WO2003097828A1 - Method of identifying nucleic acid - Google Patents

Method of identifying nucleic acid Download PDF

Info

Publication number
WO2003097828A1
WO2003097828A1 PCT/JP2003/006275 JP0306275W WO03097828A1 WO 2003097828 A1 WO2003097828 A1 WO 2003097828A1 JP 0306275 W JP0306275 W JP 0306275W WO 03097828 A1 WO03097828 A1 WO 03097828A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
nucleic acid
region
base
base sequence
Prior art date
Application number
PCT/JP2003/006275
Other languages
English (en)
French (fr)
Inventor
Joji Oshima
Ken Nemoto
Original Assignee
Adgene Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Adgene Co., Ltd. filed Critical Adgene Co., Ltd.
Priority to US10/514,988 priority Critical patent/US20060234228A1/en
Priority to AU2003234938A priority patent/AU2003234938A1/en
Priority to EP03752922A priority patent/EP1510576A4/en
Publication of WO2003097828A1 publication Critical patent/WO2003097828A1/ja
Priority to JP2005506389A priority patent/JPWO2004104196A1/ja
Priority to PCT/JP2004/007162 priority patent/WO2004104196A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism

Definitions

  • the present invention relates to a method for identifying a nucleic acid.
  • PCR polymerase chain reaction
  • Primers are oligonucleotides containing a nucleotide sequence complementary to the 3, terminal nucleotide sequence of the nucleic acid to be amplified.
  • PCR method only one type of PCR product is amplified in order to increase the specificity of the primer for type I DNA and recognize only a specific site in the total DNA.
  • the PCR method is described in detail in Japanese Patent Publication No. 4-67957 and the like.
  • the method of detecting or identifying a nucleic acid by the PCR method uses the amount of the amplification product generated by the PCR method as an index. For example, amplification of a nucleic acid having a predetermined length by the PCR method indicates the presence of a detection target. Amplification products can be easily detected by techniques such as electrophoresis. However, electrophoretic separation is a time-consuming and labor-intensive procedure, This is disadvantageous when a quick analysis is performed on files. Therefore, several methods for quickly detecting the amplification product of the PCR method have been put to practical use.
  • an intercalator is a dye that specifically binds to a double-stranded nucleic acid and emits fluorescence. Since the amplification product of the PCR method forms a double strand, the amount of the amplification product can be detected as a change in the fluorescence intensity if an integrator is added to the reaction system.
  • the intercalator ethidium ore green or the like can be used.
  • an apparatus for detecting changes in nucleic acid by comparing changes in Tm value using an interferometer JP-A-7-31500. The progress of the PCR reaction can be monitored using an interpolator.
  • This method is called real-time PCR because it allows monitoring during the reaction.
  • the detection method using an intercalator uses the formation of a double strand as an index, for example, it may not be possible to discriminate subtle differences in base sequence in type III nucleic acids. In other words, it can be said that the specificity of the nucleic acid detection method using the intercalator depends on the specificity of the PCR method.
  • a specific base in a nucleic acid to be type III can be identified by using the PCR method.
  • Primers are required for the type II-dependent complementary strand synthesis reaction that constitutes the PCR method.
  • a primer is an oligonucleotide having a base sequence complementary to a nucleic acid.
  • the complementary strand synthesis reaction proceeds in the direction of 3, ⁇ > 3, from the end of the primer annealed to the type III nucleic acid.
  • the base constituting the 3 'end of the primer is one of the important conditions in complementary strand synthesis. That is, the complementarity with the type III nucleic acid near the 3 'end of the primer greatly affects the reaction efficiency of the complementary strand synthesis reaction.
  • the 3rd end of the primer is the base to be identified in type I nucleic acid. Is designed to correspond to a position complementary to.
  • the base to be identified was complementary to the 3 'end of the primer.
  • this method cannot identify the base of the nucleic acid at a site other than where the primer anneals.
  • a method for detecting an unknown base difference in an amplification product by using a PCR method is known.
  • differences in the three-dimensional structure of the PCR amplification product are detected by electrophoresis. Even if DNAs are amplified with the same primer set, if there is a difference in the three-dimensional structure, it can be predicted that there is a difference in the base sequences constituting both.
  • PCR-RFLP a method of comparing the cleavage patterns of amplification products of the PCR method with restriction enzymes to find differences in bases of the type III nucleic acid.
  • This method is called PCR-RFLP.
  • electrophoretic separation of PCR amplification products is required.
  • the present applicant has completed a method using a dissociation curve as an index and has filed a patent application as a method capable of distinguishing the base sequence of an amplification product in the PCR method (Japanese Patent Application Laid-Open No. 2002-325581).
  • PCR amplification products dissociate into single strands as the temperature rises.
  • Tm melting temperature
  • nucleic acids A, B, and C with similar structures.
  • the region amplified by the same primer set must be designed so that each nucleic acid contains a unique base.
  • the type of nucleic acid increases, it becomes more difficult to amplify the entire region of all nucleic acids with only one set of primers.
  • An object of the present invention is to provide a method capable of easily finding a difference in the nucleotide sequence of a nucleic acid, and to provide a primer therefor.
  • the present inventors have repeated research on a method capable of clarifying a difference in the nucleotide sequence of a nucleic acid without relying on the PCR method. As a result, it is clear that differences between nucleic acids can be detected by synthesizing complementary strands for multiple regions of the nucleic acid to be identified and comparing the dissociation curves of the mixture of the synthesized complementary strands with their waveform patterns. Accordingly, the present invention has been completed. Furthermore, the present inventors have succeeded in providing primers useful for synthesizing a plurality of regions of a nucleic acid to be identified.
  • the present invention relates to the following nucleic acid identification method and a primer useful for nucleic acid synthesis.
  • a method for identifying a nucleic acid comprising the following steps. (1) a step of synthesizing a nucleic acid containing a nucleotide sequence complementary to a plurality of sites of the test nucleic acid
  • [2] (1) one or more types of primers, wherein the step of synthesizing a nucleic acid containing a base sequence complementary to a plurality of sites of the test nucleic acid comprises a base sequence complementary to a plurality of sites of the test nucleic acid; And the step of annealing to obtain a complementary strand.
  • the nonionic surfactant is selected from the group consisting of polyoxyethylene ether of glycerin ester, polyoxyethylene ether of sonolebitan ester, and polyoxetylene ether of sorbitol esternole
  • the method according to [4], which is a nonionic surfactant is selected from the group consisting of polyoxyethylene ether of glycerin ester, polyoxyethylene ether of sonolebitan ester, and polyoxetylene ether of sorbitol esternole
  • [7] salts Na 2 S0 4, Na 2 S0 3, Na P0 4, The method according to any compound selected from the group consisting of NaHCO 3 (3).
  • Specific primer Contains a base sequence complementary to the target region of type I nucleic acid
  • Ambiguous primer at least one ambiguous primer containing the following unique and ambiguous regions
  • Specific region Comprises a complementary base sequence to the target region, including the 3 'end of the oligonucleotide
  • Ambiguous region Includes a base sequence that is located on the 5 'side of the specific region and in which a base constituting a base sequence complementary to the target region is replaced with a base other than the base
  • a method for identifying a nucleic acid comprising selecting a plurality of regions as target regions in a type III nucleic acid, and performing the identification method according to [13] for one test nucleic acid with respect to the plurality of target regions.
  • test nucleic acid is single-stranded or double-stranded.
  • test nucleic acid is DNA or RNA.
  • test nucleic acid is genomic DNA
  • nucleotide sequence differs between the cell to be identified in step (1) and another cell, and at least one region is synthesized.
  • at least a part of a base sequence constituting a primer primer for synthesizing a plurality of regions is common.
  • test nucleic acid according to (19), wherein the test nucleic acid is genomic DNA of a microorganism, and at least one region having a nucleotide sequence difference between the microorganism to be identified in step (1) and another microorganism is synthesized.
  • test nucleic acid is genomic DNA of a eukaryotic cell, and a region constituting a group of genes composed of the nucleotide sequences conserved in step (1) is synthesized.
  • a plurality of regions are synthesized by a primer having a nucleotide sequence complementary to a nucleotide sequence conserved between genes.
  • a method for generating a reference dissociation curve waveform pattern for identifying a nucleic acid comprising the following steps.
  • a set of primers for generating a waveform comprising a mixture of one or more primers, comprising a base sequence complementary to a plurality of sites of a test nucleic acid.
  • [30] The primer assembly of [28], wherein the primer is two or more oligonucleotides capable of annealing to a plurality of sites of the test nucleic acid.
  • [31] The primer set according to [30], wherein a part of the nucleotide sequence of the plurality of sites is common.
  • Specific primer Contains a base sequence complementary to the target region of type II nucleic acid
  • Ambiguous primer at least one ambiguous primer containing the following specific and ambiguous regions
  • Specific region Contains the base sequence complementary to the target region, including the 3 'end of the primer
  • Ambiguous region Includes a base sequence that is located on the 5 'side of the specific region and in which a base constituting a base sequence complementary to the target region is replaced with a base other than the base
  • N region constitutes the 5 'end of the polymorphic region, and each base constituting the base sequence is replaced with a base complementary to the base sequence of the target region, and is replaced with adeun, cytosine, guanine and A base substituted with all three types of bases other than the base selected from thymine
  • each base constituting the base sequence is replaced with a base complementary to the base sequence of the target region, and is replaced with adenine, cytosine, guanine, and thymine Is a base substituted with all two types of bases other than the base selected from
  • each base constituting the base sequence is replaced with a base complementary to the base sequence of the target region, and is replaced with adenine, cytosine, guanine, or the like.
  • a method for producing a waveform-generating Bramer aggregate including the following specific primers and polymorphic primers, comprising the following steps.
  • Specific primer Contains a base sequence complementary to the target region of type I nucleic acid
  • Ambiguous primer at least one ambiguous primer containing the following specific region and ambiguous region -1 o-Specific region: including the 3 'end of the primer, consisting of a base sequence complementary to the target region
  • Ambiguous region Includes a base sequence that is located on the 5 'side of the specific region and in which a base constituting a base sequence complementary to the target region is replaced with a base other than the base
  • a kit for identifying a nucleic acid comprising the following elements:
  • a primer assembly for waveform generation containing a mixture of one or more primers consisting of a base sequence complementary to a plurality of sites of a test nucleic acid
  • a part of the base sequence constituting the primer is different, and the different base is located on the 5 'side of the base sequence constituting the primer. Cut.
  • the primer assembly comprises an assembly of at least one kind of polysequence primer with the following specific primers.
  • Specific primer Contains a base sequence complementary to the target region of type II nucleic acid
  • Ambiguous primer at least one ambiguous primer containing the following specific region and ambiguous region
  • Specific region Contains the base sequence complementary to the target region, including the 3 'end of the primer
  • Ambiguous region Includes a base sequence that is located on the 5 'side of the specific region and in which a base constituting a base sequence complementary to the target region is replaced with a base other than the base
  • kit of [49] further comprising a positive control and a waveform pattern of a dissociation curve of Z or a nucleic acid to be identified.
  • kits of [44] further comprising a denaturing agent, and Z or a salt.
  • the denaturing agent is selected from the group consisting of a nonionic surfactant, an anionic surfactant, and a detergent.
  • the nonionic surfactant is any one selected from the group consisting of polyoxyethylene ether of glycerin ester, polyoxyethylene ether of sorbitan ester, and polyoxyethylene ether of sorbitol ester.
  • the detergent is selected from the group consisting of dodecyl sulfate, lauroylsanorecosinate, laurinoleate, and mercaptoacetate! /
  • the present invention provides a method for identifying a nucleic acid comprising the following steps (1) to (3).
  • nucleic acids include DNA, RNA, and derivatives thereof.
  • the origin of DNA or RNA is not limited.
  • nucleic acid samples can be obtained from biological material. Specifically, various cells, blood and body fluids, tissues of animals and plants, and the like can be shown as biological materials.
  • nucleic acids obtained by synthesizing a part or all of the nucleic acid from these materials by various artificial methods, and DNA obtained by reverse transcription of thigh material can be used as the material. .
  • Viruses and vectors can also be DNA or RNA materials.
  • artificially synthesized nucleic acids may be used as information media or arithmetic elements.
  • a certain DNA may be, for example, the following as a derivative of RNA.
  • DNA or RNA modified by other molecules such as DNA or RNA synthesized with nucleotide derivatives as constituent units
  • a nucleic acid containing a nucleotide sequence complementary to a plurality of sites of the nucleic acid to be identified is synthesized.
  • the plurality of sites refers to a plurality of nucleotide sequences constituting the nucleic acid to be identified. Selected from site.
  • one set of genomes is stored in multiple chromosomes.
  • a plurality of sites are selected for a plurality of nucleic acids constituting a set of genomes. That is, a plurality of sites can be selected from some chromosomes. Alternatively, a set of multiple Multiple sites can be selected from the chromosome.
  • the term “plurality” refers to at least two or more, for example, 2 to 150, preferably 5 to 80 regions.
  • the sensitivity of the identification method of the present invention can be improved.
  • improving sensitivity means that the amount of nucleic acid required for identification can be reduced.
  • the regions to be synthesized are usually designed so as not to overlap. However, if they do not interfere with the complementary strand synthesis reaction, overlap between the regions can be tolerated.
  • the plurality of regions include regions in which it is expected that there is a difference in base sequence between nucleic acids to be compared.
  • the base sequence of the synthesis target region of each nucleic acid is designed so that at least one of the regions contains a difference from another nucleic acid.
  • the difference in base sequence may not be included in all of the plurality of regions. For example, suppose that three nucleic acids X, Y, and ⁇ are synthesized for three regions a-c. 'Indicates that the base sequence of each region contains a difference.
  • nucleic acid Y has b 'consisting of a base sequence different from other nucleic acids, and the nucleic acid Z has c'.
  • Nucleic acid X [a]-[b]-[c]
  • the plurality of regions specifically extract nucleotide sequence information as diverse as possible from the test nucleic acid. That is, it is preferable that as many test sequences as possible differ in base sequence from each other. Therefore, for example, in the case of the nucleic acid X-Z, it is preferable that the base sequences differ from each other in as many regions as possible of ac.
  • the number of genomic base sequence information has already been clarified.
  • a region having a base sequence difference between the species to be compared and the other species can be selected in advance. If there is insufficient genome sequence information, Even in this case, it is possible to select a region having a different base sequence based on the genome or gene information that has already been clarified.
  • the plurality of regions are preferably synthesized by a method having reproducibility.
  • the reproducibility of complementary strand synthesis means that the same region is used as a type II of complementary strand synthesis. Depending on the principle of the complementary strand synthesis reaction, there may be some cases where the uniformity of the product length cannot be guaranteed. In the present invention, if the same region is used as, variation in the length of the synthetic product is acceptable.
  • the reproducible complementary strand synthesis reaction in the present invention can be said to mean that a primer specifically initiates complementary strand synthesis. Therefore, the complementary strand synthesis reaction of the present invention is distinguished from the complementary strand synthesis reaction using random primers.
  • each nucleic acid should be synthesized under the same conditions. Therefore, when a plurality of regions are synthesized by a complementary strand synthesis reaction using a primer and a DNA polymerase, it is desired that the specificity of the hybridization of the Braimer is maintained.
  • the method for synthesizing a nucleic acid is not particularly limited as long as it is a dependent synthesis method.
  • the plurality of regions can be synthesized using a sense strand or an antisense strand as a target. All of the plurality of regions may be synthesized using the sense strand or the antisense strand as type III, or both may be synthesized as type III.
  • an extension product for the present invention As described above, as a typical method for obtaining an extension product, a complementary strand synthesis reaction using a DNA polymerase can be used.
  • a primer that can be applied to a plurality of regions of the test nucleic acid is used.
  • an extension product synthesized by a complementary strand synthesis reaction from a primer capable of binding to a plurality of regions of a test nucleic acid is referred to as an extension product.
  • the extension product is a collection of polynucleotides synthesized using multiple regions of the test nucleic acid as type II.
  • the base sequences of the respective polynucleotide chains constituting the extension product are different from each other.
  • the complementary strand synthesis reaction is repeated, a plurality of polynucleotide chains containing the same base sequence are generated.
  • test nucleic acids having the same nucleotide sequence in different regions are defined as type III
  • an extension product containing the same nucleotide sequence may be generated.
  • a primer that anneals to a plurality of regions of a test nucleic acid and enables the complementary strand synthesis of the plurality of regions is referred to as a waveform generating primer in the present invention.
  • the primer for generating a waveform of the present invention is used for complementary strand synthesis of a plurality of regions of a test nucleic acid, and gives a mixture of extension products having different base sequences as a result of complementary strand synthesis.
  • the mixture of different extension products in the present invention preferably refers to a mixture of polynucleotides that give a plurality of Tm when a dissociation curve is analyzed.
  • the primer for generating a waveform in the present invention can also be defined as follows. That is, the primer for generating a waveform according to the present invention is an oligonucleotide containing a nucleotide sequence complementary to a specific nucleotide sequence region that appears at a plurality of positions on a test nucleic acid, In a plurality of regions of, dependent complement synthesis by DNA polymerase can be initiated. At least a part of the base sequence of the primer for generating a waveform comprises a base sequence complementary to the specific region.
  • the nucleotide sequence complementary to the specific region can be located in any region of the oligonucleotide. That is, for example, it can be located in the region including the 3, terminal of the oligonucleotide, the intermediate region not including the terminal, and the region including the 5 'terminal.
  • primers capable of annealing to a plurality of regions of a test nucleic acid
  • the following method can be shown.
  • primers can be easily synthesized rather than simply mixing primers necessary for complementary strand synthesis of a plurality of regions.
  • Oligonucleotides of 20-50 bases are used as primers. Oligonucleotides of this length are very unlikely to fail at multiple sites under stringent conditions.
  • oligonucleotides with a smaller number of bases increases the possibility4 of annealing at a plurality of positions.
  • region oligonucleotide consisting 3-8 bases can ⁇ Neal, a calculated, 1/64 (4 3) to: will be present with a probability of 1/65536 (4 8).
  • a short primer enables the complementary strand synthesis of a plurality of regions even when used alone.
  • the design of one type of primer that can be assigned to multiple regions is performed by searching the base sequence information of the target genome for a short base sequence consisting of 3 to more than 10 bases that frequently appears in the target genome, This can be achieved by ranking the candidates in descending order of appearance frequency.
  • the genome region for which the frequency of appearance is counted may be based on all base sequence information or may be narrowed down to a specific region of interest.
  • Two or more primers that anneal to multiple regions Two or more primers that anneal to multiple regions:
  • the base sequence of the nucleic acid to be type III is known, it is easy to design a plurality of primers that anneal to each position in order to synthesize a plurality of regions.
  • complementary chain synthesis may be required for more regions.
  • the region to be synthesized increases, the number of required primers also increases.
  • a region to be synthesized is selected so that the base sequences between the primers are as common as possible. For example, in the following example, two regions are selected for annealing / priming the primer. These base sequences are composed of two types of acid-fast bacilli A
  • Mycobacterium A AGcTcGTMa (SEQ ID NO: 1)
  • Mycobacteria A AGtTcGTAAt (SEQ ID NO: 2)
  • Mycobacterium B AGgTtGTAAa (SEQ ID NO: 3)
  • Mycobacterium B AGtTcGTAAa (SEQ ID NO: 4)
  • the third, fifth, and tenth bases are different, and the other bases are identical. If these different bases are represented by an ambiguity code, it is agBtYgtaaW (SEQ ID NO: 5).
  • an ambiguous code is a symbol for assigning a plurality of types of bases to a certain position.
  • an oligonucleotide represented by an ambiguous code means a mixture containing a combination of all bases represented by the ambiguous code at the position of the ambiguous code.
  • the ambiguous codes used here correspond to the following bases.
  • a primer having a base sequence represented by an ambiguous code is referred to as an ambiguous primer.
  • primers that anneal to each region are required for the complementary strand synthesis of the four regions.
  • one kind of polysemy primer enabled the synthesis of complementary strands in four regions.
  • Ambiguous primers, different salts It is an aggregate of oligonucleotides having a base sequence. However, in operation, it is synthesized by the same operation as a single oligonucleotide, and can be used as a single oligonucleotide in the synthesis of a complementary strand.
  • the purpose of identifying the bacterium was achieved by selecting the nucleotide sequence that shows the most significant difference between A and B, whereas the present invention Provides a means for simultaneously obtaining more interesting areas of interest, for example, information relating to drug resistance.
  • a base sequence candidate having a high appearance frequency for each of a plurality of regions of interest and then selecting a base sequence having a higher degree of commonality from among the base sequences among the upper candidates, a plurality of base sequences can be obtained. It enables the design of one kind of polysemy primer that can obtain independent information at the same time.
  • a degenerate primer is often used.
  • the nucleotide sequence of the degenerate primer is represented in the same manner as the polysequence primer in the present invention.
  • the ambiguous primer is aimed at synthesizing a plurality of regions having different base sequences.
  • degenerate primers used for PCR closing and the like usually aim at synthesizing one type of nucleic acid for one type II.
  • For crawling (ie, gene isolation) purposes primers that produce a variety of synthetic products are undesirable.
  • the purpose of the design is completely different between the ambiguous primer and the degenerate primer.
  • a region where the types of primers can be reduced as much as possible was selected from the nucleotide sequence of the test nucleic acid.
  • the design method depends on the test nucleic acid. Therefore, application may be difficult depending on the nucleotide sequence of the test nucleic acid and the nucleic acid to be compared.
  • the method described below This method is relatively easy to design a plurality of primers without being affected by the base sequences of the test nucleic acid and the nucleic acid to be compared.
  • the ambiguous primer was arranged with an ambiguous code in accordance with the base sequence of the nucleic acid to be type III.
  • an ambiguity code can be arranged on the 5 'side of the primer to obtain a set of waveform generating primers that can anneal to a plurality of regions of the test nucleic acid. That is, the present invention relates to a set of primers for generating a waveform, including the following specific primers and ambiguous primers.
  • Specific primer Contains a base sequence complementary to the target region of type II nucleic acid
  • Ambiguous primer At least one ambiguous primer containing the following specific region and ambiguous region
  • Specific region Contains the 3 'end of the oligonucleotide and is composed of a base sequence complementary to the target region
  • Ambiguous region Includes a base sequence that is located on the 5 'side of the specific region and has a base complementary to the target region and substituted with a base other than the base.
  • the specific primer in the present invention comprises an oligonucleotide containing a base sequence complementary to a target region of a type III nucleic acid or a derivative thereof.
  • Derivatives include oligonucleotides having an additional base sequence or modified oligonucleotides. Oligonucleotides can be modified with fluorescent substances, radioactive substances, or binding ligands.
  • the target region in the present invention refers to a region where a primer for synthesizing a complementary strand to the type III nucleic acid should anneal. That is, the target region is a region located on the 3 ′ side of the region to be synthesized for the type III nucleic acid.
  • the region where nucleic acid is to be synthesized may be a region selected in the method for identifying a nucleic acid according to the present invention as a region where a waveform pattern unique to a test nucleic acid can be expected. desirable. Such a region can be selected centering on a region containing a nucleotide sequence difference from the nucleic acid to be compared. Wear.
  • a highly homologous nucleotide sequence found at a different position can be selected as a target region.
  • the primer assembly for generating a waveform according to the present invention it is possible to obtain a primer having low homology to the target region and capable of annealing to the region. As a result, even when a single target region is selected, it is possible to obtain a waveform-generating Bramer assembly capable of synthesizing complementary strands of a plurality of regions of the type III nucleic acid.
  • the region that does not contain the ambiguous code on the 3 side is called the unique region
  • the region where the ambiguous code on the 5 'side is located is called the ambiguous region.
  • the specific region is composed of the same nucleotide sequence as the nucleotide sequence constituting the region including the 3 'end of the specific primer. That is, the base sequence including the 3 'end of the ambiguous primer and the specific primer is common.
  • the number of bases constituting the specific region is not limited.
  • the length of the unique region can be appropriately set according to the conditions of the unique region. For example, the length of the specific region can be selected within the range of 20 to 90% of the length of the entire ambiguous primer.
  • the polysemy code constituting the polysemy region can be, for example, a sequence of four nucleotide polysemy (N), or the polysemy code necessary as appropriate in accordance with the nucleotide sequence of the test nucleic acid as described in the example of acid-fast bacilli. Can also be arranged. Further, as will be described below, it is also possible to gradually increase the ambiguity region's parity from the 3 'side to the 5' side of the primer. The ambiguous primer designed in this manner anneals to many regions of the test nucleic acid with high reproducibility '14, and provides complementary strand synthesis products of a plurality of regions.
  • the 3′-side polysemy which influences the reaction specificity, is reduced, but the effect on the specificity is relatively small.
  • diversity can be imparted to the base sequence of the primer. Due to such structural features, an assembly of primers that can stably anneal to various base sequences can be obtained.
  • the individual oligonucleotides that make up the primer assembly are diverse on the 3 side. Designed to be less responsive. As a result, it selectively elutes to a base sequence complementary to the base sequence of each oligonucleotide to start complementary strand synthesis. In other words, complementary strand synthesis can be started specifically and stably for a wide range of base sequences.
  • the following structure can be shown as a polysemy primer in which the polysemy in the polysemy region is changed stepwise. That is, the present invention relates to a waveform-forming primer assembly comprising an ambiguous primer assembly including all combinations of substitution base sequences constituting the respective regions, wherein the base sequence of the ambiguous region is composed of the following three regions: .
  • N region constitutes the 5 'end of the polymorphic region, and each base constituting the base sequence is replaced with a base complementary to the base sequence of the target region, and is replaced with adenine, cytosine, guanine, and thymine.
  • each base constituting the base sequence is replaced with a base complementary to the base sequence of the target region, and replaced with adenine, cytosine, guanine, and It is a base substituted with all two kinds of bases other than the base selected from thymine
  • each base constituting the base sequence is replaced with a base complementary to the base sequence of the target region, and adenine, cytosine, guanine and ⁇ ⁇ A base substituted with any one type of base other than the base selected from thymine
  • the polysemy region is designed so that the polysemy increases in a stepwise manner from the 5th end to the 3rd side. That is, at the 5 ′ terminal side, there is an N region composed of N, which is an Ambiguity Code indicating any of A (adenine), C (cytosine), G (guanine), and T (thymine).
  • N region can also be said to be a region in which a base complementary to the target region has been replaced with any of the other three bases.
  • 3 ambiguity regions (3AR) are arranged in which a base complementary to the target region is replaced by two other types of bases.
  • two ambiguity regions (2ARs) in which a base complementary to the target region is replaced by one other type of base are arranged.
  • the two Ns on the terminal side constitute the N region
  • the four bases of V, H, D, and B constitute the 3AR.
  • the two S's on the 3 'side make up the 2AR.
  • polysemy region polysemy can be increased from the 3rd side to the 5th end. In other words, such a structure can increase the specificity from the 5, side to the 3, end.
  • Table 1 shows the correspondence between the ambiguous codes used in the present invention and the actual bases.
  • the length of the N region is preferably 2 to 4 bases.
  • the number of bases in the N region is 5 or more, there is a high possibility that the primers such as dimers and loops easily interfere with each other.
  • the 3AR sequence is more stable in the order of DHVB, HDVB, VHDB, and HVDB. Thus, the higher the proportion of G or C on the 3 'side, the higher the stability.
  • the 2AR sequence also needs to be designed in consideration of the base sequence of the target region.
  • the length ratio of the N region, 3AR, and 2AR is preferably 1: 2: 1, but is not limited thereto.
  • the length of the ambiguous region of the ambiguous primer constituting the primer assembly is preferably 10% to 80% of the number of bases constituting the primer.
  • the total length of the specific region and the polymorphic region of the polymorphic primer constituting the primer assembly is preferably 10 to 30 bases.
  • the primer assembly for waveform generation of the present invention including the polysequence primer can be designed based on the base sequence of the region by setting at least one region as the target region.
  • a plurality of target regions can be selected. In this case, the number of types of specific primers increases, and accordingly, the types of polymorphic primers also increase.
  • the primer assembly for waveform generation can be used simultaneously or individually for complementary strand synthesis.
  • Use primer assembly for waveform generation This can increase the variety of waveforms. That is, the ability of the method of the present invention to discriminate nucleic acids can be enhanced.
  • the four types of waveform generation primer aggregates sPGBUP65, sPGBU PUPR, sPGBUPFX, and sPGBUPRX shown in Fig. 12 are designed for different target regions. Assuming that 15 different types of waveform patterns can be obtained by each of the waveform generating primer aggregates, theoretically, 50, 62 5 types (15 X 15 X 15 X 15) of waveforms are obtained. It means that a pattern can be obtained. This means that the use of a set of four waveform generation primers capable of generating 15 types of waveform patterns allows the nucleic acid identification method of the present invention to be used for more than 50,000 types of nucleic acid identification. Indicates that it can be identified.
  • a plurality of types of waveform generating Bramer aggregates designed for a plurality of regions can be used as a mixture of the aggregates or independently for each aggregate for complementary strand synthesis.
  • the relationship between the waveform pattern and the set of primers can be clearly understood. That is, the primer assembly A for waveform generation designed based on one region A and the primer assembly B for waveform generation designed based on another region B are individually mixed with each other for complementary strand synthesis without mixing. It is preferably used.
  • the primer can anneal to the nucleic acid
  • a substrate for synthesizing the chain is provided;
  • the conditions under which a primer can anneal to a type III nucleic acid can be appropriately set by those skilled in the art according to the base sequence of the primer.
  • the Tm of DNA can be calculated by the (A + T) +4 (G + C) method (Wallace method).
  • Other known methods for calculating Tm include the GC% method and the Nearest Neighbor method. It is also known that addition of formamide or dimethyl sulfoxide (DMS0) lowers the Tm value. On the other hand, it is generally known that when the salt concentration of the reaction solution increases, the Tm increases.
  • the present inventor stabilizes the pairing of the primer with the test nucleic acid by using a certain kind of additive, and the competitive 'non-specific binding of the coexisting nucleic acid extension product to the test nucleic acid. It has been found that inhibition of the complementary strand synthesis reaction can be suppressed.
  • an additive used to stabilize the primer to the test nucleic acid is called a stabilizer.
  • various denaturants, salts, or the like can be used.
  • low temperature conditions may be desirable for a complementary strand synthesis reaction using a primer consisting of a short base sequence or a primer containing a polymorphic region.
  • a reaction temperature of, for example, 25 ° C. to 50 ° C. is desirable.
  • a stabilizer is effective for the complementary strand synthesis reaction at such a low temperature.
  • Surfactants can be mentioned as a modifier that can be used as a stabilizer in the present invention.
  • Nonionic surfactants are classified into ether type, ether ester type, ester type, and nitrogen-containing type. Among these nonionic surfactants, etherester nonionic surfactants are preferred. More specifically, polyoxyethylene ether of glycerin ester, polyoxyethylene ether of sorbitan ester, and polyoxyethylene ether of sorbitol ester can be shown as ether ester type nonionic surfactants.
  • Ether ester type nonionic surfactants include polyoxyethylene glycerin fatty acid ester, castor oil, polyoxyethylene sorbitan fatty acid ester, polyoxyethylene sorbitol fatty acid ester, and polyoxyethylene fatty acid fatty acid. Noramide sulfate and the like.
  • a particularly preferred ether-ester type nonionic surfactant is polyoxyethylene sorbitan fatty acid ester.
  • commercially available nonionic surfactants that can be used as a stabilizer in the present invention will be exemplified.
  • NIKKOL BL-9EX Polyoxyethylene (9) Lauryl Ether
  • NP-40 Polyoxyethylene (9) Octylphenyl Ether
  • TWEEN 20 Polyoxyethylene (20) .Sorbitan Monolaurate
  • TWEEN 80 Polyoxyethylene (20) Sorbitan Monooleate
  • TWEEN 40 Polyoxyethylene (20) Sorbitan Monopalmitate
  • TWEEN 60 Polyoxyethylene (20) Sorbitan Monostearate
  • TWEEN 85 Polyoxyethylene (20) Sorbitan Trioleate
  • anionic surfactant usable in the present invention examples include surfactants such as a sulfonate, a carbonate, a sulfate, and a phosphate. Further, the following cleaning agents can also be used as the stabilizer. These detergents can utilize salts other than sodium salt.
  • the concentration of the denaturant in the reaction solution depends on the base It can be appropriately adjusted depending on the sequence and the temperature of the complementary strand synthesis reaction. Generally, it may be added so as to be 0.01 to 10% W / V, for example, 0.5 to 5 / V, more specifically, 1% W / V to 3% W / V. it can.
  • the present inventor has set out to enable stable synthesis of anneal and complementary strands to a test nucleic acid even when the waveform generating primer assembly according to the present invention is ⁇ having a relatively short base sequence. It was shown that the addition of some salts was effective.
  • the salts are added to the reaction solution, for example, Na 2 S0 4, Na 2 S0 3, it can be shown Na3 ⁇ 4P0 4, NaHC0 3.
  • the concentration of these salts in the reaction solution can be appropriately adjusted according to the base sequence constituting the primer assembly for waveform generation and the temperature of the complementary strand synthesis reaction.
  • the reaction solution is added so as to have a concentration of 0.05 to 0.5 M, for example, 0.01 to 0.1 M, and more specifically, 0.3 to 0.05 M. [] You can talk.
  • the denaturing agents or salts exemplified as the stabilizer may be used alone or as a mixture of a plurality of compounds. It is considered that each of the conjugates is stabilizing the anneal of the primer or improving the specificity by a different mechanism. Therefore, the effect of the stabilizer is enhanced by the addition of the surfactant, detergent, and salts.
  • the nucleic acid to be type III is in a state where base pairing is possible at least in a region where the primer should be annealed.
  • the primer can be annealed once by incubating under denaturing conditions to obtain a single-stranded nucleic acid.
  • the primer can be annealed as it is.
  • various RNAs can be directly used as type I.
  • any DNA polymerase having a function of synthesizing a base sequence complementary to the base sequence of the type III nucleic acid from a primer prepared for a mirror type nucleic acid can be used. Can be used. Currently available below Here are examples of possible DNA polymerases.
  • thermostable DNA polymerases such as Taq DNA polymerase (TaKaRa Ex Taq TM R-PCR Version) can reduce the heat load when using a reaction system that controls DNA synthesis using temperature rise and fall. It is preferable because of high stability.
  • the complementary strand is synthesized using the substrate required for complementary strand synthesis.
  • deoxynucleotides dNTPs
  • Derivatives of DNA can also be synthesized using derivatives of deoxynucleotides. As this type of derivative, a deoxynucleotide derivative modified with a fluorescent dye or a binding ligand may be used.
  • the reagent component and the sample are kept under cooling conditions until the complementary strand synthesis reaction is started. Cooling conditions specifically refer to operation at 4 ° C or lower or on ice.
  • DNA polymerases designed to acquire DNA polymerase activity after exposure to high temperature conditions are useful to prevent unintended reactions. Hot Star Taq can be mentioned as such a DNA polymerase.
  • the step of synthesizing a complementary strand can be repeated a plurality of times as necessary.
  • the nucleic acid to be type ⁇ is present in a sufficient amount, a single complementary strand synthesis can generate an extension product in an amount that allows analysis of a dissociation curve. If the amount of type III nucleic acid is small, the same amount of complementary strand required for analysis can be obtained by repeating the same complementary strand synthesis reaction.
  • the complementary strand is synthesized by a complementary strand synthesis reaction using the above-mentioned various primers. ⁇ ⁇ It is desirable to design each primer so that it does not anneal to the previously synthesized complementary strand. .
  • the conditions for obtaining a mixture of extension products consisting of various base sequences are preferable.
  • a PCR-like complementary strand synthesis reaction may be initiated.
  • the presence of such a reactive product may cause a simplification of the waveform and prevent synthesis of various products from a plurality of sites, thereby deteriorating the performance of analysis.
  • the nucleic acid synthesized in the above step (1) may be DNA, RNA, or a derivative thereof, like the test nucleic acid.
  • the most common method for sequence-dependent nucleic acid synthesis is a complementary strand synthesis reaction using primers and DNA polymerase.
  • the synthesized nucleic acid is DNA or a derivative thereof.
  • the primer an oligonucleotide capable of annealing to a plurality of regions of the test nucleic acid is used.
  • the variation of oligonucleotides that can be used as a waveform generating primer is as described above.
  • Type ⁇ -dependent transcription reaction using RNA polymerase may be used in the present invention. It can.
  • a DNA is synthesized in which a base sequence constituting a promoter recognized by RNA polymerase is added to a base sequence of a plurality of regions of a type III nucleic acid.
  • complementary strand synthesis may be carried out by using an oligonucleotide obtained by adding a base sequence of a promoter to the 5 ′ side of a primer consisting of a base sequence complementary to type III. If the synthesized DNA is double-stranded, it can be used for the transcription reaction by RNA polymerase.
  • RNA polymerase When RNA polymerase is allowed to act on DNA containing a motor, under a certain temperature condition, a type-dependent transcription reaction proceeds, and a large amount of RA is transcribed.
  • the synthesized nucleic acid is RA or a derivative thereof.
  • the complementary strand synthesis product of a plurality of regions of the test nucleic acid synthesized in the step (1) is particularly called an elongation product.
  • the present invention includes a step of obtaining a dissociation curve of the mixture of the extension products.
  • Tm melting temperature
  • Tm When a nucleic acid having a simple double-stranded structure such as a reaction product of a PCR method exists with high purity, Tm can be uniquely determined. However, assemblages of polynucleotides, such as mixtures of extension products, give complex dissociation curves. The present invention has been completed based on the finding that a nucleic acid of type III can be identified by comparing dissociation curves produced by a mixture of extension products.
  • the method for obtaining the dissociation curve is arbitrary.
  • an intercalator can be used to detect the dissociation of a double-stranded nucleic acid into a single strand.
  • a compound that binds to a double-stranded nucleic acid to generate a signal is called an intercalator.
  • ethidium promide bromine chemical
  • Cyber Green Molecular Probe
  • Any of these compounds can be used for the analysis of the dissociation curve of the present invention. For example, when cypadalin is added to double-stranded DNA, dissociation of the double-stranded structure can be detected by a decrease in fluorescence intensity.
  • a dissociation curve by observing the dissociation state of the double-stranded structure by an optical method such as an electric signal or absorbance measurement.
  • the dissociation curve can be obtained by stepwise changing the conditions under which the double-stranded nucleic acid structure constituted by the extension products dissociates into single-stranded nucleic acids.
  • Conditions for dissociating the double-stranded nucleic acid structure into single-stranded nucleic acids are arbitrary. Specifically, dissociation into single-stranded nucleic acids can be achieved by changing conditions such as temperature, hydrogen ion concentration, and denaturing agent. Among these conditions, the change in the temperature condition is advantageous because the control is easy and the dissociation state is easy to observe.
  • the waveform pattern of the dissociation curve refers to a dissociation curve including information on a plurality of Tm.
  • the information on Tm includes the value of Tm and information on the signal intensity at that Tm.
  • a nucleic acid that gives a waveform pattern of a dissociation curve obtained for a certain nucleic acid and a nucleic acid that gives a common waveform pattern can be determined to be the same nucleic acid. Conversely, if the combination of Tm is different, or if the combination of signal intensities of each Tm is different, it is highly likely that both are different nucleic acids.
  • the waveform pattern of the dissociation curve provided by the mixture of the synthesis products of the plurality of regions of the test nucleic acid has a pattern unique to the test nucleic acid.
  • Such a waveform pattern is called a dieno pattern in the present invention.
  • One type of double-stranded nucleic acid usually shows only a single Tm.
  • amplification products obtained by PCR often show a single Tm.
  • Special structure Need to be performed Japanese Patent Application Laid-Open No. 2002-325-581.
  • a dissociation curve of a mixture of single-stranded nucleic acids as extension products synthesized for a plurality of regions of type I nucleic acid is analyzed.
  • the mixture of extension products is a complex of polynucleotides consisting of various base sequences. Unlike aggregates produced by PCR, such aggregates do not have a completely complementary paired nucleotide chain over their entire length. It is expected that various types of mutual interference will occur due to the partial pairing of. As a result, various and complex dissociation curve waveform patterns can be obtained by dissociation and denaturation of the extension product by heating. Since various waveform patterns can be obtained depending on the type of the nucleic acid to be ⁇ , the nucleic acid can be identified by analyzing the waveform pattern.
  • Waveform patterns can be compared and identified by visual comparison between patterns drawn as a rough. Furthermore, it is also possible to objectively compare waveform patterns recorded on a computer-readable electronic medium with a pattern recognition program and quantitatively measure a matching rate.
  • the characteristics of the waveform patterns to be compared include the fluorescent intensity change rate at each temperature as the overall coincidence rate, the pattern peak height (fluorescent intensity change rate), and the peak position (dissociation temperature). ), The number of peaks, the width of the peaks, the order of the heights between multiple peaks, the depth of the valleys, the position of the valleys, the number, the width, the order, and the inclination angle You can set multiple. Furthermore, the recognition accuracy can be improved by weighting the comparison result for each feature according to its importance.
  • the test nucleic acid is identified by comparing the waveform pattern of the dissociation curve obtained from the test nucleic acid with the waveform pattern of the reference dissociation curve.
  • the reference waveform pattern can be obtained by performing the same operation as the identification method of the present invention using a nucleic acid sample as a sample.
  • a nucleic acid preparation includes a nucleic acid that is clearly identified as a nucleic acid to be identified.
  • Sample For example, a nucleic acid whose entire nucleotide sequence has been determined can be used as a nucleic acid sample.
  • a nucleic acid obtained from a microbial cell line is included in a nucleic acid sample even if the nucleotide sequence has not been determined.
  • An established microbial cell line can be considered a purified cell. Viruses established as well as microbial cell lines and various cultured cell lines are also useful as nucleic acid preparations.
  • a nucleic acid in which the structure of the region to be subjected to complementary strand synthesis is clarified can be used as a nucleic acid sample.
  • a nucleic acid having a large size such as the genome of a eukaryotic cell
  • the identification method of the present invention can be performed using the nucleic acid as a sample.
  • the reference waveform pattern can be generated when the test nucleic acid is identified, or a reference waveform pattern can be prepared in advance. It is convenient to prepare a waveform pattern in advance, since it is only necessary to analyze the test nucleic acid at the time of actual identification.
  • the present invention provides a method for generating a reference dissociation curve waveform pattern for identifying a nucleic acid, comprising the following steps.
  • a reference dissociation curve waveform pattern for a plurality of types of nucleic acid preparations, it is possible to provide means for identifying a wider variety of nucleic acids.
  • These waveform patterns are preferably generated using a common primer assembly.
  • a reference waveform pattern generated under the same conditions using a common primer assembly should be widely applied as a reference waveform pattern to the waveform pattern of the test nucleic acid analyzed under the same conditions. Can be.
  • a database is a collection of information recorded on a computer-readable medium.
  • Computer-readable media includes magnetic disks, magneto-optical disks, optical disks, or memory circuits. Further, a data storage connected via a network such as the Internet is also included in the computer-readable medium.
  • a user can obtain a reference waveform pattern via a network in order to carry out the nucleic acid identification method of the present invention. Or, conversely, the waveform pattern of the dissociation curve of the test nucleic acid generated by the user can be transmitted to the server, and after collation with the database, the result can be provided from the server to the user.
  • the present invention relates to a method for producing a primer assembly for waveform generation.
  • the present inventors have succeeded in designing various waveform generating primer assemblies that can be used in the nucleic acid identification method of the present invention.
  • the primer assembly for waveform generation is a mixture of a specific primer and an ambiguous primer.
  • Several ambiguous primers designed by the present inventors are useful for a novel waveform-generating primer assembly that enables simultaneous synthesis of complementary strands in a plurality of regions of type III nucleic acid.
  • polysemy primers polysequence primers having a structure in which polysemy changes stepwise on the 5 'side can be said to be novel primers in terms of structure.
  • Such a primer assembly for generating a waveform containing the polysequence primer includes a specific primer having a base sequence complementary to the target region of the type I polynucleotide including the following steps, It can be obtained by a method for producing an aggregate of primers for waveform generation, comprising an aggregate of at least one kind of polysequence primer including a region.
  • Specific region Contains the 3 'end of the oligonucleotide and consists of a base sequence complementary to the target region
  • Ambiguous region Includes a base sequence that is located on the 5 'side of the specific region and in which a base that constitutes a base sequence complementary to the target region is replaced with a base other than the base a) synthesizing a specific region, and
  • the polysemy ply of the present invention can be synthesized using the same synthesis reaction as the degenerate ply.
  • methods for synthesizing nucleic acids such as the phosphate trieste method, the phosphoroamidite method, and the phosphonate method have been reported.
  • the phosphoamidite method is widely used as a principle that enables automatic synthesis using a DNA synthesizer.
  • Solid-phase synthesis is generally used for DNA synthesis by a DNA synthesizer. That is, DNA is synthesized by chemically bonding mononucleosides constituting the target base sequence one by one in the 3 '-> 5' direction to nucleosides bonded to the resin at the 3'-position. Is done.
  • a mixture of a plurality of bases is given as a mononucleoside, different bases are bonded at the positions.
  • the concentration of each base is equal, the binding reaction is said to occur with equal probability. Therefore, for example, when a mixture containing a and g at equal concentrations is given, a DNA having two different base sequences of a and g at a certain position is synthesized. That is, by using a mixture of two types of bases, the two polymorphic regions in the present invention can be synthesized. Similarly, N regions are synthesized by mixing four types of bases, and three polysemy regions are synthesized by mixing three types of bases.
  • a polysequence primer is synthesized by sequentially reacting a mixture of bases constituting the polyseismic code in the standing position.
  • the specific primer and the ambiguous primer can be simultaneously synthesized as an aggregate.
  • the respective regions constituting the polysemy ply can be synthesized sequentially, or the entire polysequence primer can be obtained by linking the separately synthesized regions.
  • the polysequence primer of the present invention is composed of a specific region (including the 3 'end) and a polysequence region (including the 5' end), the two are separately synthesized and then ligated.
  • Ambiguous primers can also be obtained.
  • the polysemy region when the polysemy region is composed of a plurality of regions having different ambiguities, it can be separately synthesized for each region. Separately synthesized regions with different ambiguities are constructed as a polysequence primer having the target base sequence by ligation according to the design of the ambiguity primer.
  • the N region is common regardless of the base sequence of the specific primer. Therefore, an N region of a required length can be synthesized in advance irrespective of the base sequence of,.
  • the number of combinations of base sequences is also limited for the three polysemy regions, it is significant to synthesize them in advance as oligonucleotides.
  • kits for nucleic acid identification can be obtained. That is, the present invention relates to a kit for identifying a nucleic acid, comprising the following elements.
  • kits of the present invention a primer assembly as described above can be used.
  • the kit of the present invention can be a DM polymerase usable in the present invention and a substrate for complementary strand synthesis.
  • the kit of the present invention may additionally comprise a positive control Z or a waveform pattern of the dissociation curve of the nucleic acid to be identified.
  • the kit of the present invention can include aninteractor that can be used to analyze a dissociation curve. Examples of intercalators include Cyper Green.
  • Each component constituting the kit of the present invention can be supplied in a state of being filled in a reaction vessel in advance.
  • a reaction container can be filled with a primer assembly for generating a waveform for complementary strand synthesis, a DNA polymerase, a nucleotide substrate, a buffer constituting the reaction solution, an intercalator, and the like.
  • the amount of each element can be set according to the final concentration in the reaction solution.
  • Each element may be in a dry state or a liquid state.
  • proteins such as enzymes can easily maintain their activity during storage by keeping them in a dry state.
  • the method of the present invention can be carried out simply by adding a sample solution containing a nucleic acid to such a reaction vessel and then incubating it under necessary temperature conditions.
  • a container having a plurality of independent reaction spaces can be used as the reaction container used in the kit of the present invention.
  • reaction vessels such as microplates having 96 (12 ⁇ 8) wells are useful in the kits of the invention.
  • the same set of waveform generating primers can be filled into a plurality of reaction spaces to provide a kit for simultaneously identifying a large number of nucleic acid samples (Fig. 13).
  • a kit for obtaining a plurality of waveform patterns for the same nucleic acid sample can be prepared by filling each of a plurality of types of waveform-generating primer assemblies into different reaction spaces (FIG. 11). More specifically, in a case where eight types of waveform generating primer assemblies are used in a reaction vessel having a 96-well as in the microplate, a kit for identifying 12 samples is provided. can do.
  • the method for identifying a nucleic acid of the present invention can be applied to any nucleic acid requiring identification.
  • specific examples of nucleic acids for which various advantages can be expected depending on the application of the nucleic acid identification method of the present invention will be described.
  • the present invention is useful for identifying a microorganism population having a high genetic homogeneity.
  • the method for identifying a nucleic acid of the present invention makes it possible to comprehensively identify slight differences in a plurality of regions of the nucleic acid. For example, by elucidating the dissociation curves of the extension products obtained for multiple regions, it is possible to obtain a unique waveform pattern even for microbial communities having highly homologous nucleotide sequences throughout the genome. it can. As a result, each bacterial species Can be easily identified.
  • acid-fast bacteria represented by Mycobacterium tuberculosis are a representative group of microorganisms that need to be differentiated.
  • To identify acid-fast bacteria by PCR it is necessary to design primers for many regions and repeat the amplification reaction.
  • all information necessary for identification can be obtained in one reaction vessel by using a primer assembly that can obtain extension products for a plurality of regions.
  • the reliability of the identification results can be increased by applying different sets of primers to one test sample using two reaction vessels.
  • the present invention can also be used for polymorphism analysis.
  • Known polymorphisms include, for example, single nucleotide polymorphisms such as SPs and repetitive sequence polymorphisms such as satellite markers. The relationship between these polymorphisms and various genetic traits has been clarified one after another, and much information has been accumulated.
  • Various methods are known as polymorphism detection techniques. However, many of them can detect specific polymorphisms, but it is often difficult to detect multiple polymorphisms at the same time. For example, a DNA array with a high accumulation of various DNA probes is one of the effective tools for analyzing multiple polymorphisms simultaneously.
  • DNA arrays are an expensive analytical device. Although it is widely used as a research tool, it is desirable that it be an analysis tool that can be performed at lower cost in order to use it in daily nucleic acid identification methods.
  • the method of the present invention if a region containing a polymorphism is generated as an extension product, many polymorphisms contained in the extension product can be comprehensively compared. This means that genetic diagnosis technology based on polymorphism can be performed significantly more efficiently than known methods.
  • the method for identifying a nucleic acid of the present invention can be used, even if the polymorphism itself is unknown, if the polymorphism causes a change in the waveform pattern, the nucleic acid can be identified. Further, the method of the present invention can be carried out at low cost by using a reagent component used in a general nucleic acid synthesis method.
  • the identification of a nucleic acid refers to confirming the identity between a certain skin test nucleic acid and another nucleic acid. Since different types of cells usually contain different nucleic acids, the present invention can identify cell types. Further, for example, even in the case of cells of the same type, when the nucleic acid is in a different state depending on the state of the cell, the present invention can be applied to confirmation of the identity of the state of the cell. For example, it is known that the death of cells causes the degradation of nucleic acids. Utilizing this phenomenon, the viability of cells can be determined based on the present invention. More specifically, by confirming the disappearance of the waveform pattern obtained from living cells, it can be confirmed that the cells are dead.
  • the state of the nucleic acid can be grasped from more various aspects, so that the death of the cell can be grasped as a change in the waveform.
  • FIG. 11 shows a configuration example of the nucleic acid identification kit of the present invention.
  • the kit of FIG. 11 shows a kit of the present invention using a reaction vessel provided with a plurality of wells.
  • four types of waveform generation primer aggregates sPGBUP65, sPGBUPUPR, sPGBUPFX, and sPGBUPRX are pre-filled in separate wells.
  • Each well is also pre-filled with other reagent components required for a complementary strand synthesis reaction by DNA polymerase. Therefore, the identification method of the present invention can be carried out only by adding a test nucleic acid and giving predetermined reaction conditions.
  • the four types of primer assemblies for waveform generation shown in this example correspond to different regions, respectively. It can be something that was designed. That is, as shown in FIG. 12, four types of waveform generating primer assemblies can be designed using a plurality of regions of the test nucleic acid as target regions. By such a combination, more types of waveform patterns can be obtained. That is, the types of nucleic acids that can be identified by the present invention can be increased.
  • the present invention provides a method for comprehensively discriminating a difference in the base sequence between the genes constituting the gene group for a group of genes constituted by the conserved base sequence.
  • the PCR method it is difficult to design specific primers individually for each gene containing a highly conserved nucleotide sequence. Therefore, it is difficult to analyze such a group of genes using the PCR method.
  • the present invention is based on the condition that complementary strand synthesis is performed for a plurality of regions, it can be said that synthesis of a plurality of regions with a small number of primers is a rather preferable condition. That is, a group of genes composed of conserved nucleotide sequences is preferable as a target of the identification method of the present invention.
  • a gene group composed of conserved nucleotide sequences means that a plurality of genes are in a state containing similar nucleotide sequences. Such a group of genes is sometimes called a gene family.
  • the present invention can be applied to the identification of a gene family of the drug metabolizing enzyme cytochrome P450.
  • One gene family of cytochrome P450s is a group of genes composed of many structurally homologous genes.
  • polymorphisms there are numerous polymorphisms in this group of genes.
  • it is necessary in principle to carry out complementary strand synthesis reactions for the number of polymorphisms to be analyzed.
  • the method of identifying the gene family of cytochrome P450 by the PCR method has poor analysis efficiency.
  • since the structural similarity of each gene is high, it is difficult to design specific primers for PCR.
  • FIG. 13 shows a kit of the present invention in which a plurality of wells are filled with the same type of waveform generating primer assembly (SPGBUP65).
  • SPGBUP65 waveform generating primer assembly
  • the waveform generating primer and the nucleic acid identification method using the same according to the present invention include the following embodiments.
  • nucleotide chain at one end of each base chain, which is complementary to any specific or unspecified region on the nucleic acid, at the 3, terminal, and there is a possibility that this region has complementarity
  • nucleotide chain having a plurality of bases arranged at each base chain at each of the 5 ends, the complementarity of the nucleotide chain is increased stepwise from the 5th end to the 3rd side, and stepwise stability is achieved.
  • a primer for generating a waveform characterized in that the primer has a sequence that reduces the amount of the primer.
  • the nucleotide chain of the primer is: 5, a first region composed of a code indicating any four of the bases including Adeyun, cytosine, guanine, and thymine in order from the terminal side; A second region comprising a code representing three, and a third region comprising a code representing any two of the above bases, the first, second, and third regions, respectively.
  • the primer comprises 10 to 30 bases, and the ratio of the nucleotide chain having complementarity to the total length of the primer is 0.12 to 0.88.
  • the waveform generating primer described.
  • the waveform generating primer according to (1) which comprises a nucleotide chain complementary to the region and a nucleotide chain having a complementarity
  • a nucleic acid amplification method comprising:
  • the annealing is performed at an annealing temperature of 49 or less.
  • the sense strand or the antisense nucleic acid may be prepared using only one kind of sense primer or antisense primer.
  • a method for identifying a nucleic acid by amplifying a partial base sequence of the nucleic acid to identify the nucleic acid wherein a step of selecting an unspecified unspecified region on the nucleic acid, and a nucleotide complementary to the region
  • the primer for waveform generation according to (1) comprising a nucleotide chain having complementarity with the strand;
  • the waveform generating primer and the nucleic acid identification method using the same include the following aspects.
  • (1) A method for amplifying and identifying a nucleic acid, in which a plurality of independent liquid reaction systems simultaneously amplify different regions of a target double-stranded nucleic acid simultaneously using different primers, and heating the amplified product.
  • a nucleic acid amplification method and a nucleic acid identification method characterized by identifying the properties of a target double-stranded nucleic acid from a combination of a dissociation temperature or a dissociation pattern obtained when dissociating or denaturing into a single-stranded nucleic acid.
  • a method for amplifying and identifying a nucleic acid wherein a plurality of independent liquid reaction systems simultaneously amplify equivalent regions of a plurality of different target double-stranded nucleic acids simultaneously using the same type of primer, respectively.
  • Heating the amplified product A nucleic acid amplification method characterized by simultaneously identifying the properties of multiple different target double-stranded nucleic acids from the dissociation temperature or dissociation pattern obtained when dissociating or denaturing into I-stranded nucleic acids. And nucleic acid identification methods.
  • a method for identifying a nucleic acid which is obtained when a plurality of independent liquid reaction systems are used to heat and separately amplify an amplified product to dissociate or denature a single-stranded nucleic acid.
  • a nucleic acid amplification method and a nucleic acid identification method characterized by simultaneously distinguishing properties of a plurality of different target double-stranded nucleic acids from a temperature or a dissociation pattern.
  • the property of the target double-stranded nucleic acid is identified using one or more specific or non-specific primers for the target nucleic acid. Nucleic acid amplification method.
  • nucleic acid amplification is performed using a DNA polymerase (DNA synthase) including Taq DNA polymerase (thermostable DNA synthase), and the target double-stranded nucleic acid is amplified.
  • DNA synthase DNA polymerase
  • Taq DNA polymerase thermoostable DNA synthase
  • nucleic acid amplification method A nucleic acid amplification method and a nucleic acid identification method characterized by identifying
  • the reaction is carried out at an annealing temperature of 49 or less to obtain the target double-stranded nucleic acid.
  • a nucleic acid amplification method characterized by identifying its properties.
  • the target double-stranded nucleic acid is detected by using an incalator substance to detect the dissociation temperature or dissociation pattern obtained when dissociating or changing to single-stranded nucleic acid.
  • FIG. 1 is a diagram schematically illustrating a complementary strand synthesis method according to the present invention.
  • Figure (A) shows how a plurality of regions of a test nucleic acid are synthesized according to the present invention.
  • Figure (B) shows how multiple extension products form various mutual interference structures.
  • FIG. 2 is a diagram showing the structure of the polymorphic primer used in the present invention.
  • FIG. 3 is a diagram showing an example of a sequence of a specific region of a polymorphic primer.
  • FIG. 4 is a diagram showing an example of the sequence of a polymorphic region of a polymorphic primer.
  • FIG. 5 is a diagram schematically illustrating a complementary strand synthesis reaction by the waveform generation primer assembly BAUP65 in this example.
  • FIG. 6 is a diagram showing a waveform pattern of a dissociation curve.
  • FIG. (A) shows the waveform pattern of the extension product synthesized by the complementary strand according to the present invention
  • FIG. (B) shows the waveform pattern of the amplification product amplified by the PCR method.
  • the vertical axis indicates the fluorescence intensity differential value
  • the horizontal axis indicates the temperature (° C).
  • FIG. 7 is a photograph showing the results of electrophoresis of the reaction product.
  • FIG. (A) shows the results of electrophoresis of the extension product obtained by the ambiguous primer assembly of the present invention
  • FIG. (B) shows the results of electrophoresis of the amplification product amplified by the PCR method.
  • M indicates a molecular weight marker.
  • the lanes (1) to (3) are the results of reaction products of type II DNA of Campylobacter, Haemophilus influenzae, and Salmonella typhimurium.
  • FIG. 8 is a diagram showing a change in a waveform pattern of a dissociation curve due to a difference in annealing temperature.
  • Figures (A), (B) and (C) show the results using E. coli 55, respectively.
  • the waveform pattern when annealing at C, 40 ° C, and 25 ° C is shown.
  • FIG. 9 is a diagram showing a change in a waveform pattern of a dissociation curve due to a difference in annealing temperature.
  • Figures (A), (B) and (C) show the waveform patterns when annealing at 55 ° C, 40 ° C and 25 ° C, respectively, using Staphylococcus aureus.
  • FIG. 10 is a diagram showing a change in a waveform pattern of a dissociation curve depending on the presence or absence of an ambiguous region.
  • FIG. (A) shows a waveform pattern in the case of having an ambiguous region
  • FIG. (B) shows a waveform pattern in the case of not having an ambiguous region.
  • FIG. 11 shows a configuration example of a kit for identifying a nucleic acid of the present invention.
  • sPGBUP65, sPG BUPUPR, sPGBUPFX, and sPGBUPRX are names of the primer assembly for waveform generation.
  • FIG. 12 schematically shows the positional relationship on the test nucleic acid of the “target region” set for the design of the four types of waveform generation primer assemblies sPGBUP65, sPGBUPUPR, sPGBUPFX, and sPGBUPRX.
  • FIG. 13 shows an example of the configuration of a kit for simultaneous identification of multiple nucleic acids of the present invention.
  • FIG. 14 shows the differences in waveform patterns obtained by using three types of waveform-generating primers by using DNA extracted from E. coli, S. aureus, and carets as a test nucleic acid.
  • the vertical axis indicates the fluorescence intensity differential value
  • the horizontal axis indicates the temperature (° C).
  • SPGBUP65, sPGBUPUPR, and sPGBUPFX are the names of the waveform generation primers.
  • Figure 15 shows the effect of the addition of a stabilizer on the complementary strand synthesis on the waveform pattern.
  • Fig. 15 (A) shows the waveform pattern when the stabilizer was not used
  • Fig. 15 (B) shows the waveform pattern when the stabilizer was added.
  • the vertical axis indicates the fluorescence intensity differential value
  • the horizontal axis indicates the temperature (° C).
  • FIG. 16 shows the effect of adding a stabilizer on complementary strand synthesis in complementary strand synthesis. Is shown.
  • FIG. 16 (A) is a photograph showing the result of electrophoresis of the synthesized product when a stabilizer was not used, and FIG. 16 (B) was a case where a stabilizer was added.
  • the leftmost lanes of (A) and (B) are the 200 bp ladder, and the two rightmost lanes are the results of Sampnore (duplicate) electrophoresis.
  • the present invention provides an ambiguous bimer having a unique region and an ambiguous region.
  • Figure 2 shows the conceptual diagram.
  • the ambiguous primer in FIG. 2 has an ambiguous region at the 5 ′ end, so that it can anneal not only to a specific base sequence but also to a similar sequence similar to this.
  • a primer with a unique region and polysemy region of 1: 1 was used at 98 ° CZ for 2 seconds, 40 ° C / 20 seconds, and 72 ° C / 20 seconds.
  • the protocol was performed for 50 cycles to perform a complementary strand synthesis reaction.
  • Analyze the dissociation curve waveform of the extension product obtained by complementary strand synthesis The effect of the structure on the results was compared.
  • Ambiguous primers were evaluated based on two indicators of specificity and stability.
  • “highly specific” means that it is difficult to anneal to a region other than the portion selected as the target region.
  • the high specificity of the ambiguous primer causes a decrease in the diversity of extension products. As a result, waveform diversity is lost. That is, it can be said that a polysemy primer having a reduced specificity is a desirable polysequence primer in the present invention.
  • the stability refers to the reproducibility of the anneal of each primer constituting the ambiguous primer.
  • polysemymers are aggregates composed of oligonucleotides having different nucleotide sequences.
  • the individual oligonucleotides that make up the assembly should anneal to a base sequence that is complementary to the respective base sequence.
  • the amount of the oligonucleotide corresponding to the target base sequence is consequently reduced. That is, there is a high possibility that sufficient complementary strand synthesis will not occur.
  • the total length of the primer was 24 to 3 O mer
  • the specificity or stability of the primer was improved, but the diversity of the dissociation curve obtained was reduced. It was considered that the increased specificity did not sufficiently promote the complementary strand synthesis reaction in regions other than the region selected as the target region.
  • the total primer length is 10 to 16 mer
  • the diversity of the waveform increases.
  • specificity and stability were reduced.
  • the total primer length was 9 mer or less, no synthesis reaction occurred. From these results, it was concluded that the primer length of the ambiguous primer of the present invention could be in the range of 10 to 3 O mer, and the preferred length was 16 to 24 mer.
  • the ratio of the specific region and the polysemy region to the entire length of the primer was examined.
  • the ratio of the ambiguous region to the total length of the primer was 0.333 to 0.55, the stability and the diversity of the extension products were maximized.
  • a polymorphic primer having a total length of 24 mer will give desirable results in the case of 8 to 13 mer.
  • the ratio of the polymorphic region to the total length of the primer was 0.55 to 0.88, the waveform diversity was increased but the stability was decreased. If the conditions at this time are indicated by the number of bases, the ambiguous region is 14 to 25 mer, and the unique region is 4 to 7 mer. In addition, when the ratio of the polymorphic region occupying the entire length of the primer was 0.12 to 0.33, the diversity of the waveform was lost. If the conditions at this time are indicated by the number of bases, the polymorphic region is 4 to 7 mer and the specific region is 14 to 25 mer.
  • the ratio of the polymorphic region to the entire length of the primer was 0.89 or more, it was a so-called random primer, and normal synthesis did not occur. If the conditions at this time are indicated by the number of bases, for example, the polymorphic region is 25 mer or more and the unique region is 3 mer or less. In addition, when the ratio of the ambiguous region in the total primer length was 0.11 or less, a synthesis reaction similar to that of a normal PCR primer was observed. In other words, almost only one complementary strand synthesis product was found. If the conditions at this time are indicated by the number of bases, for example, the polymorphic region is 3 mer or less and the specific region is 25 mer or more.
  • the specific region has a base sequence complementary to the target region selected from the test nucleic acid.
  • the length of the specific region is preferably 8 to 13 mer when the total length of the ambiguous primer is 16 to 24 mer.
  • the percentage of GC which is the proportion of G (guanine) or C (cytosine) in the 5 bases including 3, terminal, is 50% or more.
  • the stability of the terminal must be 15.5 to 19.5 kcal / mol or more.
  • anneal is possible even if there is a mismatch of 50% or less except for the 3 bases on the terminal side. At this time, the stability of the mismatched part is less than 1 2. O Kcal / mol. If so, the drop in synthesis efficiency can be ignored.
  • the ambiguous region is a region arranged to increase the number of primers that can be applied to regions other than the target region selected from the test nucleic acid.
  • the polysemy region has a base sequence in which a base complementary to the target region is replaced with another base.
  • the type of base to be replaced is any of one to three bases.
  • an ambiguity code shown in Table 1 is used to express the substitution of a base.
  • the structure of the ambiguous primer can be represented by, for example, a nucleotide sequence as shown in FIG.
  • the polysemy primer having the nucleotide sequence shown in FIG. 4 has a structure in which the polysemy in the polysemy region gradually decreases from 5 ′ to 3 ′.
  • the length of the polysemy region is preferably 8 to 13 mer when the total primer length is 16 to 24 mer.
  • the aggregate of the ambiguous primers including the ambiguous region described above is actually an aggregate of oligonucleotides having different base sequences. Therefore, the inclusion of one 2 Ambiguity Code actually means that two kinds of oligonucleotides having different base sequences are included. Therefore, the effective rate of annealing with type III nucleic acid is 1 Z 2.
  • the base sequence SATT containing 2 Ambiguity Code: S (indicating C or G) means that it actually includes an oligonucleotide consisting of two types of base sequences, CATT and GATT. In this case, the amount of each effective primer is 1 Z2.
  • one 3 Ambiguity Code or 4 Ambiguity Code results in an effective primer amount of 1 3 or 14 respectively.
  • the number of bases in the ambiguous region is 8.
  • the method of calculating the amount of primer is only an example, and is not limited to this method.
  • the Tm value of the primer was calculated first.
  • the Tm value refers to a temperature at which 50% of nucleic acids having complementary nucleotide sequences are in a base-paired state.
  • the Tm value of the unique region is calculated by the 2 (A + T) +4 (G + C) method, and the average of the polysemy region is calculated by the 2 (A + T) +4 (G + C) method. did.
  • the Tm value of the total primer length was calculated by combining these.
  • the annealing temperature in the ordinary PCR method is about Tm minus 5 ° C. It is preferable that the annealing temperature in the present invention is set to a Tm value minus about 20 ° C. in order to diversify the waveform pattern. By giving a lower temperature, even shorter primers are easier to anneal. Experimentally, the diversity of the dissociation curve at 40 ° C or less has been improved. It became an author. On the other hand, in the case of 15 and below, only random priming is performed, and almost no synthetic reaction is shown.
  • a BAUP65 primer (nnvhdbssga tccaaccg c / SEQ ID NO: 6), which is a set of primers for generating a waveform that synthesizes only bacterial genes and emphasizes the difference in the dissociation curve waveform pattern between bacterial species, and creates a complementary strand Used for synthesis and nucleic acid identification.
  • rRNA 16s liposome RA
  • 11 bases stored in about 300 strains are used as the sequence of the specific region, which is 8 bases long.
  • the primers were designed by binding the polymorphic regions.
  • a sequence having homology to the 16s rRNA such as 23s rRNA and 8s rRNA, is expected to be simultaneously synthesized with complementary strands. .
  • Campylobacter, C. jejuni), Haemophilus influenzae iti l nfluenzae) and Salmonella typhimurium, S. typhimurimi were selected, and ISOGEN-LS (manufactured by Nippon Gene Co., Ltd.) was used according to the manual. DNA was extracted. The complementary strand synthesis using each sample DNA as type II was performed using a reaction solution having the composition shown in Table 2 below and using 25 L of the reaction solution.
  • Complementary strands are synthesized by performing 70 cycles of 10 seconds at C / 40 seconds and 72 seconds to synthesize complementary strands, using a Smart Cycler (Takara Shuzo Co., Ltd.) at a temperature range of 70 to 94 ° C and a temperature step of 0.1 ° C. By observing for 1 second at each temperature under the above conditions, the waveform of the dissociation curve of the complementary strand synthesis product was observed.
  • a sense primer (c'agcagccgc ggtaatac / SEQ ID NO: 7) that amplifies a sequence encoding a part of 16s rRA and an antisense primer (SEQ ID NO: 7)
  • an antisense primer (SEQ ID NO: 7)
  • the sample DNA was amplified according to the usual PCR method.
  • FIGS. 6 (A) and (B) The waveform patterns of the dissociation curves obtained by the present invention and the PCR method are shown in FIGS. 6 (A) and (B), respectively.
  • (1) Campylobacter
  • (2) is H. influenzae
  • (3) is S. typhimurium.
  • SEQ ID NO: 7 the sequences defined by the sense primer
  • SEQ ID NO: 8 the antisense primer
  • FIG. 6 (A) since multiple sequences are synthesized, various waveform patterns are observed for each bacterial species, and by examining this waveform pattern, the bacterial species can be identified. Nucleic acid identification is enabled.
  • 2 / zL loading buffer is added to 10 L of the sample after the completion of the complementary strand synthesis reaction, and the gel is electrophoresed on a 1.2% agarose gel for 45 minutes at 5 OV.
  • the nucleotide chain was confirmed by staining with bromide. Note that a 200 bp ladder marker was used as a molecular size marker.
  • the above-mentioned BAUP65 primer (SEQ ID NO: 6) and the primer (5, -GATCCMCCGC-37 SEQ ID NO: : 9) and a complementary strand synthesis reaction was performed, and the waveform of the dissociation curve was observed.
  • the waveform patterns obtained for the BAUP65 primer (SEQ ID NO: 6) and the primer excluding the ambiguous region are shown in FIGS. 10 (A) and (B), respectively.
  • a characteristic waveform is observed for the BAUP65 primer having a polymorphic region (SEQ ID NO: 6) as compared to the primer excluding the polymorphic region. For this reason, it is possible to identify nucleic acids more effectively by having a polysemy region. confirmed.
  • the identification method using the kit of the present invention shown in FIG. 11 was simulated.
  • the kit described in FIG. 11 is intended to obtain more diverse waveform patterns by using a plurality of types of waveform generating primer aggregates designed for different regions.
  • a primer for waveform generation using three types of sPGBUP 6 5, sPGBUPUPR, and sP GBUPFX. As shown in FIG. 12, these waveform generating primer assemblies are designed by selecting different regions as target regions.
  • a complementary strand synthesis reaction was carried out with the same composition as the reaction solution shown in Table 2 above, except that each waveform-generating primer assembly was used instead of BUP65.
  • the same reaction cycle as described in 1 was repeated 70 times.
  • DNA extracted from ⁇ col S. aureus ⁇ and cere ⁇ was used as a test nucleic acid.
  • IS0GEN-LS manufactured by Nippon Gene Co., Ltd.
  • Fig. 14 shows the obtained dissociation curve waveform pattern. Different waveform patterns were obtained depending on the test nucleic acid and the primer used. In other words, it was shown that more diverse waveform patterns can be obtained by using different waveform generating primer aggregates. The DNA of the specimen can be identified by comparing each waveform pattern with a reference waveform pattern.
  • a primer, BAUP65 (SEQ ID NO: 10), that recognizes a specific base sequence of bacterial DNA at a plurality of locations was prepared, and a nucleic acid was identified based on the method of the present invention.
  • the complementary strand synthesis step the waveform patterns with and without the stabilizer were compared, and the The effect of the first visor was confirmed.
  • E. coli E. coli DNA.
  • I SOGEN- using the LS (Nippon Gene Co., Ltd.) DNA was extracted in accordance with Mayuyuaru from about 10 6 E. coli. Extracting DNA finally 0. 5 n was also adjusted to a concentration of / ( ⁇ 2 0).
  • Table 3 shows the formulation of the stabilizer, and Tables 4 and 5 show the composition of the complementary strand synthesis reaction solution.
  • One sample L was added to each of the reaction solutions having the compositions of “without stabilizer” and “with stabilizer”, and a complementary strand synthesis reaction was performed.
  • the reaction was performed in duplicate, and the waveforms of a total of four samples were observed.
  • an iCycler manufactured by Biorad
  • a protocol of 98 ° C./2 seconds, 25 ° C./40 seconds, and 72 ° C./10 seconds was carried out 50 times to synthesize a complementary strand.
  • the waveform of the dissociation curve of the synthetic product was drawn by observing at each temperature for 8 seconds under the conditions of a temperature range of 75 to 95 ° C and a temperature step of 0.1 ° C.
  • the effect of the "stabilizer” is shown as the difference between the waveforms of Fig. 15 (A) “without stabilizer” and Fig. 15 (B) "with stabilizer".
  • FIG. 15 (A) the waveform is unclear due to insufficient nucleic acid synthesis.
  • Fig. 15 (B) since sufficient nucleic acids have been synthesized, the waveform characteristic of E. coli DNA is drawn normally.
  • Stabilizer I was supported by the results of the electrophoresis analysis. That is, in Figure 16 (A) “without stabilizer”, no band of the synthetic product is observed. On the other hand, in Figure 16 (B) “with stabilizer”, the band of the synthesized product could be confirmed.
  • the nucleic acid identification method of the present invention can detect a slight difference in base sequence between nucleic acids having high structural identity as a clear difference in a dissociation curve waveform pattern.
  • an extension product obtained by synthesizing a plurality of regions of the test nucleic acid is analyzed.
  • Nucleic acids are identified by comparison of the dissociation curves of the extension products.
  • a mixture of extension products obtained from a plurality of regions is a mixture of polynucleotides having various base sequences.
  • nucleic acid identification is achieved by analyzing a mixture of diverse polynucleotides.
  • the waveform pattern of the dissociation curve of a nucleic acid whose structure is known in advance is clarified under the same conditions as in the method for identifying a nucleic acid of the present invention, it can be easily compared with a known nucleic acid by comparison with the waveform pattern of the dissociation curve of the test nucleic acid. Can be compared.
  • the nucleic acid identification method of the present invention is characterized in that a mixture of extension products is directly analyzed to obtain a dissociation curve waveform pattern. Therefore, a step for obtaining an extension product can be easily performed. Specifically, even if the primer assembly is annealed to the test nucleic acid and the complementary strand synthesis reaction by DNA polymerase is repeated, the extension product required for the present invention can be obtained in one reaction vessel. Mixtures can be synthesized.
  • a nucleic acid identification method based on a known nucleic acid synthesis method comprises a step of analyzing a highly homogeneous synthetic product.
  • the present invention has provided several methods for obtaining extension products for the nucleic acid identification methods of the present invention.
  • Each of these methods enables the synthesis of complementary strands of a plurality of regions required for analysis using a small number of primers.
  • the number of primers required for the reaction can be reduced.
  • the small number of types of primers means that a sufficient amount of primers for each region can be reliably supplied.
  • a small number of primers is economically advantageous.
  • the nucleic acid identification method of the present invention is useful, for example, for identifying genetic polymorphisms.
  • Much knowledge is now being accumulated about SNPs, one of the genetic polymorphisms.
  • it is necessary to identify individual SNPs simultaneously for multiple SNPs that are considered to be related to disease.
  • genotyping methods that are currently in practical use have some issues to be solved in terms of speed and economics in analyzing many SNPs simultaneously.
  • the identification method of the present invention there is a possibility that a plurality of combinations of SNPs can be simultaneously identified with one (or a small number of) primer aggregates.
  • a slight difference in the base sequence of the synthesized polynucleotide can be clearly recognized as a difference in the dissociation curve.
  • differences between multiple SNPs can be found in a single analysis.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Description

核酸同定方法 技術分野
本発明は、 核酸の同定方法に関する。 背景技術
核酸を増幅する方法として、 ポリメラーゼ連鎖反応法 (PCR法) が広く用いられ ている。 PCR法は、 DNAポリメラーゼの作用によって、 プライマーの 3,末端から相補 鎖を合成する反応を繰り返すことによって、指数的に核酸を増幅する。プライマー は、増幅すべき核酸の、 3,末端の塩基配列に相補的な塩基配列を含むオリゴヌクレ ォチドである。センス鎖とァンチセンス鎖のそれぞれに対してプライマ一を用意す ることによって、新たに合成された核酸が次の反応工程で新たな,として機能す る。 その結果、 指数的な増幅が達成される。
PCR法では、 プライマーの鎳型 DNAに対する特異性を高め、 全 DNA中の特定の部位 のみを認識するために、 1種類の PCR産物のみが増幅される。 PCR法については、特 公平 4 - 67957号公報等に詳細に記載されている。
特公平 4- 67957号公報には、 遺伝性疾患、 癌性疾患あるいは伝染性疾患等の遺伝 子診断の用途で核酸中の特定配列の存在を検出するために、標的核酸の塩基配列に 相補的プライマーを用いて、僅かしか含まれていない核酸配列を増幅して検出する 技術が記載されている。
PCR法による核酸の検出あるいは同定方法は、 PCR法の増幅産物の生成量を指標と している。 たとえば、 PCR法による所定の長さを有する核酸の増幅は、 検出対象の 存在を意味している。増幅産物は電気泳動などの手法によって容易に検出すること ができる。 しかし電気泳動分離は、時間と手間を要する手法なので、大量のサンプ ルについて迅速な分析を行う場合には不利である。 そこで、 PCR法の増幅産物を迅 速に検出するためのいくつかの方法が実用化されている。
たとえば、インターカレーターを使用して、 2本鎖核酸の生成を光学的に検出す る方法が公知である。インターカレーターは、 2本鎖核酸に特異的に結合し、蛍光 を発する色素である。 PCR法の増幅産物は 2本鎖を形成するので、 反応系にインタ 一力レーターを加えておけば、増幅産物の生成量を蛍光強度の変化として検出する ことができる。インターカレーターとしては、ェチジゥムブ口マイドあるいはサイ バーグリーンなどを用いることができる。インター力レーターを利用して Tm値の変 化を比較し、 核酸の変異を検出するための装置も公知である (特開平 7 - 31500) 。 ィンタ一力レーターを利用すれば、 PCR法の反応の進行をモニタリングすること ができる。 この方法は、 反応中のモニタリングを可能とするので、 リアルタイム PCR (real-time PCR)法と呼ばれている。 しかしインターカレーターによる検出方法 は、 2本鎖の形成を指標としているため、たとえば、鎵型核酸における微妙な塩基 配列の相違を識別することはできない場合がある。言い換えれば、インターカレ一 ターを使った核酸の検出方法の特異性は、 PCR法の特異性に依存していると言うこ とができる。
PCR法を利用して铸型となる核酸における特定の塩基を同定することができる。 PCR法を構成する鎳型依存性の相補鎖合成反応には、 プライマーが必要である。 プ ライマーは、 核酸に相補的な塩基配列を有するオリゴヌクレオチドである。铸 型核酸にァニールしたプライマーの 3,末端から 5,-〉 3,方向に相補鎖合成反応が進行 する。 プライマーの 3'末端を構成する塩基は、相補鎖合成における重要な条件の一 つである。 すなわち、 プライマーの 3,末端付近における鑤型核酸との相補性は、 相 補鎖合成反応の反応効率を大きく左右する。
そのため、 プライマーの3,末端が錶型核酸に相補的でない場合には、相補鎖合成 反応が著しく阻害される。 この特徴を利用して、铸型核酸における特定の塩基の同 定が行われる。 つまり、 プライマーの 3,末端が、铸型核酸における同定すべき塩基 に相補的な位置に相当するようにデザィンされる。このブラィマーによつて増幅産 物が生成された場合には、同定すべき塩基はプライマーの 3'末端に相補的であった ことがわかる。 しかしこの方法では、プライマーがァニールする場所以外における 祷型核酸の塩基を同定することはできない。
PCR法を利用して、 増幅産物における未知の塩基の相違を検出するための方法が 知られている。 たとえば PCR - SSCPは、 PCR法の増幅産物の立体構造の相違が電気泳 動によって検出される。 同じプライマーセットで増幅された DNAであっても、 立体 構造の違いが見られる場合には、両者を構成する塩基配列には相違があると予測す ることができる。
同様に、 PCR法の増幅産物の制限酵素による切断パターンを比較して、 铸型核酸 の塩基の相違を見出す方法も知られている。この方法は、 PCR- RFLPと呼ばれている。 PCR- SSCPにしろ PCR- RFLPにしろ、 PCRの増幅産物の電気泳動分離が必要である。 一方、 本出願人は、 PCR法における増幅産物の塩基配列の識別を可能とする方法 として、解離曲線を指標とする方法を完成し特許出願している(特開 2002 - 325581)。 PCR法の増幅産物は、 温度の上昇にともない、 やがて 1本鎖に解離する。 1本鎖核 酸への解離は、特定の温度で急激に起こることが知られている。 2本鎖が急激に解 離する温度は、 融解温度 (Melting Temperature ;Tm) と呼ばれている。 Tmは、 当該 核酸を構成する塩基と、反応液に含まれる成分によって決定される。 したがって同 じ組成の反応液中においては、 Tmは、核酸を構成する塩基配列によって支配される といってよい。 この特徴に着目して、 PCRの増幅産物の構成塩基配列の違いを Tmの 差として検出するのが、 特開 2002- 325581の原理である。 Tmは、 インターカレータ 一を利用して容易に測定することができる。すなわち、特開 2002 - 325581によって、 電気泳動のような煩雑な手法に頼ることなく、 PCR法における増幅産物の塩基配列 の相違を見出すことができる。
ところが、特開 2002- 325581においては、核酸の合成を PCR法に頼ったため、その 増幅産物には多様性が無い。 1セットのプライマ一によって増幅されるのは、原則 として 1種類のみである。 この特徴は、 PCR法の特異性の高さを示している反面、 構造が良く似ている複数の核酸の、 相互識別が難しいことを意味している。
たとえば構造の良く似た 3つの核酸 A、 B、および Cを識別するとする。 1セッ トのプライマーで相互を識別するためには、同じプライマーセットで増幅される領 域に、それぞれの核酸にユニークな塩基が含まれるようにデザィンしなければなら ない。核酸の種類が多くなるほど、 1セットのプライマーのみで全ての核酸のュニ ークな領域を増幅することは困難になる。
複数のプライマーセットを使って、複数の領域について同様の解析を実施すれば、 多種類の核酸を識別できる可能性は高まる。 しかし、複数セットのプライマーを使 うことは、反応回数の増カ卩につながる。つまり、解析の迅速性や経済性を犠牲にす る可能性がある。また反応回数の増加にともなって、消費する試料の量も増加する。 発明の開示
本発明は、核酸の塩基配列の相違を容易に見出すことができる方法と、そのため のプライマーの提供を課題とする。
PCR法では、 複数のプライマーの使用は、 迅速性や経済性を犠牲にする可能性が 伴う。 そこで本発明者らは、 PCR法に頼らず、 核酸の塩基配列の相違を明らか にすることができる方法について研究を重ねた。その結果、同定すべき核酸の複数 の領域について相補鎖を合成し、合成された相補鎖の混合物の解離曲線についてそ の波形パターンを比較することにより、核酸間の相違を検出しうることを明らかに し、本発明を完成した。 更に本発明者らは、 同定すべき核酸の複数の領域を合成す るたに有用なプライマーの提供に成功した。本発明者らが見出したプライマーによ つて、本発明の同定方法に必要な相補鎖合成産物の混合物を容易に得ることができ る。すなわち本発明は、以下の核酸の同定方法、ならびに核酸の合成に有用なブラ イマ一に関する。
〔1〕 次の工程を含む核酸の同定方法。 (1)被検核酸の複数の部位に相補的な塩基配列を含む核酸を合成する工程
(2) (1)で合成された核酸の混合物の解離曲線を得る工程、 および
(3)解離曲線の波形パターンを比較し、 同じ波形パターンを有する核酸が同一 の塩基配列を有していると同定する工程
〔2〕(1)被検核酸の複数の部位に相補的な塩基配列を含む核酸を合成する工程が、 被検核酸の複数の部位に相補的な塩基配列からなる、 1種類以上のプライマ ーをァニールさせ、 相補鎖を合成する工程を含む、 〔1〕 に記載の方法。
〔3〕変性剤および Zまたは塩類の存在下でプライマーをァニールさせ、相補鎖を 合成する工程を含む、 〔2〕 に記載の方法。
〔4〕変性剤が、 非イオン系界面活性剤、 陰イオン系界面活性剤、 および洗浄剤か らなる群から選択される 〔3〕 に記載の方法。
〔5〕非イオン系界面活性剤が、グリセリンエステルのポリオキシエチレンェ一テ ル、 ソノレビタンエステノレのポリオキシエチレンエーテノレ、 およぴソルビトー ルエステノレのポリォキシェチレンエーテルからなる群から選択される 、ずれ かの非イオン系界面活性剤である 〔4〕 に記載の方法。
〔6〕洗浄剤が、 ドデシル硫酸塩、 ラウロイルサルコシン塩、 ラウリル酸塩、 およ ぴメルカプト酢酸塩からなる群から選択されるいずれかの化合物である〔4〕 に記載の方法。
〔7〕塩類が、 Na2S04、 Na2S03、 Na P04、 NaHC03からなる群から選択されるいずれか の化合物である 〔3〕 に記載の方法。
〔8〕プライマーが、被検核酸の複数の部位にァユールすることができる 1種類の オリゴヌクレオチドからなる 〔2〕 に記載の方法。
〔9〕プライマーが、被検核酸の複数の部位にァユールすることができる 2種類以 上のオリゴヌクレオチドからなる 〔2〕 に記載の方法。
〔1 0〕 前記複数の部位の塩基配列の一部が共通である 〔9〕 に記載の方法。 〔1 1〕プライマーを構成する塩基配列の一部が相違しており、力つ相違する塩基 がプライマーを構成する塩基配列の任意の場所である〔 1 0〕に記載の方法。 〔1 2〕プライマーを構成する塩基配列の一部が相違しており、かつ相違する塩基 がプライマーを構成する塩基配列の 5'側に局在している 〔1 0〕 に記載の方 法。
〔1 3〕プライマーが、次の特異プライマーおょぴ多義プライマーを含む波形生成 用プライマー集合体である 〔1 2〕 に記載の方法。
特異プライマー :铸型核酸の標的領域に相補的な塩基配列を含む
多義プライマ一:次の特異領域および多義領域を含む少なくとも 1種類の多義 プライマー
特異領域:オリゴヌクレオチドの 3,末端を含み、前記標的領域に対して相 補的な塩基配列で構成される
多義領域:特異領域の 5'側に配置され、前記標的領域に対して相補的な塩 基配列を構成する塩基が当該塩基以外の塩基で置換された塩基配列 を含む
〔1 4〕铸型核酸における標的領域として複数の領域を選択し、 1つの被験核酸に ついて、 前記複数の標的領域を対象として 〔1 3〕 に記載の同定方法を行う 核酸の同定方法。
〔1 5〕特異プライマーの融解温度よりも 2 0〜4 0 °C低い温度でプライマ一集合 体を铸型核酸にァニールさせる工程を含む、 〔1 3〕 に記載の方法。
〔1 6〕 プライマ一集合体のァニールと相補鎖合成反応を複数回行う 〔1 3〕 に記 載の方法。
〔1 7〕 被検核酸が 1本鎖または 2本鎖である 〔1〕 に記載の方法。
〔1 8〕 被検核酸が DNAまたは RNAである 〔1〕 に記載の方法。
〔1 9〕被検核酸がゲノム DNAであり、工程 (1)において同定すべき細胞と他の細胞 の間で塩基配列が相違す ¾少なくとも 1つの領域を合成する 〔1〕 に記載の 方法。 〔2 0〕複数の領域を合成するためのプライマーカ プライマ一を構成する塩基配 列の少なくとも一部が共通である 〔1 9〕 に記載の方法。
〔2 1〕被検核酸が微生物のゲノム DNAであり、工程 (1)において同定すべき微生物 と他の微生物の間で塩基配列が相違する少なくとも 1つの領域を合成する 〔1 9〕 に記載の方法。
〔2 2〕被検核酸が真核細胞のゲノム DNAであり、工程 (1)において保存された塩基 配列で構成された遺伝子群を構成する領域を合成する〔 1 9〕に記載の方法。 〔2 3〕遺伝子間で保存された塩基配列に対して相補的な塩基配列からなるプライ マーによって複数の領域を合成する 〔2 2〕 に記載の方法。
〔2 4〕次の工程を含む、核酸を同定するための参照用の解離曲線の波形パターン を生成する方法。
(1)被検核酸としての核酸標品の複数の部位に相補的な塩基配列を含む核酸を 合成する工程、 および
(2) (1)で合成された核酸の混合物の解離曲線を得る工程
〔2 5〕 〔2 4〕 に記載の方法によって複数種の核酸標品について参照用の解離曲 線の波形パターンを生成する方法。
〔2 6〕複数種の核酸標品について、共通のプライマー集合体によって合成された 核酸の解離曲線を得る工程を含む 〔2 5〕 に記載の方法。
〔2 7〕 〔2 4〕 に記載の方法によって得られた複数の参照用の解離曲線の波形パ ターンを含む参照用の解離曲線波形パタ一ンデータベース。
〔2 8〕被検核酸の複数の部位に相補的な塩基配列からなる、 1種類以上のプライ マーの混合物を含む波形生成用プライマ一集合体。
〔2 9〕プライマーが、被検核酸の複数の部位にァニールすることができる 1種類 のオリゴヌクレオチドである 〔2 8〕 に記載のプライマー集合体。
〔3 0〕プライマーが、被検核酸の複数の部位にァニールすることができる 2種類 以上のオリゴヌクレオチドである 〔2 8〕 に記載のプライマー集合体。 〔3 1〕前記複数の部位の塩基配列の一部が共通である 〔3 0〕 に記載のプライマ 一集合体。
〔3 2〕プライマーを構成する塩基配列の一部が相違しており、かつ相違する塩基 がプライマーを構成する塩基配列の任意の場所である 〔3 0〕 に記載のブラ イマ一集合体。
〔3 3〕プライマーを構成する塩基配列の一部が相違しており、力つ相違する塩基 がプライマ一を構成する塩基配列の 5'側に局在している 〔3 0〕 に記載のプ ライマー集合体。
〔3 4〕 次の特異プライマーおょぴ多義プライマーを含む〔3 3〕 に記載のプライ マー集合体。
特異プライマー:铸型核酸の標的領域に相補的な塩基配列を含む
多義プライマー:次の特異領域および多義領域を含む少なくとも 1種類の多義 プライマー
特異領域:プライマーの 3'末端を含み、前記標的領域に対して相補的な塩 基配列で構成される
多義領域:特異領域の 5'側に配置され、前記標的領域に対して相補的な塩 基配列を構成する塩基が当該塩基以外の塩基で置換された塩基配列 を含む
〔3 5〕 各プライマーの特異領域における gc含量が 50%以上である 〔3 4〕 に記載 のプライマー集合体。
〔3 6〕多義プライマーの多義領域に含まれる置換された塩基の種類が 3'側から 5' 側にかけて増えることを特徴とする 〔3 4〕 に記載の波形生成用プライマー 集合体。
〔3 7〕多義領域の塩基配列が次の 3つの領域からなり、それぞれの領域を構成す る置換塩基配列の全ての組み合わせを含む多義プライマーの集合体を含む 〔3 4〕 に記載のプライマー集合体。 (1) N領域:多義領域の 5'末端を構成し、その塩基配列を構成する各塩基は前記 標的領域の塩基配列に相補的な塩基に代えて、 アデユン、 シトシン、 グ ァニン、およぴチミンから選択される当該塩基以外の任意の 3種類のすべ ての塩基で置換された塩基である
(2) 3多義領域: N領域の 3 '側に配置され、その塩基配列を構成する各塩基は前 記標的領域の塩基配列に相補的な塩基に代えて、 アデニン、 シトシン、 グァニン、 およびチミンから選択される当該塩基以外の任意の 2種類の 塩基のすべてで置換された塩基である
(3) 2多義領域: 3多義領域の 3 '側に配置され、その塩基配列を構成する各塩基 は前記標的領域の塩基配列に相補的な塩基に代えて、 アデニン、 シトシ ン、 グァニン、 およぴチミンから選択される当該塩基以外の任意の 1種 類の塩基で置換された塩基である
〔3 8〕 プライマーを構成する N領域の塩基数が 2〜4塩基である 〔3 7〕 に記載 のプライマー集合体。
〔3 9〕プライマーを構成する N領域: 3多義領域:2多義領域の構成塩基数の比が、
1 : 2 : 1である 〔3 7〕 に記載のプライマー集合体。
〔4 0〕プライマー集合体を構成する多義プライマーの多義領域の長さ力 プライ マーを構成する塩基数の 1 0 %〜 8 0 %である 〔3 4〕 に記載のプライマー 集合体。
〔4 1〕プライマー集合体を構成する多義プライマーの特異領域および多義領域の 長さの合計が 1 0〜 3 0塩基である 〔3 4〕 に記載のプライマー集合体。
〔4 2〕以下の工程を含む、次の特異プライマーおょぴ多義プライマーを含む波形 生成用ブラィマー集合体の製造方法。
特異プライマー :铸型核酸の標的領域に相補的な塩基配列を含む
多義プライマー :次の特異領域および多義領域を含む少なくとも 1種類の多義 プライマ一 - 1 o - 特異領域:プライマーの 3'末端を含み、前記標的領域に対して相補的な塩 基配列で構成される
多義領域:特異領域の 5'側に配置され、前記標的領域に対して相補的な塩 基配列を構成する塩基が当該塩基以外の塩基で置換された塩基配列 を含む
a)特異領域を合成する工程、 および
b)前記標的領域に対して相補的な塩基配列を構成する塩基、 およびアデニン、 シトシン、 グァニン、 およぴチミンから選択される当該塩基以外の任意 の塩基の混合物を結合して多義領域を合成する工程
〔4 3〕前記任意の塩基の数を、前記多義領域の 3'側から 5,側にかけて 1〜 3に増 加させる 〔4 2〕 に記載の方法。
〔4 4〕 次の要素を含む、 核酸の同定用キット。
(1)被検核酸の複数の部位に相補的な塩基配列からなる、 1種類以上のプライ マーの混合物を含む波形生成用プライマー集合体
(2)铸型特異的な相補鎖合成反応を触媒する DNAポリメラーゼ
(3)相補鎖合成用基質
〔4 5〕プライマーが、被検核酸の複数の部位にァニールすることができる 1種類 のオリゴヌクレオチドである 〔4 4〕 に記載のキット。
〔4 6〕プライマーが、被検核酸の複数の部位にァニールすることができる 2種類 以上のオリゴヌクレオチドである 〔4 4〕 に記載のキット。
〔4 7〕 前記複数の部位の塩基配列の一部が共通である 〔4 6〕 に記載のキット。
[ 4 8〕プライマーを構成する塩基配列の一部が相違しており、力つ相違する塩基 がプライマーを構成する塩基配列の任意の場所である 〔4 7〕 に記載のキッ ト。
〔4 9〕プライマーを構成する塩基配列の一部が相違しており、かつ相違する塩基 がプライマーを構成する塩基配列の 5'側に局在している 〔4 7〕 に記载のキ ッ卜。
〔5 0〕プライマー集合体が、次の特異プライマーおょぴ少なくとも 1種類の多義 プライマ一の集合体を含む、 〔4 9〕 に記載のキット。
特異プライマー:铸型核酸の標的領域に相補的な塩基配列を含む
多義プライマー:次の特異領域および多義領域を含む少なくとも 1種類の多義 プライマ一
特異領域:プライマーの 3'末端を含み、前記標的領域に対して相補的な塩 基配列で構成される
多義領域:特異領域の 5'側に配置され、前記標的領域に対して相補的な塩 基配列を構成する塩基が当該塩基以外の塩基で置換された塩基配列 を含む
〔5 1〕 前記標的領域が複数である 〔4 9〕 に記載のキット。
〔5 2〕複数の領域に対する波形生成用プライマー集合体が予め別々の反応容器に 充填されている 〔5 0〕 に記載のキット。
〔5 3〕陽性対照および Zまたは同定すべき核酸の解離曲線の波形パターンを付加 的に含む 〔4 9〕 に記載のキット。
〔5 4〕 変性剤、 および Zまたは塩類を付加的に含む 〔4 4〕 に記載のキット。 〔5 5〕 変性剤が、 非イオン系界面活性剤 陰イオン系界面活性剤、 および洗浄剤 からなる群から選択される 〔5 4〕 に記載のキット。
〔5 6〕非イオン系界面活性剤が、グリセリンエステルのポリオキシエチレンエー テル、 ソルビタンエステルのポリオキシエチレンエーテル、 ぉょぴソルビト ールエステルのポリオキシエチレンエーテルからなる群から選択されるいず れかの非イオン系界面活性剤である 〔5 5〕 に記載のキット。
〔5 7〕 洗浄剤が、 ドデシル硫酸塩、 ラウロイルサノレコシン塩、 ラウリノレ酸塩、 お よびメルカプト酢酸塩からなる群から選択される!/、ずれかの化合物である 〔 5 5〕 に記載のキット。 〔5 8〕塩類が、 Na2S04、 Na2S03、 NaH2P04、 NaHC03からなる群から選択されるいずれ かの化合物である 〔5 4〕 に記載のキット。
本発明は、 次の工程 (1) - (3)を含む核酸の同定方法を提供する。
(1〉被検核酸の複数の部位に相補的な塩基配列を含む核酸を合成する工程
(2) (1)で合成された核酸の混合物の解離曲線を得る工程、 および
(3)解離曲線の波形パターンを比較し、 同じ波形パターンを有する核酸が同一の 塩基配列を有していると同定する工程
本発明は、あらゆる核酸を被検核酸として同定することができる。核酸には、 DNA、 RNA、およびその誘導体が含まれる。 DNAあるいは RNAの由来は限定されない。通常、 核酸試料は生物学的材料から得ることができる。 具体的には、各種の細胞、血液や 体液、動植物の組織などを、生物学的材料として示すことができる。 さらにそれら の材料から各種の人為的手法によりその核酸の一部または全部を合成することに よって得ることができる核酸や、腿材料を逆転写することにより得られる DNAを材 料とすることもできる。ウィルスやベクターも DNAあるいは RNAの材料とすることが できる。また、情報媒体あるいは演算素子として人為的に合成された核酸を対象と してもよレ、。
一方、 DNAあるレヽは RNAの誘導体とは、たとえば次のようなものを示すことができ る。
ー ヌクレオチド誘導体を構成単位として合成された DNAあるいは RNAなど 一 他の分子によって修飾された DNAあるは RNAなど
本発明においては、上記の同定すべき核酸の複数の部位に相補的な塩基配列を含 む核酸が合成される、複数の部位とは、 同定すべき核酸を構成する塩基配列の、複 数の部位から選択される。動植物の細胞においては、 1セットのゲノムが複数の染 色体に保存されている。 このような細胞においては、 1セットのゲノムを構成する 複数の核酸の全体を対象として、複数の部位が選択される。すなわち、一部の染色 体から複数の部位を選択することもできる。.あるいは、 1セットを構成する複数の 染色体上から、 複数の部位を選択することもできる。 本発明において、 複数とは、 少なくとも 2つ以上、たとえば 2〜1 5 0箇所、好ましくは 5〜8 0箇所の領域を 言う。 合成箇所が多いほど、 本発明の同定方法の感度を向上させることができる。 本発明において、感度の向上とは、同定に必要な核酸の量をより少なくできること を意味する。合成される領域は、通常、重複しないようにデザインされる。しかし、 相補鎖合成反応に干渉しない場合には、 各領域間の重複は許容できる。
複数の領域は、比較すべき核酸の間で塩基配列の相違があることが期待できる領 域を含むことが望ましい。比較の対象とする核酸が多種類である 、各核酸の合 成対象領域の塩基配列は、少なくともいずれかの領域で他の核酸との相違が含まれ るようにデザィンするのが好ましい。塩基配列の相違は、複数の領域の全てにおい て含まれなくても良い。 たとえば、 3つの核酸 X、 Y、 および Ζについて a- cの 3つの 領域について合成するとする。各領域の塩基配列に相違が含まれることを 'で示す。 以下の例では、核酸 Yが他の核酸と異なる塩基配列からなる b' を、また核酸 Zが c' を有している。 これらの領域を合成することにより、 3者の識別が可能となる。 • 核酸 X: [a ] -[b ]-[c ]
核酸 Y: [a ] - [b, ]— [c ]
核酸 Z: [a ] - [b ]-[c' ]
本発明の核酸の同定方法において、前記複数の領域は、被検核酸からできるだけ 多様な塩基配列情報を特異的に取り出すことが望まれる。つまり、被検核酸の間で、 できるだけ塩基配列の相違している部分が多く合成される方が好ましい。したがつ て、 たとえば前記核酸 X-Zの例においては、 a - cのできるだけ多くの領域において、 相互に塩基配列が異なっている方が、 好ましい。
たとえば微生物やウィルスのようなゲノムサイズが限られている生物種では、ゲ ノムの塩基配列情報が既に明らかにされているものも少なくなレ、。これらの生物種 については、 予め、比較の対象となる生物種の間で、他の種との間で、塩基配列が 相違する領域を選択することができる。また、ゲノムの塩基配列情報が不十分な場 合であっても、既に明らかにされているゲノムや、遺伝子の情報に基づいて、塩基 配列の相違する領域を選択することは可能である。
なお複数の領域は、再現性を有する方法で合成されることが好ましい。本発明に おいて、相補鎖合成の再現性とは、同じ領域が相補鎖合成の錶型として利用される ことを言う。相補鎖合成反応の原理によっては、合成産物の長さの均一性を保障で きない^^があるかもしれない。本発明においては、 ,として同じ領域が利用さ れていれば、合成産物の長さの変動は許容できる。本発明における再現性を有する 相補鎖合成反応とは、あるプライマーが特異的に相補鎖合成を開始することである と言うこともできる。 したがって本発明の相補鎖合成反応は、ランダムプライマー による相補鎖合成反応とは区別される。
複数の核酸について複数の領域を合成する以上、各核酸が同じ条件で合成される べきであることは言うまでも無い。 したがってプライマーと DNAポリメラーゼを用 いた相補鎖合成反応によつて複数領域を合成する場合には、ブラィマーのハイプリ ダイゼーションの特異性は維持されることが望まれる。
核酸の合成方法は、 ,依存性の合成方法であれば、特に限定されない。被検核 酸が 2本鎖からなる場合には、前記複数の領域は、センス鎖、 あるいはアンチセン ス鎖を として合成することができる。複数の領域の全てが、センス鎖あるいは アンチセンス鎖を铸型として合成されても良いし、両者を铸型として合成すること もでさる。
続いて、本発明のための伸長産物を得る方法について説明する。伸長産物を得る ための代表的な方法として、 DNAポリメラーゼを利用した相補鎖合成反応を利用す ることができることは既に述べた。本発明においては、被検核酸の複数の領域を合 成するために、被検核酸の複数の領域にァユールすることができるプライマーを利 用する。本発明において、被検核酸の複数の領域にァユールすることができるブラ イマ一から、相補鎖合成反応によって合成された伸長生成物を伸長産物という。伸 長産物は、被検核酸の複数の領域を铸型として合成された、ポリヌクレオチドの集 合体である。したがって伸長産物を構成する各ポリヌクレオチド鎖の塩基配列は相 互に異なる。 ただし、相補鎖合成反応が繰り返されたときには、同じ塩基配列を含 むポリヌクレオチド鎖が複数分子生成される。
また、異なる領域に同じ塩基配列を有する被検核酸を铸型として場合には、同じ 塩基配列を含む伸長産物が生成される可能性もある。 しかし本発明においては、解 離曲線の多用な波形パターンを得ることが望ましいため、伸長産物の塩基配列はで きるだけ相違を含むようにデザィンすることが望ましい。
被検核酸の複数の領域にァニールし、複数の領域の相補鎖合成を可能とするブラ イマ一を、本発明では波形生成用プライマーという。本発明の波形生成用プライマ 一は、被検核酸の複数の領域の相補鎖合成に利用されるとともに、相補鎖合成の結 果として、異なる塩基配列からなる伸長産物の混合物を与える。本発明における異 なる伸長産物の混合物とは、好ましくは解離曲線を解析したときに複数の Tmを与え るポリヌクレオチドの混合物を言う。
本発明における波形生成用プライマーは、次のように定義することもできる。す なわち本発明の波形生成用プライマーは、被検核酸上の複数箇所に出現する特定の 塩基配列領域に相補的な塩基配列を含むオリゴヌクレオチドであって、同一の条件 下で被検核酸上の複数の領域において、 ,依存性の DNAポリメ一ラーゼによる相 補鎖合成を開始することができる。波形生成用プライマーの塩基配列の少なくとも 一部は、前記特定の領域に対して相補的な塩基配列からなる。前記特定の領域に対 して相補的な塩基配列は、才リゴヌクレオチドの任意の領域に配置することができ る。 すなわち、 たとえばオリゴヌクレオチドの 3, 末端を含む領域、 末端を含まな い中間の領域、 そして 5' 末端を含む領域に配置することができる。
被検核酸の複数の領域にァニールすることができるプライマーのデザィン方法 として、たとえば次のような方法を示すことができる。以下のような考え方に基づ いてプライマーをデザィンすれば、単純に複数の領域の相補鎖合成に必要なプライ マーを混合するよりも、 プライマーを容易に合成することができる。 複数の領域にァエールする 1種類のプライマー:
単一のプライマーであっても、適当な塩基配列を選択すれば、被検核酸の複数の 部位にァニーノレすることができる。 通常、 配列特異的なアニーリングのためには、
2 0— 5 0塩基のオリゴヌクレオチドがプライマーとして用いられる。このような 長さのオリゴヌクレオチドは、ストリンジェントな条件下では、複数の部位にァュ ールする可能性はきわめて低い。
ところが、 より少ない塩基数のオリゴヌクレオチドを用いれば、複数の位置にァ ニーノレする可能4が高まる。たとえば 3〜 8塩基からなるオリゴヌクレオチドがァ ニールしうる領域は、計算上は、 1/64( 43) 〜: 1/65536 (48) の確率で存在すること になる。つまり、短いプライマーは、単一で用いても複数領域の相補鎖合成を可能 とする。 このような短いオリゴヌクレオチドをプライマーとして用いるためには、 プライマー濃度を上げる、ァニーリング温度を下げるなどの条件を与えるのが望ま しい。
このような複数領域にァユール可能な 1種類のプライマーの設計は、対象とする ゲノムの塩基配列情報より、対象ゲノム中に出現頻度の高い 3から十数塩基よりな る短い塩基配列を検索し、出現頻度の高い順に上位候補とすることにより可能とな る。 出現頻度をカウントするゲノム領域は、すべての塩基配列情報を対象としても よいし、 特定の関心領域に対象を絞ってもよい。
複数の領域にァニールする 2種類以上のプライマー:
铸型となる核酸の塩基配列が明らかであれば、複数の領域を合成するために各々 の箇所にァニールする複数のプライマーをデザインすることは容易である。しかし 本発明においては、 より多くの領域について相補鎖合成が必要な もある。合成 すべき領域の増加に伴って、必要なプライマーの数も増えてしまう。一方で、反応 系に添加することができるオリゴヌクレオチドの量には上限がある。また多様なォ リゴヌクレオチドを合成するのは経済的にも不利である。そこで本発明者らは、多 くの領域の相補鎖合成をできるだけ少ない種類のプライマーで合成できる方法に ついて、検討した。その結果、以下に示すようなプライマーのデザインが有効であ ることを見出した。
まず、できるだけプライマー間の塩基配列が共通となるように、合成すべき領域 を選択する。たとえば以下の例においては、プライマーをァニー/レさせるための 2 つの領域が選択されている。 これらの塩基配列は、 2種類の抗酸菌 A
iMycobac terium bo vis)ぉょぴ B iMycobac terium kannsasii)のゲノム力 ら選択され た。 いずれも、ゲノム上の異なる位置にありながら、互いに塩基配列の類似性が高 い (一致している塩基を大文字で示した) 。
抗酸菌 A: AGcTcGTMa (配列番号': 1 )
抗酸菌 A: AGtTcGTAAt (配列番号: 2 )
抗酸菌 B: AGgTtGTAAa (配列番号: 3 )
抗酸菌 B: AGtTcGTAAa (配列番号: 4 )
この例では、 3、 5、 および 1 0塩基目の塩基が相違し、 それ以外の塩基は一致 している。 これらの相違している塩基を多義コード(ambiguity code)で表現すれば、 agBtYgtaaW (配列番号: 5 ) となる。 本発明において、 多義コードとは、 ある位置 に複数種の塩基を割り当てるための記号である。本発明において、多義コードで表 現されたオリゴヌクレオチドは、当該多義コードの位置において、多義コードによ つて表される全ての塩基の組み合わせを含む混合物であることを意味している。こ こで用いた多義コードはそれぞれ次の塩基に対応している。
B=c. g. t Y=c, t W=a, t
すなわち、共通性の高い塩基配列 (agBtYgtaaW)の選択によって、 この例では 1菌 種当たり 2箇所の相補鎖合成を可能とできた。本発明において、多義コードで表現 された塩基配列を有するプライマーを多義プライマーという。
通常、 4つの領域の相補鎖合成のためには、 各領域にァニールする 4種類のプラ イマ一が必要である。 ところがここに示した例においては、 1種類の多義プライマ 一によつて 4つの領域の相補鎖合成が可能となった。多義プライマーは、異なる塩 基配列を有するオリゴヌクレオチドの集合体である。 しかし操作上は、単一のオリ ゴヌクレオチドと同様の操作によつて合成され、相補鎖合成においても単一のォリ ゴヌクレオチドとして利用することができる。
更にこのような考え方に基づいて、ゲノム内の複数の特定の関心領域に対し、共 通の 1種類からなる多義プライマーの設計を行うことも可能である。上記の抗酸菌 A, Bにおける事例を例に採れば、 A, Bの種間差をもっとも顕著に示す塩基配列 を選択することにより、菌種同定という目的を達成したのに対し、本発明は更にま つたく別の関心領域、例えば薬剤耐性に関わる情報を、同時に取得するための手段 を提供する。すなわち、複数の関心領域に対し各々出現頻度の高い塩基配列候補を 選択し、次にそれら上位候補間の塩基配列の中から更に共通性の高い塩基配列を選 択することにより、複数のまつたく独立した情報を同時に得ることが可能な、 1種 類の多義プライマーの設計を可能とする。
さて、一般に、 ,となる核酸の塩基配列の一部が不明なときに、 しばしば縮重 プライマー(degenerate primer)が利用される。 縮重プライマーの塩基配列も本発 明における多義プライマーと同じように表記される。しかし多義プライマーは異な る塩基配列を有する複数領域の合成を目的としている。 他方、 PCRクローユングな どに用いられる縮重プライマーは、通常、 1種類の鎳型に対して 1種類の核酸の合 成を目的としている。 クローユング(すなわち遺伝子の単離) を目的とする場合に は、多様な合成産物を生成するプライマーは望ましくない。 このように多義プライ マーと縮重プライマーとでは、そのデザインの目的がまったく異なっている。他方、 縮重プライマーを本発明における波形生成プライマーとして利用することは可能 である。
以上の例では、被検核酸の塩基配列から、できるだけプライマーの種類を少なく することが可能な領域を選び出した。言い換えれば、被検核酸に依存したデザイン 方法である。 したがって、被検核酸および比較対象となる核酸の塩基配列によって は、 適用が難しい場合もあるかもしれない。 これに対して、 以下に述べる方法は、 被検核酸および比較対象となる核酸の塩基配列の影響を受けず、比較的容易に複数 のプライマーをデザインしうる方法である。
前記の多義プライマーは、铸型となる核酸の塩基配列に合わせて多義コードを配 置した。 これに対して、 プライマーの 5' 側に多義コードを配置して、 被検核酸の 複数の領域にァニールすることができる波形生成用プライマ一集合体を得ること もできる。すなわち本発明は、下記の特異プライマーおよび多義プライマーを含む 波形生成用プライマ一集合体に関する。
特異プライマー:铸型核酸の標的領域に相補的な塩基配列を含む
多義プライマー:次の特異領域および多義領域を含む少なくとも 1種類の多義プ ライマ一
特異領域:オリゴヌクレオチドの 3, 末端を含み、 前記標的領域に対し て相補的な塩基配列で構成される
多義領域:特異領域の 5' 側に配置され、 前記標的領域に対して相補的 な塩基配列を構成する塩基が当該塩基以外の塩基で置換され た塩基配列を含む
本発明における特異プライマーは、铸型核酸の標的領域に相補的な塩基配列を含 むオリゴヌクレオチドまたはその誘導体からなる。誘導体とは、付加的な塩基配列 を有するオリゴヌクレオチド、あるいは修飾されたオリゴヌクレオチドが含まれる。 オリゴヌクレオチドは、蛍光物質、放射活性物質、 あるいは結合性リガンドなどで 修飾することができる。
本発明における標的領域は、铸型核酸に相補鎖合成のためのプライマーがァニー ルするべき領域を言う。 つまり標的領域は、 錶型核酸の合成すべき領域の 3' 側に 位置する領域である。■核酸の合成すべき領域は、先に述べたように、本発明に よる核酸の同定方法において、被検核酸に固有の波形パターンを生じることが期待 できる領域として選択された領域であることが望ましい。 このような領域は、比較 対象である核酸との、塩基配列の相違を含む領域を中心として、選択することがで きる。一方で、できるだけ少ない種類のプライマーで複数の領域を合成するために は、たとえば異なる位置に見出される相同性の高い塩基配列を標的領域として選択 することができる。 しかしながら、本発明に基づく波形生成用プライマー集合体の 利用によって、標的領域との相同性が低レ、領域に対してァニールすることが可能な プライマ一を することもできる。その結果、単一の標的領域を選択した場合で あっても、铸型核酸の複数の領域の相補鎖合成が可能な波形生成用ブラィマー集合 体を得ることができる。
一方、 以下に述べる多義プライマーにおいて、 3, 側の多義コードを含まない領 域を特異領域、 5' 側の多義コードを配置した領域を多義領域という。特異領域は、 特異プライマーの 3, 末端を含む領域を構成する塩基配列と同一の塩基配列で構成 される。 すなわち、 多義プライマーと特異プライマーの 3' 末端を含む塩基配列は 共通である。特異領域を構成する塩基の数は制限されない。特異領域の長さは、多 義領域の条件に応じて適宜設定することができる。たとえば、多義プライマー全体 の長さの 2 0〜 9 0 %の範囲で、 特異領域の長さを選択することができる。
多義領域を構成する多義コードは、 たとえば 4塩基多義 (N)の連続とすることも できるし、被検核酸の塩基配列に合わせて、抗酸菌の例で述べたように適宜必要な 多義コードを配置することもできる。更に、以下に述べるように、プライマーの 3' 側から 5' 側にかけて多義領域のパリエーションを段階的に増やすこともできる。 このようにしてデザインされた多義プライマーは、被検核酸の多くの領域に対し て、高い再現' 14でァニールし、複数領域の相補鎖合成産物を与える。多義領域のパ リエーションを段階的に変化させることにより、相補鎖合成において、反応特異性 を左右する 3' 側の多義性を小さくする一方で、 比較的特異性に対して影響を与え にくい 5, 側においてプライマーの塩基配列に多様性を与えることができる。 この ような構造的な特長により、多様な塩基配列に対して安定にァニールすることがで きるプライマーの集合体とすることができる。
一方、 プライマー集合体を構成する個々のオリゴヌクレオチドは、 3, 側の多様 性が低くなるようにデザインされている。その結果、各オリゴヌクレオチドの塩基 配列に対して相補的な塩基配列に選択的にァユールし相補鎖合成を開始する。つま り、幅広い塩基配列について、それぞれ特異的に、かつ安定に相補鎖合成を開始す ることができるのである。
多義領域における多義性を段階的に変化させた多義プライマーとして、次の構造 を示すことができる。すなわち本発明は、多義領域の塩基配列が次の 3つの領域か らなり、それぞれの領域を構成する置換塩基配列の全ての組み合わせを含む多義プ ライマーの集合体を含む波形形成用プライマー集合体に関する。
(1) N領域:多義領域の 5' 末端を構成し、 その塩基配列を構成する各塩基は前記 標的領域の塩基配列に相補的な塩基に代えて、 アデニン、 シトシン、 グァニ ン、 およびチミンから選択される当該塩基以外の任意の 3種類のすべての塩 基で置換された塩基である
(2) 3多義領域: N領域の 3 ' 側に配置され、 その塩基配列を構成する各塩基は前 記標的領域の塩基配列に相補的な塩基に代えて、 アデニン、 シトシン、 グァ ニン、およびチミンから選択される当該塩基以外の任意の 2種類の塩基のす ベてで置換された塩基である
(3) 2多義領域: 3多義領域の 3, 側に配置され、 その塩基配列を構成する各塩基 は前記標的領域の塩基配列に相補的な塩基に代えて、 アデニン、 シトシン、 グァニン、およぴチミンから選択される当該塩基以外の任意の 1種類の塩基 で置換された塩基である
図 4に示す多義プライマー (NNVHDBSS)において、多義領域は、 5,末端側から 3, 側にかけて段階的に多義性が高まるようにデザインされている。 すなわち、 5 '末 端側には、 A (アデニン) 、 C (シトシン) 、 G (グァニン)、 および T (チミン) の何れかを示す Ambiguity Codeである Nで構成される N領域が存在する。 N領域は、 標的領域に対して相補的な塩基をそれ以外の 3種類のいずれかの塩基に置換した 領域と言うこともできる。 N領域に続いて、標的領域に対して相補的な塩基をそれ以外の 2種類の塩基で置 換した 3多義領域(3 ambiguity region; 3AR)が配置されている。更に 3ARの 3,側に、 標的領域に対して相補的な塩基をそれ以外の 1種類の塩基で置換した 2多義镇域 (2 ambiguity region; 2AR)が配置されている。 図 4の例では、 5,末端側の 2つの Nが N領域を構成し、 続く V, H, D, Bの 4塩基分が 3ARを構成する。 そして、 3 '側の 2つの Sが 2ARを構成する。 このような多義領域の構造により、 3,側から 5, 末端にかけて多義性を高めることができる。言い換えれば、 このような構造によつ て、 5,側から 3,末端にかけて特異性を高めることができる。 本発明に用いる多義コ ードと実際の塩基の対応は表 1にまとめた。
本発明の多義プライマーにおいて、 N領域の長さは 2〜4塩基が好ましい。 N領 域の塩基数が 5塩基以上になると、ダイマー、ループ等のプライマー相互干渉が出 現しやすくなる可能性が高まる。 また、 3ARの配列は、 DHVB、 HDVB、 VHDB、 HVDBの 順に安定性が高い。 このように、 3 '側における G又は Cの割合を高めた方が安定 性が高くなる。
次に 2ARの配列も、 標的領域の塩基配列を考慮して設計する必要がある。 なお、 N領域、 3AR、 2ARの長さの比は、 1 : 2 : 1が好ましいがこれに限定されない。 プライマー集合体を構成する多義プライマーの多義領域の長さは、プライマーを 構成する塩基数の 1 0 %〜 8 0 %であることが好ましい。またプライマー集合体を 構成する多義プライマーの特異領域おょぴ多義領域の長さの合計は、 1 0〜3 0塩 基であることが好ましい。
多義プライマーを含む本発明の波形生成用プライマー集合体は、前記標的領域と して、少なくとも 1つの領域を設定し、当該領域の塩基配列に基づいてデザインす ることができる。標的領域を複数選択することもできる。 この場合、特異プライマ 一の種類が増え、それに応じて多義プライマーの種類も増えることになる。標的領 域として複数の領域を選択した場合、波形生成用プライマー集合体は、同時にまた は個別に相補鎖合成に用いることができる。波形生成用プライマー集合体を用いる ことによって、波形の多様性を高めることができる。すなわち、本発明の方法の核 酸の識別能力を高めることができる。
たとえば図 1 2に示した 4種類の波形生成用プラィマー集合体 sPGBUP65、 sPGBU PUPR、 sPGBUPFX、 および sPGBUPRXは、それぞれ異なる標的領域についてデザインさ れている。仮に各波形生成用プライマー集合体によって各々 1 5種の異なる波形パ ターンが得られるとすると、理論上は、 5 0, 6 2 5種類 ( 1 5 X 1 5 X 1 5 X 1 5 ) の波形パターンが得られることを意味する。 このことは、 1 5種類の波形パタ ーンを生成することができる 4とおりの波形生成用プライマ一集合体の利用によ つて、本発明の核酸の同定方法が、 5万種類以上の核酸の識別できることを示して いる。
複数の領域に対してデザィンされた複数種類の波形生成用ブラィマー集合体は、 集合体同士の混合物として、あるいは集合体毎に独立して相補鎖合成に利用するこ とができる。独立して相補鎖合成に用いることによって、波形パターンとプライマ 一集合体の関係を、 明確に知ることができる。すなわち、 ある領域 Aに基づいてデ ザインされた波形生成用プライマー集合体 Aと別の領域 Bに基づいてデザインさ れた波形生成用プライマー集合体 Bとは、混合しないで個別に相補鎖合成に用いる のが好ましい。
上記のような、複数の領域において相補鎖合成を開始することができるいずれか のプライマーを、相補鎖合成が可能な条件下で錶型核酸とインキュベートすること により、相補鎖合成が開始される。相補鎖合成が可能な条件とは、次の条件が満た されることを言う。
^¾核酸に前記プライマーがァニールすることができる、
铸型依存性の DNAポリメラーゼの触媒活性が維持される、 および
相ネ甫鎖合成のための基質が供給される、
プライマーが铸型核酸にァニールすることができる条件は、プライマーの塩基配 列に応じて当業者が適宜設定することができる。たとえば実施例に記載したように、 2 (A+T)+4(G+C)法(Wallace法) によって DNAの Tmを計算することができる。 Tmの計 算方法として、 その他には、 GC%法、 あるいは最近接塩基対法 (Nearest Neighbor method) などが公知である。 またホルムァミドあるいはジメチルスルホキシド (DMS0)などの添加によって Tm値が低下することも公知である。一方、反応液の塩濃 度が高まると、 一般的には Tmが上昇することが知られている。
これに対し本発明者は、ある種の添加剤により、プライマーの被検核酸への対合 を安定化させ、共存する核酸伸張産物の被検核酸への競合的'非特異的な結合によ る相補鎖合成反応の阻害を抑制しうることを見出した。本発明において、プライマ 一の被検核酸へのァ二ールを安定化させるために用いる添加剤を、スタビライザー と言う。 スタビライザーとしては、各種の変性剤、 あるいは塩類などを用いること ができる。本発明において、短い塩基配列からなるプライマー、 あるいは多義領域 を含むプライマーを用いた相補鎖合成反応は、低い温度条件が望ましい場合がある。 より具体的には、 2 0塩基未満のプライマ一を用いた場合には、たとえば 2 5 °C〜 5 0 °Cの反応温度が望ましい。本発明において、 このような低温での相補鎖合成反 応には、スタビライザーの添加が有効である。本発明におけるスタビライザーとし て利用できる変性剤として、 界面活性剤を示すことができる。
たとえば、非イオン系界面活性剤あるいは陰イオン系界面活性剤をスタビライザ 一として用いることができる。非イオン系界面活性剤は、エーテル型、エーテルエ ステル型、エステル型、およぴ含窒素型に分類される。 これらの非イオン型界面活 性剤の中では、エーテルエステル型の非イオン系界面活性剤が好ましい。 より具体 的には、グリセリンエステルのポリオキシエチレンエーテル、 ソルビタンエステル のポリォキシエチレンエーテル、およぴソルビトールエステルのポリオキシェチレ ンエーテルをエーテルエステル型の非イオン系界面活性剤として示すことができ る。エーテルエステル型の非イオン系界面活性剤には、ポリオキシエチレングリセ リン脂肪酸エステル、 ヒマシ油、 ポリキシエチレンソルビタン脂肪酸エステル、 ポ リォキシエチレンソルビトール脂肪酸エステル、ポリォキシエチレン脂肪酸アル力 ノールアミド硫酸塩などが含まれる。本発明において、特に好ましいエーテルエス テル型の非イオン系界面活性剤は、ポリキシエチレンソルビタン脂肪酸エステルで ある。以下に本発明におけるスタビライザーとして利用することができる市販の非 ィオン系界面活性剤を例示する。
ポリォキシエチレンァノレキ/レエーテノレ :
NIKKOL BL-9EX (Polyoxyethylene (9) Lauryl Ether)
Brj35 (Polyoxyethylene (23) Lauryl Ether)
ポリオキシエチレンァゾレキ /レフェニノレエーテノレ:
TRITON X— 114 (Polyoxyethylene (8) Octylphenyl Ether)
TRITON X - 100 (Polyoxyethylene (8) Octylphenyl Ether)
NP-40 (Polyoxyethylene (9) Octylphenyl Ether)
ポリォキシエチレンソルビタン脂肪酸エステル:
TWEEN 20 (Polyoxyethylene (20) .Sorbitan Monolaurate)
TWEEN 80 (Polyoxyethylene (20) Sorbitan Monooleate)
TWEEN 40 (Polyoxyethylene (20) Sorbitan Monopalmitate)
TWEEN 60 (Polyoxyethylene (20) Sorbitan Monostearate)
TWEEN 85 (Polyoxyethylene (20) Sorbitan Trioleate)
一方本発明に利用可能な陰イオン系界面活性剤としては、スルホン酸塩、カルボ ン酸塩、硫酸エステル塩、あるいはリン酸エステル塩などの界面活性剤を示すこと ができる。 更に以下に示す洗浄剤もスタビライザ一として利用することができる。 これらの洗浄剤は、 ナトリゥム塩以外の塩を利用することもできる。
ドデシル硫酸ナトリゥム(Sodium Dodecyl Sulfate ; SDS)
ラゥロイルサルコシンナトリウム (Sodium N-Lauroyl Sarcosinate) ラウリル酸ナトリウム(Sodium Laurate)
メルカプト酢酸ナトリウム (Sodium Mercaptoacetate)
変性剤の反応液における濃度は、波形生成用プライマー集合体を構成する塩基 配列や、相補鎖合成反応の温度に応じて、適宜調節することができる。一般的には 0 . 0 1怖〜 1 0 %W/V、 例えば 0 . 5 〜 5 / V、 より具体的には 1 %W/V〜 3 %W/Vとなるように添加することができる。
更に本発明者は、本発明における波形生成用プライマー集合体が比較的短い塩基 配列からなる^^であっても、安定に被検核酸へのァニールと相補鎖合成を可能と するために、ある種の塩類の添加が有効であることを明らかにした。反応液に添加 される塩類としては、たとえば Na2S04、 Na2S03、 Na¾P04、 NaHC03を示すことができる。 これらの塩類の反応液における濃度は、波形生成用プライマー集合体を構成する塩 基配列や、相補鎖合成反応の温度に応じて、適宜調節することができる。一般的に は、 反応液に 0 . 0 0 5〜0 . 5 M、 たとえば 0 . 0 1〜0 . 1 M、 より具体的には 0 . 0 3〜0 . 0 5 Mとなるように添 []口することができる。
スタビライザーとして例示した変性剤、あるいは塩類は、単独で用いても良いし、 複数の化合物を混合して利用することもできる。各ィ匕合物はいずれも異なる機序で プライマーのァニールの安定化、あるいは特異性の向上をもたらしていると考えら れる。 したがって、界面活性剤、洗浄剤、および塩類の各成分を添加することによ つて、 スタビライザーの作用は増強される。
なおプライマーのァニールには、铸型となる核酸が少なくともプライマーがァニ ールすべき領域において、塩基対結合が可能な状態にある必要がある。たとえば铸 型とする核酸が 2本鎖の核酸であれば、いったん変性条件でィンキュベートして 1 本鎖とすることによって、プライマーをァニールさせることができる。铸型とする 核酸が 1本鎖として存在している場合には、そのままプライマーをァニールさせる ことができる。 たとえば、 各種の RNAなどは、 そのまま铸型として利用することが できる がある。
また本発明における铸型依存性の DNAポリメラーゼとしては、 鏡型となる核酸に ァユールしたプライマーから、铸型の核酸の塩基配列に相補的な塩基配列を合成す る機能を有する任意の DNAポリメラーゼを利用することができる。 以下に現在入手 可能な DNAポリメラーゼの例を示す。
タカラ社製 ExTaq、 Taq、 Z Taq、 Pyrobest DNA polymerase,
フアルマシアネ; h¾ Taq DNA Polymease, Cloned for PCR、
QIAGEN¾bS Hot Star Taq,
T0Y0B0|±M KOD DNA Polymerase
これらの DNAポリメラーゼの中でも、 Taq DNA polymerase (TaKaRa Ex Taq™ R-PCR Versionなどの耐熱性 DNAポリメラーゼは、 温度の昇降を利用した DNA合成制御を行 う反応系を使用する場合に、 熱負荷に対する安定性が高いため好ましい。
これらの酵素は、その触媒作用が維持される条件の下で利用される。各酵素の至 適条件は公知である。 酵素活性に影響を与える要因として、 温度、 塩濃度、 p H、 変性剤や保護剤の存在、あるいはその他に各酵素が要求する各種の補因子などを示 すことができる。 これらの諸条件は、 当業者が適宜設定することができる。
これらの条件が酵素活性の維持に必要な範囲に設定されれば、相補鎖合成に必要 な基質を利用して、相補鎖が合成される。相補鎖合成のための基質としては、通常、 4種類のデォキシヌクレオチド (dNTP)が利用される。デォキシヌクレオチドの誘導 体を利用して、 DNAの誘導体を合成させることもできる。 この種の誘導体として、 蛍光色素や結合性リガンドで修飾したデォキシヌクレオチド誘導体が利用される 場合がある。
DNAポリメラーゼによる核酸の合成反応においては、 目的としない反応の防止、 あるいは各反応成分ゃ铸型核酸の保護を目的として、氷上での操作が奨励されてい る。 本発明においても、 これらの DNAポリメラーゼを用いる場合には、 試薬成分と 試料とは、相補鎖合成反応を開始するまで、冷却条件下に置くことは好ましい。冷 却条件とは、 具体的には 4 °C以下、 あるいは氷上での操作を言う。 更に、 目的とし ない反応を防ぐためには、 レ、つたん高温条件に曝露した後に DNAポリメラーゼ活性 を獲得するようにデザィンされた DNAポリメラーゼが有用である。 このような DNA ポリメラーゼとしては、 Hot Star Taqを挙げることができる。 本発明において、相補鎖を合成する工程は、必要に応じて複数回繰り返すことが できる。铸型とする核酸が十分量で存在している場合には、 1回の相補鎖合成によ つて、解離曲線の解析が可能な量の伸長産物を生成することができる。 もしも铸型 とする核酸の量が少ない場合には、同様の相補鎖合成反応を繰り返すことによって、 解析に必要な量の相補鎖を得ることができる。本発明において、相補鎖を前記の各 種のプライマーを利用した相補鎖合成反応によって合成する ¾ ^、各プライマーが 先に合成された相補鎖に対してァニールしないようにデザィンすることが望まし い。 本発明においては、 多様な塩基配列からなる伸長産物の混合物を得ること力 好ましい条件となる。ところがもしも先に合成された相補鎖に対して別のプライマ 一がァニールすると、 PCR法様の相補鎖合成反応が開始される恐れがある。 その結 果、相補鎖合成反応の繰り返しによって、特定の塩基配列からなる 2本鎖核酸のみ が反応性生物として多量に蓄積されることになる。このような反応性生物の存在は、 本発明においては、波形の単純化を招き複数箇所からの多様な産物の合成を妨げる ことで解析の性能を低下させる可能性がある。
なお相補鎖合成の工程において同一の反応条件の繰り返しによって伸長産物を 得る場合には、各合成反応の条件を均一に保つことが望ましい。反応条件を均一に 保つことによって、伸長産物のサイズを一定の範囲に維持することができる。その 結果、 本発明の同定方法の再現性の向上に貢献する。
上記工程 (1)において合成される核酸も、 被検核酸と同様に DNA、 RNA、 あるいは その誘導体であってよい。配列依存性の核酸の合成反応として最も一般的な方法は、 プライマーと DNAポリメラーゼによる相補鎖合成反応である。 この場合、 合成され る核酸は DNAまたはその誘導体である。 プライマーには、 被検核酸の複数の領域に ァニールすることができるオリゴヌクレオチドが使用される。本発明において波形 生成用ブライマ一として利用することができるオリゴヌクレオチドのパリエーシ ヨンについては、 上記のとおりである。
RNAポリメラーゼを利用した、 铸型依存性の転写反応を本発明に利用することも できる。 まず、 鎵型となる核酸の複数の領域の塩基配列に、 RNAポリメラーゼが認 識するプロモーターを構成する塩基配列を付加した DNAを合成する。 具体的には、 铸型に相補的な塩基配列からなるプライマーの 5 ' 側にプロモータ一の塩基配列を 付カ卩したォリゴヌクレオチドを利用して、相補鎖合成を行えばよい。合成された DNA を 2本鎖とすれば、 RNAポリメラーゼによる転写反応に利用することができる。 プ 口モーターを含む DNAに RNAポリメラーゼを作用させると、一定の温度条件下で、錶 型依存性の転写反応が進行し、 多量の R Aが転写される。 この場合、 合成される核 酸は R Aまたはその誘導体である。
本発明において、 前記工程 (1)で合成された被検核酸の複数の領域の相補鎖合成 産物を、 特に伸長産物(elongation product)と言う。 本発明は、 前記伸長産物の混 合物の解離曲線を得る工程を含む。
塩基対結合によって形成されている 2本鎖の核酸は、温度の上昇にともない、や がて 1本鎖に解離する。 1本鎖核酸への解離は、特定の温度で急激に起こることが 知られている。 2本鎖が急激に解離する温度は、 融解温度 (Melting Temperature ; Tm) と呼ばれてレ、る。 Tmは、 当該核酸を構成する塩基と、 反応液に含まれる成分に よって決定される。 したがって同じ組成の反応液中においては、 Tmは、核酸を構成 する塩基配列によって支配されるといってよい。
PCR法の反応産物のようにシンプルな 2本鎖構造の核酸が高純度で存在するとき、 Tmは一義的に決定することができる。ところが伸長産物の混合物のように多様なポ リヌクレオチドの集合体は、複雑な解離曲線を与える。 本発明は、伸長産物の混合 物によってもたらされる解離曲線の比較によって、铸型とした核酸を同定すること ができるという知見に基づいて完成された。
解離曲線を得る方法は任意である。 たとえば、 インターカレーターを利用して、 2本鎖核酸の 1本鎖への解離を検出することができる。本発明において、 2本鎖の 核酸に結合してシグナルを生成する化合物を、インターカレーターという。インタ 一力レーターとしては、 ェチジゥムプロマイド (臭化工チジゥム) 、 あるいは入手 可能な商品としてサイバーグリーン (Molecular Probe社製) が知られている。 これらの化合物は、いずれも本発明の解離曲線の解析に用いることができる。た とえばサイパーダリ一ンを 2本鎖 DNAに添加すると、 2本鎖構造の解離を蛍光強度 の低下によつて検出することができる。
あるいは、 2本鎖構造の解離状況を電気的信号や吸光度測定などの光学的手法に より観察することによって解離曲線を得ることも可能である。
解離曲線は、伸長産物によって構成される 2本鎖核酸構造が 1本鎖核酸に解離す る条件を段階的に変化させることによって得ることができる。 2本鎖核酸構造を 1 本鎖核酸に解離させる条件は任意である。 具体的には、温度、水素イオン濃度、変 性剤などの条件を変化させることによって、 1本鎖核酸に解離させることができる。 これらの条件の中でも、温度条件の変化は、制御が容易であり、解離状態を観察し やすいため有利である。
伸長産物の解離曲線の解析により、解離曲線の波形パターンを得ることができる。 解離曲線の波形パターンとは、複数の Tmについての情報を含む解離曲線を言う。 Tm についての情報には、 Tmの数値と、その Tmにおけるシグナル強度の情報が含まれる。 ある核酸について得られた解離曲線の波形パターンと、共通の波形パターンを与え る核酸は、 同じ核酸であると決定することができる。逆に、 もしも Tmの組み合わせ が異なる場合、あるいは各 Tmのシグナル強度の組み合わせが異なる場合、両者は異 なる核酸である可能性が高い。 このように本発明による同定方法において、被検核 酸の複数の領域の合成産物の混合物によって与えられる解離曲線の波形パターン は、被検核酸に固有のパターンを有する。 このような波形パターンを、本発明にお いてジエノパターンと言う。
1種類の 2本鎖核酸は、 通常、 単一の Tmを示すのみである。 たとえば、 PCR法に よって得られる増幅産物は、多くの場合、 単一の Tmを示す。 このため、比較検討し たい被検核酸と対照核酸の間に一部塩基配列の相違が存在しても、 P C R法による 増幅産物の解離曲線の比較によってその差を検出するには、反応条件等に特殊な構 成が必要である(特開 2 0 0 2 - 3 2 5 5 8 1 )。これに対して本発明においては、 铸型核酸の複数の領域について合成された伸張産物である 1本鎖核酸の混合物の 解離曲線を解析する。
伸長産物の混合物は、 多様な塩基配列からなるポリヌクレオチドの集合体 (complex)である。 このような集合体は、 P C R法による産物と異なり、 全長にわ たって完全に相補的に対合可能なヌクレオチド鎖が存在しないため、塩基配列に依 存した独自の高次構造形成、あるいは産物間の部分的な対合による種々の相互干渉 を起こすものと予測される。その結果、伸長産物の加熱による解離、変性によって、 多様で複雑な解離曲線の波形パターンが得られる。铸型となる核酸の種類によって 種々の波形パターンが得られるため、波形パターンを解析することで核酸を同定す ることができる。
波形パターンの比較同定は、ダラフとして描力れたパターン間での肉眼による比 較観察により行うことが可能である。さらにコンピュータ可読式の電子媒体上に記 録された波形パターン間での、パターン認識プログラムによる客観的な比較及ぴー 致率の定量的測定も可能である。比較対象とする波形パターンの特徴として取り上 げるものは、全体の一致率として各温度における蛍光強度変化率のほか、パターン のピークの高さ (蛍光強度変化率)、 ピークの位置 (解離温度) 、 ピークの数、 ピ ークの幅、複数ピーク間での高さの順序、 谷の深さ、谷の位置、 数、 幅、 順序、傾 斜角度など、比較する波形パターンの形状に応じて複数設定することができる。 さ らに、各特長ごとの比較結果をその重要度に応じて重み付けすることにより認識の 精度を向上できる。
本発明の核酸の同定方法において、被検核酸から得られた解離曲線の波形パタ一 ンは、参照用の解離曲線の波形パターンと比較することによって、被検核酸が同定 される。参照用の波形パターンは、核酸標品を試料として、本発明の同定方法と同 様の操作を行うことによつて得ることができる。
本発明において、核酸標品とは、同定すべき核酸であることが明らかな核酸を含 む試料を言う。 たとえば、全塩基配列が明らかにされている核酸は、核酸標品とす ることができる。 あるいは塩基配列が決定されていなくても、微生物細胞株から得 られた核酸は、核酸標品に含まれる。株化された微生物細胞株は、純化された細胞 と見なすことができる。微生物細胞株と同様に株化されたウィルスや、各種培養細 胞株も、 核酸標品として有用である。
更に、相補鎖合成すべき領域の構造が明らかにされている核酸を核酸標品とする こともできる。たとえば真核細胞のゲノムのようなサイズの大きい核酸であっても、 用いるプライマーによって合成される領域の構造が明らかであれば、核酸標品とし て利用することができる。言い換えれば、ある核酸の構造が明らかな部分を合成す ることができるプライマーをデザィンすることによって、当該核酸を標品として本 発明の同定方法を実施することができる。
参照用の波形パターンは、被検核酸の同定時に生成することもできるし、予め参 照用の波形パターンを用意しておくこともできる。予め波形パターンを用意してお けば、実際の同定時には被検核酸の解析のみを行えばよいので便利である。本発明 は、次の工程を含む、核酸を同定するための参照用の解離曲線波形パターンを生成 する方法を提供する。
(1)被検核酸としての核酸標品の複数の部位に相補的な塩基配列を含む核酸を合 成する工程、 および
(2) (1)で合成された核酸の混合物の解離曲線を得る工程
複数種の核酸標品について参照用の解離曲線波形パターンを生成することによ つて、 より多様な核酸についての同定手段を提供することができる。 これらの波形 パターンは、共通のプライマー集合体を利用して生成するのが好ましい。共通のプ ライマー集合体を利用し、同様の条件で生成された参照用波形パターンは、同様の 条件で解析された被検核酸の波形パターンに対して幅広く参照用波形パターンと して応用することができる。
これらの参照用波形パターンは、コンピューター可読式の媒体に記録することに よって、参照用の解離曲線の波形パターンデータベースとすることができる。本発 明においてデータベースとは、コンピューター可読式の媒体に記録された情報の集 合体を言う。 コンピューター可読式の媒体には、 磁気ディスク、 光磁気ディスク、 光ディスク、あるいはメモリ回路が含まれる。更にインターネットなどのネットヮ ークを介して接続されたデータ記^ ¾置も、コンピューター可読式媒体に含まれる。 本発明のデータベースを利用すれば、利用者が本発明の核酸の同定方法を実施す るために、 ネットワークを介して参照用の波形パターンを入手することができる。 あるいは逆に利用者が生成した被検核酸の解離曲線の波形パターンをサーバーに 送信し、データベースとの照合の後にその結果をサーバーから利用者に提供するこ ともできる。
更に本発明は、波形生成用プライマー集合体の製造方法に関する。本発明者らは、 本発明の核酸の同定方法に用いることができる各種の波形生成用プライマー集合 体をデザインすることに成功した。波形生成用プライマー集合体は、特異プライマ 一と多義プライマーの混合物である。本発明者らがデザインしたいくつかの多義プ ライマ一は、铸型核酸の複数の領域について同時に相補鎖を合成可能とする新規な 波形生成用プライマー集合体に有用である。これらの多義プライマーの中でも、 5' 側に多義性が段階的に変化する構造を与えた多義プライマーは、構造的にも新規な プライマーであると言うことができる。このような多義プライマーを含む波形生成 用プライマー集合体は、次の工程を含む、铸型ポリヌクレオチドの標的領域に相補 的な塩基配列を含む特異プラィマーに加えて、下記の特異領域およぴ多義領域を含 む少なくとも 1種類の多義プライマーの集合体からからなる、波形生成用プライマ 一集合体の製造方法によつて得ることができる。
特異領域:オリゴヌクレオチドの 3, 末端を含み、 前記標的領域に対して相補 的な塩基配列で構成される
多義領域:特異領域の 5' 側に配置され、 前記標的領域に対して相補的な塩基 配列を構成する塩基が当該塩基以外の塩基で置換された塩基配列を含む a)特異領域を合成する工程、 および
b)前記標的領域に対して相補的な塩基配列を構成する塩基、およびアデニン、シ トシン、グァェン、およぴチミンから選択される当該塩基以外の任意の塩基 の混合物を結合して多義領域を合成する工程
本発明の多義プライ は、縮重プライ と同様の合成反応を利用して合成す ることができる。 たとえば、 リン酸トリエステ 法、 ホスホロア.ミダイト法、 ある いはホスホン酸エステル法などの核酸の合成方法が報告されている。中でもホスホ 口アミダイト法は、 DNA合成装置による自動合成を可能とする原理として広く利用 されている。 DNA合成装置による DNAの合成には、 一般に固相合成法が利用される。 すなわち、 3' 位において樹脂に結合したヌクレオシドに対して、 目的とする塩基 配列を構成するモノヌクレオシドを 3' ->5' 方向に 1塩基ずつ、化学的に結合させ ることによって、 DNAが合成される。 このとき、 モノヌクレオシドとして、 複数の 塩基の混合物を与えれば、 当該位置において異なる塩基が結合される。 DNAの化学 合成反応において、各塩基の濃度が等しい場合には、結合反応は等しい確率で起き るとされている。 したがって、 たとえば、 aと gを等しい濃度で含む混合物を与えた 場合には、 ある位置において aと gの 2通りの塩基配列を有する DNAが合成される。 すなわち 2種類の塩基の混合物の利用によって、本発明における 2多義領域を合成 することができる。 同様に、 4種類の塩基の混合によって N領域が、 3種類の塩基 の混合によって 3多義領域が、 それぞれ合成される。
本発明においては、特異プライマーを構成する塩基配列を基本として、 (立置に おける多義コードを構成する塩基の混合物を順次反応させることによって、多義プ ライマ一が合成される。 このようにして、 特異プライマーと多義プライマーとは、 同時に集合体として合成することができる。 合成された集合体は、 必要に応じて
HPLCなどによって精製し、 相補鎖合成反応に利用することができる。
多義プライ を構成する各領域は、順次合成することもできるし、別々に合成 した領域を連結することによって多義プライマーの全体を得ることもできる。たと えば本発明の多義プライマーが特異領域 (3' 末端を含む) と、 多義領域 (5' 末端 を含む) とで構成される場合には、両者を別々に合成した後に連結することによつ て多義プライマーを得ることもできる。オリゴヌクレオチドを、 T4リガーゼなどの 酵素を利用して連結する方法が公知である。
更に、多義領域が多義性の異なる複数の領域で構成されるときには、各領域ごと に別々に合成しておくこともできる。別々に合成された多義性の異なる領域は、多 義プライマーのデザインに応じて、連結することにより目的とする塩基配列を有す る多義プライマーとして構築される。 たとえば N領域は、 特異プライマーの塩基配 列にかかわらず共通である。 したがって、 ,の塩基配列にかかわらず、必要な長 さの N領域を予め合成しておくことができる。 また 3多義領域についても、 塩基配 列の組み合わせの数は限定されるので、予めオリゴヌクレオチドとして合成するこ とに意義がある。
本発明の核酸の同定方法に必要な各種の要素を組み合わせることによって、核酸 同定用のキットとすることができる。 すなわち本発明は、次の要素を含む、核酸の 同定用キットに関する。
(1)被検核酸の複数の部位に相補的な塩基配列からなる、 1種類以上のプライマ —の混合物を含む波形生成用プライマー集合体
(2)铸型特異的な相補鎖合成反応を触媒する DNAポリメラーゼ
(3)相補鎖合成用基質
本発明のキットには、先に述べたようなプライマー集合体を利用することができ る。 同様にして、 本発明に利用可能な DMポリメラーゼ、 および相補鎖合成用の基 質を本発明のキットとすることができる。本発明のキットは、陽性対照おょぴ Zま たは同定すべき核酸の解離曲線の波形パターンを付加的に含むことができる。更に 本発明のキットは、解離曲線を解析するために利用することができるィンタ一力レ 一ターを含むことができる。インターカレーターとしては、サイパーグリーンなど を示すことができる。 本発明のキットを構成する各要素は、予め反応容器に充填して供給することがで きる。 すなわち、 相補鎖合成のための波形生成用プライマー集合体、 DNAポリメラ ーゼ、 ヌクレオチド基質、反応液を構成する緩衝剤、インターカレーター等を反応 容器に充填しておくことができる。各要素の量は、反応液中の最終濃度に応じて設 定することができる。各要素は乾燥状態であっても、液状であっても良い。一般に、 酵素などの蛋白質は、乾燥状態とすることにより保存中の活性を維持しやすいとさ れている。 このような反応容器に核酸を含む試料溶液を加えた後に、必要な温度条 件でィンキュベートするだけで、本発明の方法を実施することができる。本発明の キットに用いる反応容器として、複数の独立した反応空間を有する容器を利用する ことができる。 たとえば、 9 6 ( 1 2 X 8 ) のゥエルを有するマイクロプレートの ような反応容器は、 本発明のキットに有用である。
たとえば、 同一の波形生成用プライマー集合体を、 複数の反応空間に充填して、 多数の核酸試料の同定を同時に実施するためのキットとすることができる (図 1 3 )。 あるいは複数種類の波形生成用プライマー集合体のそれぞれを別の反応空間 に充填し、同一の核酸試料について、複数の波形パターンを得るためのキットとす ることもできる (図 1 1 ) 。 より具体的には、 前記マイクロプレートのように 9 6 のゥエルを有する反応容器において 8種類の波形生成用プライマー集合体を用い る場合には、 1 2検体分の同定を実施するためのキットとすることができる。 本発明の核酸の同定方法は、同定が必要なあらゆる核酸に対して適用することが できる。以下に、本発明の核酸の同定方法の応用によって、種々の利点が期待でき る具体的な核酸の例について説明する。
本発明は、遺伝的に均一性の高い微生物集団の識別に有用である。本発明の核酸 の同定方法は、核酸の複数の領域におけるわずかな相違を総合的に識別することを 可能とする。たとえば複数の領域について得られた伸長産物について解離曲線を解 祈することにより、ゲノム全体にわたって相同性の高い塩基配列を有する微生物集 団であっても、相互に固有の波形パタ ンを得ることができる。 その結果、各菌種 に固有の波形パターンを容易に識別することができる。
たとえば、結核菌に代表される抗酸菌は、鑑別の必要な代表的な微生物集団であ る。 PCR法によって抗酸菌を同定するためには、 多くの領域についてプライマーを デザインし、増幅反応を繰り返す必要がある。 一方、本発明を利用すれば、複数の 領域について伸長産物を得ることができるプライマー集合体の利用によって、 1つ の反応容器で同定に必要な全ての情報を得ることができる。 あるいは、 1つの被検 試料に対して、 2つの反応容器を利用して異なるブライマ一集合体を適用すること によって、 同定結果の信頼性を高めることもできる。
同様の利点力 癌などの遺伝子の異常に起因する疾患の検査においても期待でき る。 p 5 3などの特定の遺伝子の異常が癌の原因となりうることが指摘されている。 しかし癌の原因となる遺伝子の異常は、 その全容が明らかにされたとはいえない。 PCR法によって未知の遺伝子の異常を知ることは、 その原理上、 不可能といってよ レ、。 ところが本発明を利用すれば、 たとえ原因遺伝子が特定されていなくても、癌 細胞に固有の波形パターンを生成する条件を容易に見出すことができる。
また本発明は、 多型の解析に利用することもできる。 多型には、 たとえば S Ps のような 1塩基多型や、サテライトマ一カーのような繰り返し配列の多型が知られ ている。 これらの多型と、 さまざまな遺伝形質の関係が次々と明らかにされ、多く の情報が蓄積されている。多型の検出技術にはさまざまな方法が知られている。 し かしその多くは、特定の多型を検出することはできても、複数の多型を同時に検出 することは困難な場合が多い。 たとえばさまざまな DNAプロープを高密度に蓄積し た DNAァレイは、 複数の多型を同時に解析するための有効なツールの 1つである。 しかしたとえ DNAアレイを用いても、 プローブのハイブリダィゼーションに依存す る限り、プローブとして搭載していない塩基配列についての情報を得ることはでき ない。 また少なくとも現状においては、 DNAアレイは高価な分析デパイスである。 研究用のツールとしては広く普及しているが、日常的な核酸の同定方法に利用する ためには、 より安価に実施可能な解析ツールであることが望まれる。 一方本発明の方法は、多型を含む領域を伸長産物として生成すれば、当該伸長産 物に含まれる多くの多型を総合的に比較することができる。 このことは、公知の方 法に比べて、多型に基づく遺伝子診断技術を飛躍的に効率的に行いうることを意味 してレ、る。 また、本発明の核酸の同定方法を利用すれば、多型そのものが未知であ つても、その多型によって波形パターンに変化をもたらす場合には、核酸の識別が 可能となる。更に、本発明の方法は、一般的な核酸の合成方法に利用されている試 薬成分を利用して安価に実施することができる。
一般に核酸の同定とは、あるネ皮検核酸と他の核酸との同一性を確認することを言 う。 通常、 異なる種類の細胞は、異なる核酸を含むことから、本発明によって細胞 の種類を識別することができる。 更に、たとえば同じ種類の細胞であっても、細胞 の状態によつて核酸が異質な状態となる場合には、本発明を細胞の状態の同一性の 確認に応用することができる。たとえば、細胞の死滅によって核酸の分解が起きる ことが知られている。 この現象を利用して、本発明に基づいて細胞の生死を判定す ることができる。 より具体的には、生細胞で得られた波形パターンの消失を確認す ることによって、 細胞が死んでいることを確認することができる。 たとえば PCR法 などでは、増幅対象領域が存在している限り、細胞の生死とは無関係な同 果が もたらされる。 しかし本発明では、核酸の状態をより多面的に捉えることができる ため、 細胞の死を波形の変化として捉えることができる。
本発明の核酸の同定用キットの構成例を、図 1 1に示す。 図 1 1のキットは、複 数のゥエルを備えた反応容器を利用した本発明のキットを示す。 この例では、 4種 類の波形生成用プライマー集合体 sPGBUP65、 sPGBUPUPR, sPGBUPFX,および sPGBUPRX がそれぞれ別のゥエルに予め充填されている。 また各ゥエルには、 DNAポリメラー ゼによる相補鎖合成反応に必要なその他の試薬成分についても、予め充填されてい る。 したがって被検核酸を添加して所定の反応条件を与えるだけで、本発明の同定 方法を実施することができる。この例に示した 4種類の波形生成用プライマー集合 体 sPGBUP65、 sPGBUPUPR、 sPGBUPFX, および sPGBUPRXは、 それぞれ異なる領域に対 してデザインされたものであることができる。すなわち、図 1 2に示すように被検 核酸の複数の領域を標的領域として、 4種類の波形生成用プライマー集合体をデザ インすることができる。 このような組み合わせにより、波形パターンの種類をより 多く得ることができる。すなわち、本発明によって同定することができる核酸の種 類を増加させることができる。
あるいは本発明は、保存された塩基配列で構成された遺伝子群を対象として、該 遺伝子群を構成する各遺伝子の塩基配列の相違を、総合的に識別するための方法を 提供する。 PCR法では、 高度に保存された塩基配列を含む各遺伝子に対して、 個別 に特異的なプライマーをデザインすることが困難である。 したがって、 PCR法を利 用してこのような遺伝子群を解析することは難しい。一方本発明は、複数の領域に ついて相補鎖合成を行うことを条件としているため、複数の領域が少ない種類のプ ライマーで合成されることは、むしろ好ましい条件であると言うことができる。つ まり保存された塩基配列で構成された遺伝子群は、本発明の同定方法の対象として 好ましい。本発明において保存された塩基配列で構成された遺伝子群とは、複数の 遺伝子が類似した塩基配列を含んでいる状態にあることを言う。このような遺伝子 群は、 遺伝子ファミリーと呼ばれることもある。
たとえば薬物代謝酵素チトクローム P450の遺伝子ファミリ一の同定に、本宪明を 応用することができる。チトクローム P450の遺伝子ファミリ一は、構造的に相同性 の高い多くの遺伝子で構成された遺伝子群である。更にこの遺伝子群には、非常に 多くの多型が存在する。 各多型を PCR法を利用して幅広く同定するためには、 原則 として解析すべき多型の種類の数だけ、相補鎖合成反応を実施する必要がある。つ まり、 PCR法によるチトク口ーム P450の遺伝子ファミリ一の同定方法は、 解析効率 が悪いと言える。 しかも各遺伝子の構造的な類似性が高いため、 PCR法のための特 異的なプライマーをデザインすることが困難である。これに対して本発明の方法に おいては、各遺伝子ファミリ一の多型部位を含む領域を伸長産物として合成すれば、 一度の反応で数多ぐの多型部位の同定が可能である。 一方、 図 1 3には、 複数のゥエルに同じ種類の波形生成用プライマー集合体 (SPGBUP65)を充填した本発明のキットを示した。 このような構成のキットは、多数 の被検核酸を同時に同定する場合に有用である。
本発明の波形生成用プライマーとそれを用いた核酸同定方法は、以下の態様を含 む。
( 1 )核酸上の任意の特定あるいは不特定領域に相補的な、各塩基鎖に 1塩基を配 置したヌクレオチド鎖を 3,末端に有し、該領域に相補性を有す可能性のある、 各塩基鎖に複数塩基を配置したヌクレオチド鎖を 5,末端に有して、該ヌクレ ォチド鎖は 5,末端側から 3,側にかけて段階的に相補性が高まると共に、 段 階的に安定性が低くなるような配列とされていることを特徴とする波形生成 用プライマー。
( 2 ) 上記プライマーのヌクレオチド鎖は、 5,末端側から順に、 アデユン, シト シン, グァニン, チミンを含む塩基の何れか 4つを示すコードで構成される 第 1の領域、 上記塩基の何れか 3つを示すコードで構成される第 2の領域、 及び上記塩基の何れか 2つを示すコードで構成される第 3の領域を有し、 そ れぞれ第 1、 第 2及び第 3領域の塩基の長さは任意に設定されることを特徴 とする (1 ) 記載の波形生成用プライマー。
( 3 )上記プライマーは、 1 0乃至 3 0塩基からなり、 プライマー全鎖長に対する 相補可能性を有するヌクレオチド鎖の割合は、 0 · 1 2乃至 0 . 8 8である ことを特徴とする (1 ) 記載の波形生成用プライマ—。
( 4 ) 核酸の一部塩基配列を増幅する核酸増幅方法であって、
上記核酸上の任意の特定あるレヽは不特定領域を選択する工程と、
上記領域に相補的なヌクレオチド鎖と相補可能性を有するヌクレオチド鎖 と力 らなる (1 ) に記載の波形生成用プライマーと、
上記核酸上の少なくとも該領域を含む複数の領域に上記プライマーをァニ ールさせる工程と、 上記プライマー及ぴポリメラーゼの存在下、 上記複数の領域を铸型として ヌクレオチド鎖合成反応を行う工程と、
を有することを特徴とする核酸増幅方法。
( 5 )核酸上の任意の特定あるいは不特定領域に上記波形生成用プライマ一をァュ ールさせる工程において、 アニーリング温度を 4 9で以下に設定してァ-ー ルを行うことを特徴とする (4 ) に記載の核酸増幅方法。
( 6 )核酸上の任意の特定あるいは不特定領域に上記波形生成用プライマーを用い て核酸増幅を行う工程において、 1種類のセンスプライマーあるいはアンチ センスプライマーのみを用いて、 核酸のセンス鎖あるいはアンチセンス鎖の どちらか 1本鎖のみを増幅し、 同時に増幅した核酸を以後の増幅工程におけ る鏡型として再利用しないことを特徴とする (4 ) に記載の核酸増幅方法。
( 7 ) 核酸の一部塩基配列を増幅して核酸を同定する核酸同定方法であって、 上記核酸上の任意の特定ある ヽは不特定領域を選択する工程と、 上記領域に相補的なヌクレオチド鎖と相補可能性を有するヌクレオチド鎖 とからなる (1 ) に記載の波形生成用プライマーと、
上記核酸上の少なくとも該領域を含む複数の領域に上記プライマーをァニ ールさせる工程と、
上記プライマー及ぴポリメラーゼの存在下、上記複数の領域を铸型としてヌ クレオチド鎖合成反応を行う工程と、
得られる複数の核酸増幅産物に高次構造形成及び夾雑物形成などを含む 種々の相互干渉を形成させる工程と、
上記相互干渉形成性核酸増幅産物を加熱し、該核酸増幅産物の解離、変性に 際して得られる解離曲線の波形パターンに基づいて核酸を同定する工程と、 を有することを特徴とする核酸同定方法。
加えて本発明の波形生成用プライマーとそれを用いた核酸同定方法は、以下の態 様を含む。 (1)核酸を増幅および同定する方法であって、複数の独立した液体反応系で、各々 異種のプライマーを用いて同時に対象 2本鎖核酸の異なる領域を各々増幅し、 その増幅産物を加熱して 1本鎖核酸に解離または変性する際に得られる解離 温度あるいは解離パターンの組み合わせから、 対象 2本鎖核酸の性状を識別 することを特徴とする核酸増幅法および核酸同定法。
( 2 )核酸を増幅および同定する方法であって、複数の独立した液体反応系で、各々 同種のプライマ一を用いて同時に複数の異なる対象 2本鎖核酸の同等の領域 を各々増幅し、 その増幅産物を加熱して: I本鎖核酸に解離または変性する際 に得られる解離温度あるいは解離パターンから、 複数の異なる対象 2本鎖核 酸の性状を同時に識別することを特徴とする核酸増幅法および核酸同定法。
(3)核酸を同定する方法であって、複数の独立した液体反応系で、別途に核酸増 幅を行つた増幅産物を加熱して 1本鎖核酸に解離または変性する際に得られ る解離温度あるいは解離パターンから、 複数の異なる対象 2本鎖核酸の性状 を同時に識別することを特徴とする核酸増幅法及び核酸同定法。
(4) 上記液体反応系が液相 DN Aチップであることを特徴とする (1) 〜 (3) のいずれかに記載の核酸増幅法おょぴ核酸同定法。
(5) 上記 (1) または (2) または (3) において、 標的核酸に対して 1つ以上 の特異的あるいは非特異的プライマーを用いて対象 2本鎖核酸の性状を識別 することを特徴とする核酸増幅法おょぴ核酸同定法。
(6) 上記 (1) または (2) または (3) において、 Ta qDNAポリメラーゼ (耐熱性 DNA合成酵素) を含む DNAポリメラーゼ (DNA合成酵素) を 用いて核酸増幅を行い、 対象 2本鎖核酸の性状を識別することを特徴とする 核酸増幅法および核酸同定法。
(7) 上記 (1) または (2) または (3) において、 核酸のセンス鎖あるいはァ ンチセンス鎖のどちらか 1本鎖のみを増幅し、 かつ増幅核酸を以後の増幅サ ィクルに铸型として再利用しない核酸増幅法を用いて対象 2本鎖核酸の性状 を識別することを特徴とする核酸増幅法および核酸同定法。
( 8 ) 上記 ( 1 ) または (2 ) または (3 ) において、 核酸増幅過程、 特にプライ マ一のアニーリング過程において、 4 9 以下のァニ一リング温度で反応を 行い、 対象 2本鎖核酸の性状を識別することを特徴とする核酸増幅法おょぴ 核酸同定法。
( 9 ) 上記 (1 ) または (2 ) または (3 ) において、 1本鎖核酸に解離または変 性する際に得られる解離温度あるいは解離パターンの検出にインカレーター 物質を用いて対象 2本鎖核酸の性状を識別することを特徴とする核酸増幅法 および核酸同定法。 図面の簡単な説明
図 1は、 本発明における相補鎖合成方法を模式的に説明する図である。 図 (A) は、 本発明によって被検核酸の複数の領域が合成される様子を示す。 図 (B) は、 複数の伸長産物が種々の相互干渉構造を形成する様子を示す。
図 2は、 本発明に用いる多義プライマーの構造を示す図である。
図 3は、 多義プライマーの特異領域の配列の一例を示す図である。
図 4は、 多義プライマーの多義領域の配列の一例を示す図である。
図 5は、本実施例における波形生成用プライマー集合体 BAUP65による相補鎖合成 反応を模式的に示す図である。
図 6は、 解離曲線の波形パターンを示す図である。 図 (A) は、本発明によって 相補鎖合成した伸長産物の波形パターンを示し、 図 (B) は、 PCR法によって増幅 した増幅産物の波形パターンを示す。 図中、縦軸は蛍光強度微分値を、横軸は温度 (°C) を示す。
図 7は、 反応産物の電気泳動結果を示す写真である。 図 (A) は、本発明の多義 プライマ一集合体によって得られた伸長産物の電気泳動結果を示し、 図 (B) は、 PCR法によつて増幅した増幅産物の電気泳動結果を示す。 Mは分子量マーカーを示す。 また、 (1 ) 〜 (3 ) の各レーンは、 カンピロバクタ、 インフルエンザ菌、 ネズミ チフス菌の DNAを铸型とする反応産物の結果である。
図 8は、ァニ一リング温度の違いによる解離曲線の波形パターンの変化を示す図 である。 図 (A) 、 (B ) 、 (C) は、 大腸菌を用いてそれぞれ 5 5。C、 4 0 °C、 2 5 °Cでアニーリングした場合の波形パターンを示す。
図 9は、 アニーリング温度の違いによる解離曲線の波形パターンの変化を示 す図である。図(A)、 (B )、 (C)は、黄色プドウ球菌を用いてそれぞれ 5 5 °C、 4 0 °C、 2 5 °Cでアニーリングした場合の波形パターンを示す。
図 1 0は、 多義領域の有無による解離曲線の波形パターンの変ィヒを示す図であ る。 図 (A) は、 多義領域を有する場合の波形パターンを示し、 図 (B ) は、 多義 領域を有さない場合の波形パターンを示す。
図 1 1は、 本発明の核酸の同定用キットの構成例を示す。 図中、 sPGBUP65、 sPG BUPUPR、 sPGBUPFX、および sPGBUPRXは、波形生成用プライマー集合体の名前である。 図 1 2は、 4種類の波形生成用プライマー集合体 sPGBUP65、 sPGBUPUPR, sPGBUPFX, および sPGBUPRXのデザインのために設定した 「標的領域」 の、被検核酸上における 位置関係を模式的に示している。
図 1 3は、 本発明の核酸の多数同時同定用キットの構成例を示す。
図 1 4は、 E. coli、 S. aureus、 および caretsから抽出された DNAを被検核酸と して、 3種類の波形生成用プライマーによって得られた波形パターンの相違を示す。 図中、縦軸は蛍光強度微分値を、横軸は温度 (°C) を示す。 SPGBUP65, sPGBUPUPR, およぴ sPGBUPFXが波形生成用プライマーの名前である。
図 1 5は、相補鎖合成におけるスタビライザーの添加が波形パターンに与える影 響を示す。 図 1 5 (A) がスタビライザー無し、 図 1 5 (B ) がスタビライザーを 添加した場合の波形パターンである。 図中、縦軸は蛍光強度微分値を、横軸は温度 (°C) を示す。
図 1 6は、相補鎖合成におけるスタビライザーの添加が相補鎖合成に与える影響 を示す。 図 16 (A) がスタビライザー無し、 図 1 6 (B) がスタビライザーを添 加した場合の、 合成産物の電気泳動の結果を示す写真である。 (A) および (B) の左端のレーンが 200 bpラダー、右側の 2つのレーンがサンプノレ(デュプリケー ト) の泳動結果である。 発明を実施するための最良の形態
以下、 実施例に基づいて本発明を更に詳細に説明する。
実施例 1. 多義プライマーのデザイン
上述したように、本発明は特異領域と多義領域とを有する多義ブラィマーを提供 する。 図 2にその概念図を示した。 図 2の多義プライマ一は、 5'末端側に多義領 域を有することにより、特定塩基配列のみならず、 これに類似するような相似性の ある配列にもァニールすることができる。なお、実際にこのような構造の波形生成 用プライマー集合体を用いる際には、 目的に応じて、 以下の (a) 〜 (e) に示す 条件を調整することが望ましい。
(a) プライマ一長
(b) 特異領域の配列
(c) 多義領域の配列
(d) プライマー量
(e) アニーリング温度
そこで、以下では、 この波形生成用プライマー集合体を構成する多義プライマー の構造及ぴ反応条件の一例として、上述した(a)〜(e)の項目を順に検討した。
(a) プライマー長の調整
先ず、プライマー全長が合成効率に与える影響を検 i rるため、特異領域と多義 領域とが 1: 1であるプライマーについて、 98°CZ2秒、 40°C/20秒、 72°C /20秒のプロトコルを 50サイクル実施して相補鎖合成反応を行った。相補鎖合 成によって得られた伸長産物について、解離曲線の波形を解析し、多義プライマー の構造が結果に与える影響を比較した。多義プライマーは、特異性と安定性の 2つ の指標に基づいて評価した。
ここで「特異性が高い」 とは、標的領域として選択した部分以外の領域に対して ァニールしにくいことを言う。本発明においては、多義プライマーの特異性が高い ことは、伸長産物の多様性が低くなる原因となる。その結果、波形の多様性は失わ れる。 つまり、特異性をある程度低下させた多義プライマーが、本発明における望 ましい多義プライマーであると言うことができる。 ·
一方、安定性とは、多義プライマーを構成する各プライマーのァニールの再現性 を言う。多義ブラィマーが異なる塩基配列のォリゴヌクレオチドからなる集合体で あることは既に述べた。しかし集合体を構成している個々のオリゴヌクレオチドは、 それぞれの塩基配列に相補的な塩基配列に対してァニールするはずである。ところ が、たとえば多義領域の長さが長すぎる場合には、結果的に目的とする塩基配列に 対応するオリゴヌクレオチドの量が少なくなる。つまり、十分な相補鎖合成が起き なくなる可能性が高まる。
この検討の結果、 プライマー全長が 1 6〜2 4 merの場合に、 好ましいプライマ 一の特異性あるいは安定性が見られた。 この条件で、伸長産物の波形の多様性が最 大となった。
一方、 プライマー全長が 2 4〜3 O merでは、 プライマーの特異性あるいは安定 性が高くなる反面、得られる解離曲線の波形の多様性が低下した。特異性が高まる ことにより、標的領域として選択した領域以外の領域の相補鎖合成反応が十分に進 まなかつたと考えられた。 プライマー全長が 1 0 ~ 1 6 merでは、 波形の多様性は 高まる。 しかし一方で、 特異性と安定性は低下した。 プライマー全長が 9 mer以下 では、合成反応が起こらなかった。 これらの結果から、本発明の多義プライマーの プライマ一長としては、 1 0〜3 O merの範囲を使用することができ、 中でも好ま しい長さは 1 6〜2 4 merであると結論した。
次に、プライマー全長に占める特異領域と多義領域の割合を検討した。この結果、 プライマー全長に占める多義領域の割合が 0 . 3 3〜0 . 5 5の場合に、安定性と 伸長産物の多様性が最大となった。 塩基数に直すと、 全長 2 4 merの多義プライマ 一では、 8〜1 3 merの場合に望ましい結果が得られることになる。
一方プライマー全長に占める多義領域の割合が 0 . 5 5〜0 . 8 8の場合には、 波形の多様性は高まるが安定性が低下した。 このときの条件を塩基数で示せば、多 義領域が 1 4〜2 5 mer,特異領域が 4〜 7 merとなる。 また、プライマー全長に占 める多義領域の割合が 0 · 1 2〜 0 . 3 3の場合には、 波形の多様性が失われた。 このときの条件を塩基数で示せば、 多義領域が 4〜 7 mer, 特異領域が 1 4〜 2 5 merとなる。
更に、 プライマー全長に占める多義領域の割合が 0 . 8 9以上では、いわゆるラ ンダムプライマーとなり、正常な合成が起こらなかった。 このときの条件を塩基数 で示せば、例えば多義領域が 2 5 mer以上、かつ特異領域が 3 mer以下となる。また、 プライマー全長に占める多義領域の割合が 0 . 1 1以下では、 通常の PCRプライマ 一と同じような合成反応が見られた。つまり、ほぼ 1種類のみの相補鎖合成産物が 見られた。 このときの条件を塩基数で示せば、 例えば多義領域が 3 mer以下、 かつ 特異領域が 2 5 mer以上となる。
なお、以下ではプライマー全長に占める多義領域の割合を 0 . 3 3〜0 . 5 5と するものとして説明する。
( b ) 特異領域の配列
特異領域は、被検核酸から選択された標的領域に相補的な塩基配列からなってい る。 特異領域の長さは、 多義プライマーの全長が 1 6〜2 4merであるときに 8〜 1 3 merであることが好ましレ、。 また、 3,末端を含む 5塩基中における G (グァ二 ン) 又は C (シトシン) が占める割合である G C %は、 5 0 %以上であることが望 ましい。 さらに、 3,末端の安定性は、 一 5 . 5〜一 9 . 5 kcal/mol以上が必要であ る。 なお、 3,末端側の 3塩基以外において 5 0 %以内のミスマッチがある場合にも ァニール可能である。 この際、 ミスマッチ部分の安定性が一 1 2 . O Kcal/mol以下 であれば、 合成効率の低下は無視し得る。
( c ) 多義領域の配列
多義領域は、被検核酸から選択された標的領域以外の領域に対してもァユール可 能なプライマーを増やすために配置される領域である。多義領域は、前記標的領域 に対して相補的な塩基を、それ以外の塩基に置換した塩基配列からなっている。置 換する塩基の種類は 1〜 3種類の任意の塩基である。本発明において、塩基の置換 を表現するために、 表 1に示す多義コード (Ambiguity Code)を用いる。 多義プライ マーの構造は、例えば図 4に示すような塩基配列によって示すことができる。図 4 に示した塩基配列を有する多義プライマーは、 多義領域における多義性が 5'〜3 '側 にかけて段階的に低下する構造を有している。多義領域の長さは、プライマー全長 が 1 6〜2 4 merであるときに 8〜 1 3 merであることが好ましい。
表 1 Ambiguity Code
Figure imgf000049_0001
( d ) プライマ一量
上述した多義領域を含む多義プライマーの集合体は、実際には異なる塩基配列を 有するオリゴヌクレオチドの集合体である。 したがって、 1つの2 Ambiguity Code が含まれることは、実際には異なる塩基配列からなる 2種類のォリゴヌクレオチド が含まれることを意味している。そのため、铸型核酸とァニールする有効率は 1 Z 2となる。 例えば、 2 Ambiguity Code: S (Cまたは Gを示す) が含まれた SATTという 塩基配列は、実際には CATTおよび GATTの 2種類の塩基配列からなるオリゴ ヌクレオチドを含むことを意味する。 この場合、それぞれの有効プライマー量は 1 Z2となる。 同様に、 1つの 3 Ambiguity Codeまたは 4Ambiguity Codeによって有 効プライマー量はそれぞれ 1ノ 3または 1 4となる。 つまり、 3Ambiguity Code: B (C、 Gまたは Tを示す) が含まれた ΒΑΤΤという配列では、 CATT、 GATT 又は TATTの 3種類の塩基配列からなるオリゴヌクレオチドを含むことを意味する。 したがって、実際にプライマー量を計算する際には、 この有効プライマー量を考 慮する必要がある。具体的には、最低プライマー量に有効プライマー量の逆数を乗 算し、 これを多義領域の塩基数とミスマッチ率である 4とで除算する。図 4の例で は、 2つの 4 Ambiguity Code、 4つの 3 Ambiguity Code、 そして 2つの 2 Ambiguity Codeを有するため、 有効プライマー量は、 1Z5184 (= (1/4) 2X (1/ 3) 4X (1/2) 2) となる。 また、 多義領域の塩基数は 8である。 これにより、 最低プライマー量を 1 (Pmol/50^L) としたとき、実際に加えるべきプライマー 量は、 1 X 5184 + 8 + 4=162 (pmol/ 50 L) 程度となる。 なお、 このプ ライマー量の算出方法は一例であり、 この方法に限定されるものではない。
(e) アニーリング温度
アニーリング温度を検討するために、先ずプライマーの Tm値を算出した。 Tm値と は、互いに相補的な塩基配列を持つ核酸の 50 %が塩基対結合した状態となる温度 をいう。 具体的には、 特異領域の Tm値を 2(A+T)+4(G+C)法で計算し、 多義領域の平 均 2(A+T)+4(G+C)法で計算した。 そして、 これらを総合してプライマー全長の Tm値 を計算した。
通常の PCR法におけるアニーリング温度は、 Tm値マイナス 5°C程度である。 本発 明におけるァユーリング温度は、波形パターンを多様化するために、 Tm値マイナス 20°C程度とすることが好ましい。低い温度を与えることで、短いプライマ一もァ ニールしやすくなる。実験的には、 40°C以下で解離曲線の波形多様性の向上が顕 著となった。 一方、 1 5で以下ではランダムプライミングのみとなり、殆ど合成反 応を示さない。
実施例 2 . 細菌遺伝子の同定
( 2 - 1 ) 細菌遺伝子の合成及び同定
細菌遺伝子のみを合成し、且つ菌種間での解離曲線の波形パターンの差異を強調 する波形生成用プライマ一集合体である BAUP65プライマー (nnvhdbssga tccaaccg c/配列番号: 6 ) を作成し、相補鎖合成及び核酸同定に使用した。 具体的には、 細 菌の 16sリポソーム R A (rRNA) をコードする DNA配列のうち、 約 3 0 0 0菌種で保 存されている 1 1塩基を特異領域の配列とし、これに 8塩基長の多義領域を結合さ せてプライマーを設計した。 これにより、 図 5に模式的に示すように、 16s rRNA をコードする配列以外にも、 23s rRNA, 8s rRNA等の 16s rRNAと相同性のある配列 が同時に相補鎖合成されることが期待される。
使用する細菌としては、 カンピロパクタ 、C. jejuni) 、 インフルエンザ菌 iti l nfluenzae) 及ぴネズミチフス菌 、S. typhimurimi) を選択し、 ISOGEN- LS (日本ジ ーン株式会社製) をマニュアルに従って使用して DNAを抽出した。 この各検体 DNA を鍀型とする相補鎖合成は、以下の表 2に示す組成の反応液を準備し、そのうち 2 5 Lを用いて行った。
表 2 相補鎖合成反応液の組成
Figure imgf000051_0001
表 2において、 検体 DNA溶液については、 DNAを 1 z g含有する量が用いられ、 x μΙ+γμΙ=9. となるように滅菌蒸留水 (スタビライザー含有) を加えて 調製した。
そして、 98。CZ2秒、 25。C/40秒、 72で 10秒のプロトコルを 70サ ィクル実施して相補鎖を合成し、 Smart Cycler (宝酒造株式会社製) を用いて温度 範囲 70〜 94 °C、温度ステツプ 0. 1 °Cの条件で各温度で 1秒間観察することに より、 相補鎖合成産物の解離曲線の波形を観察した。
比較例として、 BAUP65プライマ一 (配列番号: 6) の代わりに、 16s rR Aの一部 をコードする配列を増幅させるセンスプライマ一 (c'agcagccgc ggtaatac/配列番 号: 7) 及びアンチセンスプライマー (acgacacgag ctgacgac/配列番号: 8) を用 いて、 通常の PCR法に従って検体 DNAを増幅させた。
本発明と PCR法とによる解離曲線の波形パターンをそれぞれ図 6 (A) 、 (B) に示す。 ここで、 図 6において (1) はカンピロパクタ、 (2) はインフルエンザ 菌、 (3) はネズミチフス菌である。 図 6から分かるように、 図 6 (B) に示す通 常の PCR法では、 センスプライマー (配列番号: 7) 及ぴアンチセンスプライマー (配列番号: 8) で規定される配列のみが増幅されるため、菌種間で波形パターン の違いが殆ど観察されなかった。 これに対して、 図 6 (A) に示す本発明では、複 数箇所の配列が合成されるため、菌種毎に多様な波形パターンが観察され、 この波 形パターンを調べることにより菌種の核酸同定が可能とされる。
次に、相補鎖合成反応終了後のサンプル 10 Lに 2 /zLのローディングバッファ を添加し、 1. 2%ァガロースゲルを使って、 45分間、 5 OVで電気泳動後、 ゲ ルをェチジゥムブロマイドで染色してヌクレオチド鎖を確認した。なお、分子サイ ズマーカとして、 200bp ladder markerを使用した。
また、 比較例として、 BAUP65プライマー (配列番号: 6) の代わりに上述したセ ンスプライマー (配列番号: 7) 及ぴアンチセンスプライマ一 (配列番号: 8) を 用いた核酸増幅反応終了後のサンプル 10 を使用して同様に電気泳動を行い、 ゲルをェチジゥムプロマイドで染色してヌクレオチド鎖を確認した。 本発明と PCR法とによる反応産物の電気泳動結果をそれぞれ図 7 (A) 、 (B) に示す。 ここで図 7において、 レーン 1はカンピロパクタ、 レーン 2はインフルェ ンザ菌、 レーン 3はネズミチフス菌である。 図 7から分かるように、 図 7 (B) に 示す通常の PCR法では、 センスプライマー (配列番号: 7) 及ぴアンチセンスプラ イマ一(配列番号: 8) で規定される配列のみが増幅されるため、 同サイズのパン ドのみが観察された。 これに対して、 図 7 (A) に示す本発明では、複数のパンド が観察された。 このことから、本発明では、複数箇所の配列が合成されることが確 認された。
(2-2) アニーリング温度による解離曲線の比較
ァユーリング温度の違 ヽによる解離曲線の波形パタ一ンの変ィ匕を確認するため に、 大腸菌 (K coli) と黄色ブドウ球菌 S. aureus) との 2種の菌について、 上述 と同様の手法で 5 5°C、 4 Or, 25 °Cの 3点で相補鎖合成反応を行い、解離曲線 の波形を観察した。大腸菌と黄色ブドウ球菌とについて得られた波形パターンをそ れぞれ図 8、 図 9に示す。 図 8、 図 9から分かるように、 どちらの菌についても、 5 5°C、 40°C、 25 °Cとアニーリング温度が低くなるにつれて、 より特徴的な波 形が得られている。 これは、 ァユーリングのための温度の低下に伴って、相補鎖合 成を開始するプライマーの種類が増えることを裏付けている。
(2-3) 多義領域の有無による解離曲線の比較
多義領域の有無による解離曲線の波形パターンの変化を確認するために、黄色ブ ドウ球菌について、上述した BAUP65プライマー (配列番号: 6) と多義領域を除い たプライマー (5,- GATCCMCCGC- 37配列番号: 9) とで相補鎖合成反応を行い、解 離曲線の波形を観察した。 BAUP65プライマー (配列番号: 6) と多義領域を除いた プライマーとについて得られた波形パターンをそれぞれ図 1 0 (A)、 (B) に示 す。図 10から分かるように、多義領域を有する BAUP65プライマー(配列番号: 6) では、多義領域を除いたプライマーと比較して特徴的な波形が観察されている。 こ のこと力 ら、多義領域を有することにより、 より効果的に核酸同定が行えることが 確認された。
実施例 3 . 異なる波形生成用プライマー集合体の利用
図 1 1に示した本発明のキットを用いた同定方法をシミュレーションした。図 1 1に記載のキットは、異なる領域に対してデザィンされた複数種類の波形生成用プ ライマー集合体を利用して、より多様な波形パターンを得ることを目的としている。 この実施例では、 波形生成用プライマーとして、 sPGBUP65、 sPGBUPUPR, および sP GBUPFXの 3種類を用いた。 これらの波形生成用プライマー集合体は、図 1 2に示す ようにそれぞれ異なる領域を標的領域として選択して、 デザィンされている。
BUP65に代えて各波形生成用プライマー集合体を用いる他は、 前記表 2に示す反 応液組成と同じ組成で相補鎖合成反応を実施した。相補鎖合成反応は、 1に記載と 同様の反応サイクルを 7 0回繰り返した。被検核酸として〖 col S. aureus^お よび cere^から抽出した DNAを用いた。 DNAは、 IS0GEN-LS (日本ジーン株式会社 製) を利用した。
得られた解離曲線の波形パターンを図 1 4に示す。被検核酸と使用されたプライ マーに応じて異なる波形パターンが得られた。すなわち、異なる波形生成用プライ マー集合体の利用によって、 より多様な波形パターンを得られることが示された。 各波形パターンを参照用の波形パターンと比較することによつて検体の DNAを同定 することができる。
実施例 4 . 25°Cの低温アニーリングにおける 「スタビライザー」 の効果
以下、 「スタビライザー」 の効果について、 実施例に基づいて本発明をさらに具 体的に説明する。本発明は以下の実施例に限定されるものではなく、本発明の要旨 を逸脱しない範囲において種々の変更が可能である。
( 1 ) 方法
細菌 DNAの特定塩基配列を複数箇所で認識するプライマー、 BAUP65 (配列番号: 1 0 ) を作成し、本発明の方法に基づいて核酸を同定した。相補鎖合成工程におい て、スタビライザーを加えた場合と加えない場合の波形パターンを比較して、スタ ビライザ一の効果を確認した。
細菌 DNAは大腸菌 、E. coli) DNAを用いた。 I SOGEN— LS (日本ジーン株式 会社製)を用い、大腸菌約 106個からマユュアルに従って DNAを抽出した。抽出 DNA は最終的に 0. 5 nも / (Η20) の濃度に調整した。 「スタビライザー」 の処方を 表 3に、 相補鎖合成反応液の組成を表 4およぴ表 5に示す。
表 3 「スタビライザー」 lmLの処方
Figure imgf000055_0001
*1 SDS Sodium Dodecy丄 Sulfate
*2 Brj35 Polyoxyet ylene (23) Lauryl Ether *3 SyGreen溶液 原液 1000倍希釈
*4 Taq DNA polymerase TAKARA Ex Taq™ R-PCR
BAUP65 5'-GGAAGGTGGGG-3'
「スタビライザー無し」 および「スタビライザー有り」 の組成を有する反応液に ついて、 各々 1サンプル Lを加え相補鎖合成反応を行った。 反応は、 デュプリケートで実施し計 4サンプルの波形を観察した。 iCycler (Biorad社製) を用いて 9 8 °C/ 2秒、 2 5 °C/ 4 0秒、 7 2 °C/ 1 0秒のプロトコールを 5 0サ イタル実施して相補鎖を合成した。反応後、温度範囲 7 5〜9 5 °C、温度ステップ 0 . 1 °Cの条件で各温度で 8秒間観察することにより、合成産物の解離曲線の波形 を描画した。
次に、核酸増幅反応終了後のサンプル 1 0 Lに 2 Lの口一ディングパッファー を添加し、 1 . 2 %ァガロースゲルを使って、 4 5分間、 5 0 Vで電気泳動後、 ゲ ルをェチジゥムブロマイドで染色して合成産物を確認した。 なお、分子サイズマー 力として、 200bp ladder markerを使用した。
( 2 ) 結果
「スタビライザー」の効果を、図 1 5 (A) 「スタビライザー無し」、図 1 5 (B) 「スタビライザー有り」 の波形の差異として示す。 ここで図 1 5 (A) では、 核酸 の合成が不十分なため波形が不明瞭である。一方図 1 5 (B) では十分な核酸が合 成されているため、 大腸菌の DNAに特徴的な波形が正常に描画されている。 「スタ ピライザ一」の効果は、電気泳動分析の結果におよっても裏付けられた。すなわち、 図 1 6 (A) 「スタビライザー無し」 では合成産物のパンドが見られない。 一方図 1 6 (B) 「スタビライザー有り」では合成産物のパンドを確認することができた。 以上の結果から、 「スタビライザー」 の添加によって、 25°Cという低温条件下で の相補鎖合成と波形の解析が可能となることが裏付けられた。 スタビラィザ一は、 たとえば次のような機序によつて 25°Cにおけるプライマ一の特異的なァニーリン グと相補鎖合成を成立させていると考えられた。
プライマーおよぴ DNAの直線化維持、 あるいは高次構造形成抑制、 ブラィマ一一铸型 DNA間の水素結合安定化、
したがって、低温条件下での相補鎖合成によつて本発明を実施する場合には、「ス タビラィザ一」 の添加が有効であるといえる。 産業上の利用の可能性
本発明の核酸の同定方法は、構造の同一性が高い核酸の間のわずかな塩基配列の 違いを、解離曲線の波形パターンの明瞭な差として検出することができる。本発明 の同定方法においては、被検核酸の複数の領域の合成によって得られる伸長産物を 解析対象とする。伸長産物の解離曲線の比較によって、核酸が同定される。複数の 領域から得られた伸長産物の混合物は、多様な塩基配列からなるポリヌクレオチド の混合物である。本発明では、多様性のあるポリヌクレオチドの混合物を解析する ことによって、核酸の同定を達成している。予め構造が明らかな核酸について、本 発明の核酸の同定方法と同じ条件で解離曲線の波形パターンを明らかにしておけ ば、被験核酸の解離曲線の波形パターンとの比較によって、容易に既知の核酸と比 較することができる。
本発明の核酸の同定方法は、伸長産物の混合物を直接解析し、解離曲線の波形パ ターンを得ることを特徴としている。そのため、伸長産物を得るための工程を簡便 に実施することができる。具体的には、たとえプライマー集合体を被検核酸にァニ ールさせ、 DNAポリメラ一ゼによる相補鎖合成反応を繰り返すことによって、 1つ の反応容器内で、 本発明に必要な伸長産物の混合物を合成することができる。 これに対して、公知の核酸合成方法に基づく核酸の同定方法は、均質性の高い合 成産物を解析する工程からなっている。 たとえば PCR法においては、 通常、 合成さ れるポリヌクレオチドは 1種類であり、全長にわたり完全に相補的に対合した 2本 鎖を形成しているため、一部に配列の違いを含む被検核酸間であっても、全体の熱 力学的安定性はほぼ同—となる。 このような均質性の高いポリヌクレオチドは、互 いに類似した単一のピークからなる解離曲線しか与えない。 したがって、解離曲線 の比較によって核酸を同定することは困難である。
本発明は、本発明の核酸の同定方法のための伸長産物を得るためのいくつかの方 法を提供した。 これらの方法は、いずれも少ない種類のプライマーによって、解析 に必要な複数の領域の相補鎖の合成を可能とする。これらの方法を利用することに より、反応に必要なプライマーの数を少なくすることができる。複数の領域の相補 鎖合成を行うときに、プライマーの種類が少ないことは、各領域に対する十分量の プライマーを確実に供給することができることを意味している。また、プライマー の種類が少ないことは、 経済的にも有利である。
なお PCR法が指数的に核酸を増幅するのに対して、 本発明の波形生成用プライマ 一集合体では、指数的な増幅は期待できない。 し力ゝし、複数領域を合成対象とする こと力 ら、比較的多量のポリヌクレオチドを容易に合成することができる。その結 果、短時間の反応でも解離曲線の解析に必要なポリヌクレオチドを合成することが できる。
本発明の核酸の同定方法は、 たとえば、遺伝子多型の同定に有用である。遺伝子 多型のひとつである SNPsについては、現在、多くの知見が蓄積されつつある。実際 に医療現場において S Ps解析の成果を生力すためには、疾患に関連すると考えられ る複数の SNPsについて、個々の SNPsを同時に同定する必要がある。 しかし現在実用 化されているジヱノタイピングの手法は、多数の SNPsを同時に解析するには、迅速 性や経済性などの点でいくつかの解決すべき課題を有している。一方本発明の同定 方法を利用すれば、複数の SNPs組み合わせを 1種類の (あるいは少ない種類の) プ ライマー集合体で、 同時に同定できる可能性がある。本発明の同定方法では、合成 されたポリヌクレオチドのわずかな塩基配列の相違を、解離曲線の違いとして明瞭 に捉えることができる。 したがって、複数の SNPsの相違を、 1度の解析によって見 出すことができる。
なお本明細書において引用された全ての先行技術文献は、参照として本明細書に 組み入れられる。

Claims

請求の範囲
1 . 次の工程を含む核酸の同定方法。
(1)被検核酸の複数の部位に相補的な塩基配列を含む核酸を合成する工程
(2) (1)で合成された核酸の混合物の解離曲線を得る工程、 および
(3)解離曲線の波形パターンを比較し、 同じ波形パターンを有する核酸が同一の 塩基配列を有していると同定する工程
2 . (1)被検核酸の複数の部位に相補的な塩基配列を含む核酸を合成する工程が、 被検核酸の複数の部位に相補的な塩基配列からなる、 1種類以上のブラィマー をァニールさせ、 相補鎖を合成する工程を含む、 請求項 1に記載の方法。
3 .変性剤おょぴ Zまたは塩類の存在下でプライマーをァニールさせ、相補鎖を合 成する工程を含む、 請求項 2に記載の方法。
4 . 変性剤が、非イオン系界面活性剤、 陰イオン系界面活性剤、 および洗■から なる群から選択される請求項 3に記載の方法。
5 .非ィオン系界面活性剤が、グリセリンエステルのポリォキシエチレンエーテル、 ソノレビタンエステ/レのポリォキシエチレンエーテ /レ、およぴソノレビトーノレエス テルのポリオキシエチレンエーテルからなる群から選択されるいずれかの非 イオン系界面活性剤である請求項 4に記載の方法。
6 . 洗浄剤が、 ドデシル硫酸塩、 ラウロイルサルコシン塩、 ラウリル酸塩、 および メルカプト酢酸塩からなる群から選択されるいずれかの化合物である請求項 4に記載の方法。
7. 塩類が、 Na2S04、 N S03、 NaH2P04、 NaHC03からなる群から選択されるいずれかの 化合物である請求項 3に記載の方法。
8 . プライマーが、被検核酸の複数の部位にァニールすることができる 1種類のォ リゴヌクレオチドからなる請求項 2に記載の方法。
9 . プライマーが、被検核酸の複数の部位にァニールすることができる 2種類以上 のオリゴヌクレオチドからなる請求項 2に記載の方法。
0 . 前記複数の部位の塩基配列の一部が共通である請求項 9に記載の方法。 1 . プライマーを構成する塩基配列の一部が相違しており、力つ相違する塩基が プライマーを構成する塩基配列の任意の場所である請求項 1 0に記載の方法。 2. プライマーを構成する塩基配列の一部が相違しており、かつ相違する塩基が プライマーを構成する塩基配列の 5' 側に局在している請求項 1 0に記載の方 法。
3 . プライマーが、次の特異プライマ一および多義プライマーを含む波形生成用 プライマー集合体である請求項 1 2に記載の方法。
特異プライマー:铸型核酸の標的領域に相補的な塩基配列を含む
多義プライマー:次の特異領域および多義領域を含む少なくとも 1種類の多義 プライマ一
特異領域:オリゴヌクレオチドの 3, 末端を含み、 前記標的領域に対して 相補的な塩基配列で構成される
多義領域:特異領域の 5' 側に配置され、 前記標的領域に対して相補的な 塩基配列を構成する塩基が当該塩基以外の塩基で置換された 塩基配列を含む
4.醒核酸における標的領域として複数の領域を選択し、 1つの被験核酸につ いて、前記複数の標的領域を対象として請求項 1 3に記載の同定方法を行う核 酸の同定方法。
5 .特異プライマーの融解温度よりも 2 0〜4 0 °C低い温度でプライマー集合体 を鎵型核酸にァニールさせる工程を含む、 請求項 1 3に記載の方法。
6 .プライマー集合体のァユールと相補鎖合成反応を複数回行う請求項 1 3に記 載の方法。
7 . 被検核酸が 1本鎖または 2本鎖である請求項 1に記載の方法。
8 . 被検核酸が DNAまたは RNAである請求項 1に記載の方法。
9 .被検核酸がゲノム DNAであり、工程 (1)において同定すべき細胞と他の細胞の 間で塩基配列が相違する少なくとも 1つの領域を合成する請求項 1に記載の 方法。
0 .複数の領域を合成するためのプライマーが、プライマーを構成する塩基配列 の少なくとも一部が共通である請求項 1 9に記載の方法。
1 .被検核酸が微生物のゲノム DNAであり、工程 (1)において同定すべき微生物と 他の微生物の間で塩基配列が相違する少なくとも 1つの領域を合成する請求 項 1 9に記載の方法。
2 .被検核酸が真核細胞のゲノム DNAであり、工程(1)において保存された塩基配 列で構成された遺伝子群を構成する領域を合成する請求項 1 9に記載の方法。 3 .遺伝子間で保存された塩基配列に対して相補的な塩基配列からなるプライマ 一によつて複数の領域を合成する請求項 2 2に記載の方法。
4 . 次の工程を含む、核酸を同定するための参照用の解離曲線の波形パターンを 生成する方法。
(1)被検核酸としての核酸標品の複数の部位に相補的な塩基配列を含む核酸を合 成する工程、 および
(2) (1)で合成された核酸の混合物の解離曲線を得る工程
5 .請求項 2 4に記載の方法によって複数種の核酸標品について参照用の解離曲 線の波形パターンを生成する方法。
6 .複数種の核酸標品について、共通のプライマー集合体によって合成された核 酸の解離曲線を得る工程を含む請求項 2 5に記載の方法。
7 .請求項 2 4に記載の方法によって得られた複数の参照用の解離曲線の波形パ ターンを含む参照用の解離曲線波形パターンデータベース。
8 .被検核酸の複数の部位に相補的な塩基配列からなる、 1種類以上のプライマ 一の混合物を含む波形生成用プライマー集合体。
9 . プライマーが、被検核酸の複数の部位にァニールすることができる 1種類の オリゴヌクレオチドである請求項 2 8に記載のプライマ一集合体。
. プライマーが、被検核酸の複数の部位にァニールすることができる 2種類以 上のオリゴヌクレオチドである請求項 2 8に記載のプライマー集合体。
.前記複数の部位の塩基配列の一部が共通である請求項 3 0に記載のプライマ 一集合体。
. プライマーを構成する塩基配列の一部が相違しており、かつ相違する塩基が プライマーを構成する塩基配列の任意の場所である請求項 3 0に記載のブラ イマ一集合体。
. プライマーを構成する塩基配列の一部が相違しており、かつ相違する塩基が プライマーを構成する塩基配列の 5' 側に局在している請求項 3 0に記載のプ ライマー集合体。
.次の特異プライマーおょぴ多義プライマーを含む請求項 3 3に記載のプライ マー集合体。
特異プライマー:铸型核酸の標的領域に相補的な塩基配列を含む
多義プライマー:次の特異領域おょぴ多義領域を含む少なくとも 1種類の多義 プライマ一
特異領域:プライマーの 3' 末端を含み、 前記標的領域に対して相補的な 塩基配列で構成される
多義領域:特異領域の 5' 側に配置され、 前記標的領域に対して相補的な 塩基配列を構成する塩基が当該塩基以外の塩基で置換された 塩基配列を含む
. 各プライマーの特異領域における gc含量が 50%以上である請求項 3 4に記載 のプライマー集合体。
.多義プライマーの多義領域に含まれる置換された塩基の種類が 3, 側から 5' 側にかけて増えることを特徴とする請求項 3 4に記載の波形生成用プライマ 一集合体。
7 . 多義領域の塩基配列が次の 3つの領域からなり、それぞれの領域を構成する 置換塩基配列の全ての組み合わせを含む多義プライマーの集合体を含む請求 項 3 4に記載のプライマー集合体。
(1) N領域:多義領域の 5, 末端を構成し、 その塩基配列を構成する各塩基は前記 標的領域の塩基配列に相補的な塩基に代えて、 アデニン、 シトシン、 グァニ ン、 およびチミンから選択される当該塩基以外の任意の 3種類のすべての塩 基で置換された塩基である
(2) 3多義镇域: N領域の 3 ' 側に配置され、 その塩基配列を構成する各塩基は前 記標的領域の塩基配列に相補的な塩基に代えて、 アデニン、 シトシン、 グァ ニン、およびチミンから選択される当該塩基以外の任意の 2種類の塩基のす ベてで置換された塩基である
(3) 2多義領域: 3多義領域の 3 ' 側に配置され、 その塩基配列を構成する各塩基 は前記標的領域の塩基配列に相補的な塩基に代えて、 アデニン、 シトシン、 グァニン、およびチミンから選択される当該塩基以外の任意の 1種類の塩基 で置換された塩基である
8 . プライマーを構成する N領域の塩基数が 2〜4塩基である請求項 3 7に記載 のプライマー集合体。
9 . プライマーを構成する N領域: 3多義領域: 2多義領域の構成塩基数の比が、
1 : 2 : 1である請求項 3 7に記載のプライマー集合体。
0 . プライマー集合体を構成する多義プライマーの多義領域の長さ力 プライマ 一を構成する塩基数の 1 0 %〜 8 0 %である請求項 3 4に記載のプライマー 集合体。
1 .プライマー集合体を構成する多義プライマーの特異領域および多義領域の長 さの合計が 1 0〜 3 0塩基である請求項 3 4に記載のプライマー集合体。 2 . 以下の工程を含む、次の特異プライマーおよび多義プライマーを含む波形生 成用プライマー集合体の製造方法。 特異プライマー:鎵型核酸の標的領域に相補的な塩基配列を含む
多義プライマー :次の特異領域および多義領域を含む少なくとも 1種類の多義 プライマ一
特異領域:プライマーの 3' 末端を含み、 前記標的領域に対して相補的な 塩基配列で構成される
多義領域:特異領域の 5' 側に配置され、 前記標的領域に対して相補的な 塩基配列を構成する塩基が当該塩基以外の塩基で置換された 塩基配列を含む
a)特異領域を合成する工程、 および
b)前記標的領域に対して相補的な塩基配列を構成する塩基、およぴァデニン、シ トシン、グァユン、およぴチミンから選択される当該塩基以外の任意の塩基の 混合物を結合して多義領域を合成する工程
3 . 前記任意の塩基の数を、前記多義領域の 3' 側から 5' 側にかけて 1〜 3に増 カロさせる請求項 4 2に記載の方法。
4 . 次の要素を含む、 核酸の同定用キット。
(1)被検核酸の複数の部位に相補的な塩基配列からなる、 1種類以上のプライマ 一の混合物を含む波形生成用プライマー集合体
(2)铸型特異的な相補鎖合成反応を触媒する DNAポリメラーゼ
(3)相補鎖合成用基質
5 . プライマーが、被検核酸の複数の部位にァユールすることができる 1種類の オリゴヌクレオチドである請求項 4 4に記載のキット。
6 . プライマ一が、被検核酸の複数の部位にァニールすることができる 2種類以 上のオリゴヌクレオチドである請求項 4 4に記載のキット。
7 . 前記複数の部位の塩基配列の一部が共通である請求項 4 6に記載のキット。 8 . プライマーを構成する塩基配列の一部が相違しており、かつ相違する塩基が プライマーを構成する塩基配列の任意の場所である請求項 4 7に記載のキッ . プライマーを構成する塩基配列の一部が相違しており、かつ相違する塩基が プライマーを構成する塩基配列の 5' 側に局在している請求項 4 7に記載のキ ッ卜。
. プライマー集合体が、次の特異プライマ一および少なくとも 1種類の多義プ ライマーの集合体を含む、 請求項 4 9に記載のキット。
特異プライマー:铸型核酸の標的領域に相補的な塩基配列を含む
多義プライマー:次の特異領域および多義領域を含む少なくとも 1種類の多義 プライマ一
特異領域:プライマーの 3' 末端を含み、 前記標的領域に対して相補的な 塩基配列で構成される
多義領域:特異領域の 5' 側に配置され、 前記標的領域に対して相補的な 塩基配列を構成する塩基が当該塩基以外の塩基で置換された 塩基配列を含む
. 前記標的領域が複数である請求項 4 9に記載のキット。
.複数の領域に対する波形生成用プライマー集合体が予め別々の反応容器に充 填されている請求項 5 0に記載のキット。
.陽性対照および Zまたは同定すべき核酸の解離曲線の波形パターンを付加的 に含む請求項 4 9に記載のキット。
. 変性剤、 およひブまたは塩類を付加的に含む請求項 4 4に記載のキット。. 変性剤が、 非イオン系界面活性剤、 陰イオン系界面活性剤、 および洗浄剤か らなる群から選択される請求項 5 4に記載のキット。
· 非イオン系界面活性剤が、ダリセリンエステルのポリォキシエチレンエーテ ル、 ソルビタンエステルのポリオキシエチレンエーテル、およぴソルビトール エステルのポリオキシェチレンエーテルからなる群から選択されるレ、ずれか の非イオン系界面活性剤である請求項 5 5に記载のキット。
. 洗浄剤が、 ドデシル硫酸塩、 ラウロイルサルコシン塩、 ラウリル酸塩、 およ ぴメルカプト酢酸塩からなる群から選択される 、ずれかの化合物である請求 項 5 5に記載のキット。
. 塩類が、 Na2S04、 Na2S03、 NaH2P04、 NaHC03からなる群から選択されるいずれか の化合物である請求項 5 4に記載のキット。
PCT/JP2003/006275 2002-05-21 2003-05-20 Method of identifying nucleic acid WO2003097828A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/514,988 US20060234228A1 (en) 2002-05-21 2003-05-20 Method of identifying nucleic acid
AU2003234938A AU2003234938A1 (en) 2002-05-21 2003-05-20 Method of identifying nucleic acid
EP03752922A EP1510576A4 (en) 2002-05-21 2003-05-20 PROCESS FOR IDENTIFYING NUCLEIC ACIDS
JP2005506389A JPWO2004104196A1 (ja) 2003-05-20 2004-05-19 緩衝剤組成物
PCT/JP2004/007162 WO2004104196A1 (ja) 2003-05-20 2004-05-19 緩衝剤組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002182177 2002-05-21
JP2002-182177 2002-05-21

Publications (1)

Publication Number Publication Date
WO2003097828A1 true WO2003097828A1 (en) 2003-11-27

Family

ID=29545984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/006275 WO2003097828A1 (en) 2002-05-21 2003-05-20 Method of identifying nucleic acid

Country Status (4)

Country Link
US (1) US20060234228A1 (ja)
EP (1) EP1510576A4 (ja)
AU (1) AU2003234938A1 (ja)
WO (1) WO2003097828A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004104196A1 (ja) * 2003-05-20 2004-12-02 G & G Science Co., Ltd. 緩衝剤組成物
JP2008154460A (ja) * 2006-12-20 2008-07-10 G&G Science Co Ltd 生物の判別用ユニバーサルプライマー

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005017279D1 (de) 2004-07-28 2009-12-03 Canon Us Life Sciences Inc Verfahren zur überwachung genomischer dna von organismen
EP1871903B1 (en) * 2005-02-18 2011-12-21 Canon U.S. Life Sciences, Inc. Devices and methods for identifying genomic dna of organisms
GB0805020D0 (en) * 2008-03-18 2008-04-16 Al Chalabi Rifat Active reformer
CN103796987B (zh) 2011-06-08 2016-09-21 生命技术公司 用于pcr系统的新型去污剂的设计和开发
WO2012170907A2 (en) 2011-06-08 2012-12-13 Life Technologies Corporation Polymerization of nucleic acids using proteins having low isoelectric points
EP3063129B1 (en) 2013-10-25 2019-04-17 Life Technologies Corporation Novel compounds for use in pcr systems and applications thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325581A (ja) * 2001-04-27 2002-11-12 Adgene Co Ltd 核酸溶解曲線及び核酸解離曲線を用いた未知あるいは既知核酸変異検出法及び表示法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5882856A (en) * 1995-06-07 1999-03-16 Genzyme Corporation Universal primer sequence for multiplex DNA amplification
US6140054A (en) * 1998-09-30 2000-10-31 University Of Utah Research Foundation Multiplex genotyping using fluorescent hybridization probes
WO2001059144A1 (en) * 2000-02-10 2001-08-16 The Penn State Research Foundation Method of analyzing single nucleotide polymorphisms using melting curve and restriction endonuclease digestion

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002325581A (ja) * 2001-04-27 2002-11-12 Adgene Co Ltd 核酸溶解曲線及び核酸解離曲線を用いた未知あるいは既知核酸変異検出法及び表示法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
AL-ROBAIY S. ET AL.: "Rapid competitive PCR using melting curve analysis for DNA quantification", BIOTECHNIQUES, vol. 31, no. 6, 2001, pages 1382 - 1386, 1388, XP001149075 *
BOHLING S.D. ET AL.: "Rapid simultaneous amplification and detection of the MBR/JH chromosomal translocation by fluorescence melting curve analysis", AM. J. PATHOL., vol. 154, no. 1, 1999, pages 97 - 103, XP002264361 *
PALS G. ET AL.: "A rapid and sensitive approach to mutation detection using real-time polymerase chain reaction and melting curve analyses, using BRCA1 as an example", MOL. DIAGN., vol. 4, no. 3, 1999, pages 241 - 246, XP001146544 *
See also references of EP1510576A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004104196A1 (ja) * 2003-05-20 2004-12-02 G & G Science Co., Ltd. 緩衝剤組成物
JP2008154460A (ja) * 2006-12-20 2008-07-10 G&G Science Co Ltd 生物の判別用ユニバーサルプライマー

Also Published As

Publication number Publication date
US20060234228A1 (en) 2006-10-19
AU2003234938A1 (en) 2003-12-02
EP1510576A1 (en) 2005-03-02
EP1510576A4 (en) 2007-08-22

Similar Documents

Publication Publication Date Title
US12077811B2 (en) Compositions of toehold primer duplexes and methods of use
JP2021510541A (ja) 新規なプライマーおよびその使用
KR102592367B1 (ko) 게놈 및 치료학적 적용을 위한 핵산 분자의 클론 복제 및 증폭을 위한 시스템 및 방법
EP3568493B1 (en) Methods and compositions for reducing redundant molecular barcodes created in primer extension reactions
AU2016268089A1 (en) Methods for next generation genome walking and related compositions and kits
EP3601593B1 (en) Universal hairpin primers
EA005577B1 (ru) Продукт, содержащий иммобилизованную нуклеиновую кислоту, полученный способом с участием химерного олигонуклеотидного праймера, днк-полимеразы и эндонуклеазы
JPH02503054A (ja) 核酸配列の増幅および検出
CN101815789A (zh) 靶序列的富集
CA2318760C (en) Method for determining dna nucleotide sequence
JP6144623B2 (ja) 核酸測定用の核酸プローブ
KR102295290B1 (ko) Dna 증폭 기술
CN108350492A (zh) 连接酶辅助的核酸环化和扩增
WO2003097828A1 (en) Method of identifying nucleic acid
JP6074036B2 (ja) 拡大された基質範囲を有する新規のdnaポリメラーゼ
JP5319148B2 (ja) 標的核酸中の変異の検出方法及びアレイ
JP2022522221A (ja) 腫瘍を特性決定し、腫瘍の不均質性を識別するための方法及びシステム
AU2012287207A1 (en) Method to amplify nucleic acids to generate fluorescence labeled fragments of conserved and arbitrary products
EP3447145A1 (en) Target nucleic acid sequence detection method using multiple amplification nested signal amplification
JP2004041191A (ja) 核酸同定方法
WO2017155416A1 (en) Genotyping method
JP2008161113A (ja) ヘリコバクター・ピロリ菌の識別方法
Spira Current methods of gene expression analysis and quantification
JP2004033090A (ja) ビブリオ・バルニフィカスの検出方法
Mukherjee et al. Advances in PCR based molecular markers and its application in biodiversity conservation

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003752922

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2003752922

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWE Wipo information: entry into national phase

Ref document number: 2006234228

Country of ref document: US

Ref document number: 10514988

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 10514988

Country of ref document: US

WWW Wipo information: withdrawn in national office

Ref document number: 2003752922

Country of ref document: EP