WO2003072885A1 - Column-to-beam connection part integration work method for structural steelwork - Google Patents

Column-to-beam connection part integration work method for structural steelwork Download PDF

Info

Publication number
WO2003072885A1
WO2003072885A1 PCT/JP2003/002329 JP0302329W WO03072885A1 WO 2003072885 A1 WO2003072885 A1 WO 2003072885A1 JP 0302329 W JP0302329 W JP 0302329W WO 03072885 A1 WO03072885 A1 WO 03072885A1
Authority
WO
WIPO (PCT)
Prior art keywords
rectangular parallelepiped
column
steel
welding
solid
Prior art date
Application number
PCT/JP2003/002329
Other languages
French (fr)
Japanese (ja)
Inventor
Masayoshi Uhida
Shunji Iwago
Tadao Nakagomi
Original Assignee
Masayoshi Uhida
Shunji Iwago
Tadao Nakagomi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Masayoshi Uhida, Shunji Iwago, Tadao Nakagomi filed Critical Masayoshi Uhida
Publication of WO2003072885A1 publication Critical patent/WO2003072885A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2406Connection nodes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2448Connections between open section profiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2451Connections between closed section profiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2454Connections between open and closed section profiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2457Beam to beam connections

Definitions

  • the present invention produces a building steel structure by integrating a rolled steel plate with a forged steel plate without assembling a dice portion from a thin steel plate or the like by welding at a beam-to-column joint of the building steel structure. It is about methods. Background art
  • a column-beam joint of a building steel structure is formed by applying a weld 6 between a diaphragm 1 made of a thin steel plate and a short rectangular steel pipe 2 to form a die.
  • the mouth and the H-shaped steel beam flange 4 are welded and joined 7, and the dice and the square steel pipe column 5 are often welded and joined.
  • welding 6 between the rectangular steel pipe 2 of the die and the diaphragm 1 and welding 7 of the diaphragm 1 of the die opening and the H-shaped steel flange 4 are performed by using a backing metal 10. It is performed by one side welding.
  • the groove 4 is formed at the end of the flange 4 to be joined, and then the backing metal 10 is manufactured and the tacking welding 8 for mounting the backing metal is performed.
  • the main welding 7 has been carried out. Also, for welding the diaphragm 1 and the square steel pipe 2 or 5, beveling of the joint end of the square steel pipe 2 or 5 is performed, and then the backing metal 10 is manufactured and the backing metal is temporarily attached. 8 and the main welding 6 between the diaphragm 1 and the square steel pipe 2 or 5 was performed.
  • a non-consumable copper abutment 12 is applied to the back surface of the end of the welded joint member 13 to perform a build-up welding 14 and then a beveling process is performed to 13 C At the position of, beveling including the overlay 14 is obtained, and as shown in FIG. 5, a groove 15 including the member 13 and the overlay 14 is obtained.
  • joint welding 17 is performed by one-side welding method in which members 16 and 13 are welded from one side, and the plate thickness 18 at the end of the welded joint member is reduced. There is a way to get a thickness of over 19.
  • a non-consumable copper abutment 12 having a projection 12 P on the back surface of the end of the welded joint member 13 is applied to the welded joint member 13, and after performing the overlay welding 14, the groove is formed.
  • the groove is formed at the 13C position, only the end of the member 13 was grooved to obtain a groove 15 including the member 13 and the overlay 14 as shown in Fig. 5.
  • joint welding 17 was performed by one-side welding method in which members 16 and 13 were welded from one side, and the members at the end of the welded joint member were There is a way to get a throat thickness of 19 over a plate thickness of 18.
  • a cylinder body or dice 20 integrated with steel and having a concrete filling hole 21 and an auxiliary plate 22 is disclosed in Japanese Patent Application Laid-Open No. 2000-144493. (Japanese Patent Application No. 10-31 2771).
  • Fig. 1 diaphragm 1 ⁇ square steel pipe 2 ⁇ backing metal 10 ⁇
  • Fig. 34 there are many members such as end tabs and welding 6 Circles around the square steel pipe 2 and has a large amount of welding.
  • the cost of parts production increases, and after the dice is manufactured, the diaphragm bends, as shown in Fig. 34, causing the so-called umbrella breaking phenomenon, and the misalignment between the diaphragm and the beam flange tends to occur. is there.
  • the dice 20 integrally molded from the conventional steel sheet has a relatively simple structure as compared with the conventional welding structure shown in FIG. 1, and has an advantage that the structural resistance is improved. is there.
  • the structure shown in FIG. 7 requires two reinforcing plates 22 vertically and a total of four reinforcing plates 22, and the space 22 A formed by the reinforcing plates 22 extends inside. And requires three spaces per body.
  • Such a space 22 A requires a complicated core during fabrication, which leads to an increase in man-hours for manufactur- ing cores and man-hours for construction, which is a factor of cost increase.
  • the heat-affected zone of the weld is easily brittle.
  • the two heat-affected zones overlap to prevent further embrittlement due to overlapping of the heat-affected zones. It is customary to keep the heat affected zone away from the heat affected zone.
  • Japanese Patent Application Laid-Open No. 2000-1444491 there is no description about the proximity of the welded portion.
  • building steel frames are assembled in a factory by installing dice and short beams to form a panel zone, and connecting columns to the panel zone by welding.
  • the product is manufactured to a length of three stories, and the columns with panel zones are erected at the construction site, and then the short beams are connected by bolts using long beams.
  • the columns with beams have a short length of about 1 meter, but extend in four directions perpendicular to the columns, so the efficiency of transportation from the factory to the site is poor, and the beams at the construction site
  • the problem is that joining with a large number of bolts requires more man-hours and costs than welding.
  • an object of the present invention is to use a rolled steel / forged steel / steel, simplify the structure of a steel joint, relieve stress concentration, improve strength, and reduce manufacturing costs.
  • the configuration of the invention is as follows. First, a die is manufactured by subjecting rolled steel to hot working, mechanical working, or welding working. A rectangular parallelepiped, or a solid rectangular parallelepiped manufactured by forging, or a solid rectangular parallelepiped manufactured by forging. The following configuration is a beam that joins the vertical overall length, that is, the height, of the rectangular parallelepiped to the rectangular parallelepiped.
  • the length of the horizontal side is made equal to the outer dimension of the column to be joined to the rectangular parallelepiped, that is, the length of the horizontal side, and the welded portion of the beam and the column to be joined to the rectangular parallelepiped is integrated by overlapping.
  • the beam and the side surface of the rectangular parallelepiped, and the column and the upper and lower ends of the rectangular parallelepiped are welded to each other to produce a steel structure.
  • the present invention (the invention according to claim 1) is to make the height of a steel solid rectangular parallelepiped equal to the height of a beam to be joined to the rectangular parallelepiped in an architectural steel structure, and to increase the upper end of the rectangular parallelepiped.
  • the outer dimensions of the lower end are made equal to the outer dimensions of the column to be joined to the rectangular parallelepiped, and the beam and the side of the rectangular parallelepiped and the column and the column are joined so that the welded portion between the beam and the column to be joined to the rectangular parallelepiped is integrated.
  • This is a method of integrating column and beam joints of a steel structure, which is characterized in that a steel structure is manufactured by welding and joining a vertical end face of a rectangular parallelepiped.
  • the novelty of the present invention is that the dimensions of the rectangular parallelepiped are made equal to the dimensions of the columns and beams as a solid rectangular parallelepiped, and the two welds of the column and beam members to be joined are overlapped and integrated. To make it happen.
  • the rectangular parallelepiped here means a hexahedron whose all six sides are rectangular, a hexahedron whose upper and lower surfaces are square and the other side is rectangular, a cube (regular hexahedron), and an oblique body whose one or more sides are not parallel to other sides including.
  • the term “equivalent” as used herein does not mean that they are the same, and is regarded as equivalent even if the dimensions of the rectangular parallelepiped are different from the dimensions of the beam or column to such an extent that the welded portion between the column and the beam can be integrated. Normally, deviations of about 1/4 to 1 Z2 of the column or beam thickness are considered equivalent. The same applies to the following inventions.
  • the length of the horizontal side of the dice (rectangular parallelepiped) is relatively small, approximately 250 mm or less.
  • the length of the horizontal side of the syco mouth is further increased, the solid part increases, the weight increases, and the cost increases. Therefore, if a space is provided to penetrate along the central axis, the weight of the dice can be reduced, but the diameter of this through hole is made too large. It was found that the in-flange strength of the solid part became weaker than that of the beam flange than that of the column.
  • the minimum width of the solid partial cross section of the upper end face or lower end face of the rectangular parallelepiped is set to be 25% or more of the beam flange width or 25% or more of one side of the rectangular parallelepiped, respectively. It has been found that weight can be effectively reduced without compromising strength.
  • the reinforcing plate shown in Fig. 7 is used, as described above, ease of manufacture, cost, and flexibility of the position of the beam flange are not sufficient, and inconvenience occurs when applied to a structure.
  • it is a columnar space such as a cylinder, it can be easily manufactured by hot working such as mechanical gas cutting of rolled steel. ⁇ Can be easily and inexpensively manufactured without using a fabrication method.
  • the novelty of the present invention resides in that in addition to the novelty of the invention according to claim 1, a substantially uniform cylindrical space is provided in the vertical center axis of the rectangular parallelepiped.
  • the first configuration to be investigated is a solid rectangular parallelepiped manufactured by rolling, rolling, or hot working a rolled steel, or A solid rectangular parallelepiped manufactured by forging, or a solid rectangular solid manufactured by forging.
  • the total length of the rectangular parallelepiped in the vertical direction is made equal to that of the beam joined to the rectangular parallelepiped.
  • the outer dimensions of the upper end and the lower end of the rectangular parallelepiped, that is, the lengths of the sides are equal to the outer dimensions of the pillars joined to the rectangular parallelepiped, that is, the lengths of the sides.
  • the minimum width of the solid partial cross section at the upper end face or lower end face of the rectangular parallelepiped is 25% or more of the beam flange width, or the rectangular parallelepiped of the rectangular parallelepiped, respectively. More than 25% of one side,
  • a method of manufacturing a steel structure by making a welded portion of a beam and a column to be joined to the rectangular parallelepiped overlap with each other is adopted. With these configurations, the beam and the rectangular parallelepiped are formed. In this method, a steel structure is manufactured by welding the side surfaces and the upper and lower ends of the column and the rectangular parallelepiped.
  • the present invention is the invention according to claim 1, wherein a space penetrating in the vertical direction along the vertical center axis of the rectangular parallelepiped is provided in the rectangular parallelepiped, and A column of a steel structure, characterized in that the minimum width of the solid part cross section at the end face or the bottom face is at least 25% of the beam flange width or at least 25% of one side of the rectangular parallelepiped, respectively.
  • This is an integrated beam joint construction method.
  • dice a rectangular parallelepiped
  • a space penetrating in the vertical direction are also a part of the present invention, including a die formed by welding or a thick pipe.
  • the length of the horizontal side of the dice (rectangular parallelepiped) is relatively small, about 25 O mm or less.
  • the volume of the solid portion is increased, the weight is increased, and the material cost is increased. Therefore, as described above, a method of providing a space penetrating in the vertical direction on the vertical center axis of the rectangular parallelepiped is also effective.
  • the vertical intermediate portion of the solid rectangular parallelepiped is thinner than the upper and lower portions of the solid rectangular parallelepiped. This can reduce the increase in weight.
  • the intermediate portion is made too thin, the bending strength of the intermediate portion becomes weaker than that of the beam, as compared with the beam.
  • the second moment of area at it was found that it is important that the second moment of area of the dice be larger than the second moment of area of the upper or lower column near the dice.
  • the novelty of the present invention resides in that, in addition to the novelty of the invention according to claim 1, the intermediate portion of the rectangular parallelepiped is made narrow while securing the second moment of area of the column adjacent above and below.
  • the first configuration of the invention is a solid rectangular parallelepiped manufactured by rolling or rolling a rolled steel, or a forged die.
  • the vertical intermediate portion of the solid rectangular parallelepiped is made thinner than the upper and lower portions
  • the upper section for joining the second moment of area of the intermediate portion to the solid rectangular parallelepiped A method of manufacturing a steel structure by setting the cross section of the column or lower column to be equal to or more than the second moment, and as a fifth configuration, by making the welded portion of the beam and the column joined to the rectangular parallelepiped overlap each other. According to these configurations, the beam and the side surface of the rectangular parallelepiped and the pillar and the upper and lower ends of the rectangular parallelepiped are welded to each other to produce a steel structure.
  • the present invention is the invention according to claim 1, wherein the intermediate portion in the lead E direction of the solid rectangular parallelepiped is thinner than the upper and lower portions and the second moment of area of the intermediate portion is reduced.
  • the material of the rectangular parallelepiped forming the dice is made of stainless steel, and the thickness of the rectangular parallelepiped side wall is made as small as possible economically so that the cross-sectional area of the side wall is reduced.
  • a plurality of slit-shaped horizontal walls are formed on the side wall.
  • a cylindrical space is formed in the upper and lower portions of the rectangular parallelepiped, through which a through hole is made, and which penetrates vertically through the vertical center axis of the rectangular parallelepiped, and a minimum cross-sectional width of a solid portion of an upper end surface or a lower end surface of the rectangular parallelepiped If each of them is 25% or more of the beam flange width, the solid volume of the rectangular parallelepiped can be minimized and the weight can be reduced.
  • the method according to claim 1 is applied to the rectangular parallelepiped having the minimum solid part volume.
  • the height of the solid rectangular parallelepiped made of steel is made equal to the height of the beam joined to the rectangular parallelepiped, and the outer dimensions of the upper end and the lower end of the rectangular parallelepiped are made equal to the outer dimensions of the columns joined to the rectangular parallelepiped.
  • a method of manufacturing a steel structure by welding and joining the beam and the side surface of the rectangular parallelepiped and the column to the vertical end surface of the rectangular parallelepiped so that the welded portion of the beam and the column joined to the rectangular parallelepiped is integrated. .
  • the first configuration of the invention is characterized in that a space penetrating vertically in the vertical center axis of a rectangular parallelepiped manufactured by a structure is provided, and a solid upper end surface or a lower end surface of the rectangular parallelepiped is provided.
  • the minimum width of the partial cross section is to be 25% or more of the beam flange width or 25% or more of one side of the rectangular parallelepiped, respectively.
  • the vertical length of the rectangular parallelepiped is made equal to that of the beam to be joined to the rectangular parallelepiped, and the outer dimensions of the upper end and the lower end of the rectangular parallelepiped are equal to the outer dimensions of the column to be joined to the rectangular parallelepiped.
  • the beam and the side surface of the rectangular parallelepiped and the column and the upper and lower ends of the rectangular parallelepiped are welded to each other to form a steel structure.
  • the novelty of the present invention is not only the novelty of claims 1 and 2, but also A space penetrating in the horizontal direction is provided on the side surface of the body, and the rectangular solid is formed so that the second moment of area of the middle part of the rectangular parallelepiped becomes equal to or larger than the sectional moment of the upper column or lower pillar joined to the rectangular solid. It is to produce.
  • the present invention is the invention according to claim 1, wherein a space penetrating in the vertical direction is provided on the vertical center axis of the rectangular parallelepiped manufactured by the structure, and
  • the minimum width of the solid cross section of the end face or the lower end face shall be 25% or more of the beam flange width or 25% or more of one side of the rectangular parallelepiped, respectively, and shall be horizontally penetrated into the side face of the rectangular parallelepiped.
  • a space is provided, and the rectangular parallelepiped is manufactured so that the cross-sectional second moment of the intermediate portion of the rectangular parallelepiped is equal to or larger than the cross-sectional secondary moment of the upper column or the lower column that is joined to the rectangular parallelepiped.
  • brackets In assembling building steel frames, columns with short beams, called brackets, are inefficient because they are overhanged by the brackets and transported from the factory to the site. The problem is that it requires more man-hours and costs than welding.
  • a short beam or bracket is not attached to the rectangular parallelepiped, but the rectangular parallelepiped and the column are welded in a factory to produce a column / rectangular structure, and the column rectangular parallelepiped structure is mounted in the factory. If it is conveyed to a construction site, it is erected, and the rectangular parallelepipeds of the columnar cuboid structure are welded to each other with a single beam, so that port bonding between the beams can be omitted at the construction site. However, it is difficult to temporarily assemble the rectangular parallelepiped and the beam of the columnar rectangular parallelepiped structure as they are.
  • a first configuration of the invention is to attach a small plate having a hole for bolting to a side surface of a rectangular parallelepiped by welding
  • a second configuration is configured by claims 1, 2, and 3.
  • Or 4 is to weld and join the integrated rectangular parallelepiped and the column
  • a third configuration is to temporarily fix the small plate and the beam web with a bolt thereafter.
  • the novelty of the present invention is that, in addition to the novelty of claims 1, 2, 3, or 4, a column rectangular parallelepiped structure of an integrated rectangular parallelepiped and a column is manufactured before beam attachment, and the It is to manufacture a steel frame structure by connecting a columnar cuboid structure and a beam at a construction site via a small plate having holes. .
  • a small plate having a hole for bolting is attached to a side surface of a rectangular parallelepiped by welding. After welding the rectangular parallelepiped and the column, in the steel frame assembly, the small plate and the beam are temporarily fixed by a port, and the rectangular parallelepiped and the beam are welded and joined, wherein the column and the beam are joined. It is an integrated construction method. Next, the invention according to claim 6 will be described.
  • the external shapes of the rectangular parallelepiped and the column are all rectangular.
  • the outer shapes of the rectangular parallelepiped and the column are not limited to the square.
  • the column can be applied to a cylinder or an H-shaped steel.
  • the present invention can also be applied to a column having a cylindrical shape or an H-shaped steel. In these cases, the effect of the invention is that the rectangular parallelepiped and the column are rectangular steel pipes.
  • the shape of the beam end is also processed according to the shape of the side surface of the rectangular parallelepiped, so that the joint can be easily welded to the rectangular parallelepiped. Also, integrated welding of columns and beams can be easily performed in the same manner.
  • the conventional siko mouth made of welded steel which has been complicated and requires a lot of man-hours, is integrated with rolled steel, forged steel, or steel, and the shiko mouth, which is the connection point of the column and beam, is simplified.
  • the amount of welding work was reduced by half, and the effects of reducing welding residual stress and distortion, reducing the number of manufacturing steps, reducing the management work involved in manufacturing, and improving manufacturing accuracy were greatly recognized.
  • separate welding was performed while the welds between the column and the dice and between the beam and the dice were close to each other.
  • the welds of the column and the beam joints are integrated to integrate the respective welds.
  • FIG. 1 is a perspective view showing an example of a conventional steel beam-column joint of a building.
  • Fig. 2 is a cross-sectional view showing a conventional square steel pipe-diaphragm joint of a building steel column-beam joint.
  • FIG. 3 is a cross-sectional view showing a state in which a water-cooled or water-cooled copper metal plate is applied to the end of the member, and a build-up welding is performed.
  • FIG. 4 is a cross-sectional view showing a state in which a copper pad with a water-cooled or water-cooled projection is applied to the end of the member, and overlay welding is performed.
  • Fig. 5 shows the case where the build-up welding is performed on the end of the member, and the end of the member and the build-up weld are both opened. It is sectional drawing which shows the state which pre-processed.
  • FIG. 6 is a cross-sectional view showing a state in which overlay welding and beveling have been performed on the ends of the member, the mating member has been applied, and joint welding has been performed.
  • FIG. 7 is a diagram showing a dice having two reinforcing plates attached and a through hole provided in the center axis.
  • FIG. 8 is a perspective view showing a state where a beam and a column are joined to a solid psycho mouth.
  • FIG. 9 is a perspective view showing a state where a beam and a column are joined to a solid dice.
  • FIG. It is sectional drawing which shows the state which joined the beam and the column to the dice.
  • FIG. 11 is a cross-sectional view showing a state in which a low-height beam is joined to a solid die.
  • FIG. 12 is a perspective view showing a state in which beams and columns are joined to a solid die provided with a cylindrical space penetrating in the vertical direction.
  • FIG. 13 is a cross-sectional view showing a state in which beams and columns are joined to a solid die provided with a cylindrical space penetrating in the vertical direction.
  • FIG. 14 is a perspective view showing a solid psycho opening cut out of a thick rolled steel plate.
  • Fig. 15 is a perspective view showing a solid psychoportion cut out from a rolled bar.
  • Fig. 16 is a perspective view showing a beam and a column joined to a psychoportion where the upper and lower middle portions of a solid rectangular parallelepiped are narrowed. It is.
  • FIG. 17 is a cross-sectional view showing a state in which a beam and a pillar are joined to a psychoportion in which the upper and lower middle portions of a solid rectangular parallelepiped are made thinner.
  • Figure 18 is a cross-sectional view of a case where pillars and beams are welded and joined to a psycho-port integrated with a rolled steel plate, forged steel or steel, leaving the end material.
  • Fig. 19 is a cross-sectional view of a case in which a column and a beam are subjected to conventional welding with a conventional backing metal on a die integrated with a rolled steel plate, forged steel or steel, and the welded portion is integrated.
  • Figure 20 shows a column and a beam welded to a rolled steel plate, a forged steel or a steel die, and if there is a gap between the outer surface of the die and the beam or the column surface, the joint weld is integrated.
  • FIG. 4 is a cross-sectional view of the case where the structure is formed.
  • FIG. 21 is a cross-sectional view of a case in which a column and a beam subjected to backfacing welding are welded to a die integrated with a rolled steel plate, a forged steel or a steel plate, and a joint welded portion is integrated.
  • FIG. 4 is a cross-sectional view of a case where a joint weld is integrated.
  • FIG. 23 is a plan view showing the relationship between the solid width and the beam width in the case where a through hole is formed in the center of the integrated psychoportion along the axis thereof and the beam is welded and joined.
  • FIG. 24 is a diagram illustrating an example of a siko mouth made of steel with a space left in the center and side surfaces of the shiko mouth.
  • Figure 25 is an external view of a side plate of the integrated psychoportion with a small plate with holes for bolts attached.
  • FIG. 26 is a perspective view showing a state in which an integrated die attached with a small plate and a column are welded at a factory to produce a columnar cuboid structure.
  • Figure 27 is an external view of a steel frame structure constructed by joining a rectangular parallelepiped structure and a beam at a construction site by omitting Porto joining.
  • FIG. 28 is a perspective view of a bolt-joined state in which H-shaped steel beams are joined to each other.
  • FIG. 29 is a sectional view of a connection portion in a state where a welded portion of a column and a beam is welded and joined to a solid integrated die.
  • FIG. 4 is a sectional view of a connection part in a state where a weld and a beam are welded and joined together.
  • Fig. 31 is a sectional view of a joint in a state in which a column and a beam are welded to a solid integrated die having a narrowed intermediate portion, and a welded portion is integrated and welded.
  • Figure 32 is a cross-sectional view of a joint in a state where pillars and beams are welded to an integrated psycho-opening made of steel with a space in the center and sides, and welded parts are integrated.
  • Fig. 33 shows that a temporary assembly plate is attached to the side surface of a rectangular parallelepiped with a cylindrical space penetrating in the vertical direction, and a column is welded to the rectangular parallelepiped. Then, a beam is welded and joined to the rectangular parallelepiped. It is a connection part sectional view in the state where a welding part was integrated.
  • FIG. 34 is a cross-sectional view of the joint in a state in which the dice having the umbrella broken diaphragm and the beam flange are misaligned.
  • Figure 35 is a perspective view of a cylindrical (cylindrical) dice with a beam welded to it.
  • FIG. 8 is a perspective view of a state in which a beam 4 and a column 5 are welded to a solid cuboid 23 made of steel by welding 25 and 21, respectively.
  • Height 23 A is equal to the height 4 A of the beam joined to the rectangular parallelepiped 23, and the outer dimensions 23 3 B of the upper end and lower end of the rectangular parallelepiped 23 are joined to the pillar 5 to be coupled to the rectangular solid 23.
  • the joints 24 and 25 of the column 5 and the beam 4 to be joined to the rectangular parallelepiped 23 are integrated so that they are integrated.
  • a beam 4 and the side surface of the rectangular parallelepiped and a column 5 and an end surface of the rectangular parallelepiped are welded to each other to produce a steel structure.
  • FIGs 9 and 10 show solid cuboids 23 manufactured by hot working or machining of rolled steel, or solid cuboids 23 manufactured by forging, or solids manufactured by mirroring.
  • H-shaped steel beam flange 4 is welded to a rectangular parallelepiped 23 by a conventional method with a backing metal 25, and then a column 5 that is superimposed on the weld 25 and a rectangular steel pipe is cut is welded 24.
  • FIG. 19 shows the overlapping state of the welding 24 of the column 5 and the welding 25 of the beam flange 4, that is, the integrated state of the welded portions.
  • FIG. 29 is a cross-sectional view showing a state where the work according to the present invention is performed after the overlay welding is performed on the back surface of the column and the end of the beam.
  • FIG. 11 is a cross-sectional view in which a beam 3A having a small height and a beam 3A having a small height are joined to a solid psycho-opening.
  • the low beam 3A can be welded to any height of the dice without any problem on the strength of the dice, so that the degree of freedom in the design and application of the building steel frame increases.
  • a column and a beam are welded to a rolled steel, a forged steel, or a copper die, and a gap between the outer surface of the die and the beam or the column surface is formed.
  • the deviation a, ie, 31 is less than 25% + 7 mm of the thickness of the beam flange, and in the case of column connection, the deviation b That is, 31 A is 25% of the column thickness + 7 mm or less is desirable.
  • the vertical total length 23 A of the rectangular parallelepiped port shown in Fig. 8 is obtained by adding 50% of the flange plate thickness + 14 mm to the height 3 A of the beam 3 joined to the rectangular parallelepiped 23. Less than the length is desirable.
  • the outer dimensions of the upper and lower ends of the rectangular parallelepiped die, that is, the length 23 B of the side of the die is the length obtained by adding 50% of the column plate thickness + 14 mm to the length 5 A of the column side. The following is desirable.
  • the length of the horizontal and vertical sides of the rectangular parallelepiped can be minimized by integrating the welded portions, thereby reducing the manufacturing cost of the rectangular parallelepiped and reducing the steel frame. Ease of fabrication of the structure is increased.
  • a solid rectangular parallelepiped can also be obtained by manufacturing a long rod or band by rolling and cutting it by gas cutting, laser cutting, saw cutting, etc. according to cutting line 28. Can be In this way, cuboid dice can be easily and inexpensively obtained from rolled steel by mass production.
  • the rectangular parallelepiped is obtained from forged steel formed into a predetermined shape by forging a rectangular parallelepiped taken from rolled steel.
  • FIG. 12 is a perspective view showing a state in which the beam 3 and the column 5 are joined to a solid die 23 provided with a cylindrical space 26 penetrating in the vertical direction at the center axis position.
  • the dice 23 shall be a solid cuboid manufactured by hot working or machining of rolled steel, a solid cuboid manufactured by forging, or a solid cuboid manufactured by forging,
  • the vertical overall length 23 A of the rectangular parallelepiped is made equal to the height 4 A of the beam to be joined to the rectangular parallelepiped, and the outer dimensions of the upper end and the lower end of the rectangular parallelepiped 23, that is, the side length 23 B is defined as the rectangular parallelepiped.
  • a cylindrical space 26 penetrating in the vertical direction is provided on the vertical center axis of the rectangular parallelepiped 23, having the same external dimensions as the column 5, that is, the length of the side 5A.
  • the minimum widths c and d of the solid section at the upper end face or the lower end face of the rectangular parallelepiped 23 are respectively 25% or more of the beam flange width e, that is, c ⁇ 0.25 e, d ⁇
  • the weld between the beam flange 4 and the column 5 joined to the rectangular parallelepiped 23 is set to 0.25 e.
  • the beam flange 4 and the side surface of the rectangular parallelepiped and the column 5 and the upper and lower ends of the rectangular parallelepiped are welded to each other so as to form a steel structure shown in FIG.
  • the beam joined to the rectangular parallelepiped 23 is formed.
  • This is a method of manufacturing a steel structure shown in FIG. 30 by making the welded portions of a beam and a column overlap, and welding and joining the beam and the side surface of the rectangular parallelepiped, and the column and the upper and lower ends of the rectangular parallelepiped [Eighth Embodiment]
  • the columnar shape can be not only circular but also elliptical or polygonal. Further, the volume and weight of the dice can be further reduced by making the pillar-shaped one into a medium bulge. It is self-evident that these columnar spaces can be used to fill concrete and other columns.
  • FIGS. 16 and 17 respectively show the middle part 3 in the vertical direction of the solid rectangular solid 23.
  • a perspective view and a cross-sectional view of a state where a beam 3 and a column 5 are welded and joined using a backing metal 10 to a solid die 23 in which 0 is thinner than the upper and lower portions are shown.
  • FIGS. 16 and 17 show the middle part 3 in the vertical direction of the solid rectangular solid 23.
  • the dice 23 are solid cuboids manufactured by hot working or machining of rolled steel, or solid cuboids manufactured by forging, Or, it is a solid cuboid manufactured by construction, and the total length 23 A in the vertical direction of the cuboid 23 is made equal to the height 4 A of the beam to be joined to the cuboid 23, and the cuboid 23 is formed.
  • the outer dimension of the upper end and the lower end is equal to the outer dimension of the column 5 that joins the rectangular parallelepiped 23, that is, the length of the side 5 A, and the vertical middle part 3 of the solid rectangular parallelepiped 23 0 is made thinner than the upper and lower parts so that the second moment of area of the intermediate part 30 is greater than or equal to the second moment of cross section of the upper column 5 or the lower column 5 joined to the solid rectangular solid 23.
  • the beam flange 4 and the column 5 to be joined to the rectangular parallelepiped 23 are melted. Parts are integrated so that overlap each other to produce a steel structure product. Similarly, as shown in FIG.
  • the method according to the present invention also applies to the case where the build-up welding 14 is performed on the back surface of the column end and the case where the build-up welding 14 is performed on the back surface and the side surface of the beam flange end 4. Can be applied.
  • the case of overlay welding since the cross-sectional area of the weld increases, there is an advantage that the strength of the integrated weld is further improved. If the beam flange 4 is attached to the dice 23 by welding, regardless of the presence or absence of overlay on the back and side surfaces of the beam flange 4, the web 9 is welded to the rectangular parallelepiped 23 before welding 25. Porto joining facilitates beam-column assembly.
  • Fig. 24 shows an example of a die made of steel with a space between the upper and lower centers and side surfaces of a steel die (cuboid) 36.
  • a space 26 penetrating in the vertical direction is provided in the vertical center axis of the rectangular parallelepiped 36 manufactured by the structure, and as shown in FIG. 23, the upper end face or the lower end of the rectangular parallelepiped 23 is formed.
  • the solid part cross-section minimum width c or d of the surface was more than 25 ° / 0 of the beam flange width e to be joined, respectively, and penetrated horizontally into the side surface of the rectangular parallelepiped 36 in FIG. 24.
  • a space 37A is provided, and the rectangular parallelepiped 36 is manufactured so that the cross-sectional secondary moment of the rectangular parallelepiped intermediate portion 37 is equal to or larger than the cross-sectional secondary moment of the upper or lower pillar joining the rectangular parallelepiped 36.
  • the vertical length of the rectangular parallelepiped 36 is made equal to the height of the beam joined to the rectangular parallelepiped, and the outer dimensions of the upper and lower ends of the rectangular parallelepiped, that is, the lengths of the horizontal sides, are joined to the rectangular parallelepiped.
  • the welded portion of the beam flange 4 and the column 5 to be joined to the rectangular parallelepiped 23 are overlapped and integrated as shown in Fig. 19 and Fig. 20.
  • the beam flange 4 and the side surfaces of the rectangular parallelepiped 36 have the above configurations, and tt 5 and the rectangular upper and lower ends is engaged welding contact is a method of fabricating a steel structure.
  • the method according to the present invention is also applicable to the case where the build-up welding 14 is performed on the back surface of the column end and the case where the build-up welding 14 is performed on the back surface and the side surface of the end portion 4 of the beam flange. Applicable.
  • the web 9 is laid in a rectangular parallelepiped 2 before welding 25 is performed. Welding or bolting with 3 or 36 facilitates beam-column assembly.
  • a small plate 38 having a bolt fastening hole 39 for temporarily assembling the beam is attached to the rectangular parallelepiped 23 by welding, and as shown in Fig. 26,
  • the integrated rectangular parallelepiped 23 according to the present invention and the column 5 are welded and joined 24 to produce a column rectangular parallelepiped structure 44, and the column rectangular parallelepiped structure 44 with the small plates 38 is transported to a construction site.
  • the beam H-shaped steel web 9 of the beam is temporarily fixed to the small plate 38 with bolts 40 etc. as shown in Fig. 33.
  • a temporary assembly of beam 3 was performed, and finally a rectangular parallelepiped 2 3 Beam 3 is welded, and a steel structure is installed as shown in Figure 27.
  • Either the step of attaching the small plate 38 having the bolt holes 39 to the side surface of the rectangular parallelepiped 23 by welding or the step of welding and joining the rectangular parallelepiped 23 to the column 5 may be performed first.
  • FIG. 35 shows, as an example, a case where the integrated dice 23 is formed in a columnar shape and a columnar space 26 is provided in the vertical central axis direction.
  • the welds between the beam flange 4 and the integrated dice 23 are integrated as shown in FIGS. 19, 20, 21 or 22.
  • the method of integrating a beam-column joint of a steel structure according to the present invention can be widely applied to the manufacture of a building steel structure.

Abstract

A column-to-beam connection part integration work method for a structural steelwork capable of solving such problems with a conventional column-to-beam connection part of a construction structural steelwork that, though a block for the column-to-beam connection part is manufactured in combination of steel pipes with diaphragms, various problems occurred such that a structure is complicated, a stress is concentrated, a strain occurs, and a man-hour for production is increased, and though a method to integrate the block with cast steel is planned to improve these problems, a structure is complicated, manufacture is not easy, and application to beams with different sizes is not easy, comprising the steps of forming a welded rectangular parallelepiped (23) into an integral block with rolled steel, forged steel, or cast steel, optimizing the manufacture of the block for each size, and integrally forming a column (5) and a block (23) and a beam (4) and the welded parts (24) and (25) of the block (23), whereby the stress concentration, occurrence of strain, brittleness of heat affected part can be eliminated, and the amount of use material and the man-hour for manufacture can be reduced.

Description

明 細 書 鉄骨構造物の柱梁接合部一体化工法 技術分野  Description Technical method for integrating beam-column joints of steel structures
本発明は、 建築鉄骨構造物の柱梁接合部において、 サイコロ部分を薄 鋼板等の部品から溶接により組み立てることなく、 厚板圧延鋼板■鍛鋼 •铸鋼により一体化して建築鉄骨構造物を製作する方法に関するもので ある。 背景技術  The present invention produces a building steel structure by integrating a rolled steel plate with a forged steel plate without assembling a dice portion from a thin steel plate or the like by welding at a beam-to-column joint of the building steel structure. It is about methods. Background art
従来の技術では、 建築鉄骨構造物の柱梁接合部は、 図 1に示すように 、 薄鋼板によるダイアフラム 1 と短い角形鋼管 2との間で溶接 6を施す ことによりサイコロを形成させ、 このサイコ口と H形鋼梁フランジ 4を 溶接接合 7し、 更に、 該サイコロと角形鋼管柱 5 とを溶接接合して構成 する事が多い。 この従来の技術では、 図 2に示すように、 サイコロの角 形鋼管 2とダイアフラム 1 との溶接 6及びサイコ口のダイアフラム 1 と H形鋼フランジ 4の溶接 7は裏当金 1 0を用いて片側溶接で実施されて いる。 このダイアフラム 1 と梁フランジ 4との従来溶接方法では、 ブラ ンジ 4の接合予定端部の開先加工をしてから、 裏当金 1 0の製作及び裏 当金取付の仮付溶接 8を行い、 本溶接 7を実施している。 また、 ダイァ フラム 1 と角形鋼管 2又は 5との溶接も角形鋼管 2又は 5の接合予定端 部の開先加工をしてから、 裏当金 1 0の製作及び裏当金取付の仮付溶接 8を行いダイアフラム 1 と角形鋼管 2又は 5との本溶接 6を実施してい る。  In the conventional technology, as shown in FIG. 1, a column-beam joint of a building steel structure is formed by applying a weld 6 between a diaphragm 1 made of a thin steel plate and a short rectangular steel pipe 2 to form a die. In many cases, the mouth and the H-shaped steel beam flange 4 are welded and joined 7, and the dice and the square steel pipe column 5 are often welded and joined. In this conventional technique, as shown in Fig. 2, welding 6 between the rectangular steel pipe 2 of the die and the diaphragm 1 and welding 7 of the diaphragm 1 of the die opening and the H-shaped steel flange 4 are performed by using a backing metal 10. It is performed by one side welding. In the conventional welding method of the diaphragm 1 and the beam flange 4, the groove 4 is formed at the end of the flange 4 to be joined, and then the backing metal 10 is manufactured and the tacking welding 8 for mounting the backing metal is performed. The main welding 7 has been carried out. Also, for welding the diaphragm 1 and the square steel pipe 2 or 5, beveling of the joint end of the square steel pipe 2 or 5 is performed, and then the backing metal 10 is manufactured and the backing metal is temporarily attached. 8 and the main welding 6 between the diaphragm 1 and the square steel pipe 2 or 5 was performed.
更に、 図 3に一例を示すように、 溶接継手部材 1 3端部の裏面に非消 耗式銅当金 1 2をあてがい肉盛溶接 1 4を行った後、 開先加工を 1 3 C の位置で肉盛部 1 4を含めて開先加工して、 図 5のように部材 1 3と肉 盛部 1 4を含めた開先 1 5を得て、 図 6に示すように、 消耗式の裏当金 や裏当材を用いず、 部材 1 6と 1 3を片側から溶接施工する片側溶接方 法で継手溶接 1 7をし、 溶接継手部材端部の部材の板厚 1 8を超えるの ど厚 1 9を獲得する方法がある。 Further, as shown in Fig. 3, a non-consumable copper abutment 12 is applied to the back surface of the end of the welded joint member 13 to perform a build-up welding 14 and then a beveling process is performed to 13 C At the position of, beveling including the overlay 14 is obtained, and as shown in FIG. 5, a groove 15 including the member 13 and the overlay 14 is obtained. Without using backing metal or backing material of the type, joint welding 17 is performed by one-side welding method in which members 16 and 13 are welded from one side, and the plate thickness 18 at the end of the welded joint member is reduced. There is a way to get a thickness of over 19.
また、 図 4に一例を示すように、 溶接継手部材 1 3端部の裏面に突起 1 2 Pを付けた非消耗式銅当金 1 2をあてがい肉盛溶接 1 4を行った後 、 開先加工を 1 3 Cの位置で部材 1 3の端部のみを開先加工を行い、 図 5のように部材 1 3 と肉盛部 1 4を含めた開先 1 5を得て、 図 6に示す ように、 消耗式の裏当金や裏当材を用いず、 部材 1 6 と 1 3を片側から 溶接施工する片側溶接方法で継手溶接 1 7をし、 溶接継手部材端部の部 材の板厚 1 8を超えるのど厚 1 9を獲得する方法がある。  In addition, as shown in FIG. 4, a non-consumable copper abutment 12 having a projection 12 P on the back surface of the end of the welded joint member 13 is applied to the welded joint member 13, and after performing the overlay welding 14, the groove is formed. At the 13C position, only the end of the member 13 was grooved to obtain a groove 15 including the member 13 and the overlay 14 as shown in Fig. 5. As shown in the figure, without using consumable backing metal or backing material, joint welding 17 was performed by one-side welding method in which members 16 and 13 were welded from one side, and the members at the end of the welded joint member were There is a way to get a throat thickness of 19 over a plate thickness of 18.
一方、 図 7に示すように、 鐯鋼により一体化されコンクリート充填孔 2 1及び補助板 2 2を有する筒体本体即ちサイコロ 2 0が特開 2 0 0 0 - 1 4 4 9 3 1号公報 (特願平 1 0— 3 1 2 7 7 1号) に提案ざれてい る。  On the other hand, as shown in FIG. 7, a cylinder body or dice 20 integrated with steel and having a concrete filling hole 21 and an auxiliary plate 22 is disclosed in Japanese Patent Application Laid-Open No. 2000-144493. (Japanese Patent Application No. 10-31 2771).
しかし、 従来の建築鉄骨柱梁接合部では、 殆どが図 1で示すサイコロ で製作されており、 図 1では、 ダイアフラム 1 ·角形鋼管 2 ·裏当金 1 0 ■ エンドタブ等部材が多く、 溶接 6は角形鋼管 2の周囲に一周してお り溶接量が多い。 そのため、 部品製作コストが掛かると共に、 サイコロ 製作後、 図 3 4に示すように、 ダイァフラムが折れ曲がり、 いわゆる傘 折れ現象が起きて、 ダイァフラムと梁フランジとの間で目違いが起こり やすいと言う問題がある。 また、 裏当金 1 0を角形鋼管 2の端部内周に 取り付けて仮付溶接 8を行うのは手間とコス トが掛かる。 また、 角形鋼 管 2とダイアフラム 1の溶接 6を全周に亘つて行うため、 溶接量が多い ので溶接残留応力が大きくなるだけでなく、 裏当金 1 0を用いると部材 4, 5 との間で切り欠きが出来て応力集中が発生し、 強度を弱める結果 となる。 However, most of the conventional building steel beam-column joints are made of dice as shown in Fig. 1. In Fig. 1, diaphragm 1 · square steel pipe 2 · backing metal 10 ■ There are many members such as end tabs and welding 6 Circles around the square steel pipe 2 and has a large amount of welding. As a result, the cost of parts production increases, and after the dice is manufactured, the diaphragm bends, as shown in Fig. 34, causing the so-called umbrella breaking phenomenon, and the misalignment between the diaphragm and the beam flange tends to occur. is there. Also, it is troublesome and costly to attach the backing metal 10 to the inner periphery of the end of the rectangular steel pipe 2 and perform the tack welding 8. In addition, since the welding 6 of the square steel pipe 2 and the diaphragm 1 is performed over the entire circumference, the welding amount is large, so not only the welding residual stress is increased, but also if the backing metal 10 is used, the members 4 and 5 are connected to each other. Notches are formed between the parts, resulting in stress concentration and weakening of the strength Becomes
また、 図 7で示すように、 従来の鑤鋼で一体成型したサイコロ 2 0は 、 従来の溶接構造の図 1 と比較し、 比較的簡単な構造であり、 構造耐カ が向上するという利点がある。 しかし、 この図 7に示す構造は補強板 2 2を上下に 2枚、 一体に合計 4枚の補強板 2 2が必要で、 且つ補強板 2 2によって形成される空間 2 2 Aは内部で広がっており、 1体に 3ケの 空間を必要としている。 このような空間 2 2 Aは铸造時に複雑な中子を 必要とし、 中子製造工数及び铸造工数の増大をもたらしコス ト増加の要 因となる。 また、 図 7に置いて、 サイコロに接合される梁のせい即ち高 さがサイコロのせい即ち高さよりも一段と低い場合に、 内部補強板の水 平位置と梁フランジの水平位置が一致するようにセッ トされるが、 この 内部補強板の水平位置は梁の高さを考慮して製作する必要があり、 梁高 さが種々ある場合は製作が困難で且つ梁高さが限定される。 内部補強板 が省略又は一面の角部にリブとして変更する場合も同様の問題が存在す る。  Further, as shown in FIG. 7, the dice 20 integrally molded from the conventional steel sheet has a relatively simple structure as compared with the conventional welding structure shown in FIG. 1, and has an advantage that the structural resistance is improved. is there. However, the structure shown in FIG. 7 requires two reinforcing plates 22 vertically and a total of four reinforcing plates 22, and the space 22 A formed by the reinforcing plates 22 extends inside. And requires three spaces per body. Such a space 22 A requires a complicated core during fabrication, which leads to an increase in man-hours for manufactur- ing cores and man-hours for construction, which is a factor of cost increase. Also, as shown in Fig. 7, when the beam, that is, the height of the beam to be joined to the dice is much lower than the dice, that is, the height, the horizontal position of the internal reinforcing plate and the horizontal position of the beam flange are matched. Although it is set, the horizontal position of this internal reinforcing plate needs to be manufactured in consideration of the height of the beam, and when there are various beam heights, it is difficult to manufacture and the beam height is limited. A similar problem exists when the internal reinforcing plate is omitted or replaced with a rib at one corner.
更に、 一般に溶接熱影響部は脆化し易いという事があり、 従来、 2つ の溶接部が近接する場合、 両溶接部による熱影響部が重なって脆化が更 に促進されないように、 両溶接部は該熱影響部が重ならないように遠ざ けるようにするのが通例である。 特に、 両溶接部による溶接熱影響が重 なった部分が外面に露出すると問題である。 上記特開 2 0 0 0— 1 4 4 9 3 1号公報では、 溶接部の近接について記述はないが、 図 1 8に示す ように、 柱 5と一体化サイコロ 2 3 との溶接部 2 4が、 梁 4と一体化サ ィコロ 2 3 との溶接部 2 5に近接し両溶接部に挟まれた共通の溶接熱影 響部 3 5が外面に生じると、 該熱影響部は単一の熱影響部よりも脆化し やすいと言う問題がある。  Furthermore, in general, the heat-affected zone of the weld is easily brittle.Conventionally, when two welds are close to each other, the two heat-affected zones overlap to prevent further embrittlement due to overlapping of the heat-affected zones. It is customary to keep the heat affected zone away from the heat affected zone. In particular, there is a problem if the portions where the welding heat effects of both welds overlap are exposed on the outer surface. In the above-mentioned Japanese Patent Application Laid-Open No. 2000-1444491, there is no description about the proximity of the welded portion. However, as shown in FIG. However, when a common welding heat affected zone 35 is formed on the outer surface near the weld 25 between the beam 4 and the integrated die 23 and sandwiched between the two welds, the heat affected zone becomes a single There is a problem that it is more fragile than the heat-affected zone.
従来、 建築鉄骨の組立は、 工場においてサイコロと短尺梁を取り付け てパネルゾーンを製作し、 該パネルゾーンに柱を溶接で繋ぎ、 通常は建 物の 3階分の長さに製作し、 建設現場でパネルゾーン付きの柱を直立さ せてから短尺梁間を長尺梁でボルト接合により連結して行う。 この従来 工法では、 梁付きの柱は梁が 1メートル程度の短尺とは言え柱に直交し て 4方向に張り出しているため、 工場から現場へ運送する効率が悪く、 建設現場での梁同士の多数のボルトを使った接合に工数と費用が溶接よ り も掛かるという問題がある。 Conventionally, building steel frames are assembled in a factory by installing dice and short beams to form a panel zone, and connecting columns to the panel zone by welding. The product is manufactured to a length of three stories, and the columns with panel zones are erected at the construction site, and then the short beams are connected by bolts using long beams. In this conventional method, the columns with beams have a short length of about 1 meter, but extend in four directions perpendicular to the columns, so the efficiency of transportation from the factory to the site is poor, and the beams at the construction site The problem is that joining with a large number of bolts requires more man-hours and costs than welding.
そこで、 本発明は、 圧延鋼 ·鍛鋼■ 铸鋼を用い、 鉄骨仕口部の構造を 単純化して、 応力集中を緩和し、 強度を向上させると共に、 製作コス ト を低減させることを目的とする。 発明の開示  Therefore, an object of the present invention is to use a rolled steel / forged steel / steel, simplify the structure of a steel joint, relieve stress concentration, improve strength, and reduce manufacturing costs. . Disclosure of the invention
このような諸課題を解決するために、 種々研究した結果、 図 1に示す 部材 1 と 2で構成されるサイコ口に代えて、 サイコロ部分を一体化する ことが良いと判断し、 更に、 図 7に示す一体化サイコロの問題を解決す るためには、 種々研究の結果、 補強板を省略して中実とし、 且つ、 図 1 8に示す溶接熱影響部の重なりの問題に対し、 柱梁溶接部を一体化させ ることで達成されることを見いだした。 また、 該サイコロを中実にする 場合、 錡鋼では厚肉の部品しか製作出来ないので、 サイコロのサイズが 小さいほど軸心に空洞を作る意味がなくなるため、 铸鋼では中実にした 方が良く、 中実にした場合、 厚肉の圧延材料や鍛鋼材料でも製作可能で あることを見いだした。  As a result of various researches to solve these problems, it was determined that it would be better to integrate the dice part instead of the psycho mouth composed of members 1 and 2 shown in Fig. 1. In order to solve the problem of integrated dice shown in Fig. 7, as a result of various studies, the reinforcement plate was omitted to make it solid, and the problem of overlapping of the heat affected zone shown in Fig. It has been found that this can be achieved by integrating the beam welds. When the dice are made solid, since only thick parts can be manufactured with 錡 steel, it is meaningless to make a cavity in the axis as the size of the dice becomes smaller. When solid, it was found that thick rolled and forged steel materials could be manufactured.
そこで、 本発明 (請求項 1に係る発明) では、 建築鉄骨構造物におい て、 発明の構成は先ず、 サイコロを、 圧延鋼を熱加工、 機械加工又は溶 接加工することにより製作する中実の直方体、 又は、 鍛造により製作す る中実の直方体、 又は、 錡造により製作する中実の直方体とし、 次の構 成は、 該直方体の上下方向の全長即ち高さを該直方体に接合する梁のせ い即ち高さと同等にすると共に、 該直方体の上端及び下端の外形寸法即 ち水平辺の長さを該直方体に接合する柱の外形寸法即ち水平辺の長さと 同等にして、 該直方体に接合する梁と柱の溶接部を重ねて一体化するこ とからなっており、 これらの構成により、 該梁と該直方体側面及び該柱 と該直方体上下端を溶接接合させて鉄骨構造物を製作する方法である。 すなわち、 本発明 (請求項 1に係る発明) は、 建築鉄骨構造物におい て、 鋼製の中実直方体の高さを該直方体に接合する梁の高さと同等にす ると共に、 該直方体の上端及び下端の外形寸法を該直方体に接合する柱 の外形寸法と同等にして、 該直方体に接合する梁と柱の溶接部が一体化 するように、 該梁と該直方体側面及ぴ該柱と該直方体鉛直方向端面とを 溶接接合して鉄骨構造物を製作することを特徴とする鉄骨構造物の柱梁 接合部一体化工法である。 Therefore, in the present invention (the invention according to claim 1), in a building steel frame structure, the configuration of the invention is as follows. First, a die is manufactured by subjecting rolled steel to hot working, mechanical working, or welding working. A rectangular parallelepiped, or a solid rectangular parallelepiped manufactured by forging, or a solid rectangular parallelepiped manufactured by forging. The following configuration is a beam that joins the vertical overall length, that is, the height, of the rectangular parallelepiped to the rectangular parallelepiped. Height of the rectangular parallelepiped, and That is, the length of the horizontal side is made equal to the outer dimension of the column to be joined to the rectangular parallelepiped, that is, the length of the horizontal side, and the welded portion of the beam and the column to be joined to the rectangular parallelepiped is integrated by overlapping. According to these structures, the beam and the side surface of the rectangular parallelepiped, and the column and the upper and lower ends of the rectangular parallelepiped are welded to each other to produce a steel structure. That is, the present invention (the invention according to claim 1) is to make the height of a steel solid rectangular parallelepiped equal to the height of a beam to be joined to the rectangular parallelepiped in an architectural steel structure, and to increase the upper end of the rectangular parallelepiped. And, the outer dimensions of the lower end are made equal to the outer dimensions of the column to be joined to the rectangular parallelepiped, and the beam and the side of the rectangular parallelepiped and the column and the column are joined so that the welded portion between the beam and the column to be joined to the rectangular parallelepiped is integrated. This is a method of integrating column and beam joints of a steel structure, which is characterized in that a steel structure is manufactured by welding and joining a vertical end face of a rectangular parallelepiped.
本発明の新規性は、 サイコロを一体化した中実の直方体として該直方 体の寸法を柱及び梁の寸法と同等にし、 且つ、 接合する柱梁部材の 2つ の溶接部を重ねて一体化させることにある。  The novelty of the present invention is that the dimensions of the rectangular parallelepiped are made equal to the dimensions of the columns and beams as a solid rectangular parallelepiped, and the two welds of the column and beam members to be joined are overlapped and integrated. To make it happen.
なお、 ここでいう直方体とは、 六面がすべて長方形である六面体、 上 下面が正方形で他の面が長方形の六面体、 立方体 (正六面体) および一 辺以上が他の辺と平行でない斜方体を含む。 また、 ここでいう同等とは 、 同一という意味ではなく、 柱と梁の溶接部が一体化できる程度に該直 方体の寸法と梁又は柱の寸法とが異なっていても同等とみなす。 通常、 柱又は梁の板厚の 1 / 4〜 1 Z 2程度までのずれは、 同等とみなす。 こ れらのことは、 以下の各発明についても同様である。  The rectangular parallelepiped here means a hexahedron whose all six sides are rectangular, a hexahedron whose upper and lower surfaces are square and the other side is rectangular, a cube (regular hexahedron), and an oblique body whose one or more sides are not parallel to other sides including. The term “equivalent” as used herein does not mean that they are the same, and is regarded as equivalent even if the dimensions of the rectangular parallelepiped are different from the dimensions of the beam or column to such an extent that the welded portion between the column and the beam can be integrated. Normally, deviations of about 1/4 to 1 Z2 of the column or beam thickness are considered equivalent. The same applies to the following inventions.
次に、 請求項 2に係る発明について説明する。  Next, the invention according to claim 2 will be described.
請求項 1の発明では、 サイコロ (直方体) の水平辺の長さが大凡 2 5 0 m m以下と比較的小さい場合に適用するのが適当である。 しかし、 サ ィコ口の水平辺の長さが更に大きくなると中実部が増加して重量が増え てコス トが増大する。 そこで、 中心軸に沿って貫通する空間を設ければ 、 サイコロの重量を軽減できるが、 この貫通孔の直径を大きく しすぎる と、 柱に対してより も、 中実部のフランジ面内強度が梁フランジに比較 して弱くなることが判明した。 そこで、 該直方体の上端面又は下端面の 中実部分断面最小幅がそれぞれ梁フランジ幅の 2 5 %以上、 又は該直方 体の一辺の 2 5 %以上になるようにすれば、 中実部の強度を損なうこと なく効果的に重量を軽減させることが判明した。 しかしながら、 図 7に 示す補強板を使用した場合、 前述のように製作の容易性、 コス ト、 及び 梁フランジの位置に自由度がなくて、 構造物に適用する場合に不便が生 じる。 その点、 円柱などの柱状の空間であれば、 圧延鋼に対する機械加 ェゃガス切断のような熱加工で容易に製作でき、 鍛鋼でも鍛鋼型を用い ることにより製作でき、 錄造でも複雑な铸造方案を用いることなく容易 に安価に製作できる。 本発明の新規性は、 請求項 1に係る発明の新規性 に加えて、 該直方体の鉛直中心軸に鉛直方向にほぼ均一な筒状の空間を 設けることにある。 In the invention of claim 1, it is suitable to be applied when the length of the horizontal side of the dice (rectangular parallelepiped) is relatively small, approximately 250 mm or less. However, if the length of the horizontal side of the syco mouth is further increased, the solid part increases, the weight increases, and the cost increases. Therefore, if a space is provided to penetrate along the central axis, the weight of the dice can be reduced, but the diameter of this through hole is made too large. It was found that the in-flange strength of the solid part became weaker than that of the beam flange than that of the column. Therefore, if the minimum width of the solid partial cross section of the upper end face or lower end face of the rectangular parallelepiped is set to be 25% or more of the beam flange width or 25% or more of one side of the rectangular parallelepiped, respectively, It has been found that weight can be effectively reduced without compromising strength. However, when the reinforcing plate shown in Fig. 7 is used, as described above, ease of manufacture, cost, and flexibility of the position of the beam flange are not sufficient, and inconvenience occurs when applied to a structure. On the other hand, if it is a columnar space such as a cylinder, it can be easily manufactured by hot working such as mechanical gas cutting of rolled steel.製作 Can be easily and inexpensively manufactured without using a fabrication method. The novelty of the present invention resides in that in addition to the novelty of the invention according to claim 1, a substantially uniform cylindrical space is provided in the vertical center axis of the rectangular parallelepiped.
従って、 請求項 2に係る発明では、 建築鉄骨構造物において、 究明の 第 1の構成は、 サイコロを、 圧延鋼を熱加工、 機械加工又は溶接加工す ることにより製作する中実の直方体、 又は、 鍛造により製作する中実の 直方体、 又は、 铸造により製作する中実の直方体とし、 第 2の構成では 、 該直方体の上下方向の全長を該直方体に接合する梁のせいと同等にす ると共に、 該直方体の上端及ぴ下端の外形寸法即ち辺の長さを該直方体 に接合する柱の外形寸法即ち辺の長さと同等にして、 第 3の構成では、 該直方体の鉛直中心軸に鉛直方向に貫通する筒状の空間を設けて、 第 4 の構成として、 該直方体の上端面又は下端面の中実部分断面最小幅がそ れぞれ梁フランジ幅の 2 5 %以上、 又は該直方体の一辺の 2 5 %以上に なることを加えて、 更に、 第 5の構成として、 該直方体に接合する梁と 柱の溶接部が重なるようにし、 鉄骨構造物を製作する方法とすることか らなっており、 これらの構成により、 該梁と該直方体側面及ぴ該柱と該 直方体上下端を溶接接合させて鉄骨構造物を製作する方法である。 すなわち、 本発明 (請求項 2に係る発明) は、 請求項 1に記載の発明 において、 該直方体の鉛直中心軸に沿い鉛直方向に貫通する空間を該直 方体に設けて、 該直方体の上端面又は下端面の中実部分断面最小幅がそ れぞれ梁フランジ幅の 2 5 %以上、 又は該直方体の一辺の 2 5 %以上に なるようにすることを特徴とする鉄骨構造物の柱梁接合部一体化工法で ある。 Therefore, in the invention according to claim 2, in the architectural steel structure, the first configuration to be investigated is a solid rectangular parallelepiped manufactured by rolling, rolling, or hot working a rolled steel, or A solid rectangular parallelepiped manufactured by forging, or a solid rectangular solid manufactured by forging. In the second configuration, the total length of the rectangular parallelepiped in the vertical direction is made equal to that of the beam joined to the rectangular parallelepiped. In the third configuration, the outer dimensions of the upper end and the lower end of the rectangular parallelepiped, that is, the lengths of the sides are equal to the outer dimensions of the pillars joined to the rectangular parallelepiped, that is, the lengths of the sides. As a fourth configuration, the minimum width of the solid partial cross section at the upper end face or lower end face of the rectangular parallelepiped is 25% or more of the beam flange width, or the rectangular parallelepiped of the rectangular parallelepiped, respectively. More than 25% of one side, Further, as a fifth configuration, a method of manufacturing a steel structure by making a welded portion of a beam and a column to be joined to the rectangular parallelepiped overlap with each other is adopted. With these configurations, the beam and the rectangular parallelepiped are formed. In this method, a steel structure is manufactured by welding the side surfaces and the upper and lower ends of the column and the rectangular parallelepiped. That is, the present invention (the invention according to claim 2) is the invention according to claim 1, wherein a space penetrating in the vertical direction along the vertical center axis of the rectangular parallelepiped is provided in the rectangular parallelepiped, and A column of a steel structure, characterized in that the minimum width of the solid part cross section at the end face or the bottom face is at least 25% of the beam flange width or at least 25% of one side of the rectangular parallelepiped, respectively. This is an integrated beam joint construction method.
なお、 鉛直方向に貫通する空間を設けたサイコロ (直方体) は、 溶接 加工又は厚肉パイプから製作したサイコロも本発明の一部となる。  It should be noted that dice (a rectangular parallelepiped) provided with a space penetrating in the vertical direction are also a part of the present invention, including a die formed by welding or a thick pipe.
次に、 請求項 3に係る発明について説明する。  Next, the invention according to claim 3 will be described.
請求項 1の発明では、 サイコロ (直方体) の水平辺の長さが大凡 2 5 O m m以下と比較的小さい場合に適用するのが適当である。 しかし、 サ ィコロの水平辺の長さが更に大きくなると中実部の体積が増加して重量 が増え、 材料コス トが増大する。 そこで、 前述のように、 該直方体の鉛 直中心軸に鉛直方向に貫通する空間を設ける方法も有効であるが、 該中 実直方体の鉛直方向中間部を該中実直方体の上下部よりも細くすれば重 量増加を軽減できる。 しかし、 該中間部を細く しすぎると、 梁に対して より も、 該中間部の曲げ強度が柱に比較して弱くなることが判明し、 そ こで、 曲げ強度を評価するために材料力学における断面 2次モーメント を用い、 サイコロの断面 2次モーメントがサイコロ近傍の上部柱又は下 部柱の断面 2次モーメントよりも大きくすることが肝要であることが判 明した。 本発明の新規性は、 請求項 1に係る発明の新規性に加えて、 上 下に隣接する柱の断面 2次モーメントを確保しながら直方体中間部を細 くすることにある。  In the invention of claim 1, it is suitable to be applied when the length of the horizontal side of the dice (rectangular parallelepiped) is relatively small, about 25 O mm or less. However, when the length of the horizontal side of the dice is further increased, the volume of the solid portion is increased, the weight is increased, and the material cost is increased. Therefore, as described above, a method of providing a space penetrating in the vertical direction on the vertical center axis of the rectangular parallelepiped is also effective. However, the vertical intermediate portion of the solid rectangular parallelepiped is thinner than the upper and lower portions of the solid rectangular parallelepiped. This can reduce the increase in weight. However, it has been found that if the intermediate portion is made too thin, the bending strength of the intermediate portion becomes weaker than that of the beam, as compared with the beam. Using the second moment of area at, it was found that it is important that the second moment of area of the dice be larger than the second moment of area of the upper or lower column near the dice. The novelty of the present invention resides in that, in addition to the novelty of the invention according to claim 1, the intermediate portion of the rectangular parallelepiped is made narrow while securing the second moment of area of the column adjacent above and below.
そこで、 請求項 3に係る発明では、 建築鉄骨構造物において、 発明の 第 1の構成は、 サイコロを、 圧延鋼を熱加工又は機械加工することによ り製作する中実の直方体、 又は、 鍛造により製作する中実の直方体、 又 は、 铸造により製作する中実の直方体とし、 第 2の構成では、 該直方体 の上下方向の全長を該直方体に接合する梁のせいと同等にすると共に、 該直方体の上端及び下端の外形寸法即ち辺の長さを該直方体に接合する 柱の外形寸法即ち辺の長さと同等にして、 第 3の構成では、 該中実直方 体の鉛直方向中間部を上下部よりも細く して、 第 4の構成として該中間 部の断面 2次モーメントを該中実直方体に接合する上部柱又は下部柱の 断面 2次モーメント以上になるようにして、 更に、 第 5の構成として、 該直方体に接合する梁と柱の溶接部が重なるようにし、 鉄骨構造物を製 作する方法とすることからなっており、 これらの構成により、 該梁と該 直方体側面及び該柱と該直方体上下端を溶接接合させて鉄骨構造物を製 作する方法である。 Therefore, in the invention according to claim 3, in the building steel structure, the first configuration of the invention is a solid rectangular parallelepiped manufactured by rolling or rolling a rolled steel, or a forged die. A solid cuboid manufactured by the following method, or a solid cuboid manufactured by the And the outer dimensions of the upper and lower ends of the rectangular parallelepiped, that is, the lengths of the sides, are equal to the outer dimensions of the columns that are bonded to the rectangular parallelepiped, that is, the lengths of the sides. Then, in the third configuration, the vertical intermediate portion of the solid rectangular parallelepiped is made thinner than the upper and lower portions, and as a fourth configuration, the upper section for joining the second moment of area of the intermediate portion to the solid rectangular parallelepiped A method of manufacturing a steel structure by setting the cross section of the column or lower column to be equal to or more than the second moment, and as a fifth configuration, by making the welded portion of the beam and the column joined to the rectangular parallelepiped overlap each other. According to these configurations, the beam and the side surface of the rectangular parallelepiped and the pillar and the upper and lower ends of the rectangular parallelepiped are welded to each other to produce a steel structure.
すなわち、 本発明 (請求項 3に係る発明) は、 請求項 1に記載の発明 において、 該中実直方体の鉛 E方向中間部を上下部よりも細く且つ該中 間部の断面 2次モーメントを該中実直方体に接合する上部柱又は下部柱 の断面 2次モーメント以上になるように該直方体を製作することを特徴 とする鉄骨構造物の柱梁接合部一体化工法である。  That is, the present invention (the invention according to claim 3) is the invention according to claim 1, wherein the intermediate portion in the lead E direction of the solid rectangular parallelepiped is thinner than the upper and lower portions and the second moment of area of the intermediate portion is reduced. A method of integrating a column-beam joint of a steel structure, wherein the rectangular column is manufactured so as to have a second moment or more in cross section of an upper column or a lower column joined to the solid rectangular parallelepiped.
次に、 請求項 4に係る発明について説明する。  Next, the invention according to claim 4 will be described.
請求項 1、 2、 及び 3に係る発明においては、 サイコロの水平辺の長 さが大凡 3 5 0 m m以下の場合に適用するのが適当である。 しかし、 サ ィコ口の水平辺の長さが更に大きくなると、 サイコロを形成する中実直 方体の鉛直方向に空間を設けたり、 該中間部を細く しても、 中実部の体 積が増加して重量が増えて材料コス トが増大する。 一方、 該直方体の内 部を空洞にする方法が図 7に示すように存在するが、 該直方体の側面壁 の厚さは錄造方法では約 4 0 m m以下に製造することは容易ではなく、 側面壁全周を残した単なる空洞ではそれ以上の重量軽減が難しく、 圧延 や鍛造方法ではなお製作が難しい。  In the inventions according to Claims 1, 2, and 3, it is appropriate to apply when the length of the horizontal side of the dice is approximately 350 mm or less. However, if the length of the horizontal side of the mouth is further increased, even if a space is provided in the vertical direction of the solid rectangular parallelepiped forming the dice, or even if the intermediate portion is narrowed, the volume of the solid portion is reduced. As the weight increases, the material cost increases. On the other hand, there is a method of hollowing the inside of the rectangular parallelepiped as shown in FIG. 7, but it is not easy to manufacture the side wall of the rectangular parallelepiped to a thickness of about 40 mm or less by a forging method. It is difficult to further reduce the weight of a simple cavity that leaves the entire circumference of the side wall, and it is still difficult to manufacture by rolling or forging.
そこで、 サイコロを形成する直方体の材質を铸鋼として、 該直方体側 面壁の厚さを経済的に可能な程度に小さく して、 側面壁の断面積が該直 方体に隣接して接合された柱の断面積が確保される範囲内で即ち柱の断 面 2次モーメントが確保される範囲内で、 側面壁に水平方向に複数のス リ ッ ト状の貫通穴を明け、 且つ、 該直方体の鉛直中心軸に鉛直方向に貫 通する筒状の空間を該直方体の上下部に設けて、 該直方体の上端面又は 下端面の中実部分の断面最小幅がそれぞれ梁フランジ幅の 2 5 %以上に なるようにすれば、 該直方体の中実部体積を最小にでき重量を低くでき る。 このよ うに中実部体積を最小にした該直方体に対して、 請求項 1に 記載の発明の方法を適用する。 即ち、 鋼製の中実直方体の高さを該直方 体に接合する梁の高さと同等にすると共に、 該直方体の上端及び下端の 外形寸法を該直方体に接合する柱の外形寸法と同等にして、 該直方体に 接合する梁と柱の溶接部が一体化するように、 該梁と該直方体側面及び 該柱と該直方体鉛直方向端面とを溶接接合させて鉄骨構造物を製作する 方法を適用する。 Therefore, the material of the rectangular parallelepiped forming the dice is made of stainless steel, and the thickness of the rectangular parallelepiped side wall is made as small as possible economically so that the cross-sectional area of the side wall is reduced. Within the range where the cross-sectional area of the column joined adjacent to the cuboid is secured, that is, within the range where the moment of inertia of the column is secured, a plurality of slit-shaped horizontal walls are formed on the side wall. A cylindrical space is formed in the upper and lower portions of the rectangular parallelepiped, through which a through hole is made, and which penetrates vertically through the vertical center axis of the rectangular parallelepiped, and a minimum cross-sectional width of a solid portion of an upper end surface or a lower end surface of the rectangular parallelepiped If each of them is 25% or more of the beam flange width, the solid volume of the rectangular parallelepiped can be minimized and the weight can be reduced. The method according to claim 1 is applied to the rectangular parallelepiped having the minimum solid part volume. That is, the height of the solid rectangular parallelepiped made of steel is made equal to the height of the beam joined to the rectangular parallelepiped, and the outer dimensions of the upper end and the lower end of the rectangular parallelepiped are made equal to the outer dimensions of the columns joined to the rectangular parallelepiped. A method of manufacturing a steel structure by welding and joining the beam and the side surface of the rectangular parallelepiped and the column to the vertical end surface of the rectangular parallelepiped so that the welded portion of the beam and the column joined to the rectangular parallelepiped is integrated. .
従って、 請求項 4に係る発明では、 発明の第 1の構成は、 铸造により 製作する直方体の鉛直中心軸に上下鉛直方向に貫通した空間を設けて、 該直方体の上端面又は下端面の中実部分断面最小幅がそれぞれ梁フラン ジ幅の 2 5 %以上、 又は該直方体の一辺の 2 5 %以上になるようにする ことであり、 第 2の構成は、 該直方体の側面部に水平方向に貫通した空 間を設けて、 該直方体中間部の断面 2次モーメントを該直方体に接合す る上部柱又は下部柱の断面 2次モーメン ト以上になるように該直方体を 製作することであり、 第 3の構成は、 該直方体の上下方向の全長を該直 方体に接合する梁のせいと同等にすると共に、 該直方体の上端及ぴ下端 の外形寸法を該直方体に接合する柱の外形寸法と同等にして、 該直方体 に接合する梁と柱の溶接部が重ねて一体化するようにすることからなつ ており、 本発明はこれらの構成により、 該梁と該直方体側面及ぴ該柱と 該直方体上下端を溶接接合させて鉄骨構造物を製作する方法である。 本 発明の新規性は、 請求項 1及び 2に係る発明の新規性に加えて、 該直方 体の側面部に水平方向に貫通した空間を設けて、 該直方体中間部の断面 2次モーメントを該直方体に接合する上部柱又は下部柱の断面 2次モー メ ン ト以上になるように該直方体を製作することである。 Therefore, in the invention according to claim 4, the first configuration of the invention is characterized in that a space penetrating vertically in the vertical center axis of a rectangular parallelepiped manufactured by a structure is provided, and a solid upper end surface or a lower end surface of the rectangular parallelepiped is provided. The minimum width of the partial cross section is to be 25% or more of the beam flange width or 25% or more of one side of the rectangular parallelepiped, respectively. Providing a penetrating space, and manufacturing the rectangular parallelepiped so that the second moment of area of the intermediate portion of the rectangular parallelepiped is equal to or more than the second moment of cross section of the upper column or the lower column joined to the rectangular parallelepiped; In the configuration of 3, the vertical length of the rectangular parallelepiped is made equal to that of the beam to be joined to the rectangular parallelepiped, and the outer dimensions of the upper end and the lower end of the rectangular parallelepiped are equal to the outer dimensions of the column to be joined to the rectangular parallelepiped. Equally, welding of beam and column to be joined to the rectangular parallelepiped According to the present invention, the beam and the side surface of the rectangular parallelepiped and the column and the upper and lower ends of the rectangular parallelepiped are welded to each other to form a steel structure. Is the way. The novelty of the present invention is not only the novelty of claims 1 and 2, but also A space penetrating in the horizontal direction is provided on the side surface of the body, and the rectangular solid is formed so that the second moment of area of the middle part of the rectangular parallelepiped becomes equal to or larger than the sectional moment of the upper column or lower pillar joined to the rectangular solid. It is to produce.
すなわち、 本発明 (請求項 4に係る発明) は、 請求項 1に記載の発明 において、 鍚造により製作する直方体の鉛直中心軸に上下鉛直方向に貫 通した空間を設けて、 該直方体の上端面又は下端面の中実部分断面最小 幅がそれぞれ梁フランジ幅の 2 5 %以上、 又は該直方体の一辺の 2 5 % 以上になるようにすると共に、 該直方体の側面部に水平方向に貫通した 空間を設けて、 該直方体中間部の断面 2次モーメントを該直方体に接合 する上部柱又は下部柱の断面 2次モーメン ト以上になるように該直方体 を製作したうえ、 該梁と該直方体側面及び該柱と該直方体鉛直方向端面 とをそれぞれ溶接が一体化するように溶接接合することを特徴とする鉄 骨構造物の柱梁接合部一体化工法である。  That is, the present invention (the invention according to claim 4) is the invention according to claim 1, wherein a space penetrating in the vertical direction is provided on the vertical center axis of the rectangular parallelepiped manufactured by the structure, and The minimum width of the solid cross section of the end face or the lower end face shall be 25% or more of the beam flange width or 25% or more of one side of the rectangular parallelepiped, respectively, and shall be horizontally penetrated into the side face of the rectangular parallelepiped. A space is provided, and the rectangular parallelepiped is manufactured so that the cross-sectional second moment of the intermediate portion of the rectangular parallelepiped is equal to or larger than the cross-sectional secondary moment of the upper column or the lower column that is joined to the rectangular parallelepiped. A method for integrating a column-beam joint of a steel structure, wherein the column and the vertical end face of the rectangular parallelepiped are welded to each other so that welding is integrated.
次に、 請求項 5に係る発明について説明する。  Next, the invention according to claim 5 will be described.
従来、 建築鉄骨の組立において、 ブラケッ トと称する短尺の梁付きの 柱は、 ブラケッ トが張り出しているため、 工場から現場へ運送する効率 が悪く、 しかも建設現場での梁同士のポルト接合に多大な工数と費用が 溶接よりも掛かるという問題がある。 この問題の解決のためには、 短尺 梁即ちブラケッ トを直方体へ取り付けることなく、 直方体と柱とを工場 で溶接して、 柱 · 直方体構造物を製作し、 該柱直方体構造物を該工場か ら建設現場へ搬送して直立させ、 該柱直方体構造物の直方体同士を 1本 の梁で溶接接合すれば建設現場では梁同士のポルト接合を省略すること ができる。 しかし、 該柱直方体構造物の直方体と梁とはそのままでは仮 組が難しい。  Conventionally, in assembling building steel frames, columns with short beams, called brackets, are inefficient because they are overhanged by the brackets and transported from the factory to the site. The problem is that it requires more man-hours and costs than welding. To solve this problem, a short beam or bracket is not attached to the rectangular parallelepiped, but the rectangular parallelepiped and the column are welded in a factory to produce a column / rectangular structure, and the column rectangular parallelepiped structure is mounted in the factory. If it is conveyed to a construction site, it is erected, and the rectangular parallelepipeds of the columnar cuboid structure are welded to each other with a single beam, so that port bonding between the beams can be omitted at the construction site. However, it is difficult to temporarily assemble the rectangular parallelepiped and the beam of the columnar rectangular parallelepiped structure as they are.
そこで、 従来の建設方法より も更に製作の効率化を図るため、 種々調 查 '研究の結果、 請求項 1, 2, 3, 及ぴ 4に係る発明において、 工場 において、 先ず本発明に係る一体化直方体と柱を溶接接合して柱梁構造 物を製作し、 次に梁を仮組みするためのポルト締め用の穴を有する小板 を、 該柱直方体構造物の直方体の側面に溶接で取り付けたうえ、 該小板 付きの柱直方体構造物を建設現場へ運んで直立させた後、 梁の H形鋼ゥ エブを小板にボルト等で仮止めして柱直方体構造物と梁の仮組を行い、 最終的に直方体と梁とを溶接接合することを発明した。 Therefore, as a result of various studies, the inventions according to claims 1, 2, 3, and 4 have been carried out in order to further improve the production efficiency compared to the conventional construction method. Column and beam structure by welding and joining a rectangular parallelepiped and a column A small plate having a hole for port fastening for temporarily assembling a beam is attached to the side surface of the rectangular parallelepiped of the columnar rectangular structure by welding, and then the rectangular parallelepiped structure with the small plate is attached. To the construction site and erect it, and then temporarily attach the H-shaped steel beam of the beam to a small plate with bolts, etc. to temporarily assemble the columnar cuboid structure and the beam, and finally weld the cuboid and the beam Invented to join.
請求項 5に係る発明では、 発明の第 1の構成は、 ボルト締め用の穴を 有する小板を直方体の側面に溶接で取り付けることであり、 第 2の構成 は、 請求項 1、 2、 3、 又は 4に記載する一体化直方体と柱とを溶接接 合することであり、 第 3の構成は、 その後、 該小板と梁のウェブとをボ ルトで仮止めすることであり、 第 4の構成で、 該直方体と該梁とを溶接 接合させて、 鉄骨構造物を製作する方法である。 本発明の新規性は請求 項 1、 2、 3、 又は 4の新規性に加えて、 一体化直方体と柱との柱直方 体構造物を梁取付前に製作することであり、 ポルト締め用の穴を有する 小板を介して建設現場で柱直方体構造物と梁とを接合し、 鉄骨構造物を 製作することにある。 .  According to the invention according to claim 5, a first configuration of the invention is to attach a small plate having a hole for bolting to a side surface of a rectangular parallelepiped by welding, and a second configuration is configured by claims 1, 2, and 3. , Or 4 is to weld and join the integrated rectangular parallelepiped and the column, and a third configuration is to temporarily fix the small plate and the beam web with a bolt thereafter. The method according to the above, wherein the rectangular parallelepiped and the beam are welded to each other to produce a steel structure. The novelty of the present invention is that, in addition to the novelty of claims 1, 2, 3, or 4, a column rectangular parallelepiped structure of an integrated rectangular parallelepiped and a column is manufactured before beam attachment, and the It is to manufacture a steel frame structure by connecting a columnar cuboid structure and a beam at a construction site via a small plate having holes. .
すなわち、 本発明 (請求項 5に係る発明) は、 請求項 1、 2、 3、 又 は 4に記載する発明において、 ボルト締め用の穴を有する小板を直方体 の側面に溶接で取り付け、 該直方体と柱とを溶接接合した後、 鉄骨組立 において、 該小板と梁をポルトで仮止めし、 該直方体と該梁とを溶接接 合することを特徴とする鉄骨構造物の柱梁接合部一体化工法である。 次に、 請求項 6に係る発明について説明する。  That is, in the present invention (the invention according to claim 5), according to the invention described in claim 1, 2, 3, or 4, a small plate having a hole for bolting is attached to a side surface of a rectangular parallelepiped by welding. After welding the rectangular parallelepiped and the column, in the steel frame assembly, the small plate and the beam are temporarily fixed by a port, and the rectangular parallelepiped and the beam are welded and joined, wherein the column and the beam are joined. It is an integrated construction method. Next, the invention according to claim 6 will be described.
求項 1、 2、 3、 4、 又は 5に記載する発明の方法において、 直方 体及び柱の外形状は総て四角形のものであった。 しかし、 これらの発明 は、 直方体及び柱の外形状は四角形に限定されることはない。 該直方体 は四角形の場合、 柱が円筒形、 又は H形鋼のものにも適用できる。 一方 、 該直方体を円柱形に代えた場合、 柱が円筒形、 又は H形鋼のものにも 適用できる。 これらの場合、 発明の効果は該直方体及び該柱が角形鋼管 の場合と同様である。 また、 梁端の形状も該直方体側面形状に合わせて 加工し、 該直方体に溶接接合が容易に可能である。 また、 柱と梁の一体 化溶接も同様に容易に施工が可能である。 In the method of the invention described in claim 1, 2, 3, 4, or 5, the external shapes of the rectangular parallelepiped and the column are all rectangular. However, in these inventions, the outer shapes of the rectangular parallelepiped and the column are not limited to the square. When the rectangular parallelepiped is a quadrangle, the column can be applied to a cylinder or an H-shaped steel. On the other hand, when the rectangular parallelepiped is changed to a cylindrical shape, the present invention can also be applied to a column having a cylindrical shape or an H-shaped steel. In these cases, the effect of the invention is that the rectangular parallelepiped and the column are rectangular steel pipes. Is the same as Further, the shape of the beam end is also processed according to the shape of the side surface of the rectangular parallelepiped, so that the joint can be easily welded to the rectangular parallelepiped. Also, integrated welding of columns and beams can be easily performed in the same manner.
以上のように、 本発明では、 従来複雑で製作工数の掛かった溶接製サ ィコ口が圧延鋼、 鍛造鋼、 又は铸鋼により一体化され、 柱梁の結合点で あるサイコ口が単純化されて溶接作業量が半減され、 溶接残留応力 · 歪 みの軽減、 製作工数の軽減、 製作に伴う管理作業の軽減、 製作精度向上 などの効果が大きく認められた。 また、 従来、 柱とサイコロ及び梁とサ ィコロの溶接部が近接しながら別々の溶接を実施していたが、 本発明で は、 柱,梁接合部の各々の溶接部を一体化することにより、 該溶接部間 の溶接熱影響部の重なりによる脆化防止、 サイコロサイズの縮小化でサ ィコロ材料の節減、 製作工数の低減、 梁同士又は柱同士のサイズの異な つた柱梁接合部にも容易に適用できるようになった。  As described above, according to the present invention, the conventional siko mouth made of welded steel, which has been complicated and requires a lot of man-hours, is integrated with rolled steel, forged steel, or steel, and the shiko mouth, which is the connection point of the column and beam, is simplified. As a result, the amount of welding work was reduced by half, and the effects of reducing welding residual stress and distortion, reducing the number of manufacturing steps, reducing the management work involved in manufacturing, and improving manufacturing accuracy were greatly recognized. In the past, separate welding was performed while the welds between the column and the dice and between the beam and the dice were close to each other. However, in the present invention, the welds of the column and the beam joints are integrated to integrate the respective welds. Prevents embrittlement due to overlap of the weld heat affected zone between the welds, reduces dice size by reducing dice size, reduces manufacturing man-hours, and can be used for beam-to-column joints with different beams or columns. Now it can be easily applied.
請求項 1〜 4に係る各発明は、 サイコ口のサイズ■材料の形態により 上記の発明の効果を最大限に発揮させるものであり、 請求項 5に係る発 明は、 柱を梁よりも先に組み立てる場合に、 一体化サイコロ及ぴ一体化 溶接を用いて上記の効果を最大限に発揮させるものである。 ' 図面の簡単な説明  Each of the inventions according to claims 1 to 4 maximizes the effects of the above invention depending on the size of the psycho-mouth opening and the form of the material. When assembling, the above effects are maximized by using integrated dice and integrated welding. '' Brief description of the drawings
図 1は、 従来の建築鉄骨柱梁接合部の一例を示す斜視図である。  FIG. 1 is a perspective view showing an example of a conventional steel beam-column joint of a building.
図 2は、 従来の建築鉄骨柱梁接合部の角形鋼管 · ダイアフラム ■梁フ ランジ接合部を示す断面図である。  Fig. 2 is a cross-sectional view showing a conventional square steel pipe-diaphragm joint of a building steel column-beam joint.
図 3は、 部材端部に水冷又は被水冷の銅製当て金をあてがい、 肉盛溶 接をした状態を示す断面図である。  FIG. 3 is a cross-sectional view showing a state in which a water-cooled or water-cooled copper metal plate is applied to the end of the member, and a build-up welding is performed.
図 4は、 部材端部に水冷又は被水冷の突起付き銅製当て金をあてがい 、 肉盛溶接をした状態を示す断面図である。  FIG. 4 is a cross-sectional view showing a state in which a copper pad with a water-cooled or water-cooled projection is applied to the end of the member, and overlay welding is performed.
図 5は、 部材の端部に肉盛溶接し、 部材端部及び肉盛溶接部を共に開 先加工した状態を示す断面図である。 Fig. 5 shows the case where the build-up welding is performed on the end of the member, and the end of the member and the build-up weld are both opened. It is sectional drawing which shows the state which pre-processed.
図 6は、 部材の端部に肉盛溶接と開先加工をして継手の相手部材にあ てがい、 継手溶接を実施した状態を示す断面図である。  FIG. 6 is a cross-sectional view showing a state in which overlay welding and beveling have been performed on the ends of the member, the mating member has been applied, and joint welding has been performed.
図 7は、 補強板 2枚を取り付け、 中央軸心に貫通穴を設けたサイコロ を示す図である。  FIG. 7 is a diagram showing a dice having two reinforcing plates attached and a through hole provided in the center axis.
図 8は、 中実サイコ口に梁及び柱を接合した状態を示す斜視図である 図 9は、 中実サイコロに梁及び柱を接合した状態を示す斜視図である 図 1 0は、 中実サイコロに梁及び柱を接合した状態を示す断面図であ る。  FIG. 8 is a perspective view showing a state where a beam and a column are joined to a solid psycho mouth. FIG. 9 is a perspective view showing a state where a beam and a column are joined to a solid dice. FIG. It is sectional drawing which shows the state which joined the beam and the column to the dice.
図 1 1は、 中実サイコロに高さの低い梁を接合した状態を示す断面図 である。  FIG. 11 is a cross-sectional view showing a state in which a low-height beam is joined to a solid die.
図 1 2は、 鉛直方向に貫通した筒状の空間を設けた中実サイコロに梁 及び柱を接合した状態を示す斜視図である。  FIG. 12 is a perspective view showing a state in which beams and columns are joined to a solid die provided with a cylindrical space penetrating in the vertical direction.
図 1 3は、 鉛直方向に貫通した筒状の空間を設けた中実サイコロに梁 及び柱を接合した状態を示す断面図である。  FIG. 13 is a cross-sectional view showing a state in which beams and columns are joined to a solid die provided with a cylindrical space penetrating in the vertical direction.
図 1 4は、 厚板圧延鋼板から切り出される中実サイコ口を示す斜視図 である。  FIG. 14 is a perspective view showing a solid psycho opening cut out of a thick rolled steel plate.
図 1 5は、 圧延棒から切り出される中実サイコ口を示す斜視図である 図 1 6は、 中実直方体の上下の中間部を細く したサイコ口に梁及び柱 を接合した状態を示す斜視図である。  Fig. 15 is a perspective view showing a solid psychoportion cut out from a rolled bar. Fig. 16 is a perspective view showing a beam and a column joined to a psychoportion where the upper and lower middle portions of a solid rectangular parallelepiped are narrowed. It is.
図 1 7は、 中実直方体の上下の中間部を細く したサイコ口に梁及ぴ柱 を接合した状態を示す断面図である。  FIG. 17 is a cross-sectional view showing a state in which a beam and a pillar are joined to a psychoportion in which the upper and lower middle portions of a solid rectangular parallelepiped are made thinner.
図 1 8は、 圧延鋼板、 鍛鋼又は铸鋼により一体化したサイコ口に柱及 び梁を溶接接合し、 端部素材を残した場合の断面図である。 図 1 9は、 圧延鋼板、 鍛鋼又は铸鋼により一体化したサイコロに柱及 ぴ梁を従来の裏当金付きの従来溶接を実施し、 溶接部を一体化した場合 の断面図である。 Figure 18 is a cross-sectional view of a case where pillars and beams are welded and joined to a psycho-port integrated with a rolled steel plate, forged steel or steel, leaving the end material. Fig. 19 is a cross-sectional view of a case in which a column and a beam are subjected to conventional welding with a conventional backing metal on a die integrated with a rolled steel plate, forged steel or steel, and the welded portion is integrated.
図 2 0は、 圧延鋼板、 鍛鋼又は铸鋼により一体化したサイコロに、 柱 及び梁を溶接し、 サイコロ外表面と梁又は柱表面との間にずれがある場 合に、 継手溶接部を一体化した場合の断面図である。  Figure 20 shows a column and a beam welded to a rolled steel plate, a forged steel or a steel die, and if there is a gap between the outer surface of the die and the beam or the column surface, the joint weld is integrated. FIG. 4 is a cross-sectional view of the case where the structure is formed.
図 2 1は、 圧延鋼板、 鍛鋼又は錶鋼により一体化したサイコロに、 裏 面肉盛溶接を実施した柱及び梁を溶接し、 継手溶接部を一体化した場合 の断面図である。  FIG. 21 is a cross-sectional view of a case in which a column and a beam subjected to backfacing welding are welded to a die integrated with a rolled steel plate, a forged steel or a steel plate, and a joint welded portion is integrated.
図 2 2は、 圧延鋼板、 鍛鋼又は錄鋼により一体化したサイコロに、 裏 面肉盛溶接を実施した柱及び梁を溶接し、 サイコ口外表面と梁又は柱表 面との間にずれがある場合に、 継手溶接部を一体化した場合の断面図で ある。  Figure 22 shows a welded column and beam with backfacing welded to a rolled steel plate, forged steel or steel rolled dice, and there is a gap between the outer surface of the psycho opening and the beam or column surface FIG. 4 is a cross-sectional view of a case where a joint weld is integrated.
図 2 3は、 一体化したサイコ口中央にその軸心に沿って貫通穴を明け 、 梁を溶接接合した場合の中実幅と梁幅の関係を示す平面図である。 図 2 4は、 サイコ口の中央及ぴ側面に空間を明けて鎵鋼で製作したサ ィコ口の一例を示す図である。  FIG. 23 is a plan view showing the relationship between the solid width and the beam width in the case where a through hole is formed in the center of the integrated psychoportion along the axis thereof and the beam is welded and joined. FIG. 24 is a diagram illustrating an example of a siko mouth made of steel with a space left in the center and side surfaces of the shiko mouth.
図 2 5は、 一体化サイコ口の側面 ボルト締め用の穴を有する小板を 取り付けた外観図である。  Figure 25 is an external view of a side plate of the integrated psychoportion with a small plate with holes for bolts attached.
図 2 6は、 工場において小板を取り付けた一体化サイコロと柱とを溶 接し柱直方体構造物を製作する状況を示す斜視図である。  FIG. 26 is a perspective view showing a state in which an integrated die attached with a small plate and a column are welded at a factory to produce a columnar cuboid structure.
図 2 7は、 建設現場において柱直方体構造物と梁とをポルト接合を省 略して接合して建設した鉄骨構造物の外観図である。  Figure 27 is an external view of a steel frame structure constructed by joining a rectangular parallelepiped structure and a beam at a construction site by omitting Porto joining.
図 2 8は、 H形鋼梁同士を接合するボルト接合状態の斜視図である。 図 2 9は、 中実の一体化サイコロに、 柱及ぴ梁の溶接部を一体化させ て溶接接合した状態の仕口部断面図である。  FIG. 28 is a perspective view of a bolt-joined state in which H-shaped steel beams are joined to each other. FIG. 29 is a sectional view of a connection portion in a state where a welded portion of a column and a beam is welded and joined to a solid integrated die.
図 3 0は、 鉛直方向に貫通した筒状の空間を設けた中実サイコロに柱 及び梁を、 溶接部を一体化させて溶接接合した状態の仕口部断面図であ る。 Figure 30 shows a solid dice with a cylindrical space penetrating in the vertical direction. FIG. 4 is a sectional view of a connection part in a state where a weld and a beam are welded and joined together.
図 3 1は、 中間部を絞った中実の一体化サイコロに柱及び梁を、 溶接 部を一体化させて溶接接合した状態の仕口部断面図である。  Fig. 31 is a sectional view of a joint in a state in which a column and a beam are welded to a solid integrated die having a narrowed intermediate portion, and a welded portion is integrated and welded.
図 3 2は、 中央及び側面に空間を明けて鑤鋼で製作した一体化サイコ 口に柱及び梁を、 溶接部を一体化させて溶接接合した状態の仕口部断面 図である。  Figure 32 is a cross-sectional view of a joint in a state where pillars and beams are welded to an integrated psycho-opening made of steel with a space in the center and sides, and welded parts are integrated.
図 3 3は、 鉛直方向に貫通した筒状の空間を設けた直方体の側面部に 仮組用小板を取り付けて、 該直方体に柱を溶接した後、 該直方体に梁を 溶接接合し、 両溶接部を一体化させた状態の仕口部断面図である。  Fig. 33 shows that a temporary assembly plate is attached to the side surface of a rectangular parallelepiped with a cylindrical space penetrating in the vertical direction, and a column is welded to the rectangular parallelepiped. Then, a beam is welded and joined to the rectangular parallelepiped. It is a connection part sectional view in the state where a welding part was integrated.
図 3 4は、 傘折れしたダイアフラムを持つサイコロと梁フランジとが 目違いを起こした状態の仕口部断面図である。  FIG. 34 is a cross-sectional view of the joint in a state in which the dice having the umbrella broken diaphragm and the beam flange are misaligned.
図 3 5は、 円筒形 (円柱形) サイコロに梁を溶接接合した状態の斜視 図である。 発明を実施するための最良の形態  Figure 35 is a perspective view of a cylindrical (cylindrical) dice with a beam welded to it. BEST MODE FOR CARRYING OUT THE INVENTION
[実施例 1 ]  [Example 1]
請求項 1に係る発明の実施の形態について説明する。  An embodiment of the invention according to claim 1 will be described.
図 8は、 鋼製の中実直方体 2 3に梁 4及び柱 5をそれぞれ溶接接合 2 5, 2 1 した状態の斜視図であり、 請求項 1に係る発明は、 中実直方体 2 3の高さ 2 3 Aを該直方体 2 3に接合する梁の高さ 4 Aと同等にする と共に、 該直方体 2 3の上端及び下端の外形寸法 2 3 Bを該直方体 2 3 に接合する柱 5の外形寸法 5 Aと同等にして、 図 1 9又は図 2 1に示す ように、 該直方体 2 3に接合する柱 5 と梁 4のそれぞれの溶接部 2 4と 2 5が一体化するように、 該梁 4と該直方体側面及び該柱 5と該直方体 鉛直方向端面とを溶接接合させて鉄骨構造物を製作する方法である。  FIG. 8 is a perspective view of a state in which a beam 4 and a column 5 are welded to a solid cuboid 23 made of steel by welding 25 and 21, respectively. Height 23 A is equal to the height 4 A of the beam joined to the rectangular parallelepiped 23, and the outer dimensions 23 3 B of the upper end and lower end of the rectangular parallelepiped 23 are joined to the pillar 5 to be coupled to the rectangular solid 23. As shown in Fig. 19 or Fig. 21, as shown in Fig. 19 or Fig. 21, the joints 24 and 25 of the column 5 and the beam 4 to be joined to the rectangular parallelepiped 23 are integrated so that they are integrated. In this method, a beam 4 and the side surface of the rectangular parallelepiped and a column 5 and an end surface of the rectangular parallelepiped are welded to each other to produce a steel structure.
[実施例 2 ] 請求項 1に係る発明の実施の形態の別の例について説明する。 [Example 2] Another example of the embodiment of the invention according to claim 1 will be described.
図 9及び図 1 0は、 圧延鋼を熱加工又は機械加工することにより製作 する中実の直方体 2 3、 又は、 鍛造により製作する中実の直方体 2 3、 又は、 鏡造により製作する中実の直方体 2 3に、 H形鋼梁フランジ 4を 裏当金付きの従来方式で溶接 2 5をした後に、 該溶接 2 5に重ねて角形 鋼管を寸法切り した柱 5を溶接接合 2 4した一例を、 それぞれ斜視図及 び断面図で示したものである。 図 1 9は、 柱 5の溶接 2 4及び梁フラン ジ 4の溶接 2 5の重なり状態即ち溶接部の一体化状態を示す。 図 1 9か ら分かるよ う に、 柱 5の溶接熱影響部と梁 4の溶接熱影響部とはサイコ 口 (直方体) 2 3の外表面では重なっていない。 このような施工方法は 、 図 2 1に示すように、 柱 5の端部裏面に肉盛溶接 1 4したり、 梁 4の フランジ端部裏面及び側面に肉盛溶接 1 4 した後にそれぞれ継手溶接 2 4と 2 5をする場合にも適用できる。 このように、 柱及び梁端部の裏面 に肉盛溶接した後に、 本発明に係る施工を実施した場合の状況を断面図 で図 2 9に示す。  Figures 9 and 10 show solid cuboids 23 manufactured by hot working or machining of rolled steel, or solid cuboids 23 manufactured by forging, or solids manufactured by mirroring. H-shaped steel beam flange 4 is welded to a rectangular parallelepiped 23 by a conventional method with a backing metal 25, and then a column 5 that is superimposed on the weld 25 and a rectangular steel pipe is cut is welded 24. Are shown in a perspective view and a sectional view, respectively. FIG. 19 shows the overlapping state of the welding 24 of the column 5 and the welding 25 of the beam flange 4, that is, the integrated state of the welded portions. As can be seen from Fig. 19, the weld heat affected zone of the column 5 and the weld heat affected zone of the beam 4 do not overlap on the outer surface of the psycho-port (cuboid) 23. As shown in Fig. 21, such a construction method is performed by overlay welding 14 on the back surface of the end of column 5 or overlay welding 14 on the back surface and side surface of the flange end of beam 4 and then joint welding, respectively. It is also applicable when doing 24 and 25. FIG. 29 is a cross-sectional view showing a state where the work according to the present invention is performed after the overlay welding is performed on the back surface of the column and the end of the beam.
[実施例 3 ]  [Example 3]
請求項 1に係る発明の実施形態例として、 中実サイコ口に標準高さの 梁 3の他に、 高さの低い梁 3 Aを接合した断面図を図 1 1に示す。 図 1 1から分かるように、 高さの低い梁 3 Aをサイコロの任意の高さ位置に サイコロの強度上問題なく溶接接合出来るので、 建築鉄骨の設計及び施 ェの自由度が増加する。  As an example of the embodiment of the invention according to claim 1, FIG. 11 is a cross-sectional view in which a beam 3A having a small height and a beam 3A having a small height are joined to a solid psycho-opening. As can be seen from Fig. 11, the low beam 3A can be welded to any height of the dice without any problem on the strength of the dice, so that the degree of freedom in the design and application of the building steel frame increases.
[実施例 4 ]  [Example 4]
請求項 1に係る発明に関する実施形態の他の例として、 圧延鋼、 鍛鋼 又は铸銅により一体化したサイコロに、 柱及び梁を溶接し、 サイコロ外 表面と梁又は柱表面との間にずれがある場合に、 図 2 0及び図 2 2に示 すように、 梁接合の場合該ずれ a即ち 3 1は梁フランジの板厚の 2 5 % + 7 m m以下で、 柱接合の場合該ずれ b即ち 3 1 Aは柱板厚の 2 5 % + 7 m m以下が望ましい。 該ずれ a、 bがこれらの値以上になる場合は、 溶接部の一体化のため溶接部が大きくなりすぎて溶接残留応力が大きく なると共に溶着量が増加し製作コス ト増加の要因となる。 従って、 図 8 に示す直方体サイコ口の上下方向の全長 2 3 Aは、 該直方体 2 3に接合 する梁 3のせい即ち高さ 4 Aにフランジ板厚の 5 0 % + 1 4 m mを加え た長さ以下が望ましい。 また、 直方体サイコロの上端及び下端の外形寸 法即ちサイコ口の辺の長さ 2 3 Bは、 柱の辺の長さ 5 Aに柱板厚の 5 0 % + 1 4 m mを加えた長さ以下が望ましい。 このように、 柱や梁が既定 寸法であれば、 溶接部を一体化することにより、 該直方体の水平と垂直 の辺の長さを最小にできるので、 該直方体の製作コス トの低減と鉄骨構 造物の製作の容易性が増加する。 As another example of the embodiment of the invention according to claim 1, a column and a beam are welded to a rolled steel, a forged steel, or a copper die, and a gap between the outer surface of the die and the beam or the column surface is formed. In some cases, as shown in Fig. 20 and Fig. 22, in the case of beam connection, the deviation a, ie, 31 is less than 25% + 7 mm of the thickness of the beam flange, and in the case of column connection, the deviation b That is, 31 A is 25% of the column thickness + 7 mm or less is desirable. If the deviations a and b exceed these values, the welded portion becomes too large due to the integration of the welded portion, resulting in an increase in welding residual stress, an increase in the amount of welding, and an increase in manufacturing cost. Therefore, the vertical total length 23 A of the rectangular parallelepiped port shown in Fig. 8 is obtained by adding 50% of the flange plate thickness + 14 mm to the height 3 A of the beam 3 joined to the rectangular parallelepiped 23. Less than the length is desirable. In addition, the outer dimensions of the upper and lower ends of the rectangular parallelepiped die, that is, the length 23 B of the side of the die, is the length obtained by adding 50% of the column plate thickness + 14 mm to the length 5 A of the column side. The following is desirable. As described above, if the columns and beams have the predetermined dimensions, the length of the horizontal and vertical sides of the rectangular parallelepiped can be minimized by integrating the welded portions, thereby reducing the manufacturing cost of the rectangular parallelepiped and reducing the steel frame. Ease of fabrication of the structure is increased.
[実施例 5 ]  [Example 5]
更に、 請求項 1に係る発明に関する実施形態の他の例として、 圧延鋼 から中実の直方体を取り出す方法として、 図 1 4に示す厚板の圧延鋼板 から切断線 2 8に従いガス切断、 レーザ切断、 鋸切断が可能である。 ま た、 図 1 5に示すように、 中実の直方体は、 圧延により長い棒又は帯を 製作し切断線 2 8に従いガス切断、 レーザ切断、 鋸切断、 等により切断 することによつても得られる。 このようにすれば、 直方体サイコロは圧 延鋼から大量生産で容易に安価に入手できる。  Further, as another example of the embodiment of the invention according to claim 1, as a method of extracting a solid rectangular parallelepiped from rolled steel, gas cutting and laser cutting from a thick rolled steel sheet shown in FIG. Saw cutting is possible. In addition, as shown in Fig. 15, a solid rectangular parallelepiped can also be obtained by manufacturing a long rod or band by rolling and cutting it by gas cutting, laser cutting, saw cutting, etc. according to cutting line 28. Can be In this way, cuboid dice can be easily and inexpensively obtained from rolled steel by mass production.
[実施例 6 ]  [Example 6]
また、 請求項 1に係る発明に関する実施形態として、 該直方体は圧延 鋼から採取した直方体から鍛造により所定の形状に成型した鍛鋼からも 得られる。  Further, as an embodiment of the invention according to claim 1, the rectangular parallelepiped is obtained from forged steel formed into a predetermined shape by forging a rectangular parallelepiped taken from rolled steel.
[実施例 7 ]  [Example 7]
請求項 2に係る発明の実施の形態について説明する。  An embodiment of the invention according to claim 2 will be described.
図 1 2に、 中心軸位置で鉛直方向に貫通した筒状の空間 2 6を設けた 中実サイコロ 2 3に梁 3及び柱 5を接合した状態の斜視図を示す。 図 1 2においては、 サイコロ 2 3を、 圧延鋼を熱加工又は機械加工すること により製作する中実の直方体、 又は、 鍛造により製作する中実の直方体 、 又は、 铸造により製作する中実の直方体とし、 該直方体の上下方向の 全長 2 3 Aを該直方体に接合する梁の高さ 4 Aと同等にすると共に、 該 直方体 2 3の上端及び下端の外形寸法即ち辺の長さ 2 3 Bを該直方体 2 3に接合する柱 5の外形寸法即ち辺の長さ 5 Aと同等にして、 該直方体 2 3の鉛直中心軸に鉛直方向に貫通する筒状の空間 2 6を設けて、 更に 、 図 2 3に示すように、 該直方体 2 3の上端面又は下端面の中実部分断 面最小幅 c, dがそれぞれ梁フランジ幅 eの 2 5 %以上、 即ち c ≥ 0 . 2 5 e、 d ≥ 0 . 2 5 eにして、 図 1 9及び図 2 0に示すように、 該直 方体 2 3に接合する粱フランジ 4と柱 5の溶接部が重なるようにし、 該 梁フランジ 4と該直方体側面及び該柱 5 と該直方体上下端を溶接接合さ せて、 図 1 3に示す鉄骨構造物を製作する方法である。 同様に、 図 2 1 及び図 2 2に示すように、 柱端部裏面に肉盛溶接した場合及び梁フラン ジ端部裏面と側面に肉盛溶接した場合は、 該直方体 2 3に接合する梁と 柱の溶接部が重なるようにし、 該梁と該直方体側面及び該柱と該直方体 上下端を溶接接合させて図 3 0に示す鉄骨構造物を製作する方法である [実施例 8 ] FIG. 12 is a perspective view showing a state in which the beam 3 and the column 5 are joined to a solid die 23 provided with a cylindrical space 26 penetrating in the vertical direction at the center axis position. Figure 1 In 2, the dice 23 shall be a solid cuboid manufactured by hot working or machining of rolled steel, a solid cuboid manufactured by forging, or a solid cuboid manufactured by forging, The vertical overall length 23 A of the rectangular parallelepiped is made equal to the height 4 A of the beam to be joined to the rectangular parallelepiped, and the outer dimensions of the upper end and the lower end of the rectangular parallelepiped 23, that is, the side length 23 B is defined as the rectangular parallelepiped. A cylindrical space 26 penetrating in the vertical direction is provided on the vertical center axis of the rectangular parallelepiped 23, having the same external dimensions as the column 5, that is, the length of the side 5A. As shown in Fig. 3, the minimum widths c and d of the solid section at the upper end face or the lower end face of the rectangular parallelepiped 23 are respectively 25% or more of the beam flange width e, that is, c ≥ 0.25 e, d ≥ As shown in FIGS. 19 and 20, the weld between the beam flange 4 and the column 5 joined to the rectangular parallelepiped 23 is set to 0.25 e. In this method, the beam flange 4 and the side surface of the rectangular parallelepiped and the column 5 and the upper and lower ends of the rectangular parallelepiped are welded to each other so as to form a steel structure shown in FIG. Similarly, as shown in Figs. 21 and 22, when the weld is welded to the back of the column end and when the weld is welded to the back and side of the end of the beam flange, the beam joined to the rectangular parallelepiped 23 is formed. This is a method of manufacturing a steel structure shown in FIG. 30 by making the welded portions of a beam and a column overlap, and welding and joining the beam and the side surface of the rectangular parallelepiped, and the column and the upper and lower ends of the rectangular parallelepiped [Eighth Embodiment]
請求項 2に係る発明に関する実施形態の他の例について説明する。 図 1 3における上下に貫通する空間は、 柱状の形状を円形だけでなく 、 楕円や多角形等にすることもできる。 また、 柱状のものを中膨れにし て、 サイコロの体積及ぴ重量を更に削減させることもできる。 また、 こ れらの柱状の空間は、 コンクリート等の柱内への充填に使用できること は自明のことである。  Another example of the embodiment of the invention according to claim 2 will be described. In the space vertically penetrating in FIG. 13, the columnar shape can be not only circular but also elliptical or polygonal. Further, the volume and weight of the dice can be further reduced by making the pillar-shaped one into a medium bulge. It is self-evident that these columnar spaces can be used to fill concrete and other columns.
[実施例 9 ]  [Example 9]
請求項 3に係る発明の実施の形態について説明する。  An embodiment of the invention according to claim 3 will be described.
図 1 6及び図 1 7にそれぞれ、 該中実直方体 2 3の鉛直方向中間部 3 0を上下部よりも細く した中実サイコロ 2 3に、 梁 3及び柱 5を裏当金 1 0を使用して溶接接合した状態の斜視図及び断面図を示す。 本発明に 係る方法では、 図 1 6及び図 1 7において、 サイコロ 2 3を、 圧延鋼を 熱加工又は機械加工することにより製作する中実の直方体、 又は、 鍛造 により製作する中実の直方体、 又は、 鎵造により製作する中実の直方体 とし、 該直方体 2 3の上下方向の全長 2 3 Aを該直方体 2 3に接合する 梁の高さ 4 Aと同等にすると共に、 該直方体 2 3の上端及び下端の外形 寸法即ち辺の長さ 2 3 Bを該直方体 2 3に接合する柱 5の外形寸法即ち 辺の長さ 5 Aと同等にして、 中実直方体 2 3の鉛直方向中間部 3 0を上 下部よりも細く して、 該中間部 3 0の断面 2次モーメントを該中実直方 体 2 3に接合する上部柱 5又は下部柱 5の断面 2次モーメン ト以上にな るようにして、 更に、 図 1 9又は図 2 0に示すように、 該直方体 2 3に 接合する梁フランジ 4と柱 5の溶接部が重なるように一体化させて鉄骨 構造物を製作する。 同様に、 図 3 1に示すように、 柱端部裏面に肉盛溶 接 1 4した場合及び梁フランジ端部 4の裏面と側面に肉盛溶接 1 4 した 場合も、 本発明に係る,方法が適用できる。 このように、 肉盛溶接した場 合は、 溶接部の断面積が増大するので、 一体化溶接部の強度が更に向上 するという利点がある。 なお、 梁フランジ 4の裏面と側面への肉盛の有 無に拘わらす、 梁フランジ 4をサイコロ 2 3に溶接で取り付ける場合、 溶接 2 5の実施前にウェブ 9を直方体 2 3 と溶接接合又はポルト接合す ることは、 柱梁組立を容易にする。 FIGS. 16 and 17 respectively show the middle part 3 in the vertical direction of the solid rectangular solid 23. A perspective view and a cross-sectional view of a state where a beam 3 and a column 5 are welded and joined using a backing metal 10 to a solid die 23 in which 0 is thinner than the upper and lower portions are shown. In the method according to the present invention, in FIGS. 16 and 17, the dice 23 are solid cuboids manufactured by hot working or machining of rolled steel, or solid cuboids manufactured by forging, Or, it is a solid cuboid manufactured by construction, and the total length 23 A in the vertical direction of the cuboid 23 is made equal to the height 4 A of the beam to be joined to the cuboid 23, and the cuboid 23 is formed. The outer dimension of the upper end and the lower end, that is, the length of the side 23 B, is equal to the outer dimension of the column 5 that joins the rectangular parallelepiped 23, that is, the length of the side 5 A, and the vertical middle part 3 of the solid rectangular parallelepiped 23 0 is made thinner than the upper and lower parts so that the second moment of area of the intermediate part 30 is greater than or equal to the second moment of cross section of the upper column 5 or the lower column 5 joined to the solid rectangular solid 23. Further, as shown in FIG. 19 or FIG. 20, the beam flange 4 and the column 5 to be joined to the rectangular parallelepiped 23 are melted. Parts are integrated so that overlap each other to produce a steel structure product. Similarly, as shown in FIG. 31, the method according to the present invention also applies to the case where the build-up welding 14 is performed on the back surface of the column end and the case where the build-up welding 14 is performed on the back surface and the side surface of the beam flange end 4. Can be applied. As described above, in the case of overlay welding, since the cross-sectional area of the weld increases, there is an advantage that the strength of the integrated weld is further improved. If the beam flange 4 is attached to the dice 23 by welding, regardless of the presence or absence of overlay on the back and side surfaces of the beam flange 4, the web 9 is welded to the rectangular parallelepiped 23 before welding 25. Porto joining facilitates beam-column assembly.
[実施例 1 0 ]  [Example 10]
請求項 4に係る発明に関する実施形態について説明する。  An embodiment of the invention according to claim 4 will be described.
図 2 4に、 錄鋼製サイコロ (直方体) 3 6の上下部中央及び側面に空 間を明けて鐯鋼で製作したサイコロの一例を示す。 図 2 4において、 铸 造により製作する直方体 3 6の鉛直中心軸に上下鉛直方向に貫通した空 間 2 6を設けて、 図 2 3に示すように、 該直方体 2 3の上端面又は下端 面の中実部分断面最小幅 c又は dがそれぞれ接合する梁フランジ幅 eの 2 5 °/0以上になるようにして、 図 2 4の該直方体 3 6の側面部に水平方 向に貫通した空間 3 7 Aを設けて、 該直方体中間部 3 7の断面 2次モー メントを該直方体 3 6に接合する上部柱又は下部柱の断面 2次モーメン ト以上になるように該直方体 3 6を製作し、 該直方体 3 6の上下方向の 全長を該直方体に接合する梁の高さと同等にすると共に、 該直方体の上 端及ぴ下端の外形寸法即ち水平辺の長さを該直方体に接合する柱の外形 寸法即ち水平辺の長さと同等にして、 図 1 9及び図 2 0に示すように該 直方体 2 3に接合する梁フランジ 4と柱 5の溶接部を重ねて一体化する ようにすることからなっており、 本発明はこれらの構成により、 該梁フ ランジ 4と該直方体 3 6の側面、 及び該 tt 5 と該直方体上下端を溶接接 合させて鉄骨構造物を製作する方法である。 同様に、 図 3 2に示すよう に、 柱端部裏面に肉盛溶接 1 4した場合及び梁フランジ端部 4の裏面と 側面に肉盛溶接 1 4した場合にも、 本発明に係る方法が適用できる。 な お、 図 3 2で、 梁フランジ 4の裏面と側面への肉盛の有無に拘わらす、 梁フランジ 4をサイコロ 2 3に溶接で取り付ける場合、 溶接 2 5の実施 前にウェブ 9を直方体 2 3又は 3 6 と溶接接合又はボルト接合すること は、 柱梁組立を容易にする。 Fig. 24 shows an example of a die made of steel with a space between the upper and lower centers and side surfaces of a steel die (cuboid) 36. In FIG. 24, a space 26 penetrating in the vertical direction is provided in the vertical center axis of the rectangular parallelepiped 36 manufactured by the structure, and as shown in FIG. 23, the upper end face or the lower end of the rectangular parallelepiped 23 is formed. The solid part cross-section minimum width c or d of the surface was more than 25 ° / 0 of the beam flange width e to be joined, respectively, and penetrated horizontally into the side surface of the rectangular parallelepiped 36 in FIG. 24. A space 37A is provided, and the rectangular parallelepiped 36 is manufactured so that the cross-sectional secondary moment of the rectangular parallelepiped intermediate portion 37 is equal to or larger than the cross-sectional secondary moment of the upper or lower pillar joining the rectangular parallelepiped 36. The vertical length of the rectangular parallelepiped 36 is made equal to the height of the beam joined to the rectangular parallelepiped, and the outer dimensions of the upper and lower ends of the rectangular parallelepiped, that is, the lengths of the horizontal sides, are joined to the rectangular parallelepiped. And the welded portion of the beam flange 4 and the column 5 to be joined to the rectangular parallelepiped 23 are overlapped and integrated as shown in Fig. 19 and Fig. 20. According to the present invention, the beam flange 4 and the side surfaces of the rectangular parallelepiped 36 have the above configurations, and tt 5 and the rectangular upper and lower ends is engaged welding contact is a method of fabricating a steel structure. Similarly, as shown in FIG. 32, the method according to the present invention is also applicable to the case where the build-up welding 14 is performed on the back surface of the column end and the case where the build-up welding 14 is performed on the back surface and the side surface of the end portion 4 of the beam flange. Applicable. In Figure 32, when welding the beam flange 4 to the dice 23, regardless of the presence or absence of overlaying on the back and side surfaces of the beam flange 4, the web 9 is laid in a rectangular parallelepiped 2 before welding 25 is performed. Welding or bolting with 3 or 36 facilitates beam-column assembly.
[実施例 1 1 ]  [Example 11]
請求項 5に係る発明に関する実施形態について説明する。  An embodiment of the invention according to claim 5 will be described.
工場において、 図 2 5に示すように、 先ず梁を仮組みするためのボル ト締め用の穴 3 9を有する小板 3 8を直方体 2 3に溶接で取り付け、 図 2 6に示すように、 本発明に係る一体化直方体 2 3 と柱 5を溶接接合 2 4 して柱直方体構造物 4 4を製作し、 該小板 3 8付きの柱直方体構造物 4 4を建設現場へ運んで、 図 2 7に示すように直立させた後、 図 3 3に 示すように梁の H形鋼ウェブ 9を小板 3 8にボルト 4 0等で仮止めして 柱直方体構造物 4 4と H形鋼梁 3の仮組を行い、 最終的に直方体 2 3 と 梁 3 とを溶接接合し、 図 2 7に示すように鉄骨構造物を逢設する。 なお 、 ボルト締め用の穴 3 9を有する小板 3 8を直方体 2 3の側面に溶接で 取り付ける工程と、 該直方体 2 3 と柱 5 とを溶接接合する工程はどちら が先でも良い。 At the factory, as shown in Fig. 25, first, a small plate 38 having a bolt fastening hole 39 for temporarily assembling the beam is attached to the rectangular parallelepiped 23 by welding, and as shown in Fig. 26, The integrated rectangular parallelepiped 23 according to the present invention and the column 5 are welded and joined 24 to produce a column rectangular parallelepiped structure 44, and the column rectangular parallelepiped structure 44 with the small plates 38 is transported to a construction site. After standing upright as shown in Fig. 7, the beam H-shaped steel web 9 of the beam is temporarily fixed to the small plate 38 with bolts 40 etc. as shown in Fig. 33. A temporary assembly of beam 3 was performed, and finally a rectangular parallelepiped 2 3 Beam 3 is welded, and a steel structure is installed as shown in Figure 27. Either the step of attaching the small plate 38 having the bolt holes 39 to the side surface of the rectangular parallelepiped 23 by welding or the step of welding and joining the rectangular parallelepiped 23 to the column 5 may be performed first.
[実施例 1 2 ]  [Example 12]
請求項 6に係る発明に関する実施形態について説明する。  An embodiment of the invention according to claim 6 will be described.
図 3 5は、 一体化サイコロ 2 3を円柱形にして鉛直中心軸方向に円柱 状の空間 2 6を設けた場合を一例として示す。 梁フランジ 4と一体化サ ィコロ 2 3の溶接部は、 図 1 9, 2 0、 2 1又は 2 2に示すように一体 化されている。 産業上の利用可能性  FIG. 35 shows, as an example, a case where the integrated dice 23 is formed in a columnar shape and a columnar space 26 is provided in the vertical central axis direction. The welds between the beam flange 4 and the integrated dice 23 are integrated as shown in FIGS. 19, 20, 21 or 22. Industrial applicability
以上のよ.うに、 本発明に係る鉄骨構造物の柱梁接合部一体化工法は、 建築鉄骨構造物の製作に広く適用できる。  As described above, the method of integrating a beam-column joint of a steel structure according to the present invention can be widely applied to the manufacture of a building steel structure.

Claims

請 求 の 範 囲 The scope of the claims
1 . 建築鉄骨構造物において、 鋼製の中実直方体の高さを該直方体に 接合する梁の高さと同等にすると共に、 該直方体の上端及び下端の外形 寸法を該直方体に接合する柱の外形寸法と同等にして、 該直方体に接合 する梁と柱の溶接部が一体化するように、 該梁と該直方体側面及び該柱 と該直方体鉛直方向端面とを溶接接合させて鉄骨構造物を製作する方法 1. In a building steel structure, the height of the solid rectangular parallelepiped made of steel is made equal to the height of the beam to be joined to the rectangular parallelepiped, and the outer dimensions of the upper and lower ends of the rectangular parallelepiped are the outer dimensions of the columns to be joined to the rectangular parallelepiped. The beam is welded to the side of the rectangular parallelepiped and the column and the vertical end face of the rectangular parallelepiped so that the welded portion of the beam and the column to be joined to the rectangular parallelepiped are integrated so as to have the same dimensions, thereby producing a steel structure. how to
2 . 請求項 1に記載の発明において、 該直方体の鉛直中心軸に沿い鉛 直方向に貫通する空間を該直方体に設けて、 該直方体の上端面又は下端 面の中実部分断面最小幅がそれぞれ梁フランジ幅の 2 5 %以上、 又は該 直方体の一辺の 2 5 %以上になるようにして、 鉄骨構造物を製作する方 法。 2. In the invention according to claim 1, a space that penetrates in the vertical direction along the vertical center axis of the rectangular parallelepiped is provided in the rectangular parallelepiped, and a minimum width of a solid part cross-section of an upper end surface or a lower end surface of the rectangular parallelepiped is respectively set. A method of manufacturing a steel structure so that it is at least 25% of the beam flange width or at least 25% of one side of the rectangular parallelepiped.
3 . 請求項 1に記載の発明において、 該中実直方体の鉛直方向中間部 を上下部よりも細く且つ該中間部の断面 2次モーメントを該中実直方体 に接合する上部柱又は下部柱の断面 2次モーメン ト以上になるように該 直方体を製作することを特徴とする鉄骨構造物を製作する方法。  3. In the invention according to claim 1, a cross section of an upper column or a lower column that has a vertical intermediate portion of the solid rectangular parallelepiped thinner than the upper and lower portions and a cross section of the intermediate portion that joins a second moment to the solid rectangular parallelepiped. A method for manufacturing a steel structure, wherein the rectangular parallelepiped is manufactured so as to have a second moment or more.
4 . 請求項 1に記載の発明において、 鎳造により製作する直方体の鉛 直中心軸に上下鉛直方向に貫通した空間を設けて、 該直方体の上端面又 は下端面の中実部分断面最小幅がそれぞれ梁フランジ幅の 2 5 %以上、 又は該直方体の一辺の 2 5 %以上になるようにすると共に、 該直方体の 側面部に水平方向に貫通した空間を設けて、 該直方体中間部の断面 2次 モーメ ン トを該直方体に接合する上部柱又は下部柱の断面 2次モーメン ト以上になるように該直方体を製作したうえ、 該梁と該直方体側面及び 該柱と該直方体鉛直方向端面とをそれぞれ溶接が一体化するように溶接 接合させて鉄骨構造物を製作する方法。  4. The invention according to claim 1, wherein a space is provided in the vertical center axis of the rectangular parallelepiped manufactured by the structure so as to penetrate vertically and vertically, and a minimum width of a solid part cross section of an upper end face or a lower end face of the rectangular parallelepiped is provided. Is not less than 25% of the beam flange width or not less than 25% of one side of the rectangular parallelepiped, and a space penetrating in the horizontal direction is provided on the side surface of the rectangular parallelepiped. The rectangular parallelepiped is manufactured so that the cross section of the upper column or the lower column connecting the secondary moment to the rectangular parallelepiped is equal to or more than the secondary moment, and the beam, the rectangular parallelepiped side surface and the column, and the rectangular parallelepiped vertical end surface are formed. Is a method of manufacturing a steel frame structure by welding and joining them so that the welds are integrated.
5 . 請求項 1、 2、 3又は 4に記載の発明において、 ボルト締め用の 穴を有する小板を直方体の側面に溶接で取り付け、 該直方体と柱とを溶 接接合した後、 鉄骨組立において、 該小板と梁をポルトで仮止めし、 該 直方体と該梁とを溶接接合させて鉄骨構造物を製作する方法。 5. In the invention as set forth in claim 1, 2, 3 or 4, After attaching a small plate having holes to the side surface of the rectangular parallelepiped by welding and welding and joining the rectangular parallelepiped and the column, in the steel frame assembly, the small plate and the beam are temporarily fixed with a port, and the rectangular parallelepiped and the beam are welded. A method of manufacturing a steel structure by joining.
6 . 請求項 1、 2、 3、 4又は 5に記載する発明において、 直方体は 角形又は円柱形とし、 柱は角形、 円筒形又は H形鋼であることを特徴と する鉄骨構造物を製作する方法。  6. In the invention described in claim 1, 2, 3, 4, or 5, a steel structure is manufactured in which the rectangular parallelepiped is a square or a cylinder, and the column is a square, a cylinder, or an H-shaped steel. Method.
PCT/JP2003/002329 2002-02-28 2003-02-28 Column-to-beam connection part integration work method for structural steelwork WO2003072885A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-52860 2002-02-28
JP2002052860A JP3676310B2 (en) 2002-02-28 2002-02-28 Integration method for steel beam-column joints

Publications (1)

Publication Number Publication Date
WO2003072885A1 true WO2003072885A1 (en) 2003-09-04

Family

ID=27764345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/002329 WO2003072885A1 (en) 2002-02-28 2003-02-28 Column-to-beam connection part integration work method for structural steelwork

Country Status (2)

Country Link
JP (1) JP3676310B2 (en)
WO (1) WO2003072885A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2333019T3 (en) * 2003-09-14 2010-02-16 Conxtech, Inc. ROTATION PROCEDURE FOR THE WELDING OF A CROSSBODY STRUCTURE BY THE SIDE (S) OF A COLUMN.
JP4861640B2 (en) * 2005-05-24 2012-01-25 株式会社アークリエイト How to make a steel structure
US8950648B2 (en) 2011-05-07 2015-02-10 Conxtech, Inc. Box column assembly
JP7314153B2 (en) 2017-11-11 2023-07-25 コンクステック,インコーポレーテッド Method and Apparatus for Precision Manufacturing of Moment Link Assemblies

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225438A (en) * 1985-03-29 1986-10-07 清水建設株式会社 Joint of pillar and beam
JPH03194041A (en) * 1989-12-22 1991-08-23 Takenaka Komuten Co Ltd Steelwork structure and steel frame pillar
JPH07216999A (en) * 1994-02-08 1995-08-15 Maeda Corp Method for joining steel framed structure
JPH11336189A (en) * 1998-03-26 1999-12-07 Nippon Steel Metal Prod Co Ltd Column core with bulge section and steel structural unit utilizing column core

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225438A (en) * 1985-03-29 1986-10-07 清水建設株式会社 Joint of pillar and beam
JPH03194041A (en) * 1989-12-22 1991-08-23 Takenaka Komuten Co Ltd Steelwork structure and steel frame pillar
JPH07216999A (en) * 1994-02-08 1995-08-15 Maeda Corp Method for joining steel framed structure
JPH11336189A (en) * 1998-03-26 1999-12-07 Nippon Steel Metal Prod Co Ltd Column core with bulge section and steel structural unit utilizing column core

Also Published As

Publication number Publication date
JP2003253758A (en) 2003-09-10
JP3676310B2 (en) 2005-07-27

Similar Documents

Publication Publication Date Title
JP5401018B2 (en) Steel structure truss frame
JP6861425B2 (en) H-section steel joint structure
JP3849554B2 (en) Beam-column joint structure
JP2002146921A (en) Steel pipe structure
WO2003072885A1 (en) Column-to-beam connection part integration work method for structural steelwork
JP4052479B2 (en) Steel structure column / beam joint structure
JP3987470B2 (en) Integration method for steel beam-column joints
JP6645328B2 (en) Joint structure of H-section steel and H-section steel used therefor
JP4398782B2 (en) Manufacturing method of building steel structure
JP4091870B2 (en) Column / beam joint structure with floor slab composition function
JP6353647B2 (en) Seismic isolation device joint structure
JP3346364B2 (en) Beam-column joint structure
JP3956744B2 (en) STRUCTURE CONTAINING JOIN OF PILLAR AND BEAM, ITS JOINING METHOD, AND STRUCTURE MANUFACTURING METHOD
WO2005078201A1 (en) Column-to-beam joint part of steel structure and internal diaphragm direct jointing method
JP2575179B2 (en) Column and beam joint structure
JP3317057B2 (en) Construction method of earthquake-resistant tube frame and frame structure of high-rise office building
JP4011499B2 (en) Joint structure of steel column and steel beam
JP4045502B2 (en) Structure
JP2601105B2 (en) Steel member joint hardware
JP7127921B1 (en) building unit
JPH0788686B2 (en) Front cross beam method
JPH11280147A (en) Earthquake resisting type column and beam joint construction
JP3010003B2 (en) Connection structure of columns and beams in steel structure
JP2008297832A (en) Reinforcement structure of base-isolated building
JPH0967861A (en) Joining structure between closed cross sectional square steel pipe column and beam material

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US