WO2003091158A1 - Oxide superconductive thin-film, process for producing the same and superconducting fault current limiter - Google Patents

Oxide superconductive thin-film, process for producing the same and superconducting fault current limiter Download PDF

Info

Publication number
WO2003091158A1
WO2003091158A1 PCT/JP2003/004933 JP0304933W WO03091158A1 WO 2003091158 A1 WO2003091158 A1 WO 2003091158A1 JP 0304933 W JP0304933 W JP 0304933W WO 03091158 A1 WO03091158 A1 WO 03091158A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
superconducting thin
oxide superconducting
laser
film according
Prior art date
Application number
PCT/JP2003/004933
Other languages
French (fr)
Japanese (ja)
Inventor
Shuji Hahakura
Kazuya Ohmatsu
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to AU2003235237A priority Critical patent/AU2003235237A1/en
Publication of WO2003091158A1 publication Critical patent/WO2003091158A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/087Oxides of copper or solid solutions thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide
    • H10N60/0296Processes for depositing or forming superconductor layers
    • H10N60/0521Processes for depositing or forming superconductor layers by pulsed laser deposition, e.g. laser sputtering; laser ablation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/30Devices switchable between superconducting and normal states

Definitions

  • Oxide superconducting thin film method for producing the same, and superconducting current limiter
  • the present invention relates to an oxide superconducting thin film, a method for producing the same, and a superconducting current limiter.
  • a method for forming an oxide superconducting thin film on a sapphire substrate, an oxide superconducting thin film produced by the method The present invention relates to a superconducting current limiter using the oxide superconducting thin film.
  • the superconducting thin film has the same critical current density, the thicker the film, the larger the current that can flow. Therefore, especially for power applications, a thick film is desired. For example, if a thick superconducting thin film capable of conducting a large current is used for the superconducting current limiting device, a compact superconducting current limiting device can be manufactured.
  • a superconducting thin film formed on a sapphire single-crystal substrate could only form a thin film having a thickness less than a conventional limit value.
  • the limit thickness of YBa2Cu3 ⁇ 7-X (YBCO) formed on a sapphire is typically 0.25 to 0.3 / zm.
  • 0.7 ⁇ is reported as the highest value.
  • one object of the present invention is to provide a thick oxide superconducting thin film having no cracks or excellent critical current density characteristics and a method for producing the same.
  • Another object of the present invention is to provide a high-thickness oxide superconducting thin film having no cracks or excellent critical current density characteristics, thereby exhibiting a high critical current value during normal operation, and in the case of a short circuit accident or the like. It is an object of the present invention to provide a superconducting current limiter exhibiting a high taench (normal conduction transition) resistance.
  • the oxide superconducting thin film is formed on a substrate containing sapphire by a laser vapor deposition method in which a raw material is irradiated with laser light and a substance scattered from the raw material is deposited on the substrate. It is characterized by being formed with a film thickness exceeding 7 ⁇ .
  • the inventors of the present invention have formed a superconducting oxide thin film on a sapphire substrate by using a laser vapor deposition method instead of the conventional thermal co-evaporation method and appropriately setting various conditions during laser vapor deposition.
  • a laser vapor deposition method instead of the conventional thermal co-evaporation method and appropriately setting various conditions during laser vapor deposition.
  • an oxide superconducting thin film having excellent critical current density characteristics can be formed with a thickness exceeding 0.7 ⁇ . This is because, in the case of the laser vapor deposition method, it is considered that a certain amount of particles are scattered as compared with the case of the thermal co-evaporation method. This is considered to be because distortion is easily alleviated.
  • the repetition frequency (hereinafter, referred to as a laser frequency) of pulse irradiation of a laser beam applied to a raw material is divided into at least two steps to thereby obtain an oxide superconducting film.
  • a thin film is formed.
  • the first-stage laser frequency is lower than the second-stage laser frequency.
  • the energy per pulse (hereinafter, referred to as laser power) is preferably at least 400 mJ.
  • the temperature of the substrate at the time of laser deposition is preferably at least 600 ° C. and less than 1200 ° C.
  • the gas pressure during laser deposition is from 1.33 Pa to 100 Pa, preferably from 1.33 Pa to 66.66. It is less than Pa.
  • an oxide superconducting thin film having a high critical current density can be obtained.
  • oxygen is contained in the atmosphere at the time of laser deposition.
  • an oxide superconducting thin film having a high critical current density can be obtained.
  • the oxide superconducting thin film of the present invention is formed by the above manufacturing method, and has a thickness exceeding 0.7 ⁇ .
  • the oxide superconducting thin film of the present invention it becomes possible to form a thick film exceeding 0.7 ⁇ having excellent critical current density characteristics and large critical current characteristics by a laser vapor deposition method. Since a thick oxide superconducting thin film can be realized as described above, a large current can be passed, and an oxide superconducting thin film particularly suitable for power use can be obtained.
  • the critical current density under a self-magnetic field in liquid nitrogen is 1 ⁇ 10 6 AZcm 2 or more, and the critical current characteristics are excellent.
  • the critical current density is as high as 1 ⁇ 10 6 A / cm 2 or more, and It is possible to increase the critical current value.
  • the critical current density under a self-magnetic field in liquid nitrogen is more than 7 OA / cm width per 1 cm width, and more than 280 A, cm width. This allows a large current to flow.
  • the above oxide superconducting thin film preferably, it has a RE123 structure, and the force RE is made of a material containing at least one of a rare earth element and a yttrium element.
  • oxide superconducting thin film having the RE123 structure capable of conducting a large current By using the oxide superconducting thin film having the RE123 structure capable of conducting a large current, an oxide superconducting thin film suitable for power use can be obtained.
  • RE in the “RE123 structure” means a material containing at least one of a rare earth element and a yttrium element.
  • the superconducting current limiter of the present invention is configured using the above-described oxide superconducting thin film.
  • the superconducting current limiting device exhibits a high critical current value during normal operation and a high quenching resistance value during a short-circuit accident or the like. You can get a bowl.
  • the current is limited by transitioning the oxide superconducting thin film from the superconducting state to the normal conducting state.
  • the present invention can be applied to a so-called superconducting / normal conducting (SN) transition type superconducting current limiter.
  • FIG. 1 is a diagram for explaining a method for manufacturing an oxide superconducting thin film according to one embodiment of the present invention.
  • FIG. 2 is a view showing a process of forming an oxide superconducting thin film by dividing a laser frequency of a laser beam into two stages in a laser vapor deposition method.
  • FIG. 3 is a cross-sectional view schematically showing a configuration of the oxide superconducting thin film according to one embodiment of the present invention.
  • FIG. 4 is a H o B a 2 C u 3 O x (H o BCO) measured result indicating a critical current density relationship of the superconducting layer under the self-magnetic field in the gas pressure and liquid nitrogen during the laser deposition method .
  • FIG. 5 is a diagram showing a configuration of a superconducting current limiter according to one embodiment of the present invention.
  • FIG. 6 is a plan view showing a coil made of a superconducting thin film used in the superconducting current limiter of FIG.
  • FIG. 7 is a cross-sectional view showing a coil formed of a superconducting thin film used in the superconducting current limiter of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1 is a diagram illustrating a method for manufacturing an oxide superconducting thin film according to an embodiment of the present invention.
  • substrate 10 is placed on heater 2 in a state where substrate 10 is inclined at a predetermined angle with respect to target (raw material) 1.
  • a predetermined portion of the substrate 10 is covered with a mask (not shown), and a laser is applied to the target 1 by laser ablation.
  • One light 3 is irradiated.
  • the substance (plume) 4 scattered from the target 1 is deposited on the exposed surface of the substrate 10 to form an oxide superconducting thin film.
  • the laser frequency of the laser beam applied to the target 1 is preferably divided into two steps (steps S1 and S2) as shown in FIG.
  • the laser frequency in the first laser irradiation (step S1) is preferably lower than the laser frequency in the second laser irradiation (step S2).
  • the laser power is preferably 40 OmJ or more, more preferably 600 mJ or more, and further preferably 800 mJ to 1,000 mJ.
  • the temperature of the substrate 10 during the laser deposition is preferably 600 ° C. or more and less than 1200 ° C., and more preferably 800 ° C. or more and less than 1200 ° C.
  • the gas pressure during laser deposition is from 1.33 Pa to 100 Pa, and preferably from 1.33 Pa to 66.6 Pa. Preferably contains oxygen.
  • FIG. 3 is a cross-sectional view schematically showing a configuration of the oxide superconducting thin film according to one embodiment of the present invention.
  • oxide superconducting thin film 13 is formed on substrate 10.
  • This substrate 10 has a sapphire single crystal substrate 11 and an intermediate layer 12 made of, for example, cerium oxide.
  • the oxide superconducting thin film 13 preferably has a critical current density of 1 ⁇ 10 6 A / cm 2 or more under a self-magnetic field in liquid nitrogen, and has a critical current per 1 cm width. It is preferable that the width is 70 AZcm or more, and more than 28 OA / cm.
  • the material of the oxide superconductor thin film 1 3 is not limited Ho B a 2 C UsO, to, yo if a RE 1 2 3 Structure les.
  • RE in the RE123 structure is preferably at least one of a rare earth element and a yttrium element.
  • the oxide superconducting thin film 13 is formed directly on the sapphire single crystal substrate 11. May be.
  • FIG. 5 is a diagram showing a configuration of a superconducting current limiter according to an embodiment of the present invention.
  • FIGS. It is a figure and a sectional view.
  • the superconducting current limiter in the present embodiment has coils 28a and 28b that can be cooled by liquid nitrogen or the like.
  • the coils 28a and 28b for example, flat superconducting coils are used as shown in FIGS.
  • the superconducting coil 28 a is formed in a spiral shape on the surface of the insulating substrate 27, and the superconducting coil 28 b is formed in a spiral shape on the back surface of the insulating substrate 27.
  • One end of each of the superconducting coils 28a and 28b is electrically connected to each other by a front and back circuit connecting portion 29.
  • the other ends of the superconducting coils 28a and 28b are electrically connected to the terminals 26a and 26b, respectively.
  • Such a superconducting current limiter acts as a current limiter as follows.
  • a HoBa 2 Cu 3 O x superconducting layer was formed on a sapphire substrate with a cerium oxide intermediate layer (about 40 nm thick) deposited by laser deposition.
  • Ho B a 2 C u 3 ⁇ on a sintered target was irradiated with Xe C l excimer laser (wavelength 3 08 nm), the laser energy to 90 Om J, repetition rate of the first step The frequency was set to 5 Hz, the laser of the second step was repeated at a frequency of 4 OHz (each film was formed simultaneously), the film was formed under the conditions of a substrate temperature of 9 ° C and an oxygen atmosphere of 13.33 Pa. Was.
  • By varying the deposition time was deposited Ho B a 2 Cu 3 O x greater conductivity layer having various thickness.
  • cerium oxide intermediate layer on a sapphire substrate (thickness: about 40 nm) as a comparative example, it was formed H o B a 2 C u 3 O x superconducting layer by thermal co-evaporation. Ho, Ba, and Cu metals were scattered by resistance heating using raw materials, placed on the opposite surface, and vapor-deposited on a substrate heated to 700 ° C.
  • Critical current density and critical current value of HoBCO film produced by laser deposition method and thermal co-evaporation method * Relationship between * and film thickness (* Critical current value is value per film lcm width)
  • the critical current density becomes zero. It can be seen that the BCO film can maintain a high critical current value even at a thickness of 0.5 ⁇ or more, and can form a thick oxide superconducting thin film without causing cracks. Furthermore, in the case of a thick film exceeding 0.7 ⁇ , the oxide superconducting thin film has a higher critical current density and a larger critical current value per 1 cm width of the film than the conventional thin film, and is thus an excellent oxide superconducting thin film. Understand.
  • a superconducting thin film is formed on a sapphire substrate using laser evaporation. This indicates that an oxide superconducting thin film having a high critical current density and a large critical current can be formed with a thickness exceeding 0.7 / m.
  • a holmium-based superconducting thin film (HoBa 2 Cu 3 O x : HoBCO) was formed on a sapphire substrate with a cerium oxide intermediate layer (about 40 nm thick) deposited by laser deposition. At that time, the substrate temperature was changed as a parameter. During the film formation, in the first step, the film was formed at a repetition frequency of 5 Hz for 10 minutes, and then, in the second step, the film was formed at a repetition frequency of 40 Hz for 10 minutes. The film formation atmosphere was oxygen gas at 13.33 Pa and the laser power was 900 mJ, each of which was constant. In order to examine the characteristics of the superconducting layer, the critical current density of the HBCO superconducting layer in liquid nitrogen under a self-magnetic field was measured. The results are shown in Table 4.
  • an oxide superconducting thin film is formed on a sapphire substrate by a laser deposition method under appropriate conditions, so that 0.7 ⁇ It is possible to form an oxide superconducting thin film having a high critical current density and a large critical current characteristic with a thick film exceeding the above. For this reason, it becomes possible to manufacture an oxide superconducting thin film suitable for power applications requiring a large current.

Abstract

A process for forming an oxide superconductive thin-film of high critical current density and large critical current characteristics having a thickness of more than 0.7 μm on a substrate including a sapphire single-crystal substrate by the use of laser deposition technique wherein a target is irradiated with laser beams and the matter scattered from the target thereby is deposited on the substrate; the oxide superconductive thin-film produced by the process; and a superconducting fault current limiter including the oxide superconductive thin-film.

Description

明細書  Specification
酸化物超電導薄膜およびその製造方法ならびに超電導限流器 技術分野  Oxide superconducting thin film, method for producing the same, and superconducting current limiter
本発明は、酸化物超電導薄膜およびその製造方法ならびに超電導限流器に関する ものであり、 特に、 サファイア基板上に酸化物超電導薄膜を形成する方法と、 その 方法により製造された酸化物超電導薄膜と、その酸化物超電導薄膜を用いた超電導 限流器に関するものである。 背景技術  The present invention relates to an oxide superconducting thin film, a method for producing the same, and a superconducting current limiter.In particular, a method for forming an oxide superconducting thin film on a sapphire substrate, an oxide superconducting thin film produced by the method, The present invention relates to a superconducting current limiter using the oxide superconducting thin film. Background art
単結晶基板上の薄膜材料に関して、 電力用途としては、超電導限流器など、 また はエレク トロ二タス用途としては、超電導マイクロ波フィルタなどの実用化開発が 期待されている。 特に、 サファイア (Α 1 2Ο3) 単結晶基板上に形成した超電導薄 膜を限流器に用いた場合、 サファイアが熱伝導率に優れることから、超電導薄膜の 発熱を逃がす熱はけとなるメリットがある。 また、 サファイア単結晶には、他の単 結晶基板と比べて安価であるとともに、比較的大面積サイズの基板が作製できると いうメリットもある。 For thin-film materials on single-crystal substrates, the development of practical applications such as superconducting current limiters for power applications, and superconducting microwave filters for electronic applications is expected. In particular, when a superconducting thin film formed on a sapphire (Α 1 2 Ο 3 ) single crystal substrate is used for a current limiter, sapphire has excellent thermal conductivity, so heat is released to release heat from the superconducting thin film. There are benefits. In addition, sapphire single crystal is inexpensive compared to other single crystal substrates, and has the advantage that a substrate having a relatively large area can be manufactured.
超電導薄膜は、臨界電流密度が同じであれば、厚膜であるほど大電流を通電する ことができるため、 特に電力用途でほ、 厚膜ィ匕が望まれる。 たとえば、 超電導限流 器に大電流通電が可能な厚膜の超電導薄膜を用いれば、コンパク トな超電導限流器 を作製することができる。  As long as the superconducting thin film has the same critical current density, the thicker the film, the larger the current that can flow. Therefore, especially for power applications, a thick film is desired. For example, if a thick superconducting thin film capable of conducting a large current is used for the superconducting current limiting device, a compact superconducting current limiting device can be manufactured.
しかしながら、サファイア単結晶基板上に形成される超電導薄膜は、 これまであ る限界値以下の膜厚を持つ薄膜しか形成することができなかった。具体的にはサフ アイァの上に形成した Y B a 2 C u 3〇7- X (Y B C O ) の限界膜厚については、 典 型的には 0 . 2 5〜0 . 3 /z mが主流であり、 以下の文献では 0 . 7 μ πιが最高値 として報告されている。  However, a superconducting thin film formed on a sapphire single-crystal substrate could only form a thin film having a thickness less than a conventional limit value. Specifically, the limit thickness of YBa2Cu3〇7-X (YBCO) formed on a sapphire is typically 0.25 to 0.3 / zm. In the following literature, 0.7 μπι is reported as the highest value.
文献 : R. Wordenweber et al. , "Large-Area YBCO Films on Sapphire for Microwave Applications", IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 9, NO. 2, JUNE 1999, pp. 2486-2491 これまでの報告では、 サファイア単結晶基板上の超電導薄膜の膜厚が、 ある限界 値を超えると、 薄膜にクラックが発生するとされてきた。 そのクラックは、 経時変 化とともに、 その数を増す。 限界値を超えた膜厚を有する薄膜は、 クラックを有す るため、 臨界電流密度は、 ほとんどゼロ力、 あるいは優れた特性が得られない。 臨界膜厚を超えると超電導薄膜にクラックが発生する理由あるいは優れた特性が 得られない理由は、 ( 1 )単結晶基板と超電導薄膜との熱収縮率の違い、および( 2 ) 超電導層とその下地 (基板や中間層) との格子定数のミスマッチによる。 特に、 こ れまでの超電導薄膜の有力手法とされていた熱共蒸着法を用いた場合、加熱されて 蒸気となった原料物質が基板上に蒸着するため、緻密な結晶が成長しゃすいという デメリットもある。 発明の開示 References: R. Wordenweber et al., "Large-Area YBCO Films on Sapphire for Microwave Applications", IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 9, NO. 2, JUNE 1999, pp. 2486-2491 Previous reports have suggested that when the thickness of a superconducting thin film on a sapphire single crystal substrate exceeds a certain limit, cracks occur in the thin film. The number of cracks increases with time. A thin film having a thickness exceeding the limit value has cracks, so that the critical current density is almost zero force or excellent characteristics cannot be obtained. The reason why cracks occur in the superconducting thin film when the thickness exceeds the critical film thickness or the reason why excellent characteristics are not obtained is that (1) the difference in thermal shrinkage between the single crystal substrate and the superconducting thin film, and (2) the superconducting layer and its This is due to mismatch of lattice constant with the base (substrate or intermediate layer). In particular, when using the thermal co-evaporation method, which was considered to be the predominant method for superconducting thin films, the raw material that has been heated and vaporized is deposited on the substrate, so that dense crystals grow slowly. There is also. Disclosure of the invention
それゆえ本発明の一の目的は、クラックのないあるいは優れた臨界電流密度特性 を有する厚膜の酸化物超電導薄膜およびその製造方法を提供することである。  Therefore, one object of the present invention is to provide a thick oxide superconducting thin film having no cracks or excellent critical current density characteristics and a method for producing the same.
また本発明の他の目的は、クラックのないあるいは優れた臨界電流密度特性を有 する厚膜の酸化物超電導薄膜を備えることにより、通常の運転時には高い臨界電流 値を示し、 短絡事故などのときには高いタエンチ (常電導転移) 抵抗値を示す超電 導限流器を提供することである。  Another object of the present invention is to provide a high-thickness oxide superconducting thin film having no cracks or excellent critical current density characteristics, thereby exhibiting a high critical current value during normal operation, and in the case of a short circuit accident or the like. It is an object of the present invention to provide a superconducting current limiter exhibiting a high taench (normal conduction transition) resistance.
本発明の酸化物超電導薄膜の製造方法は、原料にレーザー光を照射し、原料から 飛散した物質を基板上に蒸着させるレーザー蒸着法により、サファイアを含む基板 上に、酸化物超電導薄膜を 0 . 7 μ πιを超える膜厚で形成することを特徴とするも のである。  In the method for producing an oxide superconducting thin film of the present invention, the oxide superconducting thin film is formed on a substrate containing sapphire by a laser vapor deposition method in which a raw material is irradiated with laser light and a substance scattered from the raw material is deposited on the substrate. It is characterized by being formed with a film thickness exceeding 7 μπι.
本願発明者らは、鋭意検討した結果、 従来の熱共蒸着法ではなく、 レーザー蒸着 法を用いるとともに、レーザー蒸着時の各条件を適切に設定してサファイア基板上 に、 酸化物超電導薄膜を形成することにより、 0 . 7 μ πιを超える厚膜で、 優れた 臨界電流密度特性を有する酸化物超電導薄膜を成膜できることを見出した。これは、 レーザー蒸着法の場合、熱共蒸着法に比べて、 ある程度の塊状態の粒子が飛散する と考えられるため、熱共蒸着法ほど緻密な結晶は成長しないが、熱的または機械的 な歪みを緩和しやすいためであると考えられる。 つまり、 レーザー蒸着法では、 条 件を適切に設定することにより塊状態の粒子が飛散して、酸化物超電導薄膜を成膜 するため、単結晶基板と超電導薄膜との熱収縮率の違レ、や、超電導層とその下地 (基 板もしくは中間層)との格子定数のミスマッチなどの熱的または機械的な歪みを緩 和できるものと考えられる。 これにより、 大電流を通電することが可能となり、 電 力用途に好適な酸化物超電導薄膜を製造することができる。 レーザーは、エキシマ レーザー (ArFレーザー:波長 193nm、 KrFレーザー:波長 248nm、 XeClレーザー:波 長 308nmがある。 ) を用いることができる。 As a result of intensive studies, the inventors of the present invention have formed a superconducting oxide thin film on a sapphire substrate by using a laser vapor deposition method instead of the conventional thermal co-evaporation method and appropriately setting various conditions during laser vapor deposition. As a result, it has been found that an oxide superconducting thin film having excellent critical current density characteristics can be formed with a thickness exceeding 0.7 μπι. This is because, in the case of the laser vapor deposition method, it is considered that a certain amount of particles are scattered as compared with the case of the thermal co-evaporation method. This is considered to be because distortion is easily alleviated. In other words, in laser deposition, By properly setting the conditions, the particles in a lump scatter and the oxide superconducting thin film is formed.Therefore, the difference in thermal shrinkage between the single crystal substrate and the superconducting thin film, and the difference between the superconducting layer and It is considered that thermal or mechanical distortion such as mismatch of lattice constant with the substrate or intermediate layer) can be reduced. As a result, a large current can be passed, and an oxide superconducting thin film suitable for power use can be manufactured. An excimer laser (ArF laser: wavelength 193 nm, KrF laser: wavelength 248 nm, XeCl laser: wavelength 308 nm) can be used as the laser.
上記の酸化物超電導薄膜の製造方法において、好ましくは、原料に照射するレー ザ一光のパルス照射の繰り返し周波数 (以下、 レーザー周波数と称する。 ) を少な くとも 2段階に分けることにより酸化物超電導薄膜が形成される。  In the above-described method for producing an oxide superconducting thin film, preferably, the repetition frequency (hereinafter, referred to as a laser frequency) of pulse irradiation of a laser beam applied to a raw material is divided into at least two steps to thereby obtain an oxide superconducting film. A thin film is formed.
これにより、単一のレーザー周波数で酸化物超電導薄膜を成膜する場合よりも、 さらに高い臨界電流密度を有する酸化物超電導薄膜を製造することが可能となる。 上記の酸化物超電導薄膜の製造方法において、好ましくは、第 1段階のレーザー 周波数が第 2段階のレーザー周波数よりも小さい。  Thereby, it becomes possible to manufacture an oxide superconducting thin film having a higher critical current density than when forming an oxide superconducting thin film at a single laser frequency. In the above method for producing an oxide superconducting thin film, preferably, the first-stage laser frequency is lower than the second-stage laser frequency.
このようにレーザー周波数を具体的に制御することによって、上述したようなさ らに高い臨界電流密度を有する酸化物超電導薄膜を製造することが可能となる。 上記の酸化物超電導薄膜の製造方法において、好ましくは、 1パルスあたりのェ ネルギー (以下、 レーザーパワーと称する。 ) が 4 0 0 m J以上である。  By specifically controlling the laser frequency in this way, it becomes possible to manufacture an oxide superconducting thin film having a higher critical current density as described above. In the above method for producing an oxide superconducting thin film, the energy per pulse (hereinafter, referred to as laser power) is preferably at least 400 mJ.
このようにレーザーパヮ一を設定することによって、臨界電流密度の高い酸化物 超電導薄膜を得ることができる。  By setting the laser power in this manner, an oxide superconducting thin film having a high critical current density can be obtained.
上記の酸化物超電導薄膜の製造方法において、好ましくは、 レーザー蒸着時の基 板の温度が 6 0 0 °C以上 1 2 0 0 °C未満である。  In the above method for producing an oxide superconducting thin film, the temperature of the substrate at the time of laser deposition is preferably at least 600 ° C. and less than 1200 ° C.
このように基板の温度を設定することにより、臨界電流密度の高い酸化物超電導 薄膜を得ることができる。  By setting the temperature of the substrate in this way, an oxide superconducting thin film having a high critical current density can be obtained.
上記の酸化物超電導薄膜の製造方法において、 レーザー蒸着時のガス圧力は、 1 . 3 3 P a以上 1 0 0 P a以下であり、 好ましくは、 1 . 3 3 P a以上 6 6 . 6 6 P a以下である。  In the above method for producing an oxide superconducting thin film, the gas pressure during laser deposition is from 1.33 Pa to 100 Pa, preferably from 1.33 Pa to 66.66. It is less than Pa.
このようにガス圧力を設定することにより、臨界電流密度の高い酸化物超電導薄 膜を得ることができる。 上記の酸化物超電導薄膜の製造方法において、好ましくは、 レーザー蒸着時の雰 囲気中に酸素が含まれている。 By setting the gas pressure in this manner, an oxide superconducting thin film having a high critical current density can be obtained. In the above method for producing an oxide superconducting thin film, preferably, oxygen is contained in the atmosphere at the time of laser deposition.
このように酸素が含まれていることにより、臨界電流密度の高い酸化物超電導薄 膜を得ることができる。  By containing oxygen as described above, an oxide superconducting thin film having a high critical current density can be obtained.
本発明の酸化物超電導薄膜は、 上記の製造方法により形成され、 かつ 0. 7 μπι を超える膜厚を有している。  The oxide superconducting thin film of the present invention is formed by the above manufacturing method, and has a thickness exceeding 0.7 μπι.
本発明の酸化物超電導薄膜によれば、レーザー蒸着法により優れた臨界電流密度 特性および大きな臨界電流特性を有する 0. 7 μ πιを超える厚膜に成膜することが 可能となる。このように厚膜の酸化物超電導薄膜を実現することが可能となったた め、 大電流を通電することができ、特に電力用途に好適な酸化物超電導薄膜を得る ことができる。  According to the oxide superconducting thin film of the present invention, it becomes possible to form a thick film exceeding 0.7 μπι having excellent critical current density characteristics and large critical current characteristics by a laser vapor deposition method. Since a thick oxide superconducting thin film can be realized as described above, a large current can be passed, and an oxide superconducting thin film particularly suitable for power use can be obtained.
上記の酸化物超電導薄膜において、好ましくは、液体窒素中における自己磁場下 の臨界電流密度が 1 X 1 06AZcm2以上で、 かつ臨界電流特性が優れている。 上記したように、レーザー蒸着法により優れた臨界電流密度特性を有する厚膜の 酸化物超電導薄膜を形成することができるため、 臨界電流密度も 1 X 1 06A/c m2以上と高く、 かつ臨界電流値を大きくすることが可能となる。 In the oxide superconducting thin film described above, preferably, the critical current density under a self-magnetic field in liquid nitrogen is 1 × 10 6 AZcm 2 or more, and the critical current characteristics are excellent. As described above, since a thick oxide superconducting thin film having excellent critical current density characteristics can be formed by the laser deposition method, the critical current density is as high as 1 × 10 6 A / cm 2 or more, and It is possible to increase the critical current value.
上記の酸化物超電導薄膜において、液体窒素中における自己磁場下の臨界電流密 度は、 1 c m幅あたり 7 OA/ c m幅以上、 さらに、 2 8 0 A, c m幅を越える。 これにより大電流通電が可能となる。  In the above-mentioned oxide superconducting thin film, the critical current density under a self-magnetic field in liquid nitrogen is more than 7 OA / cm width per 1 cm width, and more than 280 A, cm width. This allows a large current to flow.
上記の酸化物超電導薄膜において、 好ましくは、 RE 1 2 3構造を有し、 力 R Eが希土類元素およびィットリゥム元素の少なくともいずれかを含む材質からなつ ている。  In the above oxide superconducting thin film, preferably, it has a RE123 structure, and the force RE is made of a material containing at least one of a rare earth element and a yttrium element.
このように大電流通電が可能な RE 1 2 3構造の酸ィヒ物超電導薄膜を用いること によって、 電力用途に好適な酸化物超電導薄膜を得ることができる。  By using the oxide superconducting thin film having the RE123 structure capable of conducting a large current, an oxide superconducting thin film suitable for power use can be obtained.
なお、 本願明細書における 「RE 1 2 3構造」 とは、 REXB ayC uz7_dにおい て、 0. 7 x≤ l . 3、 1. 7≤ y≤ 2. 3、 2. 7≤ z≤ 3. 3であることを 意味する。 また、 「RE 1 2 3構造」 の REは、 希土類元素およびイットリウム元 素の少なくともいずれかを含む材質を意味する。 Note that the "RE 1 2 3 Structure" herein, RE X Te B a y C u z7 _ d smell, 0. 7 x≤ l. 3, 1. 7≤ y≤ 2. 3, 2. It means that 7≤z≤3.3. RE in the “RE123 structure” means a material containing at least one of a rare earth element and a yttrium element.
本発明の超電導限流器は、 上記の酸化物超電導薄膜を用いて構成されている。 このように厚膜の酸化物超電導薄膜を用いて超電導限流器を構成することにより、 通常の運転時には高い臨界電流値を示し、短絡事故などの時には、高いクェンチ抵 抗値を示す超電導限流器を得ることができる。 The superconducting current limiter of the present invention is configured using the above-described oxide superconducting thin film. By forming a superconducting current limiter using a thick oxide superconducting thin film in this way, the superconducting current limiting device exhibits a high critical current value during normal operation and a high quenching resistance value during a short-circuit accident or the like. You can get a bowl.
上記の超電導限流器において、好ましくは、酸化物超電導薄膜を超電導状態から 常電導状態へ転移させることにより電流が限流される。  In the above-described superconducting current limiter, preferably, the current is limited by transitioning the oxide superconducting thin film from the superconducting state to the normal conducting state.
このように、 いわゆる超電導 ·常電導 (S N) 転移型の超電導限流器に本発明を 適用することができる。 図面の簡単な説明  As described above, the present invention can be applied to a so-called superconducting / normal conducting (SN) transition type superconducting current limiter. BRIEF DESCRIPTION OF THE FIGURES
図 1は、本発明の一実施の形態における酸化物超電導薄膜の製造方法を説明するた めの図である。 FIG. 1 is a diagram for explaining a method for manufacturing an oxide superconducting thin film according to one embodiment of the present invention.
図 2は、レーザー蒸着法におけるレーザー光のレーザー周波数を 2段階に分けて酸 化物超電導薄膜を形成する工程を示す図である。 FIG. 2 is a view showing a process of forming an oxide superconducting thin film by dividing a laser frequency of a laser beam into two stages in a laser vapor deposition method.
図 3は、本発明の一実施の形態における酸化物超電導薄膜の構成を概略的に示す断 面図である。 FIG. 3 is a cross-sectional view schematically showing a configuration of the oxide superconducting thin film according to one embodiment of the present invention.
図 4は、レーザー蒸着法時のガス圧と液体窒素中における自己磁場下での H o B a 2 C u 3Ox (H o B C O) 超電導層の臨界電流密度の関係を示す測定結果である。 図 5は、 本発明の一実施の形態における超電導限流器の構成を示す図である。 Figure 4 is a H o B a 2 C u 3 O x (H o BCO) measured result indicating a critical current density relationship of the superconducting layer under the self-magnetic field in the gas pressure and liquid nitrogen during the laser deposition method . FIG. 5 is a diagram showing a configuration of a superconducting current limiter according to one embodiment of the present invention.
図 6は、図 5の超電導限流器に用いられる超電導薄膜よりなるコイルを示す平面図 である。 FIG. 6 is a plan view showing a coil made of a superconducting thin film used in the superconducting current limiter of FIG.
図 7は、図 5の超電導限流器に用いられる超電導薄膜よりなるコイルを示す断面図 である。 発明を実施するための最良の形態 FIG. 7 is a cross-sectional view showing a coil formed of a superconducting thin film used in the superconducting current limiter of FIG. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態について、 図に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings.
図 1は、本発明の一実施の形態における酸化物超電導薄膜の製造方法を示す図で ある。 図 1を参照して、 まずターゲット (原料) 1に対して基板 1 0が所定角度だ け傾いた状態でヒータ 2上に配置される。この傾斜状態で基板 1 0の所定部分をマ スク (図示せず) で覆い、 レーザーアブレーション法によりターゲット 1にレーザ 一光 3が照射される。 これにより、 ターゲット 1から飛散された物質 (プルーム) 4が、基板 1 0の露出表面に蒸着されることにより、酸化物超電導薄膜が形成され る。 FIG. 1 is a diagram illustrating a method for manufacturing an oxide superconducting thin film according to an embodiment of the present invention. Referring to FIG. 1, first, substrate 10 is placed on heater 2 in a state where substrate 10 is inclined at a predetermined angle with respect to target (raw material) 1. In this inclined state, a predetermined portion of the substrate 10 is covered with a mask (not shown), and a laser is applied to the target 1 by laser ablation. One light 3 is irradiated. As a result, the substance (plume) 4 scattered from the target 1 is deposited on the exposed surface of the substrate 10 to form an oxide superconducting thin film.
このターゲット 1に照射するレーザー光のレーザー周波数は、図 2に示すように 2段階 (ステップ S l、 S 2) に分けることが好ましい。 また、 第 1段階目のレー ザ一照射 (ステップ S 1) におけるレーザー周波数は、 第 2段階目のレーザー照射 (ステップ S 2) のレーザー周波数よりも小さいことが好ましい。 また、 このレー ザ一照射において、 レーザーパワーは、 好ましくは 40 Om J以上であり、 より好 ましくは、 600mJ以上であり、 さらに好ましくは、 800mJ〜1 000mJ である。  The laser frequency of the laser beam applied to the target 1 is preferably divided into two steps (steps S1 and S2) as shown in FIG. The laser frequency in the first laser irradiation (step S1) is preferably lower than the laser frequency in the second laser irradiation (step S2). In this laser irradiation, the laser power is preferably 40 OmJ or more, more preferably 600 mJ or more, and further preferably 800 mJ to 1,000 mJ.
また、レーザー蒸着時の基板 1 0の温度は、好ましくは、 6 00°C以上 1 200°C 未満であり、 より好ましくは、 800°C以上 1 200°C未満である。  In addition, the temperature of the substrate 10 during the laser deposition is preferably 600 ° C. or more and less than 1200 ° C., and more preferably 800 ° C. or more and less than 1200 ° C.
また、 レーザー蒸着時のガス圧力は、 1. 3 3 P a以上 1 00 P a以下であり、 さらに 1. 3 3 P a以上 6 6. 6 6 P a以下が好ましく、 レーザー蒸着時の雰囲気 中に酸素が含まれていることが好ましい。  The gas pressure during laser deposition is from 1.33 Pa to 100 Pa, and preferably from 1.33 Pa to 66.6 Pa. Preferably contains oxygen.
次に、 上記の製造方法により形成される酸化物超電導薄膜について説明する。 図 3は、本発明の一実施の形態における酸化物超電導薄膜の構成を概略的に示す 断面図である。 図 3を参照して、 酸化物超電導薄膜 1 3は、 基板 1 0上に形成され ている。 この基板 1 0は、 サファイア単結晶基板 1 1と、 たとえば酸化セリウムよ りなる中間層 1 2とを有している。  Next, the oxide superconducting thin film formed by the above manufacturing method will be described. FIG. 3 is a cross-sectional view schematically showing a configuration of the oxide superconducting thin film according to one embodiment of the present invention. Referring to FIG. 3, oxide superconducting thin film 13 is formed on substrate 10. This substrate 10 has a sapphire single crystal substrate 11 and an intermediate layer 12 made of, for example, cerium oxide.
酸化物超電導薄膜 1 3は、 たとえば Ho B a2C u3Oxよりなつており、 0. 7 mを超える膜厚 Tを有している。 また、 この酸化物超電導薄膜 1 3は、 液体窒素中 における自己磁場下の臨界電流密度が 1 X 1 06A/ cm2以上であることが好まし く、 また、 臨界電流が 1 cm幅あたり 70 AZcm幅以上、 さらに 28 OA/ cm 幅を越えることが好ましい。 なお、 酸化物超電導薄膜 1 3の材質は、 Ho B a2C UsO,に限定されず、 RE 1 2 3構造を有していればよレ、。 また、 RE 1 2 3構造 における REは希土類元素およびィットリゥム元素の少なくともいずれかであるこ とが好ましい。 Oxide superconductor thin film 1 3, for example, summer than Ho B a 2 C u 3 O x, and has a thickness T of more than 0. 7 m. Further, the oxide superconducting thin film 13 preferably has a critical current density of 1 × 10 6 A / cm 2 or more under a self-magnetic field in liquid nitrogen, and has a critical current per 1 cm width. It is preferable that the width is 70 AZcm or more, and more than 28 OA / cm. The material of the oxide superconductor thin film 1 3 is not limited Ho B a 2 C UsO, to, yo if a RE 1 2 3 Structure les. Further, RE in the RE123 structure is preferably at least one of a rare earth element and a yttrium element.
なお、酸化物超電導薄膜 1 3は、サファイア単結晶基板 1 1上に直接形成されて いてもよい。 The oxide superconducting thin film 13 is formed directly on the sapphire single crystal substrate 11. May be.
次に、 上記の酸化物超電導薄膜を用いた超電導限流器について説明する。  Next, a superconducting current limiter using the above-described oxide superconducting thin film will be described.
図 5は、本発明の一実施の形態における超電導限流器の構成を示す図であり、 図 6および図 7は、図 5の超電導限流器に用いられる超電導薄膜よりなるコィノレを示 す平面図および断面図である。  FIG. 5 is a diagram showing a configuration of a superconducting current limiter according to an embodiment of the present invention. FIGS. It is a figure and a sectional view.
図 5を参照して、本実施の形態における超電導限流器は、液体窒素などにより冷 却可能なコイル 28 a、 28 bを有している。 このコイル 28 a、 28 bには、 図 6および図 7に示すように、 たとえば平板状の超電導コイルが用いられる。 この超 電導コイル 28 aは絶縁基板 27の表面上に渦巻き状に形成されており、超電導コ ィル 28 bは、絶縁基板 27の裏面上に渦巻き状に形成されている。 この超電導コ ィル 28 a、 28 bの各々の一方端は、表裏面回路接続部 29によって互いに電気 的に接続されている。 また、 超電導コイル 28 a、 28 bの各々の他方端は、 端子 26 a、 26 bの各々に電気的に接続されている。  Referring to FIG. 5, the superconducting current limiter in the present embodiment has coils 28a and 28b that can be cooled by liquid nitrogen or the like. As the coils 28a and 28b, for example, flat superconducting coils are used as shown in FIGS. The superconducting coil 28 a is formed in a spiral shape on the surface of the insulating substrate 27, and the superconducting coil 28 b is formed in a spiral shape on the back surface of the insulating substrate 27. One end of each of the superconducting coils 28a and 28b is electrically connected to each other by a front and back circuit connecting portion 29. The other ends of the superconducting coils 28a and 28b are electrically connected to the terminals 26a and 26b, respectively.
このような超電導限流器は、 以下のように限流器として作用する。  Such a superconducting current limiter acts as a current limiter as follows.
通常は、超電導導体を用いた限流器は電力系統からみて、インピーダンスが最小 となるように巻線してある。 また、 定常状態で負荷電流が限流器を通過して流れて いるときは、 超電導状態に保たれているので、 電力損失は非常に小さい。 これに対 し、事故時に短絡電流が過大となったときに、 その短絡電流が限流器に用いた超電 導線のタエンチ電流を超えるような場合、 限流器は即、超電導状態から常電導状態 になり、 限流器は、 電気抵抗ゼロから高電気抵抗に転移し、 インピーダンスが一瞬 のうちに大きくなり、過大な短絡電流を即座に限流することが可能となる。 また、 短絡事故が復帰するときは、 限流器が冷却媒体によって冷却され、超電導状態に復 帰するため、 元の電流系統として動作するようになる。  Normally, current limiters using superconducting conductors are wound so that the impedance is minimized when viewed from the power system. Also, when the load current is flowing through the current limiter in the steady state, the power loss is very small because the superconducting state is maintained. On the other hand, if the short-circuit current becomes excessive at the time of the accident and the short-circuit current exceeds the tangent current of the superconducting wire used for the current limiter, the current limiter immediately changes from the superconducting state to the normal conduction state. The current limiter transitions from zero resistance to high resistance, the impedance increases instantaneously, and it becomes possible to immediately limit excessive short-circuit current. When the short-circuit fault recovers, the current limiter is cooled by the cooling medium and returns to the superconducting state, so that it operates as the original current system.
以下、 本発明の実施例について説明する。  Hereinafter, examples of the present invention will be described.
(実施例 1 )  (Example 1)
サファイア基板上に酸化セリウム中間層 (膜厚約 40 nm) を蒸着したものの上 に、 レーザー蒸着法により Ho B a2Cu3Ox超電導層を成膜した。 レーザー蒸着法 では、 Ho B a2C u3〇,焼結ターゲット上に、 Xe C lエキシマレーザー (波長 3 08 nm) を照射し、 レーザーエネルギを 90 Om J、 第 1ステップの繰返しレー ザ一周波数を 5Hz、第 2ステップの繰返しレーザーを周波数4 OH z (各々同時 間成膜) とし、 基板温度を 9◦ 0°C、 酸素雰囲気を 13. 33 P aの条件で成膜を 行なった。 成膜時間を変えることにより、種々の膜厚を持つ Ho B a2Cu3Ox超電 導層を成膜した。 A HoBa 2 Cu 3 O x superconducting layer was formed on a sapphire substrate with a cerium oxide intermediate layer (about 40 nm thick) deposited by laser deposition. In laser deposition, Ho B a 2 C u 3 〇, on a sintered target was irradiated with Xe C l excimer laser (wavelength 3 08 nm), the laser energy to 90 Om J, repetition rate of the first step The frequency was set to 5 Hz, the laser of the second step was repeated at a frequency of 4 OHz (each film was formed simultaneously), the film was formed under the conditions of a substrate temperature of 9 ° C and an oxygen atmosphere of 13.33 Pa. Was. By varying the deposition time was deposited Ho B a 2 Cu 3 O x greater conductivity layer having various thickness.
また、 比較例としてサファイア基板上に酸化セリウム中間層 (膜厚約 40 nm) を蒸着したものの上に、熱共蒸着法により H o B a2C u3Ox超電導層を成膜した。 Ho、 B a、 Cuの金属を原料として抵抗加熱で飛散させ、 対向面に配置し、 70 0 °Cに加熱した基板上に蒸着した。 Further, on what was deposited cerium oxide intermediate layer on a sapphire substrate (thickness: about 40 nm) as a comparative example, it was formed H o B a 2 C u 3 O x superconducting layer by thermal co-evaporation. Ho, Ba, and Cu metals were scattered by resistance heating using raw materials, placed on the opposite surface, and vapor-deposited on a substrate heated to 700 ° C.
上記のレーザー蒸着法および熱共蒸着法で作製した各 Ho B a2Cu3Ox膜(Ho BCO膜) の臨界電流密度と膜厚との関係を調べた。 その結果を表 1に示す。 表 1 We investigated the relationship between the critical current density and the thickness of each Ho B a 2 Cu 3 was produced by a laser deposition method and Netsutomo deposition of O x film (Ho BCO film). The results are shown in Table 1. table 1
レーザー蒸着法および熱共蒸着法で作製した HoBCO膜の臨界電流密度および 臨界電流値 *と膜厚の関係 (*臨界電流値は、 膜 lcm幅あたりの値)  Critical current density and critical current value of HoBCO film produced by laser deposition method and thermal co-evaporation method * Relationship between * and film thickness (* Critical current value is value per film lcm width)
Figure imgf000010_0001
Figure imgf000010_0001
表 1の結果より、 熱共蒸着法によれば、 Ho BCO膜の膜厚が 0. 5 im以上に なると臨界電流密度がゼ口になつているのに対し、レーザー蒸着法で作製した H o BCO膜では 0. 5 μπι以上の膜厚となっても高い臨界電流値を維持でき、 クラッ クを生じさせることなく、厚膜で酸化物超電導薄膜を形成できることがわかる。 さ らに、 0. 7 πιを超える厚膜において、 酸化物超電導薄膜は、 従来に比べ、 臨界 電流密度および膜 1 c m幅あたりの臨界電流値が大きく、優れた酸化物超電導薄膜 であることがわかる。  According to the results in Table 1, according to the thermal co-evaporation method, when the thickness of the Ho BCO film becomes 0.5 im or more, the critical current density becomes zero. It can be seen that the BCO film can maintain a high critical current value even at a thickness of 0.5 μπι or more, and can form a thick oxide superconducting thin film without causing cracks. Furthermore, in the case of a thick film exceeding 0.7 πι, the oxide superconducting thin film has a higher critical current density and a larger critical current value per 1 cm width of the film than the conventional thin film, and is thus an excellent oxide superconducting thin film. Understand.
このことから、 レーザー蒸着法を用いてサフアイャ基板上に超電導薄膜を形成す ることにより、 0. 7 / mを超える厚膜で、 高い臨界電流密度および臨界電流の大 きな優れた酸化物超電導薄膜を形成できることがわかる。 Therefore, a superconducting thin film is formed on a sapphire substrate using laser evaporation. This indicates that an oxide superconducting thin film having a high critical current density and a large critical current can be formed with a thickness exceeding 0.7 / m.
(実施例 2 )  (Example 2)
サファイア基板上に酸化セリウム中間層 (膜厚約 40 nm) を蒸着したものの上 に、 レーザー蒸着法によりホルミウム系超電導薄膜 (Ho B a2Cu3Ox膜: Ho B CO) を形成した。 その際、 レーザーの繰返し周波数をパラメータとして変化させ た。 第 1ステップの繰返し周波数で 10分間成膜した後、第 2ステップの繰返し周 波数で 10分間成膜した。 なお、 成膜時の雰囲気は酸素ガスを 13. 33 P aとし、 基板温度を 900°Cとし、レーザーのパワーを 90 Om Jとして各々一定とした。 超電導層の特性を見るために H oBC O超電導層の液体窒素中における自己磁場下 での臨界電流密度の測定を実施した。 その結果を表 2に示す。 Cerium oxide intermediate layer on a sapphire substrate on what was deposited (thickness: about 40 nm), holmium-based superconducting thin film (Ho B a 2 Cu 3 O x film: Ho B CO) by laser deposition method was formed. At that time, the repetition rate of the laser was varied as a parameter. After forming the film at the repetition frequency of the first step for 10 minutes, the film was formed at the repetition frequency of the second step for 10 minutes. The atmosphere at the time of film formation was 13.33 Pa of oxygen gas, the substrate temperature was 900 ° C., and the laser power was 90 OmJ, and each was constant. In order to observe the characteristics of the superconducting layer, we measured the critical current density of the HoBCO superconducting layer in liquid nitrogen under a self-magnetic field. The results are shown in Table 2.
表 2 第 1段階と第 2段階のレーザ繰返し周波数と HoBCO超電導層の液体窒素中 における自己磁場下での臨界電流密度  Table 2 Laser repetition frequency of first and second stages and critical current density of HoBCO superconducting layer in liquid nitrogen under self-magnetic field
Figure imgf000011_0001
表 2の結果より、 レーザ一の繰返し周波数において、第 1ステップの繰返し周波数 が第 2ステツプの繰返し周波数よりも小さいときに、臨界電流密度が高くなつてい ることがわかる。
Figure imgf000011_0001
From the results in Table 2, it can be seen that, at the repetition frequency of the laser, when the repetition frequency of the first step is smaller than the repetition frequency of the second step, the critical current density increases.
(実施例 3)  (Example 3)
サファイア基板上に酸化セリウム中間層 (膜厚約 40 nm) を蒸着したものの上 に、 レーザー蒸着法によりホルミゥム系超電導薄膜 (Ho B a2Cu3Ox: Ho BC O) を形成した。 その際、 レーザーエネルギをパラメータとして変化させた。 なお、 成膜時には、 第 1ステツプでは、 5Hzの繰返し周波数で 10分間成膜した後、 第 2ステツプでは、 40Hzの繰返し周波数で 10分間成膜した。成膜雰囲気は酸素 ガスを 1 3. 33 P aとし、 基板温度を 900°Cとして各々一定とした。 超電導層 の特性を見るために、 Ho BC O超電導層の液体窒素中における自己磁場下での臨 界電流密度の測定を実施した。 その結果を表 3に示す。 Cerium oxide intermediate layer on a sapphire substrate on what was deposited (thickness: about 40 nm), laser vapor deposition method by Horumiumu system superconducting thin film (Ho B a 2 Cu 3 O x: Ho BC O) was formed. At that time, the laser energy was varied as a parameter. In addition, At the time of film formation, in the first step, film formation was performed at a repetition frequency of 5 Hz for 10 minutes, and then, in the second step, film formation was performed at a repetition frequency of 40 Hz for 10 minutes. The film formation atmosphere was an oxygen gas of 13.33 Pa and the substrate temperature was 900 ° C, and each was constant. To see the characteristics of the superconducting layer, the critical current density of the HoBCO superconducting layer in liquid nitrogen under a self-magnetic field was measured. The results are shown in Table 3.
表 3  Table 3
I ^一ザーパヮ一と HoBCO超電導層の液体窒素中における  I ^^^^^^^ and HoBCO superconducting layer in liquid nitrogen
自己磁場下での臨界密度  Critical density under self magnetic field
Figure imgf000012_0001
表 3の結果より、 レーザーエネルギが 40 Om J以上のとき、 臨界電流密度が高 くなっていることがわかる。
Figure imgf000012_0001
From the results in Table 3, it can be seen that when the laser energy is 40 OmJ or more, the critical current density increases.
(実施例 4)  (Example 4)
サファイア基板上に酸化セリウム中間層 (膜厚約 40 n m) を蒸着したものの上 に、 レーザー蒸着法によりホルミウム系超電導薄膜 (Ho B a2Cu3Ox: HoBC O) を形成した。 その際、 基板温度をパラメータとして変化させた。 なお、 成膜時 には、 第 1ステップでは、 5Hzの繰返し周波数で 10分間成膜した後、 第 2ステ ップでは、 40Hzの繰返し周波数で 10分間成膜した。成膜雰囲気は酸素ガスを 13. 33 P aとし、 レーザーのパワーを 900 m Jとして各々一定とした。 超電 導層の特性を見るために、 H o B CO超電導層の液体窒素中における自己磁場下で の臨界電流密度の測定を実施した。 その結果を表 4に示す。 A holmium-based superconducting thin film (HoBa 2 Cu 3 O x : HoBCO) was formed on a sapphire substrate with a cerium oxide intermediate layer (about 40 nm thick) deposited by laser deposition. At that time, the substrate temperature was changed as a parameter. During the film formation, in the first step, the film was formed at a repetition frequency of 5 Hz for 10 minutes, and then, in the second step, the film was formed at a repetition frequency of 40 Hz for 10 minutes. The film formation atmosphere was oxygen gas at 13.33 Pa and the laser power was 900 mJ, each of which was constant. In order to examine the characteristics of the superconducting layer, the critical current density of the HBCO superconducting layer in liquid nitrogen under a self-magnetic field was measured. The results are shown in Table 4.
表 4  Table 4
基板温度と超電導層の液体窒素中における自己磁場下での臨界密度  Substrate temperature and critical density of superconducting layer in liquid nitrogen under self-magnetic field
基板温度 (°C) 400 500 600 800 900 1000 1100 1200 Substrate temperature (° C) 400 500 600 800 900 1000 1100 1200
HoBCOの臨界電流密 0.1 0.3 1.6 3.0 4.0 3.5 3.1 0.3 度 (MA/cm2) 表 4の結果より、基板温度が 600 °C以上 1 200 °C未満のとき、臨界電流密度 が高くなることがわかる。 HoBCO critical current density 0.1 0.3 1.6 3.0 4.0 3.5 3.1 0.3 degree (MA / cm 2 ) The results in Table 4 show that when the substrate temperature is between 600 ° C and 1200 ° C, the critical current density increases.
(実施例 5 )  (Example 5)
サファイア基板上に酸化セリウム中間層 (膜厚約 40 nm) を蒸着したものの上 に、 レーザー蒸着法によりホルミウム系超電導薄膜 (Ho B a2Cu3Ox: Ho BC O) を形成した。 その際、 成膜酸素ガスの圧力をパラメータとして変化させた。 な お、 成膜時には、 第 1ステップでは、 5Hzの繰返し周波数で 10分間成膜した後、 第 2ステップでは、 40 H zの繰返し周波数で 10分間成膜した。基板温度を 90 0°Cとし、 レーザーのパワーを 900m Jとして各々一定とした。超電導層の特性 を見るために、 Ho B CO超電導層の液体窒素中における自己磁場下での臨界電流 密度の測定を実施した。 その結果を表 5及び図 4に示す。 表 5 Cerium oxide intermediate layer on a sapphire substrate on what was deposited (thickness: about 40 nm), laser vapor deposition method by holmium-based superconducting thin film (Ho B a 2 Cu 3 O x: Ho BC O) was formed. At that time, the pressure of the film-forming oxygen gas was changed as a parameter. During the film formation, in the first step, the film was formed at a repetition frequency of 5 Hz for 10 minutes, and then, in the second step, the film was formed at a repetition frequency of 40 Hz for 10 minutes. The substrate temperature was 900 ° C and the laser power was 900 mJ, and each was kept constant. In order to examine the properties of the superconducting layer, the critical current density of the HoBCO superconducting layer in liquid nitrogen under a self-magnetic field was measured. The results are shown in Table 5 and FIG. Table 5
ガス圧と HoBCO超電導層の液体窒素中における自己磁場下での臨界電流密度  Gas pressure and critical current density of HoBCO superconducting layer in liquid nitrogen under self-magnetic field
Figure imgf000013_0001
表 5及び図 4の結果より、 ガス圧が 1. 33 P a以上 l O O P a以下のとき、 臨 界電流密度が高くなり、 1. 33 &以上66. 66 P a以下のとき、 臨界電流密 度がさらに高くなりことがわかる。
Figure imgf000013_0001
From the results in Table 5 and Fig. 4, the critical current density increases when the gas pressure is 1.33 Pa or more and l OOP a or less, and the critical current density increases when the gas pressure is 1.33 or more and 66.66 Pa or less. It can be seen that the degree is even higher.
(実施例 6 )  (Example 6)
サファイア基板上に酸化セリウム中間層 (膜厚約 40 nm) を蒸着したものの上 に、 レーザー蒸着法によりホルミウム系超電導薄膜 (Ho B a2Cu3Ox: Ho BC O) を形成した。 その際、 成膜雰囲気のガス種をパラメータとして変化させた。 な お、 成膜時には、 第 1ステップでは、 5 H zの繰返し周波数で 10分間成膜した後、 第 2ステツプでは、 40 H zの繰返し周波数で 10分間成膜した。基板温度を 90 0°Cとし、 レーザ一のパワーを 90 Om Jとし、 雰囲気ガス圧を 13. 33 P aと して各々一定とした。超電導層の特性を見るために、 H o B C O超電導層の液体窒 素中における自己磁場下での臨界電流密度の測定を実施した。その結果を表 6に示 す。 Cerium oxide intermediate layer on a sapphire substrate on what was deposited (thickness: about 40 nm), laser vapor deposition method by holmium-based superconducting thin film (Ho B a 2 Cu 3 O x: Ho BC O) was formed. At that time, the gas type of the film formation atmosphere was changed as a parameter. During the film formation, in the first step, the film was formed at a repetition frequency of 5 Hz for 10 minutes, and then, in the second step, the film was formed at a repetition frequency of 40 Hz for 10 minutes. The substrate temperature was 900 ° C, the laser power was 90 Om J, and the atmospheric gas pressure was 13.33 Pa. And each was kept constant. In order to see the characteristics of the superconducting layer, the critical current density of the HBCO superconducting layer in liquid nitrogen under a self-magnetic field was measured. Table 6 shows the results.
表 6  Table 6
ガス種と HoBCO超電導層の液体窒素中における自己磁場下での臨界電流密度
Figure imgf000014_0001
表 6の結果より、 ガス種が酸素のとき、 臨界電流密度が高いことがわかる。
Critical current density of gas species and HoBCO superconducting layer in liquid nitrogen under self-magnetic field
Figure imgf000014_0001
The results in Table 6 show that when the gas type is oxygen, the critical current density is high.
今回開示された実施の形態および実施例は、すべての点で例示であつて制限的な ものではないと考えられるべきである。本発明の範囲は、上記した説明ではなくて、 特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのす ベての変更が含まれることが意図される。 産業上の利用可能性  The embodiments and examples disclosed this time are to be considered in all respects as illustrative and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims. Industrial applicability
以上説明したように、本発明の酸化物超電導薄膜の製造方法によれば、適切な条 件の下でレーザー蒸着法によりサファイア基板上に酸化物超電導薄膜を形成するた め、 0 . 7 μ πιを超える厚膜で、 高い臨界電流密度と大きな臨界電流特性を有する 酸化物超電導薄膜を形成することが可能となる。 このため、大電流を通電すること が必要な電力用途に好適な酸化物超電導薄膜を製造することが可能となる。  As described above, according to the method for producing an oxide superconducting thin film of the present invention, an oxide superconducting thin film is formed on a sapphire substrate by a laser deposition method under appropriate conditions, so that 0.7 μππι It is possible to form an oxide superconducting thin film having a high critical current density and a large critical current characteristic with a thick film exceeding the above. For this reason, it becomes possible to manufacture an oxide superconducting thin film suitable for power applications requiring a large current.

Claims

請求の範囲 The scope of the claims
1 . 原料にレーザー光を照射することにより前記原料から飛散した物質を基板上に 蒸着させるレーザー蒸着法により、サファイアを含む前記基板上に酸化物超電導薄 膜を 0 . 7 mを超える膜厚で形成することを特徴とする酸化物超電導薄膜の製造 方法。 1. The oxide superconducting thin film having a thickness of more than 0.7 m is formed on the substrate containing sapphire by a laser vapor deposition method in which a material scattered from the raw material is deposited on the substrate by irradiating the raw material with laser light. A method for producing an oxide superconducting thin film, characterized by being formed.
2 . 前記原料に照射する前記レーザー光のレーザー周波数を少なくとも 2段階に分 けて前記酸化物超電導薄膜を形成することを特徴とする請求項 1に記載の酸化物超 電導薄膜の製造方法。 2. The method for producing an oxide superconducting thin film according to claim 1, wherein the laser frequency of the laser light applied to the raw material is divided into at least two stages to form the oxide superconducting thin film.
3 . 第 1段階のレーザー周波数が第 2段階のレーザー周波数よりも小さいことを特 徴とする請求項 1または 2に記載の酸化物超電導薄膜の製造方法。 3. The method for producing an oxide superconducting thin film according to claim 1, wherein the first stage laser frequency is lower than the second stage laser frequency.
4 . レーザーパワーが 4 0 O m J以上であることを特徴とする、請求項 1〜3のい ずれかに記載の酸化物超電導薄膜の製造方法。 4. The method for producing an oxide superconducting thin film according to claim 1, wherein the laser power is 40 OmJ or more.
5 . 前記レーザー蒸着時の前記基板の温度が 6 0 0°C以上 1 2 0 0°C未満であるこ とを特徴とする、請求項 1〜4のいずれかに記載の酸化物超電導薄膜の製造方法。 5. The production of the oxide superconducting thin film according to any one of claims 1 to 4, wherein the temperature of the substrate at the time of the laser deposition is not less than 600 ° C and less than 1200 ° C. Method.
6 . 前記レーザー蒸着時のガス圧力が 1 . 3 3 P a以上 1 0 0 P a以下であること を特徴とする、 請求項 1〜 5のいずれかに記載の酸化物超電導薄膜の製造方法。 6. The method for producing an oxide superconducting thin film according to any one of claims 1 to 5, wherein a gas pressure at the time of the laser deposition is 1.33 Pa or more and 100 Pa or less.
7 . 前記レーザー蒸着時のガス圧力が 1 . 3 3 P a以上 6 6 . 6 6 P a以下である ことを特徴とする、請求項 1〜 5のいずれかに記載の酸化物超電導薄膜の製造方法。 7. The production of the oxide superconducting thin film according to any one of claims 1 to 5, wherein a gas pressure at the time of the laser deposition is 1.33 Pa or more and 66.66 Pa or less. Method.
8 . 前記レーザー蒸着時の雰囲気中に酸素が含まれていることを特徴とする請求項 1〜 7のいずれかに記載の酸化物超電導薄膜の製造方法。 8. The method for producing an oxide superconducting thin film according to any one of claims 1 to 7, wherein oxygen is contained in an atmosphere during the laser deposition.
9. 請求項 1〜 8のいずれかに記載の酸化物超電導薄膜の製造方法により形成さ れ、 かつ 0. 7 /zmを超える莫厚を有することを特徴とする酸化物超電導薄膜。 9. An oxide superconducting thin film formed by the method for producing an oxide superconducting thin film according to any one of claims 1 to 8, and having a thickness exceeding 0.7 / zm.
10. 液体窒素中における自己磁場下の臨界電流密度が 1 X 106AZcm2以上で あることを特徴とする請求項 こ記載の酸化物超電導薄膜。 10. The oxide superconducting thin film according to claim 10, wherein a critical current density under a self-magnetic field in liquid nitrogen is 1 × 10 6 AZcm 2 or more.
1 1. 液体窒素中における自己磁場下の臨界電流密度が 1 cm幅あたり 70AZ c m幅以上であることを特徴とす、請求項 9または 10に記載の酸化物超電導薄膜。 11. The oxide superconducting thin film according to claim 9, wherein a critical current density under a self-magnetic field in liquid nitrogen is not less than 70 AZcm width per 1 cm width.
12. RE 123構造を有し、 かつ REが希土類元素およびイットリウム元素の 少なくともいずれかを含む材質からなることを特徴とする請求項 9〜1 1のいずれ かに記載の酸化物超電導薄膜。 12. The oxide superconducting thin film according to claim 9, wherein the oxide superconducting thin film has a RE 123 structure and is made of a material containing at least one of a rare earth element and a yttrium element.
1 3. 請求項 9〜12のいずれかに記載の酸化物超電導薄膜を用いたことを特徴 とする超電導限流器。 1 3. A superconducting current limiter using the oxide superconducting thin film according to any one of claims 9 to 12.
14. 前記酸化物超電導薄膜を超電導状態から常電導状態へ転移させることによ り電流を限流することを特徴とする請求項 13に記載の超電導限流器。 14. The superconducting current limiter according to claim 13, wherein current is limited by causing the oxide superconducting thin film to transition from a superconducting state to a normal conducting state.
PCT/JP2003/004933 2002-04-26 2003-04-17 Oxide superconductive thin-film, process for producing the same and superconducting fault current limiter WO2003091158A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2003235237A AU2003235237A1 (en) 2002-04-26 2003-04-17 Oxide superconductive thin-film, process for producing the same and superconducting fault current limiter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-125719 2002-04-26
JP2002125719A JP2005344125A (en) 2002-04-26 2002-04-26 Oxide superconductive thin-film, process for producing the same, and superconducting fault current limiter

Publications (1)

Publication Number Publication Date
WO2003091158A1 true WO2003091158A1 (en) 2003-11-06

Family

ID=29267573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/004933 WO2003091158A1 (en) 2002-04-26 2003-04-17 Oxide superconductive thin-film, process for producing the same and superconducting fault current limiter

Country Status (3)

Country Link
JP (1) JP2005344125A (en)
AU (1) AU2003235237A1 (en)
WO (1) WO2003091158A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5658891B2 (en) * 2010-02-24 2015-01-28 株式会社フジクラ Manufacturing method of oxide superconducting film

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212214A (en) * 1990-03-01 1992-08-03 Sumitomo Electric Ind Ltd Manufacture of oxide superconductive thin film
JPH06132571A (en) * 1992-10-21 1994-05-13 Sumitomo Electric Ind Ltd Current limiting element and current limiting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04212214A (en) * 1990-03-01 1992-08-03 Sumitomo Electric Ind Ltd Manufacture of oxide superconductive thin film
JPH06132571A (en) * 1992-10-21 1994-05-13 Sumitomo Electric Ind Ltd Current limiting element and current limiting device

Also Published As

Publication number Publication date
AU2003235237A1 (en) 2003-11-10
JP2005344125A (en) 2005-12-15

Similar Documents

Publication Publication Date Title
US5432151A (en) Process for ion-assisted laser deposition of biaxially textured layer on substrate
US7763343B2 (en) Mesh-type stabilizer for filamentary coated superconductors
JPH08502626A (en) Method for making thin films by pulsed excimer laser deposition
JP3278638B2 (en) High-temperature superconducting Josephson junction and method of manufacturing the same
JPH01157579A (en) Manufacture of superconductor and superconductive circuit
Ohmatsu et al. Development of in-plane aligned YBCO tapes fabricated by inclined substrate deposition
JP3188358B2 (en) Method for producing oxide superconductor thin film
KR940002412B1 (en) Supercoductive multilayer circuit and manufacturing method thereof
WO2003091158A1 (en) Oxide superconductive thin-film, process for producing the same and superconducting fault current limiter
KR970005158B1 (en) Superconducting thin film and wire and the process therefor
JP2501620B2 (en) Preparation method of superconducting thin film
WO2003091157A1 (en) Process for producing oxide superconductive thin-film
JPH04275470A (en) Product composed of superconductor/insulator structure and manufacture of said product
JP3361016B2 (en) Superconducting member and manufacturing method thereof
Tiwari et al. Growth of epitaxial NdNiO 3 and integration with Si (100)
JPH01166419A (en) Manufacture of superconductive membrane
EP0624910A1 (en) Superconductor and method of fabricating superconductor
KR970009739B1 (en) Method of manufacture for superconductor thin film
Kusumori et al. Fabrication of high-quality YBCO epitaxial films by ablation using the fourth harmonic of the Nd: YAG laser
JP2704625B2 (en) Method for producing LnA lower 2 Cu lower 3 O-low 7-x single crystal thin film and LnA lower 2 Cu lower 3 O lower 7-x thin film having three-layer perovskite structure
JPH02252618A (en) Production of bi-based superconducting thin film
JP2670554B2 (en) Method for producing oxide superconducting material
Reade Ion-Assisted Laser Deposition of Intermediate Layers for YBa2Cu3O7-(gamma) Thin Film Growth on Polycrystalline and Amorphous Substrates
Reade ITl1 Lawrence Berkeley Laboratory
JPS63224270A (en) Manufacture of superconductor device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP