのような構造を備えた走査型露光装置においても適用可能である。 また、 レ チクルステージ 5の移動により発生する反力は、 投影光学系 4に伝わらないよう に、 特開平 8— 3 3 0 2 2 4号公報 (US S/N 08/416, 558) に記載されているよう に、 フレーム部材を用いて機械的に床 (大地) に逃がしてもよい。 本発明はこの ような構造を備えた走査型露光装置においても適用可能である。  In this case, a reaction force generated by movement of the substrate stage 6 is described in Japanese Patent Application Laid-Open No. 8-166645 (US Pat. No. 5,528,118) so that the reaction force is not transmitted to the projection optical system 4. As described above, a frame member may be used to mechanically escape to the floor (ground). The present invention is also applicable to a scanning exposure apparatus having such a structure. Also, a reaction force generated by movement of the reticle stage 5 is described in Japanese Patent Application Laid-Open No. H08-330224 (US S / N 08/416, 558) so as not to be transmitted to the projection optical system 4. As described above, the material may be mechanically released to the floor (ground) using a frame member. The present invention is also applicable to a scanning exposure apparatus having such a structure.
なお、 照明光学系 3、 投影光学系 4を露光装置本体に組み込み光学調整をする とともに、 多数の機械部品からなるレチクルステージ 5や基板ステージ 6を露光 装置本体に取り付けて配線や配管を接続し、 更に総合調整 (電気調整、 動作確認 等) をすることにより本実施の形態の走査型露光装置を製造することができる。 この走査型露光装置の製造は、 温度およびクリーン度が管理されたクリーンル一 ムで行うことが望ましい。  In addition, the illumination optical system 3 and the projection optical system 4 were incorporated into the main body of the exposure apparatus for optical adjustment, and the reticle stage 5 and the substrate stage 6 composed of many mechanical parts were attached to the main body of the exposure apparatus, and wiring and piping were connected. Further, by performing comprehensive adjustment (electrical adjustment, operation check, etc.), the scanning exposure apparatus of the present embodiment can be manufactured. It is desirable that the manufacture of this scanning type exposure apparatus be performed in a clean room where the temperature and cleanliness are controlled.
液晶表示デバイスは、 図 1 2に示すように、 液晶表示デバイスの機能 ·性能設 計を行うステップ 2 0 1、 この設計ステップに基づいたレチクル R (マスク) を 製作するステップ 2 0 2、 石英等からガラス基板 P、 またはシリコン材料からゥ ェハを製作するステップ 2 0 3、 前述した実施の形態の走査型露光装置 1により レチクル Rのパターンをガラス基板 P (ウェハ) に露光するステップ 2 0 4、 液 晶表示デノ スを組み立てるステップ (ウェハの場合、 ダイシング工程、 ボンデ ィング工程、 パッケージ工程を含む) 2 0 5、 検査ステップ 2 0 6等を経て製造 される。  As shown in Fig. 12, the liquid crystal display device has a step 201 for designing the function and performance of the liquid crystal display device, a step 202 for manufacturing a reticle R (mask) based on this design step, quartz, etc. Step 203 of fabricating a wafer from a glass substrate P or a silicon material from a silicon material Step of exposing the pattern of a reticle R to a glass substrate P (wafer) by the scanning exposure apparatus 1 of the above-described embodiment It is manufactured through a step of assembling a liquid crystal display lens (in the case of a wafer, including a dicing step, a bonding step, and a package step) 205, an inspection step 206, and the like.
産業上の利用可能性  Industrial applicability
本発明は、 レチクルと基板とを所定方向に同期移動して、 レチクルに形成され たパターンを前記基板に露光する走査型露光装置およびその方法、 並びにこの走 査型露光装置による露光工程を経て製造されるマイクロデバイスに関する。 The present invention relates to a scanning type exposure apparatus and method for synchronously moving a reticle and a substrate in a predetermined direction and exposing a pattern formed on the reticle to the substrate, and a scanning exposure apparatus. 1. Field of the Invention The present invention relates to a micro device manufactured through an exposure process using a check type exposure apparatus.
本発明の走査型露光装置および走査型露光方法によれば、 レチクルを保持する レチクルステージと、 基板を保持する基板ステージとが同期移動して、 レチクル に形成されたパターンを基板に露光する所定方向を変更装置が変更するので、 露 光時の状況に応じて適宜走査方向を変更することができ、 パターンの重ね合わせ、 継ぎ、 および継ぎ部の重ね合わせにおいて各精度を向上させることができる。 ま た、 変更装置がレチクルに形成されたパターンに応じて所定方向を変更するので、 レチクルのパターンに応じて適宜走査方向を変更することができ、 パターンの重 ね合わせ、 継ぎ、 および継ぎ部の重ね合わせにおいて各精度が向上する。 そして、 レチクルと基板との間に投影光学系が配置されており、 変更装置がこの投影光学 系の結像特性に応じて所定方向を変更する構成となっているので、 投影光学系の 結像特性に応じて適宜走査方向を変更することができ、 パターンの重ね合わせ、 継ぎ、 および継ぎ部の重ね合わせにおいて各精度が向上する。 さらに、 変更装置 がレチクルステージと基板ステージとを所定方向へ同期移動させた後に、 所定方 向を変更してレチクルステージと基板ステージとを同期移動させる構成となって いるので、 一方向における倍率誤差等を二方向の走査を行うことで分散、 緩和で きる。 また、 設定装置が、 所定方向への同期移動の際に基板にパターンを露光す る第 1エネルギ量と、 所定方向を変更した同期移動の際に基板にパターンを露光 する第 2エネルギ量とを設定する構成となっているので、 例えば露光装置を変え て露光する際にも、 その装置に装着された投影光学系に応じて、 その都度適正な エネルギ量で露光できる。 そして、 制御装置が、 複数のレチクルのパターンの一 部をつなぎ合わせるように、 レチクルステージと基板ステージとを制御している ので、 複数のレチクルのパターンで基板のパターン一層を合成する画面合成法を 採用しての露光も容易、 且つ確実に行うことができる。 また、 レチクルステージ と基板ステージとの少なくとも一方のステージが、 保持部を介してレチクルまた は基板をベースに沿って平面駆動する平面モー夕装置を備えているので、 レチク ルゃ基板の位置を計測する干渉計ビームの空気揺らぎ等を抑制することができる。 従って、 レチクルや基板に対して高速且つ高精度の位置制御が可能になり、 結果 的にスループットを向上しつつ高い露光精度で露光を行うことが可能になる。 一方、 本発明のマイクロデバイスによれば、 上記走査型露光装置による露光ェ 程を経て製造されるので、 パターンの重ね合わせ、 継ぎ、 および継ぎ部の重ね合 わせが高精度に行われることで、 デバイス特性が低下することなく、 所望のデバ ィス特性を発現することが可能になる。 According to the scanning type exposure apparatus and the scanning type exposure method of the present invention, the reticle stage holding the reticle and the substrate stage holding the substrate are synchronously moved to expose the pattern formed on the reticle onto the substrate in a predetermined direction. Since the changing device changes the scanning direction, it is possible to appropriately change the scanning direction according to the situation at the time of exposure, and it is possible to improve each accuracy in the overlapping of the patterns, the joining, and the overlapping of the joining portions. In addition, since the changing device changes the predetermined direction according to the pattern formed on the reticle, the scanning direction can be changed as appropriate according to the pattern of the reticle. Each accuracy is improved in the superposition. The projection optical system is arranged between the reticle and the substrate, and the changing device is configured to change the predetermined direction according to the imaging characteristics of the projection optical system. The scanning direction can be appropriately changed according to the characteristics, and the accuracy of each of the overlapping of the patterns, the joining, and the overlapping of the joints is improved. Further, since the changing device synchronously moves the reticle stage and the substrate stage in a predetermined direction and then changes the predetermined direction to synchronously move the reticle stage and the substrate stage, a magnification error in one direction is obtained. Dispersion and relaxation can be achieved by scanning in two directions. Further, the setting device determines a first energy amount for exposing the pattern to the substrate during the synchronous movement in the predetermined direction and a second energy amount for exposing the pattern to the substrate during the synchronous movement in the predetermined direction. Since the setting is made, for example, even when exposing by changing the exposure apparatus, it is possible to perform exposure with an appropriate energy amount each time according to the projection optical system mounted on the apparatus. Since the control device controls the reticle stage and the substrate stage so as to connect a part of the patterns of the plurality of reticles, a screen combining method for combining one pattern of the substrate with the patterns of the plurality of reticles is used. Exposure by adoption can be performed easily and reliably. In addition, since at least one of the reticle stage and the substrate stage is provided with a plane motor that drives the reticle or the substrate along the base via the holding unit, the position of the reticle is measured. Air fluctuations of the interferometer beam can be suppressed. Accordingly, high-speed and high-accuracy position control of the reticle and the substrate can be performed, and as a result, exposure can be performed with high exposure accuracy while improving throughput. On the other hand, according to the microdevice of the present invention, since the microdevice is manufactured through the exposure process by the above-mentioned scanning exposure apparatus, the pattern is superimposed, spliced, and superimposed at the spliced portion with high accuracy. Desired device characteristics can be exhibited without deteriorating device characteristics.

Claims

請求の範囲 The scope of the claims
1 . パターンが形成されたレチクルと基板とを所定方向に同期移動して、 前 記パターンを前記基板に露光する走査型露光装置において、 1. A scanning exposure apparatus that synchronously moves a reticle on which a pattern is formed and a substrate in a predetermined direction and exposes the substrate to the pattern.
前記レチクルを保持して前記所定方向に沿って移動するレチクルステージと、 前記基板を保持して前記所定方向に沿って移動する基板ステージと、 前記所定方向を変更して、 前記レチクルステージと前記基板ステージとを前記 同期移動させる変更装置とを備えたことを特徴とする走査型露光装置。  A reticle stage holding the reticle and moving along the predetermined direction; a substrate stage holding the substrate and moving along the predetermined direction; changing the predetermined direction, the reticle stage and the substrate A scanning exposure apparatus, comprising: a changing device that moves the stage synchronously.
2 . 前記変更装置は、 前記パターンに応じて前記所定方向を変更することを 特徴とする請求の範囲第 1項記載の走査型露光装置。 2. The scanning exposure apparatus according to claim 1, wherein the changing device changes the predetermined direction according to the pattern.
3 . 前記レチクルと前記基板との間には、 前記パターンを前記基板に投影す る投影光学系が配設されており、 3. A projection optical system for projecting the pattern on the substrate is provided between the reticle and the substrate,
前記変更装置は、 前記投影光学系の結像特性に応じて前記所定方向を変更する ことを特徴とする請求の範囲第 1項記載の走査型露光装置。  2. The scanning exposure apparatus according to claim 1, wherein the changing device changes the predetermined direction according to an imaging characteristic of the projection optical system.
4 . 前記変更装置は、 前記レチクルステージと前記基板ステージとを前記所 定方向へ同期移動させた後に、 前記所定方向を変更して前記レチクルステージと 前記基板ステ一ジとを同期移動させることを特徴とする請求の範囲第 1項記載の 4. The changing device, after synchronously moving the reticle stage and the substrate stage in the predetermined direction, changing the predetermined direction and synchronously moving the reticle stage and the substrate stage. The feature described in claim 1
5 . 前記所定方向への同期移動の際に前記基板に前記パターンを露光する第 1エネルギ量と、 前記所定方向を変更した同期移動の際に前記基板に前記パター ンを露光する第 2エネルギ量とを設定する設定装置を備えたことを特徴とする請 求の範囲第 4項記載の走査型露光装置。 5. A first energy amount for exposing the pattern to the substrate during the synchronous movement in the predetermined direction, and a second energy amount for exposing the pattern to the substrate during the synchronous movement changing the predetermined direction. 5. The scanning exposure apparatus according to claim 4, further comprising: a setting device for setting the scanning exposure apparatus.
6 . 前記レチクルを交換するレチクル交換装置と、 6. A reticle exchange device for exchanging the reticle,
複数のレチクルのパターンの一部をつなぎ合わせるように、 前記レチクルステ —ジと前記基板ステージとを制御する制御装置を設けたことを特徴とする請求の 範囲第 1項記載の走査型露光装置。 The reticle step is carried out so that a part of a plurality of reticle patterns are joined. 3. The scanning exposure apparatus according to claim 1, further comprising a control device for controlling the edge and the substrate stage.
7 . 前記レチクルステージと前記基板ステージとの少なくとも一方のステー ジは、 ベースと、 前記レチクルまたは前記基板を保持して前記ベースの上方に浮 上支持される保持部と、 該保持部を前記ベースに沿って平面駆動する平面モ一夕 装置とを備えることを特徴とする請求の範囲第 1項記載の走査型露光装置。 7. At least one stage of the reticle stage and the substrate stage includes a base, a holding portion that holds the reticle or the substrate and is supported above the base and floats the holding portion, and 2. The scanning type exposure apparatus according to claim 1, further comprising: a planar motor that drives a plane along the plane.
8 . パターンが形成されたレチクルと基板とを所定方向に同期移動して、 前 記パターンを前記基板に露光する走査型露光方法において、 8. A scanning exposure method for synchronously moving a reticle on which a pattern is formed and a substrate in a predetermined direction and exposing the pattern to the substrate,
前記所定方向を変更して、 前記レチクルと前記基板とを前記同期移動させて前 記パターンを基板に露光することを特徴とする走査型露光方法。  A scanning exposure method, wherein the predetermined direction is changed, and the reticle and the substrate are moved synchronously to expose the pattern to the substrate.
9 . 前記パターンに応じて前記所定方向を変更することを特徴とする請求の 範囲第 8項記載の走査型露光装置。 9. The scanning exposure apparatus according to claim 8, wherein the predetermined direction is changed according to the pattern.
1 0 . 前記パターンは投影光学系により前記基板に投影され、 10. The pattern is projected onto the substrate by a projection optical system,
前記投影光学系の結像特性に応じて前記所定方向を変更することを特徴とする 請求の範囲第 8項記載の走査型露光装置。  9. The scanning exposure apparatus according to claim 8, wherein the predetermined direction is changed according to an imaging characteristic of the projection optical system.
1 1 . 前記パターンは、 複数のレチクルのパターンの一部をつなぎ合わせて形 成されることを特徴とする請求の範囲第 8項記載の走査型露光装置。 9. The scanning exposure apparatus according to claim 8, wherein said pattern is formed by joining a part of patterns of a plurality of reticles.
1 2 . 前記レチクルの移動と前記基板の移動との少なくとも一方は電磁力を用 いて行われることを特徴とする請求の範囲第 8項記載の走査型露光装置。 12. The scanning exposure apparatus according to claim 8, wherein at least one of the movement of the reticle and the movement of the substrate is performed by using an electromagnetic force.
1 3 . マスクのパターンを基板に露光する露光工程を経て製造されるマイク 口デバイスであって、 1 3. A microphone device manufactured through an exposure step of exposing a mask pattern to a substrate,
請求の範囲第 1項に記載された露光装置により前記露光工程が施されることを 特徴とするマイクロデバイス。 Claims that the exposure step is performed by the exposure apparatus according to claim 1. Characteristic micro device.
PCT/JP1999/004285 1998-08-24 1999-08-09 Method and apparatus for scanning exposure, and micro device WO2000011707A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU50667/99A AU5066799A (en) 1998-08-24 1999-08-09 Method and apparatus for scanning exposure, and micro device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP23780698 1998-08-24
JP10/237806 1998-08-24

Publications (1)

Publication Number Publication Date
WO2000011707A1 true WO2000011707A1 (en) 2000-03-02

Family

ID=17020696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/004285 WO2000011707A1 (en) 1998-08-24 1999-08-09 Method and apparatus for scanning exposure, and micro device

Country Status (2)

Country Link
AU (1) AU5066799A (en)
WO (1) WO2000011707A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100838A1 (en) * 2002-05-23 2003-12-04 Nikon Corporation Scanning projection aligner and aligning method
JP2005018074A (en) * 2003-06-27 2005-01-20 Samsung Electronics Co Ltd Exposure method, and method for manufacturing thin film transistor substrate for liquid crystal display by using same
WO2007083965A1 (en) * 2006-01-20 2007-07-26 Semicon Tech Global Limited Apparatus for automatically venting photoresist
JP2008277318A (en) * 2007-04-25 2008-11-13 Elpida Memory Inc Pattern forming method
WO2011086882A1 (en) * 2010-01-18 2011-07-21 凸版印刷株式会社 Method for exposing color filter base
WO2011086892A1 (en) * 2010-01-18 2011-07-21 凸版印刷株式会社 Method for exposing color filter base
JP2014045041A (en) * 2012-08-24 2014-03-13 Sharp Corp Exposure apparatus, exposure method, and method for manufacturing electronic device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01120019A (en) * 1987-11-02 1989-05-12 Nec Corp Pattern formation of semiconductor device
JPH10223527A (en) * 1996-12-06 1998-08-21 Nikon Corp Aligner

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01120019A (en) * 1987-11-02 1989-05-12 Nec Corp Pattern formation of semiconductor device
JPH10223527A (en) * 1996-12-06 1998-08-21 Nikon Corp Aligner

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003100838A1 (en) * 2002-05-23 2003-12-04 Nikon Corporation Scanning projection aligner and aligning method
JP2005018074A (en) * 2003-06-27 2005-01-20 Samsung Electronics Co Ltd Exposure method, and method for manufacturing thin film transistor substrate for liquid crystal display by using same
US7595207B2 (en) 2003-06-27 2009-09-29 Samsung Electronics, Co., Ltd. Method of exposing layer with light and method of manufacturing thin film transistor substrate for liquid crystal display device using the same
WO2007083965A1 (en) * 2006-01-20 2007-07-26 Semicon Tech Global Limited Apparatus for automatically venting photoresist
JP2008277318A (en) * 2007-04-25 2008-11-13 Elpida Memory Inc Pattern forming method
WO2011086882A1 (en) * 2010-01-18 2011-07-21 凸版印刷株式会社 Method for exposing color filter base
WO2011086892A1 (en) * 2010-01-18 2011-07-21 凸版印刷株式会社 Method for exposing color filter base
CN102713694A (en) * 2010-01-18 2012-10-03 凸版印刷株式会社 Method for exposing color filter base
US8830610B2 (en) 2010-01-18 2014-09-09 Toppan Printing Co., Ltd. Exposure method for color filter substrate
US8908302B2 (en) 2010-01-18 2014-12-09 Toppan Printing Co., Ltd. Exposure method for color filter substrate
JP2014045041A (en) * 2012-08-24 2014-03-13 Sharp Corp Exposure apparatus, exposure method, and method for manufacturing electronic device

Also Published As

Publication number Publication date
AU5066799A (en) 2000-03-14

Similar Documents

Publication Publication Date Title
KR101240130B1 (en) Exposure device, exposure method, and micro device manufacturing method
TWI452437B (en) An exposure method, a pattern forming method, and an exposure apparatus, and an element manufacturing method
US20120056105A1 (en) Movable body apparatus, object processing device, exposure apparatus, flat-panel display manufacturing method, and device manufacturing method
US20090073407A1 (en) Exposure apparatus and exposure method
US8917378B2 (en) Exposure method, exposure apparatus, and method for producing device with plurality of projection optical systems and pattern having first partial pattern area and second partial area having overlaid area with first partial pattern area
WO1999066370A1 (en) Method for producing mask
KR20010031353A (en) Lens array photolithography
US6937319B2 (en) Exposure method and apparatus with vibration-preventative control
US6366342B2 (en) Drive apparatus, exposure apparatus, and method of using the same
JP2007052214A (en) Scanning exposure apparatus and method for manufacturing microdevice
US7184127B2 (en) Exposure apparatus having separately supported first and second shades and method for manufacturing semiconductor device
JP2007101592A (en) Scanning exposure apparatus and method for manufacturing microdevice
JP2007199711A (en) Exposure system and method, and device manufacturing system and method
JP2000047390A (en) Exposure device and its production
WO2000011707A1 (en) Method and apparatus for scanning exposure, and micro device
US6654099B2 (en) Scanning exposure apparatus, scanning exposure method and mask
JP6855008B2 (en) Exposure equipment, flat panel display manufacturing method, device manufacturing method, and exposure method
JP2007025085A (en) Exposure device, optical element array and multispot beam generator, and device manufacturing method
JP4482998B2 (en) Scanning exposure method, scanning exposure apparatus, and device manufacturing method
JP2001305745A (en) Scanning exposure system and scanning type exposure device
JP2003031462A (en) Method of exposure and exposure system
JP2000058422A (en) Aligner
JP2005026614A (en) Exposure device
JP2003031646A (en) Stage unit and aligner
JP2003059817A (en) Exposure method aligner and micro-device manufacturing method

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW SD SL SZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase