WO2003076524A1 - Procede de production de pigment de dioxyde de titane et compositions de resine contenant ce pigment - Google Patents

Procede de production de pigment de dioxyde de titane et compositions de resine contenant ce pigment Download PDF

Info

Publication number
WO2003076524A1
WO2003076524A1 PCT/JP2003/002801 JP0302801W WO03076524A1 WO 2003076524 A1 WO2003076524 A1 WO 2003076524A1 JP 0302801 W JP0302801 W JP 0302801W WO 03076524 A1 WO03076524 A1 WO 03076524A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium dioxide
dioxide pigment
producing
pigment
compound
Prior art date
Application number
PCT/JP2003/002801
Other languages
English (en)
French (fr)
Inventor
Hideo Takahashi
Toshihiko Akamatsu
Yuji Shigeno
Original Assignee
Ishihara Sangyo Kaisha, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishihara Sangyo Kaisha, Ltd. filed Critical Ishihara Sangyo Kaisha, Ltd.
Priority to CA2478673A priority Critical patent/CA2478673C/en
Priority to US10/507,172 priority patent/US7144838B2/en
Priority to KR1020047014196A priority patent/KR100855927B1/ko
Priority to AU2003213434A priority patent/AU2003213434B2/en
Priority to EP03708522.2A priority patent/EP1484364B1/en
Publication of WO2003076524A1 publication Critical patent/WO2003076524A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/12Treatment with organosilicon compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3692Combinations of treatments provided for in groups C09C1/3615 - C09C1/3684
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • C09C1/3607Titanium dioxide
    • C09C1/3684Treatment with organo-silicon compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/62L* (lightness axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/63Optical properties, e.g. expressed in CIELAB-values a* (red-green axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values
    • C01P2006/64Optical properties, e.g. expressed in CIELAB-values b* (yellow-blue axis)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above

Definitions

  • the present invention relates to a method for producing a titanium dioxide pigment excellent in processing characteristics and dispersibility in a plastic system, and a resin composition containing the titanium dioxide pigment obtained by the production method.
  • titanium dioxide pigment Since titanium dioxide pigment has hydrophilicity, it has low affinity for organic resins and low dispersibility and filling properties in plastics. Especially when processing a thin film, lacing (foaming) and pinholes are likely to occur due to the moisture caused by the titanium dioxide pigment. For this reason, a method is known in which the surface of a titanium dioxide pigment is coated with an organic silicon compound to impart affinity and hydrophobicity to a plastic resin.
  • the hydrolysis product of the hydrolyzable alkylsilane compound reacts with the hydroxyl group on the surface of the titanium dioxide pigment to form a chemical bond, forming a hydrophobic bond between the titanium dioxide pigment and the affinity for the plastic resin.
  • the alkyl group of the hydrolysis product is inactive toward organic compounds and has excellent selectivity for plastic resin species, so that it is widely used in such fields. ing.
  • the hydrolysis product of a hydrolyzable alkylsilane compound with excellent hydrophobicity has low heat resistance, and the titanium diacid pigment coated with this is heated by the drying and pulverization processes after coating to form a pigment powder.
  • the resin is yellowish, and the plastic molded article is also yellowish.
  • the present invention overcomes the above-mentioned problems of the prior art, and has excellent balance between hydrophobicity (that is, affinity for resin), dispersibility, and heat resistance, and is particularly suitable for processing a plastic thin film.
  • Method for producing face and diacid obtained by the method The purpose of the present invention is to provide a resin composition containing a titanium oxide pigment.
  • the present inventors have conducted extensive research to solve these problems, and as a result, it has been found that if the hydrolysis product of a specific organic silane compound is coated on the surface of the titanium dioxide pigment particles by a dry treatment, excellent results can be obtained.
  • the present inventors have found that high hydrophobicity and dispersibility can be obtained, and the heat resistance can be excellent, and the present invention has been completed.
  • a method for producing a titanium dioxide pigment comprising subjecting the surface of the titanium dioxide pigment particles to a dry coating treatment with the hydrolysis product of the alkylsilane compound.
  • the present invention relates to a method for producing a titanium dioxide pigment, wherein a hydrolyzate of an alkylsilane compound represented by the formula (1) is dry-coated on the surface of titanium dioxide pigment particles.
  • a hydrolyzate of an alkylsilane compound represented by the formula (1) is dry-coated on the surface of titanium dioxide pigment particles.
  • Alkylsilane compounds in which all the alkyl groups have 5 or less carbon atoms have low hydrophobicity and low affinity for organic substances. However, desired characteristics cannot be obtained.
  • Hydrolyzable group (R in the formula is not particularly limited, such as a halogen group or a hydroxyl group, but is preferably an alkoxy group which is unlikely to generate harmful secondary products and has excellent stability. If the group is a methoxy group or an ethoxy group, it is more preferable because it has excellent hydrolyzability. Is desirable.
  • hexinoletrimethoxysilane hexyltriethoxysilane
  • hexylmethyldimethoxysilane hexylmethyljetoxysilane. These can be used alone or in combination of two or more.
  • the hydrolysis product in the present invention is a product in which a hydrolyzable group of an alkylsilane compound is hydrolyzed to form a silanol, or a product in which silanols are polycondensed to form an oligomer or polymer having a siloxane bond. It may contain a part of an unreacted alkylsilane compound as long as the object of the present invention is not impaired.
  • Dry coating treatment refers to a method in which a titanium dioxide diacid pigment is brought into contact with an alkylsilane compound or its hydrolysis product in a gas phase to coat the hydrolysis product of the alkylsilane compound on the titanium dioxide pigment particle surface. To tell. As long as both are in contact with each other in the gas phase and the coating process is performed, it corresponds to the dry coating process. That is, it does not need to be in the titanium dioxide pigment.
  • the coating of the hydrolysis product of the alkylsilane compound represented by the formula (1) is performed, for example, by a so-called wet treatment in which a titanium dioxide pigment is brought into contact with an alkylsilane compound in a liquid medium such as water or an organic solvent.
  • a so-called wet treatment in which a titanium dioxide pigment is brought into contact with an alkylsilane compound in a liquid medium such as water or an organic solvent.
  • the pH of the slurry is in the neutral to acidic range, the titanium dioxide pigment will aggregate and settle, or the viscosity of the slurry will increase, making it difficult to mix and stir sufficiently on an industrial scale, resulting in uniform coating. It will be difficult.
  • the dry coating treatment involves the hydrolysis of titanium oxide pigment and alkylsilane compound. May be mixed using a high-speed stirrer or the like, but (1) hydrolysis of an alkylsilane compound prepared in advance when pulverized using a fluid energy pulverizer using titanium dioxide pigment as a pulverizing medium.
  • pulverization is performed. This is preferable because the grinding and coating can be performed simultaneously.
  • the gas serving as the pulverizing medium can be air, water vapor, or the like, and there is no particular limitation.
  • the alkylsilane compound reacts with water vapor to form a hydrolysis product and is coated on the titanium dioxide pigment. The amount of water vapor and the vapor pressure for effectively hydrolyzing the alkylsilane compound can be determined experimentally.
  • the temperature of the dry coating treatment is set to 120 to 300 ° C.
  • the reaction between the hydrolyzed product of the alkylsilane compound and the hydroxyl group on the surface of the titanium dioxide pigment is further promoted, and coating can be performed more uniformly.
  • the inside of the pulverizer can be heated in advance to the temperature in the above range, or the gas serving as the grinding medium can be heated to the temperature in the above range in advance.
  • the alkylsilane compound and water may be mixed, and the concentration of the mixture is preferably in the range of 5 to 95% by weight, A range of 95% by weight is more preferred. It is preferable to adjust the pH of water or a mixed solution to a neutral to acid range since hydrolysis proceeds easily. In the acidic region, it is difficult to produce a polycondensate of a hydrophobic hydrolysis product, and it is easy to handle as an aqueous mixed solution, and its pH is preferably adjusted to a range of 0.5 to 6, more preferably. The range is 1.5-4.
  • the hydrolyzable organism may be used as it is, but when the amount of water is large, it is preferable to reduce the amount of water before use.
  • the dry coating treatment amount of the hydrolysis product of the alkylsilane compound is preferably from 0.01 to 3.0% by weight, more preferably from 0.01 to 3.0% by weight, based on the titanium dioxide pigment, in terms of the alkylsilane compound. 0.0% by weight. Less than this will produce the desired effect It is difficult to obtain, and if it is more than this, an effect commensurate with the added amount of the alkylsilane compound is not recognized, which is economically disadvantageous.
  • a coating layer of an inorganic compound is previously formed on the surface thereof.
  • inorganic compounds include hydrated oxides such as aluminum, silicon, tin, and zirconium, and phosphates such as aluminum phosphate, which are known in the art.
  • the yarn may be coated together.
  • the inorganic compound does not need to cover the entire surface of the titanium dioxide pigment, and may include an uncoated portion as long as desired properties can be obtained.
  • the total coating amount of the inorganic compound is large, a porous coating layer is formed and it becomes easy to absorb moisture.
  • the amount of water contained in the titanium dioxide pigment also becomes large. .
  • the upper limit of the specific total amount of coating varies depending on the kind of the inorganic compounds include, example embodiment, as A 1 2 0 3 if hydrated oxides of aluminum, S i if hydrated oxide of Kei element As O 2 , if it is a phosphate of aluminum, it is preferable to use A 12 PO 4 at a maximum of 1.0% by weight based on the titanium dioxide pigment.
  • a 12 PO 4 at a maximum of 1.0% by weight based on the titanium dioxide pigment.
  • these inorganic compounds can easily obtain desired properties if the total coating amount is at least 0.01% by weight, it is more preferable to set the range of 0.01 to 1.0% by weight.
  • Titanium dioxide pigments that do not have a coating layer of inorganic compounds generally have low light resistance, so that the plastic resin containing them tends to discolor or fade under ultraviolet light, or it is easy to promote decomposition.
  • the amount of aluminum hydrated oxide covered is calculated as A2O3 with respect to titanium dioxide. It is preferably in the range of 0.01 to 1.0% by weight, and more preferably in the range of 0.05 to 0.5% by weight. If the content is less than 0.01% by weight, it is difficult to obtain desired light resistance. If the content is more than 1.0% by weight, titanium dioxide pigment is blended with the plastic resin due to the bound water contained in the hydrated oxide. When thin film processing is performed in this way, processing defects due to moisture during plastic molding are likely to occur.
  • the hydration oxide of aluminum can be coated by a known method. For example, (1) An aqueous solution of an aluminum compound is added to an aqueous slurry in which a titanium dioxide pigment is dispersed, and an acidic compound or a base is added. The pH is adjusted to 4 to 9 using an aqueous solution of the acidic compound. (2) An aqueous solution of the acidic compound or the basic compound is added to the aqueous slurry of the titanium dioxide pigment, and the pH in the above range is added. While maintaining the above conditions, an aqueous solution of an aluminum compound is added to the slurry. After coating, perform filtration, washing, drying, etc. as necessary.
  • the solids concentration of the titanium dioxide pigment in the aqueous slurry is in the range of 50-800 g / liter, preferably in the range of 100-500 gZ liter.
  • concentration is higher than 800 g / liter, the viscosity of the aqueous slurry becomes too high, and it becomes difficult to uniformly coat the surface of the titanium dioxide pigment particles with the hydrated aluminum oxide. If it is lower than 50 g / liter, industrial operability will be reduced.
  • Examples of the aluminum compound used include sodium aluminate, aluminum sulfate, aluminum nitrate, and aluminum chloride.
  • an inorganic acid such as sulfuric acid or hydrochloric acid, or an acidic compound such as an organic acid such as acetic acid or formic acid, or an inorganic basic compound such as sodium hydroxide, a hydroxide hydroxide, or ammonia. I can do it.
  • the titanium dioxide pigment obtained in the present invention has an average particle size (electron microscope photography) in the range of 0.1 to 0.4 / zm, and has a range of 0.1 to 0.25 ⁇ . Is more preferable.
  • the crystal form may be either anatase type or rutile type, and may be a mixture of both.
  • the method of producing the titanium dioxide pigment particles to be used is not particularly limited.
  • the titanium dioxide pigment particles may be obtained by a so-called sulfuric acid method of hydrolyzing a titanium sulfate solution, or a so-called chlorine method of vaporizing titanium halide. May be obtained.
  • the titanium dioxide pigment obtained in the present invention has a dispersibility of 20 kg / cm 2 or less. ing.
  • the dispersibility in the present invention is measured by the following method.
  • the present invention is a resin composition, comprising the titanium dioxide pigment and a plastic resin.
  • the resin composition has excellent surface smoothness and gloss with almost no processing defects such as lasing, pinholes, and particles having poor dispersibility of titanium dioxide pigment protruding from the surface.
  • plastic resins such as polyolefin resin, PVC resin, polystyrene resin, ABS resin and engineering plastic
  • thermosetting resins such as phenol resin, urethane resin and unsaturated polyester resin.
  • thermoplastic resins such as polyolefin resin, PVC resin, polystyrene resin, ABS resin and engineering plastic
  • thermosetting resins such as phenol resin, urethane resin and unsaturated polyester resin.
  • the mixing ratio of the titanium dioxide pigment and the plastic resin is not particularly limited, but the titanium dioxide pigment is in the range of 0.01 to 900 parts by weight, more preferably 0.1 part by weight, based on 100 parts by weight of the plastic resin. 2200 parts by weight.
  • Various additives such as stabilizers, dispersants, lubricants, antioxidants, ultraviolet absorbers, reinforcing agents, fillers, and fillers known to those skilled in the art are added to the resin composition according to the application. be able to.
  • the resin composition of the present invention can be obtained by mixing a titanium dioxide pigment with a molten plastic resin using a kneader.
  • kneading machine those generally used may be used, and examples thereof include a single-screw extruder, a twin-screw extruder, an intensible mixer such as a Banbury mixer, and a knurling machine.
  • Example 1
  • a rutile-type titanium dioxide pigment having an average particle diameter of 0.20 ⁇ m was mixed with water to prepare an aqueous slurry having a weight of 300 g Z-liters of titanium dioxide. While maintaining the slurries to 6 0 ° C, stirring sodium aluminate was added 0.3 0% by weight of the titanium dioxide pigment as A 1 2 0 3 while, then p H with sulfuric acid 5. After being neutralized to 0 and coated with an aluminum hydrated product, it was separated by filtration, washed, and dried at 120 ° C. for 10 hours.
  • Example 1 was repeated except that the hydrolysis product of hexyltriethoxysilane, equivalent to 1.0% by weight as hexyltriethoxysilane, was added to a grinder. Similarly, the surface of the titanium dioxide pigment particles was dry-coated with the hydrolysis product of hexyltriethoxysilane. The obtained titanium dioxide pigment is used as sample B.
  • the hydrolysis product of hexyltriethoxysilane was prepared by adding 1 part by weight of water adjusted to pH 2 with sulfuric acid to 9 parts by weight of hexyltriethoxysilane and stirring for 1 hour. did.
  • Example 4 The hydrolysis product of hexyltrimethoxysilane was applied to the surface of the titanium dioxide pigment particles in the same manner as in Example 2 except that the hydrolysis product of hexyltrimethoxysilane was used instead of the hydrolysis product of hexyltriethoxysilane. Was dry-coated.
  • the obtained titanium dioxide pigment is designated as Sample D.
  • the surface of titanium dioxide pigment particles was dry-coated with the hydrolysis product of hexylmethylethoxysilane in the same manner as in Example 1 except that hexylmethylethoxysilane was used instead of hexyltriethoxysilane. .
  • the obtained titanium dioxide pigment is designated as Sample E.
  • the hydrolysis product of hexylmethyljetoxysilane was prepared in the same manner as in Example 2, except that the hydrolysis product of hexyltriethoxysilane was used instead of the hydrolysis product of hexyltriethoxysilane.
  • the surface of the titanium dioxide pigment particles was dry-coated. The obtained titanium dioxide pigment is designated as Sample F.
  • a titanium dioxide pigment (sample G) was obtained in the same manner as in Example 1 except that hexyltriethoxysilane was not used.
  • a titanium dioxide pigment (sample H) was obtained in the same manner as in Example 1 except that octyltriethoxysilane was used instead of hexinoletriethoxysilane.
  • a titanium dioxide pigment (sample I) was obtained in the same manner as in Example 1 except that butyltriethoxysilane was used instead of hexyltriethoxysilane.
  • Example 2 After coating the hydrated oxide of aluminum in Example 1, the pH of the aqueous slurry was adjusted to 9 with sodium hydroxide, and then 1.0% by weight of hexyltriethoxysilane with respect to the titanium dioxide pigment was added to an aqueous solution. Added into the slurry and stirred for 2 hours. Then, the pH was adjusted to 5 with sulfuric acid, filtered, washed, dried at 120 for 10 hours, and then pulverized with a fluid energy pulverizer to obtain a titanium diacid titanate (sample). . Comparative Example 5
  • a titanium dioxide pigment (sample K) was obtained in the same manner as in Comparative Example 4, except that hexyltriethoxysilane was replaced with the hydrolysis product of hexyltriethoxysilane used in Example 2.
  • a titanium dioxide pigment (sample) was obtained in the same manner as in Example 1 except that decyltriethoxysilane was used instead of hexyltriethoxysilane.
  • Judgment X Foaming is observed throughout.
  • Table 1 shows the evaluation results of moisture, racing resistance, dispersibility, and heat resistance. It can be seen that the titanium dioxide pigment obtained by the production method of the present invention has excellent hydrophobicity, dispersibility, and processing characteristics. Further, it can be seen that the luster composition of the present invention has an excellent appearance with almost no racing.
  • Example 1 and Comparative Examples 1 and 6 were compression-molded in the same manner as in Evaluation 4, and the powder of the molded product in the Hunter color system (L, a, b) was used. Body color was measured using a color computer (SM-5, manufactured by Suga Test Instruments). The lower the L value, the lower the whiteness, and the higher the b value, the more yellowish the color.
  • SM-5 manufactured by Suga Test Instruments
  • Table 2 shows the evaluation results of the powder colors.
  • the titanium dioxide pigment (sample A) obtained by the production method of the present invention has almost the same whiteness and color tone as those obtained when the alkylsilane-treated conjugate is not treated (sample G). This is considered to be due to its excellent heat resistance, which is unlikely to be discolored by heating during drying and milling.
  • Table 2 Industrial applicability is considered to be due to its excellent heat resistance, which is unlikely to be discolored by heating during drying and milling.
  • the production method of the present invention provides a titanium dioxide pigment excellent in hydrophobicity, dispersibility, and heat resistance.
  • This titanium dioxide pigment is used as a coloring agent for plastics, particularly for films requiring lasing resistance. It is useful in the field of thin film coating.
  • the resin composition of the present invention has excellent surface smoothness and gloss with almost no processing defects such as lacing, pinholes and the like, and particles having poor dispersibility of titanium dioxide pigment projecting to the surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pigments, Carbon Blacks, Or Wood Stains (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

明 細 書 二酸化チタン顔料の製造方法及ぴ該ニ酸化チタン顏料を配合した樹脂組成物 技術分野
本発明は、 プラスチック系での加工特性や分散性に優れた二酸化チタン顔料の 製造方法及びその製造法で得られた二酸化チタン顔料を配合した樹脂組成物に関 する。
背景技術
二酸化チタン顔料は親水性を有しているので、 有機系の樹脂への親和性が低く、 プラスチック系での分散性や充填性が低い。 特に薄膜フィルム加工する場合、 二 酸化チタン顔料に起因する水分が原因となって、 レーシング (発泡) やピンホー ルが発生し易い。 このため、 二酸化チタン顔料の表面を有機ケィ素化合物で被覆 することで、 プラスチック樹脂への親和性と疎水性とを付与する方法が知られて いる。
有機ケィ素化合物の中でも加水分解性アルキルシラン化合物の加水分解生成物 は、 その水酸基が二酸化チタン顔料の表面に有する水酸基と反応して化学結合し、 二酸化チタン顔料の疎水性、 プラスチック樹脂との親和性を高度に改良でき、 一 方、 前記加水分解生成物のアルキル基は有機化合物に対して不活性であり、 プラ スチック樹脂種の選択性が優れているので、 このような分野で広く用いられてい る。
しかし、 一般的に疎水性に優れた加水分解性アルキルシラン化合物の加水分解 生成物は耐熱性が低く、 これを被覆した二酸ィヒチタン顔料は被覆後の乾燥、 粉砕 工程での加熱により顔料粉体が黄味を帯び、 ひいてはプラスチックに成形加工し たものも黄味を帯びてしまうという問題があった。
発明の開示
本発明は、 以上に述べた従来技術の問題点を克服し、 疎水性 (すなわち樹脂と の親和性) 、 分散性と耐熱性とのバランスが優れ、 とりわけプラスチックの薄膜 フィルム加工に適した二酸化チタン顏料の製造方法及びその方法で得られた二酸 化チタン顔料を配合した樹脂組成物を提供するためになされたものである。
本発明者らは、 これらの問題点を解決すべく銳意研究を重ねた結果、 特定の有 機シラン化合物の加水分解生成物を、 乾式処理により二酸化チタン顔料の粒子表 面に被覆すれば、 優れた疎水性と分散性とが得られ、 耐熱性にも優れたものにな ることを見出し、 本発明を完成した。
すなわち、 本発明は式 (1 )
(C6 H13 'n— — 4— (ri+m) ( 1 )
m [ Rは炭素数が 5以下のアルキル基、 R "は加水分解性基であり、 nは 1 〜 3、 mは 0〜 2で、 n + m≤ 3を満たす整数である。 ] で表されるアルキルシラン化 合物の加水分解生成物を、 二酸化チタン顔料粒子表面に乾式被覆処理することを 特徴とする二酸化チタン顔料の製造方法である。
発明を実施するための最良の形態
本発明は二酸化チタン顔料の製造方法であって、 式 (1 ) で表されるアルキル シラン化合物の加水分解生成物を、 二酸化チタン顔料粒子表面に乾式被覆処理す ることを特徴とする。 アルキルシラン化合物はアルキル基の炭素数が 7個以上に なると耐熱性が著しく低くなる。 このため、 炭素数が 6個のものを用いて湿式で 処理しても、 疎水性、 分散性が不充分であった。
本発明では乾式処理することにより、 アルキルシラン化合物の加水分解生成物 と二酸化チタン顔料が表面に有する水酸基との化学的反応、 結合が生じ易くなり、 親水性の二酸化チタン顔料の表面がアルキルシラン化合物の加水分解生成物によ つて十分に被覆されるものと推測される。
このため、 式 ( 1 ) で表されるアルキルシラン化合物のように、 少なくとも 1 個のアルキル基の炭素数が 6個であれば、 他のアルキル基の炭素数が 5個以下で あっても、 疎水性が高く、 プラスチック樹脂との親和性が高い二酸ィ匕チタン顔料 が得られる。 全てのアルキル基の炭素数が 5個以下のアルキルシラン化合物 (式 ( 1 ) で n = 0、 m= 3の場合) は、 疎水性や有機物との親和性が低く、 乾式処 理を適用しても所望の特性が得られない。 加水分解性基 (式中の R としてはハロゲン基、 水酸基であるもの等特に 制限は無いが、 有害な二次生成物が発生し難く、 安定性に優れたアルコキシ基で あるものが望ましく、 アルコキシ基がメ トキシ基またはエトキシ基であれば加水 分解性に優れているので、 より望ましい。 更には、 二酸化チタン顔料表面の水酸 基との反応サイトが多い式中の n +mが 1または 2のものが望ましい。
具体例としては、 へキシノレトリメ トキシシラン、 へキシルトリエトキシシラン、 へキシルメチルジメ トキシシラン、 へキシルメチルジェトキシシラン等を挙げる ことができ、 これらは単独あるいは 2種以上の組み合わせで使用することもでき る。
本発明における加水分解生成物とは、 アルキルシラン化合物の加水分解性基が' 加水分解されてシラノールになったものや、 シラノール同士が重縮合し、 シロキ サン結合を有するオリゴマーやポリマーになったものをいい、 本発明の目的を害 さない範囲で未反応のアルキルシラン化合物を一部含んでいても良い。
乾式被覆処理とは、 気相中で、 二酸ィヒチタン顔料とアルキルシラン化合物また はその加水分解生成物とを接触させて二酸化チタン顔料粒子表面にアルキルシラ ン化合物の加水分解生成物を被覆する方法を言う。 気相中で両者が接触して被覆 処理がなされる限り、 乾式被覆処理に該当する。 すなわち、 二酸化チタン顔料、 にある必要はない。
式 (1 ) で表されるアルキルシランィヒ合物の加水分解生成物の被覆を、 例えば 二酸化チタン顔料を水や有機溶媒等の液状媒体中で、 アルキルシラン化合物と接 触させる所謂湿式処理で行う場合、 スラリーの p Hがアルカリ性の領域では、 ァ ルキルシラン化合物の加水分解速度が低下したり、 加水分 してもシラノール同 士の重縮合が優先的に進行したり、 シラノ一ルのニ酸化チタン顔科表面の水酸基 との反応性が低下するなどして、 加水分解生成物の被覆が困難となる。 また、 ス ラリーの p Hが中性〜酸性領域にすると、 二酸化チタン顔料が凝集して沈降した り、 あるいはスラリーの粘度が上昇し、 工業規模では十分な混合'攪拌が難しく、 均一な被覆が困難となる。
乾式被覆処理は、 酸化チタン顔料とアルキルシラン化合物の加水分解生成物と を高速攙拌機等を用いて混合して行なっても良いが、 ①ニ酸化チタン顔料を気体 を粉碎媒とする流体エネルギー粉碎機を用いて粉碎する際に予め調整したアルキ ルシラン化合物の加水分解生成物を粉砕機中に添加したり、 あるいは②水蒸気を 粉碎媒とする流体エネルギー粉砗機を用いて粉碎する際にアルキルシラン化合物 を粉碎機中に添カ卩したりして行うと、 顔料の粉碎と被覆処理が同時に行えるので 好ましい。
流体エネルギー粉碎機としては、 ジェットミルのような旋回式のものを用いる と粉砕効率が良く、 混合性も優れているので好ましい。 ①の方法において、 粉砕 媒となる気体は空気や水蒸気等を用いることができ、 特に制限は無い。 また、 ② の方法では、 アルキルシラン化合物が水蒸気と反応し、 加水分解生成物を生成し ながら二酸化チタン顔料に被覆される。 アルキルシラン化合物の加水分解を有効 に行なうための水蒸気量や蒸気圧は実験的に定めうる。
乾式被覆処理の温度を 1 2 0〜 3 0 0 °Cにすると、 アルキルシラン化合物の加 水分解生成物と二酸化チタン顔料表面の水酸基との反応が一層進み、 より均一に 被覆-できるので望ましい。 乾式被覆処理の温度を上記範囲で行なうには、 粉砕機 内部を予め上記範囲の温度に加熱したり、 粉碎媒となる気体を予め上記範囲の温 度に加熱することで行なえる。
上記①の方法において、 予め加水分解生成物を調製するには、 アルキルシラン 化合物と水とを混合すれば良く、 混合物の濃度は 5〜 9 5重量%の範囲とするの が好ましく、 6 0〜 9 5重量%の範囲が更に好ましい。 水または混合液を中性〜 酸十生の領域に p Hを調整すると、 加水分解が進み易いので好ましレ、。 酸性の領域 では、 疎水性の加水分解生成物の重縮合物が生成し難くなり、 水性混合液として 取り扱い易く、 その p Hは 0 . 5〜6の範囲に調製するのが好ましく、 更に好ま しい範囲は 1 . 5〜4である。 中性の領域でも低級アルコール等の相溶剤を加え れば、 水性混合液として取り扱い易くなる。 加水分解性生物はそのまま用いても よいが、 水分量が多い場合は、 水分量を減らしてから用いることが好ましい。 アルキルシラン化合物の加水分解生成物の乾式被覆処理量は、 アルキルシラン 化合物に換算して二酸化チタン顔料に対して 0 . 0 1〜3 . 0重量%が好ましく、 より好ましくは 0 . 0 2〜1 . 0重量%である。 これより少ないと所望の効果が 得られ難く、 これより多いとアルキルシラン化合物の添加量に見合った効果が認 められず、 経済的に不利である。
本発明では、 耐候性、 耐光性等の付与、 生産性の向上等、 所望する特性に応じ、 本発明の目的を損なわない範囲で、 二酸化チタン顔料粒子として、 予めその表面 に無機化合物の被覆層を有するものを用いることが好ましレ、。 例えば、 そのよう な無機化合物として、 当分野において公知のアルミニウム、 ケィ素、 スズ、 ジル コニゥム等の水和酸化物、 あるいはリン酸アルミニウム等それらのリン酸塩等が 挙げられ、 それらを 2種以上糸且合せて被覆しても良い。 無機化合物は二酸化チタ ン顔料の全面を被覆している必要はなく、 所望の特性が得られる範囲で、 一部未 被覆の部分を含んでいても良い。 無機化合物の総被覆量が多いと、 ポーラスな被 覆層が形成され吸湿し易くなり、 中でも前記の水和酸ィヒ物は結合水を含むので、 二酸化チタン顔料に含まれる水分量も多くなる。 このため、 プラスチック樹脂に 配合して成形する際に、 特に薄膜フィルムに成形する際に、 これらの水分に起因 する加工不良が生じ易くなる。 したがって、 総被覆量はできる限り少なくするの が好ましい。 具体的な総被覆量の上限は無機化合物の種類によって異なるが、 例 えば、 前記のアルミニウムの水和酸化物であれば A 1 2 0 3として、 ケィ素の水 和酸化物であれば S i O 2として、 アルミニウムのリン酸塩であれば A 1 2 P O 4として、 二酸化チタン顔料に対し最大で 1 . 0重量%とするのが好ましい。 ま た、 これらの無機化合物は、 総被覆量が少なくとも 0 . 0 1重量%であれば所望 の特性が得られ易いので、 0 . 0 1〜1 . 0重量%の範囲とするのが更に好まし レ、。
無機化合物の被覆層を有しない二酸化チタン顔料は、 ·一般的に耐光性が低いた め、 これを配合したプラスチック樹脂が紫外線下で変色、 褪色するか、 または分 解が促進され易くなるので、 本発明においては、 特に、 予めアルミニウムの水和 酸化物を含む被覆層を有する二酸化チタン顔料を用いるのが望ましい。 アルミ二 ゥムの水和酸化物を被覆すると、 二酸化チタン顏料の製造工程において、 脱水、 乾燥、 粉砕などの操作が容易となるので、 この被覆は工業的にも望ましいもので ある。
アルミニウムの水和酸化物の被覆量は、 二酸化チタンに対し A 1 2 O 3換算で 0. 01〜1. 0重量%の範囲であることが好ましく、 0. 05〜0. 5重量% の範囲であれば更に好ましい。 0. 01重量%より少ないと、 所望の耐光性が得 られ難く、 1. 0重量%より多いと、 水和酸化物中に含まれる結合水のために、 二酸化チタン顔料をブラスチック樹脂に配合して薄膜フィルム加工などを行うと、 プラスチック成形時に水分に起因する加工不良が生じ易くなる。
アルミニウムの水和酸化物の被覆は公知の方法を用いて良ぐ、 例えば、 (1) 二酸化チタン顔料を分散させた水性スラリ一に、 アルミニウム化合物の水溶液を 添カ卩し、 酸性化合物、 または塩基性ィヒ合物の水溶液を用いて p Hを 4〜 9に調整 する、 (2) 二酸化チタン顔料の水性スラリーに、 酸性化合物または塩基性ィ匕合 物の水溶液を添加して前記範囲の pHを維持しながら、 アルミニウム化合物の水 溶液を該スラリー中に添加する、 などいずれの方法で行っても良い。 被覆を行つ た後は、 必要に応じて濾過、 洗浄、 乾燥等を行う。
水性スラリ一中の二酸化チタン顔料の固形分濃度は、 50〜800 g/リット ルの範囲であり、 好ましくは 100〜500 gZリツトルの範囲である。 800 g/リットルより濃度が高いと、 水性スラリーの粘度が高くなり過ぎて、 二酸化 チタン顔料粒子表面へのアルミニウムの水和酸化物の均一な被覆が困難になる。 また、 50 g/リットルより低いと、 工業上の操作性が低下する。
用いるアルミニウム化合物としてはアルミン酸ナトリゥム、 硫酸アルミニウム、 硝酸アルミニウム、 塩化アルミニウム等が挙げられる。 また、 pHの調整には硫 酸、 塩酸等の無機酸、 または酢酸、 ギ酸等の有機酸等の酸性化合物や、 水酸化ナ トリゥム、 水酸化力リゥム、 アンモニア等の無機塩基性化合物を用いることがで きる。
本発明で得られる二酸化チタン顔料は、 0. 1〜0. 4 /zmの範囲の平均粒子 径 (電子顕 ί敷鏡写真法) を有しており、 0. 1〜0. 25 μπιの範囲にあれば更 に好ましい。 その結晶形はアナターゼ型、 ルチル型のいずれでも良く、 両者の混 合物であっても良い。 用いる二酸化チタン顔料粒子の製造方法には特に制限は無 く、 例えば硫酸チタン溶液を加水分解するいわゆる硫酸法によって得ても、 ある いはハ口ゲン化チタンを気相酸ィ匕するいわゆる塩素法によつて得ても良い。
本発明で得られた二酸化チタン顔料は、 20 k g/ c m2以下の分散性を有し ている。 本発明における分散性とは、 下記の方法で測定したものである。
(分散性評価方法)
二酸化チタン顔料 5 0 0 gと冷凍粉砕したポリエチレン樹脂 〔住友化学工業 (株) 製スミカセン L— 7 0 5〕 5 0 0 gおよぴステアリン酸亜鉛 2 0 gをジュ ースミキサ一で 5分間混合する。 このものを東洋精機製ラボブラストミルニ軸押 出機を用いて樹脂温度を 2 8 0 °Cに設定し、 排出側に 1 4 5 0メッシュのスクリ ーンを設定し、 1時間かけて溶融押し出しする。 押し出し開始時と 1時間押し出 し後の樹脂圧を測定し、 その差を分散性の値とする。
次に、 本発明は樹脂組成物であって、 前記の二酸化チタン顔料とプラスチック 樹脂とを含むことを特徴とする。 この樹脂組成物はレーシング、 ピンホール等や 二酸化チタン顔料の分散性不良粒子が表面に突出するような加工不良がほとんど 無く、 優れた表面平滑性や光沢を有する。
用いるプラスチック樹脂としては、 ポリオレフイン樹脂、 塩ビ樹脂、 ポリスチ レン樹脂、 A B S樹脂、 エンジニアリングプラスチック等の熱可塑†生樹脂、 フエ ノール樹脂、 ウレタン樹脂、 不飽和ポリエステル樹脂等の熱硬化性樹脂等が挙げ られ、 特に制限は無く種々のものが使用できる。
二酸化チタン顔料とプラスチック樹脂との配合割合は特に制限されないが、 プ ラスチック樹脂 1 0 0重量部に対し、 二酸化チタン顔料が 0 . 0 1〜9 0 0重量 部の範囲、 更に好ましくは 0 . 1〜2 0 0重量部の範囲である。 また、 用途に応 じて樹脂組成物に、 当業者に公知の安定剤、 分散剤、 滑剤、 酸化防止剤、 紫外線 吸収剤、 補強剤、 充填剤等の種々の添加剤やフイラ一等を加えることができる。 本発明の樹脂組成物は、 二酸化チタン顔料を溶融したプラスチック樹脂に、 混 練機を用いて配合して得られる。 混練機としては、 一般的に使用されるもので良 く、 例えば一軸押出機、 二軸押出機、 バンバリ一ミキサー等のインテンシブルミ キサ一、 口ール成形機等が挙げられる。
実施例
以下に実施例を挙げて本発明をさらに詳細に説明する。 以下の実施例は単に例 示のために記するものであり、 本発明の範囲がこれによつて制限されるものでは なレ、。 実施例 1
(アルミニウムの水和酸化物の被覆)
平均粒子径が 0 . 2 0 μ mのルチル型二酸化チタン顏料を水と混合して、 二酸 化チタンの重量として 3 0 0 g Zリツトルの水性スラリーを調製した。 このスラ リーを 6 0 °Cに保持したまま、 攪拌しながらアルミン酸ナトリウムを A 1 2 0 3 として二酸化チタン顔料の重量に対して 0 . 3 0 %添加し、 次いで硫酸で p Hを 5 . 0に中和しアルミニウムの水和酸ィ匕物を被覆した後、 濾別、 洗浄し、 1 2 0 °Cで 1 0時間乾燥した。
(アルキルシラン化合物の加水分解生成物の被覆)
上記の二酸化チタン顔料を、 2 5 0 DCに加熱した水蒸気 (二酸化チタン顔料に 対し重量基準で 2 . 2倍量、 水蒸気圧 1 . 4 M P a ) を粉砕媒として用いた流体 エネルギー粉碎機にて粉碎し、 その際、 二酸化チタン顔料に対して 1 . 0重量% のへキシルトリエトキシシランを粉砕機中に添加して、 へキシルトリエトキシシ ランの加水分解生成物を二酸化チタン顔料粒子表面に乾式被覆処理した。 得られ た二酸化チタン顔料を試料 Aとする。
実施例 2
二酸ィ匕チタン顔料に対し、 へキシルトリエトキシランとして 1 . 0重量%に相 当するへキシルトリエトキシシランの加水分解生成物を粉砕機に添カ卩したこと以 外は実施例 1と同様にして、 へキシルトリエトキシシランの加水分解生成物を二 酸化チタン顔料粒子表面に乾式被覆処理した。 得られた二酸化チタン顔料を試料 Bとする。 尚、 へキシルトリエトキシシランの加水分解生成物は、 へキシルトリ ェトキシシラン 9重量部に対して、 硫酸で p H 2とした水を 1重量部加え、 1時 間攪拌することで調製し、 このまま使用した。
実施例 3
へキシルトリエトキシシランの代わりにへキシルトリメ トキシシランを用いた ことの以外は実施例 1と同様にしてへキシルトリメ トキシシランの加水分解生成 物を二酸化チタン顔料粒子表面に乾式被覆処理した。 得られた二酸化チタン顔料 を試料 Cとする。
実施例 4 へキシルトリエトキシシランの加水分解生成物の代わりにへキシルトリメ トキ シシランの加水分解生成物を用いたこと以外は実施例 2と同様にしてへキシルト リメ トキシシランの加水分解生成物を二酸化チタン顔料粒子表面に乾式被覆処理 した。 得られた二酸化チタン顔料を試料 Dとする。
実施例 5
へキシルトリエトキシシランの代わりにへキシルメチルジェトキシシランを用 いたこと以外は実施例 1と同様にしてへキシルメチルジェトキシシランの加水分 解生成物を二酸化チタン顔料粒子表面に乾式被覆処理した。 得られた二酸化チタ ン顔料を試料 Eとする。
実施例 6
へキシルトリエトキシシランの加水分解生成物の代わりにへキシルメチノレジェ トキシシランの加水分解生成物を用いたこと以外は実施例 2と同様にしてへキシ ルメチルジェトキシシランの加水分解生成物を二酸化チタン顔料粒子表面に乾式 被覆処理した。 得られた二酸化チタン顔料を試料 Fとする。
比較例 1
へキシルトリエトキシシランを用いないこと以外は実施例 1と同様にして二酸 化チタン顔料 (試料 G) を得た。
比較例 2
へキシノレトリエトキシシランの代わりにォクチルトリエトキシシランを用いた こと以外は実施例 1と同様にして二酸化チタン顔料 (試料 H) を得た。
比較例 3
へキシルトリエトキシシランの代わりにブチルトリエトキシシランを用いたこ と以外は実施例 1と同様にして二酸化チタン顔料 (試料 I ) を得た。
比較例 4
実施例 1においてアルミニウムの水和酸化物を被覆後、 水酸化ナトリゥムで水 性スラリーの p Hを 9に調整した後、 二酸化チタン顔料に対して 1 · 0重量%の へキシルトリエトキシシランを水性スラリー中に添加し、 2時間攪拌した。 その 後、 硫酸で p Hを 5に調整し、 濾別、 洗浄し、 1 2 0 で1 0時間乾燥してから、 流体エネルギー粉砕機で粉砕して二酸ィヒチタン顔料 (試料』) を得た。 比較例 5
へキシルトリエトキシシランを実施例 2で用いたへキシルトリエトキシランの 加水分解生成物に代えたこと以外は比較例 4と同様にして二酸化チタン顔料 (試 料 K) を得た。
比較例 6
へキシルトリエトキシシランの代わりにデシルトリエトキシシランを用いたこ と以外は実施例 1と同様にして二酸化チタン顔料 (試料 ) を得た。
評価 1 (カールフィッシャー水分)
実施例 1〜 6及び比較例 1〜 5で得られた試料 A〜Kを、 温度 2 5 °C、 相対湿 度 5 5 %の恒温恒湿度下で 2 4時間放置し、 平衡状態にした後、 その試料 1 gを カールフィッシヤー水分測定装置及びそれに付属した水分気化装置 (いずれも三 菱化学製) を用いて 1 0 0 °C及び 3 0 0 °Cのカールフィッシヤー水分を測定した。 評価 2 (分散性)
実施例 1〜 6及び比較例 1〜 5で得られた試料 A〜 Lを、 分散性評価方法とし て先に記載の方法に従い、 樹脂圧上昇を測定し、 分散性の評価とした。
評価 3 (耐レーシング性)
上記の分散性試験時に、 ラボプラストミルの排出側にストランドダイを装着し、 ストランドから出てくる溶融物を目視で観察し、 発泡の状態から優劣を判定した。 判定基準は以下の通りである。
判定◎:発泡が全く認められない。
判定〇:発泡がわずかに認められる。
判定△:発泡が一部に認められる。
判定 X :発泡が全体に認められる。
評価 4 (耐熱性)
実施例 1〜 6及び比較例 1〜 5で得られた試料 A〜K 4 gを、 外径 3 8 mm φ、 内径 3 3 0 mm、 厚さ 5 mmのアルミニウムリングに充填し、 プレス機にて 1 4 7 M P aの圧力で 5秒間圧縮成形した後、 この成形物を 3 0 0 °Cで 1 0分間加熱 した。 成形物の加熱前後のハンター表色系 (L、 a、 b ) をカラーコンピュータ 一 (S M— 5型:スガ試験機製) を用いて測定し、 Δ Ε [= { ( A L ) 2 + ( Δ a ) 2 + ( A b ) 2 } 1 / 2]を算出した。 Δ Εが大きいほど変色が大きく、 耐熱性 が劣る。
水分、 耐レーシング性、 分散性、 耐熱性の評価結果を表 1に示す。 本発明の製 造方法で得られた二酸化チタン顔料は優れた疎水性、 分散性、 加工特性を有して いることが判る。 また、 本発明の樹月旨組成物はレーシングがほとんど無い優れた 外観を有していることが判る。
表 1
Figure imgf000013_0001
評価 5 (粉体色)
実施例 1及び比較例 1、 6で得られた試料 A、 G、 Lを、 評価 4と同様にして 圧縮成形した後、 この成形物のハンター表色系 (L、 a、 b ) での粉体色をカラ 一コンピューター (S M— 5型:スガ試験機製) を用いて測定した。 L値が低い ほど白色度が低く、 b値が大きいほど黄味の色調になる。
粉体色の評価結果を表 2に示す。 本発明の製造方法で得られた二酸化チタン顔 料 (試料 A) は、 アルキルシラン処理ィ匕合物を処理しない場合 (試料 G) とほぼ 同等の白色度と色調を有する。 これは、 耐熱性が優れていることから、 乾燥や粉 碎時の加熱に対しても変色し難くなるのではないかと考えられる。 表 2
Figure imgf000014_0001
産業上の利用可能性
本発明の製造方法は、 疎水性、 分散性、 耐熱性に優れた二酸化チタン顔料を提 供するもので、 この二酸化チタン顔料はプラスチック用着色剤として、 特に耐レ 一シング性が求められるフィルム用等の薄膜力卩ェの分野で有用である。 さらに、 本発明の樹脂組成物は、 レーシング、 ピンホール等や二酸化チタン顔料の分散性 不良粒子が表面に突出するような加工不良がほとんど無く、 優れた表面平滑性や 光沢を有するものである。

Claims

ft求J の範囲
- . 式 (1 )
(C6 H1 3 )n - R 4(n+m) ( 1 )
R m
[ Rは炭素数が 5以下のアルキル基、 R "は加水分解性基であり、 nは 1〜 3、 mは 0〜2で、 n + m≤ 3を満たす整数である。 ] で表されるアルキルシラン化 合物の加水分解生成物を、 二酸化チタン顔料粒子表面に乾式被覆処理する工程を 含む二酸化チタン顔料の製造方法。
2 . がメ トキシ基またはエトキシ基であることを特徴とする請求項 1 記載の二酸化チタン顔料の製造方法。
3 . 酸化チタン顔料粒子が、 二酸化チタン顔料の流体エネルギー粉砕機に よる粉砕によつて得られたものである請求項 1に記載の二酸化チタン顔料の製造 方法。
4 . 流体エネルギー粉砕機の粉砕媒が気体であり、 二酸化チタン顔料を粉砕 • する際に、 式 (1 ) で表されるアルキルシラン化合物の加水分解生成物を前記粉 碎機中に添加する請求項 1記載の二酸化チタン顔料の製造方法。
5 . 流体エネルギー粉碎機の粉砕媒が水蒸気であり、 二酸化チタン顔料を粉 砕する際に、 式 (1 ) で表されるアルキルシラン化合物を前記粉砕機中に添加す る請求項 1記載の二酸化チタン顔料の製造方法。
6 . 乾式被覆処理の温度が 1 2 0〜 3 0 0 °Cである請求項 4又は 5記載の二 酸化チタン顔料の製造方法。
7 . アルキルシラン化合物の加水分解生成物の乾式被覆処理量がアルキルシ ラン化合物換算で二酸化チタン顔料に対して 0 . 0 1〜 3 . 0重量%の範囲であ る請求項 1記載の二酸化チタン顔料の製造方法。
8 . 二酸化チタン顔料粒子が予め無機化合物で被覆されたものである請求項 1記載の二酸化チタン顔料の製造方法。
9 . 無機化合物がアルミニウムの水和酸ィヒ物である請求項 8記載の二酸ィ匕チ タン顔料の製造方法。
1 0. アルミニウムの水和酸化物の被覆量が A 1 23換算で二酸化チタン 顔枓に対して 0. 01〜1. 0重量%の範囲である請求項 8記載の二酸化チタン 顔料の製造方法。
1 1. 分散性が 20 k gノ c m 2以下である請求項 1記載の二酸化チタン顔 料の製造方法。 '
1 2. 請求項 1記載の製造方法で得られた二酸化チタン顔料とプラスチック 樹脂とを含む樹脂組成物。
PCT/JP2003/002801 2002-03-13 2003-03-10 Procede de production de pigment de dioxyde de titane et compositions de resine contenant ce pigment WO2003076524A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2478673A CA2478673C (en) 2002-03-13 2003-03-10 Process for producing titanium dioxide pigment and resin composition comprising the titanium dioxide pigment
US10/507,172 US7144838B2 (en) 2002-03-13 2003-03-10 Process for production of titanium dioxide pigment and resin composition containing the pigment
KR1020047014196A KR100855927B1 (ko) 2002-03-13 2003-03-10 이산화티탄 안료의 제조 방법 및 그 이산화티탄 안료를배합한 수지 조성물
AU2003213434A AU2003213434B2 (en) 2002-03-13 2003-03-10 Process for production of titanium dioxide pigment and resin compositions containing the pigment
EP03708522.2A EP1484364B1 (en) 2002-03-13 2003-03-10 Process for production of titanium dioxide pigment and resin compositions containing the pigment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-69074 2002-03-13
JP2002069074 2002-03-13

Publications (1)

Publication Number Publication Date
WO2003076524A1 true WO2003076524A1 (fr) 2003-09-18

Family

ID=27800313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002801 WO2003076524A1 (fr) 2002-03-13 2003-03-10 Procede de production de pigment de dioxyde de titane et compositions de resine contenant ce pigment

Country Status (8)

Country Link
US (1) US7144838B2 (ja)
EP (1) EP1484364B1 (ja)
KR (1) KR100855927B1 (ja)
CN (1) CN1290936C (ja)
AU (1) AU2003213434B2 (ja)
CA (1) CA2478673C (ja)
TW (1) TWI276669B (ja)
WO (1) WO2003076524A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7601326B2 (en) 2004-11-23 2009-10-13 E. I. Du Pont De Nemours And Company Mesoporous oxide of zirconium
US7988947B2 (en) 2004-11-23 2011-08-02 E. I. Du Pont De Nemours And Company Mesoporous oxide of titanium
US7601327B2 (en) 2004-11-23 2009-10-13 E.I. Du Pont De Nemours And Company Mesoporous oxide of hafnium
WO2006058254A1 (en) * 2004-11-23 2006-06-01 E.I. Dupont De Nemours And Company Mesoporous metal oxide
CN100591736C (zh) * 2005-09-16 2010-02-24 鸿富锦精密工业(深圳)有限公司 纳米涂料及其制备方法
US7250080B1 (en) 2006-09-06 2007-07-31 Tronox Llc Process for the manufacture of organosilicon compound-treated pigments
US20080053336A1 (en) * 2006-09-06 2008-03-06 Tronox Llc Aqueous coating compositions with improved tint strength and gloss properties, comprising pigments surface-treated with certain organosilicon compounds
US8719457B2 (en) * 2011-04-17 2014-05-06 Apple Inc. Efficient connection management in a SAS target
CN106536639A (zh) * 2014-06-17 2017-03-22 石原产业株式会社 二氧化钛颜料及其制造方法,以及将它共混在其中的组合物
CN104194409A (zh) * 2014-08-13 2014-12-10 攀钢集团钛业有限责任公司 一种耐高温钛白粉及其制备方法和用途
CN107573742B (zh) * 2017-08-29 2019-10-25 广东标美硅氟新材料有限公司 一种有机硅颜料及其制备方法和使用方法
CN112980216B (zh) * 2021-03-09 2022-04-26 浙江达尔美塑胶有限公司 一种改性钛白粉及其制备方法和应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324817A (ja) * 1997-03-27 1998-12-08 Ishihara Sangyo Kaisha Ltd 二酸化チタン顔料およびその製造方法
JP2001106939A (ja) * 1999-10-04 2001-04-17 Ishihara Sangyo Kaisha Ltd 有機化合物処理二酸化チタン顔料の製造方法
WO2001044111A1 (en) * 1999-12-17 2001-06-21 Ishihara Sangyo Kaisha, Ltd. Titanium dioxide pigment and method for production thereof
JP2001181136A (ja) * 1999-12-27 2001-07-03 Daito Kasei Kogyo Kk 化粧料用顔料およびその顔料を含む化粧料

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5648416A (en) * 1992-01-21 1997-07-15 Monsanto Company Corrosion resistant paint
US5458680A (en) * 1992-05-01 1995-10-17 Ecc International, Inc. Method of producing aggregated composite pigments using organic silicon compounds
US5853621A (en) * 1995-05-26 1998-12-29 Monsanto Company Corrosion resistant paint
WO1998010013A1 (en) * 1996-09-02 1998-03-12 J.M. Huber Corporation Silane-treated clay production method, silane-treated clay and composition containing same
JP3417291B2 (ja) * 1998-03-31 2003-06-16 日本アエロジル株式会社 電子写真用トナーの外添剤の製造方法
EP1167462B1 (en) * 1999-01-11 2010-12-22 Showa Denko K.K. Cosmetic preparation, surface-hydrophobized silica-coated metal oxide particles, sol of surface-hydrophobized silica-coated metal oxide, and processes for producing these
DE60011472T2 (de) * 1999-09-14 2005-06-30 Ishihara Sangyo Kaisha Ltd. Titandioxidpigment, verfahren zur herstellung desselben und dieses enthaltende harzzusammensetzung
JP4540921B2 (ja) * 2001-06-05 2010-09-08 戸田工業株式会社 インクジェット用インクの着色材及びインクジェット用インク並びに水性顔料分散体、有機無機複合粒子粉末
KR100337000B1 (ko) * 2000-10-14 2002-05-17 장길완 합성운모에 금속산화물을 코팅하여 펄 광택성 안료를제조하는 방법
US6808808B2 (en) * 2003-01-14 2004-10-26 Freeman Gary M Coating composition containing surface treated clay mixture, the surface treated clay mixture used therefor, and methods of their use

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10324817A (ja) * 1997-03-27 1998-12-08 Ishihara Sangyo Kaisha Ltd 二酸化チタン顔料およびその製造方法
JP2001106939A (ja) * 1999-10-04 2001-04-17 Ishihara Sangyo Kaisha Ltd 有機化合物処理二酸化チタン顔料の製造方法
WO2001044111A1 (en) * 1999-12-17 2001-06-21 Ishihara Sangyo Kaisha, Ltd. Titanium dioxide pigment and method for production thereof
JP2001181136A (ja) * 1999-12-27 2001-07-03 Daito Kasei Kogyo Kk 化粧料用顔料およびその顔料を含む化粧料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1484364A4 *

Also Published As

Publication number Publication date
CN1639270A (zh) 2005-07-13
TWI276669B (en) 2007-03-21
US20050129602A1 (en) 2005-06-16
CA2478673A1 (en) 2003-09-18
CA2478673C (en) 2010-01-26
EP1484364A1 (en) 2004-12-08
TW200305616A (en) 2003-11-01
EP1484364A4 (en) 2010-07-21
CN1290936C (zh) 2006-12-20
AU2003213434B2 (en) 2007-07-19
KR20040099318A (ko) 2004-11-26
AU2003213434A1 (en) 2003-09-22
KR100855927B1 (ko) 2008-09-02
EP1484364B1 (en) 2016-03-09
US7144838B2 (en) 2006-12-05

Similar Documents

Publication Publication Date Title
US6894089B2 (en) Modified silane treated pigments or fillers and compositions containing the same
TW572973B (en) Titanium dioxide pigment, process for producing the same, and resin composition containing the same
EP1294800B1 (en) Treatment of pigments or fillers with alkylsilane copolymers and terpolymers
AU2006311618B2 (en) Aluminium hydrate pigments and polymer composites formed thereof
WO2003076524A1 (fr) Procede de production de pigment de dioxyde de titane et compositions de resine contenant ce pigment
EP3575267A1 (en) Development of surface-treated magnesium hydroxide-comprising material
JP2003515621A (ja) 疎水性の無機酸化物顔料を調製するためのプロセス
TW526173B (en) Titanium dioxide pigment and process for producing the same
AU2012275786B2 (en) Treated inorganic pigments having reduced photoactivity and improved anti-microbial properties and their use in polymer compositions
JP2003335979A (ja) 二酸化チタン顔料の製造方法及び該二酸化チタン顔料を配合した樹脂組成物
JPH10324817A (ja) 二酸化チタン顔料およびその製造方法
JP4688286B2 (ja) 二酸化チタン顔料及びその製造方法
JP4616583B2 (ja) 二酸化チタン顔料及びこれを用いた樹脂組成物
JP2020525625A (ja) 処理された硫酸バリウム粒子及びそれらの使用

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NI NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2478673

Country of ref document: CA

Ref document number: 2003213434

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 2003708522

Country of ref document: EP

Ref document number: 10507172

Country of ref document: US

Ref document number: 1020047014196

Country of ref document: KR

Ref document number: 20038057360

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020047014196

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2003708522

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWG Wipo information: grant in national office

Ref document number: 2003213434

Country of ref document: AU