WO2003089859A1 - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
WO2003089859A1
WO2003089859A1 PCT/JP2003/005040 JP0305040W WO03089859A1 WO 2003089859 A1 WO2003089859 A1 WO 2003089859A1 JP 0305040 W JP0305040 W JP 0305040W WO 03089859 A1 WO03089859 A1 WO 03089859A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
vacuum heat
insulating material
refrigerator
box
Prior art date
Application number
PCT/JP2003/005040
Other languages
French (fr)
Japanese (ja)
Inventor
Hidetomo Takanishi
Hironori Imada
Masato Sasaki
Shinichi Hashimoto
Tsukasa Takushima
Kazuya Higami
Akira Nakano
Hiroshi Aoki
Muneto Yamada
Tsuyoshi Otsu
Kimihiro Nishiyama
Yuji Natsuhara
Toyoshi Kamisako
Original Assignee
Matsushita Refrigeration Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2002118894A external-priority patent/JP2003314951A/en
Priority claimed from JP2002179597A external-priority patent/JP3522733B2/en
Priority claimed from JP2002179598A external-priority patent/JP2004028350A/en
Priority claimed from JP2002179595A external-priority patent/JP3942962B2/en
Application filed by Matsushita Refrigeration Company filed Critical Matsushita Refrigeration Company
Priority to KR1020047017058A priority Critical patent/KR100662530B1/en
Priority to EP03719153A priority patent/EP1505359A4/en
Priority to AU2003235312A priority patent/AU2003235312A1/en
Publication of WO2003089859A1 publication Critical patent/WO2003089859A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • F25D23/061Walls with conduit means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D23/00General constructional features
    • F25D23/06Walls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • F25D11/022Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures with two or more evaporators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2201/00Insulation
    • F25D2201/10Insulation with respect to heat
    • F25D2201/14Insulation with respect to heat using subatmospheric pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/04Refrigerators with a horizontal mullion

Definitions

  • the present invention relates to a refrigerator using a vacuum heat insulating material.
  • FIG. 40 is a cross-sectional view of a door arranged at a front opening of a conventional refrigerator
  • FIG. 41 is an enlarged view of a part of FIG. 40.
  • the refrigerator has a metal outer plate 1, a synthetic resin door frame 2, a synthetic resin inner box 3, foam insulation 4, and vacuum insulation 5.
  • the release paper 6 inserted between the vacuum heat insulating material 5 and the outer plate 1 is formed larger than the vacuum heat insulating material 5.
  • the vacuum heat insulating material 5 is located on the inner surface of the outer plate 1 via the release paper 6.
  • the foam heat insulating material 4 shrinks after the foam heat insulating material 4 is foamed.
  • the action creates a gap X between the outer plate 1 and the release paper 6, thereby preventing the outer plate 1 from being deformed.
  • FIG. 42 shows a side sectional view of such a conventional refrigerator.
  • the refrigerator body 7 includes an outer box 1A and an inner box 3.
  • a moldable bag-shaped paper material 8 covers the entire space formed by the outer box 1A and the inner box 3, and the inside of the paper material 8 is filled with an inorganic porous filler 4A.
  • a vacuum insulation material 5 is arranged along the shape of the space surrounded by the inner and outer boxes 1A and 3. Further, the vacuum heat insulating material 5 used has metal foil on both sides and has a flat shape only.
  • the vacuum heat insulating material 5 can be easily stored between the inner and outer boxes 1A and 3, and the work of closing the gap between the inner and outer boxes 1A and 3 and the vacuum heat insulating material 5 becomes unnecessary. Further, since the heat insulation box can be constituted only by the vacuum heat insulating material 5 without using the rigid urethane foam which is a resin foam, extremely high heat insulation performance can be secured.
  • a refrigerator provided with a resin foam and a vacuum heat insulator between an outer box and an inner box has one of the following configurations.
  • the center line average roughness (Ra) of the outer surface of the outer case where the vacuum heat insulating material is disposed on the outer case is set to 0.1 lm or more. Or, on the outer surface of the outer box Gloss is 80 or less.
  • An intervening member is provided between the vacuum heat insulating material and the outer case to prevent deformation of the outer surface of the outer case.
  • a machine room is provided at the bottom, and vacuum insulation is placed in contact with the outer box on both sides, top, back, and front of the refrigerator, forming a machine room on the bottom, both sides, and the bottom. It is arranged in contact with the inner box on the surface to be made.
  • FIG. 1 is a front view of a refrigerator according to Embodiment 1 of the present invention.
  • FIG. 2 is a side sectional view of the refrigerator of FIG.
  • FIG. 3 is a front sectional view of the refrigerator of FIG.
  • FIG. 4 is an exploded view of the refrigerator compartment door of the refrigerator according to the first embodiment of the present invention before foaming.
  • FIG. 5 is a cross-sectional view of FIG. 4 after foaming.
  • FIG. 6 is a cross-sectional view of the freezer compartment door of the refrigerator according to Embodiment 1 of the present invention.
  • FIG. 7 is an exploded view of another refrigerator compartment door before foaming in the refrigerator according to the first embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of FIG. 7 after foaming.
  • FIG. 9 is a cross-sectional view of a relevant part of a side wall of a refrigerator according to Embodiment 3 of the present invention.
  • FIG. 10 is a perspective view of a main part of a refrigerator according to Embodiment 3 of the present invention.
  • FIG. 11 is a cross-sectional view of a relevant part of a side wall of a refrigerator according to Embodiment 4 of the present invention.
  • FIG. 12 is a cross-sectional view of a main part of a side wall of a refrigerator according to Embodiment 5 of the present invention.
  • FIG. 13 is a cross-sectional view of a vacuum heat insulating material used for a refrigerator according to Embodiment 6 of the present invention.
  • FIG. 14 is a cross-sectional view of another vacuum heat insulating material used for a refrigerator according to Embodiment 6 of the present invention.
  • FIG. 15 is a cross-sectional view of another vacuum heat insulating material used for a refrigerator according to Embodiment 6 of the present invention.
  • FIG. 16 is a plan view showing a state before bending the outer box of the refrigerator according to the seventh embodiment of the present invention.
  • FIG. 17 is a perspective view showing a state of the refrigerator according to Embodiment 7 of the present invention after the outer box is bent.
  • FIG. 18 is a cross-sectional view of main parts of a vacuum heat insulating material used for a refrigerator according to Embodiment 7 of the present invention.
  • FIG. 19 is a partially enlarged sectional view to which a vacuum heat insulating material used for a refrigerator according to Embodiment 7 of the present invention is applied.
  • FIG. 20 is an exploded perspective view of a main part of the other end of the aluminum tape after urethane injection and foaming of the refrigerator in the seventh embodiment of the present invention.
  • FIG. 21 is an enlarged cross-sectional view of a main part of a refrigerator according to Embodiment 8 of the present invention.
  • FIG. 22A is a side sectional view of a refrigerator in a ninth embodiment of the present invention.
  • FIG. 22B is an enlarged view of a main part in FIG. 22A.
  • FIG. 23A is a front sectional view of the refrigerator of FIG. 22A.
  • FIGS. 23B and 23C are enlarged views of the main parts in FIG. 23A.
  • FIG. 24 is an enlarged longitudinal sectional view of a main part of a vacuum heat insulating material applied to the refrigerator in the tenth embodiment of the present invention.
  • FIG. 25 is a partially enlarged cross-sectional view of the refrigerator according to Embodiment 10 of the present invention.
  • FIG. 25 is a partially enlarged cross-sectional view of the refrigerator according to Embodiment 10 of the present invention.
  • FIG. 26 is another partially enlarged cross-sectional view of the refrigerator in the tenth embodiment of the present invention.
  • FIG. 27 is an enlarged cross-sectional view of a main part of the refrigerator according to Embodiment 11 of the present invention.
  • FIG. 28 is a cross-sectional view of a main part of a refrigerator according to Embodiment 12 of the present invention.
  • FIG. 29 is a partially enlarged cross-sectional view near the heat radiating pipe of the refrigerator according to Embodiment 12 of the present invention.
  • FIG. 30 is a perspective view of an outer box flat plate of a refrigerator according to Embodiment 13 of the present invention before bending.
  • FIG. 31 is an enlarged cross-sectional view of a main part of a refrigerator according to Embodiment 14 of the present invention.
  • FIG. 32 is an enlarged cross-sectional view of a main part of the refrigerator according to Embodiment 15 of the present invention.
  • FIG. 33 is an enlarged cross-sectional view of a main part of a position where the vacuum heat insulating material is positioned on the outer case in the refrigerator according to Embodiment 16 of the present invention.
  • FIG. 34 is a configuration diagram of a vacuum heat insulating material applied to the refrigerator according to Embodiment 17 of the present invention.
  • FIG. 35 is a side sectional view of a refrigerator according to Embodiment 17 of the present invention.
  • FIG. 36 is a front sectional view of a refrigerator according to Embodiment 17 of the present invention.
  • FIG. 37 is a circuit diagram of a refrigeration cycle of a refrigerator according to Embodiment 18 of the present invention.
  • FIG. 38 is a structural diagram of a vacuum heat insulating material according to Embodiment 18 of the present invention.
  • FIG. 39 is a schematic diagram of the vacuum insulation material of FIG.
  • FIG. 40 is a cross-sectional view of a door arranged at a front opening of a conventional refrigerator.
  • FIG. 41 is an enlarged view of part A of FIG.
  • FIG. 42 is a side sectional view of another conventional refrigerator. BEST MODE FOR CARRYING OUT THE INVENTION
  • the refrigerator 10 has a resin foam in a space formed by an inner box 11 made of a synthetic resin such as an acrylonitrile, butadiene, and styrene copolymer (ABS) and an outer box 12 made of a metal such as an iron plate. It is composed of a rigid urethane foam (urethane foam) 13 that is the body.
  • a refrigerator compartment 15 and a vegetable compartment 16 are formed at the upper part of the heat insulating partition wall 14, and a switching compartment 17, an ice making compartment 18 and a freezing compartment 19 are formed at the lower portion.
  • a compressor 21 is provided inside a machine room 20 located below the rear of the refrigerator 10.
  • the refrigerator 10 also has a refrigerator 22 for cooling, a fan 23 for cooling, a refrigerator 24 for freezing, and a fan 25 for freezing.
  • a condenser 26 is provided on the bottom of the refrigerator 10.
  • doors In the front opening of the refrigerator 10, hinged refrigerator compartment doors (hereinafter referred to as doors) 27, which pivot around one end, drawer-type vegetable compartment doors (hereinafter referred to as doors) 28, switching rooms Doors (hereinafter referred to as doors) 29, doors for ice making rooms (hereinafter referred to as doors) 30 and doors for freezer compartments (hereinafter referred to as doors) 31 are provided.
  • the vacuum insulation materials 32, 33, 34, 35, 36, 37, 38, 39, 40, and 41 constitute the refrigerator body 10 together with the urethane foam 13.
  • the vacuum heat insulators 32, 33, 34, 36 are attached to the outer box 11 in contact with the top, back, side, and inside of the machine room components. Further, the vacuum heat insulating material 35 is attached in contact with the bottom surface of the inner box 12. The vacuum heat insulating material 37 is disposed in the heat insulating partition wall 14. Also, Inside the door 27, a vacuum heat insulating material 38 is provided so as to be in contact with the inner box. Inside the doors 28, 29, 31 are vacuum insulation materials 39, 40, 41, respectively, located so as to be located between the outer steel plate of each door and the inner box. Although not shown, a vacuum heat insulating material is also provided in a middle portion between the outer steel plate of the door 30 and the inner box.
  • the urethane foam 13 surrounding the freezing compartment 19 and the switching compartment 17 in the freezing area and the vacuum heat insulating materials 33, 34, 35, and 36 form an insulating box.
  • the thickness of the heat insulating wall of the heat insulating box is preferably in the range of 25 to 5 Omm including the thin portion of the opening except for the door.
  • the urethane foam 13 surrounding the refrigerator compartment 15 and the vegetable compartment 16 in the refrigeration area and the vacuum insulation materials 32, 33, and 34 also form an insulation box.
  • the heat insulation wall thickness of the heat insulation box shall be in the range of 25 to 40 mm, including the thin part of the opening except for the door.
  • the thickness of the urethane foam 13 to be filled is at least 10 mm. For this reason, it does not hinder the fluidity of the urethane foam 13 during foaming, and does not cause a decrease in heat insulation due to foam roughness or poor filling. In this way, the thickness of the vacuum heat insulating material is ensured, and the heat insulating property of the urethane form 13 is maintained while the heat insulating property of the urethane form 13 is sufficiently exhibited, so that the heat insulating performance of the multilayer heat insulating wall can be effectively improved.
  • the thickness of the heat insulating wall surrounding the freezing room 19 and the switching room 17 in the freezing area should not exceed 50 mm.
  • vacuum insulation can be applied to increase the internal volumes of the freezer compartment 19 and the switching compartment 17, which have relatively small volume ratios, without affecting the appearance layout.
  • the utility value of the vacuum insulation material can be further enhanced.
  • the thickness of the heat insulation wall of the refrigerator compartment 15 and the vegetable compartment 16 should not exceed 40 mm.
  • the refrigerator 10 has components that are not shown, and portions having a special structure such as an uneven shape, piping, and a drainage pipe installation portion. If a large amount of vacuum insulation is to be used to maximize the coverage, a special form of vacuum insulation suitable for such a part is required. Alternatively, the workability of attaching the vacuum insulation material becomes extremely poor. For this reason, even if it is attempted to arrange the vacuum heat insulating material so as to exceed approximately 80% of the surface area of the outer box 11, the above-mentioned use efficiency will be poor and the use value will be saturated. That is, the effect of improving the heat insulation performance with the introduction of the vacuum heat insulating material is significantly reduced.
  • the effect of using a large amount of vacuum heat insulating material is not saturated by setting the coverage of the vacuum heat insulating material to the surface area of the outer box 11 to be 80% or less as in the present embodiment. .
  • the endothermic load is effectively suppressed when the utility value is high, and the energy saving effect is enhanced.
  • the thickness of the heat insulating wall overlaps the peripheral part of each surface and the partition between the cooling chambers. At the periphery of the opening, the filling adhesion of the urethane foam 13 is reduced, and the heat insulating property is reduced.
  • the heat absorption load of the heat-insulating box can be improved by arranging the heat-insulating box at a location where the thermal gradient of heat passing inside and outside the inside of the heat-insulating box is large. The amount is effectively reduced, and the energy saving effect is increased.
  • the contribution rate of the energy saving effect to the investment cost is large in the range of 50 to 70%.
  • the vacuum insulation is placed on both sides, top, back, bottom, and front of the refrigerator 10, so that the coverage of the vacuum insulation on the surface area of the outer box is 5%. It is preferably from 0% to 80%, more preferably from 50% to 70%.
  • the temperature gradient inside and outside the refrigerator at the doors 27, 28, 29, 30 and 31 is relatively smaller than that of the other parts of the heat-insulating box, such as the machine room 20, where exhaust heat is involved.
  • the covering rate of the vacuum insulation material is about 53% in a refrigerator with a height of 180 mm, a width of 675 mm, and a depth of 6500 mm, which is reasonable for the above-mentioned paste area of 50 to 80%. Energy-saving refrigerator with typical vacuum insulation.
  • the center line average roughness (R a) of the outer surface of the outer box 11 on which the vacuum insulation materials 32, 33, and 34 are disposed on the outer box 11 is set to 0.1 m or more. It is set coarser than less than 0.1 zm.
  • the method of manufacturing the refrigerator compartment door 27 will be described with reference to FIGS.
  • the door inner plate 42 has a projection 43, and a vacuum insulation material 38 is attached so as to be in contact with the surface of the frontmost portion 44. Then, after the urethane foam 13 is injected into the inside of the door outer plate 27A, the door inner plate 42 is covered and foamed to form the door 27.
  • FIG. 6 is a sectional view of a drawer-type freezer compartment door 31.
  • the door inner plate 45 has a fixing portion 47 for fixing a rail 46 for supporting a case (not shown) for storing frozen food.
  • the urethane foam 13 is fixed together with the reinforcing plate 48 with the fixing portion 47 to fix the door inner plate 45 and the rail 46.
  • the spacer 49 is provided with an adhesive or the like on a part of the reinforcing plate 48 so that the vacuum heat insulating material 41 is disposed in the space between the door inner plate 45 and the door outer plate 50.
  • the spacer 49 is made of a material softer than the vacuum heat insulating material 41, for example, styrene foam or polyethylene foam.
  • the spacer 49 has a substantially rectangular parallelepiped shape, and is arranged so that the flow direction of the urethane foam 13 during foaming and the longitudinal direction of the spacer 49 match.
  • a cooling device is constituted by the compressor 21, the refrigerator 22, the refrigerator 23, the refrigerator 24, the refrigerator 25, and the condenser 26.
  • Such a cooling device is approximately 0 to 10 ° C in the refrigerator compartment 15 and the vegetable compartment 16, and is in the switching compartment 17, the ice making compartment 18 and the freezing compartment 19 --15 to --25 X: Cool to the temperature.
  • the vacuum heat insulating material is placed from the place with a large heat gradient inside and outside the box, and if the covering rate becomes 50% or more of the outer box surface area, the endothermic load of the refrigerator can be effectively suppressed. .
  • This can increase the energy saving effect.
  • the coverage By setting the coverage to 80% or less, the use of nonstandard vacuum insulating materials and the work of arranging them in areas with low work efficiency are avoided. In other words, it is possible to avoid a rapid increase in the cost ratio with respect to the reduction in the amount of heat absorbed by the vacuum heat insulating material. Can be.
  • the vacuum insulation materials 3 2, 3, 3 and 3 4 are attached to the outer box 1 1, factors such as unevenness of the surface of the vacuum insulation materials 3 2, 3 3 and 3 4, and variations in flatness such as warpage etc. As a result, the outer surface of the outer case 11 may be deformed. However, since the center line average roughness (R a) of the outer surface of the outer case 11 is set to 0.1 m or more and is set to be coarser than the conventional product, the light of the outer case outer surface in the same coating material is used. Reflectivity decreases. This visually reduces the deformation of the outer surface of the outer box due to the attachment of the vacuum heat insulating material.
  • the upper limit of the center line average roughness (R a) of the outer surface of the outer box 11 is desirably 1 m or less so as not to impair the quality of the external appearance.
  • a vacuum insulation material 38 is attached so as to be in contact with the surface of the frontmost portion 4 4 of the door inner plate 4 2, and after injecting urethane foam 13, the door inner plate 4 2 is covered and foamed to make the door 2 7 Molding. Therefore, the vacuum insulation material 3 8 is a door
  • the outer surface of the refrigerator compartment door 27 does not deform due to shrinkage after urethane foam 13 foaming because it does not directly contact the outer surface of 27.
  • vacuum insulation material should be used so that it is in contact with the surface of the frontmost part 44 of the door inner plate 42.
  • the vacuum heat insulating material 38 can be arranged as large as possible, and the heat insulating performance can be improved.
  • Urethane foam 13 is also filled from the space between the vacuum heat insulating material 38 and the door inner plate 4 2 to the protrusion 43 formed inside the refrigerator of 42, and the strength of the protrusion 43 is increased.
  • the vacuum heat insulating material 41 disposed on the door 31 is partially disposed in the space between the door inner plate 45 and the door outer plate 50 via the spacer 49. For this reason, the outer surface of the door outer plate 50 does not deform due to shrinkage after urethane foam 13 foaming.
  • urethane foam 13 is securely formed near the fixed portion 47 of the rail 46 formed on the door inner plate 45 and the reinforcing plate 48, and the strength of the rail fixed portion 47 is increased.
  • the spacer 49 is a member softer than the vacuum heat insulating material 41, the reliability of the vacuum heat insulating material 41 can be improved without damaging the outer cover material of the vacuum heat insulating material 41.
  • the spacer 49 has a substantially rectangular parallelepiped shape, and is arranged so that the flow direction of the foamed urethane foam 13 and the longitudinal direction of the spacer 49 are matched. Therefore, the spacer 49 weakens the flow of the urethane foam 13 at the time of foaming, the urethane filling property is improved, and the strength of the rail fixing portion 47 is reliably increased.
  • the refrigerator door 31 has been described as the drawer door of the refrigerator according to the present embodiment, it is effective that the vegetable room door 28 and the switching room door 29 constituting the drawer door have the same configuration. It is.
  • a single vacuum heat insulator 38 is used for the refrigerator compartment door 27.
  • multiple doors A number of vacuum heat insulators 38 A, 38 B may be placed in contact with the door inner plate 42, with a gap near the protrusion 43.
  • the projections 43 are more reliably filled with the urethane foam 13, and the strength of the projections 43 of the refrigerator compartment door 27B is increased.
  • the basic structure of the refrigerator according to the second embodiment of the present invention is the same as that of the first embodiment.
  • the center line average roughness of the outer surface of the outer box 11 is specified.
  • the outer box 1 2 on the side where the vacuum insulation materials 3 2, 3 3, 3 4 are arranged in the outer box 1 2 has its gloss reduced from about 90 in the past, 80 or less.
  • the gloss refers to a reflectance of 10% at an incident angle of 60 degrees on a glass surface having a refractive index of 1.567, and a gloss of 100 or an incident angle of 20 degrees.
  • the reflectance of 5% is defined as a glossiness of 100, which is defined in the JIS standard (JISZ8741).
  • the vacuum heat insulating materials 32, 33, and 34 are attached to the outer case 12 in contact with them.
  • the outer surface of the outer box 12 may be deformed due to factors such as unevenness of the surface of the vacuum heat insulating materials 32, 33, and 34, and variations in flatness such as warpage. Since the outer surface of the outer case 12 has a gloss of 80 or less, the light reflectance of the outer surface of the outer case at the same surface roughness is reduced. Therefore, deformation of the outer surface of the outer box due to the attachment of the vacuum insulation material is visually reduced. Therefore, it is possible to cope with the external deformation of the refrigerator 10 to which the vacuum heat insulating material is applied, without using a complicated structure or special parts and materials.
  • the lower limit of the glossiness of the outer surface of the outer box 12 is desirably about 50 which does not impair the appearance quality.
  • FIG. 9 is a sectional view of a main part of a side wall of a refrigerator according to a third embodiment of the present invention
  • FIG. 10 is a perspective view of the main part.
  • Other basic configurations are the same as in the first embodiment.
  • a soft member 53 as an interposition member for preventing deformation of the outer case outer surface from the outer case 51 side, a vacuum insulation material 54 and a hard material Urethane foam 55 is provided.
  • the soft member 53 is larger than the vacuum heat insulator 54 and is preferably made of a member softer than the vacuum heat insulator 54.
  • a resin foam made of an independent foam is desirable.
  • the thickness t 1 of the soft member 53 is preferably equal to or greater than the flatness of the vacuum heat insulator 54 and equal to or less than the thickness of the vacuum heat insulator. Specifically, it should be 3 mm or more and 15 mm or less.
  • the soft member 53 provided between the vacuum heat insulating material 54 and the outer case 51 prevents deformation of the outer surface of the outer case. Thereby, unevenness factors such as unevenness and warpage on the surface of the vacuum heat insulating material 54 are absorbed, and deformation of the outer surface of the outer box is prevented.
  • the soft member 53 is larger than the vacuum heat insulating material 54, mounting variations when the vacuum heat insulating material 54 is attached to the outer box 51 will be absorbed, and work efficiency will be improved.
  • the soft member 53 is a member softer than the vacuum heat insulating material 54, the reliability of the vacuum heat insulating material 54 can be improved without damaging the outer cover material of the vacuum heat insulating material 54 during manufacturing.
  • the soft member 53 as the intervening member is a member made of a resin foam
  • the foaming pressure during foaming of the hard urethane foam (hereinafter, urethane foam) 13 is absorbed by the compression of the resin foam.
  • the shrinkage of the urethane foam after foaming is absorbed by the expansion of the resin foam, and deformation of the outer surface of the outer box is reliably prevented.
  • the soft member 53 is made of a closed-cell foam, gas such as foaming gas or air can be prevented from entering the inside of the soft member 53, thereby preventing the outer surface of the outer box from being deformed due to a temperature change. Is done.
  • the thickness t 1 of the soft member 53 is set to be equal to or more than the flatness of the vacuum heat insulating material 54 and equal to or less than the thickness of the vacuum heat insulating material, specifically, 3 mm to 15 mm. This ensures that the flatness of the vacuum insulation material varies with the soft member. By not absorbing the soft member 53 more than necessary, the heat insulation performance does not decrease.
  • the soft member 53 is pasted on the outer case 51 after the vacuum member 54 is pasted on the outer case 51, the soft member 53 is pasted on the vacuum case 54 before the soft member 53 is pasted on the outer case 51. You may.
  • FIG. 11 is a cross-sectional view of a relevant part of a side wall of a refrigerator according to Embodiment 4 of the present invention.
  • the other basic configuration is the same as that of the first embodiment.
  • the hard member 56 as an intervening member provided between the vacuum heat insulating material 54 and the outer case 51 is made of a member harder than the vacuum heat insulating material 54.
  • it is preferably made of an ABS sheet, and the thickness thereof is preferably equal to or less than the flatness of the vacuum heat insulating material 54, specifically, 3 mm or less.
  • the deformation factors of the outer case such as unevenness and warpage on the surface of the vacuum heat insulating material 54 are prevented from being transmitted to the outer surface of the outer case, and the outer surface of the outer case is prevented from being deformed. Further, since the thickness of the hard member 56 can be made relatively thin, the influence on the heat insulation performance can be suppressed.
  • FIG. 12 is a cross-sectional view of a main part of a side wall of a refrigerator according to Embodiment 5 of the present invention.
  • the other basic configuration is the same as that of the first embodiment.
  • a soft member 53 and a hard member 56 are disposed between a vacuum heat insulating material 54 and an outer box 51.
  • the arrangement order is such that the hard member 56, the soft member 53, and the vacuum heat insulating material 54 are arranged from the outer box 51 side.
  • the soft member 53 absorbs the deformation factors of the outer box such as unevenness and warpage on the surface of the vacuum heat insulating material 54, and the hard member 56 prevents the transmission of the deformation factors of the outer box, Is reliably prevented from being deformed.
  • FIGS. 13 to 15 are cross-sectional views of various vacuum heat insulating materials used in the refrigerator according to the sixth embodiment of the present invention. Other basic configurations are the same as in the first embodiment.
  • the core material 57 enclosed inside the vacuum heat insulating material is sealed around the core material 57 with a first outer cover material 58, and after the inside is evacuated, is kept in a vacuum state.
  • the outer periphery of the first covering material 58 is covered with a second covering material 59 to form a double structure.
  • gas is sealed in a space 60 between the first covering material 58 and the second covering material 59. Use air or inert gas as the gas.
  • the outer periphery of the first outer cover material 58 where the outer box deformation such as concave and convex, warp, etc. of the surface of the core material 57 enclosed inside the vacuum heat insulating material occurs is formed by the second outer cover material 59 It is covered with a double structure.
  • the outer casing material 59 absorbs the outer casing deformation factor, thereby preventing the outer casing outer surface from being deformed.
  • a gas is sealed between the outer covering members 58 and 59 having the double structure. In this way, the gas space 60 filled between the double-layered outer casings 58, 59 absorbs the deformation factors of the outer casing, such as irregularities and warpage on the surface of the vacuum insulation material, and the outer casing outer surface Deformation is prevented.
  • the thickness t 3 of the double-layered outer cover material 59 B is made larger than the thickness t 2 of the other outer cover material 59 A, and the outer cover material 59 B side is removed. It may be pasted on Box 1 or 2.
  • the thickness t3 of the outer cover material 59B since the thickness t3 of the outer cover material 59B is increased, the thickness t3 absorbs factors such as unevenness and warpage on the surface of the vacuum insulation material, and the outer surface of the outer case is deformed. Is prevented.
  • the outer periphery of the first covering material 58 is covered with a second covering material 59 to form a double structure, and a soft member 6 1 May be enclosed.
  • the soft member 61 absorbs the deformation factors of the outer box such as unevenness and warpage on the surface of the vacuum heat insulating material, and the outer surface of the outer box is prevented from being deformed.
  • the soft member 61 has a function of protecting the vacuum heat insulating material, and the reliability of the vacuum heat insulating material is improved. (Embodiment ⁇ )
  • FIG. 16 is a plan view showing a state before bending the outer box of the refrigerator according to Embodiment 7 of the present invention
  • FIG. 17 is a perspective view showing a state after bending the outer box of the refrigerator
  • Fig. 18 is a cross-sectional view of the main part of the vacuum insulation material used in the refrigerator
  • Fig. 19 is a partially enlarged cross-sectional view of the refrigerator using the vacuum insulation material
  • Fig. 20 is the refrigerator after urethane injection and foaming.
  • FIG. 4 is an exploded perspective view of a main part of the other end of the aluminum tape. Other basic configurations are the same as in the first embodiment.
  • the outer box 62 made of a steel plate is a flat plate before bending.
  • the outer box 62 has a radiating pipe 63 constituting a refrigeration cycle fixed with an aluminum tape 64 as a fixing member, and a vacuum heat insulating material 65, 66, 67 on the upper surface thereof is an adhesive member such as a hot melt. Fixed at. Then, the outer box 62 is bent at the bending portion 69, and the rear plate 70, the bottom plate 71, and the inner box (not shown) are assembled. After that, the space defined by the outer box 62 and the inner box is filled with rigid urethane foam and foamed. Therefore, the machine room component 68, which houses the compressor of the refrigeration cycle, is not filled with urethane foam and communicates with the outside. Further, one end 64 ⁇ of the aluminum tape 64 fixing the heat radiating pipe 63 extends to the machine room constituent part 68. Also, the other end 6 4 ⁇ of the aluminum tape 64 is located inside the vacuum insulation material 6.5.
  • a groove 74 is formed by a press section 73 of a press machine 72. Then, the vacuum heat insulating material 65 is arranged and fixed to the outer box 62 such that the heat radiating pipe 63 enters the groove 74.
  • a first gap 76 is formed between the outer case 62 and the aluminum tape 64.
  • a second void portion 77 is formed between the groove 6 4 and the groove 74 of the vacuum heat insulating material 65.
  • one end 64 4 7 of the aluminum tape 64 extends to the machine room component 68 in the first gap portion 76 and the second gap portion 77. So it is in communication with the outside world. Therefore, gas such as foaming gas does not stay in the voids 76 and 77. Therefore, the gaps 76 and 77 do not expand or contract due to a change in the ambient temperature, and the outer surface of the outer box 62 where the heat radiating pipe 63 is disposed is prevented from being deformed.
  • one end 64 A of the aluminum tape 64 extends to the machine room component 68, and the other end 64 B is located inside the end of the vacuum heat insulating material 65.
  • the rigid urethane foam 75 is foamed, some urethane foam 75 penetrates through a gap between the vacuum heat insulating material 65 and the heat radiating pipe 63.
  • this configuration does not reach the other end 64 B of the aluminum tape 64. Therefore, since the air gaps 76 and 77 near the other end 64 B side of the aluminum tape 64 are in communication with each other, the gas in the air gaps 76 and 77 is smoothly discharged out of the refrigerator. As a result, the gap does not expand or contract due to a change in the ambient temperature, and the outer surface of the outer box 62 provided with the heat-dissipating pipe 63 is reliably prevented from being deformed.
  • a groove 74 formed in the vacuum heat insulating material 65 opposite to the heat radiating pipe 63 is formed by a press portion 73 of a press machine 72 after the vacuum heat insulating material 65 is completed. Therefore, it is not necessary to form a groove in the core of the vacuum heat insulating material 65 in advance, and the manufacturing process of the vacuum heat insulating material can be simplified.
  • the aluminum tape is described as the fixing member, but the material is not particularly limited as long as the tape material has adhesiveness. Further, it is more preferable to have thermal conductivity.
  • FIG. 21 is an enlarged sectional view of a main part of a refrigerator according to Embodiment 8 of the present invention.
  • the other basic configuration is the same as that of the first embodiment.
  • a plurality of pores 78 previously arranged on the outer surface of the outer box 62 by a press or the like are provided linearly on the outer box 62 in correspondence with the arrangement portion of the vacuum heat insulating material 65.
  • the gas in the gap between the vacuum insulation material 65 and the outer case 62 is caused by the deformation of the outer case due to unevenness and warpage of the surface of the vacuum insulation material 65. Become. This gas is discharged smoothly out of the refrigerator through the pores 7 8. Therefore, the gap does not expand or contract due to a change in the ambient temperature, and the outer surface of the outer box 62 in which the vacuum heat insulating material 65 is provided is prevented from being deformed.
  • the arrangement of the pores 78 is not limited to a straight line, but may be a curved line or a polygonal line.
  • FIG. 22A is a cross-sectional view showing a left-side portion viewed from the right side when the refrigerator according to the ninth embodiment of the present invention is cut left and right, and FIG. It is sectional drawing which shows the mode that the part was seen from the front.
  • the difference between the basic structure of the refrigerator according to the present embodiment and the first embodiment is the arrangement of the vacuum heat insulating material. In other words, vacuum insulation
  • 3 2, 3 3 A 3 3 3 B and 3 4 are attached to the outer case 12 in contact with the top surface, the back surface, and the inside of the upper side surface, respectively. Further, the vacuum heat insulating materials 35, 34A, 36 are attached to the inner box 11 in contact with the bottom surface, the lower side surface, and the component surface of the machine room 20, respectively.
  • the refrigerator compartment door 27, the vegetable compartment door 28, and the freezer compartment doors 29, 31 located at the front opening of the refrigerator 10 have vacuum insulation materials 38, 39, respectively. 4 0 and 4 1 are disposed so as to be in contact with the outer steel plate of each door.
  • each vacuum heat insulating material is disposed from a place having a large passing heat gradient inside and outside the heat insulating box, and the heat absorption load is effectively suppressed in a state where the use value of the vacuum heat insulating material is high. Enhance energy saving effect.
  • each vacuum insulation material is placed on the outer box 12 on both sides, top, back, and front of the refrigerator, and the bottom and the surface that constitutes the machine room 20 are placed on the inner box 11.
  • the vacuum heat insulating materials 35, 34A, 36, and 37 disposed in the lower side surfaces, the bottom surface, and the machine room 20, where the surface temperature of the outer box 12 becomes high are not exposed to high temperatures. For this reason, the deterioration of the vacuum insulation performance over time can be minimized, and the long-term reliability of the vacuum insulation materials 35, 34A, 36, and 37 increases.
  • the vacuum heat insulating material 34 A on both sides of the lower part is disposed in contact with the inner case 11, a complicated fitting portion and piping between the outer cases 12 are avoided, and the vacuum heat insulating material 34 A is used. Damage is prevented. In other words, on the lower side surfaces where the shape of the outer box 12 is complicated, the reliability is improved by arranging the vacuum heat insulating material 34 A in contact with the inner box 11.
  • the vacuum insulation material 32 on the top surface is placed in contact with the outer case 1 2, it is possible to attach the interior lighting fixtures or electric wires (not shown) to the top surface of the inner case 11. Becomes Therefore, it is possible to install lighting on the top surface of the refrigerator compartment 15, and the usability is improved.
  • vacuum insulation materials 33 A and 33 B are provided on the back of the insulation box, these vacuum insulation materials drain the defrost water from the cooling system piping and coolers 22 and 24. It does not interfere with the drain tube (not shown). Also, the rear panel and the vacuum heat insulating materials 33A and 33B can be assembled as an integral product, which is preferable in the manufacturing process.
  • each vacuum heat insulating material is disposed in contact with either the outer box 12 or the inner box 11 constituting the heat insulating box of the refrigerator, the rigid urethane foam 13 which is a resin foam is provided. A sufficient spatial distance to be formed can be secured. Therefore, the strength of the box body is maintained and the appearance is good without causing deterioration of the heat insulation performance due to the roughness of the urethane foam 13 or insufficient foaming.
  • the insulation wall thickness of the heat insulation box forming the freezer compartments 18 A and 19 in the freezing area, and the heat insulation wall thickness of the heat insulation box forming the refrigerator compartment 15 and the vegetable compartment 16 in the refrigeration area are the same as those in Embodiment 1. Description is omitted. The same applies to the coverage of the outer surface of the refrigerator 10.
  • the vacuum heat insulators 33A and 33B are provided on the rear panel in advance, and then the flat plate is bent into a U-shape and joined to the side and the top to form the outer box 12. At this time, it is preferable to dispose the vacuum heat insulating materials 33 A and 33 B so as to be located near the seam forming the outer box 12. That is, the vacuum heat insulating materials 33 A and 33 B are configured to have substantially the same size as the rear panel. This enhances the heat insulation performance. Further, it is preferable that each vacuum heat insulating material is placed in the outer box 12 or the inner box 11 in advance. By assembling the box in this way, the manufacture becomes easy.
  • the vacuum heat insulating materials 35, 34A, 36, and 37 disposed in contact with the inner box 11 have a smaller projected area than the inner box 11.
  • the vacuum heat insulators 35, 34, 34, 36, and 37 provided in contact with the inner box 11 are provided with the vacuum heat insulators 35, 34, 36, 37 in contact. It does not protrude from each side of the inner box 11.
  • the urethane foam 13 is poured between the outer box 12 and the inner box 11 after the vacuum heat insulating materials 35, 34A, 36, 37 are arranged at predetermined positions. .
  • no force is applied to the vacuum heat insulating material 35, 34A, 36, 37 arranged in the inner box 11 in the direction of peeling from the inner box 11.
  • the vacuum insulation materials 35, 34A, 36, and 37 can be stably stuck, and the flowability of the urethane foam 13 is not hindered.
  • a convex portion 11A surrounding the outer periphery of each vacuum insulation material as shown in Fig. 23B is provided on the surface of the inner box 11 where the vacuum insulation materials 35, 34A and 36 are disposed in contact with each other.
  • a recess 11B for accommodating each vacuum heat insulating material as shown in FIG. 23C.
  • Each of the convex portion 11A and the concave portion 11B has a step portion which is in contact with the outer periphery of the vacuum heat insulating material. The step reduces the exposed area of the end face of each vacuum insulation.
  • Providing the steps in this manner facilitates positioning when attaching the vacuum heat insulating materials 35, 34A, 36, and prevents the vacuum heat insulating materials from being broken. Further, peeling of each vacuum insulation material due to inflow of urethane foam 13 is prevented.
  • the convex portion 11A is provided, the step between the inner box 11 and the vacuum heat insulating materials 35, 34A, 36 is reduced, and the flowability of the urethane foam 13 is not hindered.
  • the provision of the recesses 11B facilitates the processing of the mold of the inner box 11.
  • the step itself is an inner box 1 It is a reinforcement of 1, and it is easy to attach vacuum insulation materials 35, 34A, 36.
  • the heat insulator 36A is arranged at the lower part of the cooler 24 or the inner surface of the inner box 11. It is preferable to secure the shape.
  • a predetermined inclined shape for defrost water treatment is formed on the upper surface of the heat insulating member 36A, and the lower surface is planar and closely adhered to the inner box 11.
  • a hole is provided at the lowest part of the upper surface of the heat insulating member 36A, and a path for removing defrost water from this hole to the outside is provided.
  • the surface of the inner box 11 located below the cooler 24 becomes flat, and the surface of the inner box 11 has no slope, so that the vacuum insulation material 36 can be efficiently attached. Can be.
  • the portion to which the vacuum heat insulating material 36 is applied is not an inclined shape but a flat surface, the side length is shortened, and the vacuum heat insulating material 36 can be made smaller. In addition, the shorter side length can reduce the heat absorption load in the refrigerator.
  • the inner surface of the inner box 11 below the cooler 24 where the heat insulating member 36 A is disposed is a flat surface.
  • the lower part of the cooler 24 in the inner box 11 may be an inclined surface, and the heat insulating member 36A may be arranged on the outer surface of the inner box 11 in that portion.
  • the vacuum insulation material 36 is arranged in advance on the heat insulating member 36A, and the box can be assembled, so that the production is easy.
  • an air vent hole 11 C of the urethane foam 13 on the inner surface of the inner box 11.
  • a hole for venting air is not required on the back of the outer case 12, and the vacuum heat insulating material 33 A can be provided.
  • the outer box 12 has no air vent hole, so that the appearance can be kept beautiful.
  • it can also be used as the back of the outer box of a refrigerator of another structure, and the number of parts and man-hours can be reduced.
  • the boundary between the vacuum heat insulator 34 and the vacuum heat insulator 34A is formed by overlapping the vacuum heat insulator 34 and the vacuum heat insulator 34A.
  • the position of the lower end of the vacuum heat insulating material 34 provided in contact with the outer box 12 on both upper sides of the refrigerator 10 is changed to the vacuum heat insulating material provided in contact with the inner box 1 1 of the lower both sides. It is lower than the upper end of 34 A.
  • the vacuum insulation materials 34, 34A are installed on both sides of the refrigerator 10, they may be shifted in the vertical direction. In addition, the dimensional accuracy of the vacuum insulation material 34, 34A may be low.
  • the vacuum heat insulating material exists on at least one of the outer box 12 and the inner box 11 on both sides of the refrigerator 10. For this reason, the heat insulating effect of the vacuum heat insulating materials 34 and 34 A is not impaired. Further, a stable flow can be achieved without obstructing the flow of the urethane foam 13.
  • the inner box 11 is preferably flat in the width direction so that the vacuum heat insulating materials 35 and 36 can be easily and effectively attached.
  • vacuum heat insulators 35, 36 are arranged in contact with the outside of the bottom surface of the inner box 11 having a flat surface formed in the width direction of the refrigerator 10. With such a configuration, the area for attaching the vacuum heat insulating materials 35, 36 on the bottom surface of the inner box 11 can be enlarged, and at the same time, the area of the bottom surface can be reduced, so that the energy saving effect can be enhanced. Further, the adhesion of the vacuum heat insulating materials 35 and 36 is improved.
  • FIG. 24 is an enlarged longitudinal sectional view of a main part of the vacuum heat insulating material applied to the refrigerator of the present embodiment
  • FIGS. 25 and 26 are partially sectional enlarged views of the refrigerator according to the embodiment.
  • the basic configuration of the entire refrigerator is the same as in the first embodiment or the ninth embodiment.
  • the vacuum heat insulating material 91 has a core material 92 inside.
  • the core material 92 is made of an aggregate of inorganic fibers such as glass wool. After vacuum drying the core material 92, the vacuum insulation material 91 is inserted into the jacket material where the vapor deposition layer film 93 and the metal foil layer film 97 are laminated, and the inside is evacuated to open the opening. It is formed by sealing.
  • the vapor deposition layer film 93 is a composite plastic film in which an aluminum vapor deposition film 95 is sandwiched between a nylon film 94 and a high-density polyethylene film 96.
  • the metal foil layer film 97 is a composite plastic film in which an aluminum foil 99 is sandwiched between a nylon film 98 and a high-density polyethylene film 100.
  • the sealing surface between the vapor deposition layer film 93 and the metal foil layer film 97 has a flat surface on the vapor deposition layer film 93 side, and the surface on the metal foil layer film 97 side is three-dimensionally configured. And the vapor deposition layer film 93 side is arranged in contact with the outer box 12 or the inner box 11. That is, in the vacuum heat insulating material 91, one plane requiring high heat insulation is constituted by the vapor deposition layer film 93 having the aluminum vapor deposition film 95. Further, the other surface requiring high gas barrier properties is constituted by a metal foil layer film 97 having a metal foil 99.
  • both films 93, 97 are positioned on the same plane as the plane on the side of vapor deposition layer film 93.
  • This configuration facilitates the treatment of fins on the sealing surface and improves reliability.
  • vacuum insulation material 91 which has high heat resistance and excellent heat insulation performance.
  • the flat surface of the vacuum heat insulating material 91 on the side of the vapor deposition layer 93 is in contact with the inner side of the outer box 12 or the outer side of the inner box 11. Arrange.
  • the vacuum insulation material 91 having high reliability and excellent heat insulation performance can be effectively arranged, and the fins on the sealing surface need not be treated.
  • both sides of the inner box 11 and outer box 1 2 are so complex that the vacuum insulation material cannot be stuck or the vacuum insulation material has a metal foil film on both sides where the reliability of the vacuum insulation material is important.
  • Use insulation By using a metal foil film with high gas barrier properties on both sides of the vacuum insulation material, even if both surfaces of the vacuum insulation material are in contact with a complex shaped surface, highly reliable vacuum insulation material Can be used. Also, since both surfaces are made of the same material, cost can be reduced. Furthermore, since both surfaces are made of the same material, there is no need to worry about mistakenly attaching the vacuum heat insulating material to the outer box 1 2 or the inner box 1 1 when attaching to the outer box 1 2 or the inner box 1 1.
  • the fiber diameter of the inorganic fiber aggregate constituting the core material 92 is in the range of 0.1 ⁇ m to 1.0 m, which is about 1/10 of the thermal conductivity of the rigid urethane foam 13. It is preferable to form a vacuum heat insulating material having thermal conductivity. Assuming that the thermal conductivity of the urethane foam 13 is 0.015 W / mK, the thermal conductivity of the vacuum heat insulating material 91 is 0.015 WZmK. Further, the thermal conductivity of the vacuum heat insulating material 91 may be set to 0.010 W / mK: to 0.030 W / mK by selecting the fiber diameter of the inorganic fiber aggregate.
  • the thermal conductivity of the urethane foam 13 may be in the range of 1 15 to 1/5. This is because when the thickness of the multi-layer insulation wall between the urethane foam 13 and the vacuum insulation material 91 is relatively small, the thickness of the vacuum insulation material 91 is made small so as not to impair the flowability of the urethane foam 13. Even so, the insulation performance of the multi-layer insulation wall is to be exhibited effectively. Furthermore, in order to achieve higher coverage, vacuum insulation is also installed in places where the wall thickness is relatively thin, so that the energy saving effect can be achieved as expected.
  • FIG. 27 is an enlarged cross-sectional view of a main part of the refrigerator according to Embodiment 11 of the present invention. Other configurations are the same as in the first embodiment.
  • the outer cover material of the vacuum heat insulating material 79 is composed of a film 80 having an aluminum vapor deposition layer on one surface and a film 81 having an aluminum foil on the other surface. Then, the film 80 is attached to the outer box 62. Then, the seal portion 8 2 between the filer 80 and the film 8 1 Rigid urethane foam 75 Bent to the side.
  • the film 80 having the aluminum vapor-deposited layer has a low thermal conductivity, but has a higher gas permeability than the film 81.
  • the film 81 having an aluminum foil has a low gas permeability, but has a higher thermal conductivity than the film 80. Therefore, if the seal portion 82 is bent to the film 81 side where heat conduction is easy, that is, to the urethane foam 75 side, the heat transfer path to the outer box 62 along the film 81 becomes longer. . In addition, the distance between the seal portion 82 and the outer box 62 is increased. As a result, heat transfer to the outer box 62 side via the film is suppressed, and the heat insulating property is improved.
  • FIG. 28 is a cross-sectional view of a refrigerator according to Embodiment 12 of the present invention
  • FIG. 29 is a partially enlarged view of the vicinity of a heat-radiating pipe of the refrigerator.
  • the basic configuration other than these is the same as in Embodiment 1 or Embodiment 9.
  • the heat-dissipating pipe 101 as a condenser that forms part of the refrigeration cycle is placed in contact with the side or back of the outer box 12 and has an aluminum tape 102 that has better heat conduction from the upper surface. Fixed to 2.
  • the aluminum tape 102 also serves as a sealing material.
  • a vacuum heat insulating material 34 is provided so as to cover the heat radiating pipe 101.
  • Aluminum tape 102 is provided outside the refrigerator. With such a configuration, the heat of the heat radiating pipe 101 is reliably insulated by the vacuum heat insulating material 34, and the heat absorption load into the refrigerator is effective. Reduce rate. Further, since the aluminum tape 102 is disposed outside the refrigerator, the air between the heat radiation pipe 101 and the outer box 12 can freely move outside the refrigerator.
  • the aluminum tape 102 be divided in the middle or provided with holes.
  • the air between the heat radiating pipe 101 and the vacuum heat insulating material 34 can also move freely outside the refrigerator. Therefore, unevenness and waving of the surface of the outer box 12 due to heat shrinkage of the air can be suppressed, and the beauty of the appearance can be maintained. Further, the work of attaching the heat radiating pipe 101 can be easily performed without concern for the amount of air between the heat radiating pipe 101 and the vacuum heat insulating material 34.
  • the heat radiating pipe 101 When the heat radiating pipe 101 is installed, it may be incorporated in the vacuum heat insulating material 34 in advance and installed in the outer box 12.
  • the vacuum heat insulating material 34 in which the heat radiating pipe 101 is incorporated on the surface in contact with the outer box 12 is disposed inside the outer box 12.
  • the heat radiating pipe 1 1 is fixed to the inside of the outer box 1 2 before the heat radiating pipe 101 is sandwiched between the outer box 1 2 and the vacuum heat insulator 34.
  • the gap between 0 1 and the vacuum heat insulator 34 can be reduced. Therefore, unevenness and waving of the outer box 12 surface can be suppressed, and the appearance can be maintained beautifully.
  • the heat insulating effect of the vacuum heat insulating material 34 can be enhanced, and the energy saving effect can be enhanced.
  • FIG. 30 is a perspective view of an outer box flat plate of a refrigerator according to Embodiment 13 of the present invention before bending.
  • the other basic configuration is the same as in the first embodiment or the ninth embodiment.
  • the heat radiating pipe 101 is disposed in contact with the surface 107 serving as the side surface of the outer box 12, and the heat radiating pipe 61 is not disposed on the surface 106 serving as the top surface. In other words, the heat radiating pipe 101 is disposed inside the outer box 12 so as not to be located at the top of the refrigerator.
  • the heat of the heat radiation pipe 101 is reliably insulated by the vacuum heat insulating material 34, and the heat absorption load into the refrigerator is reduced.
  • the vacuum heat insulating material 34 has better heat insulation performance than the hard urethane foam 13, the amount of heat absorbed as a refrigerator is reduced, and it is possible to dispose the heat radiation pipe 101 on the top surface 106. Become. Therefore, the vacuum heat insulating material 32 can be easily attached to the top surface, and the effect of energy saving can be enhanced.
  • the heat dissipation pipe 101 is not provided on the top surface 106, the shape of the heat dissipation pipe 101 is simplified, so that workability can be improved, man-hours can be reduced, and material costs can be reduced. Furthermore, since there is no heat radiation pipe 101 on the top surface 106, it can also be used as a heat radiation pipe of a refrigerator of another structure. (Embodiment 14)
  • FIG. 31 is an enlarged view of a main part of a refrigerator according to Embodiment 14 of the present invention.
  • the other basic configuration is the same as in the first embodiment or the ninth embodiment.
  • the vacuum heat insulating material 34 is disposed in contact with the outer case 12, and there is no film sealing allowance for the vacuum heat insulating material 34 in the direction in which the urethane form 13 flows. In other words, the vacuum heat insulating material 34 is disposed between the outer case 12 and the inner case 11 so that the film allowance of the vacuum heat insulating material 34 is not positioned in the direction in which the urethane foam 13 flows. I do.
  • the vacuum heat insulating material 34 enables a stable flow without obstructing the flow of the urethane foam 13.
  • the urethane foam 13 when injected between the outer box 12 and the inner box 11 is in a highly humid state, which prevents heat stress by not directly contacting the sealing margin of the film. No deterioration of vacuum insulation material 3 4 is prevented.
  • the sealing algebra is reduced, and the vacuum heat insulating material 34 maintains a high gas barrier property.
  • FIG. 32 is a cross-sectional view of main parts of a refrigerator according to Embodiment 15 of the present invention.
  • the other basic configuration is the same as that of the ninth embodiment.
  • Vacuum insulation material 34 A should be placed preferentially from the place where defrost water piping 1 1 2 and wiring (not shown) are present. That is, in the present embodiment, there is a foreign matter (defrost water pipe 72, wiring, etc.) between the outer box 12 and the inner box 11 that may obstruct the flow of the rigid urethane foam 13. Vacuum insulation material 3 4 A will be installed in the place. In this way, the heat absorption load of the refrigerator is effectively suppressed by the vacuum insulation material 34 A, and the effect of energy saving is enhanced. Insulation performance is ensured by arranging the vacuum insulation material 34A where there is a foreign material that may impair the flowability of the urethane foam 13.
  • the defrost water pipe 1 1 when installing the defrost water pipe 1 1 2, it is preferable to install it between the vacuum insulation 34 A and the outer box 12. By doing so, the defrosted water is kept warm by the vacuum heat insulating material 34 A, and the defrosted water is prevented from being cooled and frozen by the influence of the temperature in the freezer compartments 18 A, 19.
  • FIG. 33 is a cross-sectional view of a main part of a refrigerator according to Embodiment 16 of the present invention.
  • the other basic configuration is the same as in the first embodiment or the ninth embodiment.
  • the protective member 113 for protecting the end face of the outer box 112 is also used as a positioning member for attaching the vacuum heat insulating material 34. That is, the outer box 1 2 is installed on the end face of the outer Positioning of the vacuum insulation material 3 4 is performed using the girder protection member 1 1 3. In this manner, the protective member 1 13 on the end face of the outer box 1 2 and the positioning member of the vacuum heat insulating material 34 are shared. This prevents the vacuum insulation material 34 from being damaged during assembly. Further, the positioning at the time of attaching the vacuum heat insulating material 34 becomes easy, and workability is improved.
  • the protection member 113 may be provided on the top plate to protect the end surface of the vacuum heat insulating material 32, and may also be used as a positioning member at the time of assembly.
  • FIG. 34 shows a configuration diagram of a vacuum heat insulating material applied to the refrigerator according to Embodiment 17 of the present invention.
  • the core material 121 is made of an inorganic fiber aggregate formed into a plate shape with a binder.
  • the constituent material of the inorganic fiber aggregate is not particularly limited, and inorganic fiber such as glass wool, ceramic fiber, rock wool, or the like is formed into a plate shape using an organic or inorganic binder.
  • the gas barrier film 122 is formed in a bag shape at the seal portion 123.
  • the gas barrier film 1 2 2 keeps the inside airtight.
  • the material composition is not particularly limited. For example, it has the same configuration as the vapor deposition film 93 and the metal foil layer film 97 of the tenth embodiment. That is, one is a plastic laminate film made of polyethylene terephthalate resin on the outermost layer, aluminum foil on the middle layer, and high-density polyethylene resin on the innermost layer.
  • the other is, for example, a plastic laminate film made of a polyethylene terephthalate resin in the outermost layer, an ethylene-vinyl alcohol copolymer resin having an aluminum deposited layer in the intermediate layer, and a high-density polyethylene resin in the innermost layer. These are formed into a bag shape.
  • the vacuum insulation material As a method of manufacturing the vacuum insulation material, insert the core material into a bag-shaped gas barrier film 122, evacuate the inside, seal the opening with a welding seal 124, and maintain the vacuum inside. Let it.
  • FIGS. 35 and 36 are side sectional views of the refrigerator according to the present embodiment, respectively. It is a figure and front sectional drawing.
  • the basic configuration is the same as that of the ninth embodiment, but the vacuum heat insulating material 34 arranged inside the outer box on the side in FIG. 36 is extended to the refrigeration area.
  • the vacuum insulation material 3 arranged in contact with the lower inner box 1 1 corresponding to the freezer compartment 19 of the OA instead of the 4A Has 4B.
  • the vacuum heat insulating material 34 and the vacuum heat insulating material 34 B are arranged such that the opposed end face separation portions are located near the upper end face of the machine room 20.
  • the lower end of the vacuum heat insulator 34 is located below the upper end of the vacuum heat insulator 34B. Even with this configuration, the heat insulating effect on the side surface is exhibited as in the ninth embodiment. That is, the position where the lower end of the vacuum heat insulating material 34 and the upper end of the vacuum heat insulating material arranged outside the inner box on the side surface are not limited.
  • the vacuum heat insulating materials 34 and 34 B are provided in a heat insulating part that separates the inside of the refrigerator from the machine room 20 that houses the compressor 21.
  • the inside of the refrigerator has a freezer compartment 19 at 20 and the machine compartment 20 has 40 to 50.
  • the vacuum heat insulating materials 34 and 34 B efficiently insulate the thick wall portion between the machine room 20 and the freezer room 19 where the temperature difference is relatively large. Furthermore, when injecting the rigid urethane form 13 into the heat insulating box 1OA, generally, the front opening of the heat insulating box 1OA is generally arranged below. Then, the undiluted solution of urethane foam 13 is injected from two urethane injection ports provided substantially at the center in the height direction on the back and right and left of the heat insulating box 1OA. The flow of the urethane foam 13 foamed in this manner spreads in a fan shape centering on the point immediately below the two urethane inlets described above.
  • the final destination of the urethane foam 13 is the top and bottom of the heat insulation box 1OA and the machine room 20 component plane.
  • a vacuum heat insulator 36 having a high degree of flatness is arranged on the mechanical chamber 20 constituting surface which is the final arrival point of the urethane foam 13. For this reason, the space dimension near the final arrival point of the urethane foam 13 can be reliably ensured, the filling property of the urethane foam 13 is increased, and a predetermined heat insulation performance can be secured.
  • the thickness of the heat insulating wall of the heat insulating box 1OA and the covering ratio to the outer surface of the refrigerator 10 are the same as those in the first embodiment, and therefore description thereof is omitted.
  • Vacuum insulation material 3 2, 3, 3, 34, 34 B, 35, 36, 37, 38, 39, 40, and 41 are combined with core material 1 2 1 as described above.
  • the inorganic fiber aggregate formed into a flat plate with the material is covered with a gas barrier film 122 and the inside is evacuated and evacuated.
  • the heat insulation box 1 OA is formed together with the urethane foam 13.
  • the vacuum heat insulating material shown in FIG. 34 may be applied to other embodiments.
  • the vacuum heat insulating materials 34 B, 35 and 36 may be obtained by molding the core material 121 with a binder in advance according to the shape of the surface in contact with the inner box 11. By forming in such a manner, a space layer (a point) is not generated on the contact surface between the inner box 11 and the vacuum heat insulating materials 34B, 35, 36. Therefore, the inner box 11 is prevented from waving and the like, and the appearance quality can be improved.
  • Vacuum insulation materials 32, 33, 34, 34 B, 35, 36, 37, 38, 39, 40, and 41 are Japanese Industrial Standards JIS—K 7 2 2 1
  • the flexural modulus is 40 to 64 MPa.
  • Flexural modulus is the ratio of the bending stress within the bending proportional limit to the corresponding strain.
  • the flexural modulus of the vacuum heat insulating material is preferably 5 to 8 times the flexural modulus.
  • Table 1 shows the strength test results of the insulation box using vacuum insulation materials with different flexural modulus.
  • the test method is to measure the amount of displacement in the horizontal left and right direction at the top of the side surface of the heat insulation box 10 A when a food load of about 3 O kg is applied to the refrigerator compartment door 27.
  • Sample A Sample B Sample C Insulated box specification Hard urethane Vacuum insulation material Vacuum insulation material
  • the strength of the heat-insulated box 1 OA is the strength of the rigid urethane foam only (A) when the rigid urethane foam and the vacuum heat insulating material with a flexural modulus up to about 40 MPa are multi-layered. Less than or equal to This is because the bending strength decreases as the heat insulation wall changes from a single structure to a multi-layer structure.
  • a vacuum heat insulating material with a flexural modulus of 40 MPa or more a multi-layer structure with a strength higher than that of the rigid urethane foam alone can be obtained.
  • the strength of the multi-layered insulation box becomes equal to or higher.
  • the bending elastic modulus of the vacuum insulation material is about 64 MPa, which is the upper limit in terms of cost performance.
  • the strength of the multilayer insulation box can be made equal to or more than that while satisfying the cost performance. it can.
  • the vacuum heat insulating material having such bending strength is obtained by covering the inorganic fiber aggregate in which the core material 121 is formed into a plate shape with the binder with the gas barrier film 122 and evacuating the inside. Manufactured. Compared to the vacuum insulation material using only the inorganic fiber aggregate as the core material, the pressure resistance, bending strength and flatness of the vacuum insulation material are increased by bonding and forming the inorganic fiber aggregate with the binder. Therefore, when such a vacuum heat insulating material is used, the strength of the heat insulating box 10 A increases.
  • the heat insulating box 1OA into the inside of the heat insulating box 1OA with a high degree of flatness, so that the dimensions of the space through which the urethane foam 13 formed inside the heat insulating box 1OA flows can be ensured. Thereby, the fluidity at the time of injecting the urethane foam 13 is increased, the filling rate of the urethane foam 13 is improved, and a predetermined heat insulation performance is obtained.
  • vacuum insulation materials 32, 33, 34, 34B, 35, 36, 37 By increasing the flatness of 38, 39, 40, and 41, it is possible to eliminate the space between the flat surface and the surface that is in direct contact with the adhesive. As a result, the adhesion to the bonding surface is enhanced, and the vacuum insulation material is prevented from falling off and falling during manufacturing and assembly, leading to improved reliability and improved workability. Further, by increasing the flatness of these vacuum heat insulating materials, the flatness of the heat-insulating box 1OA on the surface in direct contact also increases, and the appearance quality of the refrigerator 10 increases.
  • vacuum insulation materials 32, 33, 34, 34 B, 35, 36, 37, 38, 39, 40, 41 are used for inner box 1 1 or outer box 12 or door.
  • the adhesive is fixed to the outer panel of the body, it is preferable to apply the adhesive to the entire surface with a roller.
  • the adhesive for example, a hot melt made of a rubber material is used.
  • Table 2 shows the results of the bonding strength test between the vacuum insulation material and the outer box 12 when the adhesive specification was changed.
  • this test determines the 180 degree peeling adhesive strength to a test plate set to a width of 25 mm.
  • the adhesive used was a rubber-based hot melt, and the test substrate used was a laminate of polyethylene terephthalate and stainless steel.
  • the thickness of the adhesive applied is 30 ⁇ m, the pressure at the time of bonding is 2 kg, and the roller is cycled once.
  • the test ambient temperature is 23 ° C.
  • the adhesive strength is approximately doubled by applying the entire surface, compared to Sample E in which the adhesive is applied linearly at regular intervals, which is a commonly used method.
  • the vacuum insulation materials 3 2, 3, 3, 34, 34 B, 35, 36, 37, 38, 39, 40, and 41 fall off and fall in the manufacturing process. do not do.
  • the strength of the heat insulating box 1OA is increased by firmly bonding and fixing these vacuum heat insulating materials to the inner box 11 or the outer box 12.
  • the adhesive on the entire surface no space is created on the bonding surface between each vacuum insulation material and the inner box 1 1 or the outer box 1 2, and the insulation box 1 OA of the refrigerator 10 does not have waving, and The quality can be improved.
  • the vacuum heat insulating materials 32, 33, 34, 38, 39, 40, 41 are arranged in contact with the outer box 12.
  • a vacuum insulator having a high degree of flatness is provided on the outer box 1 2 that forms a plane as described above, and an adhesive is applied to the contact surface to form a space layer on the contact surface between the outer box 1 2 and the vacuum insulator. (Void) does not occur. This prevents the outer box 12 from waving, etc., and improves the appearance quality.
  • the vacuum heat insulating materials 34 B, 35 and 36 in contact with the inner box 11, the condensation of the foaming agent of the urethane foam 13 located on the outer box 12 side is suppressed, and the heat insulation is achieved.
  • the heat insulation performance of the wall increases.
  • the vacuum heat insulating materials 33, 35, 34, 34B and 36 are provided inside the heat insulating wall corresponding to the freezing temperature range. Thereby, the heat insulating performance of the heat insulating box 1OA corresponding to the freezing temperature zone having a relatively large temperature difference from the outside of the refrigerator can be efficiently increased.
  • the vacuum heat insulating material 33, 35, 34, 34B, 36 has a high flatness because the core material 122 is made of an inorganic fiber aggregate formed into a flat shape by a binder. Have. Therefore, in the heat insulation walls of the freezer compartments 18 A and 19 where there is a large temperature difference, the vacuum insulation material 33, 35, 34, 34 is required, while ensuring the dimensions of the space where the urethane foam 13 flows. The maximum thickness of B and 36 can be secured. Therefore, it is possible to provide a refrigerator with high insulation performance. You.
  • the vacuum insulation materials 38, 39, 40, 41 are arranged on the outer plate side inside the heat insulation walls constituting the doors 27, 28, 29, 30 provided at the opening on the front of the refrigerator. Has been established. In this way, by providing the vacuum insulators 38, 39, 40, 41 with high flatness on the outer plate forming the doors 27, 28, 29, 30 in this way, There is no space layer (void) on the contact surface between the outer plate and each vacuum insulation material. Therefore, the waving of the outer box 12 and the like are prevented, and the appearance quality is enhanced.
  • a hydrocarbon for example, cyclopentane
  • a foaming agent for urethane foam 13 is used as a foaming agent for urethane foam 13.
  • the vacuum heat insulating material is made of a non-flammable inorganic fiber aggregate, the safety is high even when a flammable hydrocarbon foaming agent is used.
  • the heat insulation performance of the heat insulation box is enhanced by compensating for the deterioration of the heat insulation performance due to the application of the hydrocarbon foaming agent with the high heat insulation performance of the vacuum insulation material.
  • the refrigerant of the refrigeration cycle including the compressor 21, the condenser 26, the refrigeration cooler 22, and the refrigeration cooler 24 is a hydrocarbon which is a flammable natural refrigerant, for example, Isobutane is used.
  • a hydrocarbon which is a flammable natural refrigerant, for example, Isobutane is used.
  • the vacuum heat insulating material is fixed in contact with the inner box 11 or the outer box 12 or the outer plate of each door, and foams the foam foam 13 in the space. It was explained as. However, as in the first embodiment, the vacuum heat insulating material may be disposed in the middle of the inner box 11 and the outer box 12 and the urethane foam 13 may be foamed in the space.
  • the core material 122 of the vacuum heat insulating material is made of an inorganic fiber aggregate formed into a plate shape with a binder, and the vacuum heat insulating material has a high flatness. As a result, the space between the inner box 1 1 or outer box 1 2 and the vacuum insulation material can be secured with high accuracy.
  • Urethane foam 13 is reliably filled. Further, since the inner box 1 1 and the outer box 1 2 do not come into direct contact with each other, the appearance of the insulated box 1 OA is not impaired. Further, by disposing the vacuum heat insulating material in the intermediate portion between the inner box 11 and the outer box 12 and forming the periphery with urethane foam 13, there is no need to fix the vacuum heat insulating material with an adhesive or the like.
  • a vacuum insulation material in which the core material 121 is formed in an L-shape with a binding material in advance may be arranged in the top and side corners of the refrigerator 10. In this case, it is possible to further increase the coverage of the heat insulating box body 10 A with the vacuum heat insulating material. In addition, by arranging a vacuum heat-insulating material having high bending strength at the corner of the heat-insulating box 10A, the strength of the heat-insulating box 10OA can be efficiently increased.
  • the vacuum heat insulators 38, 39, 40, 41 provided inside the doors 27, 28, 29, 30 disposed at the front opening of the refrigerator 10 are provided.
  • the vacuum insulation materials 38, 39, 40, 41 are arranged in the middle part of the inner box and the outer plate of each door, and the space is filled with urethane foam 13. You may.
  • the vacuum heating materials 38, 39, 40, and 41 have high flatness, the dimensions of the space filled with the urethane foam 13 can be ensured, and the urethane foam 1 3 is filled securely. Since the outer panel does not directly contact the vacuum insulation materials 38, 39, 40, 41, deformation of the outer panel surface of each door can be further suppressed.
  • FIG. 37 shows a refrigeration cycle circuit diagram of the refrigerator in Embodiment 18 of the present invention. Other configurations are the same as in the first embodiment. This will be described below with reference to FIGS. 37 and 2.
  • a refrigerant discharge port 1338A of the compressor 1338 is connected via a condenser 1339 to an inlet of a three-way switching valve 140 which is a flow path switching unit.
  • One outlet of the switching valve 140 is connected to the inlet of a freezer evaporator (hereinafter referred to as an evaporator) 136 via a freezer cavity 141.
  • Evaporator 1 The outlet of 36 is connected to the inlet of non-return valve 144 via AKUMURAI 142.
  • the outlet of the check valve 143 is connected to the refrigerant inlet 138 B of the compressor 138.
  • the other outlet of the switching valve 140 is connected to the inlet of a refrigerator evaporator (hereinafter referred to as an evaporator) 134 through a refrigerator 134.
  • the outlet of the evaporator 1 3 4 is the check valve 1
  • the refrigerant discharged from the compressor 1338 performs a known state change, and is then sent to the evaporator 134 to cool the air around the evaporator 134.
  • the evaporator 1 34 in FIG. 37 corresponds to the cooler 22 in FIG.
  • the air cooled by the evaporator 13 4 is sent to the refrigeration room 15 and the vegetable room 16 by the blowing operation of the refrigeration fan 23, and the refrigeration room 15 and the vegetable room 16 are Cooled.
  • the refrigerant flow is switched by the switching valve 140 so that the refrigerant discharged from the compressor 1338 flows to the evaporator 1336 while the compressor 1338 is driven. That is, the state shown by the solid arrow 15 1 in FIG. 37 is set. Hereinafter, this state is referred to as a freezing mode.
  • the refrigerant discharged from the compressor 1338 undergoes a known state change, and is then sent to the evaporator 136 to cool the air around the evaporator 136.
  • the evaporator 1 36 in FIG. 37 corresponds to the cooler 24 in FIG. At this time, the air cooled by the evaporator 13 36 is sent to the switching room 17, the ice making room 18, and the freezing room 19 by the blowing action of the freezing blower 25.
  • the refrigeration temperature zone space consisting of the refrigeration compartment 15 and the vegetable compartment 16, and the freezing temperature zone consisting of the switching room 17, the ice making compartment 18, and the freezing compartment 19
  • the space and each are cooled independently.
  • the evaporator 14 maintains the cooling temperature of about 15: 1
  • the evaporator 16 maintains the cooling temperature of about -25, thereby efficiently providing the inside temperature suitable for each cooling space. Therefore, the energy saving effect is enhanced.
  • the refrigerated temperature zone space and the frozen temperature zone space are independently cooled in a time-sharing manner, the amount of heat to be removed at one time is reduced. For this reason, the heat radiation of the condenser 139 is also reduced.
  • the piping volume of the entire refrigeration cycle circuit is reduced to some extent. Therefore, when a flammable hydrocarbon-based natural refrigerant is used as the refrigerant, the risk of ignition at the time of refrigerant leakage is suppressed to some extent.
  • the compressor 13 38 when stopping the compressor 18 in a state where both the refrigerated temperature zone space and the frozen temperature zone space are cooled to a preset temperature, the compressor 13 38 is stopped in the refrigerated mode. In the refrigeration mode, the refrigerant discharge port 138 A of the compressor 13 8 communicates with the inlet of the evaporator 13 4 by the action of the switching valve 14 0, and the refrigerant discharge port 13 8 There is a cutoff between A and the inlet of the evaporator 1 36. When the compressor 1338 is stopped in this state, the high-temperature refrigerant does not flow into the evaporator 1336 from the high pressure side represented by the condenser 1339.
  • the refrigerant does not flow backward from the evaporator 134 to the evaporator 136 due to the operation of the check valve 144. Therefore, the low-temperature refrigerant is held in the evaporator 136, and the temperature of the evaporator 136 is prevented from rising unnecessarily. As a result, the energy loss of the refrigeration cycle is further reduced, and one effect of energy saving is further enhanced.
  • R134a is used as a refrigerant in a conventional refrigerator.
  • R600a isobutane can be used as a hydrocarbon-based natural refrigerant.
  • the heat absorption of the refrigerator as a whole is significantly greater than when the refrigerator 10 and the doors 27, 28, 29, 30 and 31 are insulated with only the rigid urethane foam 13. Reduced. As a result, an energy saving effect can be obtained by reducing the heat absorption of the box.
  • a parallel switching system Even when the refrigeration temperature zone space and the freezing temperature zone space are alternately cooled by the system, the temporal temperature fluctuation in the stop side storage becomes small. In other words, the parallel switching system enhances cooling efficiency and energy saving effect, and at the same time, improves freshness of food.
  • the use of a vacuum heat insulating material in a portion where dew condensation may occur eliminates the need for a heat-dissipating piping designed to prevent dew condensation. Therefore, the piping volume is greatly reduced as a whole. As a result, the amount of refrigerant required for cooling is greatly reduced, and in the case where a flammable hydrocarbon-based natural refrigerant is used, even if the refrigerant leaks, the risk of ignition becomes extremely low.
  • the above-mentioned effect can be obtained even when the compressor 1338 is of a constant rotation speed type.However, it is possible to configure a cooling / refrigeration cycle by using a compressor 1338 of a variable rotation speed type. preferable.
  • the difference between the static heat absorption load when the box is stabilized by using vacuum insulation and the maximum load when the door is opened or closed and the food load is loaded into the refrigerator is determined by the compressor rotation. It can be controlled by number.
  • a constant-speed compressor it is necessary to secure an excessive cylinder volume in accordance with the maximum load, and when the compressor is stable, the time to stop the compressor increases, and the temporal fluctuation of the internal temperature of the refrigerator increases. Become.
  • by applying a variable-speed compressor the loss of such energy-saving effects is reduced, and temporal fluctuations in the internal temperature are suppressed.
  • the cylinder volume is reduced, it is possible to further reduce the amount of refrigerant.
  • Figure 38 shows the structure of the vacuum insulation material.
  • the basic configuration is the same as in Embodiment 10.
  • the core material 144 is made of an inorganic fiber aggregate 144 such as glass wool.
  • the material, thermal conductivity, and the like of the core material 144 and the films 144A and 146B are the same as those in the tenth embodiment, and thus description thereof is omitted.
  • a vacuum heat insulating material having a heat insulating performance approximately 10 times that of a rigid urethane foam can be obtained. For this reason, the effect of reducing the heat absorption of the box body when using vacuum insulation material is greatly increased.As a result, the energy saving effect is greatly increased, and even if the parallel switching system is used, the temperature inside the chamber can be reduced over time. The fluctuation range is reduced, and the food freshness is improved. Further, by further reducing the amount of heat absorption, the required amount of refrigerant can be further reduced, and even if flammable isobutane is used as a refrigerant, the risk of refrigerant leakage is further reduced. In addition, the inorganic fiber aggregate used for the core material 145 has flame retardancy, and the safety in the event that the refrigerator 10 is ignited is increased compared to the case where only the rigid urethane foam is used. .
  • Figure 39 is a schematic diagram of the vacuum insulation.
  • the thickness 14 9 of the vacuum heat insulating material is 15 mm.
  • the vacuum heat insulating material is provided so that the surface formed by the two sides 147 and 148 is oriented in a direction perpendicular to the direction in which heat to be insulated passes.
  • the gas barrier films 144A and 146B which form the outer material of the vacuum heat insulating material, each have a metallic film layer, a so-called heat bridge phenomenon occurs due to heat transfer. Therefore, vacuum insulation coating If the lengths of the sides 147 and 148 forming the area are too small, the original heat insulating performance of the vacuum heat insulating material cannot be brought out, and the heat insulating effect on the amount of the vacuum heat insulating material used is reduced. On the other hand, by setting the sides 147 and 148 to be at least 200 mm, it becomes possible to bring out the original heat insulating performance of the vacuum heat insulating material. That is, it has been confirmed by experiments that the heat leak due to the heat bridge is suppressed.
  • the energy-saving effect of the present embodiment described above the effect of improving the freshness of food by reducing the time-varying temperature fluctuation in the refrigerator, and the effect of reducing the risk of natural refrigerant leakage due to the use of less refrigerant. Can be further increased.
  • the thickness of the vacuum insulation material was set to 15 mm, but if it was within the range of about 5 to 20 mm, there was no possibility of impairing the foam-filling properties of the urethane foam ⁇ 3. Is exhibited.
  • Embodiment 1 is the same as Embodiment 1 except for the configuration of the refrigeration cycle and the dimensions of the vacuum heat insulating material. Such a configuration is also effective when applied to the configurations of the other embodiments.
  • Refrigerator in a refrigerator provided with a resin foam and a vacuum heat insulating material between an outer box and an inner box, by adopting any of the following constitutions, the appearance is good and the heat insulation is efficient.
  • Refrigerator can be provided.
  • the center line average roughness (R a) of the outer surface of the outer case where the vacuum heat insulating material is arranged on the outer case shall be 0.1 m or more.
  • the gloss of the outer surface of the outer box is set to 80 or less.
  • An intervening member is provided between the vacuum heat insulating material and the outer case to prevent deformation of the outer surface of the outer case.
  • a machine room is provided at the bottom, and vacuum insulation is placed in contact with the outer box on both sides, top, back, and front of the refrigerator, forming a machine room on the bottom, both sides, and the bottom. It is arranged in contact with the inner box on the surface to be made.
  • Vacuum insulation with a heat-dissipating pipe installed on the surface in contact with the outer box is placed inside the outer box.

Abstract

A refrigerator having an attractive appearance and insulated efficiently, comprising an outer box, an inner box, and resin foam body and vacuum insulator (hereafter referred to as insulator) disposed therebetween, wherein the averaged roughness of the roughnesses of the surfaces of the outer box where the insulators are disposed at the centerlines of the outer surfaces of the outer box is set to 0.1 μm or coarser or the glossiness of the outer surface is set to 80 or below, the insulator is stuck on the inner plate of a door forming a front face, intercalated members for preventing the deformation of the outer surface of the outer box is disposed between the insulator and the outer box, radiating pipes are disposed between the insulator and the outer box and a space part between the insulator and the radiating pipes is allowed to communicate with the outside, small holes are provided in the surfaces of the outer box where the insulator is disposed, the insulator is disposed so as to come into contact with the outer box for both upper side faces, top face, rear face, and front face of the outer box and so as to come into contact with the inner box for the bottom face, both lower side faces, and a face forming a machine room provided at the lower part, and the insulator having the radiating pipes assembled on the surface thereof in contact with the outer box is disposed on the inside of the outer box.

Description

明細書 冷蔵 技術分野  Description Refrigeration Technical Field
本発明は、 真空断熱材を利用した冷蔵庫に関する。 背景技術  The present invention relates to a refrigerator using a vacuum heat insulating material. Background art
近年、 冷蔵庫の省エネルギー化や省スペース化を狙いとして、 冷 蔵庫の断熱性能を高めるために、 高断熱性能を有する真空断熱材の 利用が検討されている。 真空断熱材は、 樹脂発泡体である硬質ウレ タンフォームと比較して数倍から 1 0倍程度の断熱性能を有する。 省エネルギーの要請が益々高まる今日では、 このような真空断熱材 を適切な範囲内で最大限に利用することにより断熱性能を向上させ ていく ことが急務である。 一方、 真空断熱材を冷蔵庫の断熱箱体に 硬質ウレタンフォームと複層して適用した場合、 硬質ウレタンフォ ームと真空断熱材の収縮率の違いにより、 断熱箱体の外観に変形が 生じる。 実開昭 6 1 - 1 4 1 6 9 0号公報はこのような課題を解決 する方法を開示している。 以下、 図面を参照しながら上記従来の冷 蔵庫を説明する。  In recent years, with the aim of saving energy and space in refrigerators, the use of vacuum insulation materials with high insulation performance has been studied to enhance the insulation performance of refrigerators. The vacuum heat insulating material has heat insulation performance several times to about 10 times that of hard urethane foam which is a resin foam. Nowadays, the demand for energy saving is increasing, and it is urgently necessary to improve the heat insulation performance by maximizing the use of such vacuum insulation materials within an appropriate range. On the other hand, when vacuum insulation is applied to the heat insulation box of a refrigerator in a multi-layered form with rigid urethane foam, the appearance of the heat insulation box is deformed due to the difference in shrinkage between the hard urethane foam and the vacuum insulation. Japanese Utility Model Application Laid-Open No. 61-141690 discloses a method for solving such a problem. Hereinafter, the conventional refrigerator will be described with reference to the drawings.
図 4 0は、 従来の冷蔵庫の前面開口部に配置される扉の断面図、 囟 4 1 は、 図 4 0の Α部拡大図である。 図において冷蔵庫は金属製 の外板 1 、 合成樹脂製の扉枠 2、 合成樹脂製の内箱 3、 発泡断熱材 4、 真空断熱材 5を有する。 真空断熱材 5 と外板 1 との間に介挿さ れる離型紙 6は、 真空断熱材 5より大きく形成されている。 このよ うに外板 1 の内面に離型紙 6を介して真空断熱材 5が位置している このような構成では、 発泡断熱材 4の発泡後に発泡断熱材 4が収縮 するが、 離型紙 6の作用により外板 1 と離型紙 6 との間に隙間 Xを 生じさせることで外板 1 の変形を防止する。  FIG. 40 is a cross-sectional view of a door arranged at a front opening of a conventional refrigerator, and FIG. 41 is an enlarged view of a part of FIG. 40. In the figure, the refrigerator has a metal outer plate 1, a synthetic resin door frame 2, a synthetic resin inner box 3, foam insulation 4, and vacuum insulation 5. The release paper 6 inserted between the vacuum heat insulating material 5 and the outer plate 1 is formed larger than the vacuum heat insulating material 5. In this manner, the vacuum heat insulating material 5 is located on the inner surface of the outer plate 1 via the release paper 6. In such a configuration, the foam heat insulating material 4 shrinks after the foam heat insulating material 4 is foamed. The action creates a gap X between the outer plate 1 and the release paper 6, thereby preventing the outer plate 1 from being deformed.
しかしながら、 このような冷蔵庫では、 外板の外見上の変形は防 止できるものの、 外板と発泡断熱材との間に隙間が生じてしまう。 したがって使用者が手に触れたり した場合の外板のベこっき等によ る触感が悪い。 However, in such a refrigerator, the apparent deformation of the outer panel is prevented. Although it can be stopped, a gap is created between the outer panel and the foam insulation. Therefore, when the user touches the hand, the tactile sensation due to the beveling of the outer plate is poor.
特開平 6 — 1 5 9 9 2 2号公報もまた、 真空断熱材を備えた冷蔵 庫を開示している。 図 4 2はそのような従来の冷蔵庫の側面断面図 を示す。 冷蔵庫本体 7は、 外箱 1 Aと内箱 3 とで構成されている。 成形可能な袋状の紙材 8が外箱 1 Aと内箱 3 とで構成された空間全 体を覆い、 紙材 8内部に無機多孔質からなる充填材 4 Aを充填して いる。 さらに内外箱 1 A, 3で囲まれた空間の形状に沿って真空断 熱材 5が配置されている。 また、 使用される真空断熱材 5は両面と もに金属箔を有し、 形状は平面のみとなつている。  Japanese Patent Application Laid-Open No. 6-159922 also discloses a refrigerator having a vacuum heat insulating material. FIG. 42 shows a side sectional view of such a conventional refrigerator. The refrigerator body 7 includes an outer box 1A and an inner box 3. A moldable bag-shaped paper material 8 covers the entire space formed by the outer box 1A and the inner box 3, and the inside of the paper material 8 is filled with an inorganic porous filler 4A. Furthermore, a vacuum insulation material 5 is arranged along the shape of the space surrounded by the inner and outer boxes 1A and 3. Further, the vacuum heat insulating material 5 used has metal foil on both sides and has a flat shape only.
本構成により、 内外箱 1 A, 3間へ真空断熱材 5 を容易に収納で きると共に内外箱 1 A, 3 と真空断熱材 5 との隙間を塞ぐ作業が不 用となる。 また、 樹脂発泡体である硬質ウレタンフォームを使用せ ず真空断熱材 5のみで断熱箱体を構成できるため、 極めて高い断熱 性能を確保することができる。  With this configuration, the vacuum heat insulating material 5 can be easily stored between the inner and outer boxes 1A and 3, and the work of closing the gap between the inner and outer boxes 1A and 3 and the vacuum heat insulating material 5 becomes unnecessary. Further, since the heat insulation box can be constituted only by the vacuum heat insulating material 5 without using the rigid urethane foam which is a resin foam, extremely high heat insulation performance can be secured.
しかしながら、 このような冷蔵庫では、 硬質ウレタンフォームと 比較して強度的に劣る真空断熱材 5のみを使用しているため、 断熱 性能は高いものの強度的には非常に弱い。 すなわち外観上変形しや すい。 また、 内箱や外箱の形状が平面的でないため、 放熱パイプ等 の凹凸面など、 平面的でない部分への、 板状の真空断熱材の使用は 困難である。 また、 断熱性能向上のためには、 一平面にアルミ蒸着 フィルムを用いた真空断熱材の使用が効果的であるが、 信頼性の面 からアルミ蒸着フィルムを用いた真空断熱材の使用は困難である。 発明の開示  However, such a refrigerator uses only the vacuum heat insulating material 5 which is inferior in strength as compared with the rigid urethane foam, so that the heat insulating performance is high but the strength is very weak. That is, it is easily deformed in appearance. In addition, since the shape of the inner and outer boxes is not planar, it is difficult to use a plate-shaped vacuum heat insulating material for a non-planar portion such as an uneven surface of a heat radiation pipe. In order to improve the heat insulation performance, it is effective to use a vacuum heat insulator using an aluminum vapor-deposited film on one plane, but it is difficult to use a vacuum heat insulator using an aluminum vapor-deposited film in terms of reliability. is there. Disclosure of the invention
外箱と内箱の間に樹脂発泡体と真空断熱材とを備えた冷蔵庫にお いて、 次のいずれかの構成とする。  A refrigerator provided with a resin foam and a vacuum heat insulator between an outer box and an inner box has one of the following configurations.
( 1 ) 真空断熱材を外箱に配設した面の外箱外表面の中心線平均粗 さ ( R a ) を 0 . l m以上とする。 あるいは、 その外箱外表面の 光沢度を 8 0以下とする。 (1) The center line average roughness (Ra) of the outer surface of the outer case where the vacuum heat insulating material is disposed on the outer case is set to 0.1 lm or more. Or, on the outer surface of the outer box Gloss is 80 or less.
( 2 ) 前面を構成する扉に配設する真空断熱材を扉の内板に貼付け る。  (2) Affix the vacuum insulation material to be installed on the door that constitutes the front surface to the inner plate of the door.
( 3 ) 真空断熱材と外箱との間に外箱外表面の変形を防止する介在 部材を配設する。  (3) An intervening member is provided between the vacuum heat insulating material and the outer case to prevent deformation of the outer surface of the outer case.
( 4 ) 真空断熱材と外箱との間に放熱パイプを配設するとともに真 空断熱材と放熱パイプとで形成される空隙部を外部と連通させる。  (4) Arrange the heat radiation pipe between the vacuum heat insulating material and the outer box, and connect the void formed by the vacuum heat insulating material and the heat radiation pipe to the outside.
( 5 ) 真空断熱材を外箱に配設した面の外箱に細孔を設ける。  (5) Provide pores in the outer box on the side where the vacuum heat insulating material is placed on the outer box.
( 6 ) 下部に機械室を備え、 真空断熱材を、 冷蔵庫の上部両側面、 天面、 背面、 前面に対しては外箱に接して配設し、 底面、 下部両側 面、 機械室を構成する面に対しては内箱に接して配設する。  (6) A machine room is provided at the bottom, and vacuum insulation is placed in contact with the outer box on both sides, top, back, and front of the refrigerator, forming a machine room on the bottom, both sides, and the bottom. It is arranged in contact with the inner box on the surface to be made.
( 7 ) 外箱に接する面に放熱パイプを組み込んだ真空断熱材を、 外 箱内側に配設する。 図面の簡単な説明  (7) Vacuum insulation with a heat-dissipating pipe installed on the surface in contact with the outer box is placed inside the outer box. BRIEF DESCRIPTION OF THE FIGURES
図 1は本発明の実施の形態 1 における冷蔵庫の正面図である。 図 2は図 1の冷蔵庫の側面断面図である。  FIG. 1 is a front view of a refrigerator according to Embodiment 1 of the present invention. FIG. 2 is a side sectional view of the refrigerator of FIG.
図 3は図 1の冷蔵庫の正面断面図である。  FIG. 3 is a front sectional view of the refrigerator of FIG.
図 4は本発明の実施の形態 1 における冷蔵庫の冷蔵室扉の ¾泡前 の分解図である。  FIG. 4 is an exploded view of the refrigerator compartment door of the refrigerator according to the first embodiment of the present invention before foaming.
図 5は図 4の発泡後の断面図である。  FIG. 5 is a cross-sectional view of FIG. 4 after foaming.
図 6は本発明の実施の形態 1 における冷蔵庫の冷凍室扉の断面図 である。  FIG. 6 is a cross-sectional view of the freezer compartment door of the refrigerator according to Embodiment 1 of the present invention.
図 7は本発明の実施の形態 1 における冷蔵庫の他の冷蔵室扉の、 発泡前の分解図である。  FIG. 7 is an exploded view of another refrigerator compartment door before foaming in the refrigerator according to the first embodiment of the present invention.
図 8は図 7の発泡後の断面図である。  FIG. 8 is a cross-sectional view of FIG. 7 after foaming.
図 9は本発明の実施の形態 3における冷蔵庫の側壁要部断面図で ある。  FIG. 9 is a cross-sectional view of a relevant part of a side wall of a refrigerator according to Embodiment 3 of the present invention.
図 1 0は本発明の実施の形態 3における冷蔵庫の要部斜視図であ る。 図 1 1 は本発明の実施の形態 4における冷蔵庫の側壁要部断面図 である。 FIG. 10 is a perspective view of a main part of a refrigerator according to Embodiment 3 of the present invention. FIG. 11 is a cross-sectional view of a relevant part of a side wall of a refrigerator according to Embodiment 4 of the present invention.
図 1 2は本発明の実施の形態 5における冷蔵庫の側壁要部断面図 である。  FIG. 12 is a cross-sectional view of a main part of a side wall of a refrigerator according to Embodiment 5 of the present invention.
図 1 3は本発明の実施の形態 6における冷蔵庫に用いる真空断熱 材の断面図である。  FIG. 13 is a cross-sectional view of a vacuum heat insulating material used for a refrigerator according to Embodiment 6 of the present invention.
図 1 4は本発明の実施の形態 6における冷蔵庫に用いる他の真空 断熱材の断面図である。  FIG. 14 is a cross-sectional view of another vacuum heat insulating material used for a refrigerator according to Embodiment 6 of the present invention.
図 1 5は本発明の実施の形態 6における冷蔵庫に用いる別の真空 断熱材の断面図である。  FIG. 15 is a cross-sectional view of another vacuum heat insulating material used for a refrigerator according to Embodiment 6 of the present invention.
図 1 6は本発明の実施の形態 7における冷蔵庫の外箱折り曲げ前 の状態を示す平面図である。  FIG. 16 is a plan view showing a state before bending the outer box of the refrigerator according to the seventh embodiment of the present invention.
図 1 7は本発明の実施の形態 7における冷蔵庫の外箱折り曲げ後 の状態を示す斜視図である。  FIG. 17 is a perspective view showing a state of the refrigerator according to Embodiment 7 of the present invention after the outer box is bent.
図 1 8は本発明の実施の形態 7における冷蔵庫に用いる真空断熱 材の要部断面図である。  FIG. 18 is a cross-sectional view of main parts of a vacuum heat insulating material used for a refrigerator according to Embodiment 7 of the present invention.
図 1 9は本発明の実施の形態 7における冷蔵庫に用いる真空断熱 材を適用した部分拡大断面図である。  FIG. 19 is a partially enlarged sectional view to which a vacuum heat insulating material used for a refrigerator according to Embodiment 7 of the present invention is applied.
図 2 0は本発明の実施の形態 7 における冷蔵庫のウレタン注入発 泡後のアルミテープ他端の要部分解斜視図である。  FIG. 20 is an exploded perspective view of a main part of the other end of the aluminum tape after urethane injection and foaming of the refrigerator in the seventh embodiment of the present invention.
図 2 1 は本発明の実施の形態 8における冷蔵庫の要部拡大断面図 である。  FIG. 21 is an enlarged cross-sectional view of a main part of a refrigerator according to Embodiment 8 of the present invention.
図 2 2 Aは本発明の実施の形態 9における冷蔵庫の側面断面図で ある。  FIG. 22A is a side sectional view of a refrigerator in a ninth embodiment of the present invention.
図 2 2 Bは図 2 2 Aにおける要部拡大図である。  FIG. 22B is an enlarged view of a main part in FIG. 22A.
図 2 3 Aは図 2 2 Aの冷蔵庫の正面断面図である。  FIG. 23A is a front sectional view of the refrigerator of FIG. 22A.
図 2 3 B, 図 2 3 Cは図 2 3 Aにおける要部拡大図である。  FIGS. 23B and 23C are enlarged views of the main parts in FIG. 23A.
図 2 4は本発明の実施の形態 1 0における冷蔵庫に適用する真空 断熱材の要部拡大縦断面図である。  FIG. 24 is an enlarged longitudinal sectional view of a main part of a vacuum heat insulating material applied to the refrigerator in the tenth embodiment of the present invention.
図 2 5は本発明の実施の形態 1 0 における冷蔵庫の部分拡大断面 図である。 FIG. 25 is a partially enlarged cross-sectional view of the refrigerator according to Embodiment 10 of the present invention. FIG.
図 2 6は本発明の実施の形態 1 0における冷蔵庫の他の部分拡大 断面図である。  FIG. 26 is another partially enlarged cross-sectional view of the refrigerator in the tenth embodiment of the present invention.
図 2 7は本発明の実施の形態 1 1 における冷蔵庫の要部拡大断面 図である。  FIG. 27 is an enlarged cross-sectional view of a main part of the refrigerator according to Embodiment 11 of the present invention.
図 2 8は本発明の実施の形態 1 2における冷蔵庫の要部横断面図 である。  FIG. 28 is a cross-sectional view of a main part of a refrigerator according to Embodiment 12 of the present invention.
図 2 9は本発明の実施の形態 1 2 における冷蔵庫の放熱パイプ近 傍の部分拡大断面図である。  FIG. 29 is a partially enlarged cross-sectional view near the heat radiating pipe of the refrigerator according to Embodiment 12 of the present invention.
図 3 0は本発明の実施の形態 1 3における冷蔵庫の外箱平板の折 り曲げ前の斜視図である。  FIG. 30 is a perspective view of an outer box flat plate of a refrigerator according to Embodiment 13 of the present invention before bending.
図 3 1 は本発明の実施の形態 1 4における冷蔵庫の要部拡大断面 図である。  FIG. 31 is an enlarged cross-sectional view of a main part of a refrigerator according to Embodiment 14 of the present invention.
図 3 2は本発明の実施の形態 1 5における冷蔵庫の要部拡大断面 図である。  FIG. 32 is an enlarged cross-sectional view of a main part of the refrigerator according to Embodiment 15 of the present invention.
図 3 3は本発明の実施の形態 1 6における冷蔵庫における外箱へ の真空断熱材の位置決め箇所の要部拡大断面図である。  FIG. 33 is an enlarged cross-sectional view of a main part of a position where the vacuum heat insulating material is positioned on the outer case in the refrigerator according to Embodiment 16 of the present invention.
図 3 4は本発明の実施の形態 1 7による冷蔵庫に適用する真空断 熱材の構成図である。  FIG. 34 is a configuration diagram of a vacuum heat insulating material applied to the refrigerator according to Embodiment 17 of the present invention.
図 3 5は本発明の実施の形態 1 7による冷蔵庫の側面断面図であ る。  FIG. 35 is a side sectional view of a refrigerator according to Embodiment 17 of the present invention.
図 3 6は本発明の実施の形態 1 7による冷蔵庫の正面断面図であ る。  FIG. 36 is a front sectional view of a refrigerator according to Embodiment 17 of the present invention.
図 3 7 は本発明の実施の形態 1 8における冷蔵庫の冷凍サイクル 回路図である。  FIG. 37 is a circuit diagram of a refrigeration cycle of a refrigerator according to Embodiment 18 of the present invention.
図 3 8は本発明の実施の形態 1 8における真空断熱材の構造図で ある。  FIG. 38 is a structural diagram of a vacuum heat insulating material according to Embodiment 18 of the present invention.
図 3 9は図 3 8の真空断熱材の概略図である。  FIG. 39 is a schematic diagram of the vacuum insulation material of FIG.
図 4 0は従来の冷蔵庫の前面開口部に配置される扉の断面図であ る。 図 4 1 は図 4 0の A部拡大図である。 FIG. 40 is a cross-sectional view of a door arranged at a front opening of a conventional refrigerator. FIG. 41 is an enlarged view of part A of FIG.
図 4 2は従来の他の冷蔵庫の側面断面図である。 発明を実施するための最良の形態  FIG. 42 is a side sectional view of another conventional refrigerator. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を参照しながら本発明の実施の形態を説明する。 なお、 同様の構成をなすものについては、 同じ符号を付して説明し、 詳細 な説明を省略する。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that components having the same configuration are denoted by the same reference numerals, and detailed description will be omitted.
(実施の形態 1 )  (Embodiment 1)
図 1から図 6 を参照しながら本発明の実施の形態 1 を説明する。 冷蔵庫 1 0は、 アク リ ロニト リル、 ブタジエン、 スチレンの共重 合体 (A B S ) などの合成樹脂からなる内箱 1 1 と鉄板などの金属 からなる外箱 1 2 とから形成される空間に樹脂発泡体である硬質ゥ レ夕ンフォーム (以下、 ウレタンフォーム) 1 3が充填されて構成 されている。 断熱区画壁 1 4の上部には冷蔵室 1 5、 野菜室 1 6 を、 下部には切替室 1 7、 製氷室 1 8、 冷凍室 1 9が形成されている。 冷蔵庫 1 0の後部下方に配置した機械室 2 0の内部には圧縮機 2 1 が配設されている。 また冷蔵庫 1 0は冷蔵用冷却器 2 2、 冷蔵用送 風機 2 3、 冷凍用冷却器 2 4、 冷凍用送風機 2 5を有している。 ま た凝縮器 2 6が冷蔵庫 1 0の底面部に配設されている。  Embodiment 1 of the present invention will be described with reference to FIGS. The refrigerator 10 has a resin foam in a space formed by an inner box 11 made of a synthetic resin such as an acrylonitrile, butadiene, and styrene copolymer (ABS) and an outer box 12 made of a metal such as an iron plate. It is composed of a rigid urethane foam (urethane foam) 13 that is the body. A refrigerator compartment 15 and a vegetable compartment 16 are formed at the upper part of the heat insulating partition wall 14, and a switching compartment 17, an ice making compartment 18 and a freezing compartment 19 are formed at the lower portion. A compressor 21 is provided inside a machine room 20 located below the rear of the refrigerator 10. The refrigerator 10 also has a refrigerator 22 for cooling, a fan 23 for cooling, a refrigerator 24 for freezing, and a fan 25 for freezing. A condenser 26 is provided on the bottom of the refrigerator 10.
冷蔵庫 1 0の前面開口部には、 一端を支点として回動するヒンジ 式の冷蔵室用扉 (以下、 扉) 2 7、 それぞれ引出し式の野菜室用扉 (以下、 扉) 2 8、 切替室用扉 (以下、 扉) 2 9、 製氷室用扉 (以 下、 扉) 3 0、 冷凍室用扉 (以下、 扉) 3 1が設けられている。 真 空断熱材 3 2、 3 3、 3 4、 3 5、 3 6、 3 7、 3 8、 3 9、 4 0、 4 1 は、 ウレタンフォーム 1 3 とともに冷蔵庫本体 1 0を構成して いる。  In the front opening of the refrigerator 10, hinged refrigerator compartment doors (hereinafter referred to as doors) 27, which pivot around one end, drawer-type vegetable compartment doors (hereinafter referred to as doors) 28, switching rooms Doors (hereinafter referred to as doors) 29, doors for ice making rooms (hereinafter referred to as doors) 30 and doors for freezer compartments (hereinafter referred to as doors) 31 are provided. The vacuum insulation materials 32, 33, 34, 35, 36, 37, 38, 39, 40, and 41 constitute the refrigerator body 10 together with the urethane foam 13.
真空断熱材 3 2、 3 3、 3 4、 3 6は、 外箱 1 1 のそれぞれ天面、 背面、 側面、 機械室構成面の内側に接して貼り付けられている。 ま た、 真空断熱材 3 5は、 内箱 1 2の底面に接して貼り付けられてい る。 真空断熱材 3 7は、 断熱区画壁 1 4内に配設されている。 また、 扉 2 7の内部には内箱に接するように真空断熱材 3 8が配設されて いる。 扉 2 8、 2 9、 3 1 の内部にはそれぞれ真空断熱材 3 9、 4 0、 4 1が、 各扉の外側鉄板と内箱の中間部に位置するように配設 されている。 図示していないが、 扉 3 0の外側鉄板と内箱の中間部 にも同様に真空断熱材が配設されている。 The vacuum heat insulators 32, 33, 34, 36 are attached to the outer box 11 in contact with the top, back, side, and inside of the machine room components. Further, the vacuum heat insulating material 35 is attached in contact with the bottom surface of the inner box 12. The vacuum heat insulating material 37 is disposed in the heat insulating partition wall 14. Also, Inside the door 27, a vacuum heat insulating material 38 is provided so as to be in contact with the inner box. Inside the doors 28, 29, 31 are vacuum insulation materials 39, 40, 41, respectively, located so as to be located between the outer steel plate of each door and the inner box. Although not shown, a vacuum heat insulating material is also provided in a middle portion between the outer steel plate of the door 30 and the inner box.
また、 冷凍領域の冷凍室 1 9、 切替室 1 7 を囲むウレタンフォー ム 1 3 と真空断熱材 3 3、 3 4、 3 5、 3 6 とは断熱箱体を形成し ている。 この断熱箱体の断熱壁厚は、 扉を除き、 開口部の壁厚の薄 い部分を含めて 2 5〜 5 O mmの範囲とするのが好ましい。 一方、 冷蔵領域の冷蔵室 1 5, 野菜室 1 6 を囲むウレタンフォーム 1 3 と 真空断熱材 3 2、 3 3、 3 4 ともまた断熱箱体を形成している。 そ の断熱箱体の断熱壁厚は、 扉を除き、 開口部の壁厚の薄い部分を含 めて 2 5〜 4 0 mmの範囲とする。 この断熱壁厚中に厚さ 1 0〜 1 5 mmの真空断熱材が配設されるので、 ウレタンフォーム 1 3の充 填される厚みが最低 1 0 mm確保される。 このためウレタンフォー ム 1 3の発泡時の流動性を妨げることなく、 フォームの荒れや充填 不良による断熱性の低下を引き起こさない。 このように、 真空断熱 材の厚みを確保して断熱性を十分に発揮させながらウレタンフォー ム 1 3の断熱性も維持して複層断熱壁としての断熱性能を効果的に 高めることができる。 特に、 庫内外の温度勾配が大きい冷凍温度領 域においては一層効果的である。 そして冷凍領域の冷凍室 1 9、 切 替室 1 7 を囲む断熱壁厚を.、 5 0 mmを超えないようにする。 これ により、 真空断熱材を適用して、 比較的容積比率の小さい冷凍室 1 9、 切替室 1 7 の内容積を、 外観レイアウ トに影,響を与えないで増 加させることにも活用でき、 真空断熱材の利用価値をより高めるこ とができる。 また、 冷蔵室 1 5, 野菜室 1 6の断熱壁厚を、 4 0 m mを超えないようにする。 これにより、 庫内外の温度勾配が比較的 小さい冷蔵領域において、 真空断熱材の適用による省エネルギー化 と断熱箱体内外の内容積効率向上の効果のバランスをとることがで さる。 冷蔵庫 1 0は図示しない構成部品や、 凹凸形状や配管, 排水管の 設置部など特別な構造である部分を有している。 真空断熱材を多量 に配設し被覆率を極限まで高めようとする場合、 そのような部分に 適合した特殊な形態の真空断熱材が必要となる。 あるいは真空断熱 材の貼り付け作業性が非常に悪くなる。 このため、 概ね外箱 1 1 の 表面積の 8 0 %を超えて真空断熱材を配設しょう としても、 上述の 使用効率が悪く利用価値が飽和する箇所にまで及ぶことになる。 す なわち、 真空断熱材の投入に対する断熱性能の向上効果が著しく低 下する。 The urethane foam 13 surrounding the freezing compartment 19 and the switching compartment 17 in the freezing area and the vacuum heat insulating materials 33, 34, 35, and 36 form an insulating box. The thickness of the heat insulating wall of the heat insulating box is preferably in the range of 25 to 5 Omm including the thin portion of the opening except for the door. On the other hand, the urethane foam 13 surrounding the refrigerator compartment 15 and the vegetable compartment 16 in the refrigeration area and the vacuum insulation materials 32, 33, and 34 also form an insulation box. The heat insulation wall thickness of the heat insulation box shall be in the range of 25 to 40 mm, including the thin part of the opening except for the door. Since a vacuum heat insulating material having a thickness of 10 to 15 mm is provided in the heat insulating wall thickness, the thickness of the urethane foam 13 to be filled is at least 10 mm. For this reason, it does not hinder the fluidity of the urethane foam 13 during foaming, and does not cause a decrease in heat insulation due to foam roughness or poor filling. In this way, the thickness of the vacuum heat insulating material is ensured, and the heat insulating property of the urethane form 13 is maintained while the heat insulating property of the urethane form 13 is sufficiently exhibited, so that the heat insulating performance of the multilayer heat insulating wall can be effectively improved. In particular, it is more effective in the freezing temperature area where the temperature gradient inside and outside the refrigerator is large. The thickness of the heat insulating wall surrounding the freezing room 19 and the switching room 17 in the freezing area should not exceed 50 mm. In this way, vacuum insulation can be applied to increase the internal volumes of the freezer compartment 19 and the switching compartment 17, which have relatively small volume ratios, without affecting the appearance layout. However, the utility value of the vacuum insulation material can be further enhanced. The thickness of the heat insulation wall of the refrigerator compartment 15 and the vegetable compartment 16 should not exceed 40 mm. As a result, in the refrigerated region where the temperature gradient inside and outside the refrigerator is relatively small, it is possible to balance the energy saving by applying vacuum heat insulating material and the effect of improving the internal volume efficiency inside and outside the heat insulating box. The refrigerator 10 has components that are not shown, and portions having a special structure such as an uneven shape, piping, and a drainage pipe installation portion. If a large amount of vacuum insulation is to be used to maximize the coverage, a special form of vacuum insulation suitable for such a part is required. Alternatively, the workability of attaching the vacuum insulation material becomes extremely poor. For this reason, even if it is attempted to arrange the vacuum heat insulating material so as to exceed approximately 80% of the surface area of the outer box 11, the above-mentioned use efficiency will be poor and the use value will be saturated. That is, the effect of improving the heat insulation performance with the introduction of the vacuum heat insulating material is significantly reduced.
したがって、 本実施の形態のように、 真空断熱材の外箱 1 1 の表 面積に対する被覆率を 8 0 %以下とすることによって、 真空断熱材 を多量に使用していく ことによる効果が飽和しない。 すなわち利用 価値が高い状態で吸熱負荷量を効果的に抑え、 省エネルギー効果が 高まる。  Therefore, the effect of using a large amount of vacuum heat insulating material is not saturated by setting the coverage of the vacuum heat insulating material to the surface area of the outer box 11 to be 80% or less as in the present embodiment. . In other words, the endothermic load is effectively suppressed when the utility value is high, and the energy saving effect is enhanced.
なお、 各表面の周縁部分や冷却室間の仕切部分は断熱壁厚がォー バーラップする。 また開口部周縁ではウレタンフォーム 1 3の充填 密着性が低下し、 断熱性が低下する。 これらを加味して真空断熱材 の非効率な被覆を避けると被覆率 7 0 %でも 8 0 %と同等の断熱効 果が得られる。  The thickness of the heat insulating wall overlaps the peripheral part of each surface and the partition between the cooling chambers. At the periphery of the opening, the filling adhesion of the urethane foam 13 is reduced, and the heat insulating property is reduced. By taking these factors into account and avoiding inefficient coating of the vacuum insulation, even at a coverage of 70%, a heat insulation effect equivalent to 80% can be obtained.
また、 被覆率 8 0 %の場合、 断熱箱体の両側面, 天面, 背面, 底 面, および前面の各表面を概ね覆うことができる大きなサイズの真 空断熱材を配設することで、 貼り付け作業性が良好になる。  In addition, when the coverage is 80%, a large-sized vacuum insulation material that can cover almost all of the sides, top, back, bottom, and front of the heat insulation box is provided. The bonding workability is improved.
このため、 標準外の形態の真空断熱材の使用や作業効率の悪い部 分への配設作業を避けることができ、 コス トパフォーマンスが良好 になる。 すなわち、 この断熱箱体を適用することによる冷蔵庫 1 0 のイニシャルコス ト増加と省エネルギー化によるランニングコス ト の低減とのバランスが崩れることがない。 よって、 ライフサイクル コス トとしての価値を高めることができる。  For this reason, the use of non-standard forms of vacuum heat insulating material and the work of arranging it in areas where work efficiency is low can be avoided, and cost performance is improved. That is, the balance between the increase in the initial cost of the refrigerator 10 by applying the heat insulating box and the reduction in the running cost due to energy saving is not broken. Therefore, the value as life cycle cost can be increased.
また、 断熱箱体内外の通過熱勾配の大きい箇所から配設して、 被 覆率を外箱 1 2の表面積の 5 0 %以上にすれば断熱箱体の吸熱負荷 量が効果的に抑えられ、 省エネルギー効果が高まる。 The heat absorption load of the heat-insulating box can be improved by arranging the heat-insulating box at a location where the thermal gradient of heat passing inside and outside the inside of the heat-insulating box is large. The amount is effectively reduced, and the energy saving effect is increased.
なお、 投資効率の観点からは、 5 0〜 7 0 %の範囲で投下コス ト に対する省エネルギー効果の寄与率が大きい。  From the viewpoint of investment efficiency, the contribution rate of the energy saving effect to the investment cost is large in the range of 50 to 70%.
このような理由により、 真空断熱材を冷蔵庫 1 0の両側面、 天面、 背面、 底面、 前面の各面に配置した構成により、 外箱の表面積に対 して真空断熱材の被覆率は 5 0 %以上 8 0 %以下、 さらには 5 0 % 以上 7 0 %以下とするのが好ましい。  For these reasons, the vacuum insulation is placed on both sides, top, back, bottom, and front of the refrigerator 10, so that the coverage of the vacuum insulation on the surface area of the outer box is 5%. It is preferably from 0% to 80%, more preferably from 50% to 70%.
また、 例えば各扉 2 7, 2 8, 2 9, 3 0、 3 1の部分の庫内外 温度勾配は機械室 2 0などの排熱が関わる断熱箱体の他の部分より 比較的小さい。 また各扉で支える庫内側の収納物に対する強度や扉 開閉による真空断熱材の機械的剥離に対する強度が必要となる。 こ れらのことから、 各扉への真空断熱材の配設を控えて断熱箱体の他 の本体部分で効率的に真空断熱材の適用効果を得ることも考えられ る。 このときの真空断熱材の被覆率は高さ 1 8 0 0 mm, 幅 6 7 5 mm, 奥行き 6 5 0 mmの冷蔵庫において約 5 3 %となり、 上述の 貼付け面積 5 0〜 8 0 %の合理的な真空断熱材適用の省エネルギー 型冷蔵庫となる。  In addition, for example, the temperature gradient inside and outside the refrigerator at the doors 27, 28, 29, 30 and 31 is relatively smaller than that of the other parts of the heat-insulating box, such as the machine room 20, where exhaust heat is involved. In addition, there is a need for strength against the storage inside the warehouse supported by each door and strength against mechanical peeling of the vacuum insulation material by opening and closing the door. From these facts, it may be possible to refrain from arranging the vacuum heat insulator on each door and to obtain the effect of applying the vacuum heat insulator efficiently in the other main body of the heat insulation box. At this time, the covering rate of the vacuum insulation material is about 53% in a refrigerator with a height of 180 mm, a width of 675 mm, and a depth of 6500 mm, which is reasonable for the above-mentioned paste area of 50 to 80%. Energy-saving refrigerator with typical vacuum insulation.
また、 真空断熱材 3 2、 3 3、 3 4を外箱 1 1 に配設した面の外 箱 1 1 の外表面の中心線平均粗さ (R a ) を 0. 1 m以上とし、 従来の 0. 1 z m未満より粗く設定している。  In addition, the center line average roughness (R a) of the outer surface of the outer box 11 on which the vacuum insulation materials 32, 33, and 34 are disposed on the outer box 11 is set to 0.1 m or more. It is set coarser than less than 0.1 zm.
図 4、 図 5を用いて冷蔵室扉 2 7の製造方法を説明する。 扉内板 4 2は突起部 4 3を有し、 最前面部 4 4の面に接するように真空断 熱材 3 8 を貼り付ける。 そして扉外板 2 7 Aの内側にウレ夕ンフォ —ム 1 3を注入後、扉内板 4 2 を覆い発泡させ扉 2 7が形成される。  The method of manufacturing the refrigerator compartment door 27 will be described with reference to FIGS. The door inner plate 42 has a projection 43, and a vacuum insulation material 38 is attached so as to be in contact with the surface of the frontmost portion 44. Then, after the urethane foam 13 is injected into the inside of the door outer plate 27A, the door inner plate 42 is covered and foamed to form the door 27.
また、 図 6は引出し式の冷凍室扉 3 1 の断面図である。 扉内板 4 5は、 冷凍食品を収納するケース (図示せず) を支持するレール 4 6 を固定する固定部 4 7 を有する。 そしてウレタンフォーム 1 3が 補強板 4 8 とともに固定部 4 7で、 扉内板 4 5 とレール 4 6 とを固 定する。 スぺーサ 4 9は、 真空断熱材 4 1 を扉内板 4 5 と扉外板 5 0の間の空間部に配置するように補強板 4 8の一部に接着材などで 固定されている。スぺ一サ 4 9は真空断熱材 4 1より軟らかい部材、 たとえば発泡スチロールやポリエチレンフォームからなる。 また、 スぺ一サ 4 9は略直方体形状とし、 ウレタンフォーム 1 3の発泡時 の流れ方向とスぺーサ 4 9の長手方向とを合わせるように配設され ている。 FIG. 6 is a sectional view of a drawer-type freezer compartment door 31. The door inner plate 45 has a fixing portion 47 for fixing a rail 46 for supporting a case (not shown) for storing frozen food. Then, the urethane foam 13 is fixed together with the reinforcing plate 48 with the fixing portion 47 to fix the door inner plate 45 and the rail 46. The spacer 49 is provided with an adhesive or the like on a part of the reinforcing plate 48 so that the vacuum heat insulating material 41 is disposed in the space between the door inner plate 45 and the door outer plate 50. Fixed. The spacer 49 is made of a material softer than the vacuum heat insulating material 41, for example, styrene foam or polyethylene foam. The spacer 49 has a substantially rectangular parallelepiped shape, and is arranged so that the flow direction of the urethane foam 13 during foaming and the longitudinal direction of the spacer 49 match.
以上の構成において、 圧縮機 2 1、 冷蔵用冷却器 2 2、 冷蔵用送 風機 2 3、 冷凍用冷却器 2 4、 冷凍用送風機 2 5、 凝縮器 2 6から 冷却装置が構成される。 そのような冷却装置が、 冷蔵室 1 5、 野菜 室 1 6を概ね 0〜 1 0 °C、 切替室 1 7、 製氷室 1 8、 冷凍室 1 9を 概ね— 1 5〜― 2 5 X:の温度に冷却する。  In the above configuration, a cooling device is constituted by the compressor 21, the refrigerator 22, the refrigerator 23, the refrigerator 24, the refrigerator 25, and the condenser 26. Such a cooling device is approximately 0 to 10 ° C in the refrigerator compartment 15 and the vegetable compartment 16, and is in the switching compartment 17, the ice making compartment 18 and the freezing compartment 19 --15 to --25 X: Cool to the temperature.
そして、 真空断熱材を箱体内外の通過熱勾配の大きい箇所から配 設して、 被覆率が外箱表面積の 5 0 %以上になれば冷蔵庫の吸熱負 荷量を効果的に抑えることができる。 これにより省エネルギー効果 を高めることができる。 また、 被覆率を 8 0 %以下にすることによ り、 標準外の形態をした真空断熱材の使用や作業効率の悪い部分へ の配設作業を避けることになる。 すなわち、 真空断熱材の吸熱量低 減に対するコス ト比率の急激な増加を避けることができ、 真空断熱 材の利用価値が高い状態で吸熱負荷量を効果的に抑え、 省エネルギ 一効果を高めることができる。  The vacuum heat insulating material is placed from the place with a large heat gradient inside and outside the box, and if the covering rate becomes 50% or more of the outer box surface area, the endothermic load of the refrigerator can be effectively suppressed. . This can increase the energy saving effect. By setting the coverage to 80% or less, the use of nonstandard vacuum insulating materials and the work of arranging them in areas with low work efficiency are avoided. In other words, it is possible to avoid a rapid increase in the cost ratio with respect to the reduction in the amount of heat absorbed by the vacuum heat insulating material. Can be.
真空断熱材 3 2、 3 3、 3 4は外箱 1 1に接して貼り付けるため、 真空断熱材 3 2、 3 3、 3 4の表面の凹凸、 そり等の平面度のばら つき等の要因により、外箱 1 1外表面に変形が生じる可能性がある。 しかし、 外箱 1 1の外表面の中心線平均粗さ (R a) を 0. 1 m 以上とし、 従来品より粗く設定しているので、 同一塗装材料におけ る外箱外表面の光の反射率が下がる。 これにより真空断熱材の貼り 付けによる外箱外表面の変形が視覚的に減少する。 したがって、 複 雑な構造あるいは特別な部品、 材料を用いずに、 真空断熱材を適用 した冷蔵庫 1 0の外観変形に対応できる。 なお、 外箱 1 1の外表面 の中心線平均粗さ (R a) の上限は、 外観の品位を損なわない 1 m以内が望ましい。 また、 扉内板 4 2の最前面部 4 4の面に接するように真空断熱材 3 8を貼り付け、 ウレタンフォーム 1 3 を注入後、 扉内板 4 2 を覆 い発泡させ扉 2 7を成形している。 このため、 真空断熱材 3 8は扉Since the vacuum insulation materials 3 2, 3, 3 and 3 4 are attached to the outer box 1 1, factors such as unevenness of the surface of the vacuum insulation materials 3 2, 3 3 and 3 4, and variations in flatness such as warpage etc. As a result, the outer surface of the outer case 11 may be deformed. However, since the center line average roughness (R a) of the outer surface of the outer case 11 is set to 0.1 m or more and is set to be coarser than the conventional product, the light of the outer case outer surface in the same coating material is used. Reflectivity decreases. This visually reduces the deformation of the outer surface of the outer box due to the attachment of the vacuum heat insulating material. Therefore, it is possible to cope with the appearance deformation of the refrigerator 10 to which the vacuum heat insulating material is applied, without using a complicated structure or special parts and materials. The upper limit of the center line average roughness (R a) of the outer surface of the outer box 11 is desirably 1 m or less so as not to impair the quality of the external appearance. In addition, a vacuum insulation material 38 is attached so as to be in contact with the surface of the frontmost portion 4 4 of the door inner plate 4 2, and after injecting urethane foam 13, the door inner plate 4 2 is covered and foamed to make the door 2 7 Molding. Therefore, the vacuum insulation material 3 8 is a door
2 7の外面に直接接せず、 ウレタンフォーム 1 3発泡後の収縮によ る冷蔵室扉 2 7の外面の変形は生じない。 The outer surface of the refrigerator compartment door 27 does not deform due to shrinkage after urethane foam 13 foaming because it does not directly contact the outer surface of 27.
また、 扉内板 4 2の最前面部 4 4の面に接するように真空断熱材 In addition, vacuum insulation material should be used so that it is in contact with the surface of the frontmost part 44 of the door inner plate 42.
3 8を貼り付けているので、 真空断熱材 3 8 を最大限大きく配置す ることができ断熱性能の向上を図ることができる。 さらに、 扉内板Since 38 is attached, the vacuum heat insulating material 38 can be arranged as large as possible, and the heat insulating performance can be improved. In addition, door inner plate
4 2の庫内側に成形された突起部 4 3 にも真空断熱材 3 8 と扉内板 4 2の空間部からウレタンフォーム 1 3が充填され、 突起部 4 3の 強度が高まる。 Urethane foam 13 is also filled from the space between the vacuum heat insulating material 38 and the door inner plate 4 2 to the protrusion 43 formed inside the refrigerator of 42, and the strength of the protrusion 43 is increased.
また、 扉 3 1 に配設する真空断熱材 4 1 は扉内板 4 5 と扉外板 5 0の間の空間部に部分的にスぺーサ 4 9 を介して配置している。 こ のためウレタンフォーム 1 3発泡後の収縮による扉外板 5 0 の外面 の変形は生じない。 また、 扉内板 4 5 に成形されたレール 4 6 の固 定部 4 7や補強板 4 8近傍にもウレタンフォーム 1 3が確実に形成 され、 レール固定部 4 7の強度が高まる。  Further, the vacuum heat insulating material 41 disposed on the door 31 is partially disposed in the space between the door inner plate 45 and the door outer plate 50 via the spacer 49. For this reason, the outer surface of the door outer plate 50 does not deform due to shrinkage after urethane foam 13 foaming. In addition, urethane foam 13 is securely formed near the fixed portion 47 of the rail 46 formed on the door inner plate 45 and the reinforcing plate 48, and the strength of the rail fixed portion 47 is increased.
また、 スぺーサ 4 9は真空断熱材 4 1 より軟らかい部材としてい るので、 真空断熱材 4 1 の外被材を破損することがなく真空断熱材 4 1 の信頼性を高めることができる。  Further, since the spacer 49 is a member softer than the vacuum heat insulating material 41, the reliability of the vacuum heat insulating material 41 can be improved without damaging the outer cover material of the vacuum heat insulating material 41.
また、 スぺ一サ 4 9は略直方体形状とし、 ウレタンフォーム 1 3 の発泡時の流れ方向とスぺーサ 4 9の長手方向とを合わせて配設し ている。 そのためスぺーサ 4 9がウレタンフォーム 1 3の発泡時の 流れを阻害するのを弱め、 ウレタン充填性が向上し、 レール固定部 4 7 の強度が確実に高まる。  The spacer 49 has a substantially rectangular parallelepiped shape, and is arranged so that the flow direction of the foamed urethane foam 13 and the longitudinal direction of the spacer 49 are matched. Therefore, the spacer 49 weakens the flow of the urethane foam 13 at the time of foaming, the urethane filling property is improved, and the strength of the rail fixing portion 47 is reliably increased.
なお、 本実施の形態による冷蔵庫の引出し扉として冷凍室扉 3 1 に関して説明したが、 引出し扉を構成する野菜室用扉 2 8、 切替室 用扉 2 9についても同様の構成とすることが有効である。  Although the refrigerator door 31 has been described as the drawer door of the refrigerator according to the present embodiment, it is effective that the vegetable room door 28 and the switching room door 29 constituting the drawer door have the same configuration. It is.
また、 上記の説明において、 冷蔵室用扉 2 7 には単一の真空断熱 材 3 8を用いている。 しかし図 7、 図 8 に示すように 1つの扉に複 数の真空断熱材 3 8 A、 3 8 Bを扉内板 4 2に接し、 突起部 4 3近 傍に隙間をあけて配置してもよい。 この場合、 突起部 4 3 にウレタ ンフォーム 1 3がより確実に充填され、 冷蔵室用扉 2 7 Bの突起部 4 3の強度が高まる。 In the above description, a single vacuum heat insulator 38 is used for the refrigerator compartment door 27. However, as shown in Figs. 7 and 8, multiple doors A number of vacuum heat insulators 38 A, 38 B may be placed in contact with the door inner plate 42, with a gap near the protrusion 43. In this case, the projections 43 are more reliably filled with the urethane foam 13, and the strength of the projections 43 of the refrigerator compartment door 27B is increased.
(実施の形態 2 ) (Embodiment 2)
本発明の実施の形態 2 による冷蔵庫の基本構造は実施の形態 1 と 同様である。 実施の形態 1では外箱 1 1 の外表面の中心線平均粗さ を規定している。 本実施の形態では、 真空断熱材 3 2、 3 3、 3 4 を外箱 1 2 に配設した面の外箱 1 2外表面の光沢度を従来の 9 0程 度から光沢度を下げ、 8 0以下としている。  The basic structure of the refrigerator according to the second embodiment of the present invention is the same as that of the first embodiment. In the first embodiment, the center line average roughness of the outer surface of the outer box 11 is specified. In the present embodiment, the outer box 1 2 on the side where the vacuum insulation materials 3 2, 3 3, 3 4 are arranged in the outer box 1 2 has its gloss reduced from about 90 in the past, 80 or less.
ここで、 光沢度とは、 屈折率 1 . 5 6 7であるガラス表面におい て 6 0度の入射角の場合の反射率 1 0 %を光沢度 1 0 0、 または 2 0度の入射角の場合の反射率 5 %を光沢度 1 0 0 とするもので、 J I S規格に規定されている ( J I S Z 8 7 4 1 )。  Here, the gloss refers to a reflectance of 10% at an incident angle of 60 degrees on a glass surface having a refractive index of 1.567, and a gloss of 100 or an incident angle of 20 degrees. In this case, the reflectance of 5% is defined as a glossiness of 100, which is defined in the JIS standard (JISZ8741).
実施の形態 1 と同様に、 真空断熱材 3 2、 3 3、 3 4は外箱 1 2 に接して貼り付ける。 このため、 真空断熱材 3 2、 3 3、 3 4の表 面の凹凸、 そり等の平面度のばらつき等の要因により、 外箱 1 2外 表面に変形が生じる可能性がある。 こ こで外箱 1 2の外表面の光沢 度を 8 0以下としているので、 同一表面粗さにおける外箱外表面の 光の反射率が下がる。 よって、 真空断熱材の貼り付けによる外箱外 表面の変形が視覚的に減少する。 このため、 複雑な構造あるいは特 別な部品、 材料を用いずに、 真空断熱材を適用した冷蔵庫 1 0の外 観変形に対応できる。 なお、 外箱 1 2の外表面の光沢度の下限は、 外観品位を損なわない程度の 5 0程度が望ましい。  As in the first embodiment, the vacuum heat insulating materials 32, 33, and 34 are attached to the outer case 12 in contact with them. For this reason, the outer surface of the outer box 12 may be deformed due to factors such as unevenness of the surface of the vacuum heat insulating materials 32, 33, and 34, and variations in flatness such as warpage. Since the outer surface of the outer case 12 has a gloss of 80 or less, the light reflectance of the outer surface of the outer case at the same surface roughness is reduced. Therefore, deformation of the outer surface of the outer box due to the attachment of the vacuum insulation material is visually reduced. Therefore, it is possible to cope with the external deformation of the refrigerator 10 to which the vacuum heat insulating material is applied, without using a complicated structure or special parts and materials. The lower limit of the glossiness of the outer surface of the outer box 12 is desirably about 50 which does not impair the appearance quality.
(実施の形態 3 ) (Embodiment 3)
図 9は、 本発明の実施の形態 3 による冷蔵庫の側壁要部断面図、 図 1 0は、 同要部斜視図である。 これら以外の基本的な構成は実施 の形態 1 と同様である。 図において、 外箱 5 1 と内箱 5 2の間には、 外箱 5 1側から外箱 外表面の変形を防止する介在部材としての軟質部材 5 3 と、 真空断 熱材 5 4と硬質ウレタンフォーム 5 5 とが配設されている。 軟質部 材 5 3は真空断熱材 5 4よりも大きく、 真空断熱材 5 4よりも軟ら かい部材で構成することが好ましい。 たとえば独立発泡体からなる 樹脂発泡体が望ましい。 FIG. 9 is a sectional view of a main part of a side wall of a refrigerator according to a third embodiment of the present invention, and FIG. 10 is a perspective view of the main part. Other basic configurations are the same as in the first embodiment. In the figure, between the outer case 51 and the inner case 52, a soft member 53 as an interposition member for preventing deformation of the outer case outer surface from the outer case 51 side, a vacuum insulation material 54 and a hard material Urethane foam 55 is provided. The soft member 53 is larger than the vacuum heat insulator 54 and is preferably made of a member softer than the vacuum heat insulator 54. For example, a resin foam made of an independent foam is desirable.
また、 軟質部材 5 3の厚み t 1 は真空断熱材 5 4の平面度以上か つ真空断熱材の厚み以下とすることが好ましい。 具体的には 3 m m 以上 1 5 m m以下とする。  The thickness t 1 of the soft member 53 is preferably equal to or greater than the flatness of the vacuum heat insulator 54 and equal to or less than the thickness of the vacuum heat insulator. Specifically, it should be 3 mm or more and 15 mm or less.
上記構成において、 真空断熱材 5 4 と外箱 5 1 との間に設けた軟 質部材 5 3が外箱外表面の変形を防止する。 これにより、 真空断熱 材 5 4の表面の凹凸、 そり等の平面度のばらつき要因が吸収され、 外箱外表面の変形が防止される。  In the above configuration, the soft member 53 provided between the vacuum heat insulating material 54 and the outer case 51 prevents deformation of the outer surface of the outer case. Thereby, unevenness factors such as unevenness and warpage on the surface of the vacuum heat insulating material 54 are absorbed, and deformation of the outer surface of the outer box is prevented.
また、 軟質部材 5 3が真空断熱材 5 4よりも大きければ、 真空断 熱材 5 4を外箱 5 1 に貼り付ける時の取付ばらつきが吸収され、 作 業効率が向上する。  In addition, if the soft member 53 is larger than the vacuum heat insulating material 54, mounting variations when the vacuum heat insulating material 54 is attached to the outer box 51 will be absorbed, and work efficiency will be improved.
また、 軟質部材 5 3は真空断熱材 5 4より も軟らかい部材とすれ ば、 製造時、 真空断熱材 5 4の外被材を破損することがなく真空断 熱材 5 4の信頼性が高まる。  In addition, if the soft member 53 is a member softer than the vacuum heat insulating material 54, the reliability of the vacuum heat insulating material 54 can be improved without damaging the outer cover material of the vacuum heat insulating material 54 during manufacturing.
また、 介在部材としての軟質部材 5 3 を樹脂発泡体からなる部材 とすれば、 硬質ウレタンフォーム (以下、 ウレタンフォーム) 1 3 発泡時の発泡圧が樹脂発泡体の圧縮により吸収される。 また発泡後 のウレタンフォーム収縮は、 樹脂発泡体の膨張により吸収され、 外 箱外表面の変形が確実に防止される。  Further, if the soft member 53 as the intervening member is a member made of a resin foam, the foaming pressure during foaming of the hard urethane foam (hereinafter, urethane foam) 13 is absorbed by the compression of the resin foam. In addition, the shrinkage of the urethane foam after foaming is absorbed by the expansion of the resin foam, and deformation of the outer surface of the outer box is reliably prevented.
また、 軟質部材 5 3 を独立発泡体からなる部材とすれば、 軟質部 材 5 3内部への発泡ガスや空気等の気体の侵入が防止され、 温度変 化による外箱外表面の変形が防止される。  In addition, if the soft member 53 is made of a closed-cell foam, gas such as foaming gas or air can be prevented from entering the inside of the soft member 53, thereby preventing the outer surface of the outer box from being deformed due to a temperature change. Is done.
また、 軟質部材 5 3の厚み t 1 は真空断熱材 5 4の平面度以上か つ真空断熱材の厚み以下、 具体的には 3 m m以上 1 5 m m以下とす る。 これにより、 真空断熱材の平面度のばらつきが軟質部材で確実 に吸収されるとともに軟質部材 5 3 を必要以上の厚みとしないこと で、 断熱性能が低下しない。 Further, the thickness t 1 of the soft member 53 is set to be equal to or more than the flatness of the vacuum heat insulating material 54 and equal to or less than the thickness of the vacuum heat insulating material, specifically, 3 mm to 15 mm. This ensures that the flatness of the vacuum insulation material varies with the soft member. By not absorbing the soft member 53 more than necessary, the heat insulation performance does not decrease.
なお、 軟質部材 5 3は外箱 5 1 に貼り付けた後に真空断熱材 5 4 を貼り付けても、 あらかじめ軟質部材 5 3 を真空断熱材 5 4に貼り 付けた後に外箱 5 1 に貼り付けてもよい。  Even if the soft member 53 is pasted on the outer case 51 after the vacuum member 54 is pasted on the outer case 51, the soft member 53 is pasted on the vacuum case 54 before the soft member 53 is pasted on the outer case 51. You may.
(実施の形態 4 ) (Embodiment 4)
図 1 1は、 本発明の実施の形態 4による冷蔵庫の側壁要部断面図 である。 これ以外の基本的な構成は実施の形態 1 と同様である。  FIG. 11 is a cross-sectional view of a relevant part of a side wall of a refrigerator according to Embodiment 4 of the present invention. The other basic configuration is the same as that of the first embodiment.
真空断熱材 5 4と外箱 5 1 との間に設けた介在部材としての硬質 部材 5 6は、 真空断熱材 5 4よりも硬い部材からなる。 たとえば A B Sシートからなり、 その厚みは真空断熱材 5 4の平面度以下、 具 体的には、 3 m m以下とすることが好ましい。  The hard member 56 as an intervening member provided between the vacuum heat insulating material 54 and the outer case 51 is made of a member harder than the vacuum heat insulating material 54. For example, it is preferably made of an ABS sheet, and the thickness thereof is preferably equal to or less than the flatness of the vacuum heat insulating material 54, specifically, 3 mm or less.
上記構成により、 真空断熱材 5 4の表面の凹凸、 そり等の外箱変 形要因が外箱外表面に伝わることが防止され、 外箱外表面の変形が 防止される。 また、 硬質部材 5 6の厚みを比較的薄くできるので、 断熱性能への影響を抑えることができる。  With the above configuration, the deformation factors of the outer case such as unevenness and warpage on the surface of the vacuum heat insulating material 54 are prevented from being transmitted to the outer surface of the outer case, and the outer surface of the outer case is prevented from being deformed. Further, since the thickness of the hard member 56 can be made relatively thin, the influence on the heat insulation performance can be suppressed.
(実施の形態 5 ) (Embodiment 5)
図 1 2は、 本発明の実施の形態 5による冷蔵庫の側壁要部断面図 である。 これ以外の基本的な構成は実施の形態 1 と同様である。  FIG. 12 is a cross-sectional view of a main part of a side wall of a refrigerator according to Embodiment 5 of the present invention. The other basic configuration is the same as that of the first embodiment.
図において、 真空断熱材 5 4 と外箱 5 1 との間に軟質部材 5 3 と 硬質部材 5 6 とが配設されている。 その配設順序としては外箱 5 1 側から硬質部材 5 6、 軟質部材 5 3、 真空断熱材 5 4 としている。  In the figure, a soft member 53 and a hard member 56 are disposed between a vacuum heat insulating material 54 and an outer box 51. The arrangement order is such that the hard member 56, the soft member 53, and the vacuum heat insulating material 54 are arranged from the outer box 51 side.
上記構成により、 軟質部材 5 3が真空断熱材 5 4の表面の凹凸、 そり等の外箱変形要因を吸収し、 硬質部材 5 6が外箱変形要因の伝 達を防止し、 外箱外表面の変形が確実に防止される。  With the above configuration, the soft member 53 absorbs the deformation factors of the outer box such as unevenness and warpage on the surface of the vacuum heat insulating material 54, and the hard member 56 prevents the transmission of the deformation factors of the outer box, Is reliably prevented from being deformed.
また、 介在部材として、 外箱 5 1側から硬質部材 5 6、 軟質部材 5 3、 真空断熱材 5 4の順に配置させているので、 軟質部材 5 3 に より真空断熱材の外被材の破損が防止される。 (実施の形態 6 ) In addition, as the intervening members, the hard member 56, the soft member 53, and the vacuum heat insulating material 54 are arranged in this order from the outer box 51 side, so that the soft material 53 damages the outer material of the vacuum heat insulating material. Is prevented. (Embodiment 6)
図 1 3〜図 1 5は、 本発明の実施の形態 6による冷蔵庫に用いる 種々の真空断熱材の断面図である。 これら以外の基本的な構成は実 施の形態 1 と同様である。  FIGS. 13 to 15 are cross-sectional views of various vacuum heat insulating materials used in the refrigerator according to the sixth embodiment of the present invention. Other basic configurations are the same as in the first embodiment.
真空断熱材の内部に封入された芯材 5 7はその周囲を第一の外被 材 5 8でシールされ、 内部を排気した後に真空状態に保たれる。 そ して、 第一の外被材 5 8の外周を第二の外被材 5 9で覆い二重構造 としている。 図 1 3では、 第一の外被材 5 8 と第二の外被材 5 9 と の間の空間 6 0に気体を封入している。 気体としては空気、 あるい は不活性ガスを用いる。  The core material 57 enclosed inside the vacuum heat insulating material is sealed around the core material 57 with a first outer cover material 58, and after the inside is evacuated, is kept in a vacuum state. The outer periphery of the first covering material 58 is covered with a second covering material 59 to form a double structure. In FIG. 13, gas is sealed in a space 60 between the first covering material 58 and the second covering material 59. Use air or inert gas as the gas.
このように、 真空断熱材の内部に封入された芯材 5 7の表面の凹 凸、 そり等の外箱変形が生じる第一の外被材 5 8の外周を第二の外 被材 5 9で覆い二重構造としている。 これにより外箱変形要因を第 二の外被材 5 9が吸収し外箱外表面の変形が防止される。 また、 二 重構造の外被材 5 8, 5 9の間に気体を封入している。 これにより、 真空断熱材の表面の凹凸、 そり等の外箱変形要因を二重構造の外被 材 5 8, 5 9の間に封入した気体の空間部 6 0が吸収し外箱外表面 の変形が防止される。  As described above, the outer periphery of the first outer cover material 58 where the outer box deformation such as concave and convex, warp, etc. of the surface of the core material 57 enclosed inside the vacuum heat insulating material occurs, is formed by the second outer cover material 59 It is covered with a double structure. As a result, the outer casing material 59 absorbs the outer casing deformation factor, thereby preventing the outer casing outer surface from being deformed. In addition, a gas is sealed between the outer covering members 58 and 59 having the double structure. In this way, the gas space 60 filled between the double-layered outer casings 58, 59 absorbs the deformation factors of the outer casing, such as irregularities and warpage on the surface of the vacuum insulation material, and the outer casing outer surface Deformation is prevented.
また、 図 1 4に示すように、 二重構造の外被材 5 9 Bの厚み t 3 を他方の外被材 5 9 Aの厚み t 2より厚く し、 外被材 5 9 B側を外 箱 1 2に貼り付けても良い。 この場合、 外被材 5 9 Bの厚み t 3 を 厚く しているので、 真空断熱材の表面の凹凸、 そり等の外箱変形要 因を厚み t 3が吸収し、 外箱外表面の変形が防止される。  Further, as shown in FIG. 14, the thickness t 3 of the double-layered outer cover material 59 B is made larger than the thickness t 2 of the other outer cover material 59 A, and the outer cover material 59 B side is removed. It may be pasted on Box 1 or 2. In this case, since the thickness t3 of the outer cover material 59B is increased, the thickness t3 absorbs factors such as unevenness and warpage on the surface of the vacuum insulation material, and the outer surface of the outer case is deformed. Is prevented.
また、 図 1 5に示すように、 第一の外被材 5 8の外周を第二の外 被材 5 9で覆い二重構造とし、 二重構造の外被材の間に軟質部材 6 1 を封入してもよい。 この場合、 軟質部材 6 1 が真空断熱材の表面 の凹凸、 そり等の外箱変形要因を吸収し、 外箱外表面の変形が防止 される。 また、 軟質部材 6 1が真空断熱材の保護作用を有し、 真空 断熱材の信頼性が高まる。 (実施の形態 Ί ) Further, as shown in FIG. 15, the outer periphery of the first covering material 58 is covered with a second covering material 59 to form a double structure, and a soft member 6 1 May be enclosed. In this case, the soft member 61 absorbs the deformation factors of the outer box such as unevenness and warpage on the surface of the vacuum heat insulating material, and the outer surface of the outer box is prevented from being deformed. In addition, the soft member 61 has a function of protecting the vacuum heat insulating material, and the reliability of the vacuum heat insulating material is improved. (Embodiment Ί)
図 1 6は、 本発明の実施の形態 7 による冷蔵庫の外箱折り曲げ前 の状態を示す平面図、 図 1 7 は同冷蔵庫の外箱折り曲げ後の状態を 示す斜視図である。 図 1 8は同冷蔵庫に用いる真空断熱材の要部断 面図、 図 1 9は同冷蔵庫に用いる真空断熱材を適用した部分拡大断 面図、 図 2 0は同冷蔵庫のウレタン注入発泡後のアルミテープ他端 の要部分解斜視図である。 これら以外の基本的な構成は実施の形態 1 と同様である。  FIG. 16 is a plan view showing a state before bending the outer box of the refrigerator according to Embodiment 7 of the present invention, and FIG. 17 is a perspective view showing a state after bending the outer box of the refrigerator. Fig. 18 is a cross-sectional view of the main part of the vacuum insulation material used in the refrigerator, Fig. 19 is a partially enlarged cross-sectional view of the refrigerator using the vacuum insulation material, and Fig. 20 is the refrigerator after urethane injection and foaming. FIG. 4 is an exploded perspective view of a main part of the other end of the aluminum tape. Other basic configurations are the same as in the first embodiment.
鋼板からなる外箱 6 2は、 折り曲げ前は平板である。 外箱 6 2 に は、 冷凍サイクルを構成する放熱パイプ 6 3が固定部材としてのァ ルミテープ 6 4で固定され、 その上面に真空断熱材 6 5 、 6 6 、 6 7がホッ トメルトなどの接着部材で固定される。 そして外箱 6 2 を 折り曲げ部 6 9で折り曲げ、 背面板 7 0、 底板 7 1 、 内箱 (図示せ ず) を組み込む。 その後、 外箱 6 2 と内箱で構成される空間に硬質 ウレタンフォームが充填発泡される。 したがって冷凍サイクルの圧 縮機などを収納する機械室構成部分 6 8には、 ウレタンフォームは 充填されず外部と連通している。 また、 放熱パイプ 6 3を固定する アルミテープ 6 4の一端 6 4 Αは、 機械室構成部分 6 8 まで延出し ている。 また、 アルミテープ 6 4の他端 6 4 Βは真空断熱材 6. 5の 内側に位置するようにしている  The outer box 62 made of a steel plate is a flat plate before bending. The outer box 62 has a radiating pipe 63 constituting a refrigeration cycle fixed with an aluminum tape 64 as a fixing member, and a vacuum heat insulating material 65, 66, 67 on the upper surface thereof is an adhesive member such as a hot melt. Fixed at. Then, the outer box 62 is bent at the bending portion 69, and the rear plate 70, the bottom plate 71, and the inner box (not shown) are assembled. After that, the space defined by the outer box 62 and the inner box is filled with rigid urethane foam and foamed. Therefore, the machine room component 68, which houses the compressor of the refrigeration cycle, is not filled with urethane foam and communicates with the outside. Further, one end 64 の of the aluminum tape 64 fixing the heat radiating pipe 63 extends to the machine room constituent part 68. Also, the other end 6 4 の of the aluminum tape 64 is located inside the vacuum insulation material 6.5.
また、 真空断熱材 6 5は、 その完成後にプレス機 7 2のプレス部 7 3 により、 溝 7 4を成形される。 そして真空断熱材 6 5は、 溝 7 4に放熱パイプ 6 3が入り込むように外箱 6 2 に配置、固定される。 外箱 6 2 と真空断熱材 6 5 との間に放熱パイプ 6 3 を配設する際 外箱 6 2 とアルミテープ 6 4 との間には第一の空隙部 7 6が生じる また、 アルミテープ 6 4 と真空断熱材 6 5の溝 7 4 との間には第二 の空隙部 7 7が生じる。  Further, after the vacuum heat insulating material 65 is completed, a groove 74 is formed by a press section 73 of a press machine 72. Then, the vacuum heat insulating material 65 is arranged and fixed to the outer box 62 such that the heat radiating pipe 63 enters the groove 74. When radiating the heat radiating pipe 63 between the outer case 62 and the vacuum heat insulating material 65, a first gap 76 is formed between the outer case 62 and the aluminum tape 64. A second void portion 77 is formed between the groove 6 4 and the groove 74 of the vacuum heat insulating material 65.
上記構成により、 第一の空隙部 7 6、 第二の空隙部 7 7は、 アル ミテープ 6 4の一端 6 4 Αが機械室構成部分 6 8 まで延出している ので外部と連通している。 したがって空隙部 7 6 、 7 7 に発泡ガス などの気体が滞留することがない。 このため周囲温度の変化によつ て空隙部 7 6 、 7 7が膨張、 収縮せず、 放熱パイプ 6 3配設部の外 箱 6 2外表面の変形が防止される。 With the above configuration, one end 64 4 7 of the aluminum tape 64 extends to the machine room component 68 in the first gap portion 76 and the second gap portion 77. So it is in communication with the outside world. Therefore, gas such as foaming gas does not stay in the voids 76 and 77. Therefore, the gaps 76 and 77 do not expand or contract due to a change in the ambient temperature, and the outer surface of the outer box 62 where the heat radiating pipe 63 is disposed is prevented from being deformed.
また、 アルミテープ 6 4の一端 6 4 Aが機械室構成部分 6 8 まで 延出するとともに、 他端 6 4 Bを真空断熱材 6 5の端部より内部に 位置させている。 硬質ウレタンフォーム 7 5発泡時、 真空断熱材 6 5 と放熱パイプ 6 3 との隙間から若干のウレタンフォーム 7 5が侵 入する。 しかし図 2 0 に示すように、 この構成によりアルミテープ 6 4の他端 6 4 Bまでは到達しない。 したがって、 アルミテープ 6 4の他端 6 4 B側近傍の空隙部 7 6 、 7 7は互いに連通しているの で、 空隙部 7 6 、 7 7の気体がスムーズに庫外に排出される。 これ により、 周囲温度の変化による前記空隙部が膨張、 収縮せず、 放熱 パイプ 6 3配設部の外箱 6 2外表面の変形が確実に防止される。  In addition, one end 64 A of the aluminum tape 64 extends to the machine room component 68, and the other end 64 B is located inside the end of the vacuum heat insulating material 65. When the rigid urethane foam 75 is foamed, some urethane foam 75 penetrates through a gap between the vacuum heat insulating material 65 and the heat radiating pipe 63. However, as shown in FIG. 20, this configuration does not reach the other end 64 B of the aluminum tape 64. Therefore, since the air gaps 76 and 77 near the other end 64 B side of the aluminum tape 64 are in communication with each other, the gas in the air gaps 76 and 77 is smoothly discharged out of the refrigerator. As a result, the gap does not expand or contract due to a change in the ambient temperature, and the outer surface of the outer box 62 provided with the heat-dissipating pipe 63 is reliably prevented from being deformed.
また、 放熱パイプ 6 3に対向して真空断熱材 6 5 に成形する溝 7 4は、 真空断熱材 6 5完成後にプレス機 7 2のプレス部 7 3 により 形成している。 よって、 あらかじめ真空断熱材 6 5 の芯材に溝を設 ける必要がなく真空断熱材の製造工程を簡素化できる。  Further, a groove 74 formed in the vacuum heat insulating material 65 opposite to the heat radiating pipe 63 is formed by a press portion 73 of a press machine 72 after the vacuum heat insulating material 65 is completed. Therefore, it is not necessary to form a groove in the core of the vacuum heat insulating material 65 in advance, and the manufacturing process of the vacuum heat insulating material can be simplified.
なお、 上記説明ではアルミテープを固定部材として説明している が、 粘着性を有するテープ材であれば、 特に材料は限定されない。 さらに熱伝導性があればなお好ましい。  In the above description, the aluminum tape is described as the fixing member, but the material is not particularly limited as long as the tape material has adhesiveness. Further, it is more preferable to have thermal conductivity.
(実施の形態 8 ) (Embodiment 8)
図 2 1 は、 本発明の実施の形態 8 による冷蔵庫の要部拡大断面図 である。 これ以外の基本的な構成は実施の形態 1 と同様である。 外箱 6 2外表面にあらかじめプレス等で配設した細孔 7 8は真空 断熱材 6 5の配設部に対応して、 外箱 6 2 に直線的に複数個設けて いる。  FIG. 21 is an enlarged sectional view of a main part of a refrigerator according to Embodiment 8 of the present invention. The other basic configuration is the same as that of the first embodiment. A plurality of pores 78 previously arranged on the outer surface of the outer box 62 by a press or the like are provided linearly on the outer box 62 in correspondence with the arrangement portion of the vacuum heat insulating material 65.
上記構成において、 真空断熱材 6 5 と外箱 6 2 との空隙部の気体 は、 真空断熱材 6 5の表面の凹凸、 そり等により外箱変形の要因と なる。 この気体が細孔 7 8 を通りスムーズに庫外に排出される。 こ のため、 周囲温度の変化により空隙部が膨張、 収縮せず、 真空断熱 材 6 5配設部の外箱 6 2外表面の変形が防止される。 In the above configuration, the gas in the gap between the vacuum insulation material 65 and the outer case 62 is caused by the deformation of the outer case due to unevenness and warpage of the surface of the vacuum insulation material 65. Become. This gas is discharged smoothly out of the refrigerator through the pores 7 8. Therefore, the gap does not expand or contract due to a change in the ambient temperature, and the outer surface of the outer box 62 in which the vacuum heat insulating material 65 is provided is prevented from being deformed.
なお、 細孔 7 8の配置は直線的に限らず、 曲線的、 多角形的でも よい。  The arrangement of the pores 78 is not limited to a straight line, but may be a curved line or a polygonal line.
(実施の形態 9 ) (Embodiment 9)
図 2 2 Aは、 本発明の実施の形態 9 による冷蔵庫を左右に切断し たとき左側部分を右側から見た様子を示す断面図、 図 2 3 Aは、 同 冷蔵庫を前後に切断したとき後部分を正面から見た様子を示す断面 図である。  FIG. 22A is a cross-sectional view showing a left-side portion viewed from the right side when the refrigerator according to the ninth embodiment of the present invention is cut left and right, and FIG. It is sectional drawing which shows the mode that the part was seen from the front.
本実施の形態による冷蔵庫の基本構造において実施の形態 1 と異 なる点は、 真空断熱材の配置の仕方である。 すなわち、 真空断熱材 The difference between the basic structure of the refrigerator according to the present embodiment and the first embodiment is the arrangement of the vacuum heat insulating material. In other words, vacuum insulation
3 2、 3 3 A 3 3 B、 3 4は、 外箱 1 2のそれぞれ天面、 背面、 上部側面の内側に接して貼り付けられている。 また、 真空断熱材 3 5 , 3 4 A, 3 6は、 内箱 1 1 のそれぞれ底面、 下部側面、 機械室 2 0の構成面に接して貼り付けられている。 また、 冷蔵庫 1 0の前 面開口部に配置する冷蔵室用扉 2 7、 野菜室用扉 2 8、 冷凍室用扉 2 9 , 3 1 の内部にはそれぞれ真空断熱材 3 8 , 3 9, 4 0 , 4 1 が、 各扉の外側鉄板に接するように配設されている。 3 2, 3 3 A 3 3 B and 3 4 are attached to the outer case 12 in contact with the top surface, the back surface, and the inside of the upper side surface, respectively. Further, the vacuum heat insulating materials 35, 34A, 36 are attached to the inner box 11 in contact with the bottom surface, the lower side surface, and the component surface of the machine room 20, respectively. The refrigerator compartment door 27, the vegetable compartment door 28, and the freezer compartment doors 29, 31 located at the front opening of the refrigerator 10 have vacuum insulation materials 38, 39, respectively. 4 0 and 4 1 are disposed so as to be in contact with the outer steel plate of each door.
本実施の形態によれば、 各真空断熱材を断熱箱体内外の通過熱勾 配の大きい箇所から配設して、 真空断熱材の利用価値が高い状態で 吸熱負荷量を効果的に抑え、 省エネルギー効果を高める。  According to the present embodiment, each vacuum heat insulating material is disposed from a place having a large passing heat gradient inside and outside the heat insulating box, and the heat absorption load is effectively suppressed in a state where the use value of the vacuum heat insulating material is high. Enhance energy saving effect.
さらに、 各真空断熱材を、 冷蔵庫の上部両側面、 天面、 背面、 前 面では外箱 1 2 に接し配設し、 底面と機械室 2 0 を構成する面は内 箱 1 1 に接し配設している。 よって、 外箱 1 2の表面温度が高くな る下部両側面、 底面、 機械室 2 0に配置した真空断熱材 3 5 , 3 4 A, 3 6, 3 7が高温にさ らされない。 このため、 真空断熱性能の 経時的な断熱性能の劣化を最低限に抑えることができ、 真空断熱材 3 5 , 3 4 A , 3 6, 3 7 の長期信頼性が高まる。 また、 下部両側面の真空断熱材 3 4 Aは、 内箱 1 1 に接し配設し ているので、 外箱 1 2同士の複雑な嵌合部や配管を避け、 真空断熱 材 3 4 Aの破損が防止される。 すなわち、 外箱 1 2の形状が複雑と なる下部両側面では、 真空断熱材 3 4 Aを内箱 1 1 に接して配設す ることにより、 信頼性が高まる。 In addition, each vacuum insulation material is placed on the outer box 12 on both sides, top, back, and front of the refrigerator, and the bottom and the surface that constitutes the machine room 20 are placed on the inner box 11. Has been established. Therefore, the vacuum heat insulating materials 35, 34A, 36, and 37 disposed in the lower side surfaces, the bottom surface, and the machine room 20, where the surface temperature of the outer box 12 becomes high, are not exposed to high temperatures. For this reason, the deterioration of the vacuum insulation performance over time can be minimized, and the long-term reliability of the vacuum insulation materials 35, 34A, 36, and 37 increases. In addition, since the vacuum heat insulating material 34 A on both sides of the lower part is disposed in contact with the inner case 11, a complicated fitting portion and piping between the outer cases 12 are avoided, and the vacuum heat insulating material 34 A is used. Damage is prevented. In other words, on the lower side surfaces where the shape of the outer box 12 is complicated, the reliability is improved by arranging the vacuum heat insulating material 34 A in contact with the inner box 11.
また、 天面の真空断熱材 3 2は外箱 1 2 に接して配設しているの で、 庫内照明用取り付け部材あるいは電線 (図示せず) を内箱 1 1 の天面に取り付け可能となる。 よって冷蔵室 1 5の天面に照明を設 けることができ、 使い勝手が向上する。  In addition, since the vacuum insulation material 32 on the top surface is placed in contact with the outer case 1 2, it is possible to attach the interior lighting fixtures or electric wires (not shown) to the top surface of the inner case 11. Becomes Therefore, it is possible to install lighting on the top surface of the refrigerator compartment 15, and the usability is improved.
また、 断熱箱体の背面に真空断熱材 3 3 A, 3 3 Bを配設するこ とにより、 これらの真空断熱材が冷却装置の配管や冷却器 2 2 、 2 4の除霜水を排水する ドレン管 (図示せず) の邪魔になることはな い。 また、 背面パネルと真空断熱材 3 3 A, 3 3 Bを一体品として 組み立てることができ、 製造工程上好ましくなる。  In addition, by disposing vacuum insulation materials 33 A and 33 B on the back of the insulation box, these vacuum insulation materials drain the defrost water from the cooling system piping and coolers 22 and 24. It does not interfere with the drain tube (not shown). Also, the rear panel and the vacuum heat insulating materials 33A and 33B can be assembled as an integral product, which is preferable in the manufacturing process.
さ らに、 各真空断熱材は、 冷蔵庫の断熱箱体を構成する外箱 1 2 、 内箱 1 1 のいずれかに接して配置しているので、 樹脂発泡体である 硬質ウレタンフォーム 1 3の形成する空間距離を充分確保できる。 よって、 ウレタンフォーム 1 3の荒れや発泡不足による断熱性能の 低下を引き起こすことがなく、 箱体強度が維持され、 見栄えのよい ものとなる。  In addition, since each vacuum heat insulating material is disposed in contact with either the outer box 12 or the inner box 11 constituting the heat insulating box of the refrigerator, the rigid urethane foam 13 which is a resin foam is provided. A sufficient spatial distance to be formed can be secured. Therefore, the strength of the box body is maintained and the appearance is good without causing deterioration of the heat insulation performance due to the roughness of the urethane foam 13 or insufficient foaming.
冷凍領域の冷凍室 1 8 A , 1 9 を形成する断熱箱体、 冷蔵領域の 冷蔵室 1 5 ,野菜室 1 6を形成する断熱箱体の断熱壁厚に関しては、 実施の形態 1 と同様なので説明を省略する。 冷蔵庫 1 0の外表面に 対する被覆率についても同様である。  The insulation wall thickness of the heat insulation box forming the freezer compartments 18 A and 19 in the freezing area, and the heat insulation wall thickness of the heat insulation box forming the refrigerator compartment 15 and the vegetable compartment 16 in the refrigeration area are the same as those in Embodiment 1. Description is omitted. The same applies to the coverage of the outer surface of the refrigerator 10.
なお、 真空断熱材 3 3 A、 3 3 Bは背面パネルにあらかじめ配設 した後、 平板をコの字状に折り曲げて成形した側面と天面に接合し て、 外箱 1 2 を形成する。 このとき、 真空断熱材 3 3 A、 3 3 Bは 外箱 1 2 を形成する継ぎ目近傍に位置するように配設するのが好ま しい。 すなわち、 真空断熱材 3 3 A , 3 3 Bを背面パネルとほぼ同 等の大きさに構成する。 これにより断熱性能が高まる。 また、 各真空断熱材をあらかじめ外箱 1 2 あるいは内箱 1 1 に配 置しておく ことが好ましい。 そのようにして箱体を組立てることに より、 製造が容易となる。 The vacuum heat insulators 33A and 33B are provided on the rear panel in advance, and then the flat plate is bent into a U-shape and joined to the side and the top to form the outer box 12. At this time, it is preferable to dispose the vacuum heat insulating materials 33 A and 33 B so as to be located near the seam forming the outer box 12. That is, the vacuum heat insulating materials 33 A and 33 B are configured to have substantially the same size as the rear panel. This enhances the heat insulation performance. Further, it is preferable that each vacuum heat insulating material is placed in the outer box 12 or the inner box 11 in advance. By assembling the box in this way, the manufacture becomes easy.
また、 内箱 1 1 に接し配設する真空断熱材 3 5, 3 4 A, 3 6, 3 7 は、 投影面積で内箱 1 1 より小さく構成することが好ましい。 換言すれば、 内箱 1 1 に接し配設した真空断熱材 3 5 , 3 4 Α, 3 6 , 3 7は、 真空断熱材 3 5, 3 4 Α, 3 6, 3 7が接し配設され る内箱 1 1 の各面からはみ出ていない。  Further, it is preferable that the vacuum heat insulating materials 35, 34A, 36, and 37 disposed in contact with the inner box 11 have a smaller projected area than the inner box 11. In other words, the vacuum heat insulators 35, 34, 34, 36, and 37 provided in contact with the inner box 11 are provided with the vacuum heat insulators 35, 34, 36, 37 in contact. It does not protrude from each side of the inner box 11.
このような構成において、 真空断熱材 3 5 , 3 4 A , 3 6, 3 7 を所定箇所に配設した後で、 外箱 1 2 と内箱 1 1 との間にウレタン フォーム 1 3 を流し込む。 この場合、 内箱 1 1 に配設された真空断 熱材 3 5, 3 4 A, 3 6, 3 7 に対して、 内箱 1 1から剥がす方向 の力が加わらない。 このため、 ウレタンフォーム 1 3 の流入により 真空断熱材 3 5 , 3 4 A, 3 6, 3 7が剥がれることを防止できる。 さらに、 真空断熱材 3 5, 3 4 A, 3 6, 3 7の貼付けの安定を容 易にすることができると同時に、 ウレタンフォーム 1 3の流れ性を 阻害しない。  In such a configuration, the urethane foam 13 is poured between the outer box 12 and the inner box 11 after the vacuum heat insulating materials 35, 34A, 36, 37 are arranged at predetermined positions. . In this case, no force is applied to the vacuum heat insulating material 35, 34A, 36, 37 arranged in the inner box 11 in the direction of peeling from the inner box 11. For this reason, it is possible to prevent the vacuum insulation materials 35, 34A, 36, and 37 from peeling off due to the inflow of the urethane foam 13. Furthermore, the vacuum insulation materials 35, 34A, 36, and 37 can be stably stuck, and the flowability of the urethane foam 13 is not hindered.
また、 真空断熱材 3 5 , 3 4 A, 3 6が接し配設される内箱 1 1 の面には、 図 2 3 Bに示すような各真空断熱材の外周を囲む凸部 1 1 A、 または図 2 3 Cに示すような各真空断熱材を収納する凹部 1 1 Bを設けるのが好ましい。 凸部 1 1 A、 凹部 1 1 Bはいずれも真 空断熱材の外周に接する段部を有する。 段部により、 各真空断熱材 の端面の露出面積が減る。  Also, on the surface of the inner box 11 where the vacuum insulation materials 35, 34A and 36 are disposed in contact with each other, a convex portion 11A surrounding the outer periphery of each vacuum insulation material as shown in Fig. 23B is provided. Alternatively, it is preferable to provide a recess 11B for accommodating each vacuum heat insulating material as shown in FIG. 23C. Each of the convex portion 11A and the concave portion 11B has a step portion which is in contact with the outer periphery of the vacuum heat insulating material. The step reduces the exposed area of the end face of each vacuum insulation.
このように段部を設けることにより、 真空断熱材 3 5, 3 4 A, 3 6 を貼るときに位置決めが容易となり、 各真空断熱材の破れが防 止される。 さ らに、 ウレタンフォーム 1 3の流入による各真空断熱 材の剥がれが防止される。 また、 凸部 1 1 Aを設けると、 内箱 1 1 と真空断熱材 3 5 , 3 4 A, 3 6 との段差が少なくなり、 ウレタン フォーム 1 3の流れ性を阻害しない。 凹部 1 1 Bを設けると、 内箱 1 1 の金型の加工が容易である。 さ らに、 段部はそれ自体が内箱 1 1 の補強となり、 真空断熱材 3 5 , 3 4 A , 3 6 を貼付けやすい。 また、 冷却部 2 4下部に真空断熱材 3 6を配設する場合は、 図 2 2 Bのように、 冷却器 2 4下部または内箱 1 1内面に断熱部材 3 6 Aを配置し、 平面形状を確保するのが好ましい。 断熱部材 3 6 Aの 上面には除霜水処理のための所定の傾斜形状を形成し、 下面は平面 状で内箱 1 1 に密着するように構成する。 なお、 断熱部材 3 6 Aの 上面最低部に穴を設け、 この穴から外部へ除霜水を排除する経路を 設けておく。 Providing the steps in this manner facilitates positioning when attaching the vacuum heat insulating materials 35, 34A, 36, and prevents the vacuum heat insulating materials from being broken. Further, peeling of each vacuum insulation material due to inflow of urethane foam 13 is prevented. In addition, when the convex portion 11A is provided, the step between the inner box 11 and the vacuum heat insulating materials 35, 34A, 36 is reduced, and the flowability of the urethane foam 13 is not hindered. The provision of the recesses 11B facilitates the processing of the mold of the inner box 11. In addition, the step itself is an inner box 1 It is a reinforcement of 1, and it is easy to attach vacuum insulation materials 35, 34A, 36. When the vacuum heat insulator 36 is arranged below the cooling section 24, as shown in Fig. 22B, the heat insulator 36A is arranged at the lower part of the cooler 24 or the inner surface of the inner box 11. It is preferable to secure the shape. A predetermined inclined shape for defrost water treatment is formed on the upper surface of the heat insulating member 36A, and the lower surface is planar and closely adhered to the inner box 11. In addition, a hole is provided at the lowest part of the upper surface of the heat insulating member 36A, and a path for removing defrost water from this hole to the outside is provided.
断熱部材 3 6 Aにより、 冷却器 2 4の下方に位置する内箱 1 1 の 面が平面になり、 内箱 1 1 の面に傾斜部がないため効率よく真空断 熱材 3 6 を貼ることができる。 またウレタンフォーム 1 3の流入に よる真空断熱材 3 6の剥がれを防止することができる。 また、 真空 断熱材 3 6を貼る部分が傾斜形状ではなく平面になることで、 辺長 が短くなり、 真空断熱材 3 6を小さくすることができる。 また辺長 が短くなることで冷蔵庫内への吸熱負荷を低減できる。  Due to the heat insulating member 36 A, the surface of the inner box 11 located below the cooler 24 becomes flat, and the surface of the inner box 11 has no slope, so that the vacuum insulation material 36 can be efficiently attached. Can be. In addition, it is possible to prevent the vacuum heat insulating material 36 from peeling off due to the inflow of the urethane foam 13. Further, since the portion to which the vacuum heat insulating material 36 is applied is not an inclined shape but a flat surface, the side length is shortened, and the vacuum heat insulating material 36 can be made smaller. In addition, the shorter side length can reduce the heat absorption load in the refrigerator.
上記の説明では、 断熱部材 3 6 Aを配設する冷却器 2 4下方の内 箱 1 1内面は平面としている。 しかし、 内箱 1 1 における冷却器 2 4の下方を傾斜面とし、 その部分の内箱 1 1 の外面に断熱部材 3 6 Aを配してもよい。 この場合、 あらかじめ断熱部材 3 6 Aに真空断 熱材 3 6 を配置し、 箱体の組立てを行う ことができ製造が容易であ る。  In the above description, the inner surface of the inner box 11 below the cooler 24 where the heat insulating member 36 A is disposed is a flat surface. However, the lower part of the cooler 24 in the inner box 11 may be an inclined surface, and the heat insulating member 36A may be arranged on the outer surface of the inner box 11 in that portion. In this case, the vacuum insulation material 36 is arranged in advance on the heat insulating member 36A, and the box can be assembled, so that the production is easy.
また、 図 2 3 Aのように内箱 1 1奥面にウレタンフォーム 1 3の 空気抜き用孔 1 1 C を設けることが好ましい。 このように構成する ことにより、 外箱 1 2背面に空気抜き用孔が不要になり、 真空断熱 材 3 3 Aを配設することができる。 さらに、 外箱 1 2に空気抜き用 孔がなくなり外観の美しさを確保することができる。 また、 他の構 造の冷蔵庫の外箱背面と兼用することができ、 部品点数と工数を削 減することができる。  Further, as shown in FIG. 23A, it is preferable to provide an air vent hole 11 C of the urethane foam 13 on the inner surface of the inner box 11. With this configuration, a hole for venting air is not required on the back of the outer case 12, and the vacuum heat insulating material 33 A can be provided. Further, the outer box 12 has no air vent hole, so that the appearance can be kept beautiful. In addition, it can also be used as the back of the outer box of a refrigerator of another structure, and the number of parts and man-hours can be reduced.
また、 図 2 3 Aのように真空断熱材 3 4 と真空断熱材 3 4 Aの境 界部は真空断熱材 3 4 と真空断熱材 3 4 Aが重なり合って構成する ことが好ましい。 本実施の形態では、 冷蔵庫 1 0の上部両側面の外 箱 1 2 に接し配設する真空断熱材 3 4の下端の位置が、 下部両側面 の内箱 1 1 に接し配設する真空断熱材 3 4 Aの上端の位置より低く なるようにしている。 冷蔵庫 1 0の両側面に真空断熱材 3 4, 3 4 Aを配設するときに、 上下方向にずれることがある。 また、 真空断 熱材 3 4 , 3 4 Aの寸法精度が低い場合もある。 このような場合で も、 冷蔵庫 1 0の両側面全面に、 外箱 1 2 と内箱 1 1 の少なく とも どちらか一方に真空断熱材が存在する。 このため、 真空断熱材 3 4 , 3 4 Aの断熱効果が損なわれない。 さらに、 ウレタンフォーム 1 3 の流れを阻害することなく安定した流れを可能とする。 Also, as shown in Fig. 23A, the boundary between the vacuum heat insulator 34 and the vacuum heat insulator 34A is formed by overlapping the vacuum heat insulator 34 and the vacuum heat insulator 34A. Is preferred. In the present embodiment, the position of the lower end of the vacuum heat insulating material 34 provided in contact with the outer box 12 on both upper sides of the refrigerator 10 is changed to the vacuum heat insulating material provided in contact with the inner box 1 1 of the lower both sides. It is lower than the upper end of 34 A. When the vacuum insulation materials 34, 34A are installed on both sides of the refrigerator 10, they may be shifted in the vertical direction. In addition, the dimensional accuracy of the vacuum insulation material 34, 34A may be low. Even in such a case, the vacuum heat insulating material exists on at least one of the outer box 12 and the inner box 11 on both sides of the refrigerator 10. For this reason, the heat insulating effect of the vacuum heat insulating materials 34 and 34 A is not impaired. Further, a stable flow can be achieved without obstructing the flow of the urethane foam 13.
また、 真空断熱材 3 5, 3 6の貼付けが容易で効果的になるよう、 内箱 1 1 は幅方向に平面となっていることが好ましい。 本実施の形 態では、 冷蔵庫 1 0の幅方向に平面が形成された内箱 1 1底面外側 に、 真空断熱材 3 5, 3 6 を接し配設する。 このような構成により 内箱 1 1底面における真空断熱材 3 5, 3 6の貼付け面積を拡大す ると同時に底面の面積を小さくすることができ、 省エネルギー効果 を高めることができる。 さらに、 真空断熱材 3 5, 3 6の貼付け性 が向上する。  The inner box 11 is preferably flat in the width direction so that the vacuum heat insulating materials 35 and 36 can be easily and effectively attached. In the present embodiment, vacuum heat insulators 35, 36 are arranged in contact with the outside of the bottom surface of the inner box 11 having a flat surface formed in the width direction of the refrigerator 10. With such a configuration, the area for attaching the vacuum heat insulating materials 35, 36 on the bottom surface of the inner box 11 can be enlarged, and at the same time, the area of the bottom surface can be reduced, so that the energy saving effect can be enhanced. Further, the adhesion of the vacuum heat insulating materials 35 and 36 is improved.
また、 真空断熱材 3 2 , 3 3 A , 3 3 B , 3 5 , 3 4, 3 4 A , 3 6, 3 7 , 3 8, 3 9 , 4 0 , 4 1 を配設するときは、 貼付け前 に貼付け面から異物を除去することが好ましレ 本実施の形態では、 これらの真空断熱材貼付け前に各真空断熱材に接する面の異物を除 去する。 これにより異物による各真空断熱材の破損をなくすことが でき、 貼付け工程の確実性が向上する。  When installing the vacuum insulation materials 32, 33A, 33B, 35, 34, 34A, 36, 37, 38, 39, 40, 41, It is preferable to remove foreign matter from the surface to be stuck before sticking. In this embodiment, foreign matter on the surface in contact with each vacuum heat insulating material is removed before sticking these vacuum heat insulating materials. As a result, damage to the vacuum insulation materials due to foreign matter can be eliminated, and the reliability of the bonding process can be improved.
(実施の形態 1 0 ) (Embodiment 10)
図 2 4は、 本実施の形態の冷蔵庫に適用する真空断熱材の要部拡 大縦断面図、 図 2 5、 図 2 6は同実施の形態による冷蔵庫の部分断 面拡大図である。冷蔵庫全体の基本的な構成は実施の形態 1 または、 実施の形態 9 と同様である。 真空断熱材 9 1 は、 内部に芯材 9 2を有する。 芯材 9 2 はグラス ウールなどの無機繊維集合体からなる。 真空断熱材 9 1 は、 芯材 9 2を加熱乾燥後、 蒸着層フィルム 9 3 と金属箔層フィルム 9 7 を貼 り合わせた外被材中に挿入し、 内部を真空引きして開口部を封止す ることにより形成される。 FIG. 24 is an enlarged longitudinal sectional view of a main part of the vacuum heat insulating material applied to the refrigerator of the present embodiment, and FIGS. 25 and 26 are partially sectional enlarged views of the refrigerator according to the embodiment. The basic configuration of the entire refrigerator is the same as in the first embodiment or the ninth embodiment. The vacuum heat insulating material 91 has a core material 92 inside. The core material 92 is made of an aggregate of inorganic fibers such as glass wool. After vacuum drying the core material 92, the vacuum insulation material 91 is inserted into the jacket material where the vapor deposition layer film 93 and the metal foil layer film 97 are laminated, and the inside is evacuated to open the opening. It is formed by sealing.
蒸着層フィルム 9 3は、 アルミ蒸着フィルム 9 5 をナイ ロンフィ ルム 9 4 と高密度ポリエチレンフィルム 9 6 とで挟み込んだ複合プ ラスチックフィルムである。 金属箔層フィルム 9 7は、 アルミ箔 9 9 をナイロンフィルム 9 8 と高密度ポリエチレンフィルム 1 0 0 と で挟み込んだ複合プラスチックフィルムである。  The vapor deposition layer film 93 is a composite plastic film in which an aluminum vapor deposition film 95 is sandwiched between a nylon film 94 and a high-density polyethylene film 96. The metal foil layer film 97 is a composite plastic film in which an aluminum foil 99 is sandwiched between a nylon film 98 and a high-density polyethylene film 100.
また、 蒸着層フィルム 9 3 と金属箔層フィルム 9 7 とのシール面 は蒸着層フィルム 9 3側を一平面状とし、 金属箔層フィルム 9 7側 の面を立体的に構成している。 そして、 蒸着層フィルム 9 3側を外 箱 1 2 もしくは内箱 1 1 に接して配置している。 すなわち、 真空断 熱材 9 1 において、 高い断熱性を必要とする一平面を、 アルミ蒸着 フィルム 9 5 を有する蒸着層フィルム 9 3で構成している。 また、 高いガスバリヤ性を必要とする他の面を、 金属箔 9 9 を有する金属 箔層フィルム 9 7で構成している。 そして両フィルム 9 3 , 9 7の シール面を蒸着層フィルム 9 3側の平面と同一平面上に位置させる, このように構成することにより、 シール面のヒレの処理が容易とな るとともに、 信頼性が高く断熱性能の優れた真空断熱材 9 1 の利用 が可能となる。  The sealing surface between the vapor deposition layer film 93 and the metal foil layer film 97 has a flat surface on the vapor deposition layer film 93 side, and the surface on the metal foil layer film 97 side is three-dimensionally configured. And the vapor deposition layer film 93 side is arranged in contact with the outer box 12 or the inner box 11. That is, in the vacuum heat insulating material 91, one plane requiring high heat insulation is constituted by the vapor deposition layer film 93 having the aluminum vapor deposition film 95. Further, the other surface requiring high gas barrier properties is constituted by a metal foil layer film 97 having a metal foil 99. Then, the sealing surfaces of both films 93, 97 are positioned on the same plane as the plane on the side of vapor deposition layer film 93. This configuration facilitates the treatment of fins on the sealing surface and improves reliability. This makes it possible to use vacuum insulation material 91 which has high heat resistance and excellent heat insulation performance.
また、 本実施の形態は、 図 2 5、 図 2 6 に示すように、 真空断熱 材 9 1の蒸着層フィルム 9 3側の平面を、 外箱 1 2 内側あるいは内 箱 1 1外側に接して配設する。 これにより、 信頼性が高く断熱性能 の優れた真空断熱材 9 1 を効果的に配置でき、 シール面のヒレの処 理も必要なくなる。  Further, in the present embodiment, as shown in FIGS. 25 and 26, the flat surface of the vacuum heat insulating material 91 on the side of the vapor deposition layer 93 is in contact with the inner side of the outer box 12 or the outer side of the inner box 11. Arrange. As a result, the vacuum insulation material 91 having high reliability and excellent heat insulation performance can be effectively arranged, and the fins on the sealing surface need not be treated.
また、 内箱 1 1および外箱 1 2両側共、 形状が複雑で真空断熱材 が貼付けられない、 または、 真空断熱材の信頼性確保が重要となる 部位には両面共金属箔フィルムを有する真空断熱材を使用する。 真空断熱材を構成する両面のフィルムに高いガスバリヤ性のある 金属箔フィルムを用いることにより、 真空断熱材の両面が複雑な形 状の面に接する場合であっても、 信頼性が高い真空断熱材の利用が 可能となる。 また、 両面が同一材料であるため、 コス ト低減ができ る。 さ らに、 両面が同一材であるため、 外箱 1 2 あるいは内箱 1 1 に貼付ける時に真空断熱材の貼付面を間違える心配がなく作業が容 易になる。 In addition, both sides of the inner box 11 and outer box 1 2 are so complex that the vacuum insulation material cannot be stuck or the vacuum insulation material has a metal foil film on both sides where the reliability of the vacuum insulation material is important. Use insulation. By using a metal foil film with high gas barrier properties on both sides of the vacuum insulation material, even if both surfaces of the vacuum insulation material are in contact with a complex shaped surface, highly reliable vacuum insulation material Can be used. Also, since both surfaces are made of the same material, cost can be reduced. Furthermore, since both surfaces are made of the same material, there is no need to worry about mistakenly attaching the vacuum heat insulating material to the outer box 1 2 or the inner box 1 1 when attaching to the outer box 1 2 or the inner box 1 1.
ここで、 芯材 9 2 を構成する無機繊維集合体の繊維径は 0. 1 β m〜 1 . 0 mの範囲とし、 硬質ウレタンフォーム 1 3の熱伝導率 と比べて約 1 / 1 0 の熱電導率有する真空断熱材を構成するのが好 ましい。 ウレタンフォーム 1 3 の熱伝導率を 0. 0 1 5 W/mKと したときに、 真空断熱材 9 1 の熱伝導率は 0. 0 0 1 5 WZmKで ある。 また、 真空断熱材 9 1 の熱伝導率は無機繊維集合体の繊維径 の選択等によ り 0. 0 0 1 0 W/mK:〜 0. 0 0 3 0 W/mKとし てもよい。 すなわちウレタンフォーム 1 3 の熱伝導率 1 1 5〜 1 / 5 の比率の範囲としてもよい。 これは、 ウレタンフォーム 1 3 と 真空断熱材 9 1 との複層断熱壁厚が比較的薄い場合において、 ウレ タンフォーム 1 3の流動性を阻害しないために真空断熱材 9 1 の厚 みを薄く しても複層断熱壁としての断熱性能を効果的に発揮するた めである。 更に、 高被覆率化を実現するために比較的壁厚の薄い箇 所にも真空断熱材を配設し、 省エネルギー効果を期待通り発揮させ るためである。  Here, the fiber diameter of the inorganic fiber aggregate constituting the core material 92 is in the range of 0.1 βm to 1.0 m, which is about 1/10 of the thermal conductivity of the rigid urethane foam 13. It is preferable to form a vacuum heat insulating material having thermal conductivity. Assuming that the thermal conductivity of the urethane foam 13 is 0.015 W / mK, the thermal conductivity of the vacuum heat insulating material 91 is 0.015 WZmK. Further, the thermal conductivity of the vacuum heat insulating material 91 may be set to 0.010 W / mK: to 0.030 W / mK by selecting the fiber diameter of the inorganic fiber aggregate. That is, the thermal conductivity of the urethane foam 13 may be in the range of 1 15 to 1/5. This is because when the thickness of the multi-layer insulation wall between the urethane foam 13 and the vacuum insulation material 91 is relatively small, the thickness of the vacuum insulation material 91 is made small so as not to impair the flowability of the urethane foam 13. Even so, the insulation performance of the multi-layer insulation wall is to be exhibited effectively. Furthermore, in order to achieve higher coverage, vacuum insulation is also installed in places where the wall thickness is relatively thin, so that the energy saving effect can be achieved as expected.
(実施の形態 1 1 ) (Embodiment 11)
図 2 7 は、 本発明の実施の形態 1 1 による冷蔵庫の要部拡大断面 図である。 これ以外の構成は実施の形態 1 と同様である。  FIG. 27 is an enlarged cross-sectional view of a main part of the refrigerator according to Embodiment 11 of the present invention. Other configurations are the same as in the first embodiment.
図において、 真空断熱材 7 9 の外被材は、 一方の面がアルミ蒸着 層を有するフィ ルム 8 0 、 他方の面がアルミ箔を有するフィ ルム 8 1 で構成されている。 そしてフィルム 8 0が外箱 6 2 に貼付けられ ている。 そして、 フイリレム 8 0 とフィルム 8 1 とのシール部 8 2 は 硬質ウレタンフォーム 7 5側に折り曲げて配設されている。 In the figure, the outer cover material of the vacuum heat insulating material 79 is composed of a film 80 having an aluminum vapor deposition layer on one surface and a film 81 having an aluminum foil on the other surface. Then, the film 80 is attached to the outer box 62. Then, the seal portion 8 2 between the filer 80 and the film 8 1 Rigid urethane foam 75 Bent to the side.
上記構成において、 アルミ蒸着層を有するフィルム 8 0は熱伝導 率が低いが、 気体透過率は、 フィルム 8 1 に比べて大きい。 また、 アルミ箔を有するフィルム 8 1 は、 気体透過率は低いが、 熱伝導率 はフィルム 8 0 に比べて高い。 したがって、 熱伝導しやすいフィル ム 8 1側、 つまりウレタンフォーム 7 5側にシール部 8 2を折り曲 げると、 フィルム 8 1 を伝っての外箱 6 2への熱の移動経路は長く なる。 またシール部 8 2 と外箱 6 2 との離間距離が大きくなる。 こ れらにより、 フィルムを介した外箱 6 2側への熱伝達を抑えられ、 断熱性が高まる。  In the above configuration, the film 80 having the aluminum vapor-deposited layer has a low thermal conductivity, but has a higher gas permeability than the film 81. The film 81 having an aluminum foil has a low gas permeability, but has a higher thermal conductivity than the film 80. Therefore, if the seal portion 82 is bent to the film 81 side where heat conduction is easy, that is, to the urethane foam 75 side, the heat transfer path to the outer box 62 along the film 81 becomes longer. . In addition, the distance between the seal portion 82 and the outer box 62 is increased. As a result, heat transfer to the outer box 62 side via the film is suppressed, and the heat insulating property is improved.
なお、 上記説明ではアルミ蒸着層を有するフィルムとアルミ金属 箔を有するフィルムを用いて説明しているが、 他の金属で構成して もよい。  In the above description, a film having an aluminum vapor-deposited layer and a film having an aluminum metal foil have been described, but may be made of other metals.
なお、 本実施の形態は、 実施の形態 1 を基本として説明したが、 他の実施の形態で説明した特徴と組み合わせて構成することもでき る。 これは、 以降の実施の形態で説明する特徴と組み合わせてもよ い。  Although the present embodiment has been described based on Embodiment 1, it can also be configured in combination with the features described in other embodiments. This may be combined with the features described in the following embodiments.
(実施の形態 1 2 ) (Embodiment 12)
図 2 8は、 本発明の実施の形態 1 2 による冷蔵庫の横断面図、 図 2 9は、 同冷蔵庫の放熱パイプ近傍の部分拡大図である。 これら以 外の基本的な構成は、 実施の形態 1 または実施の形態 9 と同様であ る。  FIG. 28 is a cross-sectional view of a refrigerator according to Embodiment 12 of the present invention, and FIG. 29 is a partially enlarged view of the vicinity of a heat-radiating pipe of the refrigerator. The basic configuration other than these is the same as in Embodiment 1 or Embodiment 9.
冷凍サイクルの一部をなす凝縮器としての放熱パイプ 1 0 1 は、 外箱 1 2 の側面あるいは背面に接して配設され、 その上面より熱伝 導の良いアルミテープ 1 0 2で外箱 1 2 に固定されている。 アルミ テープ 1 0 2 はシール材を兼ねる。 そして放熱パイプ 1 0 1 を覆う ように真空断熱材 3 4が配設されている。 アルミテープ 1 0 2は庫 外まで配設されている。 このような構成により、 放熱パイプ 1 0 1 の熱を真空断熱材 ·3 4で確実に断熱し、 冷蔵庫内への吸熱負荷を効 率的に減らす。 さらに、 アルミテープ 1 0 2が庫外まで配設されて いるので、 放熱パイプ 1 0 1 と外箱 1 2 との間の空気が自由に庫外 へ移動できる。 これにより、 空気の熱収縮による外箱 1 2表面の凸 凹や波打ちが抑えられ、 外観の美しさを維持する。 さ らに、 放熱パ イブ 1 0 1 と外箱 1 2 との間の空気量を気にすることがなく、 放熱 パイプ 1 0 1 の貼付け作業が容易にできる。 The heat-dissipating pipe 101 as a condenser that forms part of the refrigeration cycle is placed in contact with the side or back of the outer box 12 and has an aluminum tape 102 that has better heat conduction from the upper surface. Fixed to 2. The aluminum tape 102 also serves as a sealing material. A vacuum heat insulating material 34 is provided so as to cover the heat radiating pipe 101. Aluminum tape 102 is provided outside the refrigerator. With such a configuration, the heat of the heat radiating pipe 101 is reliably insulated by the vacuum heat insulating material 34, and the heat absorption load into the refrigerator is effective. Reduce rate. Further, since the aluminum tape 102 is disposed outside the refrigerator, the air between the heat radiation pipe 101 and the outer box 12 can freely move outside the refrigerator. As a result, unevenness and waving of the surface of the outer box 12 due to heat shrinkage of the air are suppressed, and the beauty of the external appearance is maintained. Further, the work of attaching the heat-dissipating pipe 101 can be easily performed without worrying about the amount of air between the heat-dissipating pipe 101 and the outer box 12.
さらに、 アルミテープ 1 0 2は途中で分割されるか、 もしくは孔 が設けられていることが好ましい。 これにより、 放熱パイプ 1 0 1 と真空断熱材 3 4の間の空気も、 自由に庫外へ移動できる。 よって、 空気の熱収縮による外箱 1 2表面の凸凹や波打ちを抑えられ、 外観 の美しさを維持する。 さらに、 放熱パイプ 1 0 1 と真空断熱材 3 4 間の空気量を気にすることがなく、 放熱パイプ 1 0 1 の貼付け作業 が容易にできる。  Further, it is preferable that the aluminum tape 102 be divided in the middle or provided with holes. Thereby, the air between the heat radiating pipe 101 and the vacuum heat insulating material 34 can also move freely outside the refrigerator. Therefore, unevenness and waving of the surface of the outer box 12 due to heat shrinkage of the air can be suppressed, and the beauty of the appearance can be maintained. Further, the work of attaching the heat radiating pipe 101 can be easily performed without concern for the amount of air between the heat radiating pipe 101 and the vacuum heat insulating material 34.
なお、 放熱パイプ 1 0 1 を設置するときに、 真空断熱材 3 4にあ らかじめ組込んでおき、 外箱 1 2に設笸しても構わない。 この場合、 外箱 1 2 に接する面に放熱パイプ 1 0 1 を組み込んだ真空断熱材 3 4を、 外箱 1 2内側に配設する。 このように構成すると、 外箱 1 2 と真空断熱材 3 4 との間に放熱パイプ 1 0 1 を挟む前に放熱パイプ 1 0 1 を外箱 1 2内側に固定する場合より も、 放熱パイプ 1 0 1 と 真空断熱材 3 4との間の空隙を小さくすることができる。 よって外 箱 1 2表面の凸凹や波打ちを抑え、 外観の美しさを維持することが できる。 また、 真空断熱材 3 4の断熱効果を高め、 省エネルギー効 果を高めることができる。 また、 あらかじめ、 放熱パイプ 1 0 1 を 真空断熱材 3 4に配置し組立てを行う ことができるので製造が容易 となる。  When the heat radiating pipe 101 is installed, it may be incorporated in the vacuum heat insulating material 34 in advance and installed in the outer box 12. In this case, the vacuum heat insulating material 34 in which the heat radiating pipe 101 is incorporated on the surface in contact with the outer box 12 is disposed inside the outer box 12. With this configuration, the heat radiating pipe 1 1 is fixed to the inside of the outer box 1 2 before the heat radiating pipe 101 is sandwiched between the outer box 1 2 and the vacuum heat insulator 34. The gap between 0 1 and the vacuum heat insulator 34 can be reduced. Therefore, unevenness and waving of the outer box 12 surface can be suppressed, and the appearance can be maintained beautifully. Further, the heat insulating effect of the vacuum heat insulating material 34 can be enhanced, and the energy saving effect can be enhanced. Further, since the heat radiating pipe 101 is previously arranged on the vacuum heat insulating material 34 and can be assembled, manufacturing becomes easy.
以上の構成において、 外箱 1 2 と真空断熱材 3 4の間に放熱パイ プ 1 0 1 をはさんで取り付けているので、 放熱パイプ 1 0 1 の熱を 真空断熱材 3 4で確実に断熱し、 冷蔵庫内への吸熱負荷を効率的に 減らすことができる。 (実施の形態 1 3 ) In the above configuration, since the heat radiation pipe 101 is attached between the outer box 12 and the vacuum heat insulator 34, the heat of the heat radiation pipe 101 is reliably insulated by the vacuum heat insulator 34. However, the heat absorption load in the refrigerator can be reduced efficiently. (Embodiment 13)
図 3 0は、 本発明の実施の形態 1 3による冷蔵庫の外箱平板の折 り曲げ前の斜視図である。 これ以外の基本的な構成は実施の形態 1 または実施の形態 9 と同様である。  FIG. 30 is a perspective view of an outer box flat plate of a refrigerator according to Embodiment 13 of the present invention before bending. The other basic configuration is the same as in the first embodiment or the ninth embodiment.
放熱パイプ 1 0 1は、 外箱 1 2の側面となる面 1 0 7に接して配 設し、 天面となる面 1 0 6 には放熱パイプ 6 1 を配設していない。 換言すれば、 放熱パイプ 1 0 1 は、 冷蔵庫の天面となる箇所を避け て、 外箱 1 2内側に配設している。 このような構成により、 放熱パ イブ 1 0 1 の熱を真空断熱材 3 4で確実に断熱し、 冷蔵庫内への吸 熱負荷を低減させる。 また、 真空断熱材 3 4は硬質ウレタンフォー ム 1 3より断熱性能が良いことから、 冷蔵庫としての吸熱量が低減 され、 天面 1 0 6に放熱パイプ 1 0 1 を配設しないことが可能とな る。 よって真空断熱材 3 2 を容易に天面に貼付けることができ、 省 エネルギーの効果を高めることができる。  The heat radiating pipe 101 is disposed in contact with the surface 107 serving as the side surface of the outer box 12, and the heat radiating pipe 61 is not disposed on the surface 106 serving as the top surface. In other words, the heat radiating pipe 101 is disposed inside the outer box 12 so as not to be located at the top of the refrigerator. With such a configuration, the heat of the heat radiation pipe 101 is reliably insulated by the vacuum heat insulating material 34, and the heat absorption load into the refrigerator is reduced. In addition, since the vacuum heat insulating material 34 has better heat insulation performance than the hard urethane foam 13, the amount of heat absorbed as a refrigerator is reduced, and it is possible to dispose the heat radiation pipe 101 on the top surface 106. Become. Therefore, the vacuum heat insulating material 32 can be easily attached to the top surface, and the effect of energy saving can be enhanced.
また、 天面 1 0 6に放熱パイプ 1 0 1がないことで放熱パイプ 1 0 1 の形状がシンプルになり、 加工性向上、 工数削減、 材料費低減 ができる。 さらに、 天面 1 0 6 に放熱パイプ 1 0 1がないことで他 の構造の冷蔵庫の放熱パイプと兼用することも可能である。 (実施の形態 1 4 )  In addition, since the heat dissipation pipe 101 is not provided on the top surface 106, the shape of the heat dissipation pipe 101 is simplified, so that workability can be improved, man-hours can be reduced, and material costs can be reduced. Furthermore, since there is no heat radiation pipe 101 on the top surface 106, it can also be used as a heat radiation pipe of a refrigerator of another structure. (Embodiment 14)
図 3 1 は、 本発明の実施の形態 1 4による冷蔵庫の要部拡大図で ある。 これ以外の基本的な構成は実施の形態 1 または実施の形態 9 と同様である。  FIG. 31 is an enlarged view of a main part of a refrigerator according to Embodiment 14 of the present invention. The other basic configuration is the same as in the first embodiment or the ninth embodiment.
真空断熱材 3 4は、 外箱 1 2 に接して配設され、 ウレタンフォー ム 1 3が流れ込む方向には真空断熱材 3 4のフィルム封止代を設け ない。 換言すれば、 外箱 1 2 と内箱 1 1 との間に真空断熱材 3 4を、 ウレタンフォーム 1 3が流れ込む方向に真空断熱材 3 4のフィルム の封止代が位置しない状態で配設する。 以上の構成より、 真空断熱 材 3 4がウレタンフォーム 1 3の流れを阻害することなく安定した 流れを可能とする。 さらに、 外箱 1 2 と内箱 1 1 との間に注入する際のウレタンフォ ーム 1 3は高湿状態であり、 それが直接フィルムの封止代部に接し ないことで熱ス トレスを受けず、真空断熱材 3 4の劣化を防止する。 The vacuum heat insulating material 34 is disposed in contact with the outer case 12, and there is no film sealing allowance for the vacuum heat insulating material 34 in the direction in which the urethane form 13 flows. In other words, the vacuum heat insulating material 34 is disposed between the outer case 12 and the inner case 11 so that the film allowance of the vacuum heat insulating material 34 is not positioned in the direction in which the urethane foam 13 flows. I do. With the above configuration, the vacuum heat insulating material 34 enables a stable flow without obstructing the flow of the urethane foam 13. Furthermore, the urethane foam 13 when injected between the outer box 12 and the inner box 11 is in a highly humid state, which prevents heat stress by not directly contacting the sealing margin of the film. No deterioration of vacuum insulation material 3 4 is prevented.
さらに、 封止代数が少なくなり真空断熱材 3 4は高いガスバリャ 性を維持する。  Further, the sealing algebra is reduced, and the vacuum heat insulating material 34 maintains a high gas barrier property.
(実施の形態 1 5 ) (Embodiment 15)
図 3 2は、 本発明の実施の形態 1 5 による冷蔵庫の要部断面図で ある。 これ以外の基本的な構成は実施の形態 9 と同様である。  FIG. 32 is a cross-sectional view of main parts of a refrigerator according to Embodiment 15 of the present invention. The other basic configuration is the same as that of the ninth embodiment.
真空断熱材 3 4 Aは除霜水配管 1 1 2や配線等 (図示せず) 雑物 がある所から、 優先的に配置する。 すなわち、 本実施の形態は、 外 箱 1 2 と内箱 1 1 との間で、 硬質ウレタンフォーム 1 3の流れを阻 害するおそれがある雑物 (除霜水配管 7 2や配線等) がある所に真 空断熱材 3 4 Aを配設する。 このようにすることで、 真空断熱材 3 4 Aにより冷蔵庫の吸熱負荷を効果的に抑え、 省エネルギーの効果 が高まる。 また、 ウレタンフォーム 1 3の流れ性を阻害するおそれ がある雑物がある所に真空断熱材 3 4 Aを配設することで断熱性能 を確保する。  Vacuum insulation material 34 A should be placed preferentially from the place where defrost water piping 1 1 2 and wiring (not shown) are present. That is, in the present embodiment, there is a foreign matter (defrost water pipe 72, wiring, etc.) between the outer box 12 and the inner box 11 that may obstruct the flow of the rigid urethane foam 13. Vacuum insulation material 3 4 A will be installed in the place. In this way, the heat absorption load of the refrigerator is effectively suppressed by the vacuum insulation material 34 A, and the effect of energy saving is enhanced. Insulation performance is ensured by arranging the vacuum insulation material 34A where there is a foreign material that may impair the flowability of the urethane foam 13.
また、 除霜水配管 1 1 2 を設置するときは、 真空断熱材 3 4 Aと 外箱 1 2 との間に設置することが好ましい。このようにすることで、 真空断熱材 3 4 Aにより除霜水を保温し、 冷凍室 1 8 A , 1 9の庫 内温度の影響で除霜水が冷やされて凍結することを防止する。  Also, when installing the defrost water pipe 1 1 2, it is preferable to install it between the vacuum insulation 34 A and the outer box 12. By doing so, the defrosted water is kept warm by the vacuum heat insulating material 34 A, and the defrosted water is prevented from being cooled and frozen by the influence of the temperature in the freezer compartments 18 A, 19.
(実施の形態 1 6 ) (Embodiment 16)
図 3 3は、 本発明の実施の形態 1 6 による冷蔵庫の要部断面図で ある。 これ以外の基本的な構成は実施の形態 1 または実施の形態 9 と同様である。  FIG. 33 is a cross-sectional view of a main part of a refrigerator according to Embodiment 16 of the present invention. The other basic configuration is the same as in the first embodiment or the ninth embodiment.
本実施の形態では外箱 1 2の端面を保護する保護部材 1 1 3を、 真空断熱材 3 4を貼付けるときの位置決め部材と兼用している。 す なわち、 真空断熱材 3 4の端面を保護するように外箱 1 2端面に設 けた保護部材 1 1 3を使って真空断熱材 3 4の位置決めを行う。 こ のように、 外箱 1 2端面の保護用部材 1 1 3 と真空断熱材 3 4の位 置決め用部材とを共用する。 これにより、 組立て時の真空断熱材 3 4の破損を防ぐ。 さらに、 真空断熱材 3 4貼付け時の位置決めが容 易になり、 作業性が向上する。 In the present embodiment, the protective member 113 for protecting the end face of the outer box 112 is also used as a positioning member for attaching the vacuum heat insulating material 34. That is, the outer box 1 2 is installed on the end face of the outer Positioning of the vacuum insulation material 3 4 is performed using the girder protection member 1 1 3. In this manner, the protective member 1 13 on the end face of the outer box 1 2 and the positioning member of the vacuum heat insulating material 34 are shared. This prevents the vacuum insulation material 34 from being damaged during assembly. Further, the positioning at the time of attaching the vacuum heat insulating material 34 becomes easy, and workability is improved.
なお、 保護部材 1 1 3を天板に設け、 真空断熱材 3 2の端面を保 護し、 組立て時の位置決め部材と兼用させてもよい。  In addition, the protection member 113 may be provided on the top plate to protect the end surface of the vacuum heat insulating material 32, and may also be used as a positioning member at the time of assembly.
(実施の形態 1 7 ) (Embodiment 17)
図 3 4は本発明の実施の形態 1 7 による冷蔵庫に適用する真空断 熱材の構成図を示す。 芯材 1 2 1 は、 実施の形態 1 0の芯材 9 2 と 異なり、 結合材により板状に成形した無機繊維集合体からなる。 無 機繊維集合体の構成材料は特に限定されず、 グラスウール, セラミ ックファイバー, ロックウール等、 無機繊維などを、 有機系あるい は無機系の結合材により板状に成形したものである。  FIG. 34 shows a configuration diagram of a vacuum heat insulating material applied to the refrigerator according to Embodiment 17 of the present invention. Unlike the core material 92 of the tenth embodiment, the core material 121 is made of an inorganic fiber aggregate formed into a plate shape with a binder. The constituent material of the inorganic fiber aggregate is not particularly limited, and inorganic fiber such as glass wool, ceramic fiber, rock wool, or the like is formed into a plate shape using an organic or inorganic binder.
ガスバリア性フィルム 1 2 2は、 シール部 1 2 3で袋状にされて いる。 ガスバリア性フィルム 1 2 2は、 内部を気密に保つ。 その材 料構成としては特に限定されない。 例えば、 実施の形態 1 0の蒸着 フィルム 9 3 と金属箔層フィルム 9 7 と同様に構成される。 すなわ ち、 一方は最外層にポリエチレンテレフ夕レー ト樹脂、 中間層にァ ルミ箔、 最内層に高密度ポリエチレン樹脂からなるプラスチックラ ミネ一トフイルムである。 他方は、 例えば、 最外層にポリエチレン テレフタレー ト樹脂、 中間層にアルミ蒸着層を有するエチレン—ビ ニルアルコール共重合体樹脂、 最内層に高密度ポリエチレン樹脂か らなるプラスチックラミネートフィルムとからなる。 これらを袋状 に形成する。  The gas barrier film 122 is formed in a bag shape at the seal portion 123. The gas barrier film 1 2 2 keeps the inside airtight. The material composition is not particularly limited. For example, it has the same configuration as the vapor deposition film 93 and the metal foil layer film 97 of the tenth embodiment. That is, one is a plastic laminate film made of polyethylene terephthalate resin on the outermost layer, aluminum foil on the middle layer, and high-density polyethylene resin on the innermost layer. The other is, for example, a plastic laminate film made of a polyethylene terephthalate resin in the outermost layer, an ethylene-vinyl alcohol copolymer resin having an aluminum deposited layer in the intermediate layer, and a high-density polyethylene resin in the innermost layer. These are formed into a bag shape.
真空断熱材の製造方法としては、 袋状にしたガスバリア性フィル ム 1 2 2に芯材を挿入し、 内部を真空排気し開口部を溶着シール 1 2 4にてシールして、 内部を真空保持させる。  As a method of manufacturing the vacuum insulation material, insert the core material into a bag-shaped gas barrier film 122, evacuate the inside, seal the opening with a welding seal 124, and maintain the vacuum inside. Let it.
図 3 5、 図 3 6はそれぞれ本実施の形態による冷蔵庫の側面断面 図、 正面断面図である。 基本的な構成は実施の形態 9 と同様である が、 図 3 6において側面の外箱内側に配した真空断熱材 3 4を、 冷 蔵領域まで延長している。 また、 側面の内箱外側に配した真空断熱 材 3 4 Aに代わって、 断熱箱体 1 O Aの冷凍室 1 9に対応した側面 下部の内箱 1 1 に接して配設した真空断熱材 3 4 Bを有する。 そし て、 真空断熱材 3 4と真空断熱材 3 4 Bとは、 相対する端面離間部 を機械室 2 0の上端面近傍に位置させ配置している。 また真空断熱 材 3 4の下端は、 真空断熱材 3 4 Bの上端より下に位置する。 この ように構成しても実施の形態 9 と同様に、 側面における断熱効果が 発揮される。 すなわち、 真空断熱材 3 4の下端と側面の内箱外側に 配した真空断熱材の上端とがオーバーラップする位置は限定されな い。 また、 真空断熱材 3 4、 3 4 Bは、 圧縮機 2 1 を収納する機械 室 2 0 と庫内との仕切り断熱部に設けている。 庫内側は一 2 0での 冷凍室 1 9、 機械室 2 0は 4 0〜 5 0でである。 すなわち真空断熱 材 3 4、 3 4 Bは、 温度差の比較的大きな機械室 2 0 と冷凍室 1 9 庫内との壁厚部を効率的に断熱する。 さらに、 硬質ウレタンフォー ム 1 3 を断熱箱体 1 O Aに注入する場合、 一般的に、 まず断熱箱体 1 O Aの前面開口部を下方に配置させる。 そして断熱箱体 1 O Aの 背面左右の高さ方向で略中央部に設けた 2ケ所のウレタン注入口よ りウレタンフォーム 1 3の原液を注入する。 こうして発泡されたゥ レタンフォーム 1 3の流れは、 前述の 2ケ所のウレタン注入口の直 下地点を中心に扇状に広がる。 ウレタンフォーム 1 3の最終到達地 点は断熱箱体 1 O Aの天面部と底面部、 機械室 2 0構成面になる。 本実施の形態ではウレタンフォーム 1 3の最終到達地点となる機械 室 2 0構成面に平面度の高い真空断熱材 3 6 を配置している。 この ため、 ウレタンフォーム 1 3の最終到達地点付近の空間部寸法を確 実に確保でき、 ウレタンフォーム 1 3の充填性が高まり、 所定の断 熱性能を確保できる。 FIGS. 35 and 36 are side sectional views of the refrigerator according to the present embodiment, respectively. It is a figure and front sectional drawing. The basic configuration is the same as that of the ninth embodiment, but the vacuum heat insulating material 34 arranged inside the outer box on the side in FIG. 36 is extended to the refrigeration area. Also, instead of the vacuum insulation material 34 arranged outside the inner box on the side, the vacuum insulation material 3 arranged in contact with the lower inner box 1 1 corresponding to the freezer compartment 19 of the OA instead of the 4A Has 4B. Then, the vacuum heat insulating material 34 and the vacuum heat insulating material 34 B are arranged such that the opposed end face separation portions are located near the upper end face of the machine room 20. The lower end of the vacuum heat insulator 34 is located below the upper end of the vacuum heat insulator 34B. Even with this configuration, the heat insulating effect on the side surface is exhibited as in the ninth embodiment. That is, the position where the lower end of the vacuum heat insulating material 34 and the upper end of the vacuum heat insulating material arranged outside the inner box on the side surface are not limited. In addition, the vacuum heat insulating materials 34 and 34 B are provided in a heat insulating part that separates the inside of the refrigerator from the machine room 20 that houses the compressor 21. The inside of the refrigerator has a freezer compartment 19 at 20 and the machine compartment 20 has 40 to 50. That is, the vacuum heat insulating materials 34 and 34 B efficiently insulate the thick wall portion between the machine room 20 and the freezer room 19 where the temperature difference is relatively large. Furthermore, when injecting the rigid urethane form 13 into the heat insulating box 1OA, generally, the front opening of the heat insulating box 1OA is generally arranged below. Then, the undiluted solution of urethane foam 13 is injected from two urethane injection ports provided substantially at the center in the height direction on the back and right and left of the heat insulating box 1OA. The flow of the urethane foam 13 foamed in this manner spreads in a fan shape centering on the point immediately below the two urethane inlets described above. The final destination of the urethane foam 13 is the top and bottom of the heat insulation box 1OA and the machine room 20 component plane. In the present embodiment, a vacuum heat insulator 36 having a high degree of flatness is arranged on the mechanical chamber 20 constituting surface which is the final arrival point of the urethane foam 13. For this reason, the space dimension near the final arrival point of the urethane foam 13 can be reliably ensured, the filling property of the urethane foam 13 is increased, and a predetermined heat insulation performance can be secured.
断熱箱体 1 O Aの断熱壁厚や冷蔵庫 1 0の外表面に対する被覆率 に関しては実施の形態 1 と同様なので説明を省略する。 真空断熱材 3 2、 3 3、 3 4、 3 4 B、 3 5、 3 6、 3 7、 3 8、 3 9、 4 0、 4 1 は、 前述したように、 芯材 1 2 1が結合材により 平板状に成形した無機繊維集合体をガスバリア性フィルム 1 2 2で 覆い内部を真空.排気したものである。 そして、 ウレタンフォーム 1 3 とともに断熱箱体 1 O Aを構成している。 The thickness of the heat insulating wall of the heat insulating box 1OA and the covering ratio to the outer surface of the refrigerator 10 are the same as those in the first embodiment, and therefore description thereof is omitted. Vacuum insulation material 3 2, 3, 3, 34, 34 B, 35, 36, 37, 38, 39, 40, and 41 are combined with core material 1 2 1 as described above. The inorganic fiber aggregate formed into a flat plate with the material is covered with a gas barrier film 122 and the inside is evacuated and evacuated. The heat insulation box 1 OA is formed together with the urethane foam 13.
なお、 図 3 4に示した真空断熱材は、 他の実施の形態に適用して もよい。  The vacuum heat insulating material shown in FIG. 34 may be applied to other embodiments.
また、 真空断熱材 3 4 B、 3 5、 3 6は芯材 1 2 1 をあらかじめ 内箱 1 1 に接する面の形状に沿って結合材で成形してもよい。 その ように成形することにより、 内箱 1 1 と真空断熱材 3 4 B、 3 5、 3 6 との接触面に空間層 (ポイ ド) が発生しない。 そのため、 内箱 1 1の波打ち等が防止され、 外観品位を高めることができる。  In addition, the vacuum heat insulating materials 34 B, 35 and 36 may be obtained by molding the core material 121 with a binder in advance according to the shape of the surface in contact with the inner box 11. By forming in such a manner, a space layer (a point) is not generated on the contact surface between the inner box 11 and the vacuum heat insulating materials 34B, 35, 36. Therefore, the inner box 11 is prevented from waving and the like, and the appearance quality can be improved.
また、 真空断熱材 3 2、 3 3、 3 4、 3 4 B、 3 5、 3 6、 3 7、 3 8、 3 9、 4 0、 4 1は、 日本工業規格 J I S— K 7 2 2 1 に準 拠した試験方法において、 曲げ弾性率を 4 0〜 6 4 M P a とするこ とが好ましい。 曲げ弾性率とは、 曲げ比例限度内における曲げ応力 と、 これに対応するひずみとの比である。 また、 ウレタンフォーム 1 3の曲げ弾性率は 8 M P a程度であるので、 真空断熱材の曲げ弾 性率はその 5〜 8倍とすることが好ましい。  Vacuum insulation materials 32, 33, 34, 34 B, 35, 36, 37, 38, 39, 40, and 41 are Japanese Industrial Standards JIS—K 7 2 2 1 In the test method based on the above, it is preferable that the flexural modulus is 40 to 64 MPa. Flexural modulus is the ratio of the bending stress within the bending proportional limit to the corresponding strain. In addition, since the flexural modulus of the urethane foam 13 is about 8 MPa, the flexural modulus of the vacuum heat insulating material is preferably 5 to 8 times the flexural modulus.
曲げ弾性率の異なる真空断熱材を用いた断熱箱体の強度試験結果 を表 1 に示す。 試験方法としては、 冷蔵室用扉 2 7 に約 3 O k gの 食品負荷を入れた時の断熱箱体 1 0 Aの側面最上部の水平左右方向 の変位量を測定する。 サンプル A サンプル B サンプル C 断熱箱体仕様 硬質ウレタン 真空断熱材 真空断熱材  Table 1 shows the strength test results of the insulation box using vacuum insulation materials with different flexural modulus. The test method is to measure the amount of displacement in the horizontal left and right direction at the top of the side surface of the heat insulation box 10 A when a food load of about 3 O kg is applied to the refrigerator compartment door 27. Sample A Sample B Sample C Insulated box specification Hard urethane Vacuum insulation material Vacuum insulation material
フォームのみ +硬質ゥレ +硬質ゥレ  Foam only + Hardware + Hardware
タンフォーム タンフォーム 真空断熱材の  Tan foam tan foam vacuum insulation
2 0 M P a 4 0 M P a 曲げ弾性率  20 MPa 40 MPa Flexural modulus
断熱箱体側面変形 3 mm 4 mm 3 mm 以上の結果から、 断熱箱体 1 O Aの強度は、 硬質ウレタンフォー ムと曲げ弾性率が 4 0 M P a程度までの真空断熱材とを複層にした 場合、 硬質ウレタンフォームのみ (A ) の強度の同等以下となる。 これは断熱壁が単一構成から複層構造になることにより、 曲げ強度 が低下するためである。 そして曲げ弾性率が 4 0 M P a以上の真空 断熱材を用いることで硬質ウレタンフォームのみの強度以上の複層 構造となる。 硬質ウレタンフォームの曲げ弾性率は 8 M P aである ので、 真空断熱材の曲げ弾性率を硬質ウレタンフォームの 5倍以上 とすることで複層構造の断熱箱体の強度が同等以上となる。 Insulated box side deformation 3 mm 4 mm 3 mm From the above results, the strength of the heat-insulated box 1 OA is the strength of the rigid urethane foam only (A) when the rigid urethane foam and the vacuum heat insulating material with a flexural modulus up to about 40 MPa are multi-layered. Less than or equal to This is because the bending strength decreases as the heat insulation wall changes from a single structure to a multi-layer structure. By using a vacuum heat insulating material with a flexural modulus of 40 MPa or more, a multi-layer structure with a strength higher than that of the rigid urethane foam alone can be obtained. Since the flexural modulus of rigid urethane foam is 8 MPa, by setting the flexural modulus of the vacuum heat insulating material to at least 5 times that of rigid urethane foam, the strength of the multi-layered insulation box becomes equal to or higher.
真空断熱材の曲げ強度を高めるためには芯材 1 2 1 の無機繊維集 合体を板状に成形するときの結合材の材料選定あるいは使用量を増 やす等により実現される。 これらは、 製造時のコス トアップとなる。 そのため、 真空断熱材の曲げ弾性率は 6 4 M P a程度がコス トパフ オーマンス的に上限となる。 つまり、 真空断熱材の曲げ弾性率を硬 質ウレタンフォームの 5倍以上 8倍以下とすることで複層構造の断 熱箱体の強度をコス トパフォーマンスも満足しながら同等以上にす ることができる。  In order to increase the bending strength of the vacuum heat insulating material, it is realized by selecting the material of the binder or increasing the amount of the binder used when forming the inorganic fiber aggregate of the core material 122 into a plate shape. These increase the cost during manufacturing. Therefore, the bending elastic modulus of the vacuum insulation material is about 64 MPa, which is the upper limit in terms of cost performance. In other words, by setting the bending elastic modulus of the vacuum heat insulating material to be 5 times or more and 8 times or less that of the hard urethane foam, the strength of the multilayer insulation box can be made equal to or more than that while satisfying the cost performance. it can.
このような曲げ強度を有する真空断熱材は、 前述のように芯材 1 2 1が結合材により平板状に成形した無機繊維集合体をガスバリア 性フィルム 1 2 2で覆い内部を真空排気することで製造される。 無 機繊維集合体のみを芯材とした真空断熱材に比べ、 無機繊維集合体 を結合材により接着、 成形したことにより、 真空断熱材の耐圧強度、 曲げ強度、 平面度が高まる。 したがって、 そのような真空断熱材を 用いた場合、 断熱箱体 1 0 Aの強度が高まる。 また断熱箱体 1 O A 内部に高い平面度を保って組み込むことが可能となり、 断熱箱体 1 O A内部に形成するウレタンフォーム 1 3の流れる空間部分の寸法 を確実に確保できる。 これによりウレタンフォーム 1 3注入時の流 動性が高まり、 ウ レタ ンフォーム 1 3の充填率が向上し、 所定の断 熱性能が得られる。  As described above, the vacuum heat insulating material having such bending strength is obtained by covering the inorganic fiber aggregate in which the core material 121 is formed into a plate shape with the binder with the gas barrier film 122 and evacuating the inside. Manufactured. Compared to the vacuum insulation material using only the inorganic fiber aggregate as the core material, the pressure resistance, bending strength and flatness of the vacuum insulation material are increased by bonding and forming the inorganic fiber aggregate with the binder. Therefore, when such a vacuum heat insulating material is used, the strength of the heat insulating box 10 A increases. In addition, it is possible to incorporate the heat insulating box 1OA into the inside of the heat insulating box 1OA with a high degree of flatness, so that the dimensions of the space through which the urethane foam 13 formed inside the heat insulating box 1OA flows can be ensured. Thereby, the fluidity at the time of injecting the urethane foam 13 is increased, the filling rate of the urethane foam 13 is improved, and a predetermined heat insulation performance is obtained.
また、 真空断熱材 3 2 、 3 3 、 3 4 、 3 4 B 、 3 5 、 3 6 、 3 7 、 3 8、 3 9、 4 0、 4 1 の平面度が高まることにより、 接着剤を介 して直接接触する面との空間部分を排除できる。 その結果、 接着面 との接着性が高まり、 製造組立時の真空断熱材の脱落、 落下を防止 でき信頼性向上、 作業性向上につながる。 そしてさらに、 これらの 真空断熱材の平面度が高まることにより、 直接接触する面の断熱箱 体 1 O Aの平面度も高まり、 冷蔵庫 1 0の外観品位が高まる。 In addition, vacuum insulation materials 32, 33, 34, 34B, 35, 36, 37, By increasing the flatness of 38, 39, 40, and 41, it is possible to eliminate the space between the flat surface and the surface that is in direct contact with the adhesive. As a result, the adhesion to the bonding surface is enhanced, and the vacuum insulation material is prevented from falling off and falling during manufacturing and assembly, leading to improved reliability and improved workability. Further, by increasing the flatness of these vacuum heat insulating materials, the flatness of the heat-insulating box 1OA on the surface in direct contact also increases, and the appearance quality of the refrigerator 10 increases.
また、 真空断熱材の強度が高まることにより、 冷蔵庫使用後の廃 棄 *解体時に真空断熱材を取り出しやすく、 リサイクル性が高まる。  Also, by increasing the strength of the vacuum insulation material, disposal after use of the refrigerator * The vacuum insulation material can be easily taken out during dismantling and the recyclability is improved.
また、 真空断熱材 3 2、 3 3、 3 4、 3 4 B、 3 5、 3 6、 3 7、 3 8、 3 9、 4 0、 4 1 を内箱 1 1 あるいは外箱 1 2あるいは扉体 の外板に接着固定するとき、 接着面に接着剤をローラにて全面塗布 することが好ましい。 接着剤としては、 たとえばゴム系材料からな るホッ トメルトを用いる。  In addition, vacuum insulation materials 32, 33, 34, 34 B, 35, 36, 37, 38, 39, 40, 41 are used for inner box 1 1 or outer box 12 or door. When the adhesive is fixed to the outer panel of the body, it is preferable to apply the adhesive to the entire surface with a roller. As the adhesive, for example, a hot melt made of a rubber material is used.
接着剤の塗布仕様を変えた場合の真空断熱材と外箱 1 2 との接着 強度試験結果を表 2 に示す。 試験方法としては、 日本工業規格 J I S - Z 0 2 3 7の 8に準じて、 本試験では幅 2 5 mmに設定した試 験板に対する 1 8 0度引き剥がし粘着力を求めている。  Table 2 shows the results of the bonding strength test between the vacuum insulation material and the outer box 12 when the adhesive specification was changed. As a test method, in accordance with Japanese Industrial Standards JIS-Z0237-8, this test determines the 180 degree peeling adhesive strength to a test plate set to a width of 25 mm.
表 2  Table 2
Figure imgf000035_0001
なお、 接着剤にはゴム系ホッ トメルト、 試験基材はステンレスに ポリエチレンテレフ夕レー トをラミネートしたものを用いる。 接着 剤の塗布厚は 3 0 ^ m、 接着時の圧力は 2 k gとし、 ローラを 1往 復させる。 試験周囲温度は 2 3 °Cである。
Figure imgf000035_0001
The adhesive used was a rubber-based hot melt, and the test substrate used was a laminate of polyethylene terephthalate and stainless steel. The thickness of the adhesive applied is 30 ^ m, the pressure at the time of bonding is 2 kg, and the roller is cycled once. The test ambient temperature is 23 ° C.
表 2の結果から、 一般的に行なわれる方法である一定の間隔をお いて直線上に接着剤を塗布した場合のサンプル Eに比べ、 全面塗布 することによって接着強度は約 2倍に高まる。 このようにすることで、 製造工程において真空断熱材 3 2、 3 3、 3 4、 3 4 B、 3 5、 3 6、 3 7、 3 8、 3 9、 4 0、 4 1 が脱落、 落下しない。 またこれらの真空断熱材が内箱 1 1 あるいは外箱 1 2 に強固に接着固定されることで断熱箱体 1 O Aの強度が高まる。 ま た、 接着剤を全面塗布することで各真空断熱材と内箱 1 1 あるいは 外箱 1 2 との接着面に空間が生じず冷蔵庫 1 0の断熱箱体 1 O Aに 波打ちが生じず、 外観品位を高めることができる。 From the results in Table 2, the adhesive strength is approximately doubled by applying the entire surface, compared to Sample E in which the adhesive is applied linearly at regular intervals, which is a commonly used method. In this way, the vacuum insulation materials 3 2, 3, 3, 34, 34 B, 35, 36, 37, 38, 39, 40, and 41 fall off and fall in the manufacturing process. do not do. In addition, the strength of the heat insulating box 1OA is increased by firmly bonding and fixing these vacuum heat insulating materials to the inner box 11 or the outer box 12. Also, by applying the adhesive on the entire surface, no space is created on the bonding surface between each vacuum insulation material and the inner box 1 1 or the outer box 1 2, and the insulation box 1 OA of the refrigerator 10 does not have waving, and The quality can be improved.
また、 真空断熱材 3 2、 3 3、 3 4、 3 8、 3 9、 4 0、 4 1 は、 外箱 1 2に接して配設されている。 このように平面を形成する外箱 1 2 に平面度の高い真空断熱材を配設し、 接触面に接着剤すること により、 外箱 1 2 とこれらの真空断熱材との接触面に空間層 (ボイ ド) が発生しない。 これにより、 外箱 1 2の波打ち等が防止され、 外観品位が高まる。  Further, the vacuum heat insulating materials 32, 33, 34, 38, 39, 40, 41 are arranged in contact with the outer box 12. A vacuum insulator having a high degree of flatness is provided on the outer box 1 2 that forms a plane as described above, and an adhesive is applied to the contact surface to form a space layer on the contact surface between the outer box 1 2 and the vacuum insulator. (Void) does not occur. This prevents the outer box 12 from waving, etc., and improves the appearance quality.
また、 真空断熱材 3 4 B、 3 5、 3 6を、 内箱 1 1 に接して配設 することにより外箱 1 2側に位置するウレタンフォーム 1 3の発泡 剤の凝縮が抑えられ、 断熱壁の断熱性能が高まる。  Also, by arranging the vacuum heat insulating materials 34 B, 35 and 36 in contact with the inner box 11, the condensation of the foaming agent of the urethane foam 13 located on the outer box 12 side is suppressed, and the heat insulation is achieved. The heat insulation performance of the wall increases.
また、 真空断熱材 3 3、 3 5、 3 4、 3 4 B、 3 6は、 冷凍温度 帯に対応する断熱壁内部に設けられている。 これにより、 庫外との 温度差の比較的大きな冷凍温度帯に対応する断熱箱体 1 O Aの断熱 性能を効率よく高めることができる。  In addition, the vacuum heat insulating materials 33, 35, 34, 34B and 36 are provided inside the heat insulating wall corresponding to the freezing temperature range. Thereby, the heat insulating performance of the heat insulating box 1OA corresponding to the freezing temperature zone having a relatively large temperature difference from the outside of the refrigerator can be efficiently increased.
また、 断熱箱体 1 0 Aの温度差の大きい断熱壁部分において、 ゥ レタンフォーム 1 3の流れる空間を確保した上で、 真空断熱材の厚 みを最大限確保することが、 断熱箱体 1 0 Aの内容積を確保しなが ら断熱性能を高めるために重要である。 本実施の形態では芯材 1 2 1 が結合材により平板状に成形した無機繊維集合体からなることで 真空断熱材 3 3、 3 5、 3 4、 3 4 B、 3 6は高い平面度を有して いる。 したがって、 温度差の大きい冷凍室 1 8 A、 1 9の断熱壁部 分において、 ウレタンフォーム 1 3の流れる空間部寸法を確保した 上で、 真空断熱材 3 3、 3 5、 3 4、 3 4 B、 3 6の厚みを最大限 確保することができる。 よって、 断熱性能の高い冷蔵庫を提供でき る。 In addition, in the heat-insulating wall part where the temperature difference of the heat-insulating box 10 A is large, it is necessary to secure the space for the polyurethane foam 13 and to ensure the maximum thickness of the vacuum heat-insulating material. It is important to increase the heat insulation performance while securing the internal volume of 0 A. In the present embodiment, the vacuum heat insulating material 33, 35, 34, 34B, 36 has a high flatness because the core material 122 is made of an inorganic fiber aggregate formed into a flat shape by a binder. Have. Therefore, in the heat insulation walls of the freezer compartments 18 A and 19 where there is a large temperature difference, the vacuum insulation material 33, 35, 34, 34 is required, while ensuring the dimensions of the space where the urethane foam 13 flows. The maximum thickness of B and 36 can be secured. Therefore, it is possible to provide a refrigerator with high insulation performance. You.
また、 真空断熱材 3 8 、 3 9 、 4 0 、 4 1 は、 冷蔵庫前面開口部 に設けた各扉 2 7 、 2 8 、 2 9 、 3 0 を構成する断熱壁内部の外板 側に配設している。 このように各扉 2 7 、 2 8 、 2 9 、 3 0 を形成 する外板に平面度の高い真空断熱材 3 8 、 3 9 、 4 0 、 4 1 を配設 することにより、各扉の外板と各真空断熱材との接触面に空間層(ポ イ ド) が発生しない。 よって、 外箱 1 2の波打ち等が防止され、 外 観品位が高まる。  In addition, the vacuum insulation materials 38, 39, 40, 41 are arranged on the outer plate side inside the heat insulation walls constituting the doors 27, 28, 29, 30 provided at the opening on the front of the refrigerator. Has been established. In this way, by providing the vacuum insulators 38, 39, 40, 41 with high flatness on the outer plate forming the doors 27, 28, 29, 30 in this way, There is no space layer (void) on the contact surface between the outer plate and each vacuum insulation material. Therefore, the waving of the outer box 12 and the like are prevented, and the appearance quality is enhanced.
本実施の形態では、 ウレタンフォーム 1 3の発泡剤として炭化水 素、 たとえばシクロペンタンを用いている。 これにより従来のフロ ン系発泡剤に比べ、 地球環境保護、 温暖化防止につながる。 また、 真空断熱材は不燃性である無機繊維集合体から構成しているので、 可燃性である炭化水素系発泡剤を用いた場合においても、 安全性が 高い。 また、 炭化水素系発泡剤適用による断熱性能の低下を真空断 熱材の高断熱性能により補い、 断熱箱体の断熱性能を高めている。  In the present embodiment, a hydrocarbon, for example, cyclopentane, is used as a foaming agent for urethane foam 13. This leads to protection of the global environment and prevention of global warming compared to conventional foaming agents. Further, since the vacuum heat insulating material is made of a non-flammable inorganic fiber aggregate, the safety is high even when a flammable hydrocarbon foaming agent is used. In addition, the heat insulation performance of the heat insulation box is enhanced by compensating for the deterioration of the heat insulation performance due to the application of the hydrocarbon foaming agent with the high heat insulation performance of the vacuum insulation material.
また本実施の形態では、 圧縮機 2 1 、 凝縮器 2 6、 冷蔵用冷却器 2 2、 冷凍用冷却器 2 4から成る冷凍サイクルの冷媒としては、 可 燃性自然冷媒である炭化水素、 たとえばイソブタンを用いている。 これにより従来のフロン系冷媒に比べ、 地球環境保護、 温暖化防止 につながる。 また、 真空断熱材は不燃性である無機繊維集合体から 構成しているので、 可燃性冷媒である炭化水素を用いた場合におい ても、 安全性が高い。  Further, in the present embodiment, the refrigerant of the refrigeration cycle including the compressor 21, the condenser 26, the refrigeration cooler 22, and the refrigeration cooler 24 is a hydrocarbon which is a flammable natural refrigerant, for example, Isobutane is used. This leads to protection of the global environment and prevention of global warming compared to conventional CFC-based refrigerants. In addition, since the vacuum heat insulating material is made of a non-combustible inorganic fiber aggregate, the safety is high even when a hydrocarbon as a combustible refrigerant is used.
なお、 本実施の形態の冷蔵庫において、 真空断熱材は、 内箱 1 1 あるいは外箱 1 2あるいは各扉の外板に接して固定し、 空間部にゥ レ夕ンフォーム 1 3 を発泡する、 として説明した。 しかし実施の形 態 1 のように真空断熱材を内箱 1 1 と外箱 1 2の中間部に配し空間 部にウレタンフォーム 1 3 を発泡してもよい。 この場合、 真空断熱 材の芯材 1 2 1が結合材により板状に成形した無機繊維集合体から なり、 真空断熱材が高い平面度を有している。 このため、 内箱 1 1 または外箱 1 2 と真空断熱材との空間部寸法を高い精度で確保でき ウレタンフォーム 1 3の充填が確実に行なわれる。 また、 内箱 1 1 や外箱 1 2 に直接接触しないので、 断熱箱体 1 O Aの外観を損なう ことがない。 また、 真空断熱材を内箱 1 1 と外箱 1 2の中間部に配 し周囲をウレタンフォーム 1 3で構成することにより接着剤等で真 空断熱材を固定する必要がなくなる。 In the refrigerator of the present embodiment, the vacuum heat insulating material is fixed in contact with the inner box 11 or the outer box 12 or the outer plate of each door, and foams the foam foam 13 in the space. It was explained as. However, as in the first embodiment, the vacuum heat insulating material may be disposed in the middle of the inner box 11 and the outer box 12 and the urethane foam 13 may be foamed in the space. In this case, the core material 122 of the vacuum heat insulating material is made of an inorganic fiber aggregate formed into a plate shape with a binder, and the vacuum heat insulating material has a high flatness. As a result, the space between the inner box 1 1 or outer box 1 2 and the vacuum insulation material can be secured with high accuracy. Urethane foam 13 is reliably filled. Further, since the inner box 1 1 and the outer box 1 2 do not come into direct contact with each other, the appearance of the insulated box 1 OA is not impaired. Further, by disposing the vacuum heat insulating material in the intermediate portion between the inner box 11 and the outer box 12 and forming the periphery with urethane foam 13, there is no need to fix the vacuum heat insulating material with an adhesive or the like.
また、 芯材 1 2 1 をあらかじめ結合材で L字状に成形した真空断 熱材を冷蔵庫 1 0の天面と側面のコーナ一部に配置してもよい。 こ の場合、 断熱箱体 1 0 Aに対する真空断熱材の被覆率をさらに高め ることができる。 また、 断熱箱体 1 0 Aのコーナー部に曲げ強度の 高い真空断熱材を配置することで、 効率的に断熱箱体 1 O Aの強度 を高めることができる。  Further, a vacuum insulation material in which the core material 121 is formed in an L-shape with a binding material in advance may be arranged in the top and side corners of the refrigerator 10. In this case, it is possible to further increase the coverage of the heat insulating box body 10 A with the vacuum heat insulating material. In addition, by arranging a vacuum heat-insulating material having high bending strength at the corner of the heat-insulating box 10A, the strength of the heat-insulating box 10OA can be efficiently increased.
また、 本実施の形態では冷蔵庫 1 0の前面開口部に配置する各扉 2 7、 2 8、 2 9、 3 0の内部に配設する真空断熱材 3 8、 3 9、 4 0、 4 1 は、 各扉の外板に接するものとして説明した。 しかし、 実施の形態 1 のように真空断熱材 3 8、 3 9、 4 0、 4 1 を、 各扉 の内箱と外板の中間部分に配置し、 空間部にウレタンフォーム 1 3 を充填してもよい。 この場合、 真空靳熱材 3 8、 3 9、 4 0、 4 1 は高い平面度を有しているので、 ウレタンフォーム 1 3が充填され る空間部の寸法を確実に確保でき、 ウレタンフォーム 1 3が確実に 充填される。 そして、 外板と真空断熱材 3 8、 3 9、 4 0、 4 1 は 直接接しないので各扉の外板表面の変形をさらに抑制できる。  Further, in the present embodiment, the vacuum heat insulators 38, 39, 40, 41 provided inside the doors 27, 28, 29, 30 disposed at the front opening of the refrigerator 10 are provided. Has been described as being in contact with the outer plate of each door. However, as in the first embodiment, the vacuum insulation materials 38, 39, 40, 41 are arranged in the middle part of the inner box and the outer plate of each door, and the space is filled with urethane foam 13. You may. In this case, since the vacuum heating materials 38, 39, 40, and 41 have high flatness, the dimensions of the space filled with the urethane foam 13 can be ensured, and the urethane foam 1 3 is filled securely. Since the outer panel does not directly contact the vacuum insulation materials 38, 39, 40, 41, deformation of the outer panel surface of each door can be further suppressed.
(実施の形態 1 8 ) (Embodiment 18)
本発明の実施の形態 1 8 における冷蔵庫の冷凍サイクル回路図を 図 3 7 に示す。 これ以外の構成は実施の形態 1 と同様である。 以下、 図 3 7 と図 2 を用いて説明する。  FIG. 37 shows a refrigeration cycle circuit diagram of the refrigerator in Embodiment 18 of the present invention. Other configurations are the same as in the first embodiment. This will be described below with reference to FIGS. 37 and 2.
圧縮機 1 3 8の冷媒吐出口 1 3 8 Aは、 凝縮器 1 3 9を介して、 流路切替部である三方切替弁 1 4 0の入口に接続されている。 切替 弁 1 4 0の一方の出口は、 冷凍キヤビラリ 1 4 1 を介して冷凍室用 蒸発器 (以下、 蒸発器) 1 3 6の入口に接続されている。 蒸発器 1 3 6の出口は、 アキユームレ一夕 1 4 2 を介して逆止弁 1 4 3の入 口に接続されている。 逆止弁 1 4 3の出口は圧縮機 1 3 8の冷媒流 入口 1 3 8 Bに接続されている。 また、 切替弁 1 4 0の他方の出口 は、 冷蔵キヤビラリ 1 4 4を介して冷蔵室用蒸発器 (以下、 蒸発器) 1 3 4の入口に接続されている。 蒸発器 1 3 4の出口は、 逆止弁 1A refrigerant discharge port 1338A of the compressor 1338 is connected via a condenser 1339 to an inlet of a three-way switching valve 140 which is a flow path switching unit. One outlet of the switching valve 140 is connected to the inlet of a freezer evaporator (hereinafter referred to as an evaporator) 136 via a freezer cavity 141. Evaporator 1 The outlet of 36 is connected to the inlet of non-return valve 144 via AKUMURAI 142. The outlet of the check valve 143 is connected to the refrigerant inlet 138 B of the compressor 138. The other outlet of the switching valve 140 is connected to the inlet of a refrigerator evaporator (hereinafter referred to as an evaporator) 134 through a refrigerator 134. The outlet of the evaporator 1 3 4 is the check valve 1
4 3の出口に接続されている。 つまり、 圧縮機 1 3 8 に対して蒸発 器 1 3 4 と蒸発器 1 3 6 とは並列に接続され、 蒸発器 1 3 6の出口 は逆止弁 1 4 3 を介して蒸発器 1 3 4の出口と接続されている。 上記構成における作用の概略とその効果を以下に示す。 まず、 圧 縮機 1 3 8が駆動された状態で切替弁 1 4 0により圧縮機 1 3 8か ら吐出される冷媒が冷蔵室用蒸発器 1 3 4に流れるように冷媒流路 を切り換える。 すなわち図 3 7 の破線矢印 1 5 0で示された状態に する。 以下この状態を、 冷蔵モードと呼ぶ。 冷蔵モードでは、 圧縮 機 1 3 8から吐出された冷媒は周知の状態変化を行った後、 蒸発器 1 3 4に送られ蒸発器 1 3 4周囲の空気を冷却する。 図 3 7 におけ る蒸発器 1 3 4は、 図 2 における冷却器 2 2 に相当する。 このとき、 蒸発器 1 3 4により冷却された空気は、 冷蔵用送風機 2 3の送風作 用により冷蔵室 1 5 と野菜室 1 6 とに送られ、 冷蔵室 1 5 と野菜室 1 6 とが冷却される。 4 Connected to 3 outlets. In other words, the evaporator 13 4 and the evaporator 13 6 are connected in parallel to the compressor 13 8, and the outlet of the evaporator 13 36 is connected through the check valve 14 3 to the evaporator 13 4 Is connected to the exit. The outline of the operation of the above configuration and its effect will be described below. First, while the compressor 1338 is driven, the refrigerant flow path is switched by the switching valve 140 so that the refrigerant discharged from the compressor 1338 flows to the refrigerator evaporator 134. That is, a state shown by a broken arrow 150 in FIG. 37 is set. Hereinafter, this state is referred to as a refrigeration mode. In the refrigeration mode, the refrigerant discharged from the compressor 1338 performs a known state change, and is then sent to the evaporator 134 to cool the air around the evaporator 134. The evaporator 1 34 in FIG. 37 corresponds to the cooler 22 in FIG. At this time, the air cooled by the evaporator 13 4 is sent to the refrigeration room 15 and the vegetable room 16 by the blowing operation of the refrigeration fan 23, and the refrigeration room 15 and the vegetable room 16 are Cooled.
また、 圧縮機 1 3 8が駆動された状態で切替弁 1 4 0により圧縮 機 1 3 8から吐出される冷媒が蒸発器 1 3 6 に流れるように冷媒流 路を切り換える。 すなわち図 3 7の実線矢印 1 5 1で示された状態 にする。 以下この状態を、 冷凍モードと呼ぶ。 冷凍モードでは、 圧 縮機 1 3 8から吐出された冷媒は周知の状態変化を行った後、 蒸発 器 1 3 6 に送られ蒸発器 1 3 6周囲の空気を冷却する。 図 3 7 にお ける蒸発器 1 3 6は、 図 2における冷却器 2 4に相当する。 このと き、 蒸発器 1 3 6により冷却された空気は、 冷凍用送風機 2 5の送 風作用により切替室 1 7、 製氷室 1 8、 冷凍室 1 9 に送られる。  In addition, the refrigerant flow is switched by the switching valve 140 so that the refrigerant discharged from the compressor 1338 flows to the evaporator 1336 while the compressor 1338 is driven. That is, the state shown by the solid arrow 15 1 in FIG. 37 is set. Hereinafter, this state is referred to as a freezing mode. In the refrigeration mode, the refrigerant discharged from the compressor 1338 undergoes a known state change, and is then sent to the evaporator 136 to cool the air around the evaporator 136. The evaporator 1 36 in FIG. 37 corresponds to the cooler 24 in FIG. At this time, the air cooled by the evaporator 13 36 is sent to the switching room 17, the ice making room 18, and the freezing room 19 by the blowing action of the freezing blower 25.
このようにして、 冷蔵室 1 5 と野菜室 1 6 とからなる冷蔵温度帯 空間と、 切替室 1 7、 製氷室 1 8、 冷凍室 1 9からなる冷凍温度帯 空間とを各々独立に冷却する。 このため、 蒸発器 1 4は一 5 1:程度、 蒸発器 1 6 は— 2 5 程度の冷却温度を維持することにより各々の 冷却空間に適した庫内温度を効率よく提供する。 よって、 省エネル ギー効果が高まる。 また、 冷蔵温度帯空間と冷凍温度帯空間とを時 間分割的に独立して冷却するため、 一度に除去すべき熱量が小さく なる。 このため、 凝縮器 1 3 9の放熱量も小さくなる。 その結果、 冷凍サイクル回路全体の配管ボリュームがある程度小さくなる。 よ つて、 冷媒に可燃性を有する炭化水素系の自然冷媒を用いた場合に おける冷媒漏洩時の着火危険性がある程度抑制される。 Thus, the refrigeration temperature zone space consisting of the refrigeration compartment 15 and the vegetable compartment 16, and the freezing temperature zone consisting of the switching room 17, the ice making compartment 18, and the freezing compartment 19 The space and each are cooled independently. For this reason, the evaporator 14 maintains the cooling temperature of about 15: 1, and the evaporator 16 maintains the cooling temperature of about -25, thereby efficiently providing the inside temperature suitable for each cooling space. Therefore, the energy saving effect is enhanced. In addition, since the refrigerated temperature zone space and the frozen temperature zone space are independently cooled in a time-sharing manner, the amount of heat to be removed at one time is reduced. For this reason, the heat radiation of the condenser 139 is also reduced. As a result, the piping volume of the entire refrigeration cycle circuit is reduced to some extent. Therefore, when a flammable hydrocarbon-based natural refrigerant is used as the refrigerant, the risk of ignition at the time of refrigerant leakage is suppressed to some extent.
さらに、 冷蔵温度帯空間と冷凍温度帯空間とが共に予め設定され た温度まで冷却された状態で圧縮機 1 8を停止する場合には、 冷蔵 モードの状態で圧縮機 1 3 8 を停止する。 冷蔵モー ドでは、 切替弁 1 4 0の作用により圧縮機 1 3 8の冷媒吐出口 1 3 8 Aと蒸発器 1 3 4の入口とが連通した状態となっており、 冷媒吐出口 1 3 8 Aと 蒸発器 1 3 6の入口との間は遮断されている。 この状態で圧縮機 1 3 8を停止すると、 凝縮器 1 3 9に代表される高圧側から高温冷媒 が蒸発器 1 3 6 に流入することはない。 さ らに、 逆止弁 1 4 3の作 用により蒸発器 1 3 4から蒸発器 1 3 6へ冷媒が逆流することもな い。 従って、 蒸発器 1 3 6 には低温の冷媒が保持されることになり、 蒸発器 1 3 6の温度が必要なく上昇することが防止される。 これに より、 冷凍サイクルのエネルギーロスが更に削減され、 省エネルギ 一効果がさ らに高まる。  Further, when stopping the compressor 18 in a state where both the refrigerated temperature zone space and the frozen temperature zone space are cooled to a preset temperature, the compressor 13 38 is stopped in the refrigerated mode. In the refrigeration mode, the refrigerant discharge port 138 A of the compressor 13 8 communicates with the inlet of the evaporator 13 4 by the action of the switching valve 14 0, and the refrigerant discharge port 13 8 There is a cutoff between A and the inlet of the evaporator 1 36. When the compressor 1338 is stopped in this state, the high-temperature refrigerant does not flow into the evaporator 1336 from the high pressure side represented by the condenser 1339. Further, the refrigerant does not flow backward from the evaporator 134 to the evaporator 136 due to the operation of the check valve 144. Therefore, the low-temperature refrigerant is held in the evaporator 136, and the temperature of the evaporator 136 is prevented from rising unnecessarily. As a result, the energy loss of the refrigeration cycle is further reduced, and one effect of energy saving is further enhanced.
なお、 従来の冷蔵庫では一般的に R 1 3 4 aが冷媒として使用さ れている。 一方、 本実施の形態の冷蔵庫においては、 実施の形態 1 7 と同様に、 炭化水素系の自然冷媒として R 6 0 0 aイソブタンを 使用することができる。  In general, R134a is used as a refrigerant in a conventional refrigerator. On the other hand, in the refrigerator of the present embodiment, as in Embodiment 17, R600a isobutane can be used as a hydrocarbon-based natural refrigerant.
以上のような構成により、 硬質ウレタンフォーム 1 3のみで冷蔵 庫 1 0 と扉 2 7, 2 8, 2 9 , 3 0 , 3 1 を断熱する場合と比較し て冷蔵庫全体の吸熱量が大幅に低減される。 その結果、 箱体吸熱量 の低減による省エネルギー効果が得られる。 さ らに、 並列切替シス テムにより冷蔵温度帯空間と冷凍温度帯空間を交互に冷却する場合 においても、 停止側庫内の時間的な温度変動幅が小さくなる。 つま り、 並列切替システムにより冷却効率を高め、 省エネルギー効果を 高めると同時に、 食品の保鮮性も同時に高めることが出来る。 With the above configuration, the heat absorption of the refrigerator as a whole is significantly greater than when the refrigerator 10 and the doors 27, 28, 29, 30 and 31 are insulated with only the rigid urethane foam 13. Reduced. As a result, an energy saving effect can be obtained by reducing the heat absorption of the box. In addition, a parallel switching system Even when the refrigeration temperature zone space and the freezing temperature zone space are alternately cooled by the system, the temporal temperature fluctuation in the stop side storage becomes small. In other words, the parallel switching system enhances cooling efficiency and energy saving effect, and at the same time, improves freshness of food.
また、 真空断熱材の使用によって箱体吸熱量を小さくすることに より、 硬質ウレタンフォームのみで箱体を断熱する場合と比較して 一度に除去する必要がある熱量とそれに見合った放熱量が小さくな る。 そのため、 配管ボリュームが小さくなる。 また、 従来の硬質ゥ レタンフォームによる断熱箱体では、 冷蔵庫表面の結露防止を目的 に凝縮器 1 3 9の一部を構成する放熱系配管 (図示せず) を硬質ゥ レタンフォームに埋設している。 本実施の形態では、 結露の可能性 がある部分に真空断熱材を使用することにより結露防止用に設計し ていた放熱系配管も不要となる。 そのため、 全体として大幅に配管 ボリュームが削減される。 その結果、 冷却に必要な冷媒量が大幅に 削減され、 可燃性を有する炭化水素系の自然冷媒を用いた場合にお いて、 万が一冷媒が漏洩しても着火の危険性が極めて低くなる。 なお、 圧縮機 1 3 8が回転数一定型の場合であっても上述の効果 は得られるが、 圧縮機 1 3 8 として回転数可変型のものを用いて冷 凍サイクルを構成することが好ましい。 そのように構成すると、 真 空断熱材使用による箱体の安定時の静的な吸熱負荷量と、 ドア開閉 や庫内への食品負荷投入時の最大負荷量との差異を、 圧縮機の回転 数により制御することができる。 回転数一定型の圧縮機では、 最大 負荷量に合わせて過大な気筒容積を確保する必要があり、 また安定 時には圧縮機を停止する時間が増大して庫内温度の時間的変動が大 きくなる。 一方、 回転数可変型圧縮機を適用することにより、 この ような省エネルギー効果のロスが減少し、 庫内温度の時間的変動が 抑止される。 また、 気筒容積が小さくなることから更に冷媒量を少 なく設計することが可能となる。 このため、 可燃性冷媒である炭化 水素系冷媒が万が一冷却システム外に漏洩した場合でも、 可燃性冷 媒の危険性が極めて小さくなる。 真空断熱材の被覆率や冷蔵庫の断熱壁厚の設計については、 他の 実施の形態と同様なので説明を省略する。 In addition, by reducing the heat absorption of the box by using vacuum heat insulating material, the amount of heat that needs to be removed at once and the amount of heat radiation corresponding to it can be reduced compared to the case where the box is insulated with only rigid urethane foam. Become. Therefore, the piping volume is reduced. In addition, in the conventional heat-insulating box made of rigid polyurethane foam, a heat radiation system pipe (not shown) constituting a part of the condenser 1339 is embedded in the rigid polyurethane foam in order to prevent dew condensation on the refrigerator surface. I have. In the present embodiment, the use of a vacuum heat insulating material in a portion where dew condensation may occur eliminates the need for a heat-dissipating piping designed to prevent dew condensation. Therefore, the piping volume is greatly reduced as a whole. As a result, the amount of refrigerant required for cooling is greatly reduced, and in the case where a flammable hydrocarbon-based natural refrigerant is used, even if the refrigerant leaks, the risk of ignition becomes extremely low. The above-mentioned effect can be obtained even when the compressor 1338 is of a constant rotation speed type.However, it is possible to configure a cooling / refrigeration cycle by using a compressor 1338 of a variable rotation speed type. preferable. With this configuration, the difference between the static heat absorption load when the box is stabilized by using vacuum insulation and the maximum load when the door is opened or closed and the food load is loaded into the refrigerator is determined by the compressor rotation. It can be controlled by number. In a constant-speed compressor, it is necessary to secure an excessive cylinder volume in accordance with the maximum load, and when the compressor is stable, the time to stop the compressor increases, and the temporal fluctuation of the internal temperature of the refrigerator increases. Become. On the other hand, by applying a variable-speed compressor, the loss of such energy-saving effects is reduced, and temporal fluctuations in the internal temperature are suppressed. In addition, since the cylinder volume is reduced, it is possible to further reduce the amount of refrigerant. For this reason, even if the hydrocarbon-based refrigerant, which is a flammable refrigerant, leaks out of the cooling system, the danger of the flammable refrigerant is extremely reduced. The coverage of the vacuum heat insulating material and the design of the thickness of the heat insulating wall of the refrigerator are the same as those of the other embodiments, and the description thereof will be omitted.
図 3 8 には真空断熱材の構造図を示す。 基本的な構成は実施の形 態 1 0 と同様である。 図 3 8において、 芯材 1 4 5はグラスウール などの無機繊維集合体 1 4 5からなる。 真空断熱材は金属箔層フィ ルム 1 4 6 Aと蒸着層フィルム 1 4 6 Bを貼り合わせた外被材中に 芯材 1 4 5を挿入し、 内部を真空引きして開口部を封止することに より形成されている。 芯材 1 4 5やフィルム 1 4 6 A, 1 4 6 Bの 材料や熱電導率等は実施の形態 1 0 と同様であるので説明を省略す る。  Figure 38 shows the structure of the vacuum insulation material. The basic configuration is the same as in Embodiment 10. In FIG. 38, the core material 144 is made of an inorganic fiber aggregate 144 such as glass wool. For the vacuum insulation material, insert the core material 144 into the jacket material where the metal foil layer film 1 46 A and the vapor deposition layer film 1 4 6 B are attached, and evacuate the inside to seal the opening. It is formed by doing. The material, thermal conductivity, and the like of the core material 144 and the films 144A and 146B are the same as those in the tenth embodiment, and thus description thereof is omitted.
このような構成とすることにより、 硬質ウレタンフォームと比較 して約 1 0倍の断熱性能を持った真空断熱材が得られる。このため、 真空断熱材を使用した場合の箱体吸熱量の低減効果が大幅に高まる, その結果、 省エネルギー効果が大幅に高まり、 並列切替システムを 使用した場合であっても時間的な庫内温度変動幅が低減され、 食品 保鮮性が向上する。 また、 吸熱量の更なる低減により、 必要冷媒量 を更に少なく抑えられ、 可燃性を有するイソブタンが冷媒であって も冷媒漏洩時の危険性が更に低減される。 また、 芯材 1 4 5 に用い る無機繊維集合体は難燃性を有しており、 万が一、 冷蔵庫 1 0に着 火した場合の安全性が、 硬質ウレタンフォームのみで構成したもの に比べ高まる。  By adopting such a configuration, a vacuum heat insulating material having a heat insulating performance approximately 10 times that of a rigid urethane foam can be obtained. For this reason, the effect of reducing the heat absorption of the box body when using vacuum insulation material is greatly increased.As a result, the energy saving effect is greatly increased, and even if the parallel switching system is used, the temperature inside the chamber can be reduced over time. The fluctuation range is reduced, and the food freshness is improved. Further, by further reducing the amount of heat absorption, the required amount of refrigerant can be further reduced, and even if flammable isobutane is used as a refrigerant, the risk of refrigerant leakage is further reduced. In addition, the inorganic fiber aggregate used for the core material 145 has flame retardancy, and the safety in the event that the refrigerator 10 is ignited is increased compared to the case where only the rigid urethane foam is used. .
図 3 9は真空断熱材の概略図である。 真空断熱材の厚み 1 4 9は 1 5 mmとしている。 つまり、 2辺 1 4 7、 1 4 8で形成される面 を断熱すべき熱の通過方向と垂直をなす方向に向けて真空断熱材を 配設する。 ここで、 辺 1.4 7、 1 4 8の長さを 2 0 0 mm以上とす ることが好ましい。 このようにすることにより以下のような効果が 得られる。  Figure 39 is a schematic diagram of the vacuum insulation. The thickness 14 9 of the vacuum heat insulating material is 15 mm. In other words, the vacuum heat insulating material is provided so that the surface formed by the two sides 147 and 148 is oriented in a direction perpendicular to the direction in which heat to be insulated passes. Here, it is preferable that the lengths of the sides 1.47 and 148 be 200 mm or more. By doing so, the following effects can be obtained.
真空断熱材の外被材をなすガスバリア性のフィルム 1 4 6 A、 1 4 6 Bはいずれも金属性フィルム層を有することから伝熱によりい わゆるヒー トブリ ッジ現象が生じる。 そのため、 真空断熱材の被覆 面積をなす辺 1 4 7 、 1 4 8の長さが小さすぎると真空断熱材本来 の断熱性能を引き出すことができず、 真空断熱材の使用量に対する 断熱効果が低下する。 一方、 辺 1 4 7 、 1 4 8を 2 0 0 m m以上と することにより、 真空断熱材本来の断熱性能を引き出すことが可能 となる。 すなわち、 ヒートブリ ッジによる熱リークが抑制されるこ とが実験により確認されている。 以上のことから、 真空断熱材を構 成する 3辺のうち厚み方向を除く 2辺の長さを 2 0 0 m m以上する ことにより、 真空断熱材本来の断熱性能を引き出すことができる。 この結果、 コス トパフォーマンスが高い状態で真空断熱材が利用さ れ、 冷蔵庫全体の吸熱量が効果的に低減される。 その結果、 上述し てきた本実施の形態における省エネルギー効果と、 時間的な庫内温 度変動幅の低減による食品保鮮性の向上効果と、 少冷媒化による自 然冷媒漏洩時の危険性低減効果を更に高めることが出来る。 Since the gas barrier films 144A and 146B, which form the outer material of the vacuum heat insulating material, each have a metallic film layer, a so-called heat bridge phenomenon occurs due to heat transfer. Therefore, vacuum insulation coating If the lengths of the sides 147 and 148 forming the area are too small, the original heat insulating performance of the vacuum heat insulating material cannot be brought out, and the heat insulating effect on the amount of the vacuum heat insulating material used is reduced. On the other hand, by setting the sides 147 and 148 to be at least 200 mm, it becomes possible to bring out the original heat insulating performance of the vacuum heat insulating material. That is, it has been confirmed by experiments that the heat leak due to the heat bridge is suppressed. From the above, by setting the length of two sides excluding the thickness direction of the three sides constituting the vacuum heat insulating material to 200 mm or more, the original heat insulating performance of the vacuum heat insulating material can be brought out. As a result, vacuum insulation is used with high cost performance, and the heat absorption of the entire refrigerator is effectively reduced. As a result, the energy-saving effect of the present embodiment described above, the effect of improving the freshness of food by reducing the time-varying temperature fluctuation in the refrigerator, and the effect of reducing the risk of natural refrigerant leakage due to the use of less refrigerant. Can be further increased.
なお、 真空断熱材の厚み 1 4 9を 1 5 m mとしたが、 5 〜 2 0 m m程度の範囲内であればウレタンフォーム Γ 3の発泡充填性を阻害 する可能性もなく、 適切な断熱性能が発揮される。  The thickness of the vacuum insulation material was set to 15 mm, but if it was within the range of about 5 to 20 mm, there was no possibility of impairing the foam-filling properties of the urethane foam Γ3. Is exhibited.
なお、 本実施の形態において、 冷凍サイクルの構成や真空断熱材 の寸法以外は実施の形態 1 と同様である。 またこのような構成は他 の実施の形態の構成に適用しても効果的である。  The present embodiment is the same as Embodiment 1 except for the configuration of the refrigeration cycle and the dimensions of the vacuum heat insulating material. Such a configuration is also effective when applied to the configurations of the other embodiments.
以上、 本発明の実施の形態を説明したが、 いずれの実施の形態に おいても見栄えがよく、 断熱性能が優れた冷蔵庫が得られる。 なお、 各実施の形態固有の構成は、 他の実施の形態に組み合わせて実施す ることが可能なものもあり、 そのような組合せは本発明の範疇であ る。  As described above, the embodiments of the present invention have been described. In any of the embodiments, a refrigerator having good appearance and excellent heat insulation performance can be obtained. Note that some configurations specific to each embodiment can be implemented in combination with other embodiments, and such a combination is within the scope of the present invention.
産業上の利用可能性 Industrial applicability
本発明によれば、 外箱と内箱の間に樹脂発泡体と真空断熱材とを 備えた冷蔵庫において、 次のいずれかの構成とすることにより、 外 観上の見栄えがよく、 効率よく断熱した冷蔵庫が提供できる。 ( 1 ) 真空断熱材を外箱に配設した面の外箱外表面の中心線平均粗 さ ( R a ) を 0. 1 m以上とする。 あるいは、 その外箱外表面の 光沢度を 8 0以下とする。 According to the present invention, in a refrigerator provided with a resin foam and a vacuum heat insulating material between an outer box and an inner box, by adopting any of the following constitutions, the appearance is good and the heat insulation is efficient. Refrigerator can be provided. (1) The center line average roughness (R a) of the outer surface of the outer case where the vacuum heat insulating material is arranged on the outer case shall be 0.1 m or more. Alternatively, the gloss of the outer surface of the outer box is set to 80 or less.
( 2 ) 前面を構成する扉に配設する真空断熱材を扉の内板に貼付け る。  (2) Affix the vacuum insulation material to be installed on the door that constitutes the front surface to the inner plate of the door.
( 3 ) 真空断熱材と外箱との間に外箱外表面の変形を防止する介在 部材を配設する。  (3) An intervening member is provided between the vacuum heat insulating material and the outer case to prevent deformation of the outer surface of the outer case.
( 4 ) 真空断熱材と外箱との間に放熱パイプを配設するとともに真 空断熱材と放熱パイプとで形成される空隙部を外部と連通させる。  (4) Arrange the heat radiation pipe between the vacuum heat insulating material and the outer box, and connect the void formed by the vacuum heat insulating material and the heat radiation pipe to the outside.
( 5 ) 真空断熱材を外箱に配設した面の外箱に細孔を設ける。  (5) Provide pores in the outer box on the side where the vacuum heat insulating material is placed on the outer box.
( 6 ) 下部に機械室を備え、 真空断熱材を、 冷蔵庫の上部両側面、 天面、 背面、 前面に対しては外箱に接して配設し、 底面、 下部両側 面、 機械室を構成する面に対しては内箱に接して配設する。  (6) A machine room is provided at the bottom, and vacuum insulation is placed in contact with the outer box on both sides, top, back, and front of the refrigerator, forming a machine room on the bottom, both sides, and the bottom. It is arranged in contact with the inner box on the surface to be made.
( 7 ) 外箱に接する面に放熱パイプを組み込んだ真空断熱材を、 外 箱内側に配設する。  (7) Vacuum insulation with a heat-dissipating pipe installed on the surface in contact with the outer box is placed inside the outer box.

Claims

請求の範囲 The scope of the claims
1 . 外箱と、  1. Outer box and
内箱と、  Inner box,
前記外箱と前記内箱との間に樹脂発泡体と真空断熱材とを.備 え、  A resin foam and a vacuum heat insulating material are provided between the outer box and the inner box,
前記真空断熱材を前記外箱に接して配設し、 前記真空断熱材 を配設した前記外箱外表面を以下のいずれかの構成とした、  The vacuum heat insulating material is provided in contact with the outer box, and the outer box outer surface provided with the vacuum heat insulating material has any one of the following configurations.
冷蔵庫。  refrigerator.
A ) 中心線平均粗さ (R a ) が 0 . l ^ m以上である、 B ) 光沢度が 8 0以下である。  A) The center line average roughness (R a) is 0.1 l m or more, and B) The glossiness is 80 or less.
2 . 外箱と、 2. Outer box and
内箱と、  Inner box,
前記外箱と前記内箱との間に樹脂発泡体と真空断熱材と、 前面を構成し、 内板を有する扉と、 を備え、  A resin foam and a vacuum heat insulating material between the outer box and the inner box; and a door having a front surface and an inner plate,
前記扉に配設する真空断熱材は前記扉の前記内板に貼付けら れた  The vacuum heat insulating material disposed on the door is attached to the inner plate of the door.
冷蔵庫。  refrigerator.
3 . 前記扉に配設する前記真空断熱材は、 前記扉の内板の最前面 部に貼付けられた、 3. The vacuum heat insulating material disposed on the door is attached to a frontmost portion of an inner plate of the door,
請求項 2に記載の冷蔵庫。  3. The refrigerator according to claim 2.
4 . 外箱と、 4. Outer box and
内箱と、  Inner box,
前記外箱と前記内箱との間に樹脂発泡体と真空断熱材と、 前記真空断熱材と前記外箱との間に前記外箱外表面の変形を 防止する介在部材と、 を備えた、  A resin foam and a vacuum heat insulating material between the outer box and the inner box; and an interposition member for preventing deformation of the outer surface of the outer box between the vacuum heat insulator and the outer box.
冷蔵庫。 refrigerator.
5 . 前記介在部材は、 前記真空断熱材より も大きい、 5. The interposed member is larger than the vacuum insulation material.
請求項 4に記載の冷蔵庫。  The refrigerator according to claim 4.
6 . 前記介在部材は、 前記真空断熱材より も軟らかい軟質部材か らなる、 6. The interposed member is made of a soft member that is softer than the vacuum heat insulating material.
請求項 4に記載の冷蔵庫。  The refrigerator according to claim 4.
7 . 前記軟質部材は樹脂発泡体である、 7. The soft member is a resin foam,
請求項 6 に記載の冷蔵庫。  The refrigerator according to claim 6.
8 . 前記軟質部材は独立発泡体である、 8. The flexible member is a closed cell,
請求項 6 に記載の冷蔵庫。  The refrigerator according to claim 6.
9 . 前記軟質部材の厚みは、 前記真空断熱材の平面度以上かつ前 記真空断熱材の厚み以下である、 9. The thickness of the soft member is equal to or greater than the flatness of the vacuum heat insulator and equal to or less than the thickness of the vacuum heat insulator.
請求項 6 に記載の冷蔵庫。  The refrigerator according to claim 6.
1 0 . 前記介在部材は、 前記真空断熱材より も硬い硬質部材からな る、 10. The interposed member is made of a hard member that is harder than the vacuum heat insulating material.
請求項 4に記載の冷蔵庫。  The refrigerator according to claim 4.
1 1 . 前記介在部材は、 前記真空断熱材より も硬い硬質部材と前記 真空断熱材より も軟らかい軟質部材と、 からなる、 1 1. The interposed member is composed of a hard member harder than the vacuum heat insulating material and a soft member softer than the vacuum heat insulating material.
請求項 4に記載の冷蔵庫。  The refrigerator according to claim 4.
1 2 . 前記介在部材は、 前記外箱側から前記硬質部材、 前記軟質部 材の順に配置させた、 12. The intervening member is arranged in the order of the hard member and the soft member from the outer box side,
請求項 1 1 に記載の冷蔵庫。  The refrigerator according to claim 11.
1 3 . 外箱と、 内箱と、 1 3. Outer box and Inner box,
前記外箱と前記内箱との間に樹脂発泡体と真空断熱材と、 前記真空断熱材と前記外箱との間に配設された放熱パイプと, を備え、  A resin foam and a vacuum heat insulating material between the outer box and the inner box; and a heat radiating pipe disposed between the vacuum heat insulating material and the outer box.
前記真空断熱材と前記放熱パイプとで形成される空隙部が前 記冷蔵庫の外部と連通する  A void formed by the vacuum heat insulating material and the heat radiating pipe communicates with the outside of the refrigerator.
冷蔵庫。  refrigerator.
1 4 . 前記放熱パイプと対向する前記真空断熱材の平面部に溝を設 けた、 14. A groove is formed in a plane portion of the vacuum heat insulating material facing the heat radiating pipe.
請求項 1 3 に記載の冷蔵庫。  The refrigerator according to claim 13.
1 5 . 前記放熱パイプを固定する固定部材をさらに備え、 前記固定 部材の一端を前記冷蔵庫外部に位置させるとともに、 前記固定部材 の他端を前記真空断熱材の端部より内部に位置させた、 15. A fixing member for fixing the heat radiating pipe is further provided, one end of the fixing member is located outside the refrigerator, and the other end of the fixing member is located inside the end of the vacuum heat insulating material.
請求項 1 3 に記載の冷蔵庫。  The refrigerator according to claim 13.
1 6 . 外箱と、 1 6. Outer box and
内箱と、  Inner box,
前記外箱と前記内箱との間に樹脂発泡体と真空断熱材とを備 え、  A resin foam and a vacuum heat insulating material are provided between the outer box and the inner box,
前記真空断熱材を前記外箱に配設し、 前記真空断熱材を配設 した前記外箱の面に細孔を設けた、  The vacuum heat insulating material is provided on the outer box, and pores are provided on a surface of the outer box on which the vacuum heat insulating material is provided,
冷蔵庫。  refrigerator.
1 7 . 外箱と、 1 7.
内箱と、  Inner box,
前記外箱と前記内箱との間に樹脂発泡体と複数の真空断熱材 と、  A resin foam and a plurality of vacuum insulation materials between the outer box and the inner box;
下部に機械室と、 を備え、 前記複数の真空断熱材を上部両側面、 天面、 背面、 前面に対 しては前記外箱に接して配設し、 底面、 下部両側面、 前記機械室を 構成する面に対しては前記内箱に接して配設した、 Equipped with a machine room at the bottom, The plurality of vacuum heat insulating materials are disposed in contact with the outer box for the upper side surfaces, the top surface, the back surface, and the front surface, and are provided for the bottom surface, the lower side surfaces, and the surfaces constituting the machine room. Arranged in contact with the inner box,
冷蔵庫。  refrigerator.
1 8 . 前記内箱に接して配設した前記真空断熱材が前記内箱に接す る面全体が、 前記真空断熱材が接し配設される前記内箱の各面に接 する、 18. The entire surface of the inner box in contact with the vacuum heat insulating material disposed in contact with the inner box is in contact with each surface of the inner box in which the vacuum heat insulating material is disposed in contact with the inner box.
請求項 7に記載の冷蔵庫  A refrigerator according to claim 7
1 9 . 前記真空断熱材が接し配設される前記内箱の面に、 前記内箱 に接して配設した前記真空断熱材の外周端面に接する段部を有する 請求項 7に記載の冷蔵庫。 19. The refrigerator according to claim 7, further comprising a step on the surface of the inner box on which the vacuum heat insulating material is provided and in contact with an outer peripheral end surface of the vacuum heat insulating material provided on the inner box.
2 0 . 冷却器をさらに有し、 上面に傾斜形状が形成され、 下面が平 面状で前記内箱に密着する断熱部材を、前記冷却器の下方に有する、 請求項 1 7に記載の冷蔵庫。 20. The refrigerator according to claim 17, further comprising: a cooler, wherein an inclined member is formed on an upper surface, and a heat insulating member having a flat lower surface and closely attached to the inner box is provided below the cooler. .
2 1 . 冷却器をさらに有し、 前記内箱が前記冷却器の下方に位置す る傾斜形状部分を有し、 前記傾斜形状部分と前記内箱に接し配設す る真空断熱材との間にできる隙間を埋める断熱部材を有する、 21. A cooler is further provided, wherein the inner box has a sloped portion located below the cooler, and between the sloped portion and a vacuum heat insulating material provided in contact with the inner box. Having a heat insulating member that fills the gap that can be
請求項 1 7に記載の冷蔵庫。  A refrigerator according to claim 17.
2 2 . 前記内箱が前記樹脂発泡体の空気抜き用孔を設けた奥面を有 する、 22. The inner box has a back surface provided with holes for venting the resin foam.
求項 1 7に記載の冷蔵庫  Refrigerator according to claim 17
2 3 . 前記冷蔵庫の上部両側面で前記外箱に接して配設した前記真 空断熱材の下端の位置が、 前記冷蔵庫の下部両側面で前記内箱に接 して配設した前記真空断熱材の上端の位置より低くなるように配し た、 23. The position of the lower end of the vacuum heat insulating material provided in contact with the outer box on both upper side surfaces of the refrigerator is the vacuum heat insulating material provided in contact with the inner box on both lower side surfaces of the refrigerator. So that it is lower than the top edge of the timber Was
請求項 1 7 に記載の冷蔵庫  A refrigerator according to claim 17
2 4 . 前記真空断熱材は、 金属蒸着フィルムで構成された第 1 の面 と、 金属箔を有するフィルムで構成された第 2の面とを有し、 前記 第 1の面と前記第 2の面とのそれぞれの外周部分をシールしたシー ル面が前記第 1 の面と同一平面上にある、 24. The vacuum heat insulating material has a first surface composed of a metal-deposited film, and a second surface composed of a film having a metal foil, and the first surface and the second surface. A sealing surface that seals the outer peripheral portion with the surface is coplanar with the first surface;
請求項 1 7に記載の冷蔵庫。  A refrigerator according to claim 17.
2 5 . 前記第 1 の面を、 前記外箱内側に接して配設した、 25. The first surface is disposed in contact with the inside of the outer box,
請求項 2 4に記載の冷蔵庫。  25. The refrigerator according to claim 24.
2 6 . 前記第 1 の面を、 前記内箱外側に接して配設した、 26. The first surface is disposed in contact with the outer side of the inner box,
請求項 2 4に記載の冷蔵庫。  25. The refrigerator according to claim 24.
2 7 . 前記放熱パイプを前記外箱内側に固定し、 庫外まで配設され たシール材をさらに有する、 27. The heat radiation pipe is fixed to the inside of the outer box, and further includes a sealing material disposed outside the refrigerator.
請求項 1 3に記載の冷蔵庫。  14. The refrigerator according to claim 13.
2 8 . 前記シール材は、 分割されることと、 孔が開けられているこ ととの少なく ともいずれかの構成とした、 28. The sealing material has at least one of a structure of being divided and a hole being formed.
請求項 2 7記載の冷蔵庫。  28. The refrigerator according to claim 27.
2 9 . 前記放熱パイプは、 前記冷蔵庫の天面を避けて、 前記外箱内 側に配設した、 29. The heat radiation pipe was disposed inside the outer box, avoiding the top surface of the refrigerator.
請求項 2 7記載の冷蔵庫。  28. The refrigerator according to claim 27.
3 0 . 外箱と、 3 0. Outer box and
内箱と、  Inner box,
前記外箱と前記内箱との間に樹脂発泡体と真空断熱材と、 前記外箱内側に配設した前記真空断熱材に組み込んだ放熱パ イブと、 を備えた、 Resin foam and vacuum insulation between the outer box and the inner box, A heat radiation pipe incorporated in the vacuum heat insulating material disposed inside the outer box.
冷蔵庫。  refrigerator.
3 1 . 前記真空断熱材の両面が金属箔を有するフィルムで構成され た、 31. Both surfaces of the vacuum heat insulating material were formed of a film having a metal foil,
請求項 1 、 2、 4、 1 3、 1 6、 1 7、 3 0のいずれかに記 載の冷蔵庫。  The refrigerator according to any one of claims 1, 2, 4, 13, 13, 16, 17, 30.
3 2. 前記真空断熱材がフィルムの封止代を有し、 前記封止代を、 前記樹脂発泡体の流れ込む方向以外の方向に配設した、 3 2. The vacuum heat insulating material has a sealing allowance for a film, and the sealing allowance is disposed in a direction other than the direction in which the resin foam flows.
請求項 1 、 2、 4、 1 3、 1 6、 1 7、 3 0のいずれかに記 載の冷蔵庫。  The refrigerator according to any one of claims 1, 2, 4, 13, 13, 16, 17, 30.
3 3. 前記真空断熱材は、 3 3. The vacuum insulation material
結合材により平板状に成形した無機繊維集合体を含む 芯材と、  A core material containing an inorganic fiber aggregate formed into a flat plate shape with a binder,
前記芯材を覆うガスバリア性フィルムと、 を有する、 請求項 1 、 2、 4、 1 3、 1 6、 1 7、 3 0のいずれか一項 に記載の冷蔵庫。  The refrigerator according to claim 1, further comprising: a gas barrier film that covers the core material.
3 4. 前記真空断熱材と、 前記内箱と前記外箱とのいずれかとが接 する面の全面に塗布した接着剤を備えた、 3 4. An adhesive applied to the entire surface of the surface where the vacuum heat insulating material is in contact with one of the inner box and the outer box,
請求項 1 、 2、 4、 1 3、 1 6、 1 7、 3 0のいずれか一項 に記載の冷蔵庫。  The refrigerator according to any one of claims 1, 2, 4, 13, 13, 16, 17, 30.
3 5. 前記樹脂発泡体の発泡剤が、 炭化水素を含む、 3 5. The foaming agent of the resin foam contains a hydrocarbon,
請求項 1 、 2、 4、 1 3、 1 6、 1 7、 3 0のいずれか一項 に記載の冷蔵庫。 The refrigerator according to any one of claims 1, 2, 4, 13, 13, 16, 17, 30.
3 6. 前記内箱内に冷蔵室と冷凍室の少なく ともいずれかと、 前記冷蔵室と前記冷凍室の少なく ともいずれかを冷却する冷 却器と、 3 6. A refrigerator for cooling at least one of the refrigerator compartment and the freezer compartment in the inner box, and a refrigerator for cooling at least one of the refrigerator compartment and the freezer compartment.
前記冷却器に用い、 炭化水素からなる冷媒と、 をさ らに備え た、  Used for the cooler, further comprising: a refrigerant made of hydrocarbon; and
請求項 1、 2、 4、 1 3、 1 6、 1 7、 3 0のいずれか一項 に記載の冷蔵庫。  The refrigerator according to any one of claims 1, 2, 4, 13, 13, 16, 17, 30.
3 7. 前記内箱内の冷蔵室を冷却するための第 1蒸発器と、 3 7. a first evaporator for cooling the refrigerator compartment in the inner box;
前記第 1蒸発器と並列に接続され、 前記内箱内の冷凍室を冷 却するための第 2蒸発器と、  A second evaporator, connected in parallel with the first evaporator, for cooling a freezer in the inner box;
前記第 1蒸発器と前記第 2蒸発器とのいずれかに流路を切り 替える冷媒流路切替部と、  A refrigerant flow switching unit that switches a flow path to one of the first evaporator and the second evaporator;
前記冷媒流路切替部に冷媒を吐出する圧縮機と、 をさらに備 えた、  A compressor that discharges a refrigerant to the refrigerant flow switching unit;
請求項 1、 2、 4、 1 3、 1 6、 1 7、 3 0のいずれか一項 に記載の冷蔵庫。  The refrigerator according to any one of claims 1, 2, 4, 13, 13, 16, 17, 30.
3 8. 前記圧縮機が回転数可変型圧縮機である、 3 8. The compressor is a variable speed compressor.
請求項 3 7記載の冷蔵庫。  A refrigerator according to claim 37.
3 9. 前記外箱と前記内箱との間に配設される除霜水配管を有し、 前記除霜水配管と前記内箱との間に、 前記真空断熱材を配設した、 請求項 1 、 2、 4、 1 3、 1 6、 1 7、 3 0のいずれか一項 に記載の冷蔵庫。 3 9. A defrosting water pipe disposed between the outer box and the inner box, wherein the vacuum heat insulating material is disposed between the defrosting water pipe and the inner box. Item 13. The refrigerator according to any one of Items 1, 2, 4, 13, 13, 16, 17, 30.
4 0. 前記外箱と前記内箱との間で、 前記樹脂発泡体の流れを阻害 する雑物を有し、 前記雑物がある所に前記真空断熱材を配設した、 請求項 1 、 2 、 4、 1 3、 1 6、 1 7、 3 0のいずれか一項 に記載の冷蔵庫。 40. Between the outer box and the inner box, there is a miscellaneous material that obstructs the flow of the resin foam, and the vacuum heat insulating material is provided at a place where the miscellaneous material is present. The refrigerator according to any one of 2, 4, 13, 16, 17 and 30.
PCT/JP2003/005040 2002-04-22 2003-04-21 Refrigerator WO2003089859A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020047017058A KR100662530B1 (en) 2002-04-22 2003-04-21 Refrigerator
EP03719153A EP1505359A4 (en) 2002-04-22 2003-04-21 Refrigerator
AU2003235312A AU2003235312A1 (en) 2002-04-22 2003-04-21 Refrigerator

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2002118894A JP2003314951A (en) 2002-04-22 2002-04-22 Refrigerator
JP2002-118894 2002-04-22
JP2002-179598 2002-06-20
JP2002179597A JP3522733B2 (en) 2002-06-20 2002-06-20 refrigerator
JP2002-179597 2002-06-20
JP2002-179595 2002-06-20
JP2002179598A JP2004028350A (en) 2002-06-20 2002-06-20 Refrigerator
JP2002179595A JP3942962B2 (en) 2002-06-20 2002-06-20 refrigerator

Publications (1)

Publication Number Publication Date
WO2003089859A1 true WO2003089859A1 (en) 2003-10-30

Family

ID=29255489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/005040 WO2003089859A1 (en) 2002-04-22 2003-04-21 Refrigerator

Country Status (6)

Country Link
EP (1) EP1505359A4 (en)
KR (1) KR100662530B1 (en)
CN (3) CN1646868A (en)
AU (1) AU2003235312A1 (en)
TW (1) TWI231356B (en)
WO (1) WO2003089859A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020139733A (en) * 2012-10-12 2020-09-03 東芝ライフスタイル株式会社 refrigerator
US11441834B2 (en) * 2016-10-26 2022-09-13 Whirlpool Corporation Skin condenser design integrated in the refrigerator back

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100643136B1 (en) * 2004-12-28 2006-11-10 위니아만도 주식회사 Kim-chi storage has a vacuum insulation sheet
JP4566111B2 (en) * 2005-10-13 2010-10-20 三洋電機株式会社 Cold storage
JP4281823B2 (en) * 2007-07-13 2009-06-17 ダイキン工業株式会社 Container refrigeration apparatus and manufacturing method thereof
AU2010241227B2 (en) 2009-11-13 2012-03-01 Fisher & Paykel Appliances Limited Appliance Door
EP2339277B1 (en) 2009-12-22 2019-06-05 LG Electronics Inc. Refrigerator
CN105546923B (en) * 2010-05-28 2018-06-19 东芝生活电器株式会社 The body of thermal insulating box in food storage library
CN101858680B (en) * 2010-06-10 2011-07-27 安徽利华塑业科技有限公司 Assembly for refrigerator back and compressor cabin
WO2012001672A2 (en) * 2010-07-02 2012-01-05 Kingspan Holdings (Irl) Limited A prefabricated composite insulation board
KR101227516B1 (en) 2010-10-28 2013-01-31 엘지전자 주식회사 A refrigerator comprising a vacuum space
DE102011015715A1 (en) * 2010-12-22 2012-06-28 Hw Verwaltungs Gmbh Wall construction for thermally insulated containers
DE102011087036A1 (en) * 2011-11-24 2013-05-29 BSH Bosch und Siemens Hausgeräte GmbH Heat insulation housing for a refrigeration device
US9071907B2 (en) 2012-04-02 2015-06-30 Whirpool Corporation Vacuum insulated structure tubular cabinet construction
US9182158B2 (en) 2013-03-15 2015-11-10 Whirlpool Corporation Dual cooling systems to minimize off-cycle migration loss in refrigerators with a vacuum insulated structure
US9221210B2 (en) 2012-04-11 2015-12-29 Whirlpool Corporation Method to create vacuum insulated cabinets for refrigerators
DE102012215316A1 (en) * 2012-08-29 2014-03-06 BSH Bosch und Siemens Hausgeräte GmbH Housing for a household refrigerator with at least one backing part and household refrigeration appliance with such a housing
SG10201801047VA (en) * 2013-06-07 2018-03-28 Mitsubishi Electric Corp Heat insulating box body, refrigerator, and device including heat insulating box body
KR101314135B1 (en) * 2013-06-11 2013-10-04 박근수 Appearance deformation preventing sheet for refrigerator and manufacturing method thereof
CH708320B1 (en) * 2013-07-11 2017-04-28 Seven-Air Gebr Meyer Ag Heat-insulating, pressure-resistant wall.
DE102013014614A1 (en) * 2013-07-31 2015-02-05 Liebherr-Hausgeräte Lienz Gmbh Vakuumdämmkörper
JP6000922B2 (en) * 2013-09-10 2016-10-05 日立アプライアンス株式会社 Vacuum heat insulating material and cooling / heating equipment using the same
KR101752669B1 (en) * 2013-12-10 2017-06-30 삼성전자주식회사 Vacuum heat insulating material and refrigerator including the same
US10052819B2 (en) 2014-02-24 2018-08-21 Whirlpool Corporation Vacuum packaged 3D vacuum insulated door structure and method therefor using a tooling fixture
US9689604B2 (en) 2014-02-24 2017-06-27 Whirlpool Corporation Multi-section core vacuum insulation panels with hybrid barrier film envelope
US9599392B2 (en) 2014-02-24 2017-03-21 Whirlpool Corporation Folding approach to create a 3D vacuum insulated door from 2D flat vacuum insulation panels
JP6655277B2 (en) * 2014-06-02 2020-02-26 東芝ライフスタイル株式会社 refrigerator
KR102487261B1 (en) * 2015-02-09 2023-01-13 삼성전자주식회사 Vacuum heat insulating material, the method of manufacturing the same and refrigerator including the same
WO2016129859A1 (en) * 2015-02-09 2016-08-18 삼성전자주식회사 Vacuum heat insulation material, method for producing vacuum heat insulation material, and refrigerator including vacuum heat insulation material
US9476633B2 (en) 2015-03-02 2016-10-25 Whirlpool Corporation 3D vacuum panel and a folding approach to create the 3D vacuum panel from a 2D vacuum panel of non-uniform thickness
US10161669B2 (en) 2015-03-05 2018-12-25 Whirlpool Corporation Attachment arrangement for vacuum insulated door
US9897370B2 (en) 2015-03-11 2018-02-20 Whirlpool Corporation Self-contained pantry box system for insertion into an appliance
US9441779B1 (en) 2015-07-01 2016-09-13 Whirlpool Corporation Split hybrid insulation structure for an appliance
WO2017091761A1 (en) 2015-11-25 2017-06-01 Yeti Coolers, Llc Insulating container having vacuum insulated panels and method
US10222116B2 (en) 2015-12-08 2019-03-05 Whirlpool Corporation Method and apparatus for forming a vacuum insulated structure for an appliance having a pressing mechanism incorporated within an insulation delivery system
US11052579B2 (en) 2015-12-08 2021-07-06 Whirlpool Corporation Method for preparing a densified insulation material for use in appliance insulated structure
US10429125B2 (en) 2015-12-08 2019-10-01 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10041724B2 (en) 2015-12-08 2018-08-07 Whirlpool Corporation Methods for dispensing and compacting insulation materials into a vacuum sealed structure
US10422573B2 (en) 2015-12-08 2019-09-24 Whirlpool Corporation Insulation structure for an appliance having a uniformly mixed multi-component insulation material, and a method for even distribution of material combinations therein
US10422569B2 (en) 2015-12-21 2019-09-24 Whirlpool Corporation Vacuum insulated door construction
US9752818B2 (en) 2015-12-22 2017-09-05 Whirlpool Corporation Umbilical for pass through in vacuum insulated refrigerator structures
US9840042B2 (en) 2015-12-22 2017-12-12 Whirlpool Corporation Adhesively secured vacuum insulated panels for refrigerators
US10018406B2 (en) 2015-12-28 2018-07-10 Whirlpool Corporation Multi-layer gas barrier materials for vacuum insulated structure
US10610985B2 (en) 2015-12-28 2020-04-07 Whirlpool Corporation Multilayer barrier materials with PVD or plasma coating for vacuum insulated structure
US10807298B2 (en) 2015-12-29 2020-10-20 Whirlpool Corporation Molded gas barrier parts for vacuum insulated structure
US10030905B2 (en) 2015-12-29 2018-07-24 Whirlpool Corporation Method of fabricating a vacuum insulated appliance structure
US11247369B2 (en) 2015-12-30 2022-02-15 Whirlpool Corporation Method of fabricating 3D vacuum insulated refrigerator structure having core material
EP3443284B1 (en) 2016-04-15 2020-11-18 Whirlpool Corporation Vacuum insulated refrigerator structure with three dimensional characteristics
WO2017180147A1 (en) 2016-04-15 2017-10-19 Whirlpool Corporation Vacuum insulated refrigerator cabinet
WO2018022007A1 (en) 2016-07-26 2018-02-01 Whirlpool Corporation Vacuum insulated structure trim breaker
US11391506B2 (en) 2016-08-18 2022-07-19 Whirlpool Corporation Machine compartment for a vacuum insulated structure
WO2018101954A1 (en) 2016-12-02 2018-06-07 Whirlpool Corporation Hinge support assembly
JP6689415B2 (en) * 2017-01-16 2020-04-28 三菱電機株式会社 refrigerator
USD821155S1 (en) 2017-05-16 2018-06-26 Yeti Coolers, Llc Insulating device
USD820647S1 (en) 2017-05-16 2018-06-19 Yeti Coolers, Llc Insulating device
USD820648S1 (en) 2017-05-16 2018-06-19 Yeti Coolers, Llc Insulating device
USD821156S1 (en) 2017-05-16 2018-06-26 Yeti Coolers, Llc Insulating device
USD821157S1 (en) 2017-05-16 2018-06-26 Yeti Coolers, Llc Insulating device
USD821824S1 (en) 2017-05-16 2018-07-03 Yeti Coolers, Llc Insulating device
CN109387010B (en) * 2017-08-02 2021-04-27 日立环球生活方案株式会社 Refrigerator with a door
CN109900036A (en) * 2017-12-07 2019-06-18 博西华电器(江苏)有限公司 Refrigerating appliance
CH713291A2 (en) * 2018-05-29 2018-07-31 V Zug Ag Cooling unit with vacuum insulation panel.
US10907888B2 (en) 2018-06-25 2021-02-02 Whirlpool Corporation Hybrid pigmented hot stitched color liner system
JP6975699B2 (en) * 2018-10-18 2021-12-01 日立グローバルライフソリューションズ株式会社 refrigerator
CN111086764A (en) * 2019-12-26 2020-05-01 霍山县天下泽雨生物科技发展有限公司 Dendrobium officinale preservation device and using method thereof
DE102021130051A1 (en) * 2021-11-17 2023-05-17 Liebherr-Hausgeräte Ochsenhausen GmbH refrigerator and/or freezer

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103688U (en) * 1981-12-30 1983-07-14 日本電気ホームエレクトロニクス株式会社 electric refrigerator
JPS60188982U (en) * 1984-05-25 1985-12-14 株式会社東芝 Freezer refrigerator
JPS61265474A (en) * 1985-05-17 1986-11-25 松下冷機株式会社 Heat-insulating box body
JPS62141189U (en) * 1986-02-28 1987-09-05
JPS6357481U (en) * 1986-10-03 1988-04-16
JPH0642860A (en) * 1991-10-31 1994-02-18 Matsushita Refrig Co Ltd Heat insulator
JPH0814733A (en) * 1994-06-27 1996-01-19 Hitachi Ltd Refrigerator
JPH08247632A (en) 1995-03-09 1996-09-27 Hitachi Ltd Refrigerator
JP2001047105A (en) 1999-08-12 2001-02-20 Nippon Steel Corp Metal sheet inconspicuous in finger print
JP2001165557A (en) * 1999-12-10 2001-06-22 Matsushita Refrig Co Ltd Refrigerator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4778711A (en) * 1986-02-26 1988-10-18 Fuji Xerox Co., Ltd. Paper for receiving toner images in electrophotography
US4726974A (en) * 1986-10-08 1988-02-23 Union Carbide Corporation Vacuum insulation panel
JPH01285775A (en) * 1988-05-13 1989-11-16 Hitachi Ltd Refrigerator
CN2033487U (en) * 1988-08-04 1989-03-01 李芧华 Vacuum chamber heat isolator of a refrigerator
CN2459597Y (en) * 2001-01-19 2001-11-14 广东科龙电器股份有限公司 Refrigerator door structure

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58103688U (en) * 1981-12-30 1983-07-14 日本電気ホームエレクトロニクス株式会社 electric refrigerator
JPS60188982U (en) * 1984-05-25 1985-12-14 株式会社東芝 Freezer refrigerator
JPS61265474A (en) * 1985-05-17 1986-11-25 松下冷機株式会社 Heat-insulating box body
JPS62141189U (en) * 1986-02-28 1987-09-05
JPS6357481U (en) * 1986-10-03 1988-04-16
JPH0642860A (en) * 1991-10-31 1994-02-18 Matsushita Refrig Co Ltd Heat insulator
JPH0814733A (en) * 1994-06-27 1996-01-19 Hitachi Ltd Refrigerator
JPH08247632A (en) 1995-03-09 1996-09-27 Hitachi Ltd Refrigerator
JP2001047105A (en) 1999-08-12 2001-02-20 Nippon Steel Corp Metal sheet inconspicuous in finger print
JP2001165557A (en) * 1999-12-10 2001-06-22 Matsushita Refrig Co Ltd Refrigerator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1505359A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020139733A (en) * 2012-10-12 2020-09-03 東芝ライフスタイル株式会社 refrigerator
US11441834B2 (en) * 2016-10-26 2022-09-13 Whirlpool Corporation Skin condenser design integrated in the refrigerator back

Also Published As

Publication number Publication date
KR20040106377A (en) 2004-12-17
EP1505359A4 (en) 2006-08-30
EP1505359A1 (en) 2005-02-09
CN101025321A (en) 2007-08-29
CN100535562C (en) 2009-09-02
CN101025319A (en) 2007-08-29
CN1646868A (en) 2005-07-27
TW200400343A (en) 2004-01-01
KR100662530B1 (en) 2006-12-28
AU2003235312A1 (en) 2003-11-03
CN100498158C (en) 2009-06-10
TWI231356B (en) 2005-04-21

Similar Documents

Publication Publication Date Title
WO2003089859A1 (en) Refrigerator
KR100980175B1 (en) Refrigerator
JP3493009B2 (en) refrigerator
KR101495127B1 (en) Vacuum heat insulation member and refrigerator using same
WO2010137081A1 (en) Refrigerator equipped with vacuum insulation material
JP2009024922A (en) Refrigerator
JP2003314951A (en) Refrigerator
JP2010276308A (en) Refrigerator having vacuum heat insulating material
JP2013061131A (en) Refrigerator having vacuum heat insulating material
JP3513123B2 (en) Refrigerator manufacturing method
JP2011099566A (en) Vacuum heat insulating panel and refrigerator
JP4196851B2 (en) refrigerator
JP2009024921A (en) Refrigerator
JP2004125394A (en) Refrigerator
TW201719097A (en) Vacuum heat-insulating material and refrigerator
JP2012026583A (en) Refrigerator
JP2004125216A (en) Refrigerator
JP2005140407A (en) Heat insulating wall body and refrigerator
JP2012229849A (en) Refrigerator and freezer
JP2004156824A (en) Refrigerator
JP2004020148A (en) Refrigerator and manufacturing method of refrigerator
JP6000922B2 (en) Vacuum heat insulating material and cooling / heating equipment using the same
JP2004028350A (en) Refrigerator
JP3800823B2 (en) vending machine
KR100936860B1 (en) Refrigerator

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003719153

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 20038089637

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020047017058

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020047017058

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003719153

Country of ref document: EP