WO2003082762A1 - Fils de renforcement et composites resistant en milieu corrosif - Google Patents

Fils de renforcement et composites resistant en milieu corrosif Download PDF

Info

Publication number
WO2003082762A1
WO2003082762A1 PCT/FR2003/000950 FR0300950W WO03082762A1 WO 2003082762 A1 WO2003082762 A1 WO 2003082762A1 FR 0300950 W FR0300950 W FR 0300950W WO 03082762 A1 WO03082762 A1 WO 03082762A1
Authority
WO
WIPO (PCT)
Prior art keywords
chosen
composition
threads
glass
carbon atoms
Prior art date
Application number
PCT/FR2003/000950
Other languages
English (en)
Inventor
Eric Dallies
Patrick Moireau
Original Assignee
Saint-Gobain Vetrotex France S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint-Gobain Vetrotex France S.A. filed Critical Saint-Gobain Vetrotex France S.A.
Priority to MXPA04009488A priority Critical patent/MXPA04009488A/es
Priority to BR0308152-4A priority patent/BR0308152A/pt
Priority to CA002480556A priority patent/CA2480556A1/fr
Priority to EP03740532A priority patent/EP1497238A1/fr
Priority to AU2003258717A priority patent/AU2003258717A1/en
Priority to JP2003580235A priority patent/JP2005526684A/ja
Priority to US10/506,674 priority patent/US7276282B2/en
Priority to KR10-2004-7015136A priority patent/KR20040104551A/ko
Publication of WO2003082762A1 publication Critical patent/WO2003082762A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/24Coatings containing organic materials
    • C03C25/40Organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2938Coating on discrete and individual rods, strands or filaments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2962Silane, silicone or siloxane in coating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2964Artificial fiber or filament

Definitions

  • the present invention relates to threads (or fibers) capable of reinforcing organic and / or inorganic materials, as well as the reinforced (or composite) products obtained, these reinforcing threads and these composites being capable of being used in a corrosive medium (medium humid, acidic or basic environment).
  • the present invention relates in particular to reinforcing glass wires, capable of being obtained by mechanical drawing, at high speed (up to a few tens of meters per second), of molten glass fillets flowing from orifices arranged at the base of a die.
  • These threads are drawn in the form of filaments, which are coated, before their gathering into threads, with a composition called sizing composition intended in particular to protect the threads from abrasion and to promote adhesion between the glass and the material. strengthen.
  • the most common reinforcing glass strands are based on E glass, the composition of this glass being derived from the eutectic at 1170 ° C. of the ternary diagram Si0 2 -AI 2 0 3 -CaO (cf.
  • AR alkali-resistant glass strands which, also coated with traditional sizing compositions, make it possible to obtain composites more capable of retaining good mechanical properties over time in an acid medium and especially in basic medium (whether this medium consists of the material to be reinforced or that in which the composites are used).
  • the composition of these glasses generally contains a large proportion of zirconium oxide and is, for example, of the Na 2 0-Zr0 2 -Si0 2 type .
  • a conventional composition of these glasses is given in particular in patent GB 1,290,528.
  • these strands remain sensitive to a humid environment, these strands moreover adhering more weakly to organic materials than the strands of E glass and thus reserving their use for reinforcement direct (without intermediate organic matter) of inorganic materials such as cement.
  • the aim of the present invention has been to develop more resistant composites in a corrosive environment, preferably in different corrosive environments and in particular in a humid environment (the most common corrosive environment, the humidity being already present in the ambient air ), and / or to widen the range of products that can be used in this type of environment, in particular in fields for which the glass strands previously mentioned are not the most suitable or for which the products currently used are not entirely satisfactory, for example in the field of manufacturing hollow bodies by filament winding, in particular for the storage or transport of various chemical materials, or in the field of pultrusion (for example with a view to replacing traditional concrete irons with composite products).
  • the present invention proposes reinforcing threads making it possible to obtain composites with improved mechanical properties in at least one corrosive medium (advantageously the wet environment), with respect to each, respectively, of the above-mentioned existing wires, the wires according to the invention also making it possible to manufacture high-performance composites suitable for the applications mentioned above.
  • the reinforcing threads according to the invention preferably glass threads
  • a sizing composition comprising (or one of the initial constituents of which is) at least one silane corresponding to the following formula:
  • R 7 being chosen from branched hydrocarbon radicals whose main chain has from 2 to 6 carbon atoms
  • R 8 being chosen from the following groups: -H, -R 9 -NH 2 , -R 10 -NH-R 9 -NH 2 ,
  • R 9 being chosen from hydrocarbon radicals of 1 to 12 carbon atoms or from carbonyls,
  • R 10 being chosen from hydrocarbon radicals whose main chain has from 1 to 6 carbon atoms.
  • hydrocarbon-based radical advantageously means a radical (or group or group) consisting solely of carbon and hydrogen atoms, branched or not, derivative (removal of one - case of a monovalent radical - or two - cases of a bivalent radical - hydrogen atoms of a hydrocarbon) of a hydrocarbon which is saturated or which optionally has one or more multiple bonds (double bond, triple bond), acyclic or possibly cyclic or even, in the case of R 9 , which can understand a benzene nucleus.
  • the one or more secondary chains each advantageously have from 1 to 4 carbon atoms.
  • R 1 , R 2 and R 3 may be the same or different.
  • R 5 and R 6 can derive from identical or different hydrocarbons.
  • R 1 is chosen from the following atoms or groups: -H, -OR 5
  • R 5 and R 6 are chosen respectively from alkyl radicals and alkylidene radicals of 1 to 3 carbon atoms.
  • R 1 , R 2 and R 3 are chosen from alkoxy (in particular from methoxy, ethoxy and propoxy groups).
  • the radical R 7 is branched (or substituted) by one or more side chains (or groups or groups or radicals) consisting only of carbon and hydrogen atoms, each of these side chains comprising from 1 to 4 carbon atoms, which may be linear (in the form, for example, of a linear alkyl such as methyl or ethyl) or in the form of a branched chain (for example an isopropyl), and which may possibly have multiple bonds (for example an alkylenyl).
  • the radical R 7 derives from a saturated hydrocarbon and is acyclic.
  • the radical R 7 is preferentially branched by alkyl groups, in particular is branched by at least two side chains, carried or not by the same carbon of the main chain (and in a particularly preferred way by one or more carbons middle (or more (s) in the center of the main chain comprising at least 3 carbon atoms), the side chains being chosen from alkyls of 1 to 3 carbon atoms.
  • the radical R 10 is preferably an alkylidene radical.
  • the radical R 8 is chosen from atoms or following groups: -H, -R 9 -NH.
  • the present invention also relates to the sizing composition used for coating the yarns, this composition comprising at least one silane corresponding to the formula defined above.
  • composition defined according to the invention for coating threads intended to serve as reinforcements in a corrosive medium has enabled an improvement, either initial or over time (less significant reduction in property for a given time), in at at least one given corrosive medium (wet, acidic or basic), in particular in at least the humid medium, of at least one mechanical property of the composites formed from the wires thus coated, compared to the composites formed from the son of the same basic composition (for example the same glass composition) but coated with traditional sizing compositions.
  • the threads according to the invention are capable of reinforcing organic materials as well as inorganic materials, regardless of the basic composition of . these wires (in particular when these wires are AR glass wires).
  • threads are therefore suitable for use in new fields of application and, where appropriate, in a wide range of corrosive media (in particular at least the wet environment), the improvement observed being dependent on the type of thread. coated glass, reinforced material and the corrosive medium considered.
  • the strands according to the invention are preferably glass strands, these strands generally being prepared according to methods known per se.
  • the glass strands according to the invention are manufactured in the following manner: molten glass strands are drawn mechanically (at speeds of several meters to tens of meters per second) in the form of one or more sheets of continuous filaments from the orifices of one or more dies, then the filaments
  • wires (generally between 5 and 24 ⁇ m in diameter) are coated with the sizing composition according to the invention before being assembled into one or more wires. These wires can then be wound on rotating supports, distributed on moving conveyors to form masts or sails or even be cut, either after formation by the member serving to stretch them, or in a subsequent operation. If necessary, before and / or after collection, the wires can be subjected to a heat treatment in order, for example, to dry them and / or to polymerize them.
  • the threads according to the invention are collected in the form of windings (for example rovings or rovings, or cakes).
  • these windings can advantageously be used for the manufacture of hollow bodies (such as pipes, tanks) by filament winding (deposit of a reinforcement - for example a sheet of rovings - impregnated with organic matter, on a mandrel in rotation around its axis), these hollow bodies being able to allow the transport or storage of chemicals, or these windings can be used for the manufacture of composite profiles by pultrusion (passage of a reinforcement impregnated with organic matter through a heated die), these profiles being used for example in the manufacture of reinforcements for reinforced concrete.
  • the present invention has thus made it possible to develop new products, such as reinforcements or composite bars based on AR glass strands according to the invention which can advantageously replace traditional concrete irons.
  • the glass strands according to the invention can be obtained from any type of glass usually used for the production of reinforcing glass strands.
  • the yarns according to the invention can in particular be E glass yarns, glass yarns of the type known as "R” (mechanically resistant) or "S” based on silica, alumina, magnesia and optionally lime, alkali-resistant glass strands, strands based on boron-free compositions, etc.
  • the glass strands according to the invention are so-called “alkali-resistant” glass strands (AR glass), this glass generally containing zirconium oxide Zr0.
  • AR glass alkali-resistant glass strands
  • These strands can be chosen from all the existing “alkali-resistant” glass strands (such as those described in patents GB 1,290,528, US 4,345,037, US 4,036,654, US 4,014,705, US 3,859,106, etc.) and preferably comprise at least 5 mol% of Zr0 2 .
  • the glass constituting the wires comprises Si0 2 , Zr0 2 and at least one alkaline oxide, preferably Na 2 0, as main constituents.
  • An alkali-resistant glass composition particularly used to make the glass strands according to the invention is the composition described in patent GB 1,290,528, composed mainly of the following components in the proportions expressed in molar percentages: 62-75% Si0 2 ; 7-11% Zr0 2 ; 13-23% R 2 0; 1-10% R'O; 0-4% Al 2 0 3 ; 0-6% B 2 0 3 ; 0-5% Fe 2 0 3 ; 0-2% CaF 2 ; 0-4% Ti0 2 ; R 2 0 representing one or more alkali metal oxide (s), preferably Na 2 0 and, optionally (up to 2%) Li 0, and R'O being one or more components chosen from alkaline earth oxides , ZnO and MnO.
  • the alkali-resistant glass strands and as defined according to the invention respond particularly advantageously to the objectives of the invention, in particular make it possible to obtain composites having good mechanical properties in corrosive medium, whether a humid, acidic or basic environment (wide range of possible applications, in particular use in applications where the corrosive environment is liable to change), the improvement being observed in particular in a humid environment, over time and possibly initially.
  • the AR glass strands according to the invention combine in a particularly satisfactory manner with organic materials (and no longer only with inorganic materials), making it possible to obtain new composite products, based on AR glass and material. (s) organic (s), such as those mentioned above, these new products also being covered by the present invention.
  • the sizing composition coating the threads according to the invention can be an aqueous or anhydrous composition or can comprise, for example, less than 5% by weight of compounds playing only a role of solvent.
  • the composition according to the invention is an aqueous composition comprising between 85 and 98% by weight of water and which is in the form of an aqueous dispersion (emulsion, suspension, mixture of emulsion (s) and / or suspension (s)) or solution.
  • the dry extract of the composition is generally between 2 and 15% by weight of the composition.
  • the composition comprises a particular silane corresponding to the formula given above, this silane not only acting as a coupling agent as usually observed in silanes but also acting, it seems, d protection officer.
  • the silane corresponding to the formula mentioned above is hereinafter referred to as “protective agent”. It seems in particular (without however limiting our to this supposition) that said silane has the double advantage of protecting the surface of the reinforcing threads in particular against humidity, without however harming the impregnation in particular by organic materials.
  • One or more protective agents according to the invention can be used.
  • the composition comprises a single protective agent according to the invention.
  • the level of protective agent (s) according to the invention within the sizing composition is generally between 1 and 20% by weight, preferably between 3 and 15% by weight of the dry extract of the composition, the improvement in mechanical properties observed on composites generally increasing with this rate. Below 1% by weight of protective agent (s) according to the invention, the improvement in mechanical properties is not significant and above 20% by weight of protective agent (s) according to the invention, the cost of sizing becomes very large without further improvement in properties.
  • the sizing composition according to the invention may comprise one or more other silanes playing the role of coupling agents, in particular one or more silanes commonly used in sizes such as an aminosilane, a vinylsilane, gamma methacryloxy propyl trimethoxy silane, etc.
  • the level of this or these other silanes is generally less than 10% by weight of the dry extract of the composition according to the invention, the maximum level of silane (s), all silanes combined, not exceeding 30% by weight dry extract of the composition according to the invention.
  • the composition comprises, in addition to the protection agent or agents mentioned above, at least one gamma methacryloxy propyl trimethoxy silane, or optionally a vinylsilane.
  • the sizing composition may also include other coupling agents such as titanates, zirconates, etc. or organic compounds facilitating the coupling of the glass strands to certain organic materials.
  • the protective agent (s) can be added directly to an existing sizing composition, for example to any sizing composition usually used according to the intended application, or the sizing composition according to the invention can be obtained by mixing all the required components, in one or more stages.
  • the silane according to the invention is added to the composition in hydrolysed form.
  • Other components, as usually used in this type of composition, can also be present in the sizing composition according to the invention.
  • the composition according to the invention generally comprises, in addition to the silane (s), at least one tackifier (or film-forming agent), this agent acting on the ability to use the wire, for example ensuring the bonding of the filaments with one another (integrity) within the threads and thus facilitating their handling and / or allowing better impregnation of the threads by the dies to be reinforced.
  • This agent well known in the sizing field, is most often in the form of a compound with epoxy function (s), for example a bisphenol A or F epoxy, a novolak epoxy, and / or under form of a compound with function (s) polyester such as an unsaturated polyester, and / or an epoxyester, etc.
  • the sizing composition according to the invention comprises at least two tackifying agents, one especially allowing good sheathing of the threads and the other ensuring good impregnation with the matrix to be reinforced.
  • the level of tackifier (s) is generally less than 90% by weight of the dry extract of the composition and preferably it is between 50 and
  • the composition generally comprises at least one lubricating agent, this agent protecting the threads from abrasion during and after fiberizing.
  • This agent well known in the sizing field, is most often in the form of a mixture of alkyls, alkylbenzenes, fatty esters, fatty alcohols, surfactants, etc.
  • the sizing composition according to the invention comprises at least two lubricating agents, such as a mineral oil and a fatty acid ester for example, one allowing the lubrication of the threads in a humid environment at the time of fiberizing and the other allowing subsequent lubrication in a dry environment.
  • the level of lubricating agent (s) is generally less than 20% by weight of the dry extract of the composition and, preferably, it is between 5 and 15% by weight of the dry extract of the composition.
  • the composition according to the invention may also comprise other active components, in particular components commonly used in sizing compositions such as textile (or softening) agents, antistatic agents, emulsifying or surfactant agents, wetting agents, etc. the proportion of these other agents generally ranging from 0 to 15% by weight of the dry extract of the composition.
  • the composition may also comprise at least one solvent, in particular water, as mentioned above.
  • Certain active components may already be in solution or dispersion in a solvent when they are added to the mixture which should give the sizing composition according to the invention and / or the solvent (s) may be added to the mixture with or after the active components in order '' obtain the viscosity and proportions usually required for deposition on the filaments.
  • the composition is generally deposited in one step on the filaments before their gathering into son as explained above.
  • the components of the composition coating the threads can be deposited in several stages; for example, the silane defined according to the invention can be deposited, in hydrolysed form, independently of the other constituents of the composition, preferably before the deposition of these other constituents, so that the silane is brought directly into contact with the glass constituting the strands. .
  • the loss on ignition of the wires according to the invention is generally between 0.3 and 2% by weight of the wires and, preferably, between 0.5 and 1.5% by weight of the wires.
  • the composites obtained from the threads according to the invention comprise at least one organic material and / or at least one inorganic material, and reinforcing threads, at least part of the reinforcing threads being the threads according to the invention.
  • the reinforcing threads according to the invention are preferably associated with thermosetting materials (vinylesters, polyesters, phenolics, epoxides, acrylics, etc.), advantageously with vinylesters, more resistant to corrosion than other organic materials, and / or to cementitious materials (cement, concrete, mortar, gypsum, compounds formed by the reaction of lime, silica and water, ...), the reinforcement of cementitious materials can be done directly or indirectly (after association with a material organic).
  • Particularly advantageous composites according to the invention are the composites formed from at least one plastic material (advantageously organic) and reinforcing threads according to the invention.
  • the following nonlimiting examples illustrate the glass strands and the compositions according to the invention and make it possible to compare the mechanical properties obtained before and after aging for composites produced from glass strands according to the invention with the mechanical properties obtained for composites made from traditional glass yarns.
  • EXAMPLE 1 glass filaments 17 ⁇ m in diameter are obtained by drawing streams of molten glass, this glass being an AR glass of the following composition expressed in percentages by weight:
  • the filaments are gathered into son, which are wound in the form of rovings, then the rovings are heated at 130 ° C for 12 hours in particular to dry them.
  • the strands obtained have a titer of 545 tex and a loss on ignition of 1.1%.
  • the wires are then extracted from the windings to measure their tensile fracture toughness under the conditions defined by standard ISO 3341.
  • the tensile fracture toughness measured on 8 to 10 test pieces is approximately 36 g / tex (deviation- 2 g / tex type).
  • the abrasion resistance of the threads is also evaluated by weighing the amount of flock formed after the threads have passed over a series of rods.
  • the quantity of flock at the end of the test is of the order of 28 mg per kg of yarn tested.
  • the reinforced resin is a vinylester resin marketed under the reference “Derakane 411/45” by the company DOW Chemical to which is added, for 100 parts by weight of vinylester resin, 1.5 parts of a hardener marketed under the reference “Trigonox 239” by the company AKZO, 0.08 parts of a polymerization accelerator marketed under the reference “NL 51P” by the company AKZO, 0.2 parts of a polymerization accelerator marketed under the reference "NL-63-100” by the company AKZO and 0.1 parts of an inhibitor sold under the reference "Promotor C” by the company AKZO.
  • the plates produced are then heat treated and the mechanical properties presented by these plates, in bending and in shear, are measured respectively according to ISO 14125 and ISO 14130 standards on test pieces previously left at 21 ° C. (with 50% relative humidity ambient temperature) for 72 hours.
  • the bending breaking stress, for a glass ratio reduced to 100%, is approximately 2320 MPa (standard deviation of 80 MPa) for ten test pieces and the shear breaking stress is about 70 MPa (standard deviation of 0.4 MPa).
  • the mechanical properties of the test pieces are also measured after aging, which consists of putting the test pieces in a boiling water flask for 72 h and then testing them 5 hours after.
  • the stress at break in bending after aging, for a reduced glass content at 100%, is around 1800 MPa (standard deviation of 120 MPa) and the breaking stress in shear is around 52 MPa (standard deviation of 1.3 MPa).
  • COMPARATIVE EXAMPLE 1 The procedure is as in Example 1, replacing, in the sizing composition, the silane according to the invention with the (N, benzylaminoethyl) aminopropyl trimethoxysilane sold under the reference "Al 128" by the company Osi Specialties.
  • the yarns obtained have a titer of 623 tex and a loss on ignition of 1% -
  • the tensile fracture toughness is approximately 38 g / tex (standard deviation of 3 g / tex).
  • the quantity of flock at the end of the abrasion resistance test for the threads is of the order of 19 mg per kg of thread tested.
  • the breaking stress in bending, for a rate of glass reduced to 100% is approximately 2350 MPa (standard deviation of 80 MPa) and the breaking stress in shearing is approximately 52 MPa (standard deviation of
  • COMPARATIVE EXAMPLE 2 The procedure is as in Example 1, replacing, in the sizing composition, the silane according to the invention with the aminoethyl aminopropyl trimethoysilane sold under the reference "Z6020" by the company Dow Corning.
  • the yarns obtained have a titer of 654 tex and a loss on ignition of 0.9%.
  • the tensile strength at break is approximately 35 g / tex (standard deviation of 3 g / tex).
  • the quantity of flock at the end of the abrasion resistance test for the threads is of the order of 34 mg per kg of thread tested.
  • the threads according to the invention make it possible to obtain composites having mechanical properties after aging in a wet environment markedly improved compared to those of the composites obtained from the conventional threads presented in comparative examples, the presence of the protective agent which does not further harm the other properties of the threads, for example the ability to wind or weave the threads. Note that the results after aging in an acid medium or after aging in a basic medium (not reported, little difference for these results between the present examples) are also very satisfactory.
  • the wires according to the invention can be used to produce various composites and in particular to produce tubes, pipes, tanks by winding or to produce pultrude rods which can be used to replace concrete irons, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

La présente invention concerne des fils de renforcement revêtus d'une composition d'ensimage comprenant au moins un silane répondant à la formule: Si (R<1>) (R<2>) (R<3>) (R<4>) dans laquelle: R<1>, R<2> et R<3> sont choisis parmi les atomes ou groupes suivants: -H (excepté pour R<3>), -Cl, -O-R<5>, -O-R<6>-O-R<5>, -O-(C=O)-R<5>, -O-R<6>-(C=O)-R<5>, R<5> et R<6> étant choisis parmi les radicaux hydrocarbonés dont la chaîne principale présente de 1 à 4 atomes de carbone, R<4> = -R<7>-NHR<8>, R<7> étant choisi parmi les radicaux hydrocarbonés ramifiés dont la chaîne principale présente de 2 à 6 atomes de carbone, R<8> étant choisi parmi les groupes suivants: -H, -R<9>-NH2, -R<10>-NH-R<9>-NH2, R<9> étant choisi parmi les radicaux hydrocarbonés de 1 à 12 atomes de carbone ou parmi les carbonyles, et R<10> étant choisi parmi les radicaux hydrocarbonés dont la chaîne principale présente de 1 à 6 atomes de carbone. Les fils de verre selon l'invention sont particulièrement aptes à renforcer des matières organiques, les fils et composites obtenus résistant en milieu corrosif.

Description

FILS DE RENFORCEMENT ET COMPOSITES RÉSISTANT EN MILIEU CORROSIF
La présente invention concerne des fils (ou fibres) aptes à renforcer des matières organiques et/ou inorganiques, ainsi que les produits renforcés (ou composites) obtenus, ces fils de renforcement et ces composites étant susceptibles d'être utilisés en milieu corrosif (milieu humide, milieu acide ou milieu basique).
La présente invention s'intéresse en particulier aux fils de verre de renforcement, susceptibles d'être obtenus par étirage mécanique, à grande vitesse (jusqu'à quelques dizaines de mètres par seconde), de filets de verre fondu s'ecoulant d'orifices disposés à la base d'une filière. Ces filets sont étirés sous forme de filaments, lesquels sont revêtus, avant leur rassemblement en fils, d'une composition appelée composition d'ensimage destinée notamment à protéger les fils de l'abrasion et à favoriser l'adhésion entre le verre et la matière à renforcer. Les fils de verre de renforcement les plus courants sont à base de verre E, la composition de ce verre étant dérivée de l'eutectique à 1170°C du diagramme ternaire Si02-AI203-CaO (cf. les brevets US-A-2 334 961 et US-A- 2 571 074 présentant l'archétype de ces verres). Dans la plupart des cas, ces fils de verre E, revêtus d'ensimages traditionnels, conviennent au renforcement des matières organiques et permettent de réaliser des composites présentant de bonnes propriétés mécaniques. Cependant, lorsque ces fils ou les composites réalisés à partir de ces fils sont utilisés dans des milieux corrosifs, humide, acide ou basique, sur une durée et/ou sous des contraintes importantes (par exemple fils utilisés pour renforcer le ciment ou composites en contact prolongé avec un acide), on observe, au cours du temps, une diminution notable des propriétés mécaniques des composites formés. Parallèlement, il existe des fils de verre « AR » (alcali-résistant) qui, également revêtus de compositions d'ensimage traditionnelles, permettent d'obtenir des composites plus aptes à conserver de bonnes propriétés mécaniques dans le temps en milieu acide et surtout en milieu basique (que ce milieu soit constitué par la matière à renforcer ou soit celui dans lequel sont utilisés les composites). La composition de ces verres contient généralement une proportion importante d'oxyde de zirconium et est, par exemple, du type Na20-Zr02-Si02. Une composition classique de ces verres est notamment donnée dans le brevet GB 1 290 528. Cependant, ces fils restent sensibles au milieu humide, ces fils adhérant en outre plus faiblement aux matières organiques que les fils de verre E et réservant ainsi leur utilisation au renforcement direct (sans matière organique intermédiaire) de matières inorganiques telles que le ciment.
Le but de la présente invention a été de mettre au point des composites plus résistants en milieu corrosif, de préférence dans différents milieux corrosifs et en particulier en milieu humide (milieu corrosif le plus courant, l'humidité étant déjà présente dans l'air ambiant), et/ou d' élargir la gamme des produits pouvant être utilisés dans ce type de milieux, en particulier dans des domaines pour lesquels les fils de verre précédemment mentionnés ne sont pas les plus adaptés ou pour lesquels les produits actuellement utilisés ne sont pas entièrement satisfaisants, par exemple dans le domaine de la fabrication de corps creux par enroulement filamentaire, en particulier pour le stockage ou transport de diverses matières chimiques, ou dans le domaine de la pultrusion (par exemple en vue de remplacer les fers à béton traditionnels par des produits composites).
Ce but est atteint par la présente invention proposant des fils de renforcement permettant d'obtenir des composites avec des propriétés mécaniques améliorées dans au moins un milieu corrosif (avantageusement le milieu humide), par rapport à chacun, respectivement, des fils existants précités, les fils selon l'invention permettant également la fabrication de composites performants appropriés pour les applications précédemment citées. Les fils de renforcement selon l'invention (préférentiellement des fils de verre) sont revêtus d'une composition d'ensimage comprenant (ou dont un des constituants initiaux est) au moins un silane répondant à la formule suivante :
Si (R1) (R2) (R3) (R4) dans laquelle :
• R1 et R2 sont choisis parmi les atomes ou groupes suivants : -H, -Cl, -O-R5, -0-R6-0-R5, -0-(C=0)-R5, -0-R6-(O0)-R5,
• R3 est choisi parmi les atomes ou groupes suivants : -Cl, -O-R5, -0-R6-0-R5, -0-(C=0)-R5, -0-R6~(C=0)-R5, • R5 et R6 étant choisis parmi les radicaux hydrocarbonés dont la chaîne principale présente de 1 à 4 atomes de carboneΛ
• R4 = -R7-NHR8
• R7 étant choisi parmi les radicaux hydrocarbonés ramifiés dont la chaîne principale présente de 2 à 6 atomes de carbone, • R8 étant choisi parmi les groupes suivants : -H, -R9-NH2, -R10-NH-R9-NH2 ,
• R9 étant choisi parmi les radicaux hydrocarbonés de 1 à 12 atomes de carbone ou parmi les carbonyles,
• et R10 étant choisi parmi les radicaux hydrocarbonés dont la chaîne principale présente de 1 à 6 atomes de carbone.
Par radical hydrocarboné, on entend avantageusement un radical (ou groupe ou groupement) constitué uniquement d'atomes de carbone et d'hydrogène, ramifié ou non, dérivant (enlèvement d'un - cas d'un radical monovalent - ou de deux - cas d'un radical bivalent - atomes d'hydrogène d'un hydrocarbure) d'un hydrocarbure saturé ou présentant éventuellement une ou des liaisons multiples (liaison double, liaison triple), acyclique ou éventuellement cyclique voire, dans le cas de R9, pouvant comprendre un noyau benzénique. Dans le cas d'un groupe hydrocarboné ramifié, la ou les chaînes secondaires présentent chacune avantageusement de 1 à 4 atomes de carbone.
Les groupes R1, R2 et R3 peuvent être identiques ou différents. De même, R5 et R6 peuvent dériver d'hydrocarbures identiques ou différents. De préférence, R1 est choisi parmi les atomes ou groupes suivants : -H, -OR5
(groupe alcoxy), -0-R6-0-R5, -0-(C=0)-R5 ( groupe acétoxy), et R2 et R3 sont choisis parmi les groupes suivants : -OR5, -0-R6-0-R5, -0-(C=0)-R5.
De préférence également, R5 et R6 sont choisis respectivement parmi les radicaux alkyles et les radicaux alkylidènes de 1 à 3 atomes de carbone. De façon particulièrement préférée, R1, R2 et R3 sont choisis parmi les alcoxy (en particulier parmi les groupes méthoxy, éthoxy et propoxy).
Le radical R7 est ramifié (ou substitué) par une ou plusieurs chaînes latérales (ou groupements ou groupes ou radicaux) constituées uniquement d'atomes de carbone et d'hydrogène, chacune de ces chaînes latérales comprenant de 1 à 4 atomes de carbone, pouvant être linéaire (sous forme par exemple d'un alkyle linéaire tel qu'un méthyle ou éthyle) ou sous forme d'une chaîne ramifiée (par exemple un isopropyle), et pouvant éventuellement présenter des liaisons multiples (par exemple un alkylényle). De préférence, le radical R7 dérive d'un hydrocarbure saturé et est acyclique. Avantageusement également, le radical R7 est préférentiel lement ramifié par des groupements alkyles, en particulier est ramifié par au moins deux chaînes latérales, portées ou non par le même carbone de la chaîne principale (et de façon particulièrement préférée par un ou des carbones au milieu, ou le(s) plus au centre, de la chaîne principale comprenant au moins 3 atomes de carbones), les chaînes latérales étant choisies parmi les alkyles de 1 à 3 atomes de carbone.
Le radical R9 est choisi de préférence parmi les radicaux suivants (bivalents) : radical alkylidène, cyclique ou acyclique, ramifié ou non, dont la chaîne principale présente de 1 à 6 atomes de carbone, radical phénylène, radical alkyle-phényle combinant les deux types de radicaux précédents ou éventuellement alcényle-phényle, radical carbonyle -(C=0)-. Le radical R10 est de préférence un radical alkylidène.
Avantageusement, le radical R8 est choisi parmi les atomes ou groupes suivants : -H, -R9-NH .
Un silane particulièrement avantageux répondant à la définition de l'invention est celui dans lequel R1 = R2 = R3 = -CH30 et dans lequel R4 = -CH2-CH2-C(CH3)2-CH2-NH2 (c'est-à-dire R7= -CH2-CH2-C(CH3)2-CH2- et R8= -H), c'est-à-dire le amino-4 diméthyI-3, 3 butyl triméthoxy silane, ou bien éventuellement celui dans lequel R1 = R2 = R3 = -CH30 et R4 = -CH2-C(CH3)2-CH2-NH2 (c'est-à-dire R7= -CH2-C(CH3)2-CH2- et R8= -H), c'est-à-dire le amino-3 diméthyl-2, 2 propyl triméthoxy silane.
La présente invention concerne également la composition d'ensimage utilisée pour revêtir les fils, cette composition comprenant au moins un silane répondant à la formule précédemment définie.
L'utilisation de la composition définie selon l'invention pour revêtir des fils destinés à servir de renforts en milieu corrosif a permis une amélioration, soit initiale, soit dans le temps (diminution moins importante de la propriété pour un temps donné), dans au moins un milieu corrosif donné (humide, acide ou basique), en particulier dans au moins le milieu humide, d'au moins une propriété mécanique des composites formés à partir des fils ainsi revêtus, par rapport aux composites formés à partir des fils de même composition de base (par exemple même composition de verre) mais revêtus de compositions d'ensimage traditionnelles. En outre, on observe que les fils selon l'invention sont aptes à renforcer aussi bien des matières organiques que des matières inorganiques et ceci quelle que soit la composition de base de. ces fils (en particulier lorsque ces fils sont des fils de verre AR). Ces fils sont par conséquent appropriés pour l'utilisation dans de nouveaux domaines d'application et, le cas échéant, dans une large gamme de milieux corrosifs (en particulier au moins le milieu humide), l'amélioration observée étant fonction du type de fils de verre revêtus, de la matière renforcée et du milieu corrosif considéré.
Comme indiqué précédemment, les fils selon l'invention sont de préférence des fils de verre, ces fils étant généralement préparés selon des procédés connus en soi. De façon générale, la fabrication des fils de verre selon l'invention se fait de la façon suivante : des filets de verre fondu sont étirés mécaniquement (à des vitesses de plusieurs mètres à dizaines de mètres par seconde) sous la forme d'une ou plusieurs nappes de filaments continus à partir des orifices d'une ou plusieurs filières, puis les filaments
(de diamètre généralement compris entre 5 et 24 μm) sont revêtus de la composition d'ensimage selon l'invention avant d'être rassemblés en un ou plusieurs fils. Ces fils peuvent ensuite être bobinés sur des supports en rotation, être répartis sur des convoyeurs en mouvement pour former des mats ou des voiles ou encore être coupés, soit après formation par l'organe servant à les étirer, soit dans une opération ultérieure. Le cas échéant, avant et/ou après collecte, les fils peuvent être soumis à un traitement thermique afin par exemple de les sécher et/ou de les polymériser.
De préférence, les fils selon l'invention sont collectés sous forme d'enroulements (par exemple des stratifils ou rovings, ou des gâteaux). En particulier lorsque les fils selon l'invention sont des fils de verre AR, ces enroulements peuvent avantageusement être utilisés pour la fabrication de corps creux (tels que tuyaux, citernes) par enroulement filamentaire (dépôt d'un renfort - par exemple une nappe de rovings - imprégné de matière organique, sur un mandrin en rotation autour de son axe), ces corps creux pouvant permettre le transport ou stockage de produits chimiques, ou ces enroulements peuvent être utilisés pour la fabrication de profilés composites par pultrusion (passage d'un renfort imprégné de matière organique au travers d'une filière chauffée), ces profilés servant par exemple dans la fabrication d'armatures pour le béton armé. La présente invention a ainsi permis de mettre au point des produits nouveaux, tels que des armatures ou barres composites à base de fils de verre AR selon l'invention pouvant remplacer avantageusement les fers à béton traditionnels.
Les fils de verre selon l'invention peuvent être obtenus à partir de tout type de verre habituellement utilisé pour la réalisation de fils de verre de renforcement. Les fils selon l'invention peuvent être notamment des fils de verre E, des fils de verre du type dit « R » (résistant mécaniquement) ou « S » à base de silice, d'alumine, de magnésie et éventuellement de chaux, des fils de verre alcali-résistant, des fils à base de compositions sans bore, etc..
De préférence, les fils de verre selon l'invention sont des fils de verre dit « alcali-résistant » (verre AR), ce verre renfermant généralement de l'oxyde de zirconium Zr0 . Ces fils peuvent être choisis parmi tous les fils de verre « alcali-résistant » existants (tels que ceux décrits dans les brevets GB 1 290 528, US 4 345 037, US 4 036 654, US 4 014 705, US 3 859 106, etc..) et comprennent, de préférence, au moins 5 % en moles de Zr02. Selon un mode de réalisation de l'invention, le verre constitutif des fils comprend Si02, Zr02 et au moins un oxyde alcalin, de préférence Na20, comme principaux constituants.
Une composition de verre alcali-résistant particulièrement utilisée pour réaliser les fils de verre selon l'invention est la composition décrite dans le brevet GB 1 290 528, composée principalement des composants suivants dans les proportions exprimées en pourcentages molaires : 62-75 % Si02 ; 7-11 % Zr02 ; 13-23 % R20 ; 1-10 % R'O ; 0-4 % Al203 ; 0-6 % B203 ; 0-5 % Fe203 ; 0-2 % CaF2 ; 0-4 % Ti02 ; R20 représentant un ou des oxyde(s) alcalin(s), de préférence Na20 et, éventuellement (jusqu'à 2 %) Li 0, et R'O étant un ou des composants choisis parmi les oxydes alcalino- terreux, ZnO et MnO.
Les fils de verre alcali-résistant et tels que définis selon l'invention répondent de manière particulièrement avantageuse aux objectifs de l'invention, en particulier permettent d'obtenir des composites présentant de bonnes propriétés mécaniques en milieu corrosif, qu'il s'agisse d'un milieu humide, acide ou basique (large gamme d'applications possibles, en particulier utilisation dans des applications où le milieu corrosif est susceptible d'évoluer), l'amélioration s'observant notamment en milieu humide, dans le temps et éventuellement initialement. De plus, les fils de verre AR selon l'invention se combinent de façon particulièrement satisfaisante avec des matières organiques (et non plus seulement avec les matières inorganiques), permettant l'obtention de nouveaux produits composites, à base de verre AR et de matière(s) organique(s), tels que ceux mentionnés précédemment, ces nouveaux produits étant également visés par la présente invention.
La composition d'ensimage revêtant les fils selon l'invention peut être une composition aqueuse ou anhydre ou peut comprendre, par exemple, moins de 5 % en poids de composés jouant uniquement un rôle de solvant. Dans la plupart des cas, la composition selon l'invention est une composition aqueuse comprenant entre 85 et 98 % en poids d'eau et se présentant sous forme d'une dispersion aqueuse (émulsion, suspension, mélange d'émulsion(s) et/ou de suspension(s)) ou d'une solution. Dans les cas où la composition d'ensimage selon l'invention se présente sous forme d'une dispersion ou solution aqueuse, l'extrait sec de la composition est généralement compris entre 2 et 15 % en poids de la composition.
Conformément à la définition de l'invention, la composition comprend un silane particulier répondant à la formule précédemment donnée, ce silane faisant non seulement office d'agent de couplage comme habituellement observé chez les silanes mais faisant également office, semble t'il, d'agent de protection. A ce titre et afin de le distinguer des silanes habituels faisant seulement office d'agents de couplage, le silane répondant à la formule précédemment mentionnée est ci-après désigné par « agent de protection ». Il semble notamment (sans toutefois nous limiter à cette supposition) que ledit silane présente le double avantage de protéger la surface des fils de renforcement en particulier contre l'humidité, sans pour autant nuire à l'imprégnation en particulier par les matières organiques. On peut utiliser un ou plusieurs agents de protection selon l'invention.
De préférence, la composition comprend un seul agent de protection selon l'invention.
Le taux d'agent(s) de protection selon l'invention au sein de la composition d'ensimage est généralement compris entre 1 et 20 % en poids, préferentiellement entre 3 et 15 % en poids de l'extrait sec de la composition, l'amélioration des propriétés mécaniques observée sur les composites augmentant généralement avec ce taux. En dessous de 1 % en poids d'agent(s) de protection selon l'invention, l'amélioration des propriétés mécaniques est peu significative et au dessus de 20 % en poids d'agent(s) de protection selon l'invention, le coût de l'ensimage devient très important sans amélioration supplémentaire des propriétés.
Outre cet ou ces agents de protection, la composition d'ensimage selon l'invention peut comprendre un ou plusieurs autres silanes jouant le rôle d'agents^ de couplage, notamment un ou des silanes couramment utilisés dans les ensimages tels qu'un aminosilane, un vinylsilane, le gamma méthacryloxy propyl triméthoxy silane, etc. Le taux de ce ou ces autres silanes est généralement inférieur à 10% en poids de l'extrait sec de la composition selon l'invention, le taux maximal de silane(s), tous silanes confondus, n'excédant pas 30% en poids de l'extrait sec de la composition selon l'invention. De préférence, lorsque les fils selon l'invention sont destinés au renforcement d'au moins une matière vinylester (ou éventuellement d'une matière polyester ou époxy), la composition comprend, outre le ou les agents de protection précédemment mentionnés, au moins un gamma méthacryloxy propyl triméthoxy silane, ou éventuellement un vinylsilane. La composition d'ensimage peut également comprendre d'autres agents de couplage tels que des titanates, zirconates, etc.. ou des composés organiques facilitant le couplage des fils de verre à certaines matières organiques.
Le ou les agents de protection peuvent être ajoutés directement à une composition d'ensimage existante, par exemple à toute composition d'ensimage habituellement utilisée selon l'application visée, ou la composition d'ensimage selon l'invention peut être obtenue en mélangeant tous les composants requis, en une ou plusieurs étapes. Généralement le silane selon l'invention est ajouté à la composition sous forme hydrolysée. D'autres composants, tels qu'utilisés habituellement dans ce type de composition, peuvent également être présents dans la composition d'ensimage selon l'invention. En particulier, la composition selon l'invention comprend généralement, en plus du ou des silane(s), au moins un agent collant (ou filmogène), cet agent agissant sur l'aptitude à la mise en œuvre du fil, par exemple assurant la liaison des filaments entre eux (intégrité) au sein des fils et facilitant ainsi leur manipulation et/ou permettant une meilleure imprégnation des fils par les matrices à renforcer. Cet agent, bien connu dans le domaine des ensimages, se présente le plus souvent sous forme d'un composé à fonction(s) époxy, par exemple un époxy de bisphénol A ou F, un époxy novolaque..., et/ou sous forme d'un composé à fonction(s) polyester tel qu'un polyester insaturé, et/ou un époxyester, etc.
Généralement, la composition d'ensimage selon l'invention comprend au moins deux agents collants, l'un permettant surtout un bon gainage des fils et l'autre assurant une bonne imprégnation par la matrice à renforcer. Le taux d'agent(s) collant(s) est généralement inférieur à 90% en poids de l'extrait sec de la composition et de préférence, il est compris entre 50 et
85% en poids de l'extrait sec de la composition.
De la même façon, la composition comprend généralement au moins un agent lubrifiant, cet agent protégeant les fils de l'abrasion pendant et après le fibrage. Cet agent, bien connu dans le domaine des ensimages, se présente le plus souvent sous forme d'un mélange d'alkyls, d'alkylbenzènes, d'esters gras, d'alcools gras, de tensioactifs, etc. Généralement, la composition d'ensimage selon l'invention comprend au moins deux agents lubrifiants, tels qu'une huile minérale et un ester d'acide gras par exemple, l'un permettant la lubrification des fils en milieu humide au moment du fibrage et l'autre permettant la lubrification ultérieure en milieu sec. Le taux d'agent(s) lubrifiant(s) est généralement inférieur à 20% en poids de l'extrait sec de la composition et, de préférence, il est compris entre 5 et 15% en poids de l'extrait sec de la composition. La composition selon l'invention peut également comprendre d'autres composants actifs, notamment des composants couramment utilisés dans les compositions d'ensimage tels que des agents textiles (ou adoucissant), des agents antistatiques, des agents émulsifiants ou tensioactifs, des agents mouillants, etc.. la proportion de ces autres agents allant généralement de 0 à 15 % en poids de l'extrait sec de la composition.
Outre les composants actifs précités, la composition peut également comprendre au moins un solvant, notamment l'eau, comme mentionné précédemment. Certains composants actifs peuvent être déjà en solution ou dispersion dans un solvant lors de leur ajout au mélange devant donner la composition d'ensimage selon l'invention et/ou le ou les solvants peuvent être ajoutés au mélange avec ou après les composants actifs afin d'obtenir la viscosité et les proportions habituellement requises pour le dépôt sur les filaments. La composition est généralement déposée en une étape sur les filaments avant leur rassemblement en fils comme explicité précédemment.
Cependant, les composants de la composition revêtant les fils peuvent être déposés en plusieurs étapes ; par exemple, le silane défini selon l'invention peut être déposé, sous forme hydrolysée, indépendamment des autres constituants de la composition, de préférence avant le dépôt de ces autres constituants, pour que le silane soit mis directement au contact du verre constituant les fils.
La perte au feu des fils selon l'invention est généralement comprise entre 0.3 et 2% en poids des fils et, de préférence, entre 0.5 et 1.5% en poids des fils.
Les composites obtenus à partir des fils selon l'invention comprennent au moins une matière organique et/ou au moins une matière inorganique, et des fils de renfort, une partie au moins des fils de renfort étant les fils selon l'invention. Les fils de renfort selon l'invention sont préferentiellement associés à des matières thermodurcissables (vinylesters, polyesters, phénoliques, époxydes, acryliques, ...), avantageusement à des vinylesters, plus résistants à la corrosion que d'autres matières organiques, et/ou à des matières cimentaires (ciment, béton, mortier, gypse, composés formés par réaction de chaux, de silice et d'eau, ...), le renforcement des matières cimentaires pouvant se faire directement ou indirectement (après association avec une matière organique). Des composites particulièrement intéressants selon l'invention sont les composites formés d'au moins une matière plastique (avantageusement organique) et de fils de renfort selon l'invention.
Les exemples suivants non limitatifs illustrent les fils de verre et les compositions selon l'invention et permettent de comparer les propriétés mécaniques obtenues avant et après vieillissement pour des composites réalisés à partir de fils de verre selon l'invention avec les propriétés mécaniques obtenues pour des composites réalisés à partir de fils de verre traditionnels.
EXEMPLE 1 Dans cet exemple, des filaments de verre de 17 μm de diamètre sont obtenus par étirage de filets de verre fondu, ce verre étant un verre AR de composition suivante exprimée en pourcentages pondéraux :
Si02 61,6%
Al2O3 0,9% Zr02 16,8%
CaO 5,4%
Na2O 14,7%
K20 0,3%
Fe2O3 0,05% Fluor 0,26%
SO3 0,05%
TiO2 0,1%
Ces filaments sont revêtus, pendant leur trajet avant rassemblement en fils, de l'ensimage de composition suivante exprimée en pourcentages pondéraux : époxy ester de masse moléculaire égale à 1100 1 1.2 % époxy bisphénol A 2) 3.6 % agent de couplage gamma-méthacryloxypropyl triméthoxysilane(3) 0,35 % huile minérale 4 0,32 % • ester d'acide gras (5) 0,54 % amino diméthyl butyl triméthoxy silane(6) 0.35 %
(silane/agent de protection selon l'invention) eau 93.64%
Les filaments sont rassemblés en fils, lesquels sont bobinés sous forme de stratifils, puis les stratifils sont chauffés à 130°C pendant 12 heures afin notamment de les sécher. Les fils obtenus présentent un titre de 545 tex et une perte au feu de 1,1 %.
Les fils sont ensuite extraits des enroulements pour mesurer leur ténacité à la rupture en traction dans les conditions définies par la norme ISO 3341. La ténacité à la rupture en traction mesurée sur 8 à 10 éprouvettes est d'environ 36 g/tex (écart-type de 2 g/tex).
La résistance à l'abrasion des fils est également évaluée en pesant la quantité de bourre formée après passage des fils sur une série de tiges.
Pour différents fils revêtus de l'ensimage polymérisé décrit dans le présent exemple, la quantité de bourre à l'issue du test est de l'ordre de 28 mg par kg de fil testé.
Des plaques composites à fils parallèles sont également réalisées conformément à la norme NF T 57-152 à partir des fils obtenus. La résine renforcée est une résine vinylester commercialisée sous la référence « Derakane 411/45 » par la société DOW Chemical à laquelle on ajoute, pour 100 parts en poids de résine vinylester, 1.5 part d'un durcisseur commercialisé sous la référence « Trigonox 239 » par la société AKZO, 0.08 part d'un accélérateur de polymérisation commercialisé sous la référence « NL 51P » par la société AKZO, 0.2 parts d'un accélérateur de polymérisation commercialisé sous la référence « NL-63-100 » par la société AKZO et 0,1 parts d'un inhibiteur commercialisé sous la référence « Promotor C » par la société AKZO.
Les plaques réalisées sont ensuite traitées thermiquement et les propriétés mécaniques présentées par ces plaques, en flexion et en cisaillement, sont mesurées respectivement selon les normes ISO 14125 et ISO 14130 sur les éprouvettes préalablement laissées à 21 °C (avec 50% d'humidité relative ambiante) pendant 72 H. La contrainte à la rupture en flexion, pour un taux de verre ramené à 100 %, est d'environ 2320 MPa (écart-type de 80 MPa) pour dix éprouvettes et la contrainte à la rupture en cisaillement est d'environ 70 MPa (écart-type de 0.4 MPa).
Les propriétés mécaniques des éprouvettes sont également mesurées après vieillissement consistant à mettre les éprouvettes dans un ballon d'eau bouillante pendant 72 h puis à les tester 5 heures après.. La contrainte à la rupture en flexion après vieillissement, pour un taux de verre ramené à 100 %, est d'environ 1800 MPa (écart-type de 120 MPa) et la contrainte à la rupture en cisaillement est d'environ 52 MPa (écart -type de 1.3 MPa).
EXEMPLE COMPARATIF 1 On procède comme dans l'exemple 1 en remplaçant, dans la composition d'ensimage, le silane selon l'invention par le (N, benzylaminoéthyl) aminopropyl triméthoxysilane commercialisé sous la référence « Al 128 » par la société Osi Specialities.
Les fils obtenus présentent un titre de 623 tex et une perte au feu de 1 %- La ténacité à la rupture en traction est d'environ 38 g/tex (écart-type de 3 g/tex).
La quantité de bourre à l'issue du test de résistance à l'abrasion des fils est de l'ordre de 19 mg par kg de fil testé. Avant vieillissement, la contrainte à la rupture en flexion, pour un taux de verre ramené à 100 %, est d'environ 2350 MPa (écart-type de 80 MPa) et la contrainte à la rupture en cisaillement est d'environ 52 MPa (écart-type de
2.2 MPa) et, après vieillissement, la contrainte à la rupture en flexion, pour un taux de verre ramené à 100 %, est d'environ 1007 MPa (écart-type de 34 MPa) et la contrainte à la rupture en cisaillement est d'environ 20 MPa (écart-type 0.3 de MPa).
EXEMPLE COMPARATIF 2 On procède comme dans l'exemple 1 en remplaçant, dans la composition d'ensimage, le silane selon l'invention par le aminoéthyl aminopropyl trimethoysilane commercialisé sous la référence « Z6020 » par la société Dow Corning.
Les fils obtenus présentent un titre de 654 tex et une perte au feu de 0.9 %.
La ténacité à la rupture en traction est d'environ 35 g/tex (écart-type de 3 g/tex).
La quantité de bourre à l'issue du test de résistance à l'abrasion des fils est de l'ordre de 34 mg par kg de fil testé.
Avant vieillissement, la contrainte à la rupture en flexion, pour un taux de verre ramené à 100 %, est d'environ 2380 MPa (écart-type de 50 MPa) et la contrainte à la rupture en cisaillement est d'environ 54 MPa (écart-type de
1.3 MPa) et, après vieillissement, la contrainte à la rupture en flexion, pour un taux de verre ramené à 100 %, est d'environ 1130 MPa (écart-type de 41 MPa) et la contrainte à la rupture en cisaillement est d'environ 23 MPa (écart-type de 0.7MPa). On observe que les fils selon l'invention permettent d'obtenir des composites présentant des propriétés mécaniques après vieillissement en milieu humide nettement améliorées par rapport à celles des composites obtenus à partir des fils classiques présentés en exemples comparatifs, la présence de l'agent de protection ne nuisant pas en outre aux autres propriétés des fils, par exemple à l'aptitude à l'enroulement ou au tissage des fils. A noter que les résultats après vieillissement en milieu acide ou après vieillissement en milieu basique (non rapportés, peu de différence pour ces résultats entre les présents exemples) sont également très satisfaisants.
Les fils selon l'invention peuvent être utilisés pour réaliser divers composites et notamment pour réaliser des tubes, tuyaux, citernes par enroulement ou pour réaliser des joncs pultrudes pouvant être utilisés en remplacement de fers à béton, etc..
(1) Commercialisé, dilué à 40%, sous la référence « Neoxil 962 D» par la Société DSM
(2) Commercialisé, dilué à 60 %, sous la référence « Epirez 3510W60 » par la Société Resolution
(3) Commercialisé sous la référence « Silquest A 174 » par la Société Osi Specialities
(4) Commercialisé sous la référence « Torfil LA4 » par la Société Lamberti (5) Commercialisé sous la référence « Syntofil » par la Société Lamberti
(6) Commercialisé sous la référence « Y11637 » par la Société Osi Specialities.

Claims

REVENDICATIONS
1. Fils de renforcement, en particulier fils de verre, revêtus d'une composition d'ensimage comprenant au moins un silane répondant à la formule suivante : Si (R1) (R2) (R3) (R4) dans laquelle :
• R1 et R2 sont choisis parmi les atomes ou groupes suivants : -H, -Cl, -O-R5, -0-R6-0-R5, -0-(C≈O)-R5, -0-R6-(C=0)-R5,
• R3 est choisi parmi les atomes ou groupes suivants : -Cl, -O-R5, -0-R6-0-R5, -0-(C=0)-R5, -0-R6-(C=0)-R5,
• R5 et R6 étant choisis parmi les radicaux hydrocarbonés dont la chaîne principale présente de 1 à 4 atomes de carbone^
• R = -R7-NHR8
• R7 étant choisi parmi les radicaux hydrocarbonés ramifiés dont la chaîne principale présente de 2 à 6 atomes de carbone,
• R8 étant choisi parmi les groupes suivants : -H, -R9-NH2, -R10-NH-R9-NH2 ,
• R9 étant choisi parmi les radicaux hydrocarbonés de 1 à 12 atomes de carbone ou parmi les carbonyles, • et R10 étant choisi parmi les radicaux hydrocarbonés dont la chaîne principale présente de 1 à 6 atomes de carbone.
2. Fils de renforcement selon la revendication 1, caractérisés en ce que Rj . = R2 = R3 = -CH30 , et R4 =-CH2-CH2-C(CH3)2-CH2-NH2 ou R4 = -CH2-C(CH3)2-CH2-NH2.
3. Fils de renforcement selon la revendication 1 ou la revendication 2, caractérisés en ce que la composition comprend en outre au moins un gamma méthacryloxy propyl triméthoxy silane ou un vinylsilane.
4. Fils de renforcement selon l'une des revendications 1 à 3, caractérisés en ce que la composition comprend en outre au moins un, et de préférence au moins deux, agent(s) collant(s).
5. Fils de renforcement selon l'une des revendications 1 à 4, caractérisés en ce que la composition comprend en outre au moins un, et de préférence au moins deux, agent(s) lubrifiant(s).
6. Fils de renforcement selon l'une des revendications 1 à 5, caractérisés en ce qu'Ws sont obtenus à partir d'un verre alcalino-résistant.
7. Fils de renforcement selon l'une des revendications 1 à 6, caractérisés en ce qu'Ws sont utilisés pour le renforcement de matières plastiques, en particulier organiques.
8. Composition d'ensimage pour fils de renforcement, en particulier pour fils de verre, comprenant au moins un silane répondant à la formule suivante :
Si (R1) (R2) (R3) (R4) dans laquelle :
• R1 et R2 sont choisis parmi les atomes ou groupes suivants : -H, -Cl, -O-R5, -0-R6-0-R5, -0-(C=0)-R5, -0-R6-(C=0)-R5,
• R3 est choisi parmi les atomes ou groupes suivants : -Cl, -O-R5, -0-R6-0-R5, -O-(C=0)-R5, -0-R6-(C=0)-R5, • R5 et R6 étant choisis parmi les radicaux hydrocarbonés dont la chaîne principale présente de 1 à 4 atomes de carbone*
• R4 = -R7-NHR8
• R7 étant choisi parmi les radicaux hydrocarbonés ramifiés dont la chaîne principale présente de 2 à 6 atomes de carbone, • R8 étant choisi parmi les groupes suivants : -H, -R9-NH2, -R10-NH-R9-NH2 ,
• R9 étant choisi parmi les radicaux hydrocarbonés de 1 à 12 atomes de carbone ou parmi les carbonyles,
• et R10 étant choisi parmi les radicaux hydrocarbonés dont la chaîne principale présente de 1 à 6 atomes de carbone.
9. Composite comprenant au moins une matière organique et/ou une matière inorganique et comprenant des fils de renforcement, une partie au moins de ces fils étant des fils de renforcement selon l'une des revendications 1 à 6.
PCT/FR2003/000950 2002-03-29 2003-03-26 Fils de renforcement et composites resistant en milieu corrosif WO2003082762A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
MXPA04009488A MXPA04009488A (es) 2002-03-29 2003-03-26 Hilos de reforzamiento y compuestos resistentes en medio corrosivo.
BR0308152-4A BR0308152A (pt) 2002-03-29 2003-03-26 Fios de reforço, composição para o encolamento de fios de reforço, e, compósito
CA002480556A CA2480556A1 (fr) 2002-03-29 2003-03-26 Fils de renforcement et composites resistant en milieu corrosif
EP03740532A EP1497238A1 (fr) 2002-03-29 2003-03-26 Fils de renforcement et composites resistant en milieu corrosif
AU2003258717A AU2003258717A1 (en) 2002-03-29 2003-03-26 Reinforcing threads and composites resistant to corrosive media
JP2003580235A JP2005526684A (ja) 2002-03-29 2003-03-26 腐食性媒体に対する抵抗性を有する強化ヤーンおよびコンポジット
US10/506,674 US7276282B2 (en) 2002-03-29 2003-03-26 Reinforcing threads and composites resistant to corrosive media
KR10-2004-7015136A KR20040104551A (ko) 2002-03-29 2003-03-26 부식성 매질에 견디는 강화 실과 복합체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR02/04047 2002-03-29
FR0204047A FR2837818B1 (fr) 2002-03-29 2002-03-29 Fils de verre de renforcement et composites resistant en milieu corrosif

Publications (1)

Publication Number Publication Date
WO2003082762A1 true WO2003082762A1 (fr) 2003-10-09

Family

ID=27839363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2003/000950 WO2003082762A1 (fr) 2002-03-29 2003-03-26 Fils de renforcement et composites resistant en milieu corrosif

Country Status (12)

Country Link
US (1) US7276282B2 (fr)
EP (1) EP1497238A1 (fr)
JP (1) JP2005526684A (fr)
KR (1) KR20040104551A (fr)
CN (1) CN1283579C (fr)
AU (1) AU2003258717A1 (fr)
BR (1) BR0308152A (fr)
CA (1) CA2480556A1 (fr)
FR (1) FR2837818B1 (fr)
MX (1) MXPA04009488A (fr)
RU (1) RU2336380C2 (fr)
WO (1) WO2003082762A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2878465B1 (fr) * 2004-12-01 2007-02-09 Saint Gobain Vetrotex Procede de fabrication d'un element allonge composite rugueux, element allonge composite rugueux
FR2892716B1 (fr) 2005-10-28 2008-04-18 Saint Gobain Vetrotex Composition de verre resistant aux alcalis et aux acides pour la fabrication de fils de verre
FR2895302A1 (fr) * 2005-12-22 2007-06-29 Saint Gobain Vetrotex Produit composite resistant a la corrosion
FR2907777B1 (fr) * 2006-10-25 2009-01-30 Saint Gobain Vetrotex Composition de verre resistant aux milieux chimiques pour la fabrication de fils de verre de renforcement.
RU2690334C2 (ru) * 2017-09-19 2019-05-31 Алексей Александрович Пикалов Армирующее композитное волокно

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2334961A (en) 1940-12-05 1943-11-23 Owens Corning Fiberglass Corp Glass composition
US2571074A (en) 1948-11-02 1951-10-09 Owens Corning Fiberglass Corp Glass composition
US3350345A (en) * 1962-12-21 1967-10-31 Exxon Research Engineering Co Bonded rubber-siliceous materials and process of producing same
GB1290528A (fr) 1969-07-28 1972-09-27
FR2178704A5 (en) * 1972-03-30 1973-11-09 Dynamit Nobel Ag Pre-treatment of metallic and oxide-based surface - - with beta-amino silanes to improve adhesion of polymers or for corr
US3823103A (en) * 1971-07-21 1974-07-09 Union Carbide Corp Aqueous dispersions based on heathardenable phenolic resins containing a gum mixture stabilizing agent
US3859106A (en) 1971-03-23 1975-01-07 Nat Res Dev Autoclaved materials
US4014705A (en) 1971-11-03 1977-03-29 Pilkington Brothers Limited Glass compositions
US4036654A (en) 1972-12-19 1977-07-19 Pilkington Brothers Limited Alkali-resistant glass compositions
US4247436A (en) * 1976-06-03 1981-01-27 Dynamit Nobel Aktiengesellschaft Aqueous solution of mixtures of silicon-organic compounds
US4345037A (en) 1980-02-27 1982-08-17 Pilkington Brothers Limited Alkali resistant glass fibres for cement reinforcement
US4524000A (en) * 1983-02-17 1985-06-18 Shell Oil Company Process for the removal of oil from an oil-in-water dispersion
US5109057A (en) * 1988-11-28 1992-04-28 Sunstar Giken Kabushiki Kaisha Primer composition
WO2001090017A1 (fr) * 2000-05-24 2001-11-29 Saint-Gobain Vetrotex France S.A. Composition d'ensimage pour fils de verre, ces fils et leur utilisation dans des produits cimentaires

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2334981A (en) 1941-05-05 1943-11-23 Percy A Ackley Opener for sliding doors
FR2738241B1 (fr) * 1995-09-01 1998-03-20 Vetrotex France Sa Fils de verre de renforcement et composites resistant en milieu corrosif

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2334961A (en) 1940-12-05 1943-11-23 Owens Corning Fiberglass Corp Glass composition
US2571074A (en) 1948-11-02 1951-10-09 Owens Corning Fiberglass Corp Glass composition
US3350345A (en) * 1962-12-21 1967-10-31 Exxon Research Engineering Co Bonded rubber-siliceous materials and process of producing same
GB1290528A (fr) 1969-07-28 1972-09-27
US3859106A (en) 1971-03-23 1975-01-07 Nat Res Dev Autoclaved materials
US3823103A (en) * 1971-07-21 1974-07-09 Union Carbide Corp Aqueous dispersions based on heathardenable phenolic resins containing a gum mixture stabilizing agent
US4014705A (en) 1971-11-03 1977-03-29 Pilkington Brothers Limited Glass compositions
FR2178704A5 (en) * 1972-03-30 1973-11-09 Dynamit Nobel Ag Pre-treatment of metallic and oxide-based surface - - with beta-amino silanes to improve adhesion of polymers or for corr
US4036654A (en) 1972-12-19 1977-07-19 Pilkington Brothers Limited Alkali-resistant glass compositions
US4247436A (en) * 1976-06-03 1981-01-27 Dynamit Nobel Aktiengesellschaft Aqueous solution of mixtures of silicon-organic compounds
US4345037A (en) 1980-02-27 1982-08-17 Pilkington Brothers Limited Alkali resistant glass fibres for cement reinforcement
US4524000A (en) * 1983-02-17 1985-06-18 Shell Oil Company Process for the removal of oil from an oil-in-water dispersion
US5109057A (en) * 1988-11-28 1992-04-28 Sunstar Giken Kabushiki Kaisha Primer composition
WO2001090017A1 (fr) * 2000-05-24 2001-11-29 Saint-Gobain Vetrotex France S.A. Composition d'ensimage pour fils de verre, ces fils et leur utilisation dans des produits cimentaires

Also Published As

Publication number Publication date
FR2837818B1 (fr) 2005-02-11
RU2004131831A (ru) 2005-04-10
US20050147816A1 (en) 2005-07-07
RU2336380C2 (ru) 2008-10-20
MXPA04009488A (es) 2005-01-25
CN1283579C (zh) 2006-11-08
AU2003258717A1 (en) 2003-10-13
BR0308152A (pt) 2005-01-11
CN1642870A (zh) 2005-07-20
EP1497238A1 (fr) 2005-01-19
US7276282B2 (en) 2007-10-02
CA2480556A1 (fr) 2003-10-09
KR20040104551A (ko) 2004-12-10
FR2837818A1 (fr) 2003-10-03
JP2005526684A (ja) 2005-09-08

Similar Documents

Publication Publication Date Title
EP1753700B1 (fr) Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
CA2559931C (fr) Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
EP2091878B1 (fr) Composition de verre resistant aux milieux chimiques pour la fabrication de fils de verre de renforcement
EP1641717A1 (fr) Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques, composites les renfermant et composition utilisee
FR2910462A1 (fr) Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
EP0951457A1 (fr) Fils de verre aptes a renforcer des matieres organiques et/ou inorganiques
EP1940749B1 (fr) Composition de verre resistant aux alcalis et aux acides pour la fabrication de fils de verre
EP0761619B1 (fr) Fils de verre de renforcement et composites résistant en milieu corrosif
US4015994A (en) Coated glass fibers
EP0014160A1 (fr) Fibres de verre, leur application au renforcement du ciment et produits composites renforcés par ces fibres
WO2003082762A1 (fr) Fils de renforcement et composites resistant en milieu corrosif
EP0194910B1 (fr) Fibres de verre résistant aux milieux basiques et application de celles-ci au renforcement du ciment
FR2809389A1 (fr) Composition d&#39;ensimage pour fils de verre, ces fils et leur utilisation dans des produits cimentaires
EP1841703B1 (fr) Fils de verre de renforcement biosolubles

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003740532

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1210/KOLNP/2004

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 10506674

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020047015136

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2003580235

Country of ref document: JP

Ref document number: 20038073684

Country of ref document: CN

Ref document number: 2480556

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: PA/a/2004/009488

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2004131831

Country of ref document: RU

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1020047015136

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003740532

Country of ref document: EP