Kraftstoffeinspritzventil für Brennkraftmaschinen
Stand der Technik
Die Erfindung geht von einem Kraftstoffeinspritzventil für Brennkraftmaschinen nach der Gattung des Patentanspruchs 1 aus. Solche Kraftstoffeinspritzventile weisen einen Ventilkörper auf, in dem eine Bohrung ausgebildet ist, die an ihrem brennraumseitigen Ende von einem konischen Ventilsitz begrenzt wird. In der Bohrung ist eine kolbenförmige Ventilnadel längsverschiebbar angeordnet, die mit einer ebenfalls konischen Ventildichtfläche mit dem Ventilsitz zusammenwirkt und dabei die Öffnung wenigstens eines Einspritzkanals steuert, der vom Ventilsitz ausgeht und in den Brennraum der Brennkraftmaschine führt. Je nach Stellung der Ventilnadel kann Kraftstoff aus einem zwischen der Ventilnadel und der Wand der Bohrung ausgebildeten Druckraum den Einspritzkanälen zuströmen oder nicht. Der konische Ventilsitz weist dabei eine Symmetrieachse auf, die mit der Längsachse der Bohrung zusammenfällt.
Aus der DE 100 00 501 AI ist ein Kraftstoffeinspritzventil bekannt, bei dem der Ventilkörper im gesamten Endbereich eine gleichmäßige Wandstärke aufweist, auch in dem Bereich, in dem die Ventilnadel in ihrer Schließstellung aufliegt und im brennraumseitigen Endbereich der Bohrung. Hierdurch ist
die Stabilität des Ventilkörpers nicht immer gewährleistet, da im Endbereich des Ventilkörpers hohe mechanische Belastungen auftreten können: Zum einen kommt es durch das Aufsetzen der Ventilnadel beim Verschließen der Einspritzkanäle zu einer Deformation des Ventilkörpers, wodurch dieser zu Schwingungen angeregt wird. Zum anderen schwankt der Druck im Druckraum beim Betrieb des Kraftstoffeinspritzventils erheblich, da der hohe Einspritzdruck - je nach Art des Kraftstoffeinspritzventils - nur dann im Druckraum anliegt, wenn eine Einspritzung erfolgen soll. Durch diese Druckschwankungen kommt es periodisch zu einer Aufweitung des Ventilkörpers und damit zu mechanischer Belastung. Die Ventilnadel liegt bei deformiertem Ventilkörper etwas verschieden auf dem Ventilsitz auf, als dies im drucklosen Zustand der Fall ist. Die bekannten Kraftstoffeinspritzventile weisen deshalb den Nachteil auf, dass die Verformungen durch Druckschwingung und mechanischer Belastung durch die Ventilnadel zu übermäßigem Verschleiß zwischen der Ventilnadel und dem Ventilsitz führen können.
Vorteile der Erfindung
Das erfindungsgemäße Kraftstoffeinspritzventil mit den kennzeichnenden Merkmalen des Patentanspruchs 1 weist demgegenüber den Vorteil auf, dass der Ventilkörper im Bereich des Ventilsitzes gegenüber dem Stand der Technik deutlich verstärkt ist, was die Aufweitung durch die mechanischen Belastungen verringert und damit auch weniger Verschleiß im Bereich des Ventilsitzes auftritt. Hierzu weist der Ventilkörper im Endbereich eine Verstärkung auf mit einer Wandstärke, die wenigstens einen Faktor 1,2 größer ist als die Wandstärke am angrenzenden Wandbereich. Durch die relativ geringe Wandstärke am Durchstoßpunkt der Längsachse bleibt eine gewisse Flexibilität des Ventilkorpers erhalten, was unerlässlich ist, um ein mechanisches Versagen des Ventilkörpers durch das '
Aufschlagen der Ventilnadel beim Schließen des Kraftstoffeinspritzventils zu verhindern.
Durch die Unteransprüche sind vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung möglich.
In einer ersten vorteilhaften Ausgestaltung des Gegenstandes der Erfindung ist die Verstärkung im Bereich des Ventilsitzes ausgebildet. Die Einspritzkanäle, die vom Ventilsitz ausgehen, münden dabei vorteilhafterweise in Ausnehmungen, die an der Außenseite des Ventilkörpers ausgebildet sind. Dadurch wird die effektive Länge der Einspritzkanäle verkürzt, ohne dass die Stabilität des Ventilkörpers wesentlich beeinträchtigt wird. Eine nicht zu große Länge der Einspritzkanäle ist erforderlich, damit die Drosselung des KraftstoffStroms in den Einspritzkanälen nicht zu groß wird. Besonders vorteilhaft ist die Ausbildung der Ausnehmungen als Kegelsenkung, da dies einfach zu fertigen ist und über einen genügend großen Öffnungswinkel sichergestellt werden kann, dass der aus dem Einspritzkanal austretende Einspritzstrahl nicht durch den Ventilkörper beeinträchtigt wird.
In einer weiteren vorteilhaften Ausgestaltung ist die Ausnehmung als Ringnut ausgebildet, in die sämtliche Einspritzkanäle münden. Es braucht hier nicht für jeden Einspritzkanal eine separate Ausnehmung gefertigt zu werden, was im allgemeinen mit mehr Aufwand verbunden ist.
In einer weiteren vorteilhaften Ausgestaltung ist die Verstärkung am brennraumseitigen Endabschnitt der Bohrung an der Innenwand ausgebildet und grenzt dabei an den Ventilsitz. Dadurch wird eine Aufweitung der Bohrung, die auch zu einer Verformung des Ventilsitzes führt, deutlich vermindert. Vorteilhafterweise ist der Ringspalt, der zwischen der Ventilnadel und der Wand der Bohrung
ausgebildet ist, im Bereich der Verstärkung zumindest annähernd gleich wie im angrenzenden Bereich der Bohrung, um den Kraftstofffluss zu den Einspritzöffnungen nicht zu behindern.
Weitere Vorteile und vorteilhafte Ausgestaltungen des Gegenstandes der Erfindung sind der Beschreibung und der Zeichnung entnehmbar.
Zeichnung
In der Zeichnung ist ein Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils dargestellt. Es zeigt
Figur 1 ein Kraftstoffeinspritzventil im Längsschnitt, wobei nur eine Seite voll dargestellt ist,
Figur 2 ein weiteres Ausführungsbeispiel eines Kraftstoffeinspritzventils im Längsschnitt, wobei auch hier nur eine Seite voll dargestellt ist und
Figur 3 eine Außenansicht der Ventilkörperspitze eines weiteren Ausführungsbeispiels.
Beschreibung der Ausführungsbeispiele
In Figur 1 ist ein erfindungsgemäßes Kraftstoffeinspritzventil im Längsschnitt dargestellt, wobei nur die linke Hälfte voll gezeichnet ist. Das Kraftstoffeinspritzventil umfasst einen Ventilkörper 1, der bezüglich einer Längsachse 4 rotationssymmetrisch aufgebaut ist und eine Bohrung 5 aufweist, deren Achse mit der Längsachse 4 zusammenfällt. Durch eine erste Verstärkung 22 ist die Bohrung 5 an ihrem brennraumseitigen Ende verengt, so dass an der Innenwand der Bohrung 5 eine Konusfläche 26 und ein im Durchmesser verringerter Zylinderabschnitt 24 gebildet ist. Die erste Verstärkung 22 des Ventilkörpers 1 ist in der Figur 1 durch
eine gestrichelte Linie verdeutlicht. An den Zylinderabschnitt 24 schließt sich ein konischer Ventilsitz 8 an, der das brennraumseitige Ende der Bohrung 5 bildet. Vom Ventilsitz 8 geht wenigstens ein Einspritzkanal 18 ab, der den Ventilkörper 1 durchdringt und direkt in den Brennraum der Brennkraftmaschine mündet . In der Bohrung 5 ist eine kolbenförmige Ventilnadel 3 längsverschiebbar angeordnet, wobei zwischen der Ventilnadel 3 und der Wand der Bohrung 5 ein Druckraum 7 ausgebildet ist, der über einen in der Zeichnung nicht dargestellten Zulaufkanal mit Kraftstoff unter hohem Druck befüllbar ist. Die Ventilnadel 3 weist auf Höhe der Konusfläche 26 eine Druckschulter 6 auf und geht anschließend in einen verjüngten Abschnitt 103 über, an den sich eine konische Ventildichtfläche 10 anschließt. Die brennraumseitige Spitze der Ventilnadel 3 wird von einer Konusfläche 14 gebildet, die von der Ventildichtfläche 10 durch eine Ringnut 12 getrennt ist. Durch entsprechende Öffnungswinkel der Konusflächen an der Ventilnadelspitze und des konischen Ventilsitzes 8 kann erreicht werden, dass die Kante am Übergang der Ringnut 12 zur Ventildichtfläche 10 als Dichtkante fungiert, die bei Anlage der Ventilnadel 3 am Ventilsitz 8 zuerst an diesem anliegt. Durch elastische Verformung der Ventilnadel 3 und des Ventilkorpers 1 im Bereich des Ventilsitzes 8 liegt die Ventilnadel 3 schließlich in ihrer Schließstellung mit einem Großteil der Ventildichtfläche 10 am Ventilsitz 8 an.
Die Ventilnadel 3 wirkt mit dem Ventilsitz 8 zur Steuerung der Einspritzkanäle 18 zusammen. Die Ventilnadel 3 wird durch eine in der Zeichnung nicht dargestellte Vorrichtung mit einer Schließkraft, beispielsweise durch eine vorgespannte Feder, in Richtung auf den Ventilsitz 8 beaufschlagt, so dass sie mit der Ventildichtfläche 10 am Ventilsitz 8 anliegt. Hierdurch werden die Einspritzkanäle 18, von denen in der Regel mehrere über den Umfang des Ventilkörpers 1 verteilt angeordnet sind, gegen den
Druckraum 7 verschlossen. Soll Kraftstoff in den Brennraum eingespritzt werden, so wird Kraftstoff unter Einspritzdruck in den Druckraum 7 eingeleitet, so dass dort der Druck beträchtlich ansteigt, je nach Typ des Kraftstoffeinspritzventils auf 100 MPa und mehr. Durch die hydraulische Kraft auf die Ventilnadel 3 ergibt sich eine Kraft, die der Schließkraft entgegengerichtet ist. Sobald sich eine resultierende Kraft ergibt, die vom Ventilsitz 8 weggerichtet ist, hebt die Ventilnadel 3 vom Ventilsitz 8 ab, so dass Kraftstoff aus dem Druckraum 7 zwischen der Ventildichtfläche 10 und dem Ventilsitz 8 den Einspritzkanälen 18 zufließen kann. Bei einer Verringerung der Kraftstoffzufuhr in den Druckraum 7 nimmt der Kraftstoffdruck dort wieder ab. Schließlich überwiegt wieder die Schließkraft auf die Ventilnadel 3 und diese gleitet zurück in ihre Schließstellung.
Durch den steigenden Druck im Druckraum 7 ergibt sich eine leichte Aufweitung des Ventilkorpers 1 im Bereich des Ventilsitzes 8 und des Zylinderabschnitts 24. Die Ventilnadel 3 hingegen bleibt in ihrer Form praktisch unverändert, da sie massiv ausgeführt ist. Es ändert sich also die Form des Ventilkörpers 1 im Bereich des Ventilsitzes 8 leicht, so dass es zu einer leichten Bewegung des Ventilsitzes 8 relativ zur Ventildichtfläche 10 kommt, was mit der Zeit zu Verschleiß in diesem Bereich führt. Auch durch das Auftreffen der Ventilnadel 3 auf den Ventilsitz 8 ergeben sich Schwingungen des Ventilkörpers 1, die zu einer Relativbewegung von Ventildichtfläche 10 und Ventilsitz 8 führen. Um diesen Effekt zu mindern ist der Ventilkörper 1 im Bereich des Ventilsitzes 8 durch eine zweite Verstärkung 23 verdickt, so dass sich eine größere Stabilität ergibt und damit eine verminderte Aufweitung. Dies ist auch der Effekt der ersten Verstärkung 22, die eine Aufweitung des Ventilkorpers 1 im Bereich des brennraumseitigen Endes der Bohrung 5 vermindert. Es kann hierbei auch vorgesehen sein,
dass entweder nur die erste Verstärkung 22 oder nur die zweite Verstärkung 23 ausgebildet ist.
Die Wandstärke des Ventilkörper 1 im Bereich des Ventilsitzes 8 ist an der Stelle, an der der Durchstoßpunkt 30 der Längsachse 4 liegt, gleich einer Dicke hg. In dem Bereich, in dem die Ventildichtfläche 10 der Ventilnadel 3 auf dem Ventilsitz 8 aufliegt, ist der Ventilkörper 1 durch die zweite Verstärkung 23 verdickt, so dass sich senkrecht zur Ventildichtfläche 8 eine Wandstärke ]_ ergibt, die wenigstens einen Faktor 1,2 über der Wandstärke hg liegt. Eine feste Obergrenze für das Verhältnis der Wandstärken hg und h
]_ gibt es nicht, jedoch dürfte bei einem Verhältnis h
|_/hg von etwa 2,0 eine sinnvolle Obergrenze liegen. Absolut sind die Wandstärken im Bereich des Durchstoßpunktes 30 etwa hg = 1,0 mm, so dass die Wandstärke h^ um wenigstens 0,2 mm verdickt ist. Ebenso verhält es sich mit den Wandstärken im Bereich der ersten Verstärkung 22. Die Wandstärke H
]_ im Bereich der ersten Verstärkung 22 ist gegenüber der Wandstärke Hg des angrenzenden Wandbereichs um wenigstens einen Faktor 1,2 größer, also ein Verhältnis von
In Figur 2 ist ein weiteres Ausführungsbeispiel des erfindungsgemäßen Kraftstoffeinspritzventils dargestellt. Der Ventilkörper 1 ist wieder im Längsschnitt gezeigt, wobei nur eine Hälfte des rotationssymmetrischen Ventilkörpers 1 gezeichnet ist. Die Ventilnadel 3 weist statt einer Ringnut und einer Konusfläche nur eine einzelne konische Ventildichtfläche 10 auf, die durch den Anpressdruck der Schließkraft in den konischen' Ventilsitz 8 gedrückt wird. Der Ventilsitz 8 ist durch eine zweite Verstärkung 23 verdickt, deren Anteil am Ventilkörper 1 durch eine gestrichelte Linie verdeutlicht ist. Die Wandstärke h]_ im Bereich der Einspritzkanäle 18 ist auch hier um wenigstens einen Faktor 1,2 größer als die Wandstärke hg am
Durchstoßpunkt 30 der Längsachse 4. Mit zunehmender Wandstärke h]_ verlängert sich entsprechend die Länge der Einspritzkanäle 18, was jedoch nur begrenzt möglich ist: Ist der Einspritzkanal 18 zu lang, so wird der Kraftstoffström bei der Einspritzung zu stark gedrosselt und der effektiv wirksame Einspritzdruck vermindert sich. Um dies zu vermeiden sind im Ventilkörper 1 von außen Ausnehmungen 20 ausgebildet, die als Kegelsenkung ausgeführt sind und in die jeweils ein Einspritzkanal 18 mündet. Die wirksame Länge der Einspritzkanäle 18 ist somit geringer, da der Ö fnungswinkel der Kegelsenkung 20 so groß ist, dass der austretende Einspritzstrahl nicht die Wand der Kegelsenkung 20 berührt. Statt einer Kegelsenkung 20 mit einer streng konischen Außenwand sind auch andere Formen denkbar, beispielsweise zylindrische Ausnehmungen, die einen genügend großen Durchmesser aufweisen. Die Ausbildung der KegelSenkungen 20 kann beispielsweise durch Bohren oder Elektroerodieren geschehen.
In Figur 3 ist eine Außenansicht der brennraumseitigen Spitze des Ventilkörpers 1 eines weiteren Ausführungsbeispiels dargestellt. Statt verschiedener Ausnehmungen 20 ist hier nur eine einzige Ausnehmung in Form einer Ringnut 32 ausgebildet, die den Ventilkörper 1 auf seinem gesamten Umfang umgibt und in die sämtliche Einspritzkanäle 18 münden. Der Querschnitt der Ringnut 32 ist so bemessen, dass auch hier die Einspritzstrahlen nicht die Wand der Ringnut 32 berühren.