WO2003082565A1 - Verbundwerkstoff, verfahren zu seiner herstellung und seine verwendung - Google Patents

Verbundwerkstoff, verfahren zu seiner herstellung und seine verwendung Download PDF

Info

Publication number
WO2003082565A1
WO2003082565A1 PCT/EP2003/003234 EP0303234W WO03082565A1 WO 2003082565 A1 WO2003082565 A1 WO 2003082565A1 EP 0303234 W EP0303234 W EP 0303234W WO 03082565 A1 WO03082565 A1 WO 03082565A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibers
composite material
reinforcing fibers
reinforcing
polyphenylene sulfide
Prior art date
Application number
PCT/EP2003/003234
Other languages
English (en)
French (fr)
Inventor
Klaus Peter Schwung
Bernd Wohlmann
Original Assignee
Tenax Fibers Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tenax Fibers Gmbh filed Critical Tenax Fibers Gmbh
Priority to JP2003580069A priority Critical patent/JP4180520B2/ja
Priority to EP20030720379 priority patent/EP1492666B1/de
Priority to KR1020047015653A priority patent/KR100914144B1/ko
Priority to AU2003224004A priority patent/AU2003224004A1/en
Priority to US10/509,875 priority patent/US7867612B2/en
Priority to DE50307466T priority patent/DE50307466D1/de
Publication of WO2003082565A1 publication Critical patent/WO2003082565A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/08Ingredients agglomerated by treatment with a binding agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • C08J5/08Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials glass fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2916Rod, strand, filament or fiber including boron or compound thereof [not as steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2922Nonlinear [e.g., crimped, coiled, etc.]
    • Y10T428/2925Helical or coiled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/2933Coated or with bond, impregnation or core
    • Y10T428/2936Wound or wrapped core or coating [i.e., spiral or helical]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/30Self-sustaining carbon mass or layer with impregnant or other layer

Definitions

  • the invention relates to a composite material, a method for its production and its use.
  • US 5,641,572 discloses the manufacture of a reinforcing material from the carbonized short carbon fibers with a thermoplastic resin.
  • No. 5,641,572 does not contain any indication of how the apparent interlaminar shear strength (ILSF) and the flexural strength of composite materials containing reinforcing fibers could be improved. However, it is precisely these properties that make ever higher demands.
  • ILSF apparent interlaminar shear strength
  • the object of the present invention is to increase the apparent interlaminar shear strength and the bending strength of composite materials containing reinforcing fibers.
  • a composite material containing a reinforcing resin and reinforcing fibers, the reinforcing fibers being a polyphenylene sulfide have coating containing, characterized in that the proportion of polyphenylene sulfide based on the uncoated reinforcing fibers is 0.001 to ⁇ 0.01 wt.%.
  • the proportion of the polyphenylene sulfide, based on the uncoated reinforcing fibers is 0.002 to 0.009% by weight.
  • the coating consists of polyphenylene sulfide and a thermoplastic or a thermoset, with a polyetherimide, polyether ketone, polyether ether ketone, polyether sulfone, polyether ether sulfone or polysulfone being preferred as the thermoplastic, and an epoxy resin being preferred as the thermoset.
  • Thermoplastics such as, for example, polyetherimide, polyether ketone, polyether ether ketone, polyether sulfone, polyether ether sulfone or polysulfone, or a mixture of these thermoplastics, are preferably used as reinforcing resins in the composite material according to the invention.
  • reinforcing fibers for the composite material according to the invention, wherein if the reinforcing fibers are carbon fibers made from pitch, polyacrylonitrile or viscose precursors or aramid fibers, glass fibers, ceramic fibers, boron fibers, synthetic fibers or natural fibers or combinations of these fibers, the required properties are particularly well developed. Polyester fibers are particularly preferred as synthetic fibers and flax and sisal fibers are particularly preferred as natural fibers.
  • the carbon reinforcing fibers preference is given in particular to a carbon fiber available under the name Tenax HTS® from Tenax Fibers GmbH, Wuppertal, in the composite material according to the invention.
  • the fibers in the composite material according to the invention can be present as a short cut or as a filament yarn which can consist of several thousand, preferably from about 3,000 to 24,000, filaments.
  • the fibers in the composite material according to the invention can be present as a textile fabric, for example as a woven fabric, fleece, knitted fabric, knitted fabric or as a unidirectional or multidirectional scrim.
  • the object on which the invention is based is further achieved by a method for producing a composite material comprising the steps a) providing optionally pretreated reinforcing fibers, b) applying a layer containing polyphenylene sulfide to the reinforcing fibers of step a), so that the layer 0.001 to ⁇ 0 , 01 wt.% Polyphenylene sulfide based on the reinforcing fibers, whereby coated reinforcing fibers are formed and c) processing of the coated reinforcing fibers from step b) with a reinforcing resin to form a composite material.
  • any type of presentation of the reinforcing fibers is suitable which makes the entire surface of the fibers accessible to the layer to be applied in step b).
  • the freshly spun and dried reinforcing fiber can be presented individually or as a sheet in the manufacturing process prior to winding.
  • the reinforcing fibers can also be used as filament yarn are presented, which consists of several thousand filaments, preferably from about 3,000 to 24,000 filaments.
  • reinforcing fibers for step a) of the process according to the invention in principle all fibers of natural or synthetic origin come into consideration which have the properties required by reinforcing fibers, wherein if the reinforcing fibers are carbon fibers made from pitch, polyacrylonitrile or viscose precursors or aramid fibers, glass fibers, ceramic fibers, Boron fibers, synthetic fibers or natural fibers or combinations of these fibers, the required properties are particularly well developed. Polyester fibers are particularly preferred as synthetic fibers and flax and sisal fibers are particularly preferred as natural fibers.
  • the carbon reinforcing fibers which are particularly preferred are the carbon fibers available under the name Tenax HTS® from Tenax Fibers GmbH, Wuppertal.
  • the reinforcing fibers presented in step a) of the method according to the invention are pretreated if this is necessary for adequate wetting of the reinforcing fibers with the coating to be applied in step b) and for the coating to adhere to the reinforcing fibers.
  • Pretreatment of the reinforcing fibers can likewise improve the adhesion of the coated fibers with the reinforcing resin used in step c) if the reinforcing fibers in step b) have not been provided with the coating according to the invention over their entire surface.
  • the processes used for the pretreatment can optionally be impregnation processes, the reinforcing fibers being immersed in hydophobic or hydrophilic liquid media and dried.
  • Pretreatment methods are also contemplated in which reactive functional groups are introduced onto the fiber surface, such as electrochemical oxidation, which covers the surface of the reinforcing fibers e.g. provided with hydroxyl and carboxyl groups.
  • any method which is capable of applying 0.001 to ⁇ 0.01% by weight of polyphenylene sulfide, based on the reinforcing fibers, to a reinforcing fiber is suitable for application in step b) of the method according to the invention.
  • the reinforcing fibers can be passed through a PPS melt in step b), the reinforcing fibers optionally having previously been passed through a melt made of a thermoplastic such as polyetherimide. It is also possible to produce a melt from PPS and a thermoplastic, such as, for example, polyetherimide, and to pass the reinforcing fibers through the melt of the two polymers.
  • PPS powder can be introduced into a plasma.
  • the PPS particles are accelerated in the direction of the reinforcing fiber and melt. When struck on the reinforcing fiber, the PPS particles solidify and form the desired layer on the reinforcing fiber.
  • This plasma spray coating with PPS can be preceded by a plasma spray coating with a thermoplastic such as polyetherimide. You can also use PPS and a thermoplastic, e.g. Use polyetherimide at the same time.
  • the PPS application can be carried out integrated into the manufacturing process of the reinforcing fibers before winding, whereby the devices known for applying aviators can be used.
  • a thermoplastic such as polyetherimide can optionally be applied before the PPS application.
  • the PPS is applied to the reinforcing fibers in the form of crystallites, for example by passing the reinforcing fibers from step a) in step b) through a bath which contains a slurry of PPS, dries and winds them up.
  • the reinforcing fibers can first be passed through a bath which contains the solution of a thermoplastic, for example polyetherimide, and the solution-moist fibers can then be passed through a bath, which contains a slurry of PPS, after which the fibers are wound and dried as previously described.
  • a thermoplastic for example polyetherimide
  • PPS a slurry of PPS
  • the reinforcing fibers which e.g. may be present as a filament yarn with 3,000 to 24,000 filaments, through a bath, the content of which consists of a slurry of PPS, a solution of a thermoplastic, e.g. a polyetherimide solution, a solvent and optionally an emulsifier, after which the fibers are dried and wound up as described.
  • a thermoplastic e.g. a polyetherimide solution
  • solvent optionally an emulsifier
  • the slurried state is maintained by constant movement of the bath contents, e.g. by pumping or stirring upright.
  • the thread tension is preferably 0.3 to 1.5 cN / tex, particularly preferably 0.5 to 1.0 cN / tex.
  • the speed at which the reinforcing fibers are passed through the slurry is preferably 60 to 600 m / h, particularly preferably 120 to 480 m / h.
  • the concentration of the PPS slurry in the bath is preferably 0.2 to 5% by weight, particularly preferably 0.5 to 1.5% by weight of PPS, in each case based on the content of polyetherimide, the proportion by weight of which in the bath content is, for example, in the range from 0. 5 to 1.0% by weight and particularly preferably in the range from 0.5 to 0.7% by weight.
  • the parameters mentioned above are coordinated with one another in such a way that, for example, a coating of 0.5 to 1.0% by weight and particularly preferably 0.5 to 0.7% by weight is applied to the reinforcing fibers.
  • thermoplastics and PPS are introduced into an extruder in the above-mentioned weight ratio, melted in the extruder and a granulate is produced. These granules are introduced into the solvent already mentioned, which may contain an emulsifier.
  • the thermoplastic dissolves and the PPS forms a finely divided slurry.
  • the proportion of PPS in the reinforcing fiber according to the invention can be set, for example, by using the Reinforcing fibers through the bath sets the PPS concentration in the bath so that the coated reinforcing fibers contain 0.001 to ⁇ 0.01% by weight of PPS.
  • the weight proportion of the coating on the reinforcing fibers is determined in accordance with DIN EN ISO 10548, method B. If the coating of the fibers contains a thermoplastic in addition to PPS, the PPS weight fraction of the coated reinforcing fibers is calculated from the weight ratio of thermoplastic to PPS used for the coating.
  • the coated reinforcing fibers are processed with a reinforcing resin, preferably with a thermoplastic or with a mixture of thermoplastics to form a composite material.
  • a reinforcing resin preferably with a thermoplastic or with a mixture of thermoplastics.
  • a polyetherimide, polyether ketone, polyether ether ketone, polyether sulfone, polyether ether sulfone or polysulfone or a mixture of these thermoplastics are particularly suitable as the thermoplastic.
  • the methods by which the reinforcing fibers coated according to the invention are processed into composite materials are known as such. These include, for example
  • the reinforcing fibers coated according to the invention can be further processed in the form of a composite material in which they are present after step b) of the method according to the invention, e.g. as filament yarn.
  • the coated reinforcing fibers resulting in step b) of the method according to the invention can first be brought into the form of a textile fabric and processed in this form into a composite material.
  • the coated reinforcing fibers resulting in step b) of the method according to the invention can first be processed into a nonwoven or into short fibers get cut.
  • the reinforcing fibers coated according to the invention can first be brought into the shape of a fabric, braid, knitted fabric or knitted fabric or into the shape of a unidirectional or multidirectional scrim.
  • the reinforcing fibers coated according to the invention show excellent impregnation behavior when hot-pressed with polyether ether ketone both with regard to the penetration of the polyether ether ketone into the filament yarn and with regard to the wetting of the individual coated filaments.
  • the composite materials according to the invention have a fiber volume fraction of 40 to 70% by volume, the fiber volume fraction in laminates from unidirectional prepregs preferably in the range from 55 to 65% by volume, in laminates from fabric prepregs in the range from 45 to 55% by volume and in wound or pultruded bodies is in the range from 55 to 70% by volume.
  • the apparent interlaminar shear strength is measured in accordance with DIN EN 2563 and the flexural strength (0 ° in the fiber direction and 90 ° perpendicular to the fiber direction) of the composite materials according to the invention is measured in accordance with DIN EN 2562.
  • the composite material according to the invention and the composite material produced according to the method according to the invention can advantageously be used to produce components for aircraft construction, such as e.g. of fuselage and flaps, for automobile construction, e.g. of engine parts, pumps and seals, for mechanical and plant engineering, e.g. of seals, bearings and containers, and for the manufacture of medical components such as e.g. of surgical instruments.
  • aircraft construction such as e.g. of fuselage and flaps
  • automobile construction e.g. of engine parts, pumps and seals
  • mechanical and plant engineering e.g. of seals, bearings and containers
  • medical components such as e.g. of surgical instruments.
  • the resulting mixture is stirred into 600 ml of 50 ° C warm water, so that an emulsion is formed which is kept in constant motion by pumping around.
  • the solution thus obtained is diluted with water until a solution is obtained which consists of 0.6% by weight of polyetherimide, 0.006% by weight of PPS, 0.3% by weight of decaethylene glycol oleyl ether, 12.2% by weight of NMP and 86.894 % By weight of water.
  • a filament yarn with a titer of 800 tex made of carbon fibers which is available under the name Tenax HTS ® from Tenax Fibers GmbH and which has been pretreated by electrochemical oxidation, is threaded at a speed of 1.0 cN / tex 180 m / h passed through the emulsion described above, dried at 350 ° C and wound up.
  • the PPS proportion based on the carbon fibers is 0.006% by weight (see table, example 1).
  • the filament yarn is processed with polyether ether ketone, which is available under the name PEEK ® 151 G from Victrex ® , to form a composite material.
  • the polyether ether ketone is used as a film. Alternating layers of this film and the coated Tenax HTS ® fibers are formed. The alternating layers are then pressed at a pressure of approx. 9 bar and at a temperature just above 400 ° C. After pressing, the temperature in the composite material is reduced to room temperature within 24 hours.
  • the apparent interlaminar shear strength is 143 MPa, the flexural strength (0 °) 3380.4 MPa and the flexural strength (90 °) 187 MPa (see table, example 1).
  • Example 1 is repeated with the difference that the emulsion consists of 0.597% by weight of polyetherimide, 0.009% by weight of PPS, 0.3% by weight of decaethylene glycol oleyl ether, 12.2% by weight of NMP and 86.894% by weight of water.
  • the PPS proportion based on the carbon fibers is 0.009% by weight (see table, example 2).
  • the interlaminar shear strength is 125 MPa, the flexural strength (0 °) 2972.1 MPa and the flexural strength (90 °) 153 MPa (see table, example 2).
  • Example 1 is repeated with the difference that the emulsion contains no PPS and consists of 0.606% by weight of polyetherimide, 0.3% by weight of decaethylene glycol oleyl ether, 12.2% by weight of NMP and 86.894% by weight of water (see table , Comparative example V).
  • the apparent interlaminar shear strength is 121 MPa, the flexural strength (0 °) 2473.3 MPa and the flexural strength (90 °) 152 (see table, comparative example V).
  • the following table shows the weight percent PPS based on the carbon fiber (weight percent PPS), the interlaminar shear strength (ILSF), the flexural strength (0 °) as BBF (0 °) and the flexural strength (90 °) as BBF (90 °) summarized.
  • the ILSF and the BBF have a maximum at 0 ° and 90 ° with a PPS content in the carbon fiber of 0.006% by weight.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Laminated Bodies (AREA)

Abstract

Ein Verbundwerkstoff wird beschrieben, der ein Verstärkungsharz und Verstärkungsfasern enthält, wobei die Verstärkungsfasern eine Polyphenylensulfid enthaltende Beschichtung aufweisen und der Anteil des Polyphenylensulfids bezogen auf die unbeschichteten Fasern 0,001 bis < 0,01 Gew. % beträgt. Der Verbundwerkstoff zeigt erhöhte Werte der scheinbaren interlaminaren Scherfestigkeit und der Biegebruchfestigkeit im Vergleich zu gleichartigen Verbundwerkstoffen, die keine PPS-Beschichtung im genannten Anteilsbereich aufweisen.

Description

Verbundwerkstoff, Verfahren zu seiner Herstellung und seine Verwendung
Beschreibung:
Die Erfindung betrifft einen Verbundwerkstoff, ein Verfahren zu seiner Herstellung und seine Verwendung.
Verstärkungsfasern und deren Verwendung zur Herstellung von Verbundwerkstoffen mit einem Verbundharz sind bekannt. US 5 641 572 beschreibt Verstärkungsfasern aus Kohlenstoff-Kurzfasern, die als Präparation z.B. Polyphenylensulfid (PPS) enthalten. US 5 641 572 lehrt, dass der Präparations-Anteil bezogen auf das Gesamtgewicht der Kohlenstoff-Kurzfasern mindestens 0,01 Gew.% betragen muß, weil bei einem Präparations-Anteil von weniger als 0,01 Gew.% der Schutzeffekt unbefriedigend wird. Ferner lehrt US 5 641 572 die Carbonisierung der geschlichteten Kohlenstoff-Kurzfasern in einem Inertgas bei 400 bis 1500 °C. Danach enthalten die Kohlenstoff-Kurzfasern nur noch Carbonisierungsprodukte der Präparation. Schließlich offenbart US 5 641 572 die Herstellung eines Verstärkungsmaterials aus den carbonisierten Kohlenstoff-Kurzfasern mit einem thermoplastischen Harz. US 5 641 572 enthält keinerlei Hinweis, wie die scheinbare interlaminaren Scherfestigkeit (ILSF) und die Biegebruchfestigkeit von Verstärkungsfasern enthaltenden Verbundwerkstoffen verbessert werden könnten. Jedoch werden gerade an diese Eigenschaften immer höhere Anforderung gestellt.
Deshalb stellt sich die vorliegende Erfindung die Aufgabe, die scheinbare interlaminare Scherfestigkeit und die Biegebruchfestigkeit von Verstärkungsfasern enthaltenden Verbundwerkstoffen zu erhöhen.
Diese Aufgabe wird gelöst durch einen Verbundwerkstoff enthaltend ein Verstärkungsharz und Verstärkungsfasern, wobei die Verstärkungsfasern eine Polyphenylensulfid enthaltende Beschichtung aufweisen, dadurch gekennzeichnet, dass der Anteil des Polyphenylensulfids bezogen auf die unbeschichteten Verstärkungsfasern 0,001 bis < 0,01 Gew.% beträgt.
Verarbeitet man derartig beschichtete Verstärkungsfasern in an sich bekannter Weise zu einem Verbundwerkstoff, stellt man fest, dass die scheinbare interlaminare Scherfestigkeit und die Biegebruchfestigkeit im Vergleich zur Verstärkungsfasern mit nicht erfindungsgemäßer Beschichtung ansteigen. Dieses Ergebnis muß überraschen, weil es nicht vorhersehbar war, dass derartig geringe Mengen an PPS überhaupt irgend einen Einfluß auf die Verbundwerkstoff-Eigenschaften haben, geschweige denn, dass derart geringe Gewichtsanteile an PPS die scheinbare interlaminaren Scherfestigkeit und die Biegebruchfestigkeit verbessern. Noch mehr muß es überraschen, dass die scheinbare interlaminare Scherfestigkeit und die Biegebruchfestigkeit erfindungsgemäßer Verbundwerkstoffe im Bereich von 0,001 bis < 0,01 Gew.% PPS-Anteil an der Verstärkungsfaser ein Maximum aufweisen. Dieses Maximum liegt z.B. in erfindungsgemäßen Verbundwerkstoffen, die mit PPS-beschichtete Verstärkungsfasern aus Kohlenstoff enthalten und mit einem Polyetheretherketon zu einem Verbundwerkstoff verarbeitet wurden, bei einem PPS-Anteil an den Kohlenstoff-Fasern von etwa 0,006 Gew.%.
In einer bevorzugten Ausführungsform des erfindungsgemäßen Verbundwerkstoffs beträgt der Anteil des Polyphenylensulfids bezogen auf die unbeschichteten Verstärkungsfasern 0,002 bis 0,009 Gew.%.
In einerweiteren bevorzugten Ausführungsform des erfindungsgemäßen Verbundwerkstoffs besteht die Beschichtung aus Polyphenylensulfid und aus einem Thermoplast oder aus einem Duroplast, wobei als Thermoplast ein Polyetherimid, Polyetherketon, Polyetheretherketon, Polyethersulfon, Polyetherethersulfon oder Polysulfon und als Duroplast ein Epoxidharz bevorzugt wird.
Als Verstärkungsharze werden im erfindungsgemäßen Verbundwerkstoff bevorzugt Thermoplaste, wie z.B. Polyetherimid, Polyetherketon, Polyetheretherketon, Polyethersulfon, Polyetherethersulfon oder Polysulfon oder eine Mischung dieser Thermoplasten eingesetzt. Als Verstärkungsfasern kommen für den erfindungsgemäßen Verbundwerkstoff im Prinzip alle Fasern natürlichen oder synthetischen Ursprungs in Betracht, welche die von Verstärkungsfasern geforderten Eigenschaften aufweisen, wobei, wenn die Verstärkungsfasern Kohlenstofffasern aus Pech-, Polyacrylnitril- oder Viskosevorprodukten oder Aramidfasem, Glasfasern, Keramikfasern, Borfasern, Synthesefasern oder Naturfasern oder Kombinationen dieser Fasern sind, die geforderten Eigenschaften besonders gut ausgebildet sind. Als Synthesefasern werden Polyesterfasern und als Naturfasern Flachs- und Sisalfasem besonders bevorzugt.
Unter den Kohlenstoff-Verstärkungsfasern wird insbesondere eine unter der Bezeichnung Tenax HTS® von der Firma Tenax Fibers GmbH, Wuppertal erhältliche Kohlenstoff-Faser im erfindungsgemäßen Verbundwerkstoff bevorzugt. Dabei können die Fasern im erfindungsgemäßen Verbundwerkstoff als Kurzschnitt vorliegen oder als Fila- mentgam, das aus mehreren tausend, vorzugsweise aus etwa 3 000 bis 24 000 Fila- menten, bestehen kann. Außerdem können die Fasern im erfindungsgemäßen Verbundwerkstoff als textiles Flächengebilde, etwa als Gewebe, Vlies, Gewirke, Gestricke oder als uni- oder multidirektionales Gelege vorliegen.
Die der Erfindung zugrunde liegende Aufgabe wird desweiteren gelöst durch ein Verfahren zur Herstellung eines Verbundwerkstoffs umfassend die Schritte a) Vorlegen von gegebenenfalls vorbehandelten Verstärkungsfasern, b) Auftragen einer Polyphenylensulfid enthaltenden Schicht auf die Verstärkungsfasern von Schritt a), so dass die Schicht 0,001 bis < 0,01 Gew.% Polyphenylensulfid bezogen auf die Verstärkungsfasern enthält, wodurch beschichtete Verstärkungsfasern entstehen und c) Verarbeiten der beschichteten Verstärkungsfasern von Schritt b) mit einem Verstärkungsharz zu einem Verbundwerkstoff.
In Schritt a) ist grundsätzlich jede Art des Vorlegens der Verstärkungsfasern geeignet, welche die gesamte Oberfläche der Fasern für die in Schritt b) aufzubringende Schicht zugänglich macht. So kann beispielsweise die frisch ersponnene und getrocknete Verstärkungsfaser einzeln oder als Fadenschar noch im Herstellungsprozess vor der Aufwicklung vorgelegt werden. Ebenso können die Verstärkungsfasern als Filamentgarn vorgelegt werden, das aus mehreren Tausend Filamenten, vorzugsweise aus etwa 3 000 bis 24 000 Filamenten besteht.
Als Verstärkungsfasern kommen für Schritt a) des erfindungsgemäßen Verfahrens im Prinzip alle Fasern natürlichen oder synthetischen Ursprungs in Betracht, welche die von Verstärkungsfasern geforderten Eigenschaften aufweisen, wobei, wenn die Verstärkungsfasern Kohlenstofffasern aus Pech-, Polyacrylnitril- oder Viskosevorprodukten oder Aramidfasern, Glasfasern, Keramikfasern, Borfasern, Synthesefasern oder Naturfasern oder Kombinationen dieser Fasern sind, die geforderten Eigenschaften besonders gut ausgebildet sind. Als Synthesefasern werden Polyesterfasern und als Naturfasern Flachs- und Sisalfasern besonders bevorzugt. Als Kohlenstoff-Verstärkungsfasern werden in Schritt a) des erfindungsgemäßen Verfahrens besonders bevorzugt die unter der Bezeichnung Tenax HTS® von der Firma Tenax Fibers GmbH, Wuppertal erhältlichen Kohlenstoff-Faser vorgelegt.
Die in Schritt a) des erfindungsgemäßen Verfahrens vorgelegten Verstärkungsfasern werden vorbehandelt, wenn dies für eine hinreichende Benetzung der Verstärkungsfasern mit der in Schritt b) aufzubringenden Beschichtung und für die Haftung der Beschichtung an den Verstärkungsfasern erforderlich ist. Ebenso kann eine Vorbehandlung der Verstarkungsfasern die Haftung der beschichteten Fasern mit dem in Schritt c) eingesetzten Verstärkungsharz verbessern, wenn die Verstärkungsfasern in Schritt b) nicht auf ihrer gesamten Oberfläche mit der erfindungsgemäßen Beschichtung versehen wurden. Die zur Vorbehandlung eingesetzten Verfahren können gegebenenfalls Imprägnierverfahren sein, wobei die Verstärkungsfasern in hydophobe oder hydrophile flüssigen Medien getaucht und getrocknet werden. Ferner kommen Vorbehandlungsverfahren in Betracht, bei denen reaktive funktioneile Gruppen auf der Faseroberfläche eingeführt werden, wie etwa die elektrochemische Oxidation, welche die Oberfläche der Verstärkungsfasern z.B. mit Hydroxyl- und Carboxylgruppen versieht.
Zum Auftragen in Schritt b) des erfindungsgemäßen Verfahrens ist im Prinzip jedes Verfahren geeignet, das in der Lage ist, auf eine Verstärkungsfaser 0,001 bis < 0,01 Gew.% Polyphenylensulfid bezogen auf die Verstärkungsfasern aufzutragen. Z.B. kann man die Verstärkungsfasern in Schritt b) durch eine PPS-Schmelze führen, wobei optional die Verstärkungsfasern zuvor durch eine Schmelze aus einem Thermoplasten wie etwa Polyetherimid geführt wurden. Ebenso kann man eine Schmelze aus PPS und einem Thermoplasten, wie z.B. Polyetherimid herstellen und die Verstärkungsfasern durch die Schmelze der beiden Polymeren hindurchführen.
Alternativ kann man PPS-Pulver in ein Plasma einführen. Dabei werden die PPS- Partikel in Richtung der Verstärkungsfaser beschleunigt und schmelzen auf. Auf der Verstärkungsfaser aufgetroffen, verfestigen sich die PPS-Partikel und bilden die gewünschte Schicht auf der Verstärkungsfaser. Dieser Plasmaspritzbeschichtung mit PPS kann eine Plasmaspritzbeschichtung mit einem Thermoplasten wie etwa Polyetherimid vorausgehen. Ebenso kann man bei der Plasmaspritzbeschichtung PPS und einen Thermoplasten, wie z.B. Polyetherimid gleichzeitig einsetzen.
Des weiteren kann der PPS-Auftrag integriert in den Herstellungsprozess der Verstärkungsfasern vor dem Aufwickeln durchgeführt werden, wobei die zum Auftrag von Avi- gagen bekannten Vorrichtungen Verwendung finden können. Dabei kann optional vor dem PPS-Auftrag der Auftrag eines Thermoplasten, wie z.B. Polyetherimid stattfinden. Ebenso kann man eine Präparation aus PPS und einem Thermoplasten, wie z.B. Polyetherimid herstellen und diese Präparation auf die Verstärkungsfasern auftragen. In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird das PPS im Form von Kristalliten auf die Verstärkungsfasern aufgetragen, indem man beispielsweise die Verstärkungsfasern von Schritt a) in Schritt b) durch ein Bad führt, das eine Aufschlämmung von PPS enthält, trocknet und aufwickelt. An die Temperatur des Bades werden keine besonderen Anforderungen gestellt, solange bei der gewählten Temperatur möglichst feinteilige PPS-Kristallite in der Aufschlämmung vorliegen. Dies ist in vielen Ausführungsformen des erfindungsgemäßen Verfahrens bereits bei Raumtemperatur in ausreichendem Maße der Fall, so dass diese Badtemperatur bevorzugt wird. Beim Trocknen ist es wichtig, dass man zwar die den beschichteten Verstärkungsfasern anhaftende Feuchtigkeit entfernt, jedoch eine Zersetzung der.Beschich- tung vermeidet. Dazu ist in vielen Fällen - abhängig von der Verweilzeit - ein Trocknertemperaturbereich von etwa 350 bis 400 °C geeignet. Optional kann man die Verstärkungsfasern zuerst durch ein Bad führen, das die Lösung eines Thermoplasten, z.B. von Polyetherimid enthält und die lösungsfeuchten Fasern dann durch ein Bad führen, das eine Aufschlämmung von PPS enthält, wonach die Fasern wie bereits beschrieben aufgewickelt und getrocknet werden.
Besonders bevorzugt leitet man die Verstärkungsfasern, die z.B. als Filamentgam mit 3 000 bis 24 000 Filamenten vorliegen können, durch ein Bad, dessen Inhalt aus einer Aufschlämmung aus PPS, einer Lösung eines Thermoplasten, z.B. einer Polyetherimid- Lösung, einem Lösungsmittel und gegebenenfalls aus einem Emulgator besteht, wonach die Fasern wie beschrieben getrocknet und aufgewickelt werden. Das Lösungsmittel wird so ausgewählt, dass es das PPS nicht löst, wohl aber den Thermoplasten. Dazu eignet sich, wenn der Thermoplast Polyetherimid ist, beispielsweise 1-Methyl-2- pyrrolidon (NMP). Als Emulgator eignet sich z.B. Decaethylenglykololeylether. Hierbei und in allen Ausführungsformen des erfindungsgemäßen Verfahrens, in denen eine PPS-Aufschlämmung in einem Bad eingesetzt wird, hält man den aufgeschlämmten Zustand durch ständige Bewegung des Badinhaltes, z.B. durch Umpumpen oder Rühren aufrecht. Beim Durchführen der Verstärkungsfasern durch das Bad beträgt die Fadenspannung vorzugsweise 0,3 bis 1 ,5 cN/tex, besonders bevorzugt 0,5 bis 1 ,0 cN/tex. Die Geschwindigkeit, mit der die Verstärkungsfasern durch die Aufschlämmung hindurchgeführt werden, beträgt vorzugsweise 60 bis 600 m/h, besonders bevorzugt 120 bis 480 m/h. Die Konzentration der PPS-Aufschlämmung im Bad beträgt vorzugsweise 0,2 bis 5 Gew.%, besonders bevorzugt 0,5 bis 1 ,5 Gew.% PPS jeweils bezogen auf den Gehalt an Polyetherimid, dessen Gewichtsanteil am Badinhalt beispielsweise im Bereich von 0,5 bis 1 ,0 Gew.% und besonders bevorzugt im Bereich von 0,5 bis 0,7 Gew.% liegt. Die vorstehend genannten Parameter werden so aufeinander abgestimmt, dass auf die Verstärkungsfasern beispielsweise eine Beschichtung von 0,5 bis 1 ,0 Gew.% und besonders bevorzugt von 0,5 bis 0,7 Gew.% aufzieht.
Eine Aufschlämmung mit besonders feinteiligen PPS-Kritalliten gelingt, wenn man den Thermoplasten und PPS im vorstehend genannten Gewichtsverhältnis in einen Extruder einbringt, im Extruder aufschmilzt und ein Granulat herstellt. Dieses Granulat wird in dem bereits erwähnten Lösungsmittel, das gegebenenfalls einen Emulgator enthält, eingebrächt. Dabei löst sich der Thermoplast und das PPS bildet eine feinteilige Aufschlämmung. Den erfindungsgemäßen PPS-Anteil an der Verstärkungsfaser kann man z.B. dadurch einstellen, dass man bei vorgegebener Durchzugsgeschwindigkeit der Verstärkungsfasern durch das Bad die PPS-Konzentration im Bad so einstellt, dass die beschichteten Verstärkungsfasern 0,001 bis < 0,01 Gew.% PPS enthalten.
Der Gewichtsanteil der Beschichtung an den Verstärkungsfasern wird gemäß DIN EN ISO 10548, Methode B bestimmt. Falls die Beschichtung der Fasern zusätzlich zu PPS einen Thermoplasten enthält, wird der PPS-Gewichtsanteil an den beschichteten Verstärkungsfasern aus dem zur Beschichtung eingesetzten Gewichtsverhältnis von Thermoplast zu PPS berechnet.
In Schritt c) des erfindungsgemäßen Verfahrens werden die beschichteten Verstärkungsfasern mit einem Verstärkungsharz, vorzugsweise mit einem Thermoplasten oder mit einer Mischung aus Thermoplasten zu einem Verbundwerkstoff verarbeitet. Dabei sind als Thermoplast besonders ein Polyetherimid, Polyetherketon, Polyetheretherketon, Polyethersulfon, Polyetherethersulfon oder Polysulfon oder eine Mischung aus diesen Thermoplasten geeignet. Die Verfahren, mit denen die erfindungsgemäß beschichteten Verstärkungsfasern zu Verbundwerkstoffen verarbeitet werden, sind als solche bekannt. Dazu gehören beispielsweise
- das Mischen der erfindungsgemäß beschichteten Verstärkungsfasern mit Fasern oder mit einem Pulver oder mit einer Folie aus einem Verbundharz und anschließendem Heißpressen,
- das Imprägnieren der erfindungsgemäß beschichteten Verstärkungsfasern mit einer Schmelze oder einer Lösung des Verbundharzes und
- das Compoundieren der zu Kurzfasern geschnittenen erfindungsgemäß beschichteten Verstärkungsfasern.
Dabei können die erfindungsgemäß beschichteten Verstärkungsfasern in der Gestalt zu einem Verbundwerkstoff weiterverarbeitet werden, in der sie nach Schritt b) des erfindungsgemäßen Verfahrens vorliegen, z.B. als Filamentgarn.
Alternativ können die in Schritt b) des erfindungsgemäßen Verfahrens resultierenden beschichteten Verstärkungsfasern zuerst in die Gestalt eines textilen Flächengebildes gebracht und in dieser Gestalt zu einem Verbundwerkstoff verarbeitet werden. Beispielsweise können die in Schritt b) des erfindungsgemäßen Verfahrens resultierenden beschichteten Verstärkungsfasern zuerst zu einem Vlies verarbeitet oder zu Kurzfasern geschnitten werden. Ebenso können die erfindungsgemäß beschichteten Verstärkungsfasern zuerst in die Gestalt eines Gewebes, Geflechtes, Gestrickes oder Gewirkes oder in die Gestalt eines uni- oder multidirektionalen Geleges gebracht werden.
Bei der Herstellung des Verbundwerkstoffs in Schritt c) zeigen die erfindungsgemäß beschichteten Verstärkungsfasern ein ausgezeichnetes Imprägnierverhalten beim Heißverpressen mit Polyetheretherketon sowohl hinsichtlich der Penetration des Po- lyetheretherketons in das Filamentgarn als auch hinsichtlich der Benetzung der einzelnen beschichteten Filamente.
Die erfindungsgemäßen Verbundwerkstoffe haben einen Faservolumenanteil von 40 bis 70 Vol.-%, wobei der Faservolumenanteil in Laminaten aus unidirektionalen Prepregs vorzugsweise im Bereich von 55 bis 65 Vol.-%, in Laminaten aus Gewebeprepregs im Bereich von 45 bis 55 Vol.-% und in gewickelten bzw. pultrudierten Körpern im Bereich von 55 bis 70 Vol.-% liegt.
Gemäß DIN EN 2563 wird die scheinbare interlaminare Scherfestigkeit und gemäß DIN EN 2562 wird die Biegebruchfestigkeit (0° in Faserrichtung und 90° senkrecht zur Faserrichtung) der erfindungsgemäßen Verbundwerkstoffe gemessen.
Der erfindungsgemäße Verbundwerkstoff und der gemäß dem erfindungsgemäßen Verfahren hergestellte Verbundwerkstoff lassen sich vorteilhaft zur Herstellung von Komponenten für den Flugzeugbau, wie z.B. von Rumpf und Landeklappen, für den Automobilbau, wie z.B. von Motorteilen, Pumpen und Dichtungen, für den Maschinen- und Anlagenbau, wie z.B. von Dichtungen, Lagern und Behältern, und zur Herstellung von medizinischen Komponenten, wie z.B. von chirurgischen Instrumenten verwenden.
Die Erfindung wird anhand der folgenden Beispiele näher erläutert.
Beispiel 1
98 Gewichtsteile Polyetherimid (Ultem® von der Firma GE-Plastics) und 2 Gewichtsteile PPS (Fortron® von der Firma Ticona) werden in einen Extruder eingebracht, im Extruder aufgeschmolzen und ein Granulat hergestellt. 39 g des Granulats werden in 590 g heißem 1-Methyl-2-pyrrolidon (NMP) eingerührt, bis das Polyetherimid gelöst ist. Das PPS löst sich nicht und bildet eine Aufschlämmung. Zur gerührten und bei 70° C abgekühlten Lösung des Polyetherimids bzw. Aufschlämmung des PPS wird eine Mischung zugetropft, die aus 200 g NMP, 60 g Wasser und aus 20 g des Emulgators Decaethy- lenglykololeylether besteht. Die dabei resultierende Mischung wird in 600 ml 50° C warmes Wasser eingerührt, so dass eine Emulsion entsteht, die durch Umpumpen in ständiger Bewegung gehalten wird. Die so erhaltene Lösung wird mit Wasser so weit verdünnt, bis man eine Lösung erhält, die aus 0,6 Gew.% Polyetherimid, 0,006 Gew.% PPS, 0,3 Gew.% Decaethylenglykololeylether, 12,2 Gew.% NMP und 86,894 Gew.% Wasser besteht.
Ein Filamentgarn mit einem Titer von 800 tex aus Kohlenstoff-Fasern, die unter der Bezeichnung Tenax HTS® von der Firma Tenax Fibers GmbH erhältlich sind und durch elektrochemische Oxidation vorbehandelt wurden, wird unter einer Fadenspannung von 1,0 cN/tex mit einer Geschwindigkeit von 180 m/h durch die vorstehend beschriebene Emulsion geführt, bei 350 °C getrocknet und aufgewickelt. Der PPS-Anteil bezogen auf die Kohlenstoff-Fasern beträgt 0,006 Gew.% (s. Tabelle, Beispiel 1).
Das Filamentgarn wird mit Polyetheretherketon, das unter der Bezeichnung PEEK® 151 G von der Firma Victrex® erhältlich ist, zu einem Verbundwerkstoff verarbeitet. Dabei wird das Polyetheretherketon als Folie eingesetzt. Alternierende Lagen dieser Folie und der beschichteten Tenax HTS® - Fasern werden gebildet. Danach werden die alternierenden Lagen bei einem Druck von ca. 9 bar und bei einer Temperatur knapp oberhalb von 400 °C verpresst. Nach dem Verpressen wird die Temperatur im Verbundwerkstoff innerhalb von 24 h auf Raumtemperatur abgesenkt.
Die scheinbare interlaminare Scherfestigkeit beträgt 143 MPa, die Biegebruchfestigkeit (0°) 3380,4 MPa und die Biegebruchfestigkeit (90°) 187 MPa (s. Tabelle, Beispiel 1).
Beispiel 2
Beispiel 1 wird wiederholt mit dem Unterschied, dass die Emulsion aus 0,597 Gew.% Polyetherimid, 0,009 Gew.% PPS, 0,3 Gew.% Decaethylenglykololeylether, 12,2 Gew.% NMP und 86,894 Gew.% Wasser besteht. Der PPS-Anteil bezogen auf die Kohlenstoff-Fasern beträgt 0,009 Gew.% (s. Tabelle, Beispiel 2).
Die interlaminare Scherfestigkeit beträgt 125 MPa, die Biegebruchfestigkeit (0°) 2972,1 MPa und die Biegebruchfestigkeit (90°) 153 MPa (s. Tabelle, Beispiel 2).
Vergleichsbeispiel
Beispiel 1 wird wiederholt mit dem Unterschied, dass das die Emulsion kein PPS enthält und aus aus 0,606 Gew.% Polyetherimid, 0,3 Gew.% Decaethylenglykololeylether, 12,2 Gew.% NMP und 86,894 Gew.% Wasser besteht (s. Tabelle, Vergleichsbeispiel V).
Die scheinbare interlaminare Scherfestigkeit beträgt 121 MPa, die Biegebruchfestigkeit (0°) 2473,3 MPa und die Biegebruchfestigkeit (90°) 152 (s. Tabelle, Vergleichsbeispiel V).
In der folgenden Tabelle sind die Gew.% PPS bezogen auf die Kohlenstoff-Faser (Gew.% PPS), die interlaminare Scherfestigkeit (ILSF), die Biegebruchfestigkeit (0°) als BBF (0°) und die Biegebruchfestigkeit (90°) als BBF (90°) zusammengefasst.
Figure imgf000012_0001
Aus der Tabelle erkennt man, dass die ILSF und die BBF bei 0° und 90 ° bei einem PPS-Anteil an der Kohlenstoff-Faser von 0,006 Gew.% ein Maximum aufweist.

Claims

Verbundwerkstoff, Verfahren zu seiner Herstellung und seine VerwendungPatentansprüche:
1. Verbundwerkstoff enthaltend ein Verstärkungsharz und Verstärkungsfasern, wobei die Verstärkungsfasern eine Polyphenylensulfid enthaltende Beschichtung aufweisen, dadurch gekennzeichnet, dass der Anteil des Polyphenylensulfids bezogen auf die unbeschichteten Verstärkungsfasern 0,001 bis < 0,01 Gew.% beträgt.
2. Verbundwerkstoff nach Anspruch 1 , dadurch gekennzeichnet, dass der Anteil des Polyphenylensulfids bezogen auf die unbeschichteten Verstärkungsfasern 0,002 bis 0,009 Gew.% beträgt.
3. Verbundwerkstoff nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Beschichtung aus Polyphenylensulfid und aus einem Thermoplast oder Duroplast besteht.
4. Verbundwerkstoff nach einem oder mehreren der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das Verstärkungsharz ein Thermoplast oder eine Mischung aus Thermoplasten ist.
5. Verbundwerkstoff nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Verstärkungsfasern Kohlenstofffasern aus Pech-, Polyacrylnitril- oder Viskosevorprodukten, Aramidfasern, Glasfasern, Keramikfasern, Borfasern, Synthesefasern oder Naturfasern oder Kombinationen dieser Fasern sind.
6. Verfahren zur Herstellung eines Verbundwerkstoffs umfassend die Schritte a) Vorlegen von gegebenenfalls vorbehandelten Verstärkungsfasern, b) Auftragen einer Polyphenylensulfid enthaltenden Schicht auf die Verstärkungsfasern von Schritt a), so dass die Schicht 0,001 bis < 0,01 Gew.% Polyphenylensulfid bezogen auf die Verstärkungsfasern enthält, wodurch beschichtete Verstärkungsfasern entstehen und c) Verarbeiten der beschichteten Verstärkungsfasern von Schritt b) mit einem Verstärkungsharz zu einem Verbundwerkstoff.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass die Verstärkungsfasern von Schritt a) Kohlenstofffasern aus Pech-, Polyacrylnitril- oder Viskosevorprodukten, Aramidfasern, Glasfasern, Keramikfasern, Borfasern, Synthesefasern oder Naturfasern oder Kombinationen dieser Fasern sind.
8. Verfahren nach Anspruch 6 oder 7, dadurch gekennzeichnet, dass die Kohlenstoff-Verstärkungsfasern von Schritt a) durch elektrochemische Oxidation vorbehandelt wurden.
9. Verfahren nach einem oder mehreren der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Verstärkungsfasern von Schritt a) in Schritt b) durch ein Bad geführt werden, das eine Aufschlämmung von Polyphenylensulfid enthält, getrocknet und aufgewickelt werden.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass das Bad zusätzlich eine Lösung eines Thermoplasten enthält.
11. Verfahren nach einem oder mehreren der Ansprüche 6 bis 10, dadurch gekennzeichnet, das die beschichteten Verstärkungsfasern in Schritt c) in der Gestelt von Filamentgarnen, Kurzfasern, Geweben, Geflechten, Gestricken, Gewirken, Vliesen, uni- oder multidirektionalen Gelegen zu einem Verbundwerkstoff verarbeitet werden.
2. Verwendung des Verbundwerkstoffs nach einem oder mehreren der Ansprüche 1 bis 5 oder eines nach einem oder mehreren der Ansprüche 6 bis 11 hergestellten Verbundwerkstoffs zur Herstellung von Komponenten für den Flugzeugbau, den Automobilbau, den Maschinen- und Anlagenbau und zur Herstellung von medizinischen Komponenten.
PCT/EP2003/003234 2002-04-03 2003-03-28 Verbundwerkstoff, verfahren zu seiner herstellung und seine verwendung WO2003082565A1 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003580069A JP4180520B2 (ja) 2002-04-03 2003-03-28 複合材料、その製造方法およびその使用
EP20030720379 EP1492666B1 (de) 2002-04-03 2003-03-28 Verbundwerkstoff, verfahren zu seiner herstellung und seine verwendung
KR1020047015653A KR100914144B1 (ko) 2002-04-03 2003-03-28 복합재, 이의 제조방법 및 이의 용도
AU2003224004A AU2003224004A1 (en) 2002-04-03 2003-03-28 Composite material, method for the production and use thereof
US10/509,875 US7867612B2 (en) 2002-04-03 2003-03-28 Composite material, method for the production and use thereof
DE50307466T DE50307466D1 (de) 2002-04-03 2003-03-28 Verbundwerkstoff, verfahren zu seiner herstellung und seine verwendung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP02007534.7 2002-04-03
EP02007534 2002-04-03

Publications (1)

Publication Number Publication Date
WO2003082565A1 true WO2003082565A1 (de) 2003-10-09

Family

ID=28459455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2003/003234 WO2003082565A1 (de) 2002-04-03 2003-03-28 Verbundwerkstoff, verfahren zu seiner herstellung und seine verwendung

Country Status (10)

Country Link
US (1) US7867612B2 (de)
EP (1) EP1492666B1 (de)
JP (1) JP4180520B2 (de)
KR (1) KR100914144B1 (de)
CN (1) CN100434266C (de)
AT (1) ATE364499T1 (de)
AU (1) AU2003224004A1 (de)
DE (1) DE50307466D1 (de)
ES (1) ES2287468T3 (de)
WO (1) WO2003082565A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7854756B2 (en) 2004-01-22 2010-12-21 Boston Scientific Scimed, Inc. Medical devices
WO2012100997A3 (de) * 2011-01-28 2013-02-07 Siemens Aktiengesellschaft Faserverbundkunststoff sowie herstellungsverfahren dazu
CN113045900A (zh) * 2021-04-19 2021-06-29 山东道恩高分子材料股份有限公司 一种连续碳纤维增强聚苯硫醚复合材料

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008039840A1 (de) * 2008-08-27 2010-03-04 Sgl Carbon Ag Streckgerissene Carbonfasergarne für eine Heizvorrichtung
US8517859B2 (en) 2010-07-08 2013-08-27 Acushnet Company Golf club head having a multi-material face
US11186016B2 (en) 2010-07-08 2021-11-30 Acushnet Company Golf club head having multi-material face and method of manufacture
US9199137B2 (en) 2010-07-08 2015-12-01 Acushnet Company Golf club having multi-material face
US9717960B2 (en) 2010-07-08 2017-08-01 Acushnet Company Golf club head having a multi-material face
US10357901B2 (en) 2010-07-08 2019-07-23 Acushnet Company Golf club head having multi-material face and method of manufacture
US9192826B2 (en) 2010-07-08 2015-11-24 Acushnet Company Golf club head having a multi-material face
US10143898B2 (en) 2010-07-08 2018-12-04 Acushnet Company Golf club head having a multi-material face
CA2819525C (en) * 2010-12-02 2018-10-09 Toho Tenax Europe Gmbh Fiber preform made from reinforcing fiber bundles and comprising unidirectional fiber tapes, and composite component
CN104479237A (zh) * 2014-12-17 2015-04-01 天津金发新材料有限公司 一种抗静电陶瓷纤维增强as复合物及其制备方法
US10569143B2 (en) 2015-11-18 2020-02-25 Acushnet Company Multi-material golf club head
US10065084B2 (en) 2015-11-18 2018-09-04 Acushnet Company Multi-material golf club head
US10232230B2 (en) 2015-11-18 2019-03-19 Acushnet Company Multi-material golf club head
US10350464B2 (en) 2015-11-18 2019-07-16 Acushnet Company Multi-material golf club head
US10245479B2 (en) 2015-11-18 2019-04-02 Acushnet Company Multi-material golf club head
US10343030B2 (en) 2015-11-18 2019-07-09 Acushnet Company Multi-material golf club head
US10086239B2 (en) 2015-11-18 2018-10-02 Acushnet Company Multi-material golf club head
US10434380B2 (en) 2015-11-18 2019-10-08 Acushnet Company Multi-material golf club head
EP3670582B1 (de) * 2018-12-21 2024-03-20 Indorama Ventures Luxembourg Holding S.A. Verfahren zur herstellung eines verstärkungsmaterials
CN111979627B (zh) * 2020-05-12 2021-07-20 江苏百护纺织科技有限公司 具有阻燃性的纱线、面料、服装和阻燃工作服
US11491377B1 (en) 2021-12-28 2022-11-08 Acushnet Company Golf club head having multi-layered striking face
US11850461B2 (en) 2022-03-11 2023-12-26 Acushnet Company Golf club head having supported striking face

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4489129A (en) * 1982-07-22 1984-12-18 Phillips Petroleum Company Polymer-coated reinforcements
WO1992018431A1 (en) * 1991-04-16 1992-10-29 Owens-Corning Fiberglas Corporation A size composition for impregnating filament strands
US5641572A (en) * 1993-12-27 1997-06-24 Mitsubishi Chemical Corporation Short carbon fiber bundling mass, process for producing the same and fiber-reinforced thermoplastic resin composition

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN85101601A (zh) * 1985-04-01 1986-07-30 中山大学 聚苯硫醚悬浮液浸渍法制备纤维复合材料
US4910289A (en) * 1987-07-27 1990-03-20 Amoco Corporation Nucleating agents for poly(aryl ether ketone) blends and compositions obtained therefrom

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4489129A (en) * 1982-07-22 1984-12-18 Phillips Petroleum Company Polymer-coated reinforcements
WO1992018431A1 (en) * 1991-04-16 1992-10-29 Owens-Corning Fiberglas Corporation A size composition for impregnating filament strands
US5641572A (en) * 1993-12-27 1997-06-24 Mitsubishi Chemical Corporation Short carbon fiber bundling mass, process for producing the same and fiber-reinforced thermoplastic resin composition

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7854756B2 (en) 2004-01-22 2010-12-21 Boston Scientific Scimed, Inc. Medical devices
US8048143B2 (en) 2004-01-22 2011-11-01 Boston Scientific Scimed, Inc. Medical devices
WO2012100997A3 (de) * 2011-01-28 2013-02-07 Siemens Aktiengesellschaft Faserverbundkunststoff sowie herstellungsverfahren dazu
US9416236B2 (en) 2011-01-28 2016-08-16 Siemens Aktiengesellschaft Fiber reinforced plastics material and method for production thereof
CN113045900A (zh) * 2021-04-19 2021-06-29 山东道恩高分子材料股份有限公司 一种连续碳纤维增强聚苯硫醚复合材料

Also Published As

Publication number Publication date
EP1492666B1 (de) 2007-06-13
CN1646310A (zh) 2005-07-27
JP2006507412A (ja) 2006-03-02
EP1492666A1 (de) 2005-01-05
KR20040098037A (ko) 2004-11-18
KR100914144B1 (ko) 2009-08-28
AU2003224004A1 (en) 2003-10-13
CN100434266C (zh) 2008-11-19
DE50307466D1 (de) 2007-07-26
US20050208284A1 (en) 2005-09-22
US7867612B2 (en) 2011-01-11
ES2287468T3 (es) 2007-12-16
JP4180520B2 (ja) 2008-11-12
ATE364499T1 (de) 2007-07-15

Similar Documents

Publication Publication Date Title
EP1492666B1 (de) Verbundwerkstoff, verfahren zu seiner herstellung und seine verwendung
DE60013018T2 (de) Gewebe und Verbundwirkstoff mit verbessertem Widerstand gegen das Zusammendrücken des Kerns für faserverstärkte Verbundwirkstoffe
EP2646226B1 (de) Unidirektionale faserbänder aufweisender faservorformling aus verstärkungsfaserbündeln und verbundwerkstoff-bauteil
DE2933307C2 (de) Beschichtetes textiles Flächengebilde
DE102008063545B4 (de) Multiaxialgelege, Verfahren zur Herstellung eines Faserverbundkunststoffs und Faserverbundkunststoff
DE3132859A1 (de) Drapierbares und formbares gewebtes graphitgewebe mit einer hohen elektrischen leitfaehigkeit
EP1737633A1 (de) Durch epoxidharz imprägniertes garn und seine verwendung zur herstellung eines vorformlings
DE60007067T2 (de) Verfahren zum herstellen einer klebemittelbehandelten faserkordel aus polyester
DE2824110C2 (de) Verfahren zur Herstellung einer porösen, selbsttragenden Filterröhre und deren Verwendung
DE102013227142B4 (de) Langzeitstabile Prepregs, deren Verwendung, Verfahren zu deren Herstellung und Faserverbundwerkstoff
EP2736691A1 (de) Flexibles, mit harz vorimprägniertes verstärkungsfasergarn
DE102016209102B4 (de) Thermoplastischer Kunststoff-Verbundstoff und Herstellungsverfahren für einen thermoplastischen Kunststoffverbundstoff
DE102010042349B4 (de) Textiles Halbzeug, insbesondere Prepreg, auf Basis von aus Recyclingfasern zusammengesetztem Carbonfaservlies, Verfahren zur Herstellung und Verwendung des textilen Halbzeugs sowie Carbonfaserverstärkter Verbundwerkstoff
DE1769961C3 (de) Antistatische, siliziumorganische Verbindungen enthaltende Schlichte zum Überziehen von Glasfasern und Glasfasern mit antistatischen Eigenschaften
WO2010066894A2 (de) Verfahren zur herstellung von fasergelegen, sowie fasergelege und deren verwendung
WO2019086431A1 (de) Faserverstärktes verbundmaterial und verfahren zur herstellung eines faserverstärkten verbundmaterials
DE102011122560B4 (de) Textilverstärkter Formkörper, ein Verfahren zu dessen Herstellung sowie seine Verwendung
DE3012288A1 (de) Faden mit einem praeparierten kernfaden und einem ueberzug sowie siebartiges gewebe
DE1560841A1 (de) Verfahren zur Herstellung von nicht verwebten Textilbahnen aus synthetischen Fasern
EP3541614A1 (de) Kernkörper aus einem kunststoffverbund und verfahren zu seiner herstellung
EP2886693A1 (de) Vliesstoff aus Carbonfasern und thermoplastischen Fasern
WO2010057478A2 (de) Flexibles verbundsystem mit carbonfaserhaltigem material, ein verfahren zu seiner herstellung und deren verwendung
DE102020104993B4 (de) Halbzeug für ein Schleifmittel, Schleifmittel und Verfahren zur Herstellung derselben
DE3742833A1 (de) Verfahren zur herstellung von faserverbundwerkstoffen
DE102020107743A1 (de) Hybridfaser und Verfahren zu ihrer Herstellung

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003720379

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020047015653

Country of ref document: KR

Ref document number: 2003580069

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 20038077213

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047015653

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003720379

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 10509875

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2003720379

Country of ref document: EP