WO2003098154A1 - Variables feldgerät für die prozessautomation - Google Patents

Variables feldgerät für die prozessautomation Download PDF

Info

Publication number
WO2003098154A1
WO2003098154A1 PCT/EP2003/005130 EP0305130W WO03098154A1 WO 2003098154 A1 WO2003098154 A1 WO 2003098154A1 EP 0305130 W EP0305130 W EP 0305130W WO 03098154 A1 WO03098154 A1 WO 03098154A1
Authority
WO
WIPO (PCT)
Prior art keywords
field device
module
variable field
logic module
reprogrammable logic
Prior art date
Application number
PCT/EP2003/005130
Other languages
English (en)
French (fr)
Inventor
Eugenio Ferreira Da Silva Neto
Jörg Roth
Original Assignee
Endress + Hauser Flowtec Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress + Hauser Flowtec Ag filed Critical Endress + Hauser Flowtec Ag
Priority to EP03752749A priority Critical patent/EP1504240A1/de
Priority to US10/514,412 priority patent/US8275472B2/en
Priority to AU2003232783A priority patent/AU2003232783A1/en
Publication of WO2003098154A1 publication Critical patent/WO2003098154A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • G01D3/022Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation having an ideal characteristic, map or correction data stored in a digital memory
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D21/00Measuring or testing not otherwise provided for
    • G01D21/02Measuring two or more variables by means not covered by a single other subclass

Definitions

  • the invention relates to a variable field device for process automation.
  • Field devices are often used in automation and process control technology, which measure process variables (sensors) or control controlled variables (actuators) in an industrial process.
  • Field devices for flow, level, differential pressure, temperature determination etc. are generally known.
  • the field devices are usually arranged in the immediate vicinity of the process component concerned in order to record the corresponding process variables, mass or volume flow, fill level, pressure, temperature, etc.
  • the field devices deliver a measurement signal that corresponds to the value of the detected process variables.
  • This measurement signal is forwarded to a control unit (e.g. programmable logic controller PLC, waiting or process control system PLS).
  • a control unit e.g. programmable logic controller PLC, waiting or process control system PLS.
  • the process is controlled by the control unit, where the measurement signals from various field devices are evaluated and, based on the evaluation, control signals are generated for the actuators which control the process flow.
  • Controllable valves that regulate the flow of a liquid or a gas in a pipeline section are to be mentioned as an example of actuators.
  • the signal transmission between field device and control unit can take place in analog or digital form (e.g. current loop or digital data bus).
  • analog or digital form e.g. current loop or digital data bus.
  • Known international standards for signal transmission are 4-20 milliampere current loops, HART®, Profibus®, Foundation Fieldbus® or CAN-Bus®.
  • the signal processing in the field device and the communication of the field device with the control unit or other field devices is becoming more and more complex.
  • various hardware components with corresponding software are implemented in the field device.
  • the software that runs as a sequence program in a microprocessor is usually very flexible and can be easily replaced.
  • the disadvantage of using software is that data processing takes place sequentially and is therefore relatively slow.
  • Hardware components on the other hand must hold a certain functionality that is hard-wired into special blocks (IC's). Examples include ASICs (Application Specific Integrated Circuits) or SMDs (Service Mounted Devices). These modules are very application-specific and can, for example, perform an FFT (Fast Fourier Transformation), which is very computation-intensive, extremely quickly.
  • FFT Fast Fourier Transformation
  • the communication of the field device with a higher-level evaluation unit also takes place partly via analog hardware components or via a digital data bus.
  • Each field device normally consists of different hardware components that determine the functionality of the field device. Different field devices, such as Coriolis mass flow meters or magnetic inductive flow meters MIDs, have completely different hardware components. Even for one and the same field device, for example a Coriolism mass flow meter, e.g. Different hardware components are required for communication.
  • a Profibus module is required to connect to a Profibus, and an FF module is required to connect to a Foundation Fieldbus. If the field device is to deliver a frequency, pulse or current signal, a corresponding hardware component is required.
  • a trend with field devices is that they should always be more compact.
  • the components, especially the hardware components are moving ever closer together on the respective circuit boards.
  • a limit has almost been reached here.
  • the hardware components must be tested after the circuit boards have been fitted.
  • a large number of test pads are provided on the underside of a printed circuit board, which can be contacted via so-called needle adapters. Only certain parts of the circuit can be tested in isolation.
  • Coriolism mass flow meter is replaced by a magnetic inductive flow meter in the field, the entire field device must be replaced today.
  • the object of the invention is to provide a variable field device for process automation which does not have the disadvantages mentioned above, which is particularly very flexible, has a compact design, is made from a few components, has a high level of safety and reliability and at the same time is inexpensive and is easy to manufacture.
  • variable field device for process automation according to claim 1.
  • Reprogrammable logic modules are very flexible and can be easily configured as different hardware components.
  • FIG. 1 data bus system in a schematic representation
  • FIG. 2 shows a schematic representation of a conventional field device with different hardware components
  • FIG. 3 shows a schematic representation of a field device according to the invention
  • Fig. 4 shows a schematic representation of a reprogrammable logic module
  • FIG. 5 shows a schematic representation of a logic module with memory and charging controller
  • FIG. 1 shows a data bus system DBS with several field devices and a process control system PLS.
  • the field devices are various sensors S1, S2, S3 and actuators A1, A2.
  • the data bus participants are connected to each other via a data bus line DBL.
  • the process control system PLS is normally located in a control room from which the entire process control takes place.
  • the sensors S1, S2, S3 and the actuators A1, A2 are in the field, i.e. arranged in the individual process components (tank, filling device, pipeline, etc.).
  • the sensors S1, S2 and S3 detect, for example, the process variables temperature, pressure or flow at the respective process component.
  • Actuators A1 and A2 regulate the flow of a liquid or a gas in a pipe section as valves.
  • the data communication between the process control system PLS, the sensors S1, S2, S3 and the actuators A1, A2 takes place in a known manner according to internationally standardized transmission techniques (RS435, IEC1158) using special protocols (e.g. Profibus, Foundation Fieldbus, CAN-Bus).
  • the sensor S1 consists of a sensor MA, which is connected to a sensor unit SE.
  • a digital signal processor DSP is connected downstream of the sensor unit SE.
  • the digital signal processor DSP is connected to a system processor MP.
  • the system processor MP is connected to the data bus line DBL via a communication unit CE.
  • the system processor MP is connected to an analog unit AE, which has several analog inputs and outputs I / O.
  • a display operating unit AB which is also connected to the system processor MP, serves to display the measured value and for manual input.
  • the voltage supply of the sensor S1 is ensured by a voltage supply unit SV, which is connected to the various hardware components of the sensor S1 (shown in dashed lines). Power can be supplied externally or via the DBL data bus line.
  • the digital signal processor DSP and the system processor MP are each connected to watchdogs WZ1, WZ2 and EEPROM memories E1, E2.
  • the sensor MA serves to record the corresponding process variables and consists, for example, of a temperature-sensitive resistor or a pressure-sensitive piezo element or of two coils which record the tube vibration of a Coriolis mass flow meter.
  • the analog signals of the transducer MA are converted into digital signals in the sensor unit SE and further processed in the digital signal processor DSP and supplied to the system processor MP as a measured value.
  • the system processor MP controls the entire sensor S1.
  • the connection to the data bus line DBL is made via the communication unit CE.
  • the communication unit CE reads telegrams on the data bus and writes data itself on the data bus line DBL. It supports all send and receive functions according to the transmission technology used.
  • each field device has a sensor module SM, which includes the sensor MA and the sensor unit SE, a signal processing module VM, which, for. B. can consist of the digital signal processor DSP, a processor module PM, which consists essentially of the system processor MP and a communication module KM, which consists either of the communication unit CE and / or the analog unit AE.
  • a sensor module SM which includes the sensor MA and the sensor unit SE
  • a signal processing module VM which, for. B. can consist of the digital signal processor DSP
  • a processor module PM which consists essentially of the system processor MP
  • a communication module KM which consists either of the communication unit CE and / or the analog unit AE.
  • FIG. 3 shows a first exemplary embodiment of sensor S1 according to the invention.
  • Fig. 3 corresponds essentially to Fig. 2 with the difference that the digital signal processor DSP and the system processor MP including watchdogs W1, W2 and EEPROMS E1, E2 are replaced by a logic module LB.
  • the logic module LB is additionally connected to a permanent memory SP (flash memory) and a charge controller LC.
  • 4 shows a further exemplary embodiment.
  • the logic module LB includes not only the digital signal processor DSP and system processor MP, but also parts of the display of the operating unit AB and the communication unit CE as well as parts of the analog unit AE and the sensor unit SE.
  • the logic module LB comprises all digitally working components of the sensor S.
  • the outputs of the logic module LB only serve to control the analog components of the sensor S1.
  • the logic module LB is a reconfigurable logic module, such as that sold by Altera® under the name Excalibur®.
  • the configuration of the logic module LB is shown in more detail with reference to FIG. 5.
  • the memory SP is divided into two memory areas A and B.
  • Memory area A contains a description of the hardware of the logic module LB
  • memory area B contains the sequence program for the "embedded controller”.
  • the "hardware of the logic module” LB is configured using the LC charge controller.
  • at least one “embedded processor” EP, a memory M and a logic L are configured in the logic module LB.
  • the sequence program for the embedded controller is loaded into the memory M.
  • such logic modules are also referred to as SoPC systems or programmable chips.
  • a reconfigurable logic module LB By using a reconfigurable logic module LB, a Coriolis mass flow meter can easily be replaced by a magnetic inductive mass flow meter MID or any other field device. All that is necessary for this is the corresponding reconfiguration of the logic module LB when the system starts by means of new memory information in the memory areas A and B.
  • parts of the communication module can also be integrated in the logic module LB. This means that a sensor designed for the HART ⁇ protocol can easily be converted into a sensor suitable for Profibus® or FF. To do this, only the corresponding area of the logic module LB must be configured when the system is started.
  • a reconfigurable logic module LB By using a reconfigurable logic module LB, the number of parts in the manufacture of a field device is considerably reduced. Another advantage that the field device according to the invention offers is that new test strategies are possible. In principle, any area, ie functionalities, of Logic module LB can be isolated and monitored. To do this, the logic module only has to be configured accordingly and the signals tapped or added at corresponding test points.
  • reconfigurable logic modules With the help of reconfigurable logic modules, it is possible to configure hardware components and thus easily change the functionality and behavior.
  • the hardware components can thus be adapted to different tasks and functionalities.
  • Inputs and outputs I / Os can be easily defined.
  • function blocks e.g. Flexible Function Blocks (Foundation Fieldbus® Organization) or Profibus® Function Blocks (Profibus® Organization) can be easily defined and modified in terms of hardware and software.
  • the function block (Flexible Function Block or Profibus®) is loaded into the reconfigurable logic module and generates its I / Os itself. This means that an LB logic module can be used for various functionalities, depending on what is loaded for a function block.
  • the essential idea of the invention is to flexibly design field devices in a wide range by using a reconfigurable logic module.
  • the invention is of course not only limited to the field devices field, but can also be used with corresponding sensors and actuators in motor vehicle construction.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Technology Law (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Measuring Volume Flow (AREA)
  • Programmable Controllers (AREA)
  • Control By Computers (AREA)

Abstract

Bei einem Feldgerät für die Prozessautomatisierung wird ein reprogrammierbarer Logikbaustein eingesetzt, um eine hohe Flexibilität bezüglich Hardwarekomponenten zu erhalten.

Description

Variables Feldgerät für die Prozeßautomation
Die Erfindung betrifft ein variables Feldgerät für die Prozeßautomation.
In der Automatisierungs- und Prozeßsteuerungstechnik werden vielfach Feldgeräte eingesetzt, die in einem industriellen Prozeßablauf Prozeßvariablen messen (Sensoren) oder Regelgrößen steuern (Aktoren).
Feldgeräte zur Durchfluß-, Füllstands-, Differenzdruck-, Temperaturbestimmung etc. sind allgemein bekannt. Zur Erfassung der entsprechenden Prozeßvariablen Massen- oder Volumendurchfluß, Füllhöhe, Druck, Temperatur, etc., sind die Feldgeräte meist in unmittelbarer Nähe zu der betreffenden Prozeßkomponente angeordnet.
Die Feldgeräte liefern ein Meßsignal, das dem Wert der erfaßten Prozeßvariablen entspricht. Dieses Meßsignal wird an eine Steuereinheit (z.Bsp. speicherprogrammierbare Steuerung SPS, Warte- oder Prozeßleitsystem PLS) weitergeleitet. In der Regel erfolgt die Prozeßsteuerung von der Steuereinheit, wo die Meßsignale verschiedener Feldgeräte ausgewertet werden und aufgrund der Auswertung Steuersignale für die Aktoren erzeugt werden, die den Prozeßablauf steuern.
Als Beispiel für Aktoren sind steuerbare Ventile zu nennen, die den Durchfluß einer Flüssigkeit oder eines Gases in einem Rohrleitungsabschnitt regeln.
Die Signalübertragung zwischen Feldgerät und Steuereinheit kann in analoger oder digitaler Form erfolgen (z. B. Stromschleife oder digitaler Datenbus). Bekannte internationale Standards für die Signalübertragung sind 4-20 Milliampere-Stromschleifen, HART®, Profibus®, Foundation Fieldbus® oder CAN- Bus®.
Die Signalverarbeitung im Feldgerät und die Kommunikation des Feldgerätes mit der Steuereinheit oder weiteren Feldgeräten wird immer aufwendiger. Hierfür sind verschiedene Hardwarekomponenten mit entsprechender Software im Feldgerät implementiert. Die Software, die als Ablaufprogramm in einem Mikroprozessor abläuft, ist normalerweise sehr flexibel und kann leicht ausgetauscht werden. Der Nachteil bei der Verwendung von Software ist, daß die Datenverarbeitung sequentiell erfolgt und dadurch relativ langsam ist.
Hardwarekomponenten dagegen besitzen eine festgelegte Funktionalität, die in speziellen Bausteinen (IC's) fest verdrahtet ist. Als Beispiele hierfür sind zu nennen ASICs (Application Specific Integrated Circuits) oder SMDs (Service Mounted Devices). Diese Bausteine sind sehr anwendungsspezifisch und können zum Beispiel eine FFT (Fast Fourier Transformation), die sehr rechenintensiv ist, extrem schnell ausführen. Der Nachteil bei diesen Hardwarekomponenten ist, daß sie nur im geringen Maße flexibel sind und normalerweise bei einer Änderung der Funktionalität ausgetauscht werden müssen.
Die Kommunikation des Feldgeräts mit einer übergeordneten Auswerteeinheit erfolgt ebenfalls über entsprechende Hardwarekomponenten teilweise noch analog oder über einen digitalen Datenbus.
Jedes Feldgerät besteht normalerweise aus verschiedenen Hardwarekomponenten, die die Funktionalität des Feldgerätes bestimmen. Unterschiedliche Feldgeräte, wie zum Beispiel Coriolismassedurchflußmesser oder Magnetisch Induktive-Durchflußmesser MIDs weisen gänzlich unterschiedliche Hardwarekomponenten auf. Selbst für ein und dasselbe Feldgerät, zum Beispiel einem Coriolismassedurchflußmesser, werden z.B. für die Kommunikation unterschiedliche Hardwarekomponenten benötigt. Zur Anbindung an einen Profibus wird ein Profibusmodul, für die Anbindung an einen Foundation Fieldbus wird ein FF-Modul benötigt. Soll das Feldgerät ein Frequenz-, Impulsoder Stromsignal liefern, wird jeweils eine entsprechende Hardwarekomponente benötigt.
Dieses Komponentenvielfalt bedeutet einen erheblichen Aufwand bei der Herstellung, da eine Vielzahl von Hardwarekomponenten vorgehalten werden muß.
Ein Trend bei Feldgeräten ist, daß sie immer kompakter sein sollen. Die Bauteile, insbesondere die Hardwarekomponenten rücken dabei auf den jeweiligen Leiterplatten immer näher zusammen. Eine Grenze ist hier fast erreicht. Um die Sicherheit und Funktionsfähigkeit eines Feldgerätes zu garantieren, müssen die Hardwarekomponenten nach dem Bestücken der Leiterplatten getestet werden. Für bisherige Teststrategien sind eine Vielzahl von Testpads auf der Unterseite einer Leiterplatte vorgesehen, die über sogenannte Nadeladapter kontaktiert werden können. Hierbei können nur bestimmte Schaltungsteile isoliert getestet werden.
Wird im Feld ein Coriolismassedurchflußmesser durch einen magnetisch induktiven Durchflußmesser ersetzt, so muß heute das ganze Feldgerät ausgetauscht werden.
Aufgabe der Erfindung ist es, ein variables Feldgerät für die Prozeßautomation zu schaffen, das die oben angegebenen Nachteile nicht aufweist, das insbesondere sehr flexibel ist, eine kompakte Bauform aufweist, aus wenigen Bauteilen gefertigt wird, eine hohe Sicherheit und Zuverlässigkeit aufweist und gleichzeitig kostengünstig und einfach herstellbar ist.
Gelöst wird diese Aufgabe durch ein variables Feldgerät für die Prozeßautomation gemäß Anspruch 1.
Die wesentliche Idee der Erfindung besteht darin, daß verschiedene Module des Feldgeräts als reprogrammierbare Bausteine ausgebildet sind. Reprogrammierbare Logikbausteine sind sehr flexibel und können einfach als unterschiedliche Hardwarekomponenten konfiguriert werden.
Vorteilhafte Weiterentwicklung der Erfindung sind in den Unteransprüchen angegeben.
Nachfolgend ist die Erfindung anhand eines in der Zeichnung dargestellten Ausführungsbeispiels näher erläutert. Es zeigen:
Fig. 1 Datenbussystem in schematischer Darstellung
Fig. 2 schematische Darstellung eines herkömmlichen Feldgerätes mit verschiedenen Hardwarekomponenten,
Fig. 3 schematische Darstellung eines erfindungsgemäßen Feldgeräts,
Fig. 4 schematische Darstellung eines reprogrammierbaren Logikbausteins mit
Flashspeicher. Fig. 5 schematische Darstellung eines Logikbaustein mit Speicher und Ladecontroller
In Fig. 1 ist ein Datenbussystem DBS mit mehreren Feldgeräten und einem Prozeßleitsystem PLS dargestellt. Bei den Feldgeräten handelt es sich um verschiedene Sensoren S1 , S2, S3 und Aktoren A1 , A2. Die Datenbusteilnehmer (Feldgeräte + Prozeßleitsystem) sind über eine Datenbusleitung DBL miteinander verbunden.
Das Prozeßleitsystem PLS befindet sich normalerweise in einem Kontrollraum von dem aus die gesamte Prozeßsteuerung erfolgt. Die Sensoren S1 , S2, S3 und die Aktoren A1 , A2 sind im Feld, d.h. bei den einzelnen Prozeßkomponenten (Tank, Befüllvorrichtung, Pipeline, etc.) angeordnet. Die Sensoren S1 , S2 und S3 erfassen zum Beispiel die Prozeßvariablen Temperatur, Druck oder Durchfluß an der jeweiligen Prozeßkomponente. Die Aktoren A1 und A2 regeln als Ventile den Durchfluß einer Flüssigkeit oder eines Gases in einem Rohrleitungsabschnitt.
Die Datenkommunikation zwischen Prozeßleitsystem PLS, den Sensoren S1 , S2, S3 und den Aktoren A1 , A2 erfolgt in bekannter Weise nach international standardisierten Übertragungstechniken (RS435, IEC1158) mittels spezieller Protokolle (z. B. Profibus, Foundation Fieldbus, CAN-Bus).
In Fig. 2 ist als Feldgerät ein typischer Sensor S1 dargestellt. Der Sensor S1 besteht aus einem Meßaufnehmer MA, der mit einer Sensoreinheit SE verbunden ist. Der Sensoreinheit SE ist ein digitaler Signalprozessor DSP nachgeschaltet. Der digitale Signalprozessor DSP ist mit einem Systemprozessor MP verbunden. Der Systemprozessor MP ist über eine Kommunikationseinheit CE mit der Datenbusleitung DBL verbunden. Weiterhin ist der Systemprozessor MP mit einer Analogeinheit AE verbunden, die mehrere analog Ein-, Ausgänge I/O aufweist. Zur Anzeige des Meßwerts und zur manuellen Eingabe dient eine Anzeigebedieneinheit AB, die ebenfalls mit dem Systemprozessor MP verbunden ist. Die Spannungsversorgung des Sensors S1 wird durch eine Spannungsversorgungseinheit SV gewährleistet, die mit den verschiedenen Hardwarekomponenten des Sensors S1 verbunden ist (gestrichelt dargestellt). Die Spannungsversorgung kann extern oder über die Datenbusleitung DBL erfolgen. Der digitale Signalprozessor DSP und der Systemprozessor MP sind jeweils mit Watchdogs WZ1 , WZ2 und EEPROM-Speicher E1 , E2 verbunden.
Der Meßwertaufnehmer MA dient zur Erfassung der entsprechenden Prozeßvariablen und besteht zum Beispiel aus einem temperaturempfindlichen Widerstand oder einem druckempfindlichen Piezoelement oder aus zwei Spulen, die die Rohrschwingung eines Coriolismassedurchflußmessers erfassen. Die analogen Signale des Meßwertaufnehmers MA werden in der Sensoreinheit SE in digitale Signale verwandelt und im digitalen Signalprozessor DSP weiterverarbeitet und als Meßwert dem Systemprozessor MP zugeführt. Der Systemprozessor MP steuert den gesamten Sensor S1. Über die Kommunikationseinheit CE erfolgt die Anbindung an die Datenbusleitung DBL. Das Kommunikationseinheit CE liest Telegramme auf dem Datenbus und schreibt selbst Daten auf die Datenbusleitung DBL. Es unterstützt alle Sende- und Empfangsfunktionen entsprechend der eingesetzten Übertragungstechnik.
Im Prinzip weist jedes Feldgerät ein Sensormodul SM auf, das den Meßaufnehmer MA und die Sensoreinheit SE umfaßt, ein Signalverarbeitungsmodul VM, das z. B. aus dem digitalen Signalprozessor DSP besteht kann, ein Prozessormodul PM, das im wesentlichen aus dem Systemprozessor MP besteht und ein Kommunikationsmodul KM, das entweder aus der Kommunikationseinheit CE und/oder der Analogeinheit AE besteht.
In Fig. 3 ist ein erstes Ausführungsbeispiel des erfindungsgemäßen Sensors S1 dargestellt. Fig. 3 entspricht im wesentlichen Fig. 2 mit dem Unterschied, daß der digitale Signalprozessor DSP und der Systemprozessor MP einschließlich der Watchdogs W1 , W2 und den EEPROMS E1 , E2 durch einen Logikbaustein LB ersetzt sind. Der Logikbaustein LB ist zusätzlich mit einem Permanentspeicher SP (Flash Memory) und einem Ladecontroller LC verbunden. In Fig. 4 ist ein weiteres Ausführungsbeispiel dargestellt. Hier umfaßt der Logikbaustein LB nicht nur den digitalen Signalprozessor DSP und Systemprozessor MP, sondern auch Teile der Anzeige der Bedieneinheit AB sowie des Kommunikationseinheit CE sowie Teile der Analogeinheit AE und der Sensoreinheit SE.
Bei diesem Ausführungsbeispiel umfaßt der Logikbaustein LB alle digital arbeitenden Bauteile des Sensors S. Die Ausgänge des Logikbausteins LB dienen nur zur Ansteuerung der analogen Bauteile des Sensors S1. Bei dem Logikbaustein LB handelt es sich um einen rekonfigurierbaren Logikbaustein, wie er zum Beispiel von der Firma Altera® unter der Bezeichnung Excalibur® vertrieben wird.
Anhand Fig. 5 ist die Konfigurierung des Logikbausteins LB näher dargestellt. Der Speicher SP ist in zwei Speicherbereiche A und B unterteilt. Speicherbereich A enthält eine Beschreibung der Hardware des Logikbausteins LB, Speicherbereich B enthält das Ablaufprogramm für den "Embedded Controller". Beim Systemstart wird mit Hilfe des Ladecontrollers LC die "Hardware des Logikbausteins" LB konfiguriert. Im Logikbaustein LB wird dadurch zumindest ein "Embedded Processor" EP, ein Memory M und eine Logic L konfiguriert. Nachdem die Hardware des Logikbausteins LB konfiguriert ist, wird das Ablaufprogramm für den Embedded Controller in das Memory M geladen.
Hierbei zeigt sich bereits der wesentliche Vorteil des erfindungsgemäßen Sensors, da beim Systemstart sowohl Hardware als auch Software beliebig konfiguriert werden können und dadurch leicht den gegebenen Anforderungen angepaßt werden können.
Im Betrieb werden derartige Logikbausteine auch als SoPC System or Programmable Chip bezeichnet. Durch die Verwendung eines rekonfigurierbaren Logikbausteins LB kann ein Coriolismassedurchflußmesser leicht durch einen Magnetisch Induktiven Massedurchflußmesser MID oder ein beliebiges anderes Feldgerät ersetzt werden. Notwendig hierfür ist nur die entsprechende Umkonfigurierung des Logikbausteins LB beim Systemstart durch neue Speicherinformationen in den Speicherbereichen A und B. Wie in Fig. 4 dargestellt, können auch Teile des Kommunikationsmoduls in den Logikbaustein LB integriert werden. Dadurch kann ein für das HART ©-Protokoll ausgelegter Sensor leicht in einen für Profibus® oder FF geeigneten Sensor umgewandelt werden. Dazu muß nur der entsprechende Bereich des Logikbausteins LB beim Systemstart konfiguriert werden.
Durch die Verwendung eines rekonfigurierbaren Logikbausteins LB wird die Teilevielfalt bei der Herstellung eines Feldgeräts erheblich reduziert. Ein weiterer Vorteil, den das erfindungsgemäße Feldgerät bietet, ist, daß neue Teststrategien möglich sind. Im Prinzip können beliebige Bereich, d. h. Funktionalitäten, des Logikbausteins LB isoliert und überwacht werden. Hierzu muß der Logikbaustein nur entsprechend konfiguriert werden und die Signale an entsprechenden Testpunkten abgegriffen, bzw. zugefügt werden.
Mit Hilfe von rekonfigurierbaren Logikbausteinen ist es möglich Hardwarekomponenten zu konfigurieren, und damit die Funktionalität und das Verhalten einfach zu verändern. Die Hardwarekomponenten können so verschiedenen Aufgaben und Funktionalitäten angepasst werden. Ein- und Ausgänge I/Os können einfach definiert werden. Insbesondere können damit Funktionsblöcke z.B. Flexible Function Blocks, (Foundation Fieldbus® Organisation) oder Profibus®-Funktionsblöcke (Profibus® Organisation) einfach hardwaremäßig und softwaremäßig definiert und abgeändert werden. Der Funktionsblock (Flexible Function Block oder Profibus® ) wird in den rekonfigurierbaren Logikbaustein geladen und generiert seine I/Os selbst. Dadurch kann ein Logikbaustein LB für verschiedenen Funktionalitäten eingesetzt werden, je nach dem was für ein Funktionsblock geladen wird.
Die wesentliche Idee der Erfindung ist es, durch die Verwendung eines rekonfigurierbaren Logikbausteins Feldgeräte in einem weiten Bereich flexibel auszugestalten. Die Erfindung ist selbstverständlich nicht nur auf den Bereich Feldgeräte beschränkt, sondern sie kann auch bei entsprechenden Sensoren und Aktoren im Kraftfahrzeugbau eingesetzt werden.

Claims

Patentansprüche
1. Variables Feldgerät für die Prozessautomatisierung mit einem Sensormodul SM zur Messwerterfassung und einem nachgeschalteten Signalverarbeitungsmodul VM und einem Prozessormodul PM, das mit einem Kommunikationsmodul CE zur Verbindung des Feldgerätes mit einer übergeordneten Steuer- Auswerteeinheit verbunden ist, dadurch gekennzeichnet, dass das Signalverarbeitungsmodul VM und das Prozessormodul PM als reprogrammierbarer Logikbaustein LB ausgebildet ist.
2. Variables Feldgerät nach Anspruch 1 , dadurch gekennzeichnet, dass der reprogrammierbarer Logikbaustein LB Teile des Kommunikationsmoduls CE umfasst.
3. Variables Feldgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der reprogrammierbare Logikbaustein Teile des Sensormoduls SM umfasst.
4. Variables Feldgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der reprogrammierbare Logikbaustein LB alle digital arbeitenden Bauteile des Sensormoduls SM umfasst.
5. Variables Feldgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der reprogrammierbare Logikbaustein LB mindestens einen Embedded Prozessor EP, einen Memory M und eine Logic L umfasst.
6. Variables Feldgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der reprogrammierbare Logikbaustein LB im Betrieb als SoPC-System (System on Programmable Chip) dient.
7. Variables Feldgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Kommunikationsmodul CE eine Datenbusschnittstelle (z.B. Profibus®, Foundation Fieldbus®, CAN®-Bus) oder einen oder mehrere Analog Ein/ Ausgänge I/Os (z.B. Frequenzausgang, Pulsausgang) aufweist.
8. Variables Feldgerät nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass in den reprogrammierbaren Logikbaustein LB ein Funktionsblock geladen wird.
9. Variables Feldgerät nach Anspruch 8, dadurch gekennzeichnet, dass der Funktionsblock ein Flexibel Function Block der Foundation Fieldbus® oder ein Profibus® Funktionsblock ist.
PCT/EP2003/005130 2002-05-15 2003-05-15 Variables feldgerät für die prozessautomation WO2003098154A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP03752749A EP1504240A1 (de) 2002-05-15 2003-05-15 Variables feldgerät für die prozessautomation
US10/514,412 US8275472B2 (en) 2002-05-15 2003-05-15 Variable field device for process automation
AU2003232783A AU2003232783A1 (en) 2002-05-15 2003-05-15 Variable field device for process automation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10221772A DE10221772A1 (de) 2002-05-15 2002-05-15 Variables Feldgerät für die Prozeßautomation
DE10221772.6 2002-05-15

Publications (1)

Publication Number Publication Date
WO2003098154A1 true WO2003098154A1 (de) 2003-11-27

Family

ID=29285457

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/005130 WO2003098154A1 (de) 2002-05-15 2003-05-15 Variables feldgerät für die prozessautomation

Country Status (7)

Country Link
US (1) US8275472B2 (de)
EP (1) EP1504240A1 (de)
CN (1) CN100360902C (de)
AU (1) AU2003232783A1 (de)
DE (1) DE10221772A1 (de)
RU (1) RU2327113C2 (de)
WO (1) WO2003098154A1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008046694A1 (de) * 2006-10-17 2008-04-24 Endress+Hauser Gmbh+Co.Kg Konfigurierbares feldgerät für die prozessautomatisierungstechnik
WO2008135397A1 (de) 2007-05-03 2008-11-13 Endress+Hauser (Deutschland) Ag+Co. Kg Verfahren zum inbetriebnehmen und/oder rekonfigurieren eines programmierbaren feldmessgeräts
WO2008138888A1 (de) * 2007-05-15 2008-11-20 Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh+Co. Kg Vorrichtung zur signalüberwachung für einen zeitweiligen einsatz in einem feldgerät der prozessautomatisierungstechnik
DE102007030691A1 (de) 2007-06-30 2009-01-02 Endress + Hauser Flowtec Ag Meßsystem für ein in einer Prozeßleitung strömendes Medium
DE102007030699A1 (de) 2007-06-30 2009-01-15 Endress + Hauser Flowtec Ag Meßsystem für ein in einer Prozeßleitung strömendes Medium
DE102007030690A1 (de) 2007-06-30 2009-05-07 Endress + Hauser Flowtec Ag Meßsystem für ein in einer Prozeßleitung strömendes Medium
DE102007030700A1 (de) 2007-06-30 2009-05-07 Endress + Hauser Flowtec Ag Meßsystem für ein in einer Prozeßleitung strömendes Medium
DE102007054672A1 (de) 2007-11-14 2009-05-20 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung oder Überwachung einer Prozessgröße in der Prozessautomatisierung
DE102009026785A1 (de) 2009-01-30 2010-08-05 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung und/oder Überwachung einer physikalischen oder chemischen Prozessgröße
DE102009002734A1 (de) 2009-04-29 2010-11-11 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung oder Überwachung einer Prozessgröße in der Prozessautomatisierung
WO2011023469A2 (de) 2009-08-27 2011-03-03 Endress+Hauser Gmbh+Co.Kg Feldgerät zur bestimmung oder überwachung einer physikalischen oder chemischen variablen
DE102010002346A1 (de) 2009-10-12 2011-04-14 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung oder Überwachung einer physikalischen oder chemischen Prozessgröße
DE102010043706A1 (de) 2010-07-05 2012-01-05 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung oder Überwachung einer physikalischen oder chemischen Prozessgröße
DE202012100754U1 (de) 2012-03-02 2012-06-15 Johann Hölldobler Universal-Steuereinheit mit BUS- und WEB-Anbindung
EP2626785A1 (de) * 2012-02-08 2013-08-14 Siemens Aktiengesellschaft Verfahren zur branchenspezifischen Konfiguration eines automatisierungstechnischen Clients, Computerprogramm zur Implementation des Verfahrens und Computer mit einem solchen Computerprogramm

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004016311B4 (de) * 2004-03-29 2008-02-14 Siemens Ag Elektrisches Messgerät
US9217653B2 (en) 2007-09-13 2015-12-22 Rosemount Inc. High performance architecture for process transmitters
DE102007053223A1 (de) * 2007-11-06 2009-05-07 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Verfahren zum Betreiben einer Messstelle, Messstelle und Sensoreinheit für eine solche Messstelle
DE102009005399B4 (de) * 2009-01-19 2024-02-08 Phoenix Contact Gmbh & Co. Kg Verfahren und Kommunikationssystem zum Konfigurieren eines einen Logikbaustein enthaltenden Kommunikationsmoduls
DE102009029495A1 (de) * 2009-09-16 2011-03-24 Endress + Hauser Conducta Gesellschaft für Mess- und Regeltechnik mbH + Co. KG Messumformer für ein Multisensorsystem, insbesondere als Feldgerät für die Prozessautomatisierungstechnik und Verfahren zum Betreiben des Messumformers
DE102010048809A1 (de) 2010-10-20 2012-04-26 Hüttinger Elektronik Gmbh + Co. Kg Leistungsversorgungssystem für eine Plasmaanwendung und/oder eine Induktionserwärmungsanwendung
DE102010048810A1 (de) 2010-10-20 2012-04-26 Hüttinger Elektronik Gmbh + Co. Kg System zur Bedienung mehrerer Plasma- und/oder Induktionserwärmungsprozesse
US20120316809A1 (en) * 2011-06-08 2012-12-13 Elster Solutions, Llc Virtual option board for use in performing metering operations
WO2014160161A1 (en) * 2013-03-14 2014-10-02 Rosemount Inc. Communications unit for an industrial process network
CN107218955B (zh) * 2016-03-22 2021-04-20 横河电机株式会社 现场设备以及检测器
DE202019106358U1 (de) 2019-11-15 2021-02-16 WAGO Verwaltungsgesellschaft mit beschränkter Haftung Modul mit Anzeige zum Anzeigen eines physikalischen Zustands eines am Modul angeschlossenen Sensors
DE102020120822A1 (de) 2020-08-06 2022-02-10 Endress+Hauser Conducta Gmbh+Co. Kg Absperrhahn

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450829A1 (de) * 1990-03-30 1991-10-09 Texas Instruments Incorporated Intelligenter programmierbarer Sensor
WO1998020615A2 (en) * 1996-10-21 1998-05-14 Electronics Development Corporation Smart sensor module
GB2342998A (en) * 1998-10-22 2000-04-26 Secretary Trade Ind Brit Environmental sensors
US6081195A (en) * 1999-01-27 2000-06-27 Lynch; Adam Q. System for monitoring operability of fire event sensors

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5335186A (en) 1990-03-30 1994-08-02 Texas Instruments Incorporated Intelligent programmable sensing
EP0642094B1 (de) * 1991-02-22 1998-09-02 Siemens Aktiengesellschaft Programmierverfahren für einen Logikbaustein
US5537295A (en) * 1994-03-04 1996-07-16 Altera Corporation Universal reconfigurable printed circuit board
DE19502499A1 (de) * 1995-01-27 1996-08-01 Pepperl & Fuchs Bussystem zur Steuerung und Aktivierung von miteinander vernetzten ASI-Slaves, vorzugsweise binäre Sensoren oder Eingangsmodule und/oder Ausgangsmodule oder Aktuatoren eines Aktuator-Sensor-Interface
US5691897A (en) * 1995-05-30 1997-11-25 Roy-G-Biv Corporation Motion control systems
US20040194101A1 (en) * 1997-08-21 2004-09-30 Glanzer David A. Flexible function blocks
US6351212B1 (en) 1998-01-28 2002-02-26 Adam Q. Lynch System for monitoring operability of fire event sensors
US6424567B1 (en) * 1999-07-07 2002-07-23 Philips Electronics North America Corporation Fast reconfigurable programmable device
US6552410B1 (en) * 1999-08-31 2003-04-22 Quicklogic Corporation Programmable antifuse interfacing a programmable logic and a dedicated device
US6850973B1 (en) * 1999-09-29 2005-02-01 Fisher-Rosemount Systems, Inc. Downloadable code in a distributed process control system
US6854055B1 (en) * 1999-10-18 2005-02-08 Endress + Hauser Flowtec Ag Method and system for switching active configuration memory during on-line operation of programmable field mounted device
US6697684B2 (en) * 2000-02-15 2004-02-24 Thomas Gillen Programmable field measuring instrument
US6535043B2 (en) * 2000-05-26 2003-03-18 Lattice Semiconductor Corp Clock signal selection system, method of generating a clock signal and programmable clock manager including same
US6845416B1 (en) * 2000-08-02 2005-01-18 National Instruments Corporation System and method for interfacing a CAN device and a peripheral device
GB2374335A (en) * 2000-09-07 2002-10-16 Powwow Water Dispenser with communications means
US7984423B2 (en) * 2001-08-14 2011-07-19 National Instruments Corporation Configuration diagram which displays a configuration of a system
US20060064503A1 (en) * 2003-09-25 2006-03-23 Brown David W Data routing systems and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0450829A1 (de) * 1990-03-30 1991-10-09 Texas Instruments Incorporated Intelligenter programmierbarer Sensor
WO1998020615A2 (en) * 1996-10-21 1998-05-14 Electronics Development Corporation Smart sensor module
GB2342998A (en) * 1998-10-22 2000-04-26 Secretary Trade Ind Brit Environmental sensors
US6081195A (en) * 1999-01-27 2000-06-27 Lynch; Adam Q. System for monitoring operability of fire event sensors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1504240A1 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8271773B2 (en) 2006-10-17 2012-09-18 Endress + Hauser Gmbh + Co. Kg Configurable field device for use in process automation systems
WO2008046695A1 (de) * 2006-10-17 2008-04-24 Endress+Hauser Gmbh+Co.Kg FELDGERÄT ZUR BESTIMMUNG UND ÜBERWACHUNG EINER PROZESSGRÖßE IN DER PROZESSAUTOMATISIERUNG
WO2008046694A1 (de) * 2006-10-17 2008-04-24 Endress+Hauser Gmbh+Co.Kg Konfigurierbares feldgerät für die prozessautomatisierungstechnik
WO2008135397A1 (de) 2007-05-03 2008-11-13 Endress+Hauser (Deutschland) Ag+Co. Kg Verfahren zum inbetriebnehmen und/oder rekonfigurieren eines programmierbaren feldmessgeräts
DE102007021099A1 (de) 2007-05-03 2008-11-13 Endress + Hauser (Deutschland) Ag + Co. Kg Verfahren zum Inbetriebnehmen und/oder Rekonfigurieren eines programmierbaren Feldmeßgeräts
WO2008138888A1 (de) * 2007-05-15 2008-11-20 Endress+Hauser Conducta Gesellschaft Für Mess- Und Regeltechnik Mbh+Co. Kg Vorrichtung zur signalüberwachung für einen zeitweiligen einsatz in einem feldgerät der prozessautomatisierungstechnik
DE102007030691A1 (de) 2007-06-30 2009-01-02 Endress + Hauser Flowtec Ag Meßsystem für ein in einer Prozeßleitung strömendes Medium
DE102007030699A1 (de) 2007-06-30 2009-01-15 Endress + Hauser Flowtec Ag Meßsystem für ein in einer Prozeßleitung strömendes Medium
DE102007030690A1 (de) 2007-06-30 2009-05-07 Endress + Hauser Flowtec Ag Meßsystem für ein in einer Prozeßleitung strömendes Medium
DE102007030700A1 (de) 2007-06-30 2009-05-07 Endress + Hauser Flowtec Ag Meßsystem für ein in einer Prozeßleitung strömendes Medium
DE102007054672A1 (de) 2007-11-14 2009-05-20 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung oder Überwachung einer Prozessgröße in der Prozessautomatisierung
DE102009026785A1 (de) 2009-01-30 2010-08-05 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung und/oder Überwachung einer physikalischen oder chemischen Prozessgröße
WO2010086073A1 (de) 2009-01-30 2010-08-05 Endress+Hauser Gmbh+Co.Kg Feldgerät zur bestimmung und/oder überwachung einer physikalischen oder chemischen prozessgrösse
DE102009002734A1 (de) 2009-04-29 2010-11-11 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung oder Überwachung einer Prozessgröße in der Prozessautomatisierung
WO2011023469A2 (de) 2009-08-27 2011-03-03 Endress+Hauser Gmbh+Co.Kg Feldgerät zur bestimmung oder überwachung einer physikalischen oder chemischen variablen
DE102009028938A1 (de) 2009-08-27 2011-03-03 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung oder Überwachung einer physikalischen oder chemischen Variablen
DE102010002346A1 (de) 2009-10-12 2011-04-14 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung oder Überwachung einer physikalischen oder chemischen Prozessgröße
DE102010043706A1 (de) 2010-07-05 2012-01-05 Endress + Hauser Gmbh + Co. Kg Feldgerät zur Bestimmung oder Überwachung einer physikalischen oder chemischen Prozessgröße
WO2012004161A1 (de) 2010-07-05 2012-01-12 Endress+Hauser Gmbh+Co.Kg FELDGERÄT ZUR BESTIMMUNG ODER ÜBERWACHUNG EINER PHYSIKALISCHEN ODER CHEMISCHEN PROZESSGRÖßE
EP2626785A1 (de) * 2012-02-08 2013-08-14 Siemens Aktiengesellschaft Verfahren zur branchenspezifischen Konfiguration eines automatisierungstechnischen Clients, Computerprogramm zur Implementation des Verfahrens und Computer mit einem solchen Computerprogramm
DE202012100754U1 (de) 2012-03-02 2012-06-15 Johann Hölldobler Universal-Steuereinheit mit BUS- und WEB-Anbindung
DE202013100798U1 (de) 2012-03-02 2013-04-18 Johann Hölldobler Universal-Steuereinheit mit BUS- und WEB-Anbindung

Also Published As

Publication number Publication date
CN100360902C (zh) 2008-01-09
RU2004136606A (ru) 2005-06-27
US8275472B2 (en) 2012-09-25
RU2327113C2 (ru) 2008-06-20
AU2003232783A1 (en) 2003-12-02
US20050231348A1 (en) 2005-10-20
CN1653315A (zh) 2005-08-10
EP1504240A1 (de) 2005-02-09
DE10221772A1 (de) 2003-11-27

Similar Documents

Publication Publication Date Title
WO2003098154A1 (de) Variables feldgerät für die prozessautomation
EP2113067B1 (de) Konfigurierbares feldgerät für die prozessautomatisierungstechnik
EP2246984B1 (de) Diagnoseschaltung zur Überwachung einer Analog-Digital-Wandlungsschaltung
DE10251503A1 (de) Verfahren zur Offline-Parametrierung eines Feldgerätes der Prozessautomatisierungstechnik
EP1591977B1 (de) Verfahren zur Signalisierung von Alarmzuständen an einem Feldgerät der Automatisierungstechnik
DE10014272B4 (de) Feldgerät, sowie Verfahren zum Umprogrammieren eines Feldgerätes
DE102007054672A1 (de) Feldgerät zur Bestimmung oder Überwachung einer Prozessgröße in der Prozessautomatisierung
EP1812832A1 (de) Funkeinheit für ein feldgerät der automatisierungstechnik
WO2008151971A1 (de) Feldgerät mit einer vorrichtung zur durchführung von diagnoseverfahren
EP1091199B1 (de) Verfahren und eine Vorrichtung zur Funktionsüberprüfung eines Grenzschalters
EP1920302A1 (de) Sensorsimulator
DE102006036909A1 (de) Trenneinheit für eine herkömmliche 2-Leiter-Kommunikations-verbindung, die einen Sensor, einen Messumformer und eine Steuereinheit umfasst
DE102009047535A1 (de) Verfahren zum Ermitteln einer Anschlusskonfiguration eines Feldgerätes an einem Wireless Adapter
DE102016120444A1 (de) Verfahren zum Betreiben eines Feldgerätes für die Automatisierungstechnik
WO2008138888A1 (de) Vorrichtung zur signalüberwachung für einen zeitweiligen einsatz in einem feldgerät der prozessautomatisierungstechnik
EP1486841B1 (de) Verfahren zur Funktionsanzeige eines Feldgerätes der Prozessautomatisierungstechnik
DE102004048766A1 (de) Feldbusanwendung mit mehreren Feldgeräten
DE102005043481A1 (de) Automatisierungstechnische Einrichtung
EP1788463A2 (de) Anzeigeeinheit für die Prozessautomatisierungstechnik
WO2008061935A1 (de) Signaltrenneinheit für eine zwei-leiter-prozessregelschleife
WO2016087149A1 (de) Verfahren zum überschreiben eines nicht-flüchtigen speichers eines feldgerätes
EP3983853B1 (de) Feldgerät der automatisierungstechnik
EP1456685A1 (de) Feldgerät mit einem gps-modul
DE102009002734A1 (de) Feldgerät zur Bestimmung oder Überwachung einer Prozessgröße in der Prozessautomatisierung
DE102006013827A1 (de) Verfahren zur benutzerspezifischen Anpassung eines Feldgerätes der Automatisierungstechnik

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003752749

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038110504

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2004136606

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2003752749

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10514412

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP