WO2003100449A1 - Magnetic sensor and direction sensor - Google Patents

Magnetic sensor and direction sensor Download PDF

Info

Publication number
WO2003100449A1
WO2003100449A1 PCT/JP2002/005170 JP0205170W WO03100449A1 WO 2003100449 A1 WO2003100449 A1 WO 2003100449A1 JP 0205170 W JP0205170 W JP 0205170W WO 03100449 A1 WO03100449 A1 WO 03100449A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
sensor
substrate
detecting
coil
Prior art date
Application number
PCT/JP2002/005170
Other languages
French (fr)
Japanese (ja)
Inventor
Yasuhiro Tamura
Original Assignee
Vitec Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vitec Co., Ltd. filed Critical Vitec Co., Ltd.
Priority to PCT/JP2002/005170 priority Critical patent/WO2003100449A1/en
Priority to JP2004507855A priority patent/JPWO2003100449A1/en
Priority to AU2002256927A priority patent/AU2002256927A1/en
Priority to TW092112640A priority patent/TWI287101B/en
Publication of WO2003100449A1 publication Critical patent/WO2003100449A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C17/00Compasses; Devices for ascertaining true or magnetic north for navigation or surveying purposes
    • G01C17/02Magnetic compasses
    • G01C17/28Electromagnetic compasses
    • G01C17/30Earth-inductor compasses
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/0206Three-component magnetometers

Definitions

  • the present invention relates to a mobile terminal device, and more particularly to a position information display system in which map information for displaying a current position on a display unit of a mobile phone rotates in response to a change in direction due to movement of the mobile phone.
  • the present invention relates to a technology for detecting geomagnetism used to realize an information display system.
  • a navigation system that displays the current position on a terminal device, for example, mounted on a vehicle, uses a GPS (Global Positioning System).
  • GPS measures the current position by transmitting the difference in the arrival times of radio waves from four or more satellites to the user via a ground-based control station.
  • the direction of travel can be obtained, for example, by calculating the amount of movement based on the signals from the gyro and GPS using the integration method.
  • the current position and traveling direction measured by GPS and gyro are displayed on the monitor along with map data.
  • the gyro and GPS travel at a speed of about 40 km / h or more are used for azimuth detection, so there is a time difference between the start point (display point) and the measurement point.
  • errors are accumulated because the received signal is calculated by the integration method. To correct this, the signal from the gyro is corrected, but the signal processing of the gyro itself is also calculated by the integration method. If there is an error in the original information itself, the error is maintained or expanded as it is. Will be displayed.
  • the map data displayed on the monitor as the vehicle moves simply scrolls forward, backward, left and right to display the current position. For this reason, the direction of the vehicle may not match the direction of movement on the map data, which may cause discomfort. Further, it is difficult to reduce the size of the azimuth detecting device, and the integration method as described above causes unevenness or error in azimuth detection. For this reason, the conventional position display system includes a mobile terminal device, This is particularly difficult to apply to mobile phones.
  • an object of the present invention is to provide a technology for displaying a map by recognizing a current position in a portable terminal device and a technology for a magnetic sensor and a direction sensor incorporated in the portable terminal device.
  • One embodiment of the present invention is a geomagnetic sensor that is built in a portable terminal device and has a magnetic detection element that detects each of the three-axis components of the geomagnetic vector formed on a substrate, wherein at least one magnetic detection element is an MR sensor.
  • MR sensor Magnetic MagneticEesistance
  • a geomagnetic sensor characterized by being an element or a Hall element. By making the MR element or hall element on the substrate, a small geomagnetic sensor can be realized.
  • Another aspect of the present invention is a magnetic sensor having a substrate with a magnetic detection element for detecting an axial component of a magnetic vector, wherein the magnetic detection element is an MR element or a Hall element,
  • the magnetic detection element is an MR element or a Hall element
  • the magnetic detecting element is preferably fixed to a polyimide film at least partially fixed to the substrate, and is preferably formed at a predetermined angle to the surface of the substrate.
  • the predetermined angle may be, for example, perpendicular to the surface of the substrate.
  • two magnetic detection elements are configured to stand upright on the surface of the substrate in order to detect magnetic components in the X-axis direction and the Y-axis direction. They may be arranged at an angle of 90 ° to each other.
  • the magnetic detection element for detecting the magnetic component in the Z-axis direction is formed on the surface of the substrate, and the Z-axis magnetic detection element does not necessarily need to be fixed to the polyimide film.
  • a three-axis sensor is when one magnetic sensing element is configured upright on the surface of a substrate. Then, a magnetic component in one axial direction may be detected, and two magnetic detecting elements may be formed on the surface of the substrate to detect two axial components of a vertical magnetic field and a horizontal magnetic field, respectively.
  • the magnetic detection element is configured so that the polyimide film is heated and thermally contracted so as to form an angle with respect to the surface of the substrate.
  • the heat shrinkage of polyimide it is possible to lift the magnetic sensing element from the surface of the substrate and erect it.
  • the surface of the polyimide film opposite to the side to which the magnetic detection element is fixed may be fixed to the pressing member.
  • Polyimide has the property of being very strongly thermally bonded to silicon when heated to high temperatures. Therefore, it is preferable that the pressing member is formed of silicon from the viewpoint of adhesion to the polyimide.
  • the substrate may be formed of silicon.
  • Still another embodiment of the present invention provides a geomagnetic sensor having a magnetic detection element that detects each of the three-axis components of the geomagnetic vector, and a tilt sensor that detects a tilt in the three-axis direction are integrally formed on one substrate.
  • a directional sensor provided.
  • the magnetic sensor and the tilt sensor are fabricated on a substrate.
  • Yet another aspect of the present invention is a magnetic sensor including a substrate with a magnetic detection element that detects an axial component of a magnetic vector, wherein the magnetic detection element is an MR element or a Hall element, and the surface of the substrate is To provide a magnetic sensor formed on a slope having a predetermined angle with respect to the magnetic sensor.
  • the slope may be a side wall of a scribe line formed for cutting a silicon wafer.
  • a sidewall having a predetermined angle is formed at the etching location due to the characteristics of the material, but the magnetic sensing element may be formed on such a sidewall.
  • FIG. 1 is a block diagram schematically showing a system according to the first embodiment of the present invention.
  • FIG. 2 is an exploded explanatory view showing an example of a magnetic detection unit included in the magnetic sensor.
  • FIG. 3 is an explanatory diagram of a magnetic vector for determining a rotation angle of map information.
  • FIG. 4 is an explanatory diagram showing map information of the current position specified by the GPS.
  • FIG. 5 is a diagram illustrating a process of processing map information by the map information display processing unit, and is an explanatory diagram illustrating a map that is classified and selected from the map information of FIG.
  • FIG. 6 is an explanatory diagram showing a map in a state where the selected map of FIG. 5 is rotated based on the azimuth.
  • FIG. 7 is a configuration diagram of a fluxgate magnetic sensor according to the second embodiment of the present invention.
  • FIG. 8 is a configuration diagram of the azimuth sensor according to the third embodiment of the present invention.
  • FIG. 9 is a diagram illustrating an example of the tilt sensor.
  • FIG. 10 is a diagram illustrating an example of the magnetic sensor.
  • Fig. 11 (a) is a diagram showing a state where the first magnetic sensing element is formed on the first silicon substrate
  • Fig. 11 (b) is a state where a polyimide film is adhered above the first magnetic sensing element.
  • Fig. 11 (c) is a top view of the polyimide film
  • Fig. 11 (d) is a diagram showing a state in which the polyimide film is bent upward to make the first magnetic sensing element stand upright.
  • FIG. 11 (e) is a view showing a state where the polyimide is fixed to the side of the second silicon substrate.
  • Fig. 12 (a) is a diagram showing the silicon wafer before dicing
  • Fig. 12 (b) is a partial cross-sectional view of the silicon wafer
  • Fig. 12 (c) is the magnetic detection on the side wall of the scribe line. It is a figure showing the state where the element was formed.
  • the purpose of the first embodiment is to make it possible to display the current position of the holder together with the map information on a small portable terminal device, mainly a mobile phone, and to rotate the map information as the portable terminal device moves in the direction.
  • the mobile terminal device is always displayed so that the traveling direction of the mobile terminal device is directed to a specific direction set in the plane of the display unit, and the position information of the GPS receiving unit is corrected by the azimuth information from the geomagnetic sensor. It is an object of the present invention to provide a position information display system which makes accumulation of error information as small as possible.
  • reference numeral 1 is a block diagram of a system according to a first embodiment of the present invention mounted on a mobile phone.
  • reference numeral 1 denotes a GPS receiver as a position detecting means, and the current longitude and latitude are calculated by the GPS satellite radio wave received from the antenna.
  • Numeral 2 denotes a terrestrial magnetism sensor serving as an azimuth detecting means, which comprises a sensor board in which a magnetic field detecting coil board 4 and an exciting coil board 5 are stacked above and below a sensor core 3.
  • a fluxgate magnetic sensor is illustrated as the azimuth detecting means 2, but other geomagnetic sensors may be used.
  • the flux gate type magnetic sensor include the magnetic sensors disclosed by the present inventors in, for example, JP-A-9-43332 and JP-A-11-118892. It does not matter whether the sensor core is a plate-shaped amorphous core or a ring-shaped amorphous core.
  • Other geomagnetic sensors using Hall elements or magnetoresistive elements are conceivable. Both are preferably small enough to be mounted on a portable terminal device and have high sensitivity.
  • FIG. 2 is an exploded view of a specific example of the magnetic detection unit 100 included in the magnetic sensor.
  • the sensor core 3 is formed by cutting amorphous thin plates in a ring shape, and etching them as if wound with a toroidal core.
  • the magnetic field detection coil substrate 4 includes a first detection coil substrate 41 having a coil pattern 41 a for forming an X-axis direction component magnetic field detection coil, and a coil pattern 42 a for forming a Y-axis direction component magnetic field detection coil. And a second detection coil substrate 42.
  • the first detection coil board 41 has two X coil boards 411 that are stacked so as to be mutually conductive so as to sandwich the sensor core 3 from above and below.
  • Each X-coil board 4 1 1 forms an X-coil pattern 4 1 a for the X-axis component magnetic field detection coil on the surface of the epoxy board, and a terminal for connecting each X-coil pattern 4 1 a on the periphery.
  • the second detection coil substrate 42 has two Y coil substrates 421, which are stacked so as to be conductive with each other so as to sandwich the sensor core 3 from above and below.
  • Each Y-coil substrate 4 21 forms a Y-coil pattern 4 2a for the Y-axis component magnetic field detection coil on the surface of the epoxy substrate, while a terminal for connecting each Y-coil pattern 4 2a on the periphery. Formed through holes 4 2 b.
  • the excitation coil substrate 5 has two excitation coil substrates 51 and 52 that are stacked so as to be mutually conductive so as to sandwich the sensor core 3 from above and below.
  • Each of the excitation coil substrates 51 and 52 has excitation coil patterns 51a and 52a formed on the surface of the epoxy substrate, and through holes 51b and 136b for terminals for connecting the excitation coil patterns on the peripheral edge. 5 2b is formed.
  • the magnetic detection unit 100 is formed by laminating the sensor core 3, the magnetic field detection coil substrate 4, and the excitation coil substrate 5 sequentially around the sensor core 3 and pressing the sensor core 3 to form a layer.
  • the sensor core 3 is saturated by passing an alternating current around the sensor core 3.
  • the timing at which the sensor core 3 saturates appears evenly when going in the positive direction and when going in the negative direction of the alternating current.
  • the magnetic field is superimposed on the magnetic field generated in the sensor core 3 by either the above-mentioned positive or negative current, and the saturation of the sensor core 3 in that direction occurs.
  • a sense coil is wound around the sensor core 3, and the imbalance of the saturated state is externally detected as a voltage.
  • Reference numeral 6 denotes a CPU, which performs predetermined arithmetic processing based on the input position signal from the GPS receiver 1 and the azimuth signal from the magnetic sensor 2 to measure the current position (longitude, latitude, and azimuth). Is read out from the map information recording section 7 and displayed on the display 91 of the position information display section 9 together with the current location index. At the same time, the position information display section 9 sounds and displays the current position, direction, and the like with synthesized speech.
  • the position information from the GPS receiver 1 and the azimuth information from the magnetic sensor 2 complement each other. Calculates from changes in the location information of GPS receiver 1 due to movement of the mobile terminal device Thus, the azimuth information can be obtained. By comparing this azimuth information with the azimuth information from the magnetic sensor 2 and determining that the azimuth information from the magnetic sensor 2 is positive, the start point can be determined. This makes it possible to return the position information of the GPS receiver 1 to the start time, and to return the integrated and accumulated error information to zero.
  • the map information display processing unit 8 rotates the map information of the current position displayed on the display 91 by a required angle, if necessary, and moves the current position index on the map information of the current position (the direction in which the magnetic sensor is facing). Is displayed so that always faces the top of the display. This will be described with reference to FIG.
  • the azimuth signal from the magnetic sensor 2 is input to the CPU 6 as an analog value obtained by decomposing the detected geomagnetism into a magnetic field vector value in the X-axis direction (east-west direction) and a magnetic field vector in the Y-axis direction (north-south direction).
  • the CPU 6 converts this input signal into a digital signal by AZD.
  • the resolution of the magnetic field vector values in the X-axis direction and the Y-axis direction can be increased by using a predetermined correction parameter stored in EEP-ROM. Assuming that the magnetic north direction is 0 degrees, the clockwise rotation angle to the composite vector T (representing the direction of the magnetic sensor) of the X-axis magnetic field vector value XI and the Y-axis magnetic field vector value Y1 (Azimuth) ⁇ is obtained by the following equation.
  • the azimuth angle can be calculated by calculation logic that does not use a correction parameter for the magnetic field vector value in each direction.
  • map information display processing unit 8 The processing steps of the map information display processing unit 8 will be described with reference to FIGS. For example, suppose that the user of the mobile terminal device is currently located at the corner of Gakuin University on Shinjuku Station Chuo-dori and is facing northeast (with an azimuth angle of 45 degrees). The corresponding longitude and latitude map information (see Fig. 4) is called from the map information recording unit 7 by the position signal from the GPS receiving unit 1. Then, map information in a range matching the size of the display screen (for example, 200 dots X 200 dots) centering on the current position P is selected. At this time, the selected map information A is map information in a range rotated clockwise by the azimuth angle ⁇ obtained by the azimuth signal from the magnetic sensor 2 (see FIG. 5).
  • the display processing unit 8 selects Map information A is rotated counterclockwise by the azimuth and displayed as corrected (see Fig. 6).
  • the map information B is a map in which the direction in which the magnetic sensor 2 faces (the traveling direction) is always set to the upper side of the display 91.
  • the map information display processing unit 8 performs the same processing as above each time, and always displays the map information in which the traveling direction is directed to the upper side of the display.
  • the map information display processing section 8 converts the characters and symbols included in the map information displayed on the display 91 without rotating the map information when the map information is rotated based on the azimuth.
  • the original positional relationship is maintained in the upper side direction.
  • characters and the like are also rotated by the azimuth and displayed without performing such processing.
  • the characters and symbols written in the horizontal direction also maintain the mode written in the horizontal direction when the map information is rotated and displayed. This makes it easier to visually recognize information such as characters.
  • the destination may be input by using a key of the mobile terminal device.
  • the shortest route to the destination and the required time are calculated based on the map information, and these are displayed on the display of the position information display unit or by the audio output unit. Also, if the received or measured position information of the GPS receiving unit and the azimuth information of the magnetic sensor are temporarily recorded, the trajectory of the mobile terminal device can be confirmed later based on the information.
  • a fluxgate magnetic sensor consisting of a sensor board with a magnetic field detection coil board and excitation coil board laminated above and below the sensor core, or a Hall element or a magnetoresistive element, etc. is used for the direction detection means used in conjunction with the GPS position detection means. Since the geomagnetic sensor is used, it is possible to display the accurate current position of the holder together with the map information on the display of a small-sized mobile terminal device, especially a mobile phone.
  • the moving direction of the mobile terminal device is always set in advance in the plane of the display unit.
  • the direction of the map information matches the direction of travel, giving a sense of discomfort to the user. Not only will you not be able to obtain it, but you will also be able to dynamically understand the correct orientation and position.
  • the position information by the GPS is supplemented by the azimuth information by the geomagnetic sensor, the error information accumulated by the integration method can be eliminated as much as possible, and an accurate ⁇ ⁇ position display system can be provided.
  • a fluxgate type consisting of a mobile terminal device with position detection means for detecting the position based on GPS signals, and a sensor board in which a magnetic field detection coil board and an excitation coil board are stacked above and below a sensor core.
  • Azimuth detecting means for detecting an azimuth by a geomagnetic sensor using a magnetic sensor or a Hall element or a magnetoresistive element, calculating means for correcting the position information by the position detecting means by the azimuth detecting means, and map information are stored.
  • Map information storage means position information display means for displaying the current position determined based on the calculation means together with the map information, and a map displayed by the position information display means with a change in the direction of the current position
  • Display processing means for rotating and scrolling information by a change angle based on an output signal from the direction detection means, When the azimuth is changed by the movement of the band terminal device, the map information is rotated by the display processing means, the current position of the portable terminal device is displayed on the display section of the position information display means, and the traveling direction of the mobile terminal device is displayed.
  • a position information display system characterized in that the display is always performed so as to face a predetermined direction in a plane of the display unit.
  • the magnetic field detecting coil substrate of the flux gate type magnetic sensor includes a first detecting coil substrate having a coil pattern for forming an X-axis direction component magnetic field detecting coil, and a Y-axis direction component magnetic field detecting coil forming coil.
  • a second detection coil substrate having a coil pattern, the excitation coil substrate has an annular coil pattern for forming an excitation coil, and an edge of the sensor substrate is connected to each coil pattern.
  • the position information display means includes visual display means of images and characters, and sound.
  • the magnetic sensor decomposes geomagnetism into an X-axis direction magnetic field component and a Y-axis direction magnetic field component, and outputs this as an analog value signal.
  • the arithmetic unit converts the analog signal into a digital signal.
  • the display processing means rotates the map information in a required direction by using an angle up to the current position azimuth when the direction of the north magnetic pole is 0 degrees as a rotation angle (item 11-1). Location information display system.
  • the position information display means displays a shortest route to the destination or a required time; a position information table according to (Item 11);
  • Geomagnetic sensors have conventionally been used to measure the magnetic orientation at an observation point.
  • the geomagnetic sensor is installed on the horizontal plane at the observation point and detects the biaxial components of the geomagnetic vector on the horizontal plane.
  • the magnetic azimuth is calculated from the two-axis components detected by the geomagnetic sensor.
  • An aspect of the second embodiment relates to a fluxgate magnetic sensor. It has a magnetic detection unit including a sensor coil (X coil, Y coil) and a toroidal coil that generates an AC magnetic field that excites them, and a signal processing circuit that processes the output signal of the magnetic detection unit.
  • a magnetic detection unit including a sensor coil (X coil, Y coil) and a toroidal coil that generates an AC magnetic field that excites them, and a signal processing circuit that processes the output signal of the magnetic detection unit.
  • the magnetic detection section may be formed by integrating a plurality of substrate layers.
  • the coil portions of the sensor coil (X coil, ⁇ coil) and toroidal coil may be constituted by a substrate pattern.
  • the signal processing circuit includes a direction dependency circuit provided independently for each of the X coil and the Y coil.
  • Each direction-dependent circuit includes a first and a second analog switch configured such that one is turned on and the other is turned off according to the frequency of the alternating magnetic field, and an active first integration that integrates an output of the first analog switch.
  • Circuit, an active second integrating circuit for integrating the output of the second analog switch, a differential amplifier for amplifying a difference between the first integrating circuit and the second integrating circuit, and an output of the differential amplifier It is composed of an A / D converter that converts digital signals into digital signals.
  • the fluxgate magnetic sensor according to the second embodiment will be described with reference to FIG.
  • FIG. 7 is a configuration diagram of the flux gate type magnetic sensor 300, and shows the X coil pattern 41 a of the magnetic detection unit 100 shown in FIG. 2 and the corresponding signal processing circuit 200. Things.
  • One end of the X coil pattern 41 a is grounded, but may be connected to the plus side of the operational amplifier in the first integration circuit 24 and the second integration circuit 26.
  • the signal processing circuit 200 includes an active first integration circuit 24, an integration circuit for integrating the outputs of the first analog switch 20, the second analog switch 22, and the first analog switch 20.
  • An active second integration circuit 26 for integrating the output of the analog switch 22, a differential amplifier 28 for amplifying the difference between the first integration circuit 24 and the second integration circuit 26, and its differential
  • An A / D converter 30 for converting the output of the amplifier 28 into a digital signal is arranged as shown in FIG.
  • the integration constant and the differential amplifier 28 in the first integration circuit 24 and the second integration circuit 26 are determined according to the capability of the A / D converter 30.
  • the frequency f corresponding to the cycle of the AC magnetic field. Accordingly, the first analog switch 20 and the second analog switch 22 are alternately turned on and off.
  • the respective output voltages are integrated by the first integration circuit 24 and the second integration circuit 26, and the difference between them is amplified by the differential amplifier 28, so that the output corresponding to the magnetic field component in the X-axis direction is obtained. Voltage can be obtained.
  • a / D converter 30 outputs the output voltage.
  • the data is converted from analog to digital, and the data of the magnetic component in the X-axis direction is transferred to the CPU.
  • the signal processing circuit 200 is provided independently for each of the X coil and the Y coil (not shown), but the same processing is performed on the signal detected from the Y coil.
  • signal processing for specifying a magnetic azimuth in a fluxgate magnetic sensor is realized.
  • a fluxgate magnetic sensor including a magnetic detection unit including an XY coil and a toroidal coil for generating an AC magnetic field for exciting the XY coil and a signal processing circuit for processing an output signal of the magnetic detection unit.
  • the signal processing circuit includes two directionality dependent circuits independently provided corresponding to the XY coils, respectively.
  • the signals output from the corresponding coils are integrated with the first and second analog switches configured so that one is on and the other is off, and the output of the first analog switch.
  • An A / D converter that converts the output of the differential amplifier to a digital signal
  • a geomagnetic sensor comprising:
  • a flux gate type magnetic sensor including a magnetic detection unit including an XY coil and a toroidal coil for generating an AC magnetic field for exciting them and a signal processing circuit for processing an output signal of the magnetic detection unit.
  • the magnetic detection unit is formed by integrating a plurality of substrate layers, and each of the substrate layers constitutes an XY coil and a toroidal coil by a substrate pattern.
  • the signal processing circuit includes two direction-dependent circuits independently provided corresponding to the XY coils, respectively.
  • a first and a second analog switch configured so that one is turned on and the other is turned off according to the frequency of the AC magnetic field according to the frequency of the AC magnetic field, and an output that integrates the output of the first analog switch.
  • An A / D converter that converts the output of the differential amplifier to a digital signal
  • a geomagnetic sensor comprising:
  • the third embodiment aims at realizing a smaller magnetic sensor.
  • a technology for fabricating a magnetic sensor and a direction sensor incorporating the magnetic sensor in a small size will be described.
  • FIG. 8 is a diagram showing a configuration of the direction sensor 500 according to the third embodiment of the present invention.
  • the direction sensor 500 includes a magnetic sensor 600, an inclination sensor 700, a pressure sensor 800, and a temperature sensor 900, and has a function of detecting a position, a direction, a height, and the like.
  • the magnetic sensor 600, the tilt sensor 700, the barometric pressure sensor 800, and the temperature sensor 900 may be formed separately, but are mounted on a portable terminal device or the like.
  • the magnetic sensor 600 has at least three magnetic detecting elements for detecting each of the three axis components of XYZ of the magnetic vector.
  • the tilt sensor 700 has a function of detecting the tilt angle of the substrate, and can detect the tilt angles of the XYZ three-axis directions.
  • the tilt angle in the X-axis direction may be called a pitch angle, and the tilt angle in the Y-axis direction may be called a roll angle.
  • the atmospheric pressure sensor 800 detects the pressure of the outside air.
  • the temperature sensor 900 detects the temperature. The detected temperature is used to correct the deviation of the output of the magnetic sensor 600 due to the temperature drift.
  • FIG. 9 is a diagram illustrating an example of the tilt sensor 700.
  • the tilt sensor 700 is a weight 70 2.
  • an acceleration component is applied to the weight body 702
  • a distortion occurs in the support member 704 that supports the weight body 702, and the distortion is detected by a resistor to measure the inclination.
  • the weight body 702 be supported by a plurality of support members 704 from three axial directions of XYZ.
  • these support members 704 include a piezo element.
  • the tilt sensor 700 detects tilt angles in the XYZ three-axis directions. Since the tilt of the magnetic sensor 600 is detected as the tilt angle in the Z-axis direction, the tilt angles detected in the X-axis and Y-axis directions can be corrected.
  • FIG. 10 is a diagram illustrating an example of the magnetic sensor 600.
  • the magnetic sensor 600 functions as a three-axis magnetic sensor, and includes a first magnetic detecting element 602 for detecting a magnetic component in the X-axis direction and a second magnetic detecting element 604 for detecting a magnetic component in the Y-axis direction. And a third magnetic detecting element 606 for detecting a magnetic component in the Z-axis direction.
  • the flux gate magnetic sensor requires a ring core, which is a coil, and therefore has a slightly larger configuration. For this reason, there is no problem when the fluxgate magnetic sensor is mounted on a vehicle that can provide a sufficient space, but when the fluxgate magnetic sensor is mounted on a small terminal device such as a mobile phone, the case is not considered due to the relationship with other built-in elements. It was necessary to devise a layout design in the body.
  • the third embodiment provides a technology for forming the magnetic sensor 600 in a small size.
  • this magnetic sensor 600 is formed on a single substrate together with another sensor such as a tilt sensor. Provide technology to do.
  • the first magnetic detecting element 602 and the second magnetic detecting element 604 are preferably an MR element or a Hall element, and the third magnetic detecting element 606 is also the same. It is preferably an MR element or a Hall element.
  • the magnetic sensor 600 can be formed using a series of semiconductor manufacturing processes.
  • the first magnetic sensing element 602 and the second magnetic sensing element 604 are formed at a predetermined angle with respect to the surface of the substrate 610, and are arranged in a direction parallel to the substrate surface (X-axis direction and the like). (Y axis direction).
  • the first magnetic detecting element 602 and the second magnetic detecting element 604 are formed so as to be substantially upright on the surface of the substrate 610.
  • the first magnetic detecting element 602 and the second magnetic detecting element 604 are arranged so that the direction parallel to each surface is 90 °. Is preferred.
  • the third magnetic detecting element 606 is formed on the surface of the substrate 610 and detects a magnetic component in a direction perpendicular to the substrate surface (Z-axis direction).
  • Each magnetic sensing element has a magnetoresistive film having a thin film structure represented by the general formula (Col-aFea))-y-zLxMyOz.
  • the magnetic film may have a magnetic permeability of 1,000, 0001e or more, and may be made of a rare-earth element capable of detecting a magnetic field of ⁇ or more and a nano-order magnetic metal powder.
  • a magnetic sensing element which is an MR element or a Hall element, is first formed on a substrate, and then the formed magnetic sensing element is fixed to a polyimide film.
  • the first magnetic detection element 602 and the second magnetic detection element 604 are fixed to a polyimide film. At least a part of the polyimide film is fixed to the substrate.
  • the polyimide film has a property of shrinking by applying a predetermined heat.
  • a magnetic detection element is fixed to one surface of the polyimide film, and then the area between the area where the magnetic detection element is fixed and the area fixed to the substrate is determined. A part of the intervening region is linearly heated and contracted, and the region where the magnetic sensing element is fixed is bent in a desired direction. In this way, it is possible to produce a magnetic sensing element that stands substantially upright on the surface of the substrate 610.
  • a description will be given of a method of configuring the first magnetic sensing element 622 upright on the substrate.
  • the second magnetic sensing element 604 can be set upright by the same method.
  • two magnetic detecting elements 602 and 604 are configured to be upright.
  • two magnetic detecting elements are provided. May be formed on the plane of the substrate 6 10, and one magnetic sensing element may be configured to stand upright on the substrate 6 10.
  • the two magnetic detecting elements formed on the plane of the substrate 6 10 detect the vertical magnetic field and the horizontal magnetic field of the magnetic vector, and the upright magnetic detecting element detects these magnetic fields. What is necessary is just to detect a perpendicular component.
  • FIG. 11A is a diagram showing a state where the first magnetic sensing element 602 is formed on the first silicon substrate 620. Although not shown, in this step, the second magnetic detecting element 604 and the third magnetic detecting element 606 are also formed on the first silicon substrate 62 at the same time. Each magnetic sensing element is formed using a semiconductor manufacturing process.
  • FIG. 11B is a diagram showing a state in which a polyimide film 62 2 is adhered above the first magnetic detection element 62 2.
  • the polyimide film 622 can be thermally bonded to the first silicon substrate 620 by heating to approximately 365 ° C. Then, the polyimide film 62 2 above the first magnetic detection element 62 is cut by etching according to the shape of the first magnetic detection element 62. Further, silicon present below the first magnetic sensing element 602 is removed by etching. At this time, it is preferable that the polyimide film 622 located above the third magnetic sensing element 606 which does not need to be erected is removed by etching. Wiring and circuit elements required for each magnetic detection element are formed on the first silicon substrate 62 or on the polyimide film 62.
  • FIG. 11C is a top view of the polyimide film 62.
  • the polyimide film 622 has a rectangular bendable area 626 formed with cuts on three sides.
  • the bent region 626 is formed by making a cut so as to cover at least the lower first magnetic sensing element 602.
  • the bent region 626 may be formed after the polyimide film 622 is bonded to the first silicon substrate 620 as described above, but may be formed before bonding.
  • FIG. 11D is a diagram showing a state in which the polyimide film 622 is bent upward and the first magnetic detection element 622 is erected.
  • the polyimide film 622 has a property of contracting when heated to a high temperature.
  • the polyimide finolem 622 is heated, the polyimide film 622 is bent, and the first magnetic sensing element 602 is connected to the first silicon. It stands upright in the direction perpendicular to the surface of the substrate 62. As a matter of course, the polyimide film 622 may be bent downward.
  • FIG. 11E is a diagram showing a state where the polyimide film 62 2 is fixed to the side of the second silicon substrate 62 4.
  • the second silicon substrate 624 has an opening 628 corresponding to the shape of the bending area 626 of the polyimide film 622, and the portion in contact with the polyimide film 622 is It functions as a holding member for fixing the polyimide film 62.
  • the surface of the polyimide film 622 opposite to the side to which the first magnetic detection element 62 is fixed is fixed to the pressing member.
  • the second silicon substrate 624 on the third magnetic sensing element 606 has an opening formed by etching.
  • the second silicon substrate 624 may be fixed to the polyimide film 622 before the first magnetic sensing element 62 is erected, or may be fixed after the first magnetic sensing element 602 is erected. It is preferable that the side portions (pressing members) of the polyimide film 622 and the second silicon substrate 624 are heated and thermally bonded.
  • the first magnetic sensing element 622 standing upright on the surface of the substrate is formed.
  • the second silicon substrate 624 may be provided with other parts, if necessary, so as to leave only a holding member for fixing the first magnetic detection element 602 and the second magnetic detection element 604. This region may be removed by etching.
  • the use of the silicon substrate and the polyimide film allows the magnetic sensor to be formed as an integral structure, thereby contributing to downsizing of the magnetic sensor.
  • FIG. 12A is a diagram showing the silicon wafer 6550 before dicing.
  • a scribe line which is a cutting margin for cutting into chips, is formed on the silicon wafer 65 by etching.
  • FIG. 12B is a partial cross-sectional view of the silicon wafer 65. Due to the etching characteristics of silicon, the side wall 656 of the scribe line 652 is formed with an inclination of about 67 degrees with respect to a plane parallel to the surface of the wafer. In the figure, the dotted line is the cut line at the time of dicing.
  • FIG. 12C is a diagram showing a state in which the magnetic sensing element 654 is formed on the side wall 656 of the scribe line 652.
  • the magnetic detection element 654 by forming the magnetic detection element 654 on a surface having a predetermined angle with respect to the surface of the silicon wafer 650, a three-axis magnetic sensor can be easily manufactured. Since the magnetic sensing element 654 is not configured perpendicular to the surface of the silicon substrate, the detected magnetic component is corrected based on the angle of the slope (67 degrees).
  • Magnetic sensors mounted on mobile terminals, etc. can detect not only natural magnetic fields, but also dynamic magnetic fields generated inside mobile terminals, in urban areas and in areas with developed transportation networks. There is. Therefore, in order to extract only the natural magnetic field component, it is necessary to remove the dynamic magnetic component from the detected magnetic component. When a conventional two-axis magnetic sensor is used, the dynamic magnetic component cannot be efficiently removed because the magnetic field strength cannot be obtained.
  • the magnetic sensor 600 can detect magnetic components in three axial directions, and thus can measure the magnetic field strength. For example, in the magnetic sensor 600, a predetermined magnetic field strength is set and recorded in a recording unit in advance, and when a magnetic component exceeding the set strength is detected, the magnetic component is determined to be noise and canceled. It is possible to do. As described above, since the magnetic sensor 600 can detect the magnetic field strength, it is possible to realize automatic calibration by arithmetic processing of the CPU 6.
  • the tilt sensor 700 can detect the tilt angles in the three axial directions, calibration that is performed by setting the tilt sensor horizontally is unnecessary.
  • the tilt sensor 700 can be formed compactly on one substrate together with the magnetic sensor 600 and the like. According to the tilt sensor 700, the calibration of the tilt angle can be automatically performed by the arithmetic processing of the CPU 6 without being conscious of the user, and the extremely accurate magnetic sensor 600 can be realized. Output can be obtained.
  • the direction sensor 500 can measure the position and direction with extremely high accuracy. It is possible to process and display map information. For example, map information cutout and display processing may be performed by installing application software such as JAVA (registered trademark) in advance on the portable terminal device. Needless to say, as described in the first embodiment, the orientation sensor 500 built in the portable terminal device and the GPS cooperate to measure the position and orientation of the portable terminal device. Is also good. In any case, it is preferable that the mobile terminal device can display the distributed map information in an enlarged or reduced size according to its own screen size.
  • the atmospheric pressure sensor 800 by mounting the atmospheric pressure sensor 800 on the portable terminal device, it is possible to measure the height at which the portable terminal device is located. Since the measured value of air pressure changes depending on the climate, the relationship between the air pressure at the ground surface (absolute air pressure) and the rise in air pressure at a position higher than the ground surface (relative air pressure) is recorded in the recording unit in advance as a table It is preferable to keep it.
  • the relationship between the absolute pressure and the relative pressure may be stored in the recording unit in the form of an arithmetic expression.
  • the CPU 6 calculates the absolute pressure and the relative pressure based on the output value of the atmospheric pressure sensor 800 to specify the height, and based on the output value of the magnetic sensor 600, determines the current position of the portable terminal device ( Latitude and longitude) to determine the floor of the building as a result. For example, being located on the third floor of a building When it is determined, it is possible to display the information of the store on the third floor of the building on the display screen of the mobile terminal device, and it is possible to realize a mobile terminal device that is highly convenient for the user. Become.
  • the direction sensor 500 has been mainly described as being incorporated in a portable terminal device. However, it is easily understood by those skilled in the art that the direction sensor 500 may be incorporated in a vehicle or other large-sized mobile device. It is understood. Industrial applicability
  • the present invention can be used for a device for displaying position information and a magnetic sensor or a direction sensor incorporated in the display device.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Electromagnetism (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

A direction sensor (500) in which a magnetic sensor (600) for measuring the three axis components of the terrestrial magnetism vector and an inclination sensor (700) for measuring the inclinations in the three axis directions are integrally provided on one substrate. The magnetic sensor (600) has magnetic sensing elements some of which are secured to a thermally-shrinkable polyimide film. When the polyimide film is heated, the magnetic sensing elements are erected from the surface of the substrate.

Description

明 細 書 磁気センサぉよび方位センサ 技術分野  Description Magnetic sensor and direction sensor Technical field
本発明は、 携帯端末装置、 主として携帯電話の表示部に現在位置を表示する地 図情報が、 携帯電話の移動による方位変更に対応して回転する、 位置情報表示シ ステムに関し、 また、 この位置情報表示システムを実現するために利用される地 磁気の検出技術に関する。 背景技術  The present invention relates to a mobile terminal device, and more particularly to a position information display system in which map information for displaying a current position on a display unit of a mobile phone rotates in response to a change in direction due to movement of the mobile phone. The present invention relates to a technology for detecting geomagnetism used to realize an information display system. Background art
現在位置を端末装置に表示する、 例えば車輛に搭載されるナビゲーションシス テムは、 G P S (Global Positioning System) を利用する。 G P Sは、 4個以上 の衛星から電波の到着時間の差を地上の制御局を介して利用者に伝達して、 現在 位置を測定する。 また、 進行方向については、 例えばジャイロと G P Sからの信 号をもとに移動量を積分方式で計算して得られる。 G P Sとジャイロによって測 位された現在位置及び進行方向は、 モニタに地図データとともに表示される。  A navigation system that displays the current position on a terminal device, for example, mounted on a vehicle, uses a GPS (Global Positioning System). GPS measures the current position by transmitting the difference in the arrival times of radio waves from four or more satellites to the user via a ground-based control station. The direction of travel can be obtained, for example, by calculating the amount of movement based on the signals from the gyro and GPS using the integration method. The current position and traveling direction measured by GPS and gyro are displayed on the monitor along with map data.
しかしながら、 上記したナビゲーションシステムでは、 方位検出に、 ジャイロ と G P Sの時速約 4 0 k m以上のスピードでの移動量を用いることから、 スター ト地点 (表示地点) と計測地点との間に時間差を生じ、 また、 受信した信号を積 分方式で計算処理することから、 誤差が累積される。 これを解消すべくジャイロ からの信号によって補正を加えるものの、 ジャィ口自体の信号処理も積分方式で 計算する関係上、 元の情報自体に誤差があった場合、 その誤差がそのまま維持あ るいは拡大されて表示されることになる。  However, in the navigation system described above, the gyro and GPS travel at a speed of about 40 km / h or more are used for azimuth detection, so there is a time difference between the start point (display point) and the measurement point. In addition, errors are accumulated because the received signal is calculated by the integration method. To correct this, the signal from the gyro is corrected, but the signal processing of the gyro itself is also calculated by the integration method.If there is an error in the original information itself, the error is maintained or expanded as it is. Will be displayed.
また、 車輛の移動に伴ないモニタに表示される地図データが単に前後左右方向 にスクロール動作を行って現在位置を表示する。 このため、 車輛の向きと地図デ ータ上の移動方向とがー致しないことがあり、 違和感を生じる。 更に、 方位検出 装置を小型化しにくく、 しかも上記したような積分方式であるために方位の検出 にむらや誤差を生じる。 このため、 従来の位置表示システムは、 携帯端末装置、 特に携帯電話にこれを適用しにくい。 In addition, the map data displayed on the monitor as the vehicle moves simply scrolls forward, backward, left and right to display the current position. For this reason, the direction of the vehicle may not match the direction of movement on the map data, which may cause discomfort. Further, it is difficult to reduce the size of the azimuth detecting device, and the integration method as described above causes unevenness or error in azimuth detection. For this reason, the conventional position display system includes a mobile terminal device, This is particularly difficult to apply to mobile phones.
また、 携帯端末装置の位置表示機能を実現するために磁気センサを用いること は有効な手法であるが、 携帯端末装置の小型化の要請から高精度の磁気センサを いかに小型に形成することが重要な課題となっている。 発明の開示  Although the use of a magnetic sensor to realize the position display function of a mobile terminal device is an effective method, it is important to reduce the size of a high-accuracy magnetic sensor due to the demand for miniaturization of the mobile terminal device. Is an important issue. Disclosure of the invention
したがって、 本発明の目的は、 携帯端末装置において現在位置を認識して地図 を表示させる技術と、 携帯端末装置に組み込まれる磁気センサおよび方位センサ についての技術を提供することにある。  Therefore, an object of the present invention is to provide a technology for displaying a map by recognizing a current position in a portable terminal device and a technology for a magnetic sensor and a direction sensor incorporated in the portable terminal device.
本発明のある態様は、 携帯端末装置に内蔵され、 地磁気ベク トルの 3軸成分の それぞれを検出する磁気検出素子が基板において形成された地磁気センサであつ て、 少なくとも 1つの磁気検出素子が、 MR (MagnetoEesistance) 素子または ホール素子であることを特徴とする地磁気センサを提供する。 MR素子またはホ ール素子を基板に作りこむことにより、 小型の地磁気センサを実現することが可 能となる。  One embodiment of the present invention is a geomagnetic sensor that is built in a portable terminal device and has a magnetic detection element that detects each of the three-axis components of the geomagnetic vector formed on a substrate, wherein at least one magnetic detection element is an MR sensor. (MagnetoEesistance) Provided is a geomagnetic sensor characterized by being an element or a Hall element. By making the MR element or hall element on the substrate, a small geomagnetic sensor can be realized.
本発明の別の態様は、 磁気べクトルの軸方向成分を検出する磁気検出素子を基 板に備えた磁気センサであって、 磁気検出素子は、 MR素子またはホール素子で あって、 熱収縮性をもつフィルムに固着されていることを特徴とする磁気センサ を提供する。 フィルムの熱収縮性を利用することにより、 基板上に小規模な MR 素子またはホール素子を形成することが可能となる。  Another aspect of the present invention is a magnetic sensor having a substrate with a magnetic detection element for detecting an axial component of a magnetic vector, wherein the magnetic detection element is an MR element or a Hall element, A magnetic sensor fixed to a film having By utilizing the heat shrinkage of the film, it is possible to form small-scale MR elements or Hall elements on a substrate.
磁気検出素子は、 基板に少なくとも一部を固定されたポリイミ ドフィルムに固 着されており、 基板の表面に対して所定の角度をつけて構成されることが好まし い。 所定の角度とは例えば基板の表面に対して垂直であってよい。 例えば 3軸の 磁気センサにおいては、 X軸方向および Y軸方向の磁気成分を検出するために、 2つの磁気検出素子が、 基板の表面に直立した状態に構成され、 これらは基板の 表面において、 互いに 9 0 ° の角度をなすように配置されてもよい。 Z軸方向の 磁気成分を検出する磁気検出素子は基板の表面に形成され、 この Z軸磁気検出素 子については必ずしもポリイミ ドフィルムに固着されなくてもよい。 3軸センサ の別の例としては、 1つの磁気検出素子が基板の表面に直立した状態に構成され て、 1軸方向の磁気成分を検出し、 2つの磁気検出素子が基板の表面に形成され てそれぞれ垂直磁界および水平磁界の 2軸成分を検出してもよい。 The magnetic detecting element is preferably fixed to a polyimide film at least partially fixed to the substrate, and is preferably formed at a predetermined angle to the surface of the substrate. The predetermined angle may be, for example, perpendicular to the surface of the substrate. For example, in a three-axis magnetic sensor, two magnetic detection elements are configured to stand upright on the surface of the substrate in order to detect magnetic components in the X-axis direction and the Y-axis direction. They may be arranged at an angle of 90 ° to each other. The magnetic detection element for detecting the magnetic component in the Z-axis direction is formed on the surface of the substrate, and the Z-axis magnetic detection element does not necessarily need to be fixed to the polyimide film. Another example of a three-axis sensor is when one magnetic sensing element is configured upright on the surface of a substrate. Then, a magnetic component in one axial direction may be detected, and two magnetic detecting elements may be formed on the surface of the substrate to detect two axial components of a vertical magnetic field and a horizontal magnetic field, respectively.
磁気検出素子は、 ポリイミドフィルムが加熱されて熱収縮することにより、 基 板の表面に対して角度をつけて構成されることが好ましい。 ポリイミ ドの熱収縮 性を利用することにより、 磁気検出素子を基板の表面から持ち上げて直立させる ことが可能である。  It is preferable that the magnetic detection element is configured so that the polyimide film is heated and thermally contracted so as to form an angle with respect to the surface of the substrate. By utilizing the heat shrinkage of polyimide, it is possible to lift the magnetic sensing element from the surface of the substrate and erect it.
磁気検出素子を固着された側とは反対側のポリイミ ドフィルムの面は、 押さえ 部材に固定されてもよい。 ポリイミ ドは高温に加熱することにより、 シリコンに 非常に強固に熱接着する特性を有する。 したがって、 この押さえ部材は、 ポリイ ミドとの固着性の観点からシリコンで形成されることが好ましい。 同様に、 基板 はシリコンで形成されてもよレ、。  The surface of the polyimide film opposite to the side to which the magnetic detection element is fixed may be fixed to the pressing member. Polyimide has the property of being very strongly thermally bonded to silicon when heated to high temperatures. Therefore, it is preferable that the pressing member is formed of silicon from the viewpoint of adhesion to the polyimide. Similarly, the substrate may be formed of silicon.
本発明のさらに別の態様は、 地磁気べクトルの 3軸成分のそれぞれを検出する 磁気検出素子を有する地磁気センサと、 3軸方向の傾きを検出する傾斜センサと がーつの基板上に一体として形成された方位センサを提供する。 一つの基板上に 一体として複数のセンサを形成することにより、 非常にコンパクトな方位センサ を形成することが可能となる。 磁気センサおよび傾斜センサは、 基板上に作りこ まれることが好ましい。 複数の磁気検出素子のいくつか、 例えば基板表面に水平 な方向の磁気成分を検出する磁気検出素子は、 ポリイミ ドフィルムに固着されて いてもよい。  Still another embodiment of the present invention provides a geomagnetic sensor having a magnetic detection element that detects each of the three-axis components of the geomagnetic vector, and a tilt sensor that detects a tilt in the three-axis direction are integrally formed on one substrate. A directional sensor provided. By forming a plurality of sensors integrally on one substrate, it is possible to form a very compact azimuth sensor. Preferably, the magnetic sensor and the tilt sensor are fabricated on a substrate. Some of the plurality of magnetic detection elements, for example, a magnetic detection element for detecting a magnetic component in a direction parallel to the substrate surface may be fixed to the polyimide film.
本発明のさらに別の態様は、 磁気べクトルの軸方向成分を検出する磁気検出素 子を基板に備えた磁気センサであって、 磁気検出素子は、 MR素子またはホール 素子であり、 基板の表面に対して所定の角度を有する斜面に形成されている磁気 センサを提供する。 例えば、 この斜面は、 シリコンウェハをカットするために形 成されるスクライブ線の側壁であってもよい。 また、 基板をエッチングすると、 その材料の特性により、 エッチング箇所に所定の角度を有する側壁が形成される が、 磁気検出素子はこのような側壁に形成されてもよい。  Yet another aspect of the present invention is a magnetic sensor including a substrate with a magnetic detection element that detects an axial component of a magnetic vector, wherein the magnetic detection element is an MR element or a Hall element, and the surface of the substrate is To provide a magnetic sensor formed on a slope having a predetermined angle with respect to the magnetic sensor. For example, the slope may be a side wall of a scribe line formed for cutting a silicon wafer. Further, when the substrate is etched, a sidewall having a predetermined angle is formed at the etching location due to the characteristics of the material, but the magnetic sensing element may be formed on such a sidewall.
なお、 以上のエレメントの任意の組合せや、 その表現を方法、 装置などの間で 変更したものもまた、 本発明の範囲に含まれる。 図面の簡単な説明 It is to be noted that any combination of the above-described elements and any change of the expression between methods, devices, and the like are also included in the scope of the present invention. BRIEF DESCRIPTION OF THE FIGURES
上述した目的、 およびその他の目的、 特徴および利点は、 以下に述べる好適な 実施の形態、 およびそれに付随する以下の図面によってさらに明らかになる。 図 1は、 本発明の第 1の実施の形態に係るシステムの概略を示すブロック図で ある。  The above and other objects, features, and advantages will become more apparent from the preferred embodiments described below and the accompanying drawings. FIG. 1 is a block diagram schematically showing a system according to the first embodiment of the present invention.
図 2は、 磁気センサに含まれる磁気検出部の一例を示す分解説明図である。 図 3は、 地図情報の回転角を求めるための磁気べクトルの説明図である。 図 4は、 GP Sによって特定された現在位置の地図情報を示す説明図である。 図 5は、 地図情報表示処理部による地図情報の処理過程を示すもので、 図 4の 地図情報から方位角に基づいて区分け選択された地図を示す説明図である。 図 6は、 図 5の選択地図を方位角に基づいて回転させた状態の地図を示す説明 図である。  FIG. 2 is an exploded explanatory view showing an example of a magnetic detection unit included in the magnetic sensor. FIG. 3 is an explanatory diagram of a magnetic vector for determining a rotation angle of map information. FIG. 4 is an explanatory diagram showing map information of the current position specified by the GPS. FIG. 5 is a diagram illustrating a process of processing map information by the map information display processing unit, and is an explanatory diagram illustrating a map that is classified and selected from the map information of FIG. FIG. 6 is an explanatory diagram showing a map in a state where the selected map of FIG. 5 is rotated based on the azimuth.
図 7は、 本発明の第 2の実施の形態に係るフラックスゲート型磁気センサの構 成図である。  FIG. 7 is a configuration diagram of a fluxgate magnetic sensor according to the second embodiment of the present invention.
図 8は、 本発明の第 3の実施の形態に係る方位センサの構成図である。  FIG. 8 is a configuration diagram of the azimuth sensor according to the third embodiment of the present invention.
図 9は、 傾斜センサの一例を示す図である。  FIG. 9 is a diagram illustrating an example of the tilt sensor.
図 1 0は、 磁気センサの一例を示す図である。  FIG. 10 is a diagram illustrating an example of the magnetic sensor.
図 1 1 (a) は第 1シリコン基板において第 1磁気検出素子を形成した状態を 示す図であり、 図 1 1 (b) は第 1磁気検出素子の上方にポリイミ ドフィルムを 接着させた状態を示す図であり、 図 1 1 (c) はポリイミ ドフィルムの上面図で あり、 図 1 1 (d) はポリイミ ドフィルムを上方に折り曲げて第 1磁気検出素子 を直立させた状態を示す図であり、 図 1 1 (e) は第 2シリ コン基板の側部にポ リイミ ドを固定した状態を示す図である。  Fig. 11 (a) is a diagram showing a state where the first magnetic sensing element is formed on the first silicon substrate, and Fig. 11 (b) is a state where a polyimide film is adhered above the first magnetic sensing element. Fig. 11 (c) is a top view of the polyimide film, and Fig. 11 (d) is a diagram showing a state in which the polyimide film is bent upward to make the first magnetic sensing element stand upright. FIG. 11 (e) is a view showing a state where the polyimide is fixed to the side of the second silicon substrate.
図 1 2 (a) はダイシング前のシリ コンウェハを示す図であり、 図 1 2 (b) はシリコンウェハの一部断面図であり、 図 1 2 (c) はスクライブ線の側壁に磁 気検出素子を形成した状態を示す図である。 発明を実施するための最良の形態  Fig. 12 (a) is a diagram showing the silicon wafer before dicing, Fig. 12 (b) is a partial cross-sectional view of the silicon wafer, and Fig. 12 (c) is the magnetic detection on the side wall of the scribe line. It is a figure showing the state where the element was formed. BEST MODE FOR CARRYING OUT THE INVENTION
く第 1の実施の形態 > 以下、 本発明の第 1の実施の形態を図面に基づいて詳説する。 第 1の実施の形 態の目的は、 小型の携帯端末装置、 主として携帯電話に地図情報とともに所持者 の現在位置を表示可能とするとともに、 携帯端末装置の方角移動に伴ない地図情 報が回転し、 携帯端末装置の移動進行方向が常時表示部平面内の予め設定された 特定方向を向くようにして表示させ、 また、 G P S受信部の位置情報を地磁気セ ンサからの方位情報によつて補正可能とすることにより、 誤差情報の累積を可及 的になくす、 位置情報表示システムを提供することにある。 図 1は、 携帯電話に 搭載された本発明の第 1の実施の形態に係るシステムのプロック図である。 図中 符号 1は位置検出手段としての G P S受信部で、 アンテナより受信した G P S衛 星の電波によって現在の経度と緯度が計算される。 First Embodiment> Hereinafter, a first embodiment of the present invention will be described in detail with reference to the drawings. The purpose of the first embodiment is to make it possible to display the current position of the holder together with the map information on a small portable terminal device, mainly a mobile phone, and to rotate the map information as the portable terminal device moves in the direction. The mobile terminal device is always displayed so that the traveling direction of the mobile terminal device is directed to a specific direction set in the plane of the display unit, and the position information of the GPS receiving unit is corrected by the azimuth information from the geomagnetic sensor. It is an object of the present invention to provide a position information display system which makes accumulation of error information as small as possible. FIG. 1 is a block diagram of a system according to a first embodiment of the present invention mounted on a mobile phone. In the figure, reference numeral 1 denotes a GPS receiver as a position detecting means, and the current longitude and latitude are calculated by the GPS satellite radio wave received from the antenna.
2は方位検出手段としての地磁気センサで、 センサコア 3の上下に磁界検出コ ィル基板 4と励磁コイル基板 5を相対するように積層したセンサ基板から成る。 ここでは方位検出手段 2としてフラックスゲート型磁気センサを例示しているが、 その他の地磁気センサが用いられてもよい。 フラックスゲート型磁気センサとし ては、 本発明者による例えば特開平 9 _ 4 3 3 2 2号、 特開平 1 1— 1 1 8 8 9 2号に開示の磁気センサがある。 センサコアは平板状のアモルファスコアである とリング状のアモルファスコアであるとを問わない。 その他の地磁気センサとし ては、 ホール素子や磁気抵抗素子を用いたものが考えられる。 いずれも携帯端末 装置に搭載可能な程度に小型で感度に富むものであることが好ましい。  Numeral 2 denotes a terrestrial magnetism sensor serving as an azimuth detecting means, which comprises a sensor board in which a magnetic field detecting coil board 4 and an exciting coil board 5 are stacked above and below a sensor core 3. Here, a fluxgate magnetic sensor is illustrated as the azimuth detecting means 2, but other geomagnetic sensors may be used. Examples of the flux gate type magnetic sensor include the magnetic sensors disclosed by the present inventors in, for example, JP-A-9-43332 and JP-A-11-118892. It does not matter whether the sensor core is a plate-shaped amorphous core or a ring-shaped amorphous core. Other geomagnetic sensors using Hall elements or magnetoresistive elements are conceivable. Both are preferably small enough to be mounted on a portable terminal device and have high sensitivity.
図 2にこの磁気センサに含まれる磁気検出部 1 0 0の具体例を分解して示す。 センサコア 3は、 アモルファス薄板をリング状にカツトし、 これにトロイダルコ ァを卷いたようにェッチング処理した、ァモルファスコアにより形成されている。 磁界検出コィル基板 4は、 X軸方向成分磁界検出コィル形成用のコィルパタ一 ン 4 1 aを有する第 1検出コイル基板 4 1と、 Y軸方向成分磁界検出コイル形成 用のコイルパターン 4 2 aを有する第 2検出コイル基板 4 2とから成る。 第 1検 出コイル基板 4 1は、 センサコア 3を上下から挟むようにして互いに導通可能に 積層される 2枚の Xコイル基板 4 1 1を有する。 各 Xコイル基板 4 1 1は、 ェポ キシ基板の表面に X軸方向成分磁界検出コイル用の Xコイルパターン 4 1 aを形 成し、 周縁部に各 Xコイルパターン 4 1 aを接続する端子用のスルーホール 4 1 bを形成して成る。 同様にして、 第 2検出コイル基板 4 2は、 センサコア 3を上 下から挟むようにして互いに導通可能に積層される 2枚の Yコイル基板 4 2 1を 有する。 各 Yコイル基板 4 2 1は、 エポキシ基板の表面に Y軸方向成分磁界検出 コイル用の Yコイルパターン 4 2 aを形成する一方、 周縁部に各 Yコイルパター ン 4 2 aを接続する端子用のスルーホール 4 2 bを形成して成る。 FIG. 2 is an exploded view of a specific example of the magnetic detection unit 100 included in the magnetic sensor. The sensor core 3 is formed by cutting amorphous thin plates in a ring shape, and etching them as if wound with a toroidal core. The magnetic field detection coil substrate 4 includes a first detection coil substrate 41 having a coil pattern 41 a for forming an X-axis direction component magnetic field detection coil, and a coil pattern 42 a for forming a Y-axis direction component magnetic field detection coil. And a second detection coil substrate 42. The first detection coil board 41 has two X coil boards 411 that are stacked so as to be mutually conductive so as to sandwich the sensor core 3 from above and below. Each X-coil board 4 1 1 forms an X-coil pattern 4 1 a for the X-axis component magnetic field detection coil on the surface of the epoxy board, and a terminal for connecting each X-coil pattern 4 1 a on the periphery. Through hole for 4 1 b. Similarly, the second detection coil substrate 42 has two Y coil substrates 421, which are stacked so as to be conductive with each other so as to sandwich the sensor core 3 from above and below. Each Y-coil substrate 4 21 forms a Y-coil pattern 4 2a for the Y-axis component magnetic field detection coil on the surface of the epoxy substrate, while a terminal for connecting each Y-coil pattern 4 2a on the periphery. Formed through holes 4 2 b.
また、 励磁コイル基板 5は、 センサコア 3を上下から挟むようにして互いに導 通可能に積層される 2枚の励磁コイル用基板 5 1 , 5 2を有する。 各励磁コイル 用基板 5 1, 5 2は、 エポキシ基板の表面に励磁コイルパターン 5 1 a, 5 2 a を形成し、 周縁部に各励磁コイルパターンを接続する端子用のスルーホール 5 1 b, 5 2 bを形成して成る。 本磁気検出部 1 0 0は、 これらセンサコア 3と磁界 検出コイル基板 4と励磁コイル基板 5を、 センサコア 3を中心に順次積重ね、 プ レスして層状に形成される。  Further, the excitation coil substrate 5 has two excitation coil substrates 51 and 52 that are stacked so as to be mutually conductive so as to sandwich the sensor core 3 from above and below. Each of the excitation coil substrates 51 and 52 has excitation coil patterns 51a and 52a formed on the surface of the epoxy substrate, and through holes 51b and 136b for terminals for connecting the excitation coil patterns on the peripheral edge. 5 2b is formed. The magnetic detection unit 100 is formed by laminating the sensor core 3, the magnetic field detection coil substrate 4, and the excitation coil substrate 5 sequentially around the sensor core 3 and pressing the sensor core 3 to form a layer.
磁気検出部 1 0 0では、 センサコア 3のまわりに交流電流を通すことにより、 センサコア 3を飽和させている。 外部磁界の影響がない状態では、 交流電流の正 方向に向かうときと負方向に向かうときで、 センサコア 3が飽和するタイミング はちょうど均等に現れる。 しかし、 ある方向からの磁束がセンサコア 3を通過す ると、 その磁界が前記正方向または負方向の電流のいずれかによつてセンサコア 3に生じる磁界に重畳するため、その方向においてセンサコア 3の飽和が早まる。 センサコア 3にセンスコイルを巻き、 飽和状態の不均衡を電圧として外部で検出 する。 2組のセンスコイル (Xコイル、 Yコイル) を直交して配置することによ り、 X軸方向の磁界成分と Y軸方向の磁界成分に対応した出力電圧を検出するこ とができる。  In the magnetic detection unit 100, the sensor core 3 is saturated by passing an alternating current around the sensor core 3. In the state where there is no influence of the external magnetic field, the timing at which the sensor core 3 saturates appears evenly when going in the positive direction and when going in the negative direction of the alternating current. However, when a magnetic flux from a certain direction passes through the sensor core 3, the magnetic field is superimposed on the magnetic field generated in the sensor core 3 by either the above-mentioned positive or negative current, and the saturation of the sensor core 3 in that direction occurs. Hasten. A sense coil is wound around the sensor core 3, and the imbalance of the saturated state is externally detected as a voltage. By arranging two pairs of sense coils (X coil and Y coil) orthogonally, it is possible to detect the output voltage corresponding to the magnetic field component in the X-axis direction and the magnetic field component in the Y-axis direction.
6は C P Uで、 入力された G P S受信部 1からの位置信号と磁気センサ 2から の方位信号に基づき所定の演算処理を行って現在位置 (経度と緯度及び方位) を 測位し、 この現在位置情報に合致する地図情報を地図情報記録部 7から読み出し て位置情報表示部 9のディスプレイ 9 1に現在地指標とともに表示する。併せて、 位置情報表示部 9は、 現在位置や方向などを合成音声で発音表示する。  Reference numeral 6 denotes a CPU, which performs predetermined arithmetic processing based on the input position signal from the GPS receiver 1 and the azimuth signal from the magnetic sensor 2 to measure the current position (longitude, latitude, and azimuth). Is read out from the map information recording section 7 and displayed on the display 91 of the position information display section 9 together with the current location index. At the same time, the position information display section 9 sounds and displays the current position, direction, and the like with synthesized speech.
G P S受信部 1からの位置情報と磁気センサ 2からの方位情報とは相互補完を 行う。 携帯端末装置の移動に伴なう G P S受信部 1の位置情報の変遷から、 演算 によつて方位情報を得ることができる。 この方位情報と磁気センサ 2からの方位 情報と比較し、 磁気センサ 2からの方位情報を正とした場合に、 スタート地点を 割り出すことが可能となる。 これにより、 G P S受信部 1の位置情報をスタート 時点に戻すことが可能になり、 積分され、 累積された誤差情報を 0に戻すことが 可能になる。 The position information from the GPS receiver 1 and the azimuth information from the magnetic sensor 2 complement each other. Calculates from changes in the location information of GPS receiver 1 due to movement of the mobile terminal device Thus, the azimuth information can be obtained. By comparing this azimuth information with the azimuth information from the magnetic sensor 2 and determining that the azimuth information from the magnetic sensor 2 is positive, the start point can be determined. This makes it possible to return the position information of the GPS receiver 1 to the start time, and to return the integrated and accumulated error information to zero.
地図情報表示処理部 8は、 ディスプレイ 9 1に表示される現在地の地図情報を 必要に応じ所要角度回転スクロールさせ、 現在地の地図情報上で現在地指標の進 行方向 (磁気センサの向いている方向) が常時ディスプレイの上辺を向くように 表示処理する。 図 3を参照して説明する。 磁気センサ 2からの方位信号は、 検出 された地磁気を X軸方向 (東西方向) 磁界ベクトル値と Y軸方向 (南北方向) 磁 界べクトル儘に分解したアナログ値として C P U 6に入力される。 C P U 6は、 この入力信号をディジタル信号に AZD変換する。 X軸方向と Y軸方向の磁界べ クトル値は、 E E P— R OMに格納されている所定の補正パラメータを用いるこ とにより、 分解能が高められる。 磁北方向を 0度とした場合、 X軸方向磁界べク トル値 X I と Y軸方向磁界ベクトル値 Y 1の合成ベクトル T (磁気センサの向い ている方向を表す) に至る時計方向への回転角 (方位角) Θは、 次の式によって 得られる。  The map information display processing unit 8 rotates the map information of the current position displayed on the display 91 by a required angle, if necessary, and moves the current position index on the map information of the current position (the direction in which the magnetic sensor is facing). Is displayed so that always faces the top of the display. This will be described with reference to FIG. The azimuth signal from the magnetic sensor 2 is input to the CPU 6 as an analog value obtained by decomposing the detected geomagnetism into a magnetic field vector value in the X-axis direction (east-west direction) and a magnetic field vector in the Y-axis direction (north-south direction). The CPU 6 converts this input signal into a digital signal by AZD. The resolution of the magnetic field vector values in the X-axis direction and the Y-axis direction can be increased by using a predetermined correction parameter stored in EEP-ROM. Assuming that the magnetic north direction is 0 degrees, the clockwise rotation angle to the composite vector T (representing the direction of the magnetic sensor) of the X-axis magnetic field vector value XI and the Y-axis magnetic field vector value Y1 (Azimuth) Θ is obtained by the following equation.
Θ =tan— 1 X 1/Y 1 Θ = tan— 1 X 1 / Y 1
方位角の算出にあたっては、 各方向の磁界べクトル値に補正パラメータを用い ない算出ロジックによっても可能である。  The azimuth angle can be calculated by calculation logic that does not use a correction parameter for the magnetic field vector value in each direction.
地図情報表示処理部 8の処理過程を、 図 4から図 6を参照して説明する。 例え ば、 現在、 携帯端末装置の所持者が新宿駅中央通りのェ学院大学角部に所在し、 北東 (方位角 4 5度) の方向を向いているとする。 G P S受信部 1からの位置信 号によって地図情報記録部 7から該当する経度と緯度の地図情報 (図 4参照) が 呼び出される。 そして、 現在位置 Pを中心にディスプレイ画面の大きさ (例えば 2 0 0 ドット X 2 0 0ドット) に合った範囲の地図情報が区切り選択される。 こ のとき、 選択された地図情報 Aは、 磁気センサ 2からの方位信号によって得られ た方位角 Θ分だけ時計方向に回転した範囲の地図情報となっている (図 5参照)。 そして、 ディスプレイ 9 1に表示されるときに、 上記表示処理部 8によって選択 地図情報 Aが方位角分反時計方向に回転処理されて修正表示される (図 6参照)。 この結果、 地図情報 Bは、 磁気センサ 2の向いている方向 (進行方向) を常にデ イスプレイ 9 1の上辺方向にした地図となる。 携帯端末の移動によって進行方向 の方角が変更されると、 地図情報表示処理部 8はその都度上記と同様な処理を行 つて、 常時進行方向がディスプレイ上辺方向に向いた地図情報を表示する。 これ らの一連の処理は、 髙速にかつリアルタイムで行われる。 The processing steps of the map information display processing unit 8 will be described with reference to FIGS. For example, suppose that the user of the mobile terminal device is currently located at the corner of Gakuin University on Shinjuku Station Chuo-dori and is facing northeast (with an azimuth angle of 45 degrees). The corresponding longitude and latitude map information (see Fig. 4) is called from the map information recording unit 7 by the position signal from the GPS receiving unit 1. Then, map information in a range matching the size of the display screen (for example, 200 dots X 200 dots) centering on the current position P is selected. At this time, the selected map information A is map information in a range rotated clockwise by the azimuth angle Θ obtained by the azimuth signal from the magnetic sensor 2 (see FIG. 5). Then, when displayed on the display 91, the display processing unit 8 selects Map information A is rotated counterclockwise by the azimuth and displayed as corrected (see Fig. 6). As a result, the map information B is a map in which the direction in which the magnetic sensor 2 faces (the traveling direction) is always set to the upper side of the display 91. Whenever the direction of the traveling direction is changed due to the movement of the mobile terminal, the map information display processing unit 8 performs the same processing as above each time, and always displays the map information in which the traveling direction is directed to the upper side of the display. These series of processes are performed quickly and in real time.
また、 地図情報表示処理部 8は、 ディスプレイ 9 1に表示される地図情報に含 まれる文字や記号を、 地図情報が方位角に基づいて回転処理されたときに、 回転 処理させることなくディスプレイの上辺方向に対して元の位置関係に維持する。 なお、 図 6では、 こうした処理をすることなく文字等も方位角分回転して表示し てある。 水平方向に記された文字や記号は、 地図情報が回転表示された場合にも 同様に水平方向に記された態様を維持する。 これにより、 文字等の情報が視認し 易くなる。  Further, the map information display processing section 8 converts the characters and symbols included in the map information displayed on the display 91 without rotating the map information when the map information is rotated based on the azimuth. The original positional relationship is maintained in the upper side direction. In FIG. 6, characters and the like are also rotated by the azimuth and displayed without performing such processing. The characters and symbols written in the horizontal direction also maintain the mode written in the horizontal direction when the map information is rotated and displayed. This makes it easier to visually recognize information such as characters.
携帯端末装置のキーを利用するなどして目的地の入力を行うようにしても良い。 その場合、 地図情報に基づいて目的地までの最短経路や所要時間が算出され、 こ れらが位置情報表示部のデイスプレイにあるいは音声出力部によつて表示される。 また、 受信あるいは測定した G P S受信部の位置情報と磁気センサの方位情報を 一時的に記録すれば、 これに基づいて携帯端末装置が移動した軌跡を後から確認 することもできる。  The destination may be input by using a key of the mobile terminal device. In that case, the shortest route to the destination and the required time are calculated based on the map information, and these are displayed on the display of the position information display unit or by the audio output unit. Also, if the received or measured position information of the GPS receiving unit and the azimuth information of the magnetic sensor are temporarily recorded, the trajectory of the mobile terminal device can be confirmed later based on the information.
本発明の第 1の実施の形態によれば、 次の効果を奏する。 G P S位置検出手段 と併用される方位検出手段に、 センサコアの上下に磁界検出コィル基板と励磁コ ィル基板とを積層したセンサ基板から成るフラックスゲート型磁気センサまたは ホール素子あるいは磁気抵抗素子などを利用した地磁気センサを用いるので、 小 型の携帯端末装置、 特に携帯電話のディスプレイに、 地図情報とともに所持者の 正確な現在位置を表示させることができる。  According to the first embodiment of the present invention, the following effects can be obtained. A fluxgate magnetic sensor consisting of a sensor board with a magnetic field detection coil board and excitation coil board laminated above and below the sensor core, or a Hall element or a magnetoresistive element, etc. is used for the direction detection means used in conjunction with the GPS position detection means. Since the geomagnetic sensor is used, it is possible to display the accurate current position of the holder together with the map information on the display of a small-sized mobile terminal device, especially a mobile phone.
磁気センサの磁界べク トル値から求められる方位角に基づいて地図情報を地図 情報処理手段によって回転スクロールさせるようにしたので、 携帯端末装置の移 動進行方向が常時表示部平面内の予め設定された特定方向を向くようにして表示 させることができ、 地図情報の向きと進行方向とがー致し、 使用者に違和感を与 えることがないばかりでなく、 正確な方位と位置を動態的に理解させることがで さる。 Since the map information is rotated and scrolled by the map information processing means based on the azimuth angle obtained from the magnetic field vector value of the magnetic sensor, the moving direction of the mobile terminal device is always set in advance in the plane of the display unit. The direction of the map information matches the direction of travel, giving a sense of discomfort to the user. Not only will you not be able to obtain it, but you will also be able to dynamically understand the correct orientation and position.
さらに、 G P Sによる位置情報を地磁気センサによる方位情報によって補完す るようにしたので、 積分方式により累積される誤差情報を可及的になくすことが でき、 精度の髙ぃ位置表示システムを提供できる。  Further, since the position information by the GPS is supplemented by the azimuth information by the geomagnetic sensor, the error information accumulated by the integration method can be eliminated as much as possible, and an accurate 髙 ぃ position display system can be provided.
この第 1の実施の形態における特徴は、 以下の各項目に規定される。  The features of the first embodiment are defined in the following items.
(項目 1一 1 ) 携帯端末装置に、 G P S信号に基づいて位置を検出する位置検 出手段と、 センサコアの上下に磁界検出コィル基板と励磁コィル基板とを積層し たセンサ基板から成るフラックスゲート型磁気センサまたはホール素子あるいは 磁気抵抗素子などを利用した地磁気センサによって方位を検出する方位検出手段 と、 上記位置検出手段による位置情報を上記方位検出手段によって補正する演算 手段と、 地図情報が記憶された地図情報記憶手段と、 上記演算手段に基づいて確 定された現在位置を上記地図情報とともに表示する位置情報表示手段と、 現在位 置の方位変更に伴ない、 位置情報表示手段によって表示される地図情報を上記方 位検出手段からの出力信号に基づいて変更角度分回転スクロールさせる表示処理 手段とを設け、 携帯端末装置の移動によつて方位が変更されたときに上記表示処 理手段によって地図情報を回転させ、 位置情報表示手段の表示部に、 携帯端末装 置の現在位置を、 その移動進行方向が常時表示部平面内の予め設定された特定方 向を向くようにして表示させる、 ことを特徴とする位置情報表示システム。  (Item 111) A fluxgate type consisting of a mobile terminal device with position detection means for detecting the position based on GPS signals, and a sensor board in which a magnetic field detection coil board and an excitation coil board are stacked above and below a sensor core. Azimuth detecting means for detecting an azimuth by a geomagnetic sensor using a magnetic sensor or a Hall element or a magnetoresistive element, calculating means for correcting the position information by the position detecting means by the azimuth detecting means, and map information are stored. Map information storage means, position information display means for displaying the current position determined based on the calculation means together with the map information, and a map displayed by the position information display means with a change in the direction of the current position Display processing means for rotating and scrolling information by a change angle based on an output signal from the direction detection means, When the azimuth is changed by the movement of the band terminal device, the map information is rotated by the display processing means, the current position of the portable terminal device is displayed on the display section of the position information display means, and the traveling direction of the mobile terminal device is displayed. A position information display system, characterized in that the display is always performed so as to face a predetermined direction in a plane of the display unit.
(項目 1一 2 ) 前記フラックスゲート型磁気センサの磁界検出コイル基板は、 X軸方向成分磁界検出コィル形成用のコィルバターンを有する第 1検出コイル基 板と、 Y軸方向成分磁界検出コィル形成用のコィルパタ一ンを有する第 2検出コ ィル基板とから成り、 前記励磁コイル基板は、 励磁コイル形成用の環状コイルパ ターンを有し、 また、 前記センサ基板の縁部には、 各コイルパターンに接続する スルーホールが形成されている (項目 1 _ 1 ) 記載の位置情報表示システム。  (Item 1-2) The magnetic field detecting coil substrate of the flux gate type magnetic sensor includes a first detecting coil substrate having a coil pattern for forming an X-axis direction component magnetic field detecting coil, and a Y-axis direction component magnetic field detecting coil forming coil. A second detection coil substrate having a coil pattern, the excitation coil substrate has an annular coil pattern for forming an excitation coil, and an edge of the sensor substrate is connected to each coil pattern. The position information display system according to (1) wherein a through hole is formed.
(項目 1一 3 ) 携帯端末装置の現在位置が、 前記位置情報表示手段の表示部平 面内の常時上辺方向を進行方向として表示される (項目 1一 1 ) 記載の位置情報 表示システム。  (Item 1-13) The position information display system according to (Item 1-11), wherein the current position of the mobile terminal device is always displayed with the upper side direction in the plane of the display unit of the position information display means as the traveling direction.
(項目 1一 4 ) 前記位置情報表示手段は、 画像と文字等の視覚表示手段と、 音 声から成る聴覚表示手段とを含み、 現在位置及び/もしくは移動進行状況が、 視 覚とともに音声で表示される (項目 1一 1 ) 記載の位置情報表示システム。 (Item 114) The position information display means includes visual display means of images and characters, and sound. The position information display system according to (11-1), further comprising: an auditory display means comprising a voice, wherein the current position and / or the movement progress status are displayed by voice together with the visual sense.
(項目 1一 5 ) 前記位置情報表示手段によって表示される地図情報が、 前記表 示処理手段によって回転処理されたときに、 地図情報に含まれる文字が前記特定 方向に対して上記回転処理される前の位置関係を維持する (項目 1一 1 ) 記載の 位置情報表示システム。  (Item 115) When the map information displayed by the position information display means is rotated by the display processing means, the characters included in the map information are rotated in the specific direction. The position information display system described in (1) to maintain the previous positional relationship.
(項目 1一 6 ) 前記磁気センサは、 地磁気を X軸方向磁界成分と Y軸方向磁界 成分に分解し、 これをアナログ値の信号として出力し、 前記演算手段は、 上記ァ ナログ信号をディジタル変換して現在地の方位を測位し、 前記表示処理手段は、 北磁極方向を 0度とした場合の現在地の方位までの角度を回転角として所要方向 に地図情報を回転させる (項目 1一 1 ) 記載の位置情報表示システム。  (Item 1-6) The magnetic sensor decomposes geomagnetism into an X-axis direction magnetic field component and a Y-axis direction magnetic field component, and outputs this as an analog value signal.The arithmetic unit converts the analog signal into a digital signal. The display processing means rotates the map information in a required direction by using an angle up to the current position azimuth when the direction of the north magnetic pole is 0 degrees as a rotation angle (item 11-1). Location information display system.
(項目 1一 7 ) 前記位置情報表示手段は、 目的地までの最短経路あるいは所要 時間を表示させる (項目 1一 1 ) 記載の位置情報表;  (Item 11) The position information display means displays a shortest route to the destination or a required time; a position information table according to (Item 11);
<第 2の実施の形態 > <Second embodiment>
地磁気センサは、観測地点の磁方位を測定するために従来から用いられている。 地磁気センサは観測地点において水平面上に設置され、 水平面上の地磁気べクト ルの 2軸成分を検出する。 地磁気センサが検出する 2軸成分から磁方位が算出さ れる。  Geomagnetic sensors have conventionally been used to measure the magnetic orientation at an observation point. The geomagnetic sensor is installed on the horizontal plane at the observation point and detects the biaxial components of the geomagnetic vector on the horizontal plane. The magnetic azimuth is calculated from the two-axis components detected by the geomagnetic sensor.
地図情報を携帯電話や携帯端末装置などの携帯機器に表示する用途が広がって いる。 そのためには、 地磁気センサを携帯機器に組み込むことが想定され、 小型 で性能の良い地磁気センサが求められている。 本発明者は以上の認識に基づき本 発明をなしたもので、 小型で性能の良い地磁気センサを提供することを目的とす る。  Applications for displaying map information on mobile devices such as mobile phones and mobile terminal devices are expanding. To this end, it is assumed that geomagnetic sensors will be incorporated into portable devices, and small, high-performance geomagnetic sensors are required. The present inventor has made the present invention based on the above recognition, and has an object to provide a small-sized and high-performance geomagnetic sensor.
第 2の実施の形態のある態様は、 フラックスゲート型磁気センサに関する。 セ ンサコイル (Xコイル、 Yコイル)及びそれらを励磁する交流磁界を発生するトロ ィダルコイルを含む磁気検出部とその磁気検出部の出力信号を処理する信号処理 回路を備えている。  An aspect of the second embodiment relates to a fluxgate magnetic sensor. It has a magnetic detection unit including a sensor coil (X coil, Y coil) and a toroidal coil that generates an AC magnetic field that excites them, and a signal processing circuit that processes the output signal of the magnetic detection unit.
磁気検出部は、 複数の基板層を一体化して形成されるものであってもよく、 そ れらの基板層は、 センサコイル(Xコイル、 γコイル)及びトロイダルコイルのコ ィル部分を基板パターンによって構成するものであっても良い。 The magnetic detection section may be formed by integrating a plurality of substrate layers. In these substrate layers, the coil portions of the sensor coil (X coil, γ coil) and toroidal coil may be constituted by a substrate pattern.
信号処理回路は、 Xコイル、 Yコイルそれぞれに対応して、 独立に設けられた 方向性依存回路を含む。 各方向性依存回路は、 交流磁界の周波数に従って一方が オン、 他方がオフするよう構成された第 1及び第 2のアナログスィッチ、 第 1の アナログスィツチの出力を積分する能動的な第 1の積分回路、 第 2のアナ口グス ィツチの出力を積分する能動的な第 2の積分回路、 第 1の積分回路及び第 2の積 分回路の差分を増幅する差動増幅器、 その差動増幅器の出力をデジタル信号に変 換する A/D変換器から構成されている。  The signal processing circuit includes a direction dependency circuit provided independently for each of the X coil and the Y coil. Each direction-dependent circuit includes a first and a second analog switch configured such that one is turned on and the other is turned off according to the frequency of the alternating magnetic field, and an active first integration that integrates an output of the first analog switch. Circuit, an active second integrating circuit for integrating the output of the second analog switch, a differential amplifier for amplifying a difference between the first integrating circuit and the second integrating circuit, and an output of the differential amplifier It is composed of an A / D converter that converts digital signals into digital signals.
図 7を用いて、 第 2の実施の形態に係るフラックスゲート型磁気センサを説明 する。  The fluxgate magnetic sensor according to the second embodiment will be described with reference to FIG.
図 7は、 フラックスゲート型磁気センサ 3 0 0の構成図であり、 図 2に示され た磁気検出部 1 0 0の Xコイルパターン 4 1 aとそれに対応する信号処理回路 2 0 0を示したものである。 Xコイルパターン 4 1 aの一端は接地されているが、 第 1の積分回路 2 4と第 2の積分回路 2 6におけるオペアンプのプラス側と接続 しても良い。  FIG. 7 is a configuration diagram of the flux gate type magnetic sensor 300, and shows the X coil pattern 41 a of the magnetic detection unit 100 shown in FIG. 2 and the corresponding signal processing circuit 200. Things. One end of the X coil pattern 41 a is grounded, but may be connected to the plus side of the operational amplifier in the first integration circuit 24 and the second integration circuit 26.
信号処理回路 2 0 0は、 第 1のアナログスィッチ 2 0、 第 2のアナログスイツ チ 2 2、 第 1のアナログスィツチ 2 0の出力を積分する能動的な第 1の積分回路 2 4、 第 2のアナログスィツチ 2 2の出力を積分する能動的な第 2の積分回路 2 6、 第 1の積分回路 2 4及び第 2の積分回路 2 6の差分を増幅する差動増幅器 2 8、 その差動増幅器 2 8の出力をデジタル信号に変換する A/D変換器 3 0が、 図 7に示されるように配置されている。 第 1の積分回路 2 4と第 2の積分回路 2 6 における積分定数及ぴ差動増幅器 2 8は、 A/D変換器 3 0の持つ能力に応じて決 定される。  The signal processing circuit 200 includes an active first integration circuit 24, an integration circuit for integrating the outputs of the first analog switch 20, the second analog switch 22, and the first analog switch 20. An active second integration circuit 26 for integrating the output of the analog switch 22, a differential amplifier 28 for amplifying the difference between the first integration circuit 24 and the second integration circuit 26, and its differential An A / D converter 30 for converting the output of the amplifier 28 into a digital signal is arranged as shown in FIG. The integration constant and the differential amplifier 28 in the first integration circuit 24 and the second integration circuit 26 are determined according to the capability of the A / D converter 30.
信号処理回路 2 0 0では、 前記交流磁界の周期に対応した周波数 f 。に従って、 第 1のアナログスィツチ 2 0と第 2のアナログスィツチ 2 2が交互にオン Zオフ している。 それぞれの出力電圧を、 第 1の積分回路 2 4と第 2の積分回路 2 6で 積分し、 それらの差分を差動増幅器 2 8により増幅することで、 X軸方向の磁界 成分に対応した出力電圧を得ることができる。その出力電圧を A/D変換器 3 0で アナログからデジタルに変換し、 その X軸方向の磁気成分のデータを C P U部分 へ転送している。 また、 信号処理回路 2 0 0は、 Xコイルと図示しない Yコイル. に対応してそれぞれ独立に設けられているが、 Yコイルより検出した信号につい ても同様の処理が行なわれる。 In the signal processing circuit 200, the frequency f corresponding to the cycle of the AC magnetic field. Accordingly, the first analog switch 20 and the second analog switch 22 are alternately turned on and off. The respective output voltages are integrated by the first integration circuit 24 and the second integration circuit 26, and the difference between them is amplified by the differential amplifier 28, so that the output corresponding to the magnetic field component in the X-axis direction is obtained. Voltage can be obtained. A / D converter 30 outputs the output voltage. The data is converted from analog to digital, and the data of the magnetic component in the X-axis direction is transferred to the CPU. The signal processing circuit 200 is provided independently for each of the X coil and the Y coil (not shown), but the same processing is performed on the signal detected from the Y coil.
Xコイル及ぴ Yコイルより検出した出力電圧について前記の信号処理を行うこ とで、 X軸方向及び Y軸方向の磁気成分に対応したデジタルデータが得られ、 磁 方位を知ることが可能となる。  By performing the above-described signal processing on the output voltage detected from the X coil and the Y coil, digital data corresponding to the magnetic components in the X-axis direction and the Y-axis direction can be obtained, and the magnetic direction can be known. .
本発明の第 2の実施の形態によれば、 フラックスゲート型磁気センサにおいて 磁方位を特定するための信号処理が実現する。  According to the second embodiment of the present invention, signal processing for specifying a magnetic azimuth in a fluxgate magnetic sensor is realized.
この第 2の実施の形態における特徴は、 以下の各項目に規定される。  The features of the second embodiment are defined in the following items.
(項目 2— 1 ) X Yコイル及ぴそれらを励磁する交流磁界を発生するトロイダ ルコイルを含む磁気検出部とその磁気検出部の出力信号を処理する信号処理回路 とを含むフラックスゲート型磁気センサであって、  (Item 2-1) A fluxgate magnetic sensor including a magnetic detection unit including an XY coil and a toroidal coil for generating an AC magnetic field for exciting the XY coil and a signal processing circuit for processing an output signal of the magnetic detection unit. hand,
前記信号処理回路は、 前記 X Yコイルにそれぞれ対応して独立に設けられた 2 つの方向性依存回路を含み、  The signal processing circuit includes two directionality dependent circuits independently provided corresponding to the XY coils, respectively.
各方向性依存回路は、  Each direction-dependent circuit is
それぞれ対応するコィルから出力された信号を前記交流磁界の周波数に従って、 —方がオン、他方がオフするよう構成された第 1及び第 2のアナログスィツチと、 第 1のアナログスィツチの出力を積分する能動的な第 1の積分回路と、 第 2のアナログスィツチの出力を積分する能動的な第 2の積分回路と、 第 1の積分回路及び第 2の積分回路の差分を増幅する差動増幅器と、  According to the frequency of the AC magnetic field, the signals output from the corresponding coils are integrated with the first and second analog switches configured so that one is on and the other is off, and the output of the first analog switch. An active first integration circuit, an active second integration circuit for integrating the output of the second analog switch, and a differential amplifier for amplifying a difference between the first integration circuit and the second integration circuit. ,
その差動増幅器の出力をデジタル信号に変換する A/D変換器と、  An A / D converter that converts the output of the differential amplifier to a digital signal,
を含むことを特徴とする地磁気センサ。 A geomagnetic sensor comprising:
(項目 2— 1 ) X Yコイル及びそれらを励磁する交流磁界を発生するトロイダ ルコイルを含む磁気検出部とその磁気検出部の出力信号を処理する信号処理回路 とを含むフラックスゲ一ト型磁気センサであって、  (Item 2-1) A flux gate type magnetic sensor including a magnetic detection unit including an XY coil and a toroidal coil for generating an AC magnetic field for exciting them and a signal processing circuit for processing an output signal of the magnetic detection unit. So,
前記磁気検出部は、 複数の基板層を一体化して形成され、 それらの基板層はそ れぞれ X Yコイル及びトロイダルコイルのコイル部分を基板パターンによって構 成するものであり、 前記信号処理回路は、 前記 X Yコィルにそれぞれ対応して独立に設けられた 2 つの方向性依存回路を含み、 The magnetic detection unit is formed by integrating a plurality of substrate layers, and each of the substrate layers constitutes an XY coil and a toroidal coil by a substrate pattern. The signal processing circuit includes two direction-dependent circuits independently provided corresponding to the XY coils, respectively.
各方向性依存回路は、  Each direction-dependent circuit is
それぞれ対応するコイルから出力された信号を前記交流磁界の周波数に従って、 一方がオン、他方がオフするよう構成された第 1及び第 2のアナログスィツチと、 第 1のアナログスィツチの出力を積分する能動的な第 1の積分回路と、 第 2のアナログスィツチの出力を積分する能動的な第 2の積分回路と、 第 1の積分回路及び第 2の積分回路の差分を増幅する差動増幅器と、  A first and a second analog switch configured so that one is turned on and the other is turned off according to the frequency of the AC magnetic field according to the frequency of the AC magnetic field, and an output that integrates the output of the first analog switch. A first integrating circuit, an active second integrating circuit that integrates the output of the second analog switch, a differential amplifier that amplifies the difference between the first integrating circuit and the second integrating circuit,
その差動増幅器の出力をデジタル信号に変換する A/D変換器と、  An A / D converter that converts the output of the differential amplifier to a digital signal,
を含むことを特徴とする地磁気センサ。 A geomagnetic sensor comprising:
<第 3の実施の形態 > <Third embodiment>
第 3の実施の形態は、 さらに小型の磁気センサを実現することを目的とする。 以下では、 磁気センサ、 およびその磁気センサを組み込んだ方位センサを小型に 作製する技術について説明する。  The third embodiment aims at realizing a smaller magnetic sensor. In the following, a technology for fabricating a magnetic sensor and a direction sensor incorporating the magnetic sensor in a small size will be described.
図 8は、 本発明の第 3の実施の形態に係る方位センサ 5 0 0の構成を示す図で ある。 この方位センサ 5 0 0は、 磁気センサ 6 0 0、 傾斜センサ 7 0 0、 気圧セ ンサ 8 0 0および温度センサ 9 0 0を備え、 位置や方位、 高さなどを検出する機 能を有する。方位センサ 5 0 0において、磁気センサ 6 0 0、傾斜センサ 7 0 0、 気圧センサ 8 0 0および温度センサ 9 0 0は別個に形成されてもよいが、 携帯端 末装置などに搭載されるために、 単一の基板上に構築されて小型に形成されるこ とが好ましい。 磁気センサ 6 0 0は、 磁気べクトルの X Y Zの 3軸成分のそれぞ れを検出する少なくとも 3つの磁気検出素子を有する。 傾斜センサ 7 0 0は、 基 板の傾斜角を検出する機能を有し、 X Y Zの 3軸方向の傾斜角を検出できること が好ましい。 X軸方向の傾斜角をピッチ角、 Y軸方向の傾斜角をロール角と呼ん でもよい。 気圧センサ 8 0 0は、 外気の圧力を検出する。 温度センサ 9 0 0は、 温度を検出する。 検出した温度は、 温度ドリフトによる磁気センサ 6 0 0の出力 のズレを補正するために用いられる。  FIG. 8 is a diagram showing a configuration of the direction sensor 500 according to the third embodiment of the present invention. The direction sensor 500 includes a magnetic sensor 600, an inclination sensor 700, a pressure sensor 800, and a temperature sensor 900, and has a function of detecting a position, a direction, a height, and the like. In the direction sensor 500, the magnetic sensor 600, the tilt sensor 700, the barometric pressure sensor 800, and the temperature sensor 900 may be formed separately, but are mounted on a portable terminal device or the like. In addition, it is preferable to be constructed on a single substrate and formed in a small size. The magnetic sensor 600 has at least three magnetic detecting elements for detecting each of the three axis components of XYZ of the magnetic vector. It is preferable that the tilt sensor 700 has a function of detecting the tilt angle of the substrate, and can detect the tilt angles of the XYZ three-axis directions. The tilt angle in the X-axis direction may be called a pitch angle, and the tilt angle in the Y-axis direction may be called a roll angle. The atmospheric pressure sensor 800 detects the pressure of the outside air. The temperature sensor 900 detects the temperature. The detected temperature is used to correct the deviation of the output of the magnetic sensor 600 due to the temperature drift.
図 9は、 傾斜センサ 7 0 0の一例を示す図である。 傾斜センサ 7 0 0は、 錘体 7 0 2を有する。 この錘体 7 0 2に加速度成分が加わると、 錘体 7 0 2を支持す る支持部材 7 0 4に歪みが生じ、 この歪みを抵抗体で検出して傾斜を測定する。 図中、 一つの支持部材 7 0 4のみが示されているが、 錘体 7 0 2は、 X Y Zの 3 軸方向から複数の支持部材 7 0 4により支持されることが好ましい。 これらの支 持部材 7 0 4は、 ピエゾ素子を含んで構成されることが好ましい。 この傾斜セン サ 7 0 0は X Y Zの 3軸方向の傾斜角を検知する。 磁気センサ 6 0 0の傾きを Z 軸方向の傾斜角として検出するため、 X軸および Y軸方向において検知した傾斜 角を補正することができる。 FIG. 9 is a diagram illustrating an example of the tilt sensor 700. The tilt sensor 700 is a weight 70 2. When an acceleration component is applied to the weight body 702, a distortion occurs in the support member 704 that supports the weight body 702, and the distortion is detected by a resistor to measure the inclination. Although only one support member 704 is shown in the figure, it is preferable that the weight body 702 be supported by a plurality of support members 704 from three axial directions of XYZ. Preferably, these support members 704 include a piezo element. The tilt sensor 700 detects tilt angles in the XYZ three-axis directions. Since the tilt of the magnetic sensor 600 is detected as the tilt angle in the Z-axis direction, the tilt angles detected in the X-axis and Y-axis directions can be corrected.
図 1 0は、 磁気センサ 6 0 0の一例を示す図である。 この磁気センサ 6 0 0は 3軸磁気センサとして機能し、 X軸方向の磁気成分を検出する第 1磁気検出素子 6 0 2、 Y軸方向の磁気成分を検出する第 2磁気検出素子 6 0 4および Z軸方向 の磁気成分を検出する第 3磁気検出素子 6 0 6を備える。  FIG. 10 is a diagram illustrating an example of the magnetic sensor 600. The magnetic sensor 600 functions as a three-axis magnetic sensor, and includes a first magnetic detecting element 602 for detecting a magnetic component in the X-axis direction and a second magnetic detecting element 604 for detecting a magnetic component in the Y-axis direction. And a third magnetic detecting element 606 for detecting a magnetic component in the Z-axis direction.
第 1および第 2の実施の形態においては、 X軸方向および Y軸方向の磁気成分 をフラックスグート型磁気センサにより検出する例を中心に説明した。 フラック スゲート型磁気センサは、 コイルであるリングコアを必要とするため、 構成とし ては若干大きなものとなる。 そのため、 フラックスゲート型磁気センサを十分な 配置空間がとれる車輛などに搭載する場合には問題ないが、 携帯電話などの小型 の端末装置に内蔵させる場合には、 他の内蔵素子との関係から筐体内の配置設計 を工夫する必要があった。  In the first and second embodiments, an example in which magnetic components in the X-axis direction and the Y-axis direction are detected by a flux gut type magnetic sensor has been mainly described. The flux gate magnetic sensor requires a ring core, which is a coil, and therefore has a slightly larger configuration. For this reason, there is no problem when the fluxgate magnetic sensor is mounted on a vehicle that can provide a sufficient space, but when the fluxgate magnetic sensor is mounted on a small terminal device such as a mobile phone, the case is not considered due to the relationship with other built-in elements. It was necessary to devise a layout design in the body.
一方、 MR素子などの磁気抵抗効果素子や、 ホール素子などの磁気感応素子は フラックスゲート型磁気センサょりも小型に形成可能であることが知られている 力 従来、 携帯端末装置に搭載できる程度に MR素子ないしはホール素子を首尾 よく作製することは容易でなかった。 そこで、 第 3の実施の形態では、 磁気セン サ 6 0 0を小型に形成する技術を提供し、 特にこの磁気センサ 6 0 0を傾斜セン サなどの他のセンサとともに 1枚の基板上に形成する技術を提供する。  On the other hand, it is known that a magnetoresistive element such as an MR element and a magnetically sensitive element such as a Hall element can be formed in a small size using a fluxgate magnetic sensor. It has not been easy to successfully manufacture MR elements or Hall elements. Therefore, the third embodiment provides a technology for forming the magnetic sensor 600 in a small size. In particular, this magnetic sensor 600 is formed on a single substrate together with another sensor such as a tilt sensor. Provide technology to do.
磁気センサ 6 0 0において、 少なくとも第 1磁気検出素子 6 0 2および第 2磁 気検出素子 6 0 4は MR素子またはホール素子であることが好ましく、 さらに第 3磁気検出素子 6 0 6も同様に MR素子またはホール素子であることが好ましい。 全ての磁気検出素子を MR素子またはホール素子として形成することにより、 こ の磁気センサ 6 0 0を一連の半導体製造プロセスを用いて形成することが可能と なる。 In the magnetic sensor 600, at least the first magnetic detecting element 602 and the second magnetic detecting element 604 are preferably an MR element or a Hall element, and the third magnetic detecting element 606 is also the same. It is preferably an MR element or a Hall element. By forming all magnetic sensing elements as MR elements or Hall elements, The magnetic sensor 600 can be formed using a series of semiconductor manufacturing processes.
第 1磁気検出素子 6 0 2およぴ第 2磁気検出素子 6 0 4は、 基板 6 1 0の表面 に対して所定の角度をつけて構成され、 基板表面に平行な方向 (X軸方向おょぴ Y軸方向) の 2軸の磁気成分をそれぞれ検出する。 ここで、 第 1磁気検出素子 6 0 2および第 2磁気検出素子 6 0 4は、 基板 6 1 0の表面においてほぼ直立する ように形成されることが好ましい。 また基板 6 1 0の表面において、 第 1磁気検 出素子 6 0 2およぴ第 2磁気検出素子 6 0 4は、 それぞれの表面に平行な方向が 9 0 ° となるように配置されることが好ましい。 第 3磁気検出素子 6 0 6は、 基 板 6 1 0の表面に形成され、 基板表面に垂直な方向 (Z軸方向) の磁気成分を検 出する。  The first magnetic sensing element 602 and the second magnetic sensing element 604 are formed at a predetermined angle with respect to the surface of the substrate 610, and are arranged in a direction parallel to the substrate surface (X-axis direction and the like). (Y axis direction). Here, it is preferable that the first magnetic detecting element 602 and the second magnetic detecting element 604 are formed so as to be substantially upright on the surface of the substrate 610. Further, on the surface of the substrate 61, the first magnetic detecting element 602 and the second magnetic detecting element 604 are arranged so that the direction parallel to each surface is 90 °. Is preferred. The third magnetic detecting element 606 is formed on the surface of the substrate 610 and detects a magnetic component in a direction perpendicular to the substrate surface (Z-axis direction).
各磁気検出素子は、一般式(Col-aFea) ΙΟΟχ-y-zLxMyOzで表現される薄膜構 造の磁気抵抗膜を有する。 磁性体膜は、 透磁率を l,000,0001e 以上とし、 Ι μ Τ 以上の磁界を検知可能な希土類とナノオーダーの磁性体金属粉末を用いて構成し てもよい。  Each magnetic sensing element has a magnetoresistive film having a thin film structure represented by the general formula (Col-aFea))-y-zLxMyOz. The magnetic film may have a magnetic permeability of 1,000, 0001e or more, and may be made of a rare-earth element capable of detecting a magnetic field of {μ} or more and a nano-order magnetic metal powder.
磁気検出素子の製造工程において、 まず MR素子またはホール素子である磁気 検出素子が基板上に形成され、 その後、 形成した磁気検出素子をポリイミドフィ ルムに固着させることが好ましい。 この例では、 第 1磁気検出素子 6 0 2および 第 2磁気検出素子 6 0 4がポリイミ ドフィルムに固着される。 ポリイミ ドフィル ムの少なくとも一部の領域は、 基板に固定される。  In the manufacturing process of the magnetic sensing element, it is preferable that a magnetic sensing element, which is an MR element or a Hall element, is first formed on a substrate, and then the formed magnetic sensing element is fixed to a polyimide film. In this example, the first magnetic detection element 602 and the second magnetic detection element 604 are fixed to a polyimide film. At least a part of the polyimide film is fixed to the substrate.
ポリイミドフィルムは、 所定の熱を加えることにより収縮する特性を有してい る。 第 3の実施の形態ではポリイミ ドフィルムのもつ熱収縮特性を利用し、 ポリ イミ ドフィルムの一面に磁気検出素子を固着後、 磁気検出素子を固着された領域 と基板に固定された領域との間に存在する領域の一部を線状に加熱して収縮させ、 磁気検出素子を固着した領域を所望の方向に折り曲げる。 このようにして、 基板 6 1 0の表面にほぼ直立する磁気検出素子を作成することが可能となる。以下に、 第 1磁気検出素子 6 0 2を基板において直立させて構成する方法について説明す る。 なお、 第 2磁気検出素子 6 0 4についても、 同様の方法により直立させるこ とができる。 図 1 0に示した磁気センサ 6 0 0においては、 2つの磁気検出素子 6 0 2およ び 6 0 4が直立されて構成されているが、 別の例においては、 2つの磁気検出素 子が基板 6 1 0の平面上に形成され、 1つの磁気検出素子が基板 6 1 0において 直立されて構成されてもよい。 このとき、 基板 6 1 0の平面上に形成される 2つ の磁気検出素子は、 磁気ベク トルの垂直磁界および水平磁界を検出し、 直立して 構成される磁気検出素子は、 これらの磁界に垂直な成分を検出すればよい。 The polyimide film has a property of shrinking by applying a predetermined heat. In the third embodiment, by utilizing the heat shrinkage characteristic of the polyimide film, a magnetic detection element is fixed to one surface of the polyimide film, and then the area between the area where the magnetic detection element is fixed and the area fixed to the substrate is determined. A part of the intervening region is linearly heated and contracted, and the region where the magnetic sensing element is fixed is bent in a desired direction. In this way, it is possible to produce a magnetic sensing element that stands substantially upright on the surface of the substrate 610. Hereinafter, a description will be given of a method of configuring the first magnetic sensing element 622 upright on the substrate. The second magnetic sensing element 604 can be set upright by the same method. In the magnetic sensor 600 shown in FIG. 10, two magnetic detecting elements 602 and 604 are configured to be upright. In another example, two magnetic detecting elements are provided. May be formed on the plane of the substrate 6 10, and one magnetic sensing element may be configured to stand upright on the substrate 6 10. At this time, the two magnetic detecting elements formed on the plane of the substrate 6 10 detect the vertical magnetic field and the horizontal magnetic field of the magnetic vector, and the upright magnetic detecting element detects these magnetic fields. What is necessary is just to detect a perpendicular component.
以下に、 図 1 0に示した磁気センサ 6 0 0を作製する工程について説明する。 図 1 1 ( a ) は、 第 1シリコン基板 6 2 0において第 1磁気検出素子 6 0 2を 形成した状態を示す図である。 なお図示しないが、 この工程において、 同時に第 2磁気検出素子 6 0 4およぴ第 3磁気検出素子 6 0 6についても同様に第 1シリ コン基板 6 2◦上に形成する。 各磁気検出素子は半導体製造プロセスを用いて形 成さ lる。  Hereinafter, a process of manufacturing the magnetic sensor 600 shown in FIG. 10 will be described. FIG. 11A is a diagram showing a state where the first magnetic sensing element 602 is formed on the first silicon substrate 620. Although not shown, in this step, the second magnetic detecting element 604 and the third magnetic detecting element 606 are also formed on the first silicon substrate 62 at the same time. Each magnetic sensing element is formed using a semiconductor manufacturing process.
図 1 1 ( b ) は、 第 1磁気検出素子 6 0 2の上方にポリイミ ドフィルム 6 2 2 を接着させた状態を示す図である。 例えばシリカ混入のポリイミ ドを使用する場 合には、 ほぼ 3 6 5 °Cに加熱することによってポリイミ ドフィルム 6 2 2を第 1 シリコン基板 6 2 0に熱接着することができる。 それから第 1磁気検出素子 6 0 2の上方のポリイミ ドフィルム 6 2 2は、 第 1磁気検出素子 6 0 2の形状に合せ て、 エッチングにより切れ目を入れられる。 また、 第 1磁気検出素子 6 0 2に下 方に存在するシリコンをエッチングにより除去する。 このとき、 直立させる必要 のない第 3磁気検出素子 6 0 6の上方に位置するポリイミ ドフィルム 6 2 2は、 エッチングにより取り除かれることが好ましい。 なお、 各磁気検出素子に必要な 配線および回路素子は、 第 1シリコン基板 6 2 0上またはポリイミ ドフィルム 6 2 2に形成される。  FIG. 11B is a diagram showing a state in which a polyimide film 62 2 is adhered above the first magnetic detection element 62 2. For example, when using polyimide mixed with silica, the polyimide film 622 can be thermally bonded to the first silicon substrate 620 by heating to approximately 365 ° C. Then, the polyimide film 62 2 above the first magnetic detection element 62 is cut by etching according to the shape of the first magnetic detection element 62. Further, silicon present below the first magnetic sensing element 602 is removed by etching. At this time, it is preferable that the polyimide film 622 located above the third magnetic sensing element 606 which does not need to be erected is removed by etching. Wiring and circuit elements required for each magnetic detection element are formed on the first silicon substrate 62 or on the polyimide film 62.
図 1 1 ( c ) は、 ポリイミ ドフィルム 6 2 2の上面図である。 このポリイミ ド フィルム 6 2 2には、 3辺に切れ目を入れられた矩形状の被曲げ領域 6 2 6が形 成されている。 この被曲げ領域 6 2 6は、 少なくとも下方の第 1磁気検出素子 6 0 2を覆うように切れ目を入れられて形成される。 この被曲げ領域 6 2 6は、 前 述の通りポリイミ ドフィルム 6 2 2を第 1シリコン基板 6 2 0に接着した後、 形 成されてもよいが、 接着前に予め形成されてもよい。 図 1 1 ( d ) は、 ポリイミ ドフィルム 6 2 2を上方に折り曲げて第 1磁気検出 素子 6 0 2を直立させた状態を示す図である。 ポリイミ ドフィルム 6 2 2は、 高 温に加熱されると熱収縮する特性を有する。本実施の形態ではその特性を利用し、 ポリイミドフイノレム 6 2 2の一部の領域を加熱して、 ポリイミ ドフィルム 6 2 2 を折り曲げ、 第 1磁気検出素子 6 0 2を第 1シリ コン基板 6 2 0の表面に垂直な 方向に直立させる。 当然のことであるが、 ポリイミ ドフィルム 6 2 2は、 下方に 折り曲げられてもよい。 FIG. 11C is a top view of the polyimide film 62. FIG. The polyimide film 622 has a rectangular bendable area 626 formed with cuts on three sides. The bent region 626 is formed by making a cut so as to cover at least the lower first magnetic sensing element 602. The bent region 626 may be formed after the polyimide film 622 is bonded to the first silicon substrate 620 as described above, but may be formed before bonding. FIG. 11D is a diagram showing a state in which the polyimide film 622 is bent upward and the first magnetic detection element 622 is erected. The polyimide film 622 has a property of contracting when heated to a high temperature. In the present embodiment, by utilizing the characteristics, a part of the polyimide finolem 622 is heated, the polyimide film 622 is bent, and the first magnetic sensing element 602 is connected to the first silicon. It stands upright in the direction perpendicular to the surface of the substrate 62. As a matter of course, the polyimide film 622 may be bent downward.
図 1 1 ( e ) は、 第 2シリコン基板 6 2 4の側部にポリイミ ドフィルム 6 2 2 を固定した状態を示す図である。 第 2シリコン基板 6 2 4は、 ポリイミ ドフィル ム 6 2 2の被曲げ領域 6 2 6の形状に合せて開口部 6 2 8を形成されており、 ポ リイミ ドフィルム 6 2 2と接触する部分は、 ポリイミ ドフィルム 6 2 2を固定す るための押さえ部材として機能する。 具体的に、 第 1磁気検出素子 6 0 2を固着 された側とは反対側のポリイミドフィルム 6 2 2の面が、 押さえ部材に固定され る。 なお、 第 3磁気検出素子 6 0 6上の第 2シリコン基板 6 2 4は、 エッチング により開口部を形成されていることが好ましい。 第 2シリコン基板 6 2 4は、 第 1磁気検出素子 6 0 2を直立させる前にポリィミ ドフィルム 6 2 2に固着されて いてもよく、 また直立後に固着されていてもよい。 ポリイミ ドフィルム 6 2 2と 第 2シリコン基板 6 2 4の側部 (押さえ部材) は、 加熱されて熱接着されること が好ましい。  FIG. 11E is a diagram showing a state where the polyimide film 62 2 is fixed to the side of the second silicon substrate 62 4. The second silicon substrate 624 has an opening 628 corresponding to the shape of the bending area 626 of the polyimide film 622, and the portion in contact with the polyimide film 622 is It functions as a holding member for fixing the polyimide film 62. Specifically, the surface of the polyimide film 622 opposite to the side to which the first magnetic detection element 62 is fixed is fixed to the pressing member. Preferably, the second silicon substrate 624 on the third magnetic sensing element 606 has an opening formed by etching. The second silicon substrate 624 may be fixed to the polyimide film 622 before the first magnetic sensing element 62 is erected, or may be fixed after the first magnetic sensing element 602 is erected. It is preferable that the side portions (pressing members) of the polyimide film 622 and the second silicon substrate 624 are heated and thermally bonded.
以上のプロセスにより、 基板の表面に直立した第 1磁気検出素子 6 0 2を形成 する。 図 1 0に示した磁気センサ 6 0 0を作製するためには、 同時に第 2磁気検 出素子 6 0 4も形成することが好ましい。 なお、 第 2シリコン基板 6 2 4は、 必 要に応じて、 第 1磁気検出素子 6 0 2および第 2磁気検出素子 6 0 4を固定する ための押さえ部材の部分のみを残すように、 他の領域をエッチングされて除去さ れてもよい。 また、 第 3の実施の形態では、 シリコン基板とポリイミ ドフィルム とを用いることによって、 磁気センサを一体構造として形成するため、 磁気セン サの小型化に寄与することが可能となる。 また、 他のセンサ、 すなわち傾斜セン サおよび気圧センサなどもシリコン基板上に形成することが可能であるため、 全 体として非常にコンパクトな方位センサを作製することが可能となる。 図 1 2 ( a ) は、 ダイシング前のシリコンウェハ 6 5 0を示す図である。 シリ コンウェハ 6 5 0には、 エッチングにより、 チップに切り分けるための切り代で あるスクライブ線が形成されている。 図 1 2 ( b ) は、 シリコンウェハ 6 5 0の 一部断面図である。 シリコンのェツチング特性により、 スクライブ線 6 5 2の側 壁 6 5 6は、ゥヱハ表面に平行な面に対して約 6 7度の傾斜をもって形成される。 図中、 点線は、 ダイシング時のカットラインである。 By the above process, the first magnetic sensing element 622 standing upright on the surface of the substrate is formed. In order to manufacture the magnetic sensor 600 shown in FIG. 10, it is preferable to simultaneously form the second magnetic detecting element 604. The second silicon substrate 624 may be provided with other parts, if necessary, so as to leave only a holding member for fixing the first magnetic detection element 602 and the second magnetic detection element 604. This region may be removed by etching. Further, in the third embodiment, the use of the silicon substrate and the polyimide film allows the magnetic sensor to be formed as an integral structure, thereby contributing to downsizing of the magnetic sensor. Further, since other sensors, that is, a tilt sensor and a barometric pressure sensor, can be formed on the silicon substrate, a very compact azimuth sensor can be manufactured as a whole. FIG. 12A is a diagram showing the silicon wafer 6550 before dicing. A scribe line, which is a cutting margin for cutting into chips, is formed on the silicon wafer 65 by etching. FIG. 12B is a partial cross-sectional view of the silicon wafer 65. Due to the etching characteristics of silicon, the side wall 656 of the scribe line 652 is formed with an inclination of about 67 degrees with respect to a plane parallel to the surface of the wafer. In the figure, the dotted line is the cut line at the time of dicing.
図 1 2 ( c ) は、 スクライブ線 6 5 2の側壁 6 5 6に磁気検出素子 6 5 4を形 成した状態を示す図である。 このように、 シリコンウェハ 6 5 0の表面に対して 所定の角度を有する面に磁気検出素子 6 5 4を形成することによって、 3軸の磁 気センサを容易に作製することが可能となる。 なお、 磁気検出素子 6 5 4は、 シ リコン基板の表面に対して垂直に構成されていないため、検出される磁気成分を、 斜面の角度 (6 7度) に基づいて補正する。  FIG. 12C is a diagram showing a state in which the magnetic sensing element 654 is formed on the side wall 656 of the scribe line 652. As described above, by forming the magnetic detection element 654 on a surface having a predetermined angle with respect to the surface of the silicon wafer 650, a three-axis magnetic sensor can be easily manufactured. Since the magnetic sensing element 654 is not configured perpendicular to the surface of the silicon substrate, the detected magnetic component is corrected based on the angle of the slope (67 degrees).
携帯端末装置などに搭載される磁気センサは、 自然磁界だけでなく、 携帯端末 装置内部や、 都市部や交通網の発達してレ、る地域などで発生される動的な磁界も 検知することがある。 したがって、 自然磁界の成分のみを抽出するためには、 検 知した磁気成分から、 動的な磁気成分を削除する必要がある。 従来の 2軸磁気セ ンサを利用する場合には、 磁界強度を求めることができないため、 この動的な磁 気成分を効率的に取り除くことができなかった。  Magnetic sensors mounted on mobile terminals, etc., can detect not only natural magnetic fields, but also dynamic magnetic fields generated inside mobile terminals, in urban areas and in areas with developed transportation networks. There is. Therefore, in order to extract only the natural magnetic field component, it is necessary to remove the dynamic magnetic component from the detected magnetic component. When a conventional two-axis magnetic sensor is used, the dynamic magnetic component cannot be efficiently removed because the magnetic field strength cannot be obtained.
一方、 本実施の形態の磁気センサ 6 0 0は、 3軸方向の磁気成分を検出するこ とができるため、 磁界強度を測定することが可能となる。 例えば磁気センサ 6 0 0において、 所定の磁界強度を設定して予め記録部に記録しておき、 この設定強 度を超える磁気成分を検出した場合に、 この磁気成分をノイズと判断してキャン セルすることが可能となる。 このように、 磁気センサ 6 0 0は、 磁界強度を検出 できるため、 C P U 6の演算処理による自動的なキャリブレーションを実現する ことが可能となる。  On the other hand, the magnetic sensor 600 according to the present embodiment can detect magnetic components in three axial directions, and thus can measure the magnetic field strength. For example, in the magnetic sensor 600, a predetermined magnetic field strength is set and recorded in a recording unit in advance, and when a magnetic component exceeding the set strength is detected, the magnetic component is determined to be noise and canceled. It is possible to do. As described above, since the magnetic sensor 600 can detect the magnetic field strength, it is possible to realize automatic calibration by arithmetic processing of the CPU 6.
また、 地磁気成分を検出する際、 磁気センサ 6 0 0が傾いている場合には、 傾 斜センサの出力値によりその傾斜分を補正する必要がある。 従来の 2軸の傾斜セ ンサ (加速度センサ) を利用した場合には、 X軸おょぴ Y軸方向の補正データし か得ることができず、 傾斜センサ自体の傾きを検出することができなかった。 そ のため、 2軸の傾斜センサを使用する場合には、 傾斜センサの Z軸成分を 0とし た状態、 すなわち傾斜センサを水平にした状態でキヤリブレ一シヨンを行って、 磁気センサの検出値を補正する必要があった。 When detecting the geomagnetic component, if the magnetic sensor 600 is tilted, it is necessary to correct the tilt by the output value of the tilt sensor. When a conventional two-axis tilt sensor (acceleration sensor) is used, only correction data in the X-axis and Y-axis directions can be obtained, and the tilt of the tilt sensor itself cannot be detected. Was. So Therefore, when using a 2-axis tilt sensor, calibration is performed with the Z-axis component of the tilt sensor set to 0, that is, with the tilt sensor horizontal, and the detection value of the magnetic sensor is corrected. I needed to.
第 3の実施の形態による傾斜センサ 7 0 0は、 3軸方向の傾斜角を検出するこ とができるため、傾斜センサを水平にして行うキヤリブレーションを不要とする。 また、 錘体 7 0 2を利用するために、 傾斜センサ 7 0 0を磁気センサ 6 0 0など と共に一つの基板上にコンパクトに形成することも可能となる。 この傾斜センサ 7 0 0によると、 ユーザが意識することなく、 C P U 6の演算処理による自動的 な傾斜角のキヤリブレーションを実現することができ、 非常に精度の高い磁気セ ンサ 6 0 0の出力を得ることが可能となる。  Since the tilt sensor 700 according to the third embodiment can detect the tilt angles in the three axial directions, calibration that is performed by setting the tilt sensor horizontally is unnecessary. In addition, since the weight body 700 is used, the tilt sensor 700 can be formed compactly on one substrate together with the magnetic sensor 600 and the like. According to the tilt sensor 700, the calibration of the tilt angle can be automatically performed by the arithmetic processing of the CPU 6 without being conscious of the user, and the extremely accurate magnetic sensor 600 can be realized. Output can be obtained.
携帯端末装置上に地図情報が配信される場合に、 方位センサ 5 0 0は非常に高 精度の位置および方位測定を可能とするため、 G P Sから位置情報を取得するこ となく、 携帯端末装置単体で地図情報を加工して表示することが可能となる。 例 えば、 携帯端末装置に J AV A (登録商標) などのアプリケーションソフトを予 めインストールすることによって、 地図情報の切り出しおよび表示処理を行って もよい。 当然ではあるが、 第 1の実施の形態において説明したように、 携帯端末 装置に内蔵された方位センサ 5 0 0と G P Sとが協同して、 携帯端末装置の位置 および方位を測定するようにしてもよい。 また、 いずれの場合であっても、 携帯 端末装置は、 自身の画面サイズに合わせて、 配信された地図情報を拡大または縮 小表示可能なことが好ましい。  When the map information is distributed on the mobile terminal device, the direction sensor 500 can measure the position and direction with extremely high accuracy. It is possible to process and display map information. For example, map information cutout and display processing may be performed by installing application software such as JAVA (registered trademark) in advance on the portable terminal device. Needless to say, as described in the first embodiment, the orientation sensor 500 built in the portable terminal device and the GPS cooperate to measure the position and orientation of the portable terminal device. Is also good. In any case, it is preferable that the mobile terminal device can display the distributed map information in an enlarged or reduced size according to its own screen size.
また、 気圧センサ 8 0 0を携帯端末装置に搭載することにより、 携帯端末装置 が位置する高さを測定することが可能となる。 気圧の測定値は気候により変化す るため、 地表面における気圧 (絶対気圧) と、 地表面よりも高い位置における気 圧の上昇分 (相対気圧) の関係を予めテーブルとして記録部に記録しておくこと が好ましい。 なお、 絶対気圧と相対気圧の関係は、 演算式の形式で記録部に格納 されていてもよい。 C P U 6は、 気圧センサ 8 0 0の出力値に基づいて絶対気圧 および相対気圧を算出して高さを特定し、 また磁気センサ 6 0 0の出力値に基づ いて携帯端末装置の現在位置 (緯度および経度) を特定して、 結果としてビルの 何階に位置するかを判断することができる。 例えばビルの 3階に位置することが 判断されると、 携帯端末装置の表示画面に、 そのビルの 3階にある店の情報を表 示したりすることができ、 ユーザにとつて利便性の高い携帯端末装置を実現する ことが可能となる。 In addition, by mounting the atmospheric pressure sensor 800 on the portable terminal device, it is possible to measure the height at which the portable terminal device is located. Since the measured value of air pressure changes depending on the climate, the relationship between the air pressure at the ground surface (absolute air pressure) and the rise in air pressure at a position higher than the ground surface (relative air pressure) is recorded in the recording unit in advance as a table It is preferable to keep it. The relationship between the absolute pressure and the relative pressure may be stored in the recording unit in the form of an arithmetic expression. The CPU 6 calculates the absolute pressure and the relative pressure based on the output value of the atmospheric pressure sensor 800 to specify the height, and based on the output value of the magnetic sensor 600, determines the current position of the portable terminal device ( Latitude and longitude) to determine the floor of the building as a result. For example, being located on the third floor of a building When it is determined, it is possible to display the information of the store on the third floor of the building on the display screen of the mobile terminal device, and it is possible to realize a mobile terminal device that is highly convenient for the user. Become.
一つの基板上に 3軸の磁気センサ 6 0 0、 3軸の傾斜センサ 7 0 0などを作製 することにより、 高精度の方位センサ 5 0 0を非常にコンパクトに形成すること が可能となる。 なお、 この方位センサ 5 0 0については、 主に携帯端末装置に組 み込むことを例に説明してきたが、 車輛やその他大型の移動装置に組み込んでも よいことは、 当業者であれば容易に理解されるところである。 産業上の利用可能性  By manufacturing a three-axis magnetic sensor 600, a three-axis tilt sensor 700, and the like on one substrate, it is possible to form a highly accurate azimuth sensor 500 in a very compact manner. The direction sensor 500 has been mainly described as being incorporated in a portable terminal device. However, it is easily understood by those skilled in the art that the direction sensor 500 may be incorporated in a vehicle or other large-sized mobile device. It is understood. Industrial applicability
以上のように、 本発明は、 位置情報を表示させるための装置、 およびその表示 装置に組み込まれる磁気センサまたは方位センサに利用可能である。  INDUSTRIAL APPLICABILITY As described above, the present invention can be used for a device for displaying position information and a magnetic sensor or a direction sensor incorporated in the display device.

Claims

請 求 の 範 囲 The scope of the claims
1 . 携帯端末装置に内蔵され、 地磁気ベク トルの 3軸成分のそれぞれを検出す る磁気検出素子が基板におレ、て形成された地磁気センサであって、 1. A geomagnetic sensor built in a mobile terminal device and formed on a substrate with a magnetic detecting element for detecting each of the three axial components of the geomagnetic vector,
少なくとも 1つの磁気検出素子は、 MR素子またはホール素子であることを特 徴とする地磁気センサ。  A geomagnetic sensor characterized in that at least one magnetic detection element is an MR element or a Hall element.
2 . 磁気べクトルの軸方向成分を検出する磁気検出素子を基板に備えた磁気セ ンサであって、 前記磁気検出素子は、 MR素子またはホール素子であって、 熱収 縮性をもつフィルムに固着されていることを特徴とする磁気センサ。  2. A magnetic sensor provided on a substrate with a magnetic detecting element for detecting an axial component of a magnetic vector, wherein the magnetic detecting element is an MR element or a Hall element and is formed on a film having heat shrinkage. A magnetic sensor, which is fixed.
3 . 前記磁気検出素子は、 前記基板に少なくとも一部を固定されたポリイミ ド フィルムに固着されており、 前記基板の表面に対して所定の角度をつけて構成さ れることを特徴とする請求の範囲 2に記載の磁気センサ。 3. The magnetic sensing element is fixed to a polyimide film at least partially fixed to the substrate, and is formed at a predetermined angle with respect to the surface of the substrate. The magnetic sensor according to range 2.
4 . 前記磁気検出素子は、 ポリイミ ドフィルムが加熱されて熱収縮することに より、 前記基板の表面に対して角度をつけて構成されることを特徴とする請求の 範囲 3に記載の磁気センサ。  4. The magnetic sensor according to claim 3, wherein the magnetic detection element is configured to be inclined with respect to the surface of the substrate by heating and contracting a polyimide film. .
5 . 磁気検出素子を固着された側とは反対側のポリイミ ドフィルムの面は、 押 さえ部材に固定されることを特徴とする請求の範囲 3または 4に記載の磁気セン サ。  5. The magnetic sensor according to claim 3, wherein a surface of the polyimide film on a side opposite to a side to which the magnetic detection element is fixed is fixed to a pressing member.
6 . 前記押さえ部材は、 シリコンで形成されていることを特徴とする請求の範 囲 5に記載の磁気センサ。  6. The magnetic sensor according to claim 5, wherein the pressing member is formed of silicon.
7 . 前記基板はシリコンで形成されていることを特徴とする請求の範囲 2から 6のいずれかに記載の磁気センサ。  7. The magnetic sensor according to claim 2, wherein the substrate is formed of silicon.
8 . 地磁気べクトルの 3軸成分のそれぞれを検出する磁気検出素子を有する地 磁気センサと、 3軸方向の傾きを検出する傾斜センサとがーつの基板上に一体と して形成された方位センサ。  8. An azimuth sensor in which a geomagnetic sensor having a magnetic detection element that detects each of the three axial components of the geomagnetic vector and a tilt sensor that detects the tilt in the three axial directions are integrally formed on a single substrate. .
9 . 前記磁気検出素子のいくつかは、 ポリイミ ドフィルムに固着されているこ とを特徴とする請求の範囲 8に記載の方位センサ。  9. The direction sensor according to claim 8, wherein some of the magnetic detection elements are fixed to a polyimide film.
1 0 . 磁気べクトルの軸方向成分を検出する磁気検出素子を基板に備えた磁気 センサであって、 前記磁気検出素子は、 MR素子またはホール素子であって、 基 板の表面に対して所定の角度を有する斜面に形成されていることを特徵とする磁 気センサ。 10. A magnetic sensor provided with a magnetic detection element for detecting an axial component of a magnetic vector on a substrate, wherein the magnetic detection element is an MR element or a Hall element, and A magnetic sensor characterized by being formed on a slope having a predetermined angle with respect to the surface of a plate.
PCT/JP2002/005170 2002-05-28 2002-05-28 Magnetic sensor and direction sensor WO2003100449A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2002/005170 WO2003100449A1 (en) 2002-05-28 2002-05-28 Magnetic sensor and direction sensor
JP2004507855A JPWO2003100449A1 (en) 2002-05-28 2002-05-28 Magnetic sensor and orientation sensor
AU2002256927A AU2002256927A1 (en) 2002-05-28 2002-05-28 Magnetic sensor and direction sensor
TW092112640A TWI287101B (en) 2002-05-28 2003-05-09 Magnetic sensor and orientation sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2002/005170 WO2003100449A1 (en) 2002-05-28 2002-05-28 Magnetic sensor and direction sensor

Publications (1)

Publication Number Publication Date
WO2003100449A1 true WO2003100449A1 (en) 2003-12-04

Family

ID=29561087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005170 WO2003100449A1 (en) 2002-05-28 2002-05-28 Magnetic sensor and direction sensor

Country Status (4)

Country Link
JP (1) JPWO2003100449A1 (en)
AU (1) AU2002256927A1 (en)
TW (1) TWI287101B (en)
WO (1) WO2003100449A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1767900A1 (en) * 2004-07-15 2007-03-28 C & N Inc. Mobile terminal device
JP2008096131A (en) * 2006-10-06 2008-04-24 Ricoh Co Ltd Sensor module, correction method, program, and recording medium
JP2010066030A (en) * 2008-09-09 2010-03-25 Ricoh Co Ltd Magnetic sensing element, magnetic sensing apparatus, direction detection apparatus, and information appliance
JP2014503796A (en) * 2010-11-12 2014-02-13 ネクストナヴ,エルエルシー Wide-area positioning system
US9810788B2 (en) 2010-11-12 2017-11-07 Nextnav, Llc Wide area positioning system
US20210278248A1 (en) * 2018-11-22 2021-09-09 Vitesco Technologies Germany Gmbh Magnetic Position Sensor System and Sensor Module

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI582391B (en) * 2015-08-05 2017-05-11 緯創資通股份有限公司 Calibration method and electronic device
TWI613458B (en) * 2015-11-27 2018-02-01 愛盛科技股份有限公司 Magnetic field sensing apparatus and detection method thereof
CN106872914B (en) 2015-11-27 2019-09-10 爱盛科技股份有限公司 Magnetic field sensing device and sensing method
TWI630370B (en) * 2017-09-01 2018-07-21 捷萌科技股份有限公司 Device and method for measuring antenna azimuth offset and automatic calibration by using magnetic force
CN109556564A (en) * 2017-09-26 2019-04-02 捷萌科技股份有限公司 It is a kind of using mgnetic observations antenna bearingt angle offset and the device and method automatically calibrated

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04302406A (en) * 1991-03-29 1992-10-26 Res Dev Corp Of Japan Magnetic sensor
JPH0574866A (en) * 1991-05-28 1993-03-26 Mitsubishi Materials Corp Lead for semiconductor device and working thereof
JPH0981308A (en) * 1994-07-08 1997-03-28 Seiko Instr Inc Position detector and tilt sensor
JPH09331088A (en) * 1996-06-11 1997-12-22 Asahi Kasei Denshi Kk Hole element
WO1999027610A1 (en) * 1997-11-26 1999-06-03 Koninklijke Philips Electronics N.V. A communication system, a primary radio station, a secondary radio station, and a communication method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04302406A (en) * 1991-03-29 1992-10-26 Res Dev Corp Of Japan Magnetic sensor
JPH0574866A (en) * 1991-05-28 1993-03-26 Mitsubishi Materials Corp Lead for semiconductor device and working thereof
JPH0981308A (en) * 1994-07-08 1997-03-28 Seiko Instr Inc Position detector and tilt sensor
JPH09331088A (en) * 1996-06-11 1997-12-22 Asahi Kasei Denshi Kk Hole element
WO1999027610A1 (en) * 1997-11-26 1999-06-03 Koninklijke Philips Electronics N.V. A communication system, a primary radio station, a secondary radio station, and a communication method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1767900A1 (en) * 2004-07-15 2007-03-28 C & N Inc. Mobile terminal device
EP1767900A4 (en) * 2004-07-15 2010-01-20 Amosense Co Ltd Mobile terminal device
JP2008096131A (en) * 2006-10-06 2008-04-24 Ricoh Co Ltd Sensor module, correction method, program, and recording medium
JP2010066030A (en) * 2008-09-09 2010-03-25 Ricoh Co Ltd Magnetic sensing element, magnetic sensing apparatus, direction detection apparatus, and information appliance
JP2014503796A (en) * 2010-11-12 2014-02-13 ネクストナヴ,エルエルシー Wide-area positioning system
US9810788B2 (en) 2010-11-12 2017-11-07 Nextnav, Llc Wide area positioning system
US10649090B2 (en) 2010-11-12 2020-05-12 Nextnav, Llc Wide area positioning system
US20210278248A1 (en) * 2018-11-22 2021-09-09 Vitesco Technologies Germany Gmbh Magnetic Position Sensor System and Sensor Module

Also Published As

Publication number Publication date
TW200405023A (en) 2004-04-01
JPWO2003100449A1 (en) 2005-09-29
TWI287101B (en) 2007-09-21
AU2002256927A1 (en) 2003-12-12

Similar Documents

Publication Publication Date Title
JP4034039B2 (en) mobile phone
TW503324B (en) Position data display system
USRE45023E1 (en) Three-axis magnetic sensor, an omnidirectional magnetic sensor and an azimuth measuring method using the same
WO2004020951A1 (en) Mobile terminal device
WO2003100449A1 (en) Magnetic sensor and direction sensor
US20070198209A1 (en) Magnetic-sensor controller, magnetism measurement apparatus, offset setting method, and computer-readable medium on which offset setting program is recorded
US20060012364A1 (en) Magnetic sensor assembly, terrestrial magnetic detection device, element assembly and mobile terminal apparatus
JP2008039619A (en) Route guidance system and portable telephone for pedestrian
JP4161985B2 (en) Portable electronic device with orientation detection function and calibration method thereof
JP2006023318A (en) Three-axis magnetic sensor, omnidirectional magnetic sensor, and azimuth measuring method using the same
US7949485B2 (en) Portable terminal device
JP2008064729A (en) Route guidance device for pedestrians, and cellular phone
JP2005207799A (en) Stereoscopic image display system and stereoscopic navigation system
KR100743250B1 (en) Portable terminal having for function of navigation
JP4149344B2 (en) Geomagnetic orientation sensor and method of using geomagnetic orientation sensor
JP5240657B2 (en) Sensing element, sensing device, orientation detection device, and information device
JP2005233620A (en) Apparatus for detecting magnetic direction
JP4548102B2 (en) Portable terminal
JP4122834B2 (en) Portable electronic device with orientation measurement function
JP3754289B2 (en) Attitude angle detection device for portable terminal device and magnetic direction detection device for portable terminal device
KR100616147B1 (en) Magnetic sensor assembly, terrestrial magnetism detector, device assembly and mobile terminal apparatus
JP3042525B1 (en) Navigation device
JP2002243818A (en) Terrestrial magnetism sensor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2004507855

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase