JP4149344B2 - Geomagnetic orientation sensor and method of using geomagnetic orientation sensor - Google Patents

Geomagnetic orientation sensor and method of using geomagnetic orientation sensor Download PDF

Info

Publication number
JP4149344B2
JP4149344B2 JP2003339226A JP2003339226A JP4149344B2 JP 4149344 B2 JP4149344 B2 JP 4149344B2 JP 2003339226 A JP2003339226 A JP 2003339226A JP 2003339226 A JP2003339226 A JP 2003339226A JP 4149344 B2 JP4149344 B2 JP 4149344B2
Authority
JP
Japan
Prior art keywords
axis
geomagnetic
angle
sensor
vector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003339226A
Other languages
Japanese (ja)
Other versions
JP2005106569A (en
Inventor
隆 大槻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
NEC Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Tokin Corp filed Critical NEC Tokin Corp
Priority to JP2003339226A priority Critical patent/JP4149344B2/en
Publication of JP2005106569A publication Critical patent/JP2005106569A/en
Application granted granted Critical
Publication of JP4149344B2 publication Critical patent/JP4149344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

本発明は、傾斜によらず磁気方位を検出する小型の立体電子磁気コンパスに好適な地磁気方位センサおよび地磁気方位センサの使用方法に関する。   The present invention relates to a geomagnetic azimuth sensor suitable for a small three-dimensional electronic magnetic compass that detects a magnetic azimuth regardless of tilt, and a method of using the geomagnetic azimuth sensor.

携帯電話、PDA(Personal Digital Assistant:個人向け携帯型情報通信機器)に代表される携帯機器では、GPS(Global Positioning System:全地球測位システム)による位置情報と併せて方角をナビゲーションする磁気コンパスが用いられてきている。携帯機器は傾斜させて使用することが多いため、傾斜角を含めて情報を取得する必要がある。傾斜角は傾斜ベクトルに置き換え、地磁気ベクトルから傾斜ベクトルに沿った成分を除くと磁気方位が検出できる。携帯機器では小型化の要求が大きく、傾斜角を求めるためには、最も小型の半導体容量型傾斜センサが多く用いられている。   Mobile devices such as mobile phones and PDAs (Personal Digital Assistants) use a magnetic compass that navigates directions along with position information from GPS (Global Positioning System). It has been. Since mobile devices are often used while being tilted, it is necessary to acquire information including the tilt angle. The magnetic direction can be detected by replacing the inclination angle with an inclination vector and removing the component along the inclination vector from the geomagnetic vector. The demand for miniaturization is large in portable devices, and the smallest semiconductor capacitance type tilt sensor is often used to determine the tilt angle.

傾斜センサによって重力ベクトルが求まれば、地磁気ベクトルから磁極の方位を計算することができる。大きさ1の重力ベクトルをgとし、地磁気ベクトルをMとおくと、地磁気ベクトルの重力ベクトルへの射影ベクトルの大きさは、双方の内積g・Mとなるため、射影ベクトルは(g・M)gとなる。故に、磁極の方位ベクトルはM−(g・M)gとなる。方位ナビゲーションを行う際は、gに垂直となる平面上に現在地の地図を北の磁極の方位M−(g・M)gを北として表示すれば良い。   If the gravitational vector is obtained by the tilt sensor, the magnetic pole direction can be calculated from the geomagnetic vector. If the gravity vector of magnitude 1 is g and the geomagnetic vector is M, the size of the projection vector onto the gravity vector of the geomagnetic vector is the inner product g · M of both, so the projection vector is (g · M) g. Therefore, the azimuth vector of the magnetic pole is M- (g · M) g. When performing azimuth navigation, a map of the current location may be displayed on a plane perpendicular to g with the north magnetic pole direction M- (g · M) g as north.

先行技術として、特許文献1に、3軸地磁気センサと2軸傾斜センサの出力より傾斜補正を行う方位角検出装置が開示されている。3軸地磁気センサとして、化合物半導体InSb、InAs、GaAs等を用いた高感度ホール素子を用いており、ホール素子の接続端子を切り替えるチョッパを用いることでオフセットをキャンセルしている。   As a prior art, Patent Document 1 discloses an azimuth angle detection device that performs tilt correction from outputs of a triaxial geomagnetic sensor and a biaxial tilt sensor. As the triaxial geomagnetic sensor, a high-sensitivity Hall element using a compound semiconductor InSb, InAs, GaAs, or the like is used, and offset is canceled by using a chopper that switches the connection terminal of the Hall element.

また、特許文献2に、2軸フラックスゲートセンサと1軸ホール磁気センサにより3軸磁気センサを構成し、2軸の傾斜センサにより傾斜補正を行う方法についても開示されている。   Patent Document 2 also discloses a method in which a triaxial magnetic sensor is configured by a biaxial fluxgate sensor and a uniaxial hall magnetic sensor, and tilt correction is performed by a biaxial tilt sensor.

特開2003−65791号公報JP 2003-65791 A 特開2002−196055号公報JP 2002-196055 A

従来の技術では、磁気コンパスの傾斜補正を行うために磁気センサに加えて傾斜センサが必要となり、小型化軽量化への要求に答えることが困難となっている。また、携帯機器では、軽量、小型化するほど片手で持つことが多くなり、そのような状態では横方向を軸としての傾斜のみとなるため、各使用方法に最適な傾斜補正付き磁気コンパスが必要である。   In the prior art, a tilt sensor is required in addition to the magnetic sensor in order to correct the tilt of the magnetic compass, making it difficult to meet the demands for miniaturization and weight reduction. In addition, as mobile devices become lighter and more compact, they are often held with one hand. In such a state, only the tilt with the horizontal direction as the axis is required, so a magnetic compass with tilt correction that is optimal for each method of use is required. It is.

従って、本発明の目的は、傾斜によらず磁気方位を検出することができる地磁気方位センサおよび地磁気方位センサの使用方法を提供することである。   Accordingly, an object of the present invention is to provide a geomagnetic azimuth sensor capable of detecting a magnetic azimuth regardless of inclination and a method of using the geomagnetic azimuth sensor.

即ち、本発明は、3軸の(地)磁気センサにより傾斜角度を補正する機能を持つ地磁気方位センサにおいて、3軸の地磁気ベクトルと事前に与えられた地磁気伏角情報のみで1軸の傾斜補正を行うことを特徴とし、地磁気方位センサの傾斜面と水平面とが交わる傾斜面内の軸をX軸、地磁気方位センサの傾斜面内で前記X軸と直交する軸をY軸、前記地磁気方位センサの傾斜面に対する垂直軸をZ軸とした場合、前記地磁気方位センサの傾斜面と前記水平面とのなす角である傾斜角度をΦとして、前記X軸と直交する地面鉛直ベクトルとして、地磁気ベクトルとのなす角αが、α=90°+Φとなるものを選び、決定した地面鉛直ベクトルが前記Z軸と重なるように前記地磁気ベクトルのY軸、Z軸成分をX軸を中心に傾斜角度分だけ座標回転変換し、変換後の地磁気ベクトルのX成分をHx、Y成分をHyとした場合に、傾斜角度補正後のX軸方向を基準とした方位角度θを、θ=tan-1(Hy/Hx)として検出することを特徴とする地磁気方位センサであって、前記地面鉛直ベクトルとして、α=90°+Φの式を満たすαとして異なる2つの値が存在する場合、
1)傾斜角度Φが予め定めた標準傾斜角度に対して、標準傾斜角度±45°以内の範囲にある場合はそれを選択し、
2)今回の測定以前に複数回の測定が行われている場合に、直前の測定の際に選択した地面鉛直ベクトルにより近い値となるような傾斜角度Φをまず選び、傾斜角度補正前の検出地磁気ベクトルのX成分とZ成分の、前記直前の測定での各成分に対する今回の測定における各成分の変化量の差の値の正負の符号が前記直前の測定の場合と同じであって、かつ傾斜角度補正後の前記方位角度θの、前記直前の測定での値に対する今回の測定における値の変化量の正負の符号が、前記直前の測定の場合と異なる場合に、もうひとつの傾斜角度Φに変更する、
上記1)および2)の優先順位で傾斜角度Φを選択し、方位角度θを決定することを特徴とする地磁気方位センサである。
That is, according to the present invention, in a geomagnetic azimuth sensor having a function of correcting a tilt angle by a three-axis (geo) magnetic sensor, a one-axis tilt correction is performed only by a three-axis geomagnetic vector and pre-given geomagnetic depression information. An axis in the inclined plane where the inclined plane of the geomagnetic azimuth sensor intersects the horizontal plane is an X axis, an axis perpendicular to the X axis in the inclined plane of the geomagnetic azimuth sensor is the Y axis, and the geomagnetic azimuth sensor When the vertical axis with respect to the inclined plane is Z-axis, the inclination angle formed by the inclined plane of the geomagnetic direction sensor and the horizontal plane is Φ, and the ground vertical vector orthogonal to the X axis is Select the angle α to be α = 90 ° + Φ, and coordinate the Y axis and Z axis components of the geomagnetic vector by the tilt angle around the X axis so that the determined ground vertical vector overlaps the Z axis Rotation change In other words, when the X component of the converted geomagnetic vector is Hx and the Y component is Hy, the azimuth angle θ with respect to the X-axis direction after the tilt angle correction is defined as θ = tan −1 (Hy / Hx) In the case where there are two different values of α satisfying the equation α = 90 ° + Φ as the ground vertical vector,
1) If the tilt angle Φ is within the range of the standard tilt angle ± 45 ° with respect to the predetermined standard tilt angle, select it,
2) When multiple measurements have been performed before this measurement, first select an inclination angle Φ that is closer to the ground vertical vector selected during the previous measurement, and detect it before correcting the inclination angle. The sign of the difference in the amount of change in each component in the current measurement with respect to each component in the previous measurement of the X and Z components of the geomagnetic vector is the same as in the previous measurement, and When the sign of the amount of change in the current measurement with respect to the value in the previous measurement of the azimuth angle θ after correction of the tilt angle is different from that in the previous measurement, another tilt angle Φ Change to
A geomagnetic azimuth sensor characterized in that the inclination angle Φ is selected in the priority order of the above 1) and 2) and the azimuth angle θ is determined.

また、本発明は、前記地磁気方位センサは、取り付け基板面に対して約35度の成す角を持つ3つの磁気センサを互いにほぼ正三角形となるように配置した磁気センサであることを特徴とする地磁気方位センサである。Further, the present invention is characterized in that the geomagnetic direction sensor is a magnetic sensor in which three magnetic sensors having an angle of about 35 degrees with respect to the mounting substrate surface are arranged so as to be substantially equilateral triangles. It is a geomagnetic direction sensor.

また、本発明は、前記磁気方位センサは、長手方向に垂直に磁化容易軸がある細長い磁性体に1MHz以上の高周波電流を通電し外部磁場に対して細長い磁性体のインピーダンスが変化することを利用した磁気インピーダンスセンサであることを特徴とする地磁気方位センサである。Further, the present invention uses the magnetic azimuth sensor in which the impedance of the elongated magnetic body changes with respect to an external magnetic field by passing a high frequency current of 1 MHz or more through the elongated magnetic body having an easy magnetization axis perpendicular to the longitudinal direction. It is a geomagnetic direction sensor characterized by being a magnetic impedance sensor.

また、本発明は、3軸の磁気センサにより傾斜角度を補正する地磁気方位センサの演算を行い、前記3軸の磁気センサと地磁気伏角情報のみで1軸の傾斜補正を行う地磁気方位センサの使用方法であって、前記地磁気方位センサの傾斜面と水平面とが交わる傾斜面内の軸をX軸、地磁気方位センサの傾斜面内で前記X軸と直交する軸をY軸、前記地磁気方位センサの傾斜面に対する垂直軸をZ軸とした場合、前記地磁気方位センサの傾斜面と前記水平面とのなす角である傾斜角度をΦとして、前記X軸と直交する地面鉛直ベクトルとして、地磁気ベクトルとのなす角αが、α=90°+Φとなるものを選び、決定した地面鉛直ベクトルが前記Z軸と重なるように前記地磁気ベクトルのY軸、Z軸成分をX軸を中心に傾斜角度分だけ座標回転変換し、変換後の地磁気ベクトルのX成分をHx、Y成分をHyとした場合に、傾斜角度補正後のX軸方向を基準とした方位角度θを、θ=tan-1(Hy/Hx)として検出することを特徴とする地磁気方位センサの使用方法であって、The present invention also provides a method of using a geomagnetic azimuth sensor that performs a uniaxial tilt correction using only the three-axis magnetic sensor and geomagnetic depression information by performing a calculation of a geomagnetic azimuth sensor that corrects the tilt angle using a three-axis magnetic sensor. The axis in the inclined plane where the inclined plane of the geomagnetic direction sensor intersects the horizontal plane is the X axis, the axis orthogonal to the X axis in the inclined plane of the geomagnetic direction sensor is the Y axis, and the tilt of the geomagnetic direction sensor is When the vertical axis with respect to the plane is the Z-axis, the angle formed between the inclined surface of the geomagnetic azimuth sensor and the horizontal plane is Φ, and the angle formed with the geomagnetic vector as the ground vertical vector orthogonal to the X-axis Select that α is α = 90 ° + Φ, and rotate and convert the Y axis and Z axis components of the geomagnetic vector by the tilt angle around the X axis so that the determined ground vertical vector overlaps the Z axis Shi If the X component of the converted geomagnetic vector is Hx and the Y component is Hy, the azimuth angle θ based on the X-axis direction after the tilt angle correction is detected as θ = tan −1 (Hy / Hx). A method of using a geomagnetic orientation sensor characterized in that
前記地面鉛直ベクトルとして、α=90°+Φの式を満たすαとして異なる2つの値が存在する場合、When there are two different values as α satisfying the formula α = 90 ° + Φ as the ground vertical vector,
1)傾斜角度Φが予め定めた標準傾斜角度に対して、標準傾斜角度±45°以内の範囲にある場合はそれを選択し、1) If the tilt angle Φ is within the range of the standard tilt angle ± 45 ° with respect to the predetermined standard tilt angle, select it,
2)今回の測定以前に複数回の測定が行われている場合に、直前の測定の際に選択した地面鉛直ベクトルにより近い値となるような傾斜角度Φをまず選び、傾斜角度補正前の検出地磁気ベクトルのX成分とZ成分の、前記直前の測定での各成分に対する今回の測定における各成分の変化量の差の値の正負の符号が前記直前の測定の場合と同じであって、かつ傾斜角度補正後の前記方位角度θの、前記直前の測定での値に対する今回の測定における値の変化量の正負の符号が、前記直前の測定の場合と異なる場合に、もうひとつの傾斜角度Φに変更する、2) When multiple measurements have been performed before this measurement, first select an inclination angle Φ that is closer to the ground vertical vector selected during the previous measurement, and detect it before correcting the inclination angle. The sign of the difference in the amount of change in each component in the current measurement with respect to each component in the previous measurement of the X and Z components of the geomagnetic vector is the same as in the previous measurement, and When the sign of the amount of change in the current measurement with respect to the value in the previous measurement of the azimuth angle θ after correction of the tilt angle is different from that in the previous measurement, another tilt angle Φ Change to
上記1)および2)の優先順位で傾斜角度Φを選択し、方位角度θを決定することを特徴とする地磁気方位センサの使用方法である。A method of using a geomagnetic azimuth sensor, wherein the inclination angle Φ is selected in the priority order of the above 1) and 2), and the azimuth angle θ is determined.

本発明により、携帯機器の使用形態に適した最小限の形状とシステムで従来方式よりも小型で低コストの方位ナビゲーションを行う方式を得る地磁気方位センサおよび地磁気方位センサの使用方法を提供できる。   INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a geomagnetic azimuth sensor and a method of using a geomagnetic azimuth sensor that can obtain a azimuth navigation system that is smaller and less expensive than the conventional system with a minimum shape and system suitable for the usage form of a portable device.

本発明の実施の形態による地磁気方位センサおよび地磁気方位センサの使用方法について、以下に説明する。   A method of using the geomagnetic direction sensor and the geomagnetic direction sensor according to the embodiment of the present invention will be described below.

(実施の形態1)
図2は、本発明の実施の形態1による地磁気方位センサの説明図である。ケース1内の取り付け基板10には、ディスプレイ11、3軸磁気センサ12及び信号処理回路13と方位及び傾斜角計算回路14が実装されている。
(Embodiment 1)
FIG. 2 is an explanatory diagram of a geomagnetic direction sensor according to Embodiment 1 of the present invention. A mounting substrate 10 in the case 1 is mounted with a display 11, a three-axis magnetic sensor 12, a signal processing circuit 13, and an azimuth and tilt angle calculation circuit 14.

図3は、本発明の地磁気方位センサのディスプレイの説明図である。ディスプレイ11には、図3に示すように、ケースの傾きに応じてディスプレイ11の磁気コンパス表示が地面に水平になるように傾いて表示される。磁気コンパスは、地磁気により常に北の地球磁極を指し示すようになっている。   FIG. 3 is an explanatory diagram of a display of the geomagnetic direction sensor of the present invention. As shown in FIG. 3, the display 11 displays the magnetic compass display of the display 11 tilted so as to be horizontal to the ground in accordance with the tilt of the case. The magnetic compass always points to the north earth magnetic pole by geomagnetism.

3軸磁気センサ12には、内部に1方向成分ずつ検出する地磁気センサが、図4に示すように実装されている。図4の各軸の地磁気センサチップ2は、誘電体基板20に細長い磁性体21と引き出し電極22によって構成されており、半田23により取り付け基板電極24と接続されている。細長い磁性体の長手方向は取り付け基板面に対して約35度の傾きを持っている。このような地磁気センサを3個を、図4の平面図のように、ほぼ正三角形になるように配置して、互いの検出軸を直交させる。さらに取り付け基板の鉛直方向に磁気バイアスを加えるための巻線ボビン3を取り付けた構成となっている。このような構成とすることで、3軸の磁気センサの高さを削減できるだけでなく、ボビンが一つで済み、形状も小型に形成できる点、コストが低くて済む点で望ましい。   The triaxial magnetic sensor 12 is mounted with a geomagnetic sensor for detecting one directional component at a time as shown in FIG. The geomagnetic sensor chip 2 of each axis in FIG. 4 is constituted by a dielectric substrate 20 by an elongated magnetic body 21 and an extraction electrode 22, and is connected to the mounting substrate electrode 24 by solder 23. The longitudinal direction of the elongated magnetic body has an inclination of about 35 degrees with respect to the mounting substrate surface. Three such geomagnetic sensors are arranged so as to be substantially equilateral triangles as shown in the plan view of FIG. 4, and the detection axes thereof are orthogonal to each other. Further, a winding bobbin 3 for applying a magnetic bias in the vertical direction of the mounting substrate is attached. Such a configuration is desirable in that not only the height of the triaxial magnetic sensor can be reduced, but also a single bobbin is required, the shape can be reduced, and the cost can be reduced.

磁性体膜を細長い長方形に形成する方法を以下に述べる。第一の方法としては、フォトレジストによるマスキングの後のスパッタ法、蒸着法、めっきなどによる製膜、第2の方法としては、前記製膜法の後のフォトレジストによるマスキングを行った後の化学エッチング、イオンエッチングが選択される。細長い形状に形成された磁性体21は、不活性雰囲気中で磁性体の幅方向に磁場を印加して熱処理を行うことで、零磁場中で磁性体の幅方向に磁化を整列させる。処理後の磁性体21の長手方向に磁場を印加すると、磁化が長手方向に数Gaussの磁場で整列し、それに伴って1MHz以上の高周波インピーダンスが、図5に示すように、一旦増加し、飽和の後減少する特性を持つ、長手方向に指向性を持つ磁気センサとなる。   A method for forming the magnetic film into an elongated rectangle will be described below. As a first method, a film is formed by sputtering, vapor deposition or plating after masking with a photoresist, and as a second method, a chemical after masking with a photoresist after the film forming method is performed. Etching or ion etching is selected. The magnetic body 21 formed in an elongated shape is subjected to heat treatment by applying a magnetic field in the width direction of the magnetic body in an inert atmosphere, thereby aligning the magnetization in the width direction of the magnetic body in a zero magnetic field. When a magnetic field is applied in the longitudinal direction of the magnetic body 21 after processing, the magnetization is aligned with a magnetic field of several Gauss in the longitudinal direction, and accordingly, a high-frequency impedance of 1 MHz or more once increases and becomes saturated as shown in FIG. After that, the magnetic sensor has a characteristic of decreasing in the longitudinal direction and directivity in the longitudinal direction.

地磁気ベクトルは、3軸磁気センサ12と信号処理回路13により検出される。信号処理回路13は、図6の回路図のように、発振回路31、信号検出回路32及び増幅回路33より成っている。発振回路31は、マルチバイブレーター、水晶振動子等により1MHz以上の高周波電圧を発生し、巻線ボビン3により適正な磁気バイアスを加えられた磁気センサと抵抗の分圧の変化を信号検出回路32にてピークホールド等により電圧振幅を検出する。   The geomagnetic vector is detected by the three-axis magnetic sensor 12 and the signal processing circuit 13. As shown in the circuit diagram of FIG. 6, the signal processing circuit 13 includes an oscillation circuit 31, a signal detection circuit 32, and an amplification circuit 33. The oscillation circuit 31 generates a high-frequency voltage of 1 MHz or more by a multivibrator, a crystal resonator, etc., and a signal sensor circuit 32 changes a divided voltage of a magnetic sensor and a resistor to which an appropriate magnetic bias is applied by a winding bobbin 3. The voltage amplitude is detected by peak hold.

さらに、増幅回路33により適正な信号レベルに増幅する。この際、巻線ボビン3の磁気バイアスを同量正負に交互に加えて、磁気バイアス正負の場合の磁気センサ信号出力の差を検出するか、または磁気バイアスの正か負の場合の片側の磁気センサ信号出力を反転させて平滑化させる方法で磁気センサ出力のオフセット変動を抑制する方法を用いるのが望ましい。   Further, the signal is amplified to an appropriate signal level by the amplifier circuit 33. At this time, the magnetic bias of the winding bobbin 3 is alternately applied to the same amount of positive and negative to detect a difference in magnetic sensor signal output when the magnetic bias is positive or negative, or one side of the magnetic bias when the magnetic bias is positive or negative It is desirable to use a method of suppressing the offset fluctuation of the magnetic sensor output by a method of inverting and smoothing the sensor signal output.

方位及び傾斜角計算回路14は、一旦、信号処理回路13を一次変換行列により回転操作を行って、取り付け基板面内及び基板面鉛直の軸を持つ座標系に変換する。図11に示すように、3軸磁気センサの各検出軸S1、S2、S3をそれぞれ(1,0,0)、(0,1,0)、(0,0,1)とベクトル成分表示に置き換えた場合に、(1,1,1)方向に磁気バイアスHbを付加すると、3軸磁気センサの各々に均等に磁場が付加される。   The azimuth and tilt angle calculation circuit 14 temporarily rotates the signal processing circuit 13 using a primary conversion matrix to convert the signal processing circuit 13 into a coordinate system having axes in the mounting substrate plane and in the substrate plane vertical. As shown in FIG. 11, the detection axes S1, S2, and S3 of the three-axis magnetic sensor are respectively displayed as vector components (1, 0, 0), (0, 1, 0), (0, 0, 1). When the magnetic bias Hb is added in the (1, 1, 1) direction in the case of replacement, a magnetic field is equally applied to each of the three-axis magnetic sensors.

磁気バイアスHbの方向ベクトルを規格化すると、[1/(3)1/2,1/(3)1/2,1/(3)1/2]となり、3軸磁気センサの各検出軸S1、S2、S3との成す角は約55°である。磁気バイアス方向を取付基板に対して垂直方向に設定すると、取付基板と磁気センサ検出軸の成す角は、図12より、90゜からHbとの成す角を引いた、約35゜となる。 When the direction vector of the magnetic bias Hb is normalized, it becomes [1 / (3) 1/2 , 1 / (3) 1/2 , 1 / (3) 1/2 ], and each detection axis S1 of the 3-axis magnetic sensor , S2 and S3 are approximately 55 °. When the magnetic bias direction is set to be perpendicular to the mounting substrate, the angle formed by the mounting substrate and the magnetic sensor detection axis is about 35 °, which is obtained by subtracting the angle formed by 90 ° from Hb from FIG.

図13は、Hbを紙面垂直方向に設定して、S1、S2、S3の取付基板への磁気センサの射影した説明図である。図13に示すように、Hbを紙面垂直方向に設定して、S1、S2、S3の取付基板への射影は120゜間隔となっている。   FIG. 13 is an explanatory diagram in which Hb is set in the direction perpendicular to the paper surface and the magnetic sensor is projected onto the mounting substrate S1, S2, and S3. As shown in FIG. 13, Hb is set in the direction perpendicular to the paper surface, and projections of S1, S2, and S3 onto the mounting substrate are 120 ° intervals.

取付基板平面内と、垂直方向に検出軸を設定するよう、取付基板面内の2軸を(1,0,0)、(0,1,0)として、取付基板に垂直方向の軸を(0,0,1)とすると、(1,0,0)軸を中心として−tan-1[(2)1/2]゜(≒−55゜)回転させ、さらに(0,0,1)軸を中心として−45゜回転させる座標変換行列は、数1となる。 In order to set the detection axis in the mounting board plane and in the vertical direction, the two axes in the mounting board surface are (1, 0, 0) and (0, 1, 0), and the vertical axis on the mounting board is ( (0, 0, 1), it is rotated by -tan −1 [(2) 1/2 ] ° (≈−55 °) about the (1, 0, 0) axis, and (0, 0, 1) A coordinate transformation matrix that is rotated by −45 ° about the axis is expressed as follows.

Figure 0004149344
Figure 0004149344

磁気センサS1、S2、S3の出力をV1、V2、V3とすると、軸変換後の出力を、Vx、Vy、Vzとおくと、数2に表される。   Assuming that the outputs of the magnetic sensors S1, S2, and S3 are V1, V2, and V3, the output after the axis conversion is expressed as Vx, Vy, and Vz.

Figure 0004149344
Figure 0004149344

図14は、磁気センサS1、S2、S3と、軸変換後出力Vx、Vy、Vzの検出軸の関係の説明図である。このように、磁気センサS1、S2、S3の出力と軸変換後出力Vx、Vy、Vzの相対関係が図形を用いて表現できる。   FIG. 14 is an explanatory diagram of the relationship between the magnetic sensors S1, S2, and S3 and the detection axes of the post-axis conversion outputs Vx, Vy, and Vz. In this manner, the relative relationship between the outputs of the magnetic sensors S1, S2, and S3 and the post-axis conversion outputs Vx, Vy, and Vz can be expressed using graphics.

図1は、本発明の原理を示す図面である。図7のような携帯機器を考える。X軸を紙面鉛直方向(携帯機器の幅方向)、Y軸を携帯機器の長手方向、Z軸を携帯機器の厚さ方向に携帯機器を中心にした座標系として取っている。地面は携帯機器からみてX軸を中心にある角度だけ傾いている。3軸の磁気センサにより検出された磁気ベクトルをMとする。携帯機器から見た地面はX軸を中心として回転する。   FIG. 1 is a diagram showing the principle of the present invention. Consider a portable device as shown in FIG. The X axis is taken as a vertical coordinate system (width direction of the portable device), the Y axis is taken as the longitudinal direction of the portable device, and the Z axis is taken as the coordinate system centered on the portable device in the thickness direction of the portable device. The ground is inclined by an angle about the X axis as seen from the portable device. Let M be the magnetic vector detected by the 3-axis magnetic sensor. The ground viewed from the portable device rotates around the X axis.

携帯機器を片手で持って使用する際、図7(b)のように、かなり寝かせて使用したり、図7(a)のように立たせて使用したりするが、傾ける軸は携帯電話の幅方向に沿った方向のみである。この軸をX軸とおいている。地面に鉛直で、大きさが1のベクトルをGとすると、
M・G=|M|cos(θ)・・・・・・・(1)
ただし、θ=90°+伏角となる。
When using a portable device with one hand, it can be used with its body laid down as shown in Fig. 7 (b) or standing up as shown in Fig. 7 (a). Only the direction along the direction. This axis is set as the X axis. If a vector perpendicular to the ground and having a size of 1 is G,
M · G = | M | cos (θ) (1)
However, θ = 90 ° + the angle of depression.

事前に伏角が与えられれば、Mを測定すれば傾斜センサを用いずともGの方向を特定することができる。図7より、Gの方向は常にX軸に垂直であるため、YZ平面内に存在することになる。磁気ベクトルを基準ベクトルとするために、
m=M/|M| ・・・・・・・(2)
とおく。GベクトルのY軸との成す角をφとおくと、
G=[0,cos(φ),sin(φ)] ・・・・・・・(3)
さらに、mベクトルのYZ平面への射影ベクトルがY軸と成す角をα、X軸とmベクトルの成す角をβとおくと、
m=[cos(β),sin(β)cos(α),sin(β)sin(α)]・・・・・・・(4)
If the dip angle is given in advance, the direction of G can be specified without using an inclination sensor if M is measured. From FIG. 7, since the direction of G is always perpendicular to the X axis, it exists in the YZ plane. In order to use the magnetic vector as the reference vector,
m = M / | M | (2)
far. If the angle formed by the Y axis of the G vector is φ,
G = [0, cos (φ), sin (φ)] (3)
Furthermore, if the angle formed by the projection vector of the m vector onto the YZ plane with the Y axis is α and the angle between the X axis and the m vector is β,
m = [cos (β), sin (β) cos (α), sin (β) sin (α)] (4)

(3)式は(4)式を用いて、
sin(β)[cos(φ)cos(α)+sin(φ)sin(α)]
=sin(β)cos(φ−α)=cos(θ) ・・・・・・・・(5)
Equation (3) uses equation (4),
sin (β) [cos (φ) cos (α) + sin (φ) sin (α)]
= Sin (β) cos (φ−α) = cos (θ) (5)

(5)式の関係から、地磁気ベクトルMと(2)式からα、βを求め、地磁気の伏角よりθを求めればG及びφを求めることができる。以下に、その計算手順を示す。なお、arc tanはtanの逆関数であり、arc cosはcosの逆関数である。   From the relationship of equation (5), α and β can be obtained from the geomagnetic vector M and equation (2), and θ can be obtained from the geomagnetic dip angle to obtain G and φ. The calculation procedure is shown below. Here, arc tan is an inverse function of tan, and arc cos is an inverse function of cos.

i)
地磁気ベクトルM=(Mx,My,Mz)
α=arc tan(Mz/My)
β=arc tan[(My21/2+(Mz21/2/Mx]
(arc tanの2つの解はMx、Myの符号より正しい解を判別する)
i)
Geomagnetic vector M = (Mx, My, Mz)
α = arc tan (Mz / My)
β = arc tan [(My 2 ) 1/2 + (Mz 2 ) 1/2 / Mx]
(Two solutions of arc tan are discriminated from the codes of Mx and My.)

ii)
θ=伏角+90°
ii)
θ = Angle + 90 °

iii)
φ=α±arc cos{cos(θ)/sin(β)}
G=[0,cos(φ),sin(φ)]
iii)
φ = α ± arc cos {cos (θ) / sin (β)}
G = [0, cos (φ), sin (φ)]

図8は、図1をXY平面から書き直したものであるが、地磁気ベクトルからθだけの成す角を持つベクトル群のXY平面への射影は楕円状の軌跡の上に乗り、Y軸上に乗った軌跡がGの候補となる。図からも一般的に2つの解を持つことが分かる。また、2つの解が重なった場合の重解として、1つの解を持つこともある。一定の手順で正しい解を選別する必要がある。   FIG. 8 is a rewrite of FIG. 1 from the XY plane, but the projection of the vector group having the angle formed by θ from the geomagnetic vector onto the XY plane rides on an elliptical locus and rides on the Y axis. The trajectory is a candidate for G. It can be seen from the figure that there are generally two solutions. Also, there may be one solution as a multiple solution when two solutions overlap. It is necessary to select the correct solution in a certain procedure.

携帯機器の傾斜角は、図1から、傾斜角=90゜−φで求まる。図9は、地磁気ベクトルを(cos30゜,0,−sin30゜)とした場合、携帯機器の方位、0〜90゜に制限した姿勢角に対するiii)式の解を示す図である。また、図10は、磁気ベクトルを(cos30゜,0,−sin30゜)とした場合、携帯機器の方位、0〜90゜に制限した姿勢角に対するiii)式の解を示す図である。   The tilt angle of the portable device can be obtained from FIG. 1 by tilt angle = 90 ° −φ. FIG. 9 is a diagram showing a solution of the equation (iii) with respect to the orientation of the portable device and the orientation angle limited to 0 to 90 ° when the geomagnetic vector is (cos 30 °, 0, −sin 30 °). FIG. 10 is a diagram showing a solution of the equation (iii) with respect to the orientation of the portable device and the attitude angle limited to 0 to 90 ° when the magnetic vector is (cos 30 °, 0, −sin 30 °).

図1で説明したように、3次元地磁気ベクトルからケース1の傾斜と磁気方位を計算できる。まず、地磁気ベクトルを作用の項目で述べたように、
m=M/|M|により単位ベクトルに直して、
m=[cos(β),sin(β)cos(α),sin(β)sin(α)]により角度α、βを求める。
As described with reference to FIG. 1, the inclination and magnetic orientation of case 1 can be calculated from a three-dimensional geomagnetic vector. First, as described in the item of action for the geomagnetic vector,
m = M / | M |
The angles α and β are obtained from m = [cos (β), sin (β) cos (α), sin (β) sin (α)].

次に、地磁気伏角の情報を取得し、
sin(β)[cos(φ)cos(α)+sin(φ)sin(α)]
=sin(β)cos(φ−α)=cos(θ)
により、傾斜角を求める。
Next, get information on geomagnetic dip,
sin (β) [cos (φ) cos (α) + sin (φ) sin (α)]
= Sin (β) cos (φ−α) = cos (θ)
To obtain the inclination angle.

前記式の解は2つあるため、以下の優先順位で傾斜角度Φを選択し、方位角度θを決定する。
1)傾斜角度Φが予め定めた標準傾斜角度に対して、標準傾斜角度±45°以内の範囲の解がある場合はそれを選ぶ。
2)今回の測定以前に複数回の測定が行われている場合に、直前の測定の際に選択した地面鉛直ベクトルにより近い値となるような傾斜角度Φをまず選び、傾斜角度補正前の検出地磁気ベクトルのX成分とZ成分、前記直前の成分と今回読み出した成分のの値の正負の符号が前記直前の測定の場合と同じであって、かつ傾斜角度補正後の前記方位角度θの時間当たり変化量の正負の符号が、前記直前の測定の場合と異なる場合に、もうひとつの傾斜角度Φに変更する
Since there are two solutions of the above equation, the inclination angle Φ is selected in the following priority order, and the azimuth angle θ is determined.
1) If there is a solution with a tilt angle Φ within a standard tilt angle ± 45 ° with respect to a predetermined standard tilt angle , select it.
2) When multiple measurements have been performed before the current measurement, first select an inclination angle Φ that is closer to the ground vertical vector selected during the previous measurement, and detect it before correcting the inclination angle. The sign of the difference between the immediately preceding component and the currently read component of the X and Z components of the geomagnetic vector is the same as in the previous measurement, and the azimuth angle θ after tilt angle correction When the sign of the amount of change per hour is different from that in the previous measurement, it is changed to another inclination angle Φ .

決定した地面鉛直ベクトルがZ軸と重なるように3軸地磁気ベクトルのY軸、Z軸成分をX軸を中心に傾斜角度分だけ座標回転変換し、変換後地磁気ベクトルのX成分をHx、Y成分をHyとした場合、傾斜角度補正後のX軸方向を基準とした方位角度θを、θ=tan-1(Hy/Hx)として検出することが出来る。 The Y-axis and Z-axis components of the 3-axis geomagnetic vector are rotated by the tilt angle around the X-axis so that the determined ground vertical vector overlaps the Z-axis, and the X component of the converted geomagnetic vector is converted to the Hx and Y components. Is Hy, it is possible to detect the azimuth angle θ with reference to the X-axis direction after tilt angle correction as θ = tan −1 (Hy / Hx).

地磁気伏角情報は、以上の計算する際に事前に与えておく必要がある。 Geomagnetic dip information needs to be provided in advance at the time of the above calculations.

本発明の実施の形態の地磁気方位センサの原理の説明図。Explanatory drawing of the principle of the geomagnetic direction sensor of embodiment of this invention. 本発明の実施の形態1による地磁気方位センサの説明図。Explanatory drawing of the geomagnetic direction sensor by Embodiment 1 of this invention. 本発明の地磁気方位センサのディスプレイの説明図。Explanatory drawing of the display of the geomagnetic direction sensor of this invention. 磁気センサを3個ほぼ正三角形になるように配置して、互いの検出軸を直交させた図。The figure which has arrange | positioned three magnetic sensors so that it may become a substantially equilateral triangle, and mutually made the detection axis orthogonal. 1MHz以上の高周波インピーダンス特性を示す図。The figure which shows the high frequency impedance characteristic of 1 MHz or more. 発振回路、信号検出回路及び増幅回路より成る回路図。The circuit diagram which consists of an oscillation circuit, a signal detection circuit, and an amplifier circuit. 本発明の地磁気方位センサを搭載した携帯機器を示す図。The figure which shows the portable apparatus carrying the geomagnetic direction sensor of this invention. 図1をXY平面から書き直した図。The figure which rewrote FIG. 1 from XY plane. 地磁気ベクトルを(cos30゜,0,−sin30゜)とした場合、携帯機器の方位、0〜90゜に制限した姿勢角に対するiii)式の解を示す図。The figure which shows the solution of (iii) type | formula with respect to the orientation angle | corner restrict | limited to the azimuth | direction of a portable apparatus and 0-90 degrees, when a geomagnetic vector is set to (cos30 degrees, 0, -sin30 degrees). 地磁気ベクトルを(cos30゜,0,−sin30゜)とした場合、携帯機器の方位、0〜90゜に制限した姿勢角に対するiii)式の解を示す図。The figure which shows the solution of (iii) type | formula with respect to the orientation angle | corner restrict | limited to the azimuth | direction of a portable apparatus and 0-90 degrees, when a geomagnetic vector is set to (cos30 degrees, 0, -sin30 degrees). 3軸磁気センサの各検出軸S1、S2、S3の説明図。Explanatory drawing of each detection axis S1, S2, S3 of a three-axis magnetic sensor. 取付基板と磁気センサ検出軸の成す角の説明図。Explanatory drawing of the angle | corner which an attachment board | substrate and a magnetic sensor detection axis | shaft make. Hbを紙面垂直方向に設定して、S1、S2、S3の取付基板への磁気センサの射影した説明図。Explanatory drawing which projected the magnetic sensor to the attachment board | substrate of S1, S2, S3, setting Hb to the paper surface perpendicular | vertical direction. 磁気センサS1、S2、S3と、軸変換後出力Vx、Vy、Vzの検出軸の関係の説明図。Explanatory drawing of the relationship between magnetic sensor S1, S2, S3 and the detection axis | shaft of the outputs Vx, Vy, and Vz after axis conversion.

符号の説明Explanation of symbols

1 ケース
2 地磁気センサチップ
3 巻線ボビン
10 基板
11 ディスプレイ
12 3軸磁気センサ
13 信号処理回路
14 傾斜角計算回路
20 誘電体基板
21 磁性体
22 電極
23 半田
24 基板電極
31 発振回路
32 信号検出回路
33 増幅回路
DESCRIPTION OF SYMBOLS 1 Case 2 Geomagnetic sensor chip 3 Winding bobbin 10 Board | substrate 11 Display 12 Triaxial magnetic sensor 13 Signal processing circuit 14 Inclination angle calculation circuit 20 Dielectric board | substrate 21 Magnetic body 22 Electrode 23 Solder 24 Substrate electrode 31 Oscillation circuit 32 Signal detection circuit 33 Amplifier circuit

Claims (4)

3軸の磁気センサにより傾斜角度を補正する機能を持つ地磁気方位センサにおいて、3軸の地磁気ベクトルと事前に与えられた地磁気伏角情報のみで1軸の傾斜補正を行うことを特徴とし、
地磁気方位センサの傾斜面と水平面とが交わる傾斜面内の軸をX軸、地磁気方位センサの傾斜面内で前記X軸と直交する軸をY軸、前記地磁気方位センサの傾斜面に対する垂直軸をZ軸とした場合、前記地磁気方位センサの傾斜面と前記水平面とのなす角である傾斜角度をΦとして、前記X軸と直交する地面鉛直ベクトルとして、地磁気ベクトルとのなす角αが、α=90°+Φとなるものを選び、決定した地面鉛直ベクトルが前記Z軸と重なるように前記地磁気ベクトルのY軸、Z軸成分をX軸を中心に傾斜角度分だけ座標回転変換し、変換後の地磁気ベクトルのX成分をHx、Y成分をHyとした場合に、傾斜角度補正後のX軸方向を基準とした方位角度θを、
θ=tan -1 (Hy/Hx)
として検出することを特徴とする地磁気方位センサであって、
前記地面鉛直ベクトルとして、α=90°+Φの式を満たすαとして異なる2つの値が存在する場合、
1)傾斜角度Φが予め定めた標準傾斜角度に対して、標準傾斜角度±45°以内の範囲にある場合はそれを選択し、
2)今回の測定以前に複数回の測定が行われている場合に、直前の測定の際に選択した地面鉛直ベクトルにより近い値となるような傾斜角度Φをまず選び、傾斜角度補正前の検出地磁気ベクトルのX成分とZ成分の、前記直前の測定での各成分に対する今回の測定における各成分の変化量の差の値の正負の符号が前記直前の測定の場合と同じであって、かつ傾斜角度補正後の前記方位角度θの、前記直前の測定での値に対する今回の測定における値の変化量の正負の符号が、前記直前の測定の場合と異なる場合に、もうひとつの傾斜角度Φに変更する、
上記1)および2)の優先順位で傾斜角度Φを選択し、方位角度θを決定することを特徴とする地磁気方位センサ。
In the geomagnetic azimuth sensor having a function of correcting the tilt angle by the three-axis magnetic sensor, the tilt correction of one axis is performed only by the three-axis geomagnetic vector and the geomagnetic depression information given in advance .
The axis in the inclined plane where the inclined plane of the geomagnetic orientation sensor intersects the horizontal plane is the X axis, the axis perpendicular to the X axis in the inclined plane of the geomagnetic bearing sensor is the Y axis, and the axis perpendicular to the inclined plane of the geomagnetic bearing sensor is In the case of the Z axis, an inclination angle that is an angle formed between the inclined surface of the geomagnetic orientation sensor and the horizontal plane is Φ, and an angle α formed with a geomagnetic vector as a ground vertical vector orthogonal to the X axis is α = Select the one that is 90 ° + Φ, and convert the Y-axis and Z-axis components of the geomagnetic vector by the tilt angle around the X-axis so that the determined ground vertical vector overlaps the Z-axis. When the X component of the geomagnetic vector is Hx and the Y component is Hy, the azimuth angle θ with respect to the X axis direction after the inclination angle correction is
θ = tan −1 (Hy / Hx)
It is a geomagnetic direction sensor characterized by detecting as
When there are two different values as α satisfying the formula α = 90 ° + Φ as the ground vertical vector,
1) If the tilt angle Φ is within the range of the standard tilt angle ± 45 ° with respect to the predetermined standard tilt angle, select it,
2) When multiple measurements have been performed before this measurement, first select an inclination angle Φ that is closer to the ground vertical vector selected during the previous measurement, and detect it before correcting the inclination angle. The sign of the difference in the amount of change in each component in the current measurement with respect to each component in the previous measurement of the X and Z components of the geomagnetic vector is the same as in the previous measurement, and When the sign of the amount of change in the current measurement with respect to the value in the previous measurement of the azimuth angle θ after correction of the tilt angle is different from that in the previous measurement, another tilt angle Φ Change to
A geomagnetic azimuth sensor characterized in that the inclination angle Φ is selected in the priority order of the above 1) and 2) and the azimuth angle θ is determined.
請求項1に記載の地磁気方位センサは、取り付け基板面に対して約35度の成す角を持つ3つの磁気センサを互いにほぼ正三角形となるように配置した磁気センサであることを特徴とする地磁気方位センサ。 The geomagnetic direction sensor according to claim 1 is a magnetic sensor in which three magnetic sensors having an angle of about 35 degrees with respect to the mounting substrate surface are arranged so as to be substantially equilateral triangles. Direction sensor. 請求項1または請求項2に記載の地磁気方位センサは、長手方向に垂直に磁化容易軸がある細長い磁性体に1MHz以上の高周波電流を通電し外部磁場に対して細長い磁性体のインピーダンスが変化することを利用した磁気インピーダンスセンサであることを特徴とする地磁気方位センサ。 The geomagnetic azimuth sensor according to claim 1 or 2 , wherein a high-frequency current of 1 MHz or more is applied to an elongated magnetic body having an easy magnetization axis perpendicular to the longitudinal direction, and the impedance of the elongated magnetic body changes with respect to an external magnetic field. A geomagnetic orientation sensor characterized by being a magneto-impedance sensor utilizing the above. 3軸の磁気センサにより傾斜角度を補正する地磁気方位センサの演算を行い、前記3軸の磁気センサと地磁気伏角情報のみで1軸の傾斜補正を行う地磁気方位センサの使用方法であって、前記地磁気方位センサの傾斜面と水平面とが交わる傾斜面内の軸をX軸、地磁気方位センサの傾斜面内で前記X軸と直交する軸をY軸、前記地磁気方位センサの傾斜面に対する垂直軸をZ軸とした場合、前記地磁気方位センサの傾斜面と前記水平面とのなす角である傾斜角度をΦとして、前記X軸と直交する地面鉛直ベクトルとして、地磁気ベクトルとのなす角αが、α=90°+Φとなるものを選び、決定した地面鉛直ベクトルが前記Z軸と重なるように前記地磁気ベクトルのY軸、Z軸成分をX軸を中心に傾斜角度分だけ座標回転変換し、変換後地磁気ベクトルのX成分をHx、Y成分をHyとした場合、傾斜角度補正後のX軸方向を基準とした方位角度θを、
θ=tan-1(Hy/Hx)
として検出することを特徴とする地磁気方位センサの使用方法であって、
前記地面鉛直ベクトルとして、α=90°+Φの式を満たすαとして異なる2つの値が存在する場合、
1)傾斜角度Φが予め定めた標準傾斜角度に対して、標準傾斜角度±45°以内の範囲にある場合はそれを選択し、
2)今回の測定以前に複数回の測定が行われている場合に、直前の測定の際に選択した地面鉛直ベクトルにより近い値となるような傾斜角度Φをまず選び、傾斜角度補正前の検出地磁気ベクトルのX成分とZ成分の、前記直前の測定での各成分に対する今回の測定における各成分の変化量の差の値の正負の符号が前記直前の測定の場合と同じであって、かつ傾斜角度補正後の前記方位角度θの、前記直前の測定での値に対する今回の測定における値の変化量の正負の符号が、前記直前の測定の場合と異なる場合に、もうひとつの傾斜角度Φに変更する、
上記1)および2)の優先順位で傾斜角度Φを選択し、方位角度θを決定することを特徴とする地磁気方位センサの使用方法。
A method of using a geomagnetic azimuth sensor that performs a calculation of a geomagnetic azimuth sensor that corrects an inclination angle by a triaxial magnetic sensor and performs uniaxial inclination correction only by the triaxial magnetic sensor and geomagnetic dip angle information. X axis the axis of the inclined surface and the inclined surface and the horizontal plane intersect the azimuth sensor, Y-axis the axis perpendicular to the X-axis within the tilt plane of the geomagnetic direction sensor, an axis perpendicular to the inclined surface of the geomagnetic direction sensor Z Assuming that the axis is an axis , the inclination angle formed by the inclined plane of the geomagnetic direction sensor and the horizontal plane is Φ, and the angle α formed by the geomagnetic vector as the ground vertical vector orthogonal to the X axis is α = 90 ° + [Phi become ones chosen, Y-axis of the geomagnetic vector as determined ground vertical vector is overlapped with the Z-axis, Z-axis component of the angle of inclination only coordinate rotation transformation about the X-axis geomagnetic converted Hx the X component of the vector, when the Y component was Hy, the azimuth angle θ relative to the X-axis direction after inclination angle correction,
θ = tan −1 (Hy / Hx)
Detecting a use of the geomagnetic direction sensor, wherein a,
When there are two different values as α satisfying the formula α = 90 ° + Φ as the ground vertical vector,
1) If the tilt angle Φ is within the range of the standard tilt angle ± 45 ° with respect to the predetermined standard tilt angle, select it,
2) When multiple measurements have been performed before this measurement, first select an inclination angle Φ that is closer to the ground vertical vector selected during the previous measurement, and detect it before correcting the inclination angle. The sign of the difference in the amount of change in each component in the current measurement with respect to each component in the previous measurement of the X and Z components of the geomagnetic vector is the same as in the previous measurement, and When the sign of the amount of change in the current measurement with respect to the value in the previous measurement of the azimuth angle θ after correction of the tilt angle is different from that in the previous measurement, another tilt angle Φ Change to
A method of using a geomagnetic azimuth sensor, wherein the inclination angle Φ is selected in the priority order of the above 1) and 2), and the azimuth angle θ is determined.
JP2003339226A 2003-09-30 2003-09-30 Geomagnetic orientation sensor and method of using geomagnetic orientation sensor Expired - Fee Related JP4149344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003339226A JP4149344B2 (en) 2003-09-30 2003-09-30 Geomagnetic orientation sensor and method of using geomagnetic orientation sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003339226A JP4149344B2 (en) 2003-09-30 2003-09-30 Geomagnetic orientation sensor and method of using geomagnetic orientation sensor

Publications (2)

Publication Number Publication Date
JP2005106569A JP2005106569A (en) 2005-04-21
JP4149344B2 true JP4149344B2 (en) 2008-09-10

Family

ID=34534465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003339226A Expired - Fee Related JP4149344B2 (en) 2003-09-30 2003-09-30 Geomagnetic orientation sensor and method of using geomagnetic orientation sensor

Country Status (1)

Country Link
JP (1) JP4149344B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006337333A (en) * 2005-06-06 2006-12-14 Alps Electric Co Ltd Triaxial electronic compass, and azimuth detecting method using the same
JP4839975B2 (en) * 2005-07-01 2011-12-21 ヤマハ株式会社 Azimuth and tilt angle detection device, azimuth and tilt angle detection method, program, and portable terminal device
JP4611178B2 (en) * 2005-11-14 2011-01-12 シチズン電子株式会社 Magnetic azimuth detection device and azimuth calculation method thereof
CN101196567B (en) * 2007-12-11 2010-06-09 黄铭 Digital geological compass
JP5256846B2 (en) * 2008-05-16 2013-08-07 住友電気工業株式会社 Posture specifying device, moving direction specifying device, position specifying device, computer program, and posture specifying method
WO2010103966A1 (en) * 2009-03-10 2010-09-16 アルプス電気株式会社 Geomagnetism detection device
JP5995319B2 (en) * 2012-12-28 2016-09-21 Kddi株式会社 Portable terminal, program and method for determining vertical downward direction during walking using geomagnetism

Also Published As

Publication number Publication date
JP2005106569A (en) 2005-04-21

Similar Documents

Publication Publication Date Title
USRE45023E1 (en) Three-axis magnetic sensor, an omnidirectional magnetic sensor and an azimuth measuring method using the same
KR100894171B1 (en) Three-axis magnetic sensor and omnidirectional magnetic sensor
US7119533B2 (en) Method, system and device for calibrating a magnetic field sensor
US20070084070A1 (en) Magnetic compass
KR20060060666A (en) System for using a 2-axis magnetic sensor for a 3-axis compass solution
WO2007099599A1 (en) Magnetic gyroscope
JP2007248477A (en) Geomagnetic sensor capable of compensating influence of slope and capable of computing azimuth, and computing method therefor
JP2007093448A (en) Motion sensor and portable telephone using the same
JP4149344B2 (en) Geomagnetic orientation sensor and method of using geomagnetic orientation sensor
JP2005207799A (en) Stereoscopic image display system and stereoscopic navigation system
JP4621835B2 (en) Portable navigation device
JP4448957B2 (en) Magnetic measuring device and magnetic measuring method
JP2006023318A (en) Three-axis magnetic sensor, omnidirectional magnetic sensor, and azimuth measuring method using the same
JP4034556B2 (en) Earth magnetic pole direction calculation method for magnetic sensor device
JP2007256161A (en) Electronic azimuth meter
JP3576728B2 (en) Attitude detection device
JP2005249554A (en) Magnetic field detector
JPH08278137A (en) Bearing output device
KR100674194B1 (en) Method of controlling magnetic sensor, control device therefor, and portable terminal
JP2006337333A (en) Triaxial electronic compass, and azimuth detecting method using the same
WO2011128970A1 (en) Portable navigation device
JP2006133154A (en) Geomagnetic sensor and mobile body display device provided with the geomagnetic sensor
JP3754289B2 (en) Attitude angle detection device for portable terminal device and magnetic direction detection device for portable terminal device
US20050016006A1 (en) Magnetic compass
JP4611178B2 (en) Magnetic azimuth detection device and azimuth calculation method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080508

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080618

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080625

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140704

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees