WO2003099605A1 - Antriebssystem für ein kraftfahrzeug mit einem verbrennungsmotor und einer elektrischen maschine - Google Patents

Antriebssystem für ein kraftfahrzeug mit einem verbrennungsmotor und einer elektrischen maschine Download PDF

Info

Publication number
WO2003099605A1
WO2003099605A1 PCT/EP2003/004021 EP0304021W WO03099605A1 WO 2003099605 A1 WO2003099605 A1 WO 2003099605A1 EP 0304021 W EP0304021 W EP 0304021W WO 03099605 A1 WO03099605 A1 WO 03099605A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy store
pole
energy
inverter
drive system
Prior art date
Application number
PCT/EP2003/004021
Other languages
English (en)
French (fr)
Inventor
Hermann Bosch
Horst Brinkmeyer
Roland Kemmler
Markus Krauss
Dietrich Sahm
Hans-Christoph Wolf
Anton Heni
Original Assignee
Daimlerchrysler Ag
Heni, Irmgard
HENI, Simon, Jakob
HENI, Cornelius, Lukas
HENI, Jonathan, Tobias
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10231379A external-priority patent/DE10231379B3/de
Application filed by Daimlerchrysler Ag, Heni, Irmgard, HENI, Simon, Jakob, HENI, Cornelius, Lukas, HENI, Jonathan, Tobias filed Critical Daimlerchrysler Ag
Priority to EP03718767A priority Critical patent/EP1507679A1/de
Priority to US10/515,231 priority patent/US8097975B2/en
Priority to JP2004507108A priority patent/JP4166753B2/ja
Publication of WO2003099605A1 publication Critical patent/WO2003099605A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/15Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with additional electric power supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N11/0862Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery
    • F02N11/0866Circuits or control means specially adapted for starting of engines characterised by the electrical power supply means, e.g. battery comprising several power sources, e.g. battery and capacitor or two batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/14Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle
    • H02J7/1423Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from dynamo-electric generators driven at varying speed, e.g. on vehicle with multiple batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • B60K2006/268Electric drive motor starts the engine, i.e. used as starter motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/04Starting of engines by means of electric motors the motors being associated with current generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0885Capacitors, e.g. for additional power supply
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0888DC/DC converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N11/00Starting of engines by means of electric motors
    • F02N11/08Circuits or control means specially adapted for starting of engines
    • F02N2011/0881Components of the circuit not provided for by previous groups
    • F02N2011/0896Inverters for electric machines, e.g. starter-generators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the invention relates to a drive system with an internal combustion engine for a motor vehicle and a method for operating a drive system with an internal combustion engine for a motor vehicle.
  • starters are used to start the internal combustion engine.
  • generators are provided in the vehicle, which among other things serve, in particular, for the so-called recuperation of braking energy, for example.
  • Both the starter and the generator are electrical machines.
  • the introduction of the so-called start / stop operation and the use of the recuperated energy can lead to sustainable fuel savings.
  • the start / stop operation cannot be represented with today's series starters and their mechanical connections to a drive train due to comfort and durability problems.
  • the mechanical integration into a drive train takes place by engagement or by means of a dry gear.
  • the components starter and generator can each be optimized for their actual function.
  • a starter / generator for an internal combustion engine of a motor vehicle is known from EP 0 876 554 B1, which has an electrical induction machine that performs the starter and generator function and an inverter.
  • the inverter is provided with an intermediate circuit that has a higher voltage level than an on-board electrical system.
  • the intermediate circuit is equipped with an energy store for storing energy for starter operation.
  • the energy withdrawal from the intermediate circuit in the start mode of the electrical machine and the energy feed into the intermediate circuit in generator operation take place at the increased voltage level.
  • the increased voltage level is preferably 350V. It is an object of the invention to provide a drive system for a motor vehicle with an internal combustion engine and an electrical machine. It is a further object of the invention to provide a method for operating such a drive system.
  • the invention is characterized in that a first energy store and a second energy store, which preferably corresponds to an on-board electrical system battery, are interconnected in such a way that when the electrical machine is started, an electrical voltage is provided which is above the on-board electrical system voltage.
  • the first energy store can be designed as a high-performance store with low energy content, which alone or together with the second energy store delivers a higher current than the second energy store alone.
  • the invention has the advantage that the required starting power, in particular the required cold starting power, or the electrical voltage or electrical current made available to the electrical machine during the starting process can be scaled as desired. This scalability of the starting power enables the drive system according to the invention to be used in different motorizations of a vehicle series.
  • the use of two energy stores or power stores results in a high recuperation potential. Furthermore, the cycle load of the individual energy stores, in particular of the vehicle electrical system, is reduced by using two energy stores. energy storage or the electrical system battery, low.
  • the use of the invention leads to the necessary driving comfort during start / stop operation and to an increased service life of the components involved.
  • a stabilized vehicle electrical system can be implemented during start / stop operation and recuperation.
  • the invention is characterized by significantly lower cost 'in the realization.
  • FIG. 1 is a schematic representation of an electrical machine with an inverter and a first and a second energy store
  • FIG. 2 shows a schematic representation of a first embodiment of an electrical machine with an inverter, switching units and a first and a second energy store
  • FIG. 3 shows a schematic illustration of a second embodiment of an electrical machine with an inverter, a switching unit and a first and a second energy store
  • Fig. 4 is a schematic representation of a third embodiment of an electrical machine with an inverter, a switching unit, one opposite second exemplary embodiment additional switching unit and a first and a second energy store,
  • FIG. 5 shows a schematic illustration of a fourth embodiment of an electrical machine with an inverter, a switching unit and a first and a second energy store and
  • FIG. 6 shows a schematic representation of a fifth embodiment of an electrical machine with an inverter, a switching unit, an additional switching unit compared to the fourth exemplary embodiment and a first and a second energy store.
  • the electrical machine 1 shows a schematic representation of an electrical machine 1, an inverter 2 and a first energy store 3 and a second energy store 4.
  • the electrical machine 1 is preferably an electrical three-phase machine, for example a synchronous machine or a transverse flux machine, which can be operated and used as a starter / generator for an internal combustion engine (not shown) of a motor vehicle.
  • Each phase, not shown, of the electrical machine 1 is connected to the inverter 2 via a line (not shown).
  • the inverter 2 contains switching elements, in particular semiconductors such as so-called IGBTs and / or MOSFETs.
  • Each phase is preferably assigned a half-bridge arrangement, not shown, consisting of two switching elements with rectifier elements or freewheeling diodes connected in anti-parallel.
  • An inverter 2 can also be understood to mean power electronics, a converter or a converter.
  • a first energy store 3 is connected to the inverter 2 via two lines (not shown). About another not specified The inverter 2 is connected to a second energy store 4.
  • An on-board electrical system can preferably be connected to the inverter 2 in parallel with the second energy store 4 via this line, which is not identified in any more detail. This is indicated by the dotted line in FIG. 1.
  • An energy store is also understood to mean a power store.
  • a so-called supercapacitor also called SuperCap or UltraCap
  • a battery or a combination of a supercapacitor and a battery can also be used.
  • a battery, in particular a vehicle battery is preferably used as the second energy store 4.
  • a supercapacitor or a combination of battery and supercapacitor can be used.
  • the nominal voltage of the vehicle electrical system is preferably 14 V and the nominal voltage of the second energy store 4 is 12V.
  • FIG. 2 shows a schematic illustration of a first embodiment of an electrical machine 1, an inverter 2, a switching unit 10 and a first energy store 3 and a second energy store 4.
  • FIG. 2 shows a specific embodiment of FIG. 1. Functionally the same components provided with the same reference numerals as in FIG. 1.
  • the phases (not shown) of the electrical machine 1, which can be operated and used as a starter / generator for an internal combustion engine (not shown) of a motor vehicle, are connected to the inverter 2 via lines (not shown).
  • the inverter 2 is connected to ground 9 via a line which is not closer.
  • the ground 9 is preferably formed by a vehicle body.
  • the inverter 2 is connected via a line 7 to a first pole of the first energy store 3, which pole is not designated in any more detail.
  • the second pole, not designated in any more detail, of the first energy store 3 bears against ground 9.
  • the inverter 2 is connected via a line 6 to a first pole of the second energy store 4, which pole is not shown in detail.
  • the second pole, not identified in more detail, of the second energy store 4 is connected to ground 9.
  • the first pole of the first energy store 3 is connected via a line 8 to the first pole, not specified, of the second energy store 4.
  • a preferably bidirectional DC / DC converter 12 is arranged in line 8.
  • the first energy store 3 and the second energy store 4 are connected in parallel.
  • An on-board electrical system 5 is connected to the line 6 or to the first pole of the second energy store 4 via a line (not shown). In the electrical system 5, for example, electrical consumers such as fans, wiper motors, control devices, lights or light bulbs are arranged.
  • a switching unit 10 is provided in line 6 between the inverter 2 and the second energy store 4.
  • a switching unit 10 is also provided in line 7 between the inverter 2 and the first energy store 3.
  • the switching units 10 preferably consist of two switching elements, not specified, to which so-called reverse diodes, not specified, can be assigned.
  • the switching elements of the switching unit 10 can be controlled via a control unit 11. The control takes place via lines not specified.
  • the electrical machine 1 can be supplied with energy either only by the first energy store 3 or only by the second energy store 4 or by both energy stores 3, 4.
  • the control / regulation of which of the energy stores 3, 4 for supplying the electrical ma- Schine 1 is used by the control unit 11 and the switching units 10. Accordingly, the recuperation or the recovery and storage of electrical energy from, for example, the braking energy of a motor vehicle by storing the energy in the first energy storage 3 or by storing the energy in the second energy storage device 4 or by storing the energy in both energy storage devices 3 and 4.
  • the recovered electrical energy can also be fed directly into the electrical system 5 via line 6. This direct feed into the vehicle electrical system 5 can take place parallel to the charging of the second energy store 4.
  • the vehicle electrical system 5 can also be supplied from the first energy store 3 and / or the second energy store 4 if the latter have a corresponding charging quantity.
  • charging of the first energy store 3, which is preferably a supercapacitor or a SuperCap / UltraCap may be necessary. This charging can take place by means of the second battery 4 or by means of recuperation by means of recovered energy.
  • the first pole of the first energy store 3 is preferably at a potential which is between 8 and 20V.
  • the first energy store 3 preferably has a nominal voltage of 20V.
  • the first pole of the second energy store 4 is preferably at a potential of 14V.
  • the second energy store 4 preferably has a nominal voltage of 12V.
  • FIG. 3 shows a schematic illustration of a second embodiment of an electrical machine 1, an inverter 2, a switching unit 13 and a first energy store 3 and a second energy store 4.
  • the first energy store 3 and the second energy store 4 are in series connected. Components with the same function as in the previous figures are provided with the same reference symbols.
  • the phases, not shown, of an electrical machine 1 are connected to the inverter 2 via lines, which are not specified, which is connected to ground 9 via a line, which is not specified.
  • a first pole, not designated in any more detail, of a first energy store 3 is connected to the inverter 2 via a line 7.
  • a first pole (not shown) of a second energy store 4 is connected to the inverter 2 via a line 6.
  • the second pole, not designated in more detail, of the first energy store 3 is connected to the line 6 and thus connected to the first pole of the second energy store 4.
  • the second, not specified pole of the second energy store 4 is connected to ground 9.
  • the first pole of the first energy store 3 is connected via a line 8, in which a DC / DC converter is arranged, to the line 6 or to the first pole of the second energy store 4 connected.
  • a further line (not identified in any more detail) is connected to line 6 or to the first pole of second energy store 4, which line represents a connection to an electrical system.
  • the connection to the vehicle electrical system is shown by a dotted line.
  • a switching unit 13 is arranged between the inverter 2 and the energy stores 3, 4.
  • This switching unit preferably contains two switching elements, not specified, for example semiconductor switches, to which reversed diodes, which are not specified, can be assigned.
  • the switching elements of the switching unit 13 are controlled via a control unit 11, not shown.
  • One switching element of the switching unit 13 is arranged in the line 7 between the inverter 2 and the first energy store 3.
  • the second switching element of the switching unit 13 is in the line 6 between the inverter ter 2 and the second energy storage 4 arranged.
  • the switching elements of the switching unit 13 serve to control the current flows via the energy stores 3, 4.
  • the current flow preferably takes place from the vehicle electrical system or the second energy store 4 via the first energy store 3 to the electrical machine 1 electrical energy can only be obtained from the second energy store 4.
  • Recovered energy for example by braking a motor vehicle, can be fed into the vehicle electrical system via line 7 and the first energy store 3 for recuperation and for supplying the vehicle electrical system.
  • the recovered energy can also be fed directly into the vehicle electrical system via line 6, for example when the first energy store 3 is fully charged.
  • the second energy store 4 can also be charged with the recovered energy.
  • the electrical system can be supplied with electrical energy from the first energy store 3.
  • the electrical system can also be supplied with electrical energy by means of the second energy store 4.
  • the first energy store 3 can be charged by electrical energy of the second energy store 4.
  • the second pole of the first energy store 3 and the first pole of the second energy store 4 are preferably at a potential of 14V.
  • the first pole of the first energy store 3 is preferably at a potential of 14 V + a voltage with the value x V.
  • This additional, additive voltage x results from the voltage across the first energy store 3 is applied.
  • the voltage with which the electrical machine can be supplied thus results from an addition of the voltage which is present across the first energy store 3 to the potential which is present at the first pole of the second energy store 4 or at the second pole of the first energy store 3 is present.
  • the value of the additional voltage x can be adapted to the specific requirements of a motorization or a vehicle within a series.
  • a particularly easily scalable voltage x can be realized by using a plurality of supercaps or supercapacitors, which are interconnected and which, for example, are dimensioned in steps of approximately 2.5 V, as the first energy store 3.
  • the individual SuperCaps are preferably connected together in series. To achieve the voltage potential increased by x, therefore, only a minimum of additional storage volume to the second energy store 4 in the form of the first energy store 3 is advantageously required.
  • FIG. 4 shows a schematic illustration of a third embodiment of an electrical machine 1, an inverter 2, switching units 13 and a first energy store 3 and a second energy store 4.
  • FIG. 4 shows a further development of the embodiment shown in FIG. 3. Functions having the same effect Components are given the same reference numerals as in the previous figures.
  • a further, second switching unit 13 is provided.
  • the second switching unit 13 connects the first switching unit 13 to ground 9. Between the first and the second switching unit 13 there is a connection to the first pole, not specified, of the second energy store 4. This connection represents part of the line 6.
  • the second switching unit 13 also has two switching elements, not designated in any more detail to which reverse diodes, which are not described in more detail, can be assigned.
  • the inverter 2 is not connected directly to the ground 9, but rather to the connection point of the first and the second switching element of the switching unit 13.
  • starting processes and drive support can advantageously be carried out solely by the first energy store 3.
  • recuperation or the storage of recovered energy can take place solely in the first energy store 3.
  • Starting processes, drive support and recuperation no longer have to be carried out via the second energy store 4. This leads to a reduction in the cycle load and thus to an increase in the service life of the second energy store 4.
  • This also leads to a stabilization of the vehicle electrical system or to a stabilized vehicle electrical system.
  • the second energy store 4 is preferably used to assist.
  • a second pole of the first energy store 3 and a first pole of a second energy store 4 are at a common potential.
  • the first pole of the first energy store 3 is preferably at a potential which is higher than the potential at the second pole of the first energy store 3 and at the first pole of the second energy store 4.
  • the potential at the second pole of the first energy store 3 and at the first pole of the second energy store 4 is in turn preferably increased compared to the potential at the second pole of the second energy store 4.
  • the second pole of the second energy store 4 is preferably connected to ground 9, which can be implemented by the vehicle body.
  • 5 shows a schematic illustration of a fourth embodiment of an electrical machine 1, an inverter 2, a switching unit 13 and a first energy store 3 and a second energy store 4.
  • an electrical machine 1 which can be operated and used as a starter / generator for an internal combustion engine (not shown) of a motor vehicle, is connected to an inverter 2 via lines that are not identified in any more detail.
  • the inverter 2 is connected via a line 6 to a first pole, not designated in more detail, of a second energy store 4.
  • the second pole of the second energy store 4, which is not specifically identified, is preferably grounded 9.
  • the inverter 2 is connected to a switching unit 13 via a line, which is not specifically identified.
  • the switching unit 13 has two switching elements, not identified in any more detail, to which reversed diodes, which are not specified in any more detail, can be assigned.
  • the connection point of the inverter 2 to the switching unit 13 via a line (not shown) is between the two switching elements.
  • the Pole with the lower potential of the switching unit 13 is preferably connected via a line 7 to a second pole of a first energy store 3, which pole is not further identified.
  • the pole of the switching unit 13, which is present at a potential which is higher than the other pole, is preferably at ground 9.
  • a second pole of the first energy store 3, which is not specifically identified, is likewise preferably at ground 9.
  • the second pole of the first energy store 3 is connected via a line 8 to the line 6 or to the first pole of the second energy store 4.
  • a DC / DC converter 12 is arranged in line 8 and is connected to ground 9 via a line (not shown).
  • the mass 9 is preferably formed by a vehicle body.
  • the first pole of the second energy store 4 is preferably at a potential of 14V.
  • the second pole of the first energy store 3 is preferably at a potential of - x V.
  • the voltage with which the electrical machine can be supplied thus results from a subtraction of the potential which is present at the second pole of the first energy store 3 from the potential which is present at the first pole of the second energy store 4 or from an addition of the amount the potential which is present at the second pole of the first energy store 3 to the potential which is present at the first pole of the second energy store 4.
  • FIG. 6 shows a schematic representation of a fifth embodiment of an electrical machine 1, an inverter 2, switching units 13, a first energy store 3 and a second energy store 4
  • Embodiment of FIG. 6 compared to the embodiment of FIG. 5 correspond to the differences of the embodiment of FIG. 4 compared to the embodiment of FIG. 3.
  • An additional switching unit 13 is provided, which is connected to the inverter 2 and the line 6.
  • the second switching unit 13 preferably has two switching elements, to which reversed diodes (not shown) can be assigned, and between which a line is provided which connects the switching unit 13 to the inverter 2.
  • One pole of the switching unit 13 is connected to the line 6.
  • the other pole of the switching unit 13, which is at a lower potential, preferably at ground 9, is connected to the first switching element 13.
  • start processes, drive support processes and recuperation can be carried out via the first energy store 3 without including the second energy store 4.
  • a first pole of a first energy store 3 and a second pole of a second energy store are at a common potential.
  • the first pole of the second energy store 4 is preferably at a potential which is higher than the potential at which the second pole of the second energy store 4 and the first pole of the first energy store 3 lie.
  • the second pole of the first energy store 3 is preferably in turn at a potential which is lower than the potential at which the first pole of the first energy store 3 and the second pole of the second energy store 4 lie.
  • the first pole of the first energy store 3 and the second pole of the second energy store 4 are preferably at ground 9. If the first pole of the first energy store 3 is at ground 9, then the second pole of the first Energy storage 3 at a negative potential.
  • the electronic units shown in the embodiments of FIGS. 1-6, given by the inverter 2, the switching units 10, 13 and the DC / DC converter 12 can be integrated in an overall electronic unit.
  • This overall electronics unit can be located in a housing.
  • the switching elements or power switches provided in the switching units can preferably be implemented by semiconductor components, such as IGBTs and / or MOSFETs. These are preferably connected in half bridges.
  • the described embodiments can not only be used with 14V electrical systems, but are also suitable for combination with electrical systems with other nominal voltages, such as a 42V electrical system.
  • a corresponding on-board electrical system battery or a corresponding energy store 4 is to be provided.
  • the second energy store 4 should preferably have a nominal voltage of 36V.
  • the voltage of 14 + x V or nominal voltage of an on-board electrical system + x V provided by the invention can be used as the nominal voltage for a further on-board electrical system which can be integrated into a vehicle.

Abstract

Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Starten eines Verbrennungsmotors für ein Kraftfahrzeug, wobei dem Verbrennungsmotor eine elektrischen Maschine (1) zugeordnet ist, welche als Starter/Generator betrieben wird. Die elektrische Maschine (1) wird beim Starten mit einer Spannung versorgt, welche sich aus der Addition oder der Subtraktion der an einem ersten und der an einem zweiten Energiespeicher (3, 4) anliegenden Spannungen ergibt.

Description

Antriebssystem für ein Kraftfahrzeug mit einem Verbrennungsmo- tor und einer elektrischen Maschine
Die Erfindung betrifft ein Antriebssystem mit einem Verbrennungsmotor für ein Kraftfahrzeug und ein Verfahren zum Betreiben eines Antriebssystems mit einem Verbrennungsmotor für ein Kraftfahrzeug.
Bei Kraftfahrzeugen mit einer Bordnetzspannung von 14V werden Anlasser eingesetzt, um das Starten des Verbrennungsmotors zu bewirken. Zusätzlich sind Generatoren im Fahrzeug vorgesehen, welche unter anderem insbesondere der sogenannten Rekuperation von beispielsweise Bremsenergie dienen. Sowohl beim Anlasser als auch beim Generator handelt es sich um elektrische Maschinen. Die Einführung des sogenannten Start/Stopp-Betriebs und die Nutzung der rekuperierten Energie kann zu einer nachhaltigen Einsparung von Kraftstoff führen. Insbesondere der Start/Stopp-Betrieb läßt sich jedoch mit heutigen Serienanlassern und deren mechanischer Einbindungen an einen Antriebsstrang wegen Komfort - und Lebensdauerproblemen nicht darstellen. Die mechanische Einbindung in einen Antriebsstrang erfolgt durch Einrücken bzw. mittels eines trockenen Getriebes. Die Komponenten Anlasser und Generator können jeweils auf ihre eigentliche Funktion hin optimiert werden.
Soll bei einem Bordnetz nur eine elektrische Maschine sowohl für den Starterbetrieb als auch für den Generatorbetrieb eingesetzt werden, so treten Schwierigkeiten dahingehend auf, dass einerseits für den Verbrennungsmotor das notwendige Startmoment dargestellt werden muss, andererseits im gesamten Drehzahlbereich des Verbrennungsmotors ausreichend Generatorleistung mit gutem Wirkungsgrad bereitgestellt werden soll. Da diese elektrische Maschine folglich ständig mit der Kurbelwelle bzw. Antriebswelle verbunden sein muss, ist bei ihrer Auslegung die Wahl einer großen mechanischen Übersetzung zur Darstellung des Startmoments durch ihre Schleuderdrehzahl auf einen viel kleineren Wert begrenzt, als dies bei den heutigen, ausrückbaren Serienanlassern der Fall ist. Diese Schwierigkeiten werden noch dadurch verstärkt, dass die als Starter/Generator betriebene elektrische Maschine und die Architektur des Bordnetzes aus Gründen der Vermeidung von Bauvarianten in allen Motorisierungen einer Baureihe vorzugsweise unverändert zum Einsatz kommen soll. Verantwortlich für diese Problematik ist die üblicherweise eingesetzte Bordnetzbatterie bzw. der Bordnetzenergiespeicher, welcher die elektrische Maschine mit elektrischer Energie versorgt und dessen Klemmenleistung oftmals zu gering für einen Start mittels Starter/Generator, insbesondere in 14V- Bordnetzen, ist.
Aus der EP 0 876 554 Bl ist ein Starter/Generator für einen Verbrennungsmotor eines Kraftfahrzeugs bekannt, welcher eine elektrische Drehfeldmaschine, die die Starter- und Generatorfunktion ausübt, und einen Wechselrichter aufweist. Der Wechselrichter ist mit einem Zwischenkreis versehen, der ein gegenüber einem Bordnetz erhöhtes Spannungsniveau hat. Der Zwischenkreis ist mit einem Energiespeicher zum Speichern von Energie für den Starterbetrieb ausgerüstet. Die Energieentnahme aus dem Zwischenkreis im Startbetrieb der elektrischen Maschine und die Energieeinspeisung in den Zwischenkreis im Generatorbetrieb erfolgen auf dem erhöhten Spannungsniveau. Das erhöhte Spannungsniveau liegt vorzugsweise bei 350V. Es ist Aufgabe der Erfindung, ein Antriebssystem für ein Kraftfahrzeug mit einem Verbrennungsmotor und einer elektrischen Maschine zu schaffen. Es ist weiterhin Aufgabe der Erfindung, ein Verfahren zum Betreiben eines solchen Antriebssystems zu schaffen.
Die Aufgabe wird erfindungsgemäß durch die Merkmale der unabhängigen Patentansprüche gelöst.
Die Erfindung zeichnet sich dadurch aus, dass ein erster Energiespeicher und ein zweiter Energiespeicher, welcher vorzugsweise einer Bordnetzbatterie entspricht, derart miteinander verschaltet sind, dass beim Starten der elektrischen Maschine eine elektrische Spannung zur Verfügung gestellt wird, welche über der Bordnetzspannung liegt.
Der erste Energiespeicher kann als Hochleistungsspeicher mit geringem Energieinhalt ausgeführt sein, welcher alleine oder zusammen mit dem zweiten Energiespeicher einen höheren Strom liefert als der zweite Energiespeicher alleine.
Die Erfindung hat den Vorteil, dass die erforderliche Startleistung, insbesondere die erforderliche Kaltstartleistung, bzw. die der elektrischen Maschine beim Startvorgang zur Verfügung gestellte elektrische Spannung bzw. der zur Verfügung gestellte elektrische Strom beliebig skalierbar ist. Diese Skalierbarkeit der Startleistung ermöglicht den Einsatz des erfindungsgemäßen Antriebssystems in unterschiedlichen Motorisierungen einer Fahrzeugbaureihe.
Durch den Einsatz von zwei Energiespeichern bzw. Leistungsspeichern ergibt sich ein hohes Rekuperationspotenzial . Weiterhin ist durch den Einsatz zweier Energiespeicher die Zyklenbelastung der einzelnen Energiespeicher, insbesondere des Bordnetz- energiespeichers bzw. der Bordnetzbatterie, gering. Der Einsatz der Erfindung führt zum erforderlichen Fahrkomfort bei Start/Stopp-Betrieb und zu einer erhöhten Lebensdauer der beteiligten Komponenten. Die Realisierung eines stabilisiertes Bordnetzes ist bei Start/Stopp-Betrieb und Rekuperation möglich.
Insbesondere gegenüber einer Kombination eines Starter/Generator-Systems mit einem Zweispannungsbordnetz mit den Nennspannungen 14V und 42V mit einem Bordnetz mit einer Nennspannung von 14V, zeichnet sich die Erfindung durch erheblich niedrigere Kosten' bei der Realisierung aus.
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den Unteransprüchen und aus den anhand der Zeichnung nachfolgend dargestellten Ausführungsbeispielen. Es zeigen:
Fig. 1 eine schematische Darstellung einer elektrischen Maschine mit einem Wechselrichter und einem ersten und einem zweiten Energiespeicher,
Fig. 2 eine schematische Darstellung einer ersten Ausführungsform einer elektrischen Maschine mit einem Wechselrichter, Schalteinheiten und einem ersten und einem zweiten Energiespeicher,
Fig. 3 eine schematische Darstellung einer zweiten Ausführungsform einer elektrischen Maschine mit einem Wechselrichter, einer Schalteinheit und einem ersten und einem zweiten Energiespeichers,
Fig. 4 eine schematische Darstellung einer dritten Ausführungsform einer elektrischen Maschine mit einem Wechselrichter, einer Schalteinheit, eine gegenüber dem zweiten Ausführungsbeispiel zusätzliche Schalteinheit und einem ersten und einem zweiten Energiespeicher,
Fig. 5 eine schematische Darstellung einer vierten Ausführungsform einer elektrischen Maschine mit einem Wechselrichter, einer Schalteinheit und einem ersten und einem zweiten Energiespeicher und
Fig. 6 eine schematische Darstellung einer fünften Ausführungsform einer elektrischen Maschine mit einem Wechselrichter, einer Schalteinheit, eine gegenüber dem vierten Ausführungsbeispiel zusätzliche Schalteinheit und einem ersten und einem zweiten Energiespeicher.
Fig. 1 zeigt eine schematische Darstellung einer elektrischen Maschine 1, eines Wechselrichters 2 und eines ersten Energiespeichers 3 und eines zweiten Energiespeichers 4. Bei der e- lektrischen Maschine 1 handelt es sich vorzugsweise um eine elektrische Drehstrommaschine, beispielsweise eine Synchronmaschine oder eine Transversalflussmaschine, welche als Starter/ Generator für einen nicht dargestellten Verbrennungsmotor eines Kraftfahrzeugs betreibbar und einsetzbar ist. Jede, nicht dargestellte Phase der elektrischen Maschine 1 ist über eine nicht näher bezeichnete Leitung mit dem Wechselrichter 2 verbunden. Der Wechselrichter 2 enthält Schaltelemente, insbesondere Halbleiter wie beispielsweise sogenannte IGBTs und/oder MOSFETs. Jeder Phase ist vorzugsweise eine nicht dargestellte Halbbrückenanordnung bestehend aus zwei Schaltelementen mit antiparallel geschalteten Gleichrichterelementen beziehungsweise Freilaufdioden zugeordnet. Unter einem Wechselrichter 2 kann auch eine Leistungselektronik, ein Stromrichter oder ein Umrichter verstanden werden. An den Wechselrichter 2 ist über zwei nicht näher gekennzeichnete Leitungen ein erster Energiespeicher 3 angeschlossen. Über eine weitere nicht näher gekennzeichnete Leitung ist der Wechselrichter 2 mit einem zweiten Energiespeicher 4 verbunden. Über diese nicht näher gekennzeichnete Leitung kann vorzugsweise parallel zu dem zweiten Energiespeicher 4 ein Bordnetz an den Wechselrichter 2 angeschlossen sein. Dies ist durch die gepunktete Linie in der Fig. 1 angedeutet. Unter einem Energiespeicher wird auch ein Leistungsspeicher verstanden.
Als erster Energiespeicher 3 wird vorzugsweise ein sogenannter Superkondensator, auch SuperCap bzw. UltraCap genannt, eingesetzt. Alternativ kann auch eine Batterie oder eine Kombination aus einem Superkondensator und einer Batterie eingesetzt werden. Als zweiter Energiespeicher 4 wird vorzugsweise eine Batterie, insbesondere eine Fahrzeugbatterie, eingesetzt. Alternativ kann ein Superkondensator oder eine Kombination aus Batterie und Superkondensator verwendet werden. Vorzugsweise ist die Nennspannung des Bordnetzes 14V und die Nennspannung des zweiten Energiespeichers 4 12V.
Fig. 2 zeigt eine schematische Darstellung einer ersten Ausführungsform einer elektrischen Maschine 1, eines Wechselrichters 2, eine Schalteinheit 10 und eines ersten Energiespeichers 3 und eines zweiten Energiespeichers 4. Fig. 2 stellte ein konkrete Ausführungsform der Fig. 1 dar. Funktioneil gleiche Komponenten sind mit den gleichen Bezugszeichen wie in der Fig. 1 versehen. Die nicht dargestellten Phasen der elektrischen Maschine 1, welche als Starter/Generator für einen nicht dargestellten Verbrennungsmotor eines Kraftfahrzeugs betreibbar und verwendbar ist, sind über nicht näher bezeichnete Leitungen mit dem Wechselrichter 2 verbunden. Der Wechselrichter 2 liegt über eine nicht näher Leitung auf Masse 9. Die Masse 9 wird vorzugsweise durch eine Fahrzeugkarosserie gebildet. Weiterhin ist der Wechselrichter 2 über eine Leitung 7 mit einem ersten, nicht näher bezeichneten Pol des ersten Energiespeichers 3 verbunden. Der zweite, nicht näher bezeichnete Pol des ersten Energiespeichers 3 liegt an Masse 9 an. Der Wechselrichter 2 ist über ein Leitung 6 mit einem ersten, nicht näher bezeichneten Pol des zweiten Energiespeichers 4 verbunden. Der zweite, nicht näher gekennzeichnete Pol des zweiten Energiespeichers 4 liegt auf Masse 9. Der erste Pol des ersten Energiespeichers 3 ist über eine Leitung 8 mit dem ersten, nicht näher bezeichneten Pol des zweiten Energiespeichers 4 verbunden. In der Leitung 8 ist ein vorzugsweise bidirektionaler DC/DC- Wandler 12 angeordnet. Der erste Energiespeicher 3 und der zweite Energiespeicher 4 sind parallel geschaltet. An die Leitung 6 beziehungsweise an den ersten Pol des zweiten Energiespeichers 4 ist über eine nicht näher bezeichnete Leitung ein Bordnetz 5 angeschlossen. In dem Bordnetz 5 sind beispielsweise elektrische Verbraucher wie Lüfter, Scheibenwischermotor, Steuergeräte, Leuchten bzw. Glühbirnen angeordnet .
In der Leitung 6 ist zwischen dem Wechselrichter 2 und dem zweiten Energiespeicher 4 eine Schalteinheit 10 vorgesehen. In der Leitung 7 ist zwischen dem Wechselrichter 2 und dem ersten Energiespeicher 3 ebenfalls eine Schalteinheit 10 vorgesehen. Die Schalteinheiten 10 bestehen vorzugsweise aus zwei nicht näher bezeichneten Schaltelementen, welchen ggf. sogenannte, nicht näher bezeichnete Reversedioden zugeordnet sein können. Die Schaltelemente der Schalteinheit 10 können über eine Steuereinheit 11 angesteuert werden. Die Ansteuerung erfolgt über nicht näher bezeichnete Leitungen.
Beim Startvorgang bzw. bei der Antriebsunterstützung für den Verbrennungsmotor kann die Energieversorgung der elektrischen Maschine 1 entweder nur durch den ersten Energiespeicher 3 oder nur durch den zweiten Energiespeicher 4 oder durch beide Energiespeicher 3, 4 erfolgen. Die Steuerung/Regelung, welcher der Energiespeicher 3, 4 für die Versorgung der elektrischen Ma- schine 1 herangezogen wird, erfolgt durch die Steuereinheit 11 und die Schalteinheiten 10. Entsprechend erfolgt die Rekuperation bzw. die Rückgewinnung und Speicherung von elektrischer Energie aus beispielsweise der Bremsenergie eines Kraftfahrzeugs durch Speicherung der Energie in dem ersten Energiespeicher 3 oder durch Speicherung der Energie in dem zweiten Energiespeicher 4 oder durch Speicherung der Energie in beiden Energiespeichern 3 und 4. Über die Leitung 6 kann die rückgewonnene elektrische Energie auch direkt ins Bordnetz 5 eingespeist werden. Diese direkte Einspeisung ins Bordnetz 5 kann parallel zur Aufladung des zweiten Energiespeichers 4 erfolgen. Das Bordnetz 5 kann auch aus dem ersten Energiespeicher 3 und/oder dem zweiten Energiespeicher 4 versorgt werden, wenn dieser über eine entsprechende Lademenge verfügen. Insbesondere nach längerem Fahrzeugstillstand kann ein Aufladung des ersten Energiespeichers 3, bei dem es sich vorzugsweise um einen Superkondensator bzw. einen SuperCap/UltraCap handelt, erforderlich sein. Diese Aufladung kann mittels der zweiten Batterie 4 oder mittels Rekuperation durch zurückgewonnene Energie erfolgen.
Der erste Pol des ersten Energiespeichers 3 liegt vorzugsweise auf einem Potenzial, welches zwischen 8 und 20V liegt. Der erste Energiespeicher 3 hat vorzugsweise eine Nennspannung von 20V. Der erste Pol des zweiten Energiespeichers 4 liegt vorzugsweise auf einem Potenzial von 14V. Der zweite Energiespeicher 4 hat vorzugsweise eine Nennspannung von 12V.
In der Fig. 3 ist eine schematische Darstellung einer zweiten Ausführungsform einer elektrischen Maschine 1, eines Wechselrichter 2, einer Schalteinheit 13 und eines ersten Energiespeichers 3 und eines zweiten Energiespeichers 4 dargestellt. In der in der Fig. 3 dargestellten Ausführungsform sind der erste Energiespeicher 3 und der zweite Energiespeicher 4 in Serie geschaltet. Funktionen gleichwirkende Komponenten wie in den vorhergehenden Figuren sind mit den gleichen Bezugszeichen versehen. Die nicht dargestellten Phasen einer elektrischen Maschine 1 sind über nicht näher bezeichnete Leitungen mit dem Wechselrichter 2 verbunden, welcher über eine nicht näher bezeichnete Leitung auf Masse 9 liegt. Über eine Leitung 7 ist ein erster, nicht näher bezeichneter Pol eines ersten Energiespeichers 3 an den Wechselrichter 2 angeschlossen. Über eine Leitung 6 ist ein erster nicht näher bezeichneter Pol eines zweiten Energiespeichers 4 an den Wechselrichter 2 angeschlossen. Der zweite, nicht näher bezeichnete Pol des ersten Energiespeichers 3 ist an die Leitung 6 angeschlossenen und somit mit dem ersten Pol des zweiten Energiespeichers 4 verbunden. Der zweite, nicht näher bezeichnete Pol des zweiten Energiespeichers 4 liegt auf Masse 9. Der erste Pol des ersten Energiespeichers 3 ist über eine Leitung 8, in welcher ein DC/DC- Wandler angeordnet ist, mit der Leitung 6 bzw. mit dem ersten Pol des zweiten Energiespeichers 4 verbunden. An die Leitung 6 beziehungsweise an den ersten Pol des zweiten Energiespeichers 4 ist eine weitere nicht näher gekennzeichnete Leitung angeschlossen, welche eine Verbindung zu einem Bordnetz repräsentiert. Die Verbindung zum Bordnetz ist durch eine gepunktete Linie dargestellt.
Zwischen dem Wechselrichter 2 und den Energiespeichern 3, 4 ist eine Schalteinheit 13 angeordnet. Diese Schalteinheit enthält vorzugsweise zwei nicht näher bezeichnete Schaltelemente, beispielsweise Halbleiterschalter, denen nicht näher bezeichnete Reversedioden zugeordnet sein können. Die Schaltelemente der Schalteinheit 13 werden über eine nicht dargestellte Steuereinheit 11 angesteuert. Das eine Schaltelement der Schalteinheit 13 ist in der Leitung 7 zwischen Wechselrichter 2 und erstem Energiespeicher 3 angeordnet. Das zweite Schaltelement der Schalteinheit 13 ist in der Leitung 6 zwischen dem Wechselrich- ter 2 und dem zweiten Energiespeicher 4 angeordnet. Die Schaltelemente der Schalteinheit 13 dienen der Steuerung der Stromflüsse über die Energiespeicher 3, 4.
Beim Starten, insbesondere beim Kaltstart, und bei der Antriebsunterstützung des Verbrennungsmotors, sogenanntes Boos- ten, erfolgt der Stromfluss vorzugsweise vom Bordnetz bzw. dem zweiten Energiespeicher 4 über den ersten Energiespeicher 3 zur elektrischen Maschine 1. Beim Warmstart kann es dagegen ausreichend sein, die elektrische Energie nur aus dem zweiten Energiespeicher 4 zu beziehen. Rückgewonnene Energie, beispielsweise durch Bremsvorgänge eines Kraftfahrzeugs, kann zur Rekuperation und zur Bordnetzversorgung über die Leitung 7 und den ersten Energiespeicher 3 in das Bordnetz eingespeist werden. Die rückgewonnene Energie kann auch direkt über die Leitung 6 in das Bordnetz gespeist werden, beispielsweise bei vollständig geladenem ersten Energiespeicher 3. Mit der rückgewonnenen E- nergie kann auch der zweite Energiespeicher 4 geladen werden.
Ist der erste Energiespeicher 3 mit einer gewissen Ladung aufgeladen, beispielsweise durch Rekuperation, so kann das Bordnetz aus dem ersten Energiespeicher 3 mit elektrischer Energie versorgt werden. Ebenso kann das Bordnetz mittels des zweiten Energiespeichers 4 mit elektrischer Energie versorgt werden. Zur Vorbereitung eines Startvorgangs insbesondere eines Kaltstarts kann der erste Energiespeicher 3 durch elektrische Energie des zweiten Energiespeichers 4 aufgeladen werden.
Der zweite Pol des ersten Energiespeichers 3 und der erste Pol des zweiten Energiespeichers 4 liegen vorzugsweise auf einem Potenzial von 14V. Der erste Pol des ersten Energiespeichers 3 liegt vorzugsweise auf einem Potenzial von 14V + einer Spannung mit dem Wert x V. Diese zusätzliche, additive Spannung x ergibt sich aus der Spannung, die über dem ersten Energiespeicher 3 anliegt. Die Spannung, mit der die elektrische Maschine versorgt werden kann, ergibt sich also aus einer Addition der Spannung, welche über dem ersten Energiespeichers 3 anliegt, zu dem Potential, das am ersten Pol des zweiten Energiespeichers 4 bzw. an dem zweiten Pol des ersten Energiespeichers 3 anliegt.
Der Wert der zusätzlichen Spannung x kann an die konkreten Erfordernisse einer Motorisierung bzw. eines Fahrzeugs innerhalb einer Baureihe angepasst werden. Eine besonders einfach skalierbare Spannung x kann dadurch realisiert werden, dass als erster Energiespeicher 3 mehrere miteinander verschaltete Su- perCaps bzw. Superkondensatoren, welche beispielsweise eine Dimensionierung in Schritten von ca. 2,5V aufweisen, verwendet werden. Die einzelnen SuperCaps sind vorzugsweise in Serie miteinander verschaltet. Zum Erreichen des um x erhöhten Spannungspotenzials ist daher vorteilhafterweise nur ein Minimum an zusätzlichem Speichervolumen zum zweiten Energiespeicher 4 in Form des ersten Energiespeichers 3 erforderlich.
Fig. 4 zeigt eine schematische Darstellung einer dritten Ausführungsform einer elektrischen Maschine 1, eines Wechselrichters 2, Schalteinheiten 13 und eines ersten Energiespeichers 3 und eines zweiten Energiespeichers 4. Fig. 4 stellt eine Weiterentwicklung der in der Fig. 3 dargestellten Ausführungsform dar. Funktionen gleichwirkende Komponenten sind mit den gleichen Bezugszeichen wie in den vorangegangenen Figuren versehen. Zusätzlich zu der in der Fig. 3 dargestellten Ausführungsform ist eine weitere, zweite Schalteinheit 13 vorgesehen. Die zweite Schalteinheit 13 verbindet die erste Schalteinheit 13 mit Masse 9. Zwischen der ersten und der zweiten Schalteinheit 13 ist eine Verbindung mit dem ersten, nicht näher bezeichneten Pol des zweiten Energiespeichers 4 vorgesehen. Diese Verbindung stellt einen Teil der Leitung 6 dar. Die zweite Schalteinheit 13 weist ebenfalls zwei nicht näher bezeichnete Schaltelemente auf, denen nicht näher bezeichnete Reversedioden zugeordnet sein können. Im Gegensatz zur Fig. 3 ist der Wechselrichter 2 nicht direkt mit der Masse 9 verbunden, sondern mit der Verbindungsstelle des ersten und des zweiten Schaltelements der Schalteinheit 13.
Vorteilhafterweise können bei dieser Ausführungsform Startvorgänge und Antriebsunterstützung (Boosten) allein durch den ersten Energiespeicher 3 erfolgen. Ebenso kann Rekuperation bzw. die Speicherung zurückgewonnener Energie allein in den ersten Energiespeicher 3 erfolgen. Startvorgänge, Antriebsunterstützung und Rekuperation müssen nicht mehr zwingend über den zweiten Energiespeicher 4 geführt werden. Dies führt zu einer Verringerung der Zyklenbelastung und somit zu einer Erhöhung der Lebensdauer des zweiten Energiespeichers 4. Dies führt weiterhin zu einer Stabilisierung des Bordnetzes bzw. zu einem stabilisierten Bordnetz. Bei einem Kaltstart wird vorzugsweise der zweite Energiespeicher 4 unterstützend herangezogen.
In den Ausführungsbeispielen der Fig. 3 und 4 liegen ein zweiter Pol des ersten Energiespeichers 3 und ein erster Pol eines zweiten Energiespeichers 4 auf einem gemeinsamen Potenzial. Der erste Pol des ersten Energiespeichers 3 liegt vorzugsweise auf einem Potenzial, welches gegenüber dem Potenzial am zweiten Pol des ersten Energiespeichers 3 und am ersten Pol des zweiten Energiespeichers 4 erhöht ist. Das Potenzial am zweiten Pol des ersten Energiespeichers 3 und am ersten Pol des zweiten Energiespeichers 4 ist wiederum vorzugsweise gegenüber dem Potenzial am zweiten Pol des zweiten Energiespeichers 4 erhöht. Der zweite Pol des zweiten Energiespeichers 4 liegt vorzugsweise an Masse 9, welche durch die Fahrzeugkarosserie realisiert werden kann. Fig. 5 stellt eine schematische Darstellung einer vierten Ausführungsform einer elektrischen Maschine 1, eines Wechselrichters 2, einer Schalteinheit 13 und eines ersten Energiespeichers 3 und eines zweiten Energiespeichers 4 dar. Funktionen gleichwirkende Komponenten sind mit den gleichen Bezugszeichen wie in den vorhergegangenen Zeichnungen versehen. Der Unterschied, der in der Fig. 5 dargestellten Ausführungsform (und der weiter unten im Text beschriebenen, in der Fig. 6 dargestellten Ausführungsform) zu den in den Fig. 3 und 4 Ausführungsformen liegt darin, dass der erste Pol des ersten Energiespeichers 3 nicht mit schwimmendem bzw. mit variierendem Potenzial über dem Potenzial des ersten Pols des zweiten Energiespeichers 4 liegt, wie dies in den Ausführungsformen 3 und 4 der Fall ist. In den Fig. 5 und 6 liegt der zweite Pol des ersten Energiespeichers 3 auf einem Potenzial, welches unterhalb des Potenzials liegt, auf dem der zweite Pol des zweiten Energiespeichers 4 liegt.
In der Fig. 5 ist eine elektrische Maschine 1, welche als Starter/Generator für einen nicht dargestellten Verbrennungsmotor eines Kraftfahrzeugs betreibbar und einsetzbar ist, über nicht näher gekennzeichnete Leitungen mit einem Wechselrichter 2 verbunden. Der Wechselrichter 2 ist über eine Leitung 6 mit einem ersten, nicht näher bezeichneten Pol eines zweiten Energiespeichers 4 verbunden. Der zweite, nicht näher gekennzeichnete Pol des zweiten Energiespeichers 4 liegt vorzugsweise auf Masse 9. Über eine nicht näher gekennzeichnete Leitung ist der Wechselrichter 2 mit einer Schalteinheit 13 verbunden.
Die Schalteinheit 13 weist zwei nicht näher gekennzeichnete Schaltelemente auf, denen nicht näher bezeichnete Reversedioden zugeordnet sein können. Der Verbindungspunkt des Wechselrichters 2 über eine nicht näher gekennzeichnete Leitung mit der Schalteinheit 13 liegt zwischen den beiden Schaltelementen. Der Pol mit dem niedrigeren Potenzial der Schalteinheit 13 ist vorzugsweise über eine Leitung 7 mit einem zweiten nicht näher gekennzeichneten Pol eines ersten Energiespeichers 3 verbunden. Der Pol der Schalteinheit 13, welcher an einem gegenüber dem anderen Pol höheren Potenzial anliegt, liegt vorzugsweise auf Masse 9. Ein zweiter, nicht näher gekennzeichneter Pol des ersten Energiespeichers 3 liegt ebenfalls vorzugsweise auf Masse 9.
Über eine Leitung 8 ist der zweite Pol des ersten Energiespeichers 3 mit der Leitung 6 bzw. mit dem ersten Pol des zweiten Energiespeichers 4 verbunden. In der Leitung 8 ist ein DC/DC - Wandler 12 angeordnet, welcher über eine nicht näher gekennzeichnete Leitung auf Masse 9 liegt. Die Masse 9 wird vorzugsweise durch eine Fahrzeugkarosserie gebildet.
Der erste Pol des zweiten Energiespeichers 4 liegt vorzugsweise auf einem Potenzial von 14V. Der zweite Pol des ersten Energiespeichers 3 liegt vorzugsweise auf einem Potenzial von - x V. Insgesamt kann also die elektrische Maschine 1 mit maximal 14V - (-x) V = 14V + x V aus dem ersten und aus dem zweiten Energiespeicher 3 und 4 versorgt werden. Die Spannung mit der die elektrische Maschine versorgt werden kann, ergibt sich also aus einer Subtraktion des Potentials, welches am zweiten Pol des ersten Energiespeichers 3 anliegt, von dem Potential, das am ersten Pol des zweiten Energiespeichers 4 anliegt bzw. aus einer Addition des Betrages des Potentials, welches am zweiten Pol des ersten Energiespeichers 3 anliegt, zu dem Potential, das am ersten Pol des zweiten Energiespeichers 4 anliegt.
Die Fig. 6 stellt eine schematische Darstellung einer fünften Ausführungsform einer elektrischen Maschine 1, eines Wechselrichters 2, Schalteinheiten 13, eines ersten Energiespeichers 3 und eines zweiten Energiespeichers 4 dar. Die Unterschiede der Ausführungsform der Fig. 6 gegenüber der Ausführungsform der Fig. 5 entsprechen den Unterschieden der Ausführungsform der Fig. 4 gegenüber der Ausführungsform der Fig. 3. Es ist eine zusätzliche Schalteinheit 13 vorgesehen, welches mit dem Wechselrichter 2 und der Leitung 6 verbunden ist. Die zweite Schalteinheit 13 weist vorzugsweise zwei Schaltelemente auf, denen nicht näher bezeichnete Reversedioden zugeordnet sein können, und zwischen denen eine Leitung vorgesehen ist, welche die Schalteinheit 13 mit dem Wechselrichter 2 verbindet. Der eine Pol der Schalteinheit 13 ist mit der Leitung 6 verbunden. Der andere Pol der Schalteinheit 13, welcher auf niedrigerem Potenzial, vorzugsweise auf Masse 9 liegt, ist mit dem ersten Schaltelement 13 verbunden. Ebenso wie in der Fig. 4 können Startvorgänge, Antriebsunterstützungsvorgänge und Rekuperation (wobei diese Aufzählung nicht erschöpfend ist) über den ersten Energiespeicher 3 geführt werden, ohne den zweiten Energiespeicher 4 miteinzubeziehen.
In den in den Fig. 5 und 6 dargestellten Ausführungsformen liegen ein erster Pol eines ersten Energiespeichers 3 und ein zweiter Pol eines zweiten Energiespeichers auf einem gemeinsamen Potenzial. Der erste Pol des zweiten Energiespeichers 4 liegt vorzugsweise auf einem Potenzial, welches gegenüber dem Potenzial, auf dem der zweite Pol des zweiten Energiespeichers 4 und der erste Pol des ersten Energiespeichers 3 liegen, erhöht ist. Der zweite Pol des ersten Energiespeichers 3 liegt vorzugsweise wiederum auf einem Potenzial, welches niedriger ist als das Potenzial auf welchem der erste Pol des ersten E- nergiespeichers 3 und der zweite Pol des zweiten Energiespeichers 4 liegen. Der erste Pol des ersten Energiespeichers 3 und der zweite Pol des zweiten Energiespeichers 4 liegen vorzugsweise auf Masse 9. Wenn der erste Pol des ersten Energiespeichers 3 an Masse 9 liegt, so liegt der zweite Pol des ersten Energiespeicher 3 auf einem negativen Potenzial.
Die in den Ausführungsformen der Fig. 1-6 dargestellten Elektronikeinheiten, gegeben durch den Wechselrichter 2, die Schalteinheiten 10, 13 und den DC/DC-Wandler 12 können in einer Gesamtelektronikeinheit integriert sein. Diese Gesamtelektronikeinheit kann sich in einem Gehäuse befinden. Die in den Schalteinheiten vorgesehenen Schaltelemente bzw. Leistungsweichen, können vorzugsweise durch Halbleiter-Bauelemente, wie IGBTs und/oder MOSFETs realisiert werden. Diese sind vorzugsweise in Halbbrücken verschaltet.
Die beschriebenen Ausführungsformen können nicht nur bei 14V- Bordnetzen eingesetzt werden, sondern eignen sich auch für die Kombination mit Bordnetzen mit anderen Nennspannungen, wie beispielsweise einem 42V Bordnetz. Eine entsprechende Bordnetzbatterie beziehungsweise ein entsprechender Energiespeicher 4 ist vorzusehen. Für ein 42V-Bordnetz sollte der zweite Energiespeicher 4 vorzugsweise eine Nennspannung von 36V aufweisen.
Die durch die Erfindung bereitgestellte Spannung von 14 + x V beziehungsweise Nennspannung eines Bordnetzes + x V kann als Nennspannung für ein weiteres Bordnetz, welches in ein Fahrzeug integriert werden kann, verwendet werden.
Es sei noch anzumerken, dass anstelle in den Ausführungsbeispielen verwendeten Masse 9 mit einem Potenzial von 0 V ein anderes Potenzial verwendet werden kann.

Claims

Patentansprüche
1. Antriebssystem für ein Kraftfahrzeug mit einem Verbrennungsmotor, wobei
- dem Verbrennungsmotor eine elektrische Maschine (1) zugeordnet ist, welche als Starter/Generator betreibbar ist, die elektrische Maschine (1) von einem Wechselrichter (2) ansteuerbar ist, welcher mit einem ersten Energiespeicher (3) verbunden ist, das Kraftfahrzeug ein elektrisches Bordnetz (5) , welches mit einem zweiten Energiespeicher (4) verbunden ist, aufweist, d a d u r c h g e k e n n z e i c h n e t , d a s s ein zweiter Pol eines ersten Energiespeichers (3) und ein erster Pol eines zweiten Energiespeichers (4) auf einem gemeinsamen Potenzial liegen oder dass ein erster Pol eines ersten Energiespeichers (3) und ein zweiter Pol eines zweiten Energiespeichers (4) auf einem gemeinsamen Potenzial liegen.
2. Antriebssystem nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , d a s s ein DC/DC-Wandler (12) parallel zu dem ersten Energiespeicher angeordnet ist.
3. Antriebssystem nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , d a s s die ersten Pole auf positivem Potenzial und die zweiten Pol auf negativem Potenzial oder Masse liegt.
4. Antriebssystem nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , d a s s das gemeinsame Potenzial durch eine Kraftfahrzeugkarosserie gebildet ist.
5. Antriebssystem nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , d a s s Schaltelemente (10, 13) zwischen dem Wechselrichter (2) und dem ersten Energiespeicher (3) und/oder dem zweiten Energiespeicher (4) vorgesehen sind.
6. Antriebssystem nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , d a s s der erste Energiespeicher (3) einen Superkondensator um- f asst .
7. Kraftfahrzeug, g e k e n n z e i c h n e t d u r c h ein Antriebssystem nach einem der Ansprüche 1 bis 6.
8. Verfahren zum Betreiben eines Antriebssystems mit einem Verbrennungsmotor für ein Kraftfahrzeug, wobei der Verbrennungsmotor von einer elektrischen Maschine (1) angetrieben wird, die elektrische Maschine (1) von einem Wechselrichter (2) angesteuert wird und von einem ersten Energiespeicher (3) und/oder einem zweiten Energiespeicher (4) mit Spannung versorgt wird, d a d u r c h g e k e n n z e i c h n e t , d a s s die elektrische Maschine (1) beim Starten mit einer Spannung versorgt wird, welche sich aus der Addition oder der Subtraktion der an einem ersten (3) und der an einem zweiten Energiespeicher (4) anliegenden Spannungen ergibt. Verfahren nach Anspruch 8, d a d u r c h g e k e n n z e i c h n e t , d a s s die elektrische Maschine (1) beim Starten mit einer Spannung versorgt wird, welche höher ist als die Spannung, welche an dem zweiten Energiespeicher (4) anliegt.
PCT/EP2003/004021 2002-05-24 2003-04-17 Antriebssystem für ein kraftfahrzeug mit einem verbrennungsmotor und einer elektrischen maschine WO2003099605A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03718767A EP1507679A1 (de) 2002-05-24 2003-04-17 Antriebssystem für ein kraftfahrzeug mit einem verbrennungsmotor und einer elektrischen maschine
US10/515,231 US8097975B2 (en) 2002-05-24 2003-04-17 Drive system for a motor vehicle comprising an internal combustion engine and an electric motor
JP2004507108A JP4166753B2 (ja) 2002-05-24 2003-04-17 内燃機関を有する自動車の電力供給のためのシステム

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE10223320.9 2002-05-24
DE10223320 2002-05-24
DE10231379.2 2002-07-11
DE10231379A DE10231379B3 (de) 2002-05-24 2002-07-11 Antriebssystem für ein Kraftfahrzeug mit einem Verbrennungsmotor und einer elektrischen Maschine

Publications (1)

Publication Number Publication Date
WO2003099605A1 true WO2003099605A1 (de) 2003-12-04

Family

ID=29585316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/004021 WO2003099605A1 (de) 2002-05-24 2003-04-17 Antriebssystem für ein kraftfahrzeug mit einem verbrennungsmotor und einer elektrischen maschine

Country Status (3)

Country Link
EP (1) EP1507679A1 (de)
JP (1) JP4166753B2 (de)
WO (1) WO2003099605A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006132052A2 (en) * 2005-06-07 2006-12-14 Toyota Jidosha Kabushiki Kaisha Vehicular power supply system and vehicle
FR2917915A1 (fr) * 2002-08-26 2008-12-26 Valeo Equip Electr Moteur Dispositif et procede de commande d'une machine electrique tournante pour vehicule
FR2928049A1 (fr) * 2008-02-22 2009-08-28 Peugeot Citroen Automobiles Sa Cellule pour dispositif de stockage d'energie electrique et systeme d'alimentation electrique du reseau de bord d'un vehicule.
US7649335B2 (en) 2005-06-07 2010-01-19 Toyota Jidosha Kabushiki Kaisha Vehicular power supply system and vehicle
WO2011012428A3 (de) * 2009-07-31 2011-06-30 Robert Bosch Gmbh Schaltungsanordnung für ein bordnetz
JP4840359B2 (ja) * 2005-05-17 2011-12-21 パナソニック株式会社 エンジン始動装置
US8164206B2 (en) 2009-03-26 2012-04-24 Ford Global Technologies, Llc Methods and systems for engine start control

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012032585A1 (en) * 2010-09-10 2012-03-15 Three Eye Co., Ltd. High response power system for vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1465693A (en) * 1973-05-11 1977-02-23 Cav Ltd Road vehicle electrical systems
EP0410559A2 (de) * 1989-07-27 1991-01-30 Isuzu Motors Limited Stromversorgungseinrichtung
US5710699A (en) * 1996-05-28 1998-01-20 General Electric Company Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems
EP0876554B1 (de) 1995-08-31 2000-11-02 Continental ISAD Electronic Systems GmbH & Co. KG Starter/generator für einen verbrennungsmotor, insbesondere eines kraftfahrzeugs
US6151234A (en) * 1999-03-08 2000-11-21 Oldenkamp; Hendrik Apparatus for converting a direct current into an alternating current
US6323608B1 (en) * 2000-08-31 2001-11-27 Honda Giken Kogyo Kabushiki Kaisha Dual voltage battery for a motor vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1465693A (en) * 1973-05-11 1977-02-23 Cav Ltd Road vehicle electrical systems
EP0410559A2 (de) * 1989-07-27 1991-01-30 Isuzu Motors Limited Stromversorgungseinrichtung
EP0876554B1 (de) 1995-08-31 2000-11-02 Continental ISAD Electronic Systems GmbH & Co. KG Starter/generator für einen verbrennungsmotor, insbesondere eines kraftfahrzeugs
US5710699A (en) * 1996-05-28 1998-01-20 General Electric Company Power electronic interface circuits for batteries and ultracapacitors in electric vehicles and battery storage systems
US6151234A (en) * 1999-03-08 2000-11-21 Oldenkamp; Hendrik Apparatus for converting a direct current into an alternating current
US6323608B1 (en) * 2000-08-31 2001-11-27 Honda Giken Kogyo Kabushiki Kaisha Dual voltage battery for a motor vehicle

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2917915A1 (fr) * 2002-08-26 2008-12-26 Valeo Equip Electr Moteur Dispositif et procede de commande d'une machine electrique tournante pour vehicule
JP4840359B2 (ja) * 2005-05-17 2011-12-21 パナソニック株式会社 エンジン始動装置
US8210145B2 (en) 2005-05-17 2012-07-03 Panasonic Corporation Engine start device
WO2006132052A2 (en) * 2005-06-07 2006-12-14 Toyota Jidosha Kabushiki Kaisha Vehicular power supply system and vehicle
WO2006132052A3 (en) * 2005-06-07 2007-04-26 Toyota Motor Co Ltd Vehicular power supply system and vehicle
US7649335B2 (en) 2005-06-07 2010-01-19 Toyota Jidosha Kabushiki Kaisha Vehicular power supply system and vehicle
FR2928049A1 (fr) * 2008-02-22 2009-08-28 Peugeot Citroen Automobiles Sa Cellule pour dispositif de stockage d'energie electrique et systeme d'alimentation electrique du reseau de bord d'un vehicule.
US8164206B2 (en) 2009-03-26 2012-04-24 Ford Global Technologies, Llc Methods and systems for engine start control
US8314504B2 (en) 2009-03-26 2012-11-20 Ford Global Technologies, Llc Methods and systems for engine start control
WO2011012428A3 (de) * 2009-07-31 2011-06-30 Robert Bosch Gmbh Schaltungsanordnung für ein bordnetz
US9150170B2 (en) 2009-07-31 2015-10-06 Robert Bosch Gmbh Circuit system for redistribution of electrical energy in a vehicle

Also Published As

Publication number Publication date
JP2005530081A (ja) 2005-10-06
EP1507679A1 (de) 2005-02-23
JP4166753B2 (ja) 2008-10-15

Similar Documents

Publication Publication Date Title
DE10231379B3 (de) Antriebssystem für ein Kraftfahrzeug mit einem Verbrennungsmotor und einer elektrischen Maschine
DE102010010124B4 (de) Elektrische Schaltung für ein Hybridantriebsstrangsystem und Verfahren zum Betreiben eines solchen
DE102009015318B4 (de) Leistungssystem für ein Hybridelektrokraftfahrzeug (HEV)
DE102006016138B4 (de) Hybridantrieb mit Notstartmöglichkeit
DE102010001250B4 (de) Elektrisches Bordnetz sowie Verfahren zum Betreiben eines elektrischen Bordnetzes
DE102013204894A1 (de) Kraftfahrzeugbordnetz mit wenigstens zwei Energiespeichern, Verfahren zum Betreiben eines Kraftfahrzeugbordnetzes und Mittel zu dessen Implementierung
EP1034092B1 (de) Bordnetz für ein kraftfahrzeug
DE102012005993A1 (de) Energieversorgungs-Regel- bzw. -Steuergerät für ein Fahrzeug
DE112010003165T5 (de) Direkte elektrische verbindung für ein mehrmotorigeshybridantriebssystem
WO2011009789A1 (de) Steuervorrichtung für eine elektrische maschine und betriebsverfahren für die steuervorrichtung
DE102010017417A1 (de) Elektrisches Versorgungs- und Startsystem für ein Kraftfahrzeug und Verfahren zum Betrieb des elektrischen Versorgungs- und Startsystems
DE10202237B4 (de) Verfahren und Vorrichtung zur Steuerung einer induktions-Maschine
DE102014215615A1 (de) Bordnetz zum Versorgen eines Startermotors für ein Fahrzeug mit einem hybriden Antrieb
WO2004006422A1 (de) Kraftfahrzeug-bordnetz
DE102019125068A1 (de) Verfahren zum Betrieb eines Bordnetzes eines Kraftfahrzeugs
DE102008021419A1 (de) Elektrische Maschine mit vielfachen Wicklungen
DE102019125067A1 (de) Verfahren zum Betrieb eines Bordnetzes eines Kraftfahrzeugs
EP1507679A1 (de) Antriebssystem für ein kraftfahrzeug mit einem verbrennungsmotor und einer elektrischen maschine
DE112017002427T5 (de) Rotierende elektrische maschineneinheit
DE102009000083A1 (de) Vorrichtung zur elektrischen Versorgung elektrischer Verbraucher in einem Fahrzeug, insbesondere einem Hybridfahrzeug
EP2607294B1 (de) Mobile Arbeitsmaschine mit Startgenerator
DE102020102591A1 (de) Verfahren zum Betrieb eines Bordnetzes eines Kraftfahrzeugs
DE102010025266A1 (de) Transportfahrzeug mit einer Mehrzahl elektrischer Maschinen
DE102013205869B4 (de) Fahrzeug mit einer mehrphasigen Maschine
DE102008051592A1 (de) Fahrzeug mit elektrischen Antriebseinheiten und Verfahren zum Betrieb der elektrischen Antriebseinheit

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003718767

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2004507108

Country of ref document: JP

WWP Wipo information: published in national office

Ref document number: 2003718767

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2003718767

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10515231

Country of ref document: US