JP3676310B2 - Integration method for steel beam-column joints - Google Patents

Integration method for steel beam-column joints Download PDF

Info

Publication number
JP3676310B2
JP3676310B2 JP2002052860A JP2002052860A JP3676310B2 JP 3676310 B2 JP3676310 B2 JP 3676310B2 JP 2002052860 A JP2002052860 A JP 2002052860A JP 2002052860 A JP2002052860 A JP 2002052860A JP 3676310 B2 JP3676310 B2 JP 3676310B2
Authority
JP
Japan
Prior art keywords
rectangular parallelepiped
column
dice
welding
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002052860A
Other languages
Japanese (ja)
Other versions
JP2003253758A (en
Inventor
昌克 内田
俊二 岩郷
忠男 中込
Original Assignee
昌克 内田
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昌克 内田 filed Critical 昌克 内田
Priority to JP2002052860A priority Critical patent/JP3676310B2/en
Priority to PCT/JP2003/002329 priority patent/WO2003072885A1/en
Publication of JP2003253758A publication Critical patent/JP2003253758A/en
Application granted granted Critical
Publication of JP3676310B2 publication Critical patent/JP3676310B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2406Connection nodes
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2448Connections between open section profiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2451Connections between closed section profiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2454Connections between open and closed section profiles
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/24Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of metal
    • E04B1/2403Connection details of the elongated load-supporting parts
    • E04B2001/2457Beam to beam connections

Description

【0001】
【発明の属する技術分野】
本発明は、建築鉄骨構造物の柱梁接合部において、サイコロ部分を薄鋼板等の部品から溶接により組み立てることなく、厚板圧延鋼板・鍛鋼・鋳鋼により一体化して建築鉄骨構造物を製作する技術の方法に関するものである。
【0002】
【従来の技術】
従来の技術では、建築鉄骨構造物の柱梁接合部は図1に示すように、薄鋼板によるダイアフラム1と短い角形鋼管2との間で溶接6を施すことによりサイコロを形成させ、このサイコロとH形鋼梁フランジ4を溶接接合7し、更に、該サイコロと角形鋼管柱5とを溶接接合して構成する事が多い。この従来の技術では、図2に示すように、サイコロの角形鋼管2とダイアフラム1との溶接6及びサイコロのダイアフラム1とH形鋼フランジ4の溶接7は裏当金10を用いて片側溶接で実施されている。このダイアフラム1と梁フランジ4との従来溶接方法では、フランジ4の接合予定端部の開先加工をしてから、裏当金10の製作及び裏当金取付の仮付溶接8を行い、本溶接7を実施している。また、ダイアフラム1と角形鋼管2又は5との溶接も角形鋼管2又は5の接合予定端部の開先加工をしてから、裏当金10の製作及び裏当金取付の仮付溶接8を行いダイアフラム1と角形鋼管2又は5との本溶接6を実施している。
【0003】
更に、図3の一例に示すように、溶接継手部材13端部の裏面に非消耗式銅当金12をあてがい肉盛溶接14を行った後、開先加工を13Cの位置で肉盛部14を含めて開先加工して、図5のように部材13と肉盛部14を含めた開先15を得て、図6に示すように、消耗式の裏当金や裏当材を用いず、部材16と13を片側から溶接施工する片側溶接方法で継手溶接17をし、溶接継手部材端部の部材の板厚18を超えるのど厚19を獲得する技術の方法がある。
【0004】
また、図4の一例に示すように、溶接継手部材13端部の裏面に突起12Pを付けた非消耗式銅当金12をあてがい肉盛溶接14を行った後、開先加工を13Cの位置で部材13の端部のみを開先加工を行い、図5のように部材13と肉盛部14を含めた開先15を得て、図6に示すように、消耗式の裏当金や裏当材を用いず、部材16と13を片側から溶接施工する片側溶接方法で継手溶接17をし、溶接継手部材端部の部材の板厚18を超えるのど厚19を獲得する技術の方法がある。
【0005】
一方、図7に示すように、鋳鋼により一体化されコンクリート充填孔21及び補助板22を有する筒体本体即ちサイコロ20が特願平10―312771に提案されている。
【0006】
【発明が解決しようとする課題】
従来の建築鉄骨柱梁接合部では、殆どが図1で示すサイコロで製作されており、図1では、ダイアフラム1・角形鋼管2・裏当金10・エンドタブ等部材が多く、溶接6は角形鋼管2の周囲に一周しており溶接量が多い。そのため、部品製作コストが掛かると共に、サイコロ製作後図34に示すようにダイアフラムが折れ曲がり、いわゆる傘折れ現象が起きて、ダイアフラムと梁フランジとの間で目違いが起こりやすいと言う問題がある。また、裏当金10を角形鋼管2の端部内周に取付け仮付溶接8を行うのは手間とコストが掛かる。また、角形鋼管2とダイアフラム1の溶接6を全周に亘って行うため、溶接量が多いので溶接残留応力が大きくなるだけでなく、裏当金10を用いると部材4,5との間で切り欠きが出来て応力集中が発生し、強度を弱める結果となる。
【0007】
また、図7で示すように、従来の鋳鋼で一体成型したサイコロ20は、従来の溶接構造の図1と比較し、比較的簡単な構造であり、構造耐力が向上するという利点がある。しかし、この図7に示す構造は補強板22を上下に2枚、一体に合計4枚の補強板22が必要で、且つ補強板22によって形成される空間22Aは内部で広がっており、1体に3ヶの空間を必要としている。このような空間22Aは鋳造時に複雑な中子を必要とし、中子製造工数及び鋳造工数の増大をもたらしコスト増加の要因となる。また、図7に置いて、サイコロに接合される梁のせい即ち高さがサイコロのせい即ち高さよりも一段と低い場合に、内部補強板の水平位置と梁フランジの水平位置が一致するようにセットされるが、この内部補強板の水平位置は梁の高さを考慮して製作する必要があり、梁高さが種々ある場合は製作が困難で且つ梁高さが限定される。内部補強板が省略又は一面の角部にリブとして変更する場合も同様の問題が存在する。
【0008】
更に、一般に溶接熱影響部は脆化し易いという事があり、従来、2つの溶接部が近接する場合、両溶接部による熱影響部が重なって脆化が更に促進されないように、両溶接部は該熱影響部が重ならないように遠ざけるようにするのが通例である。特に、両溶接部による溶接熱影響が重なった部分が外面に露出すると問題である。特願平10―312771では溶接部の近接について記述はないが、図18に示すように柱5と一体化サイコロ23との溶接部24が、梁4と一体化サイコロ23との溶接部25に近接し両溶接部に挟まれた共通の溶接熱影響部35が外面に生じると該熱影響部は単一の熱影響部よりも脆化しやすいと言う問題がある。
【0009】
従来、建築鉄骨の組立は、工場においてサイコロと短尺梁を取り付けてパネルゾーンを製作し、該パネルゾーンに柱を溶接で繋ぎ、通常は建物の3階分の長さに製作し、建設現場でパネルゾーン付きの柱を直立させてから短尺梁間を長尺梁でボルト接合により連結して行う。この従来工法は、梁付きの柱は梁が1メートル程度の短尺とは言え柱に直交して4方向に張り出しているため工場から現場へ運送する効率が悪く、建設現場での梁同士の多数のボルトを使った接合に工数と費用が溶接よりも掛かるという問題がある。
【0010】
【目的】
本発明は、圧延鋼・鍛鋼・鋳鋼を用い、鉄骨仕口部の構造を単純化して、応力集中を緩和し、強度を向上させると共に、製作コストを低減させることを目的とする。
【0011】
【課題を解決するための手段】
このような諸課題を解決するために、種々研究した結果、図1に示す部材1と2で構成されるサイコロではサイコロ部分を一体化することが良いと判断し、更に、図7に示す一体化サイコロの問題を解決するためには、種々研究の結果、補強板を省略して中実とし、且つ、図18に示す溶接熱影響部の重なりの問題に対し柱梁溶接部を一体化させることで達成されることを見いだした。また、該サイコロを中実にする場合、鋳鋼では厚肉の部品しか製作出来ないのでサイコロのサイズが小さいほど軸心に空洞を作る意味がなくなるため鋳鋼では中実にした方が良く、中実にした場合、厚肉の圧延材料や鍛鋼材料でも製作可能であることを見いだした。
【0012】
そこで、請求項1に係る発明では、建築鉄骨構造物において、発明の構成は先ず、サイコロを、圧延鋼を熱加工又は機械加工することにより製作する中実の直方体、又は、鍛造により製作する中実の直方体、又は、鋳造により製作する中実の直方体とし、次の構成は、該直方体の上下方向の全長即ち高さを該直方体に接合する梁のせい即ち高さと同等にすると共に、該直方体の上端及び下端の外形寸法即ち水平辺の長さを該直方体に接合する柱の外形寸法即ち水平辺の長さと同等にして、該直方体に接合する梁と柱の溶接部を重ねて一体化することからなっており、これらの構成により、該梁と該直方体側面及び該柱と該直方体上下端を溶接接合させて鉄骨構造物を製作する方法である。本発明の新規性は、サイコロを一体化した中実の直方体として該直方体の寸法を柱及び梁の寸法と同等にし、且つ、接合する柱梁部材の2つの溶接部を重ねて一体化させることにある。
【0013】
請求項2について説明する。請求項1ではサイコロの水平辺の長さが大凡250mm以下と比較的小さい場合に適用するのが適当である。しかし、サイコロの水平辺の長さが更に大きくなると中実部が増加して重量が増えてコストが増大する。そこで、中心軸に沿って円筒状に空間を設ければサイコロの重量を軽減できるが、円筒の直径を大きくしすぎると、柱に対してよりも、中実部のフランジ面内強度が梁フランジに比較して弱くなることが判明した。そこで、該直方体の上端面又は下端面の中実部分断面最小幅がそれぞれ梁フランジ幅の25%以上になるようにすれば中実部の強度を損なうことなく効果的に重量を軽減させることが判明した。しかしながら、図7に示す補強板を使用した場合、前述のように製作の容易性、コスト、及び梁フランジの位置に自由度がなくて、構造物に適用する場合に不便が生じる。その点、円筒などの筒状の空間であれば、圧延鋼に対する機械加工やガス切断のような熱加工で容易に製作でき、鍛鋼でも鍛鋼型を用いることにより製作でき、鋳造でも複雑な鋳造方案を用いることなく容易に安価に製作できる。本発明の新規性は、請求項1に係る発明の新規性に加えて、該直方体の鉛直中心軸に鉛直方向にほぼ均一な筒状の空間を設けることにある。
【0014】
従って、請求項2に係る発明では、建築鉄骨構造物において、発明の第1の構成は、サイコロを、圧延鋼を熱加工又は機械加工することにより製作する中実の直方体、又は、鍛造により製作する中実の直方体、又は、鋳造により製作する中実の直方体とし、第2の構成では、該直方体の上下方向の全長を該直方体に接合する梁のせいと同等にすると共に、該直方体の上端及び下端の外形寸法即ち辺の長さを該直方体に接合する柱の外形寸法即ち辺の長さと同等にして、第3の構成では、該直方体の鉛直中心軸に鉛直方向に貫通する筒状の空間を設けて、第4の構成として、該直方体の上端面又は下端面の中実部分断面最小幅がそれぞれ梁フランジ幅の25%以上になることを加えて、更に、第5の構成として、該直方体に接合する梁と柱の溶接部が重なるようにし、鉄骨構造物を製作する方法とすることからなっており、これらの構成により、該梁と該直方体側面及び該柱と該直方体上下端を溶接接合させて鉄骨構造物を製作する方法である。
【0015】
請求項3について説明する。請求項1ではサイコロの水平辺の長さが大凡250mm以下と比較的小さい場合に適用するのが適当である。しかし、サイコロの水平辺の長さが更に大きくなると中実部の体積が増加して重量が増え、材料コストが増大する。そこで、前述のように、該直方体の鉛直中心軸に鉛直方向に貫通する筒状の空間を設ける方法も有効であるが、該中実直方体の鉛直方向中間部を該中実直方体の上下部よりも細くすれば重量増加を軽減できる。しかし、該中間部を細くしすぎると、梁に対してよりも、該中間部の曲げ強度が柱に比較して弱くなることが判明し、そこで、曲げ強度を評価するために材料力学における断面2次モーメントを用い、サイコロの断面2次モーメントがサイコロ近傍の上部柱又は下部柱の断面2次モーメントよりも大きくすることが肝要であることが判明した。本発明の新規性は、請求項1に係る発明の新規性に加えて、上下に隣接する柱の断面2次モーメントを確保しながら直方体中間部を細くすることにある。
【0016】
そこで、請求項3に係る発明では、建築鉄骨構造物において、発明の第1の構成は、サイコロを、圧延鋼を熱加工又は機械加工することにより製作する中実の直方体、又は、鍛造により製作する中実の直方体、又は、鋳造により製作する中実の直方体とし、第2の構成では、該直方体の上下方向の全長を該直方体に接合する梁のせいと同等にすると共に、該直方体の上端及び下端の外形寸法即ち辺の長さを該直方体に接合する柱の外形寸法即ち辺の長さと同等にして、第3の構成では、該中実直方体の鉛直方向中間部を上下部よりも細くして、第4の構成として該中間部の断面2次モーメントを該中実直方体に接合する上部柱又は下部柱の断面2次モーメント以上になるようにして、更に、第5の構成として、該直方体に接合する梁と柱の溶接部が重なるようにし、鉄骨構造物を製作する方法とすることからなっており、これらの構成により、該梁と該直方体側面及び該柱と該直方体上下端を溶接接合させて鉄骨構造物を製作する方法である。
【0017】
請求項4に係る発明について説明する。請求項1、2、及び3に係る発明において、サイコロの水平辺の長さが大凡350mm以下の場合に適用するのが適当である。しかし、サイコロの水平辺の長さが更に大きくなるとサイコロを形成する中実直方体の鉛直方向に筒状の空間を設けたり、該中間部を細くしても、中実部の体積が増加して重量が増えて材料コストが増大する。一方、該直方体の内部を空洞にする方法が図7に示すように存在するが、該直方体の側面壁の厚さは鋳造方法では約40mm以下に製造することは容易ではなく、側面壁全周を残した単なる空洞ではそれ以上の重量軽減が難しく、圧延や鍛造方法ではなお製作が難しい。
【0018】
そこで、サイコロを形成する直方体の材質を鋳鋼として、該直方体側面壁の厚さを経済的に可能な程度に小さくして、側面壁の断面積が該直方体に隣接して接合された柱の断面積が確保される範囲内で即ち柱の断面2次モーメントが確保される範囲内で、側面壁に水平方向に複数のスリット状の貫通穴を明け、且つ、該直方体の鉛直中心軸に鉛直方向に貫通する筒状の空間を該直方体の上下部に設けて、該直方体の上端面又は下端面の中実部分の断面最小幅がそれぞれ梁フランジ幅の25%以上になるようにすれば該直方体の中実部体積を最小にでき重量を低くできる。このように中実部体積を最小にした該直方体に対して、請求項1に記載の発明の方法を適用する。即ち、鋼製の中実直方体の高さを該直方体に接合する梁の高さと同等にすると共に、該直方体の上端及び下端の外形寸法を該直方体に接合する柱の外形寸法と同等にして、該直方体に接合する梁と柱の溶接部が一体化するように、該梁と該直方体側面及び該柱と該直方体鉛直方向端面とを溶接接合させて鉄骨構造物を製作する方法を適用する。
【0019】
従って、請求項4に係る発明では、発明の第1の構成は、鋳造により製作する直方体の鉛直中心軸に上下鉛直方向に貫通した空間を設けて、該直方体の上端面又は下端面の中実部分断面最小幅がそれぞれ梁フランジ幅の25%以上になるようにすることであり、第2の構成は、該直方体の側面部に水平方向に貫通した空間を設けて、該直方体中間部の断面2次モーメントを該直方体に接合する上部柱又は下部柱の断面2次モーメント以上になるように該直方体を製作することであり、第3の構成は、該直方体の上下方向の全長を該直方体に接合する梁のせいと同等にすると共に、該直方体の上端及び下端の外形寸法を該直方体に接合する柱の外形寸法と同等にして、該直方体に接合する梁と柱の溶接部が重ねて一体化するようにすることからなっており、本発明はこれらの構成により、該梁と該直方体側面及び該柱と該直方体上下端を溶接接合させて鉄骨構造物を製作する方法である。本発明の新規性は、請求項1及び2に係る発明の新規性に加えて、該直方体の側面部に水平方向に貫通した空間を設けて、該直方体中間部の断面2次モーメントを該直方体に接合する上部柱又は下部柱の断面2次モーメント以上になるように該直方体を製作することである。
【0020】
請求項5に係る発明について説明する。従来、建築鉄骨の組立において、ブラケットと称する短尺の梁付きの柱は、ブラケットが張り出しているため、工場から現場へ運送する効率が悪く、しかも建設現場での梁同士のボルト接合に多大な工数と費用が溶接よりも掛かるという問題がある。この問題の解決のためには、短尺梁即ちブラケットを直方体へ取り付けることなく、直方体と柱とを工場で溶接して柱直方体構造物を製作し、該柱直方体構造物を該工場から建設現場へ搬送して直立させ、該柱直方体構造物の直方体同士を1本の梁で溶接接合すれば建設現場では図28に示す梁同士のボルト接合を省略することができる。しかし、該柱直方体構造物の直方体と梁とはそのままでは仮組が難しい。
【0021】
そこで、従来の建設方法よりも更に製作の効率化を図るため、種々調査・研究の結果、請求項1,2,3,及び4に係る発明において、工場において、先ず本発明に係る一体化直方体と柱を溶接接合して柱梁構造物を製作し、次に梁を仮組みするためのボルト締め用の穴を有する小板を、該柱直方体構造物の直方体の側面に溶接で取付けたうえ、該小板付きの柱直方体構造物を建設現場へ運んで直立させた後、梁のH形鋼ウエブを小板にボルト等で仮止めして柱直方体構造物と梁の仮組を行い、最終的に直方体と梁とを溶接接合することを発明した。
【0022】
請求項5に係る発明では、発明の第1の構成は、ボルト締め用の穴を有する小板を直方体の側面に溶接で取付けることであり、第2の構成は、請求項1、2、3、又は4に記載する一体化直方体と柱とを溶接接合することであり、第3の構成は、その後、該小板と梁のウエブとをボルトで仮止めすることであり、第4の構成で、該直方体と該梁とを溶接接合させて、鉄骨構造物を製作する方法である。本発明の新規性は請求項1、2、3、又は4の新規性に加えて、一体化直方体と柱との柱直方体構造物を梁取付前に製作することであり、ボルト締め用の穴を有する小板を介して建設現場で柱直方体構造物と梁とを接合し鉄骨構造物を製作することにある。
【0023】
請求項6に係る発明について説明する。請求項1、2、3、4、又は5に記載する発明の方法において、直方体及び柱の外形状は総て4角形で述べた。しかし、これらの発明は、直方体及び柱の外径状は総て四角形に限定されることはない。該直方体は四角形の場合、柱においては、円筒形、又はH形鋼にも適用でき、該直方体が円筒形の場合、柱は円筒形、又はH形鋼にも適用できる。これらの場合、発明の効果は該直方体及び該柱が角形鋼管の場合でも同様である。また、梁端の形状も該直方体側面形状に合わせて加工し、該直方体に溶接接合が容易に可能である。また、柱と梁の一体化溶接も同様に容易に施工が可能である。
【0024】
【発明の実施の形態】
実施例1
請求項1に係る発明の実施の形態について説明する。図8は、鋼製の中実直方体23に梁4及び柱5をそれぞれ溶接接合25,21した立体図を示し、請求項1に係る発明は、中実直方体23の高さ23Aを該直方体23に接合する梁の高さ4Aと同等にすると共に、該直方体23の上端及び下端の外形寸法23Bを該直方体23に接合する柱5の外形寸法5Aと同等にして、図19又は図21に示すように該直方体23に接合する柱5と梁4のそれぞれの溶接部24と25が一体化するように、該梁4と該直方体側面及び該柱5と該直方体鉛直方向端面とを溶接接合させて鉄骨構造物を製作する方法である。
【0025】
実施例2
請求項1に係る発明の実施の形態の別の例について説明する。図9及び図10は、圧延鋼を熱加工又は機械加工することにより製作する中実の直方体23、又は、鍛造により製作する中実の直方体23、又は、鋳造により製作する中実の直方体23に、H形鋼梁フランジ4を裏当金付きの従来方式で溶接25をした後に、該溶接25に重ねて角形鋼管を寸法切りした柱5を溶接接合24した一例を、それぞれ立体図及び断面図で示したものである。図19は、柱5の溶接24及び梁フランジ4の溶接25の重なり状態即ち溶接部の一体化状態を示す。図19から分かるように、柱5の溶接熱影響部と梁4の溶接熱影響部とはサイコロ23の外表面では重なっていない。このような施工方法は、図21に示すように、柱5の端部裏面に肉盛溶接14したり、梁4のフランジ端部裏面及び側面に肉盛溶接14した後にそれぞれ継手溶接24と25をする場合にも適用できる。このように、柱及び梁端部の裏面に肉盛溶接した後に、本発明に係る施工を実施した場合の状況を断面図で図29に示す。
【0026】
実施例3
請求項1に係る発明に係る発明の実施形態例として、中実サイコロに標準高さの梁3の他に、高さの低い梁3Aを接合した断面図を図11に示す。図11から分かるように、高さの低い梁3Aをサイコロの任意の高さ位置にサイコロの強度上問題なく溶接接合出来るので、建築鉄骨の設計及び施工の自由度が増加する。
【0027】
実施例4
請求項1に係る発明に関する実施形態の他の例として、圧延鋼、鍛鋼又は鋳鋼により一体化したサイコロに、柱及び梁を溶接し、サイコロ外表面と梁又は柱表面との間にずれがある場合に、図20及び図22に示すように、梁接合の場合該ずれa即ち31は梁フランジの板厚の25%+7mm以下で、柱接合の場合該ずれb即ち31Aは柱板厚の25%+7mm以下が望ましい。該ずれa、bがこれらの値以上になる場合は、溶接部が一体化のため溶接部が大きくなりすぎて溶接残留応力が大きくなると共に溶着量が増加し製作コスト増加の要因となる。従って、図8に示す直方体サイコロの上下方向の全長23Aは、該直方体23に接合する梁3のせい即ち高さ4Aにフランジ板厚の50%+14mmを加えた長さ以下が望ましい。また、直方体サイコロの上端及び下端の外形寸法即ちサイコロの辺の長さ23Bは、柱の辺の長さ5Aに柱板厚の50%+14mmを加えた長さ以下が望ましい。このように、柱や梁が既定寸法であれば、溶接部を一体化することにより、該直方体の水平と垂直の辺の長さを最小にできるので、該直方体の製作コストの低減と鉄骨構造物の製作の容易性が増加する。
【0028】
実施例5
更に、請求項1に係る発明に関する実施形態の他の例として、圧延鋼から中実の直方体を取り出す方法として、図14に示す厚板の圧延鋼板から切断線28に従いガス切断、レーザ切断、鋸切断、が可能である。また、図15に示すように、中実の直方体は、圧延により長い棒又は帯を製作し切断線28に従いガス切断、レーザ切断、鋸切断、等により切断することによっても得られる。このようにすれば、直方体サイコロは圧延鋼から大量生産で容易に安価に入手できる。
【0029】
実施例6
また、請求項1に係る発明に関する実施形態として、該直方体は圧延鋼から採取した直方体から鍛造により所定の形状に成型した鍛鋼からも得られる。
【0030】
実施例7
請求項2に係る発明の実施の形態について説明する。図12に、中心軸位置で鉛直方向に貫通した筒状の空間26を設けたサイコロ23に梁3及び柱5を接合した立体図を示す。図12においては、サイコロ23を、圧延鋼を熱加工又は機械加工することにより製作する中実の直方体、又は、鍛造により製作する中実の直方体、又は、鋳造により製作する中実の直方体に対し鉛直中心軸に鉛直方向に貫通する筒状の空間26を設けて、該直方体の上下方向の全長23Aを該直方体に接合する梁の高さ4Aと同等にすると共に、該直方体23の上端及び下端の外形寸法即ち辺の長さ23Bを該直方体23に接合する柱5の外形寸法即ち辺の長さ5Aと同等にして、更に、図23に示すように、該直方体23の上端面又は下端面の中実部分断面最小幅c,dがそれぞれ梁フランジ幅eの25%以上、即ちc≧0.25e、d≧0.25eにして、図19及び図20に示すように、該直方体23に接合する梁フランジ4と柱5の溶接部が重なるようにし、該梁フランジ4と該直方体側面及び該柱5と該直方体上下端を溶接接合させて図13に示す鉄骨構造物を製作する方法である。同様に、図21及び図22に示すように、柱端部裏面に肉盛溶接した場合及び梁フランジ端部裏面と側面に肉盛溶接した場合は、該直方体23に接合する梁と柱の溶接部が重なるようにし、該梁と該直方体側面及び該柱と該直方体上下端を溶接接合させて図30に示す鉄骨構造物を製作する方法である。
【0031】
実施例8
請求項2に係る発明に関する実施形態の他の例について説明する。図13における筒状の空間は筒状の形状を円形だけでなく、楕円や多角形等にすることもできる。また、筒状のものを中膨れにして、サイコロの体積及び重量を更に削減させることもできる。また、これらの筒状の空間はコンクリート等の柱内への充填に使用できることは自明のことである。
【0032】
実施例9
請求項3に係る発明の実施の形態について説明する。図16及び図17にそれぞれ、該中実直方体23の鉛直方向中間部30を上下部よりも細くした中実サイコロ23に、梁3及び柱5を裏当金10を使用して溶接接合した立体図及び断面図を示す。本発明に係る方法では、図16及び図17において、サイコロ23を、圧延鋼を熱加工又は機械加工することにより製作する中実の直方体、又は、鍛造により製作する中実の直方体、又は、鋳造により製作する中実の直方体とし、該直方体23の上下方向の全長23Aを該直方体23に接合する梁の高さ4Aと同等にすると共に、該直方体23の上端及び下端の外形寸法即ち辺の長さ23Bを該直方体23に接合する柱5の外形寸法即ち辺の長さ5Aと同等にして、中実直方体23の鉛直方向中間部30を上下部よりも細くして、該中間部30の断面2次モーメントを該中実直方体23に接合する上部柱5又は下部柱5の断面2次モーメント以上になるようにして、更に、図19又は図20に示すように、該直方体23に接合する梁フランジ4と柱5の溶接部が重なるように一体化させて鉄骨構造物を製作する。同様に、図31に示すように、柱端部裏面に肉盛溶接14した場合及び梁フランジ端部4の裏面と側面に肉盛溶接14した場合も、本発明に係る方法が適用できる。このように、肉盛溶接した場合は、溶接部の断面積が増大するので、一体化溶接部の強度が更に向上するという利点がある。なお、梁フランジ4の裏面と側面への肉盛の有無に拘わらす、梁フランジ4をサイコロ23に溶接で取り付ける場合、溶接25の実施前にウエブ9を直方体23と溶接接合又はボルト接合することは柱梁組立を容易にする。
【0033】
実施例10
請求項4に係る発明に関する実施形態について説明する。図24に、鋳鋼製サイコロ36の上下部中央及び側面に空間26を明けて鋳鋼で製作したサイコロの一例を示す。図24において、鋳造により製作する直方体36の鉛直中心軸に上下鉛直方向に貫通した空間26を設けて、図23に示すように、該直方体23の上端面又は下端面の中実部分断面最小幅c又はdがそれぞれ接合する梁フランジ幅eの25%以上になるようにして、図24の該直方体36の側面部に水平方向に貫通した空間37Aを設けて、該直方体中間部37の断面2次モーメントを該直方体36に接合する上部柱又は下部柱の断面2次モーメント以上になるように該直方体36を製作し、該直方体36の上下方向の全長を該直方体に接合する梁の高さと同等にすると共に、該直方体の上端及び下端の外形寸法即ち水平辺の長さを該直方体に接合する柱の外形寸法即ち水平辺の長さと同等にして、図19及び図20に示すように該直方体23に接合する梁フランジ4と柱5の溶接部を重ねて一体化するようにすることからなっており、本発明はこれらの構成により、該梁フランジ4と該直方体36の側面、及び該柱5と該直方体上下端を溶接接合させて鉄骨構造物を製作する方法である。同様に、図32に示すように、柱端部裏面に肉盛溶接14した場合及び梁フランジ端部4の裏面と側面に肉盛溶接14した場合にも、本発明に係る方法が適用できる。なお、図32で、梁フランジ4の裏面と側面への肉盛の有無に拘わらす、梁フランジ4をサイコロ23に溶接で取り付ける場合、溶接25の実施前にウエブ9を直方体23又は36と溶接接合又はボルト接合することは柱梁組立を容易にする。
【0034】
実施例11
請求項5に係る発明に関する実施形態について説明する。工場において、図25に示すように、先ず梁を仮組みするためのボルト締め用の穴39を有する小板38を直方体23に溶接で取付け、図26に示すように、本発明に係る一体化直方体23と柱5を溶接接合24して柱直方体構造物44を製作し、該小板38付きの柱直方体構造物44を建設現場へ運んで図27に示すように直立させた後、図33に示すように梁のH形鋼ウエブ9を小板38にボルト40等で仮止めして柱直方体構造物44とH形鋼梁3の仮組を行い、最終的に直方体23と梁3とを溶接接合し、図27に示すように鉄骨構造物を建設する。なお、ボルト締め用の穴39を有する小板38を直方体23の側面に溶接で取付ける工程と、該直方体23と柱5とを溶接接合する工程はどちらが先でも良い。
【0035】
実施例12
請求項6に係る発明に関する実施形態について説明する。図35は、一体化サイコロ23を円筒形にして鉛直中心軸方向に円筒状の空間26を設けた場合を一例として示す。梁フランジ4と一体化サイコロ23の溶接部は、図19,20、21又は22に示すように一体化されている。
【0036】
【発明の効果】
本発明では、従来複雑で製作工数の掛かった溶接製サイコロが圧延鋼、鍛造鋼、又は鋳鋼により一体化され、柱梁の結合点であるサイコロが単純化されて溶接作業量が半減され、溶接残留応力・歪みの軽減、製作工数の軽減、製作に伴う管理作業の軽減、製作精度向上などの効果が大きく認められた。また、従来、柱とサイコロ及び梁とサイコロの溶接部が近接しながら別々の溶接を実施していたが、本発明では、柱・梁接合部の各々の溶接部を一体化することにより、該溶接部間の溶接熱影響部の重なりによる脆化防止、サイコロサイズの縮小化でサイコロ材料の節減、製作工数の低減、梁同士又は柱同士のサイズの異なった柱梁接合部にも容易に適用できるようになった。
【0037】
請求項1から4までに係る発明は、サイコロのサイズ・材料の形態により上記の発明の効果を最大限に発揮させるものであり、請求項5に係る発明は、柱を梁よりも先に組み立てる場合に、一体化サイコロ及び一体化溶接を用いて上記の効果を最大限に発揮させるものである。
【図面の簡単な説明】
【図1】従来の建築鉄骨柱梁接合部の立体図の一例
【図2】従来の建築鉄骨柱梁接合部の角形鋼管・ダイアフラム・梁フランジ接合部の断面図
【図3】部材端部に水冷又は被水冷の銅製当て金をあてがい肉盛溶接をした断面図の一例
【図4】部材端部に水冷又は被水冷の突起付き銅製当て金をあてがい肉盛溶接をした断面図の一例
【図5】部材13の端部に肉盛溶接し部材端部及び肉盛溶接部14を共に開先加工した状態の断面図
【図6】部材13の端部に肉盛溶接14と開先加工をして継手の相手部材16にあてがい、継手溶接を実施した状態の断面図
【図7】補強板2枚を取付け中央軸心に貫通穴を設けたサイコロ
【図8】中実サイコロに梁及び柱を接合した立体図
【図9】中実サイコロに梁及び柱を接合した立体図
【図10】中実サイコロに梁及び柱を接合した断面図
【図11】中実サイコロに高さの低い梁を接合した断面図
【図12】鉛直方向に貫通した筒状の空間を設けた中実サイコロに梁及び柱を接合した立体図
【図13】鉛直方向に貫通した筒状の空間を設けた中実サイコロに梁及び柱を接合した断面図
【図14】厚板圧延鋼板から切り出される中実サイコロの立体図
【図15】圧延棒からから切り出される中実サイコロの立体図
【図16】中実直方体の上下の中間部を細くしたサイコロに梁及び柱を接合した立体図
【図17】中実直方体の上下の中間部を細くしたサイコロに梁及び柱を接合した断面図
【図18】圧延鋼板、鍛鋼又は鋳鋼により一体化したサイコロに柱及び梁を溶接接合し端部素材を残した場合の断面図
【図19】圧延鋼板、鍛鋼又は鋳鋼により一体化したサイコロに柱及び梁を従来の裏当金付きの従来溶接を実施し、溶接部を一体化した場合の断面図
【図20】圧延鋼板、鍛鋼又は鋳鋼により一体化したサイコロに、柱及び梁を溶接し、サイコロ外表面と梁又は柱表面との間にずれがある場合に、継手溶接部を一体化した場合の断面図
【図21】圧延鋼板、鍛鋼又は鋳鋼により一体化したサイコロに、裏面肉盛溶接を実施した柱及び梁を溶接し、継手溶接部を一体化した場合の断面図
【図22】圧延鋼板、鍛鋼又は鋳鋼により一体化したサイコロに、裏面肉盛溶接を実施した柱及び梁を溶接し、サイコロ外表面と梁又は柱表面との間にずれがある場合に、継手溶接部を一体化した場合の断面図
【図23】一体化したサイコロ中央にその軸心に沿って貫通穴を明け、梁を溶接接合した場合の中実幅と梁幅の関係を示す上面図 c 、 d≧0.25e となる。
【図24】サイコロの中央及び側面に空間を明けて鋳鋼で製作したサイコロの一例
【図25】一体化サイコロの側面にボルト締め用の穴を有する小板を取付けた外観図
【図26】工場において小板を取り付けた一体化サイコロと柱とを溶接し柱直方体構造物を製作する状況を示す立体図
【図27】建設現場において柱直方体構造物と梁とをボルト接合を省略して接合して建設した鉄骨構造物の外観図
【図28】H形鋼梁同士を接合するボルト接合状態の立体図
【図29】中実の一体化サイコロに、柱及び梁の溶接部を一体化させて溶接接合した状態の仕口部断面図
【図30】鉛直方向に貫通した筒状の空間を設けた中実サイコロに柱及び梁を、溶接部を一体化させて溶接接合した状態の仕口部断面図
【図31】中間部を絞った中実の一体化サイコロに柱及び梁を、溶接部を一体化させて溶接接合した状態の仕口部断面図
【図32】中央及び側面に空間を明けて鋳鋼で製作した一体化サイコロに柱及び梁を、溶接部を一体化させて溶接接合した状態の仕口部断面図
【図33】鉛直方向に貫通した筒状の空間を設けた直方体の側面部に仮組用小板を取付けて、該直方体に柱を溶接した後、該直方体に梁を溶接接合し、両溶接部を一体化させた状態の仕口部断面図
【図34】傘お折れしたダイアフラムを持つサイコロと梁フランジとが目違いを起こした状態の仕口部断面図
【図35】円筒形サイコロに梁を溶接接合した状態の立体図
【符号の説明】
1 建築鉄骨柱梁接合部のダイアフラム
1A ダイアフラムの傘折れ状態
2 ダイアフラム間の角形鋼管。1と2から構成される部材をサイコロという。
3 H形鋼梁
3A せいの低いH形鋼梁
4 H形鋼梁フランジ
4A H形鋼梁フランジせい又は高さ
5 角形鋼管による柱
5A 角形鋼管による柱の辺の長さ
5P 円形鋼管による柱
6 角形鋼管とダイアフラムとの溶接
7 梁フランジとダイアフラムとの溶接
8 仮付又は組立溶接
9 H形鋼梁ウエブ
10 裏当金
11 スカラップ
12 非消耗式当て金(銅など)
12P 非消耗式当て金(銅など)の突起
13 フランジ又は角形鋼管などの部材
13C 部材13の開先切断位置
14 部材裏面に施工された肉盛溶接
15 肉盛溶接部14及び母材13を含めた開先面
16 相手部材
17 継手溶接
18 部材13の板厚又は肉厚
19 部材16と13の溶接部の実効のど厚
20 鋳鋼により一体化した筒体本体即ちサイコロ
21 コンクリート充填孔
22 補強板
22A 内部空間
23 圧延鋼板、鍛鋼又は鋳鋼により一体化したサイコロ又は直方体
23A 一体化サイコロ又は直方体の高さ
23B 一体化サイコロ又は直方体の高さの辺の長さ
23P 鉛直方向端面
24 一体化されたサイコロ又は直方体と角形鋼管柱との溶接
24A 一体化されたサイコロ又は直方体と円形鋼管柱との溶接
25 一体化されたサイコロ又は直方体とH形鋼梁フランジとの溶接
26 筒状の中空部
27 厚板圧延鋼板
28 切断線
29 圧延鋼板から切り出されたブロック(サイコロ)
30 サイコロ又は直方体の細くくびれた部分
31 サイコロ又は直方体外表面と梁表面とのずれa
31A サイコロ又は直方体の外表面と柱表面とのずれb
32 サイコロ又は直方体上端面又は下端面の中実部分の断面最小幅c
33 サイコロ又は直方体上端面又は下端面の中実部分の断面最小幅d
34 H形鋼梁フランジの幅e
35 2つの溶接部に挟まれた部材の溶接熱影響部
35A 部材原質部と溶接熱影響部との境界線
36 鋳鋼製サイコロ又は直方体本体
37 鋳鋼製サイコロ又は直方体中間部
37A 鋳鋼製サイコロ又は直方体中間部に設けられた水平方向に貫通した空間
38 ボルト締め用小板
39 ボルト穴
40 ボルト
41 回転
42 回転駆動装置
43 柱梁仕口部
44 柱直方体構造物
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for producing a building steel structure by integrating a dice portion by welding a thick steel plate, forged steel, and cast steel, without assembling a dice portion by welding from a component such as a thin steel plate in a column beam joint of a building steel structure. It is about the method.
[0002]
[Prior art]
In the prior art, as shown in FIG. 1, the beam-to-column connection part of the building steel structure is formed by applying a weld 6 between a diaphragm 1 made of a thin steel plate and a short square steel pipe 2. In many cases, the H-shaped steel beam flange 4 is welded and joined, and the dice and the square steel pipe column 5 are welded and joined. In this conventional technique, as shown in FIG. 2, the welding 6 between the dice square steel pipe 2 and the diaphragm 1 and the welding 7 between the dice diaphragm 1 and the H-shaped steel flange 4 are performed by one-side welding using a backing metal 10. It has been implemented. In the conventional welding method of the diaphragm 1 and the beam flange 4, the end of the flange 4 to be joined is grooved, and then the backing metal 10 is manufactured and the temporary welding 8 for attaching the backing metal is performed. Welding 7 is performed. In addition, the welding of the diaphragm 1 and the square steel pipe 2 or 5 is also performed by performing the groove processing of the joining end of the square steel pipe 2 or 5, followed by the production of the backing metal 10 and the temporary welding 8 for attaching the backing metal. The main welding 6 of the diaphragm 1 and the square steel pipe 2 or 5 is performed.
[0003]
Furthermore, as shown in the example of FIG. 3, after performing the overlay welding 14 by applying the non-consumable copper metal 12 to the back surface of the end portion of the weld joint member 13, the groove processing is performed at the position of 13C. 5 to obtain a groove 15 including the member 13 and the built-up portion 14 as shown in FIG. 5, and using a consumable backing metal and backing material as shown in FIG. First, there is a technique method in which the joint welding 17 is performed by a one-side welding method in which the members 16 and 13 are welded from one side, and the thickness 19 exceeding the plate thickness 18 of the member at the end of the welded joint member is obtained.
[0004]
Moreover, as shown in an example of FIG. 4, after performing the overlay welding 14 by applying the non-consumable copper metal 12 having the protrusion 12P on the back surface of the end portion of the weld joint member 13, the groove processing is performed at the position of 13C. Then, only the end portion of the member 13 is grooved to obtain a groove 15 including the member 13 and the built-up portion 14 as shown in FIG. 5, and as shown in FIG. There is a technique method for obtaining a throat thickness 19 that exceeds the plate thickness 18 of the member at the end of the welded joint member by using the one-side welding method in which the members 16 and 13 are welded from one side without using the backing material. is there.
[0005]
On the other hand, as shown in FIG. 7, a cylindrical body, that is, a dice 20 integrated with cast steel and having a concrete filling hole 21 and an auxiliary plate 22 is proposed in Japanese Patent Application No. 10-312771.
[0006]
[Problems to be solved by the invention]
Most of the conventional steel steel beam-column joints are manufactured with the dice shown in FIG. 1. In FIG. 1, there are many members such as a diaphragm 1, a square steel pipe 2, a backing metal 10, an end tab, and a weld 6 is a square steel pipe. There is a large amount of welding because it goes around around 2. For this reason, there is a problem that the part manufacturing cost is increased and the diaphragm is bent after the dice are manufactured as shown in FIG. 34, so that a so-called umbrella folding phenomenon occurs, and a difference between the diaphragm and the beam flange is likely to occur. In addition, attaching the backing metal 10 to the inner periphery of the end portion of the square steel pipe 2 and performing the temporary welding 8 requires labor and cost. Further, since the welding 6 of the square steel pipe 2 and the diaphragm 1 is performed over the entire circumference, not only the welding residual stress increases because of the large amount of welding, but also when the backing metal 10 is used, it is between the members 4 and 5. Notches are formed, stress concentration occurs, and the strength is reduced.
[0007]
Moreover, as shown in FIG. 7, the dice 20 integrally formed with the conventional cast steel has a relatively simple structure as compared with FIG. 1 of the conventional welded structure, and has the advantage that the structural yield strength is improved. However, the structure shown in FIG. 7 requires two reinforcing plates 22 in the vertical direction, a total of four reinforcing plates 22, and a space 22A formed by the reinforcing plates 22 is widened inside. Requires three spaces. Such a space 22A requires a complicated core at the time of casting, which increases the number of man-hours for manufacturing the core and the number of man-hours for casting, and increases costs. Also, in FIG. 7, the horizontal position of the internal reinforcing plate and the horizontal position of the beam flange are set so that the horizontal position of the internal reinforcing plate coincides with the horizontal position of the beam flange when the horizontal dimension of the beam joined to the dice is much lower than that of the dice. However, it is necessary to manufacture the horizontal position of the internal reinforcing plate in consideration of the height of the beam. When there are various beam heights, it is difficult to manufacture and the beam height is limited. The same problem exists when the internal reinforcing plate is omitted or changed to a rib at one corner.
[0008]
Furthermore, in general, the weld heat-affected zone is likely to be brittle. Conventionally, when two welds are close to each other, the two heat-affected zones are overlapped with each other so that the heat-affected zones are overlapped and the brittleness is not further promoted. It is usual to keep the heat affected zone away from each other so as not to overlap. In particular, there is a problem if a portion where the effects of welding heat by both welds overlap is exposed to the outside. In Japanese Patent Application No. 10-327771, there is no description of the proximity of the welded portion, but as shown in FIG. 18, the welded portion 24 between the column 5 and the integrated dice 23 is replaced by a welded portion 25 between the beam 4 and the integrated dice 23. When a common weld heat affected zone 35 which is close and sandwiched between both welds is formed on the outer surface, there is a problem that the heat affected zone tends to become more brittle than a single heat affected zone.
[0009]
Conventionally, building steel frames are assembled in a factory by attaching a dice and a short beam to produce a panel zone, connecting columns to the panel zone by welding, and usually making it to the length of the third floor of the building. A column with a panel zone is set upright, and the short beams are connected by bolting with long beams. In this conventional method, columns with beams are short, about 1 meter long, but project in four directions perpendicular to the columns, so the efficiency of transporting from the factory to the site is poor, and there are many beams at the construction site. There is a problem that the number of man-hours and costs for joining using the bolts are higher than welding.
[0010]
【the purpose】
An object of the present invention is to use rolled steel, forged steel, and cast steel, simplify the structure of the steel joint, relax stress concentration, improve strength, and reduce manufacturing costs.
[0011]
[Means for Solving the Problems]
As a result of various studies to solve such various problems, it is determined that the dice portion should be integrated in the dice constituted by the members 1 and 2 shown in FIG. In order to solve the problem of the dice, as a result of various studies, the reinforcing plate is omitted to make it solid, and the column beam weld is integrated with the welding heat affected zone overlap problem shown in FIG. I found out that it was achieved. Also, when making the dice solid, cast steel can only produce thick parts, so the smaller the size of the dice there is no point in creating a hollow in the shaft center, so it is better to make solid in the cast steel. We found that thick rolled materials and forged steel materials can also be manufactured.
[0012]
Therefore, in the invention according to claim 1, in the construction steel frame structure, the structure of the invention is that the dice is first manufactured by solid cuboid manufactured by heat processing or machining of rolled steel, or by forging. A solid rectangular parallelepiped or a solid rectangular solid manufactured by casting, and the following configuration is configured so that the total length or height of the rectangular parallelepiped in the vertical direction is equivalent to the blame or height of the beam joined to the rectangular parallelepiped. The outer dimension of the upper and lower ends of the column, that is, the length of the horizontal side is made equal to the outer dimension of the column bonded to the rectangular parallelepiped, that is, the length of the horizontal side, and the beam and column welded portion are integrated and overlapped. According to these configurations, the steel frame structure is manufactured by welding the beam, the rectangular parallelepiped side surface, the column, and the upper and lower ends of the rectangular parallelepiped. The novelty of the present invention is that, as a solid rectangular solid with integrated dice, the dimensions of the rectangular parallelepiped are made equal to the dimensions of the columns and beams, and the two welds of the column beam members to be joined are overlapped and integrated. It is in.
[0013]
Claim 2 will be described. In claim 1, it is appropriate to apply when the horizontal side length of the dice is relatively small, approximately 250 mm or less. However, if the length of the horizontal side of the dice is further increased, the solid part is increased, the weight is increased, and the cost is increased. Therefore, if the space is provided in a cylindrical shape along the central axis, the weight of the dice can be reduced. However, if the diameter of the cylinder is made too large, the in-plane strength of the solid portion of the flange is less than that of the column. It turned out to be weaker than Therefore, if the minimum solid partial cross-sectional width of the upper end surface or the lower end surface of the rectangular parallelepiped is 25% or more of the beam flange width, the weight can be effectively reduced without impairing the strength of the solid portion. found. However, when the reinforcing plate shown in FIG. 7 is used, the ease of manufacturing, the cost, and the position of the beam flange are not flexible as described above, which causes inconvenience when applied to a structure. On the other hand, if it is a cylindrical space such as a cylinder, it can be easily manufactured by thermal processing such as machining or gas cutting on rolled steel, and it can be manufactured by using a forged steel or a forged steel mold, and it is a complicated casting method even in casting. Can be manufactured easily and inexpensively. In addition to the novelty of the invention according to claim 1, the novelty of the present invention is to provide a substantially uniform cylindrical space in the vertical direction on the vertical central axis of the rectangular parallelepiped.
[0014]
Accordingly, in the invention according to claim 2, in the building steel structure, the first configuration of the invention is that the dice are manufactured by solid forging by rolling or machining a rolled steel, or by forging. A solid rectangular parallelepiped or a solid rectangular parallelepiped manufactured by casting. In the second configuration, the total length in the vertical direction of the rectangular parallelepiped is equal to that of the beam joined to the rectangular parallelepiped, and the upper end of the rectangular parallelepiped. In the third configuration, the bottom dimension of the rectangular parallelepiped, that is, the length of the side is made equal to the dimension of the column joined to the rectangular parallelepiped, that is, the length of the side. A space is provided, and as a fourth configuration, in addition to the fact that the solid partial cross-sectional minimum width of the upper end surface or the lower end surface of the rectangular parallelepiped is 25% or more of the beam flange width, respectively, Melting of beams and columns to be joined to the rectangular parallelepiped The structure consists of a method of manufacturing a steel structure by overlapping the parts, and with these configurations, the beam, the rectangular parallelepiped side surface, the column, and the upper and lower ends of the rectangular parallelepiped are welded to manufacture the steel structure. It is a method to do.
[0015]
Claim 3 will be described. In claim 1, it is appropriate to apply when the horizontal side length of the dice is relatively small, approximately 250 mm or less. However, if the length of the horizontal side of the dice is further increased, the volume of the solid part is increased, the weight is increased, and the material cost is increased. Therefore, as described above, a method of providing a cylindrical space penetrating in the vertical direction in the vertical center axis of the rectangular parallelepiped is also effective, but the vertical middle portion of the solid rectangular parallelepiped is located above and below the solid rectangular parallelepiped. If it is made thinner, the increase in weight can be reduced. However, if the intermediate part is made too thin, it has been found that the bending strength of the intermediate part is weaker than that of the beam compared to the column. It has been found that it is important to use the secondary moment so that the secondary moment of the dice is larger than the secondary moment of the upper or lower column near the dice. In addition to the novelty of the invention according to claim 1, the novelty of the present invention is to make the middle part of the rectangular parallelepiped thin while ensuring the secondary moment of section of the columns adjacent vertically.
[0016]
Therefore, in the invention according to claim 3, in the building steel structure, the first configuration of the invention is that the dice is manufactured by solid rectangular parallelepiped which is manufactured by heat processing or machining of rolled steel, or by forging. A solid rectangular parallelepiped or a solid rectangular parallelepiped manufactured by casting. In the second configuration, the total length in the vertical direction of the rectangular parallelepiped is equal to that of the beam joined to the rectangular parallelepiped, and the upper end of the rectangular parallelepiped. In the third configuration, the vertical dimension of the solid rectangular parallelepiped is made thinner than the upper and lower parts, with the outer dimension of the lower end, that is, the length of the side being equal to the outer dimension of the column joined to the rectangular parallelepiped, that is, the length of the side. Then, as a fourth configuration, the cross-sectional secondary moment of the intermediate portion is set to be equal to or higher than the cross-sectional secondary moment of the upper column or the lower column joined to the solid rectangular parallelepiped, and further, Melting of beams and columns joined to a rectangular parallelepiped The structure consists of a method of manufacturing a steel structure by overlapping the parts, and with these configurations, the beam, the rectangular parallelepiped side surface, the column, and the upper and lower ends of the rectangular parallelepiped are welded to manufacture the steel structure. It is a method to do.
[0017]
The invention according to claim 4 will be described. In the invention according to claims 1, 2, and 3, it is appropriate to apply when the horizontal side length of the dice is approximately 350 mm or less. However, as the length of the horizontal side of the dice is further increased, the volume of the solid part increases even if a cylindrical space is provided in the vertical direction of the solid rectangular parallelepiped forming the dice or the intermediate part is thinned. Weight increases and material costs increase. On the other hand, as shown in FIG. 7, there is a method for hollowing out the inside of the rectangular parallelepiped, but it is not easy to manufacture the side wall thickness of the rectangular parallelepiped to about 40 mm or less by the casting method, and the entire circumference of the side wall It is difficult to further reduce the weight with a simple cavity that leaves a gap, and it is still difficult to produce with a rolling or forging method.
[0018]
Therefore, the material of the rectangular parallelepiped that forms the dice is cast steel, the thickness of the side wall of the rectangular parallelepiped is made as small as economically possible, and the cross-sectional area of the side wall is cut off of the column joined adjacent to the rectangular parallelepiped. Within the range in which the area is secured, that is, in the range in which the moment of inertia of the column is secured, a plurality of slit-like through holes are drilled in the horizontal direction on the side wall, and the vertical direction on the vertical center axis of the rectangular parallelepiped If a cylindrical space that penetrates the rectangular parallelepiped is provided in the upper and lower portions of the rectangular parallelepiped so that the minimum cross-sectional width of the solid part of the upper end surface or the lower end surface of the rectangular parallelepiped is 25% or more of the beam flange width, respectively. The solid part volume can be minimized and the weight can be reduced. Thus, the method of the invention according to claim 1 is applied to the rectangular parallelepiped in which the solid part volume is minimized. That is, the height of the solid solid cuboid made of steel is made equal to the height of the beam joined to the cuboid, and the outer dimensions of the upper and lower ends of the cuboid are made equal to the outer dimensions of the columns joined to the cuboid, A method of manufacturing a steel structure by welding the beam, the rectangular parallelepiped side surface, the column, and the rectangular parallelepiped vertical end surface is applied so that the beam and the welded portion of the column joined to the rectangular parallelepiped are integrated.
[0019]
Therefore, in the invention according to claim 4, the first configuration of the invention is that the vertical center axis of the rectangular parallelepiped manufactured by casting is provided with a space penetrating in the vertical direction, and the solid of the upper end surface or the lower end surface of the rectangular parallelepiped. The minimum width of the partial cross section is to be 25% or more of the beam flange width, and the second configuration is to provide a space penetrating in the horizontal direction on the side surface of the rectangular parallelepiped, and The rectangular parallelepiped is manufactured so that the second moment is equal to or greater than the second moment of the cross section of the upper column or the lower column that joins the rectangular parallelepiped. The third configuration is that the total length in the vertical direction of the rectangular parallelepiped is applied to the rectangular parallelepiped. The outer dimensions of the rectangular parallelepiped are equal to the outer dimensions of the columns to be joined to the rectangular parallelepiped, and the welded portions of the beams to be joined to the rectangular parallelepiped are overlapped and integrated. From trying to And Tsu, the invention These arrangements are the beams and the cuboid side and the pillar and how the rectangular parallelepiped upper and lower ends is welded to manufacture a steel structure with. In addition to the novelty of the inventions according to claims 1 and 2, the novelty of the present invention is such that a space penetrating in the horizontal direction is provided in the side surface portion of the rectangular parallelepiped, and the cross-sectional secondary moment of the rectangular parallelepiped intermediate portion is obtained. The rectangular parallelepiped is manufactured so that the moment of inertia of the upper column or the lower column to be joined to is equal to or greater than the second moment.
[0020]
The invention according to claim 5 will be described. Conventionally, in assembling architectural steel frames, a column with a short beam called a bracket is overhanging the bracket, so the efficiency of transporting it from the factory to the site is low, and a great amount of man-hours are required to join the beams between the beams at the construction site. There is a problem that it costs more than welding. In order to solve this problem, a rectangular parallelepiped structure is manufactured by welding a rectangular parallelepiped and a column at a factory without attaching a short beam or bracket to the rectangular parallelepiped, and the column rectangular parallelepiped structure is transferred from the factory to the construction site. If it is transported and upright, and the rectangular parallelepiped structures of the column are welded together with a single beam, As shown in FIG. The bolt connection between the beams can be omitted. However, it is difficult to tentatively assemble the rectangular parallelepiped structure and beam of the column cuboid structure.
[0021]
Therefore, in order to further improve the production efficiency compared with the conventional construction method, as a result of various investigations and researches, in the inventions according to claims 1, 2, 3, and 4, in the factory, first, the integrated rectangular parallelepiped according to the present invention. And a column are welded to each other to manufacture a column beam structure, and then a small plate having a bolt fastening hole for temporarily assembling the beam is attached to the side of the rectangular parallelepiped structure of the column by welding. Then, after carrying the column cuboid structure with a small plate to the construction site and standing upright, temporarily fix the H-shaped steel web of the beam to the small plate with a bolt or the like, and temporarily assemble the column cuboid structure and the beam, Finally, the inventors invented welding the rectangular parallelepiped and the beam.
[0022]
In the invention which concerns on Claim 5, the 1st structure of invention is attaching the small plate which has a hole for bolt fastening to the side surface of a rectangular parallelepiped by welding, and a 2nd structure is Claim 1, 2, 3. Or the integrated rectangular parallelepiped described in 4 and the column are welded and joined, and the third configuration is to temporarily fix the small plate and the web of the beam with a bolt, and then the fourth configuration. In this method, the rectangular parallelepiped and the beam are welded and joined to produce a steel structure. The novelty of the present invention is that, in addition to the novelty of claim 1, 2, 3, or 4, is to manufacture a column cuboid structure of an integrated rectangular parallelepiped and a column before beam installation, and a bolt fastening hole It is to manufacture a steel frame structure by joining a column rectangular parallelepiped structure and a beam at a construction site via a small plate having a slab.
[0023]
The invention according to claim 6 will be described. In the method of the invention described in claim 1, 2, 3, 4, or 5, the outer shapes of the rectangular parallelepiped and the column are all described as quadrangular. However, in these inventions, the outer diameters of the rectangular parallelepiped and the pillar are not limited to squares. When the rectangular parallelepiped is rectangular, the column can be applied to a cylindrical shape or H-shaped steel. When the rectangular parallelepiped is cylindrical, the column is applicable to a cylindrical shape or H-shaped steel. In these cases, the effect of the invention is the same even when the rectangular parallelepiped and the column are square steel pipes. Further, the shape of the beam end is processed according to the shape of the rectangular parallelepiped side surface, and welding can be easily performed on the rectangular parallelepiped. Also, integrated welding of columns and beams can be performed easily as well.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
Example 1
An embodiment of the invention according to claim 1 will be described. FIG. 8 shows a three-dimensional view in which a beam 4 and a column 5 are welded and joined to a solid rectangular parallelepiped 23 made of steel, respectively, and the invention according to claim 1 shows that the height 23A of the solid rectangular parallelepiped 23 is the same as that of the rectangular parallelepiped 23. FIG. 19 or FIG. 21 shows the same as the height 4A of the beam joined to the rectangular parallelepiped, and the external dimensions 23B of the upper and lower ends of the rectangular parallelepiped 23 equal to the external dimensions 5A of the columns 5 joined to the rectangular parallelepiped 23. Thus, the beam 4 and the rectangular parallelepiped side surface and the column 5 and the rectangular parallelepiped vertical end face are welded and joined so that the respective welded portions 24 and 25 of the column 5 and the beam 4 joined to the rectangular parallelepiped 23 are integrated. This is a method of manufacturing a steel structure.
[0025]
Example 2
Another example of the embodiment of the invention according to claim 1 will be described. 9 and 10 show a solid rectangular parallelepiped 23 manufactured by heat processing or machining of rolled steel, a solid rectangular parallelepiped 23 manufactured by forging, or a solid rectangular parallelepiped 23 manufactured by casting. An example in which the H-shaped steel beam flange 4 is welded 25 in a conventional manner with a backing metal and then welded 24 to a column 5 in which a square steel pipe is dimensionally overlapped with the weld 25 is shown in a three-dimensional view and a cross-sectional view, respectively. It is shown by. FIG. 19 shows an overlapping state of the welds 24 of the columns 5 and the welds 25 of the beam flanges 4, that is, an integrated state of the welds. As can be seen from FIG. 19, the welding heat affected zone of the column 5 and the weld heat affected zone of the beam 4 do not overlap on the outer surface of the dice 23. As shown in FIG. 21, such a construction method includes overlay welding 14 on the back of the end of the column 5 or overlay welding 14 on the back and side of the flange end of the beam 4, and then welding the joints 24 and 25. It can also be applied to Thus, after carrying out build-up welding on the back surface of a pillar and a beam end part, the situation at the time of implementing construction concerning the present invention is shown in Drawing 29 with a sectional view.
[0026]
Example 3
As an embodiment of the invention according to claim 1, FIG. 11 shows a sectional view in which a beam 3A having a low height is joined to a solid dice in addition to a beam 3 having a standard height. As can be seen from FIG. 11, the beam 3A having a low height can be welded to an arbitrary height position of the dice without any problem in terms of the strength of the dice, so that the degree of freedom of design and construction of the building steel frame is increased.
[0027]
Example 4
As another example of the embodiment related to the invention according to claim 1, a column and a beam are welded to a dice integrated by rolled steel, forged steel or cast steel, and there is a deviation between the outer surface of the dice and the beam or the column surface. In this case, as shown in FIGS. 20 and 22, in the case of beam joining, the deviation a, ie, 31 is 25% of the plate thickness of the beam flange + 7 mm or less, and in the case of column joining, the deviation b, ie, 31A is 25% of the thickness of the column board. % + 7 mm or less is desirable. If the deviations a and b are greater than these values, the welded portion is integrated and the welded portion becomes too large, resulting in an increase in welding residual stress and an increased amount of welding, leading to an increase in manufacturing cost. Therefore, the total length 23A in the vertical direction of the rectangular parallelepiped dice shown in FIG. 8 is preferably equal to or less than the length of the beam 3 joined to the rectangular parallelepiped 23, that is, the height 4A plus 50% of the flange plate thickness + 14 mm. Further, the outer dimensions of the upper and lower ends of the rectangular parallelepiped dice, that is, the side length 23B of the dice is preferably equal to or shorter than the length of the column side 5A plus 50% of the column plate thickness + 14 mm. In this way, if the columns and beams have predetermined dimensions, the length of the horizontal and vertical sides of the rectangular parallelepiped can be minimized by integrating the welded portion, so that the manufacturing cost of the rectangular parallelepiped can be reduced and the steel structure can be reduced. The ease of manufacturing objects increases.
[0028]
Example 5
Furthermore, as another example of the embodiment related to the invention according to claim 1, as a method of taking out a solid rectangular parallelepiped from rolled steel, gas cutting, laser cutting, sawing is performed according to the cutting line 28 from the thick rolled steel plate shown in FIG. Cutting is possible. As shown in FIG. 15, a solid rectangular parallelepiped can also be obtained by manufacturing a long bar or band by rolling and cutting by gas cutting, laser cutting, saw cutting, or the like according to the cutting line 28. If it does in this way, a rectangular parallelepiped dice can be easily obtained in low cost by mass production from rolled steel.
[0029]
Example 6
As an embodiment relating to the invention according to claim 1, the rectangular parallelepiped can also be obtained from forged steel formed into a predetermined shape by forging from a rectangular parallelepiped taken from rolled steel.
[0030]
Example 7
An embodiment of the invention according to claim 2 will be described. In FIG. 12, a cylindrical space 26 penetrating in the vertical direction at the center axis position is provided. Dice 23 shows a three-dimensional view in which the beam 3 and the column 5 are joined. In FIG. 12, the dice 23 is a solid cuboid manufactured by heat processing or machining of rolled steel, a solid cuboid manufactured by forging, or a solid cuboid manufactured by casting. On the other hand, a cylindrical space 26 penetrating in the vertical direction is provided on the vertical center axis. The vertical length of the rectangular parallelepiped 23A is made equal to the height 4A of the beam joined to the rectangular parallelepiped, and the outer dimensions of the upper and lower ends of the rectangular parallelepiped 23, that is, the side length 23B are joined to the rectangular parallelepiped 23. Further, as shown in FIG. 23, the solid partial sectional minimum widths c and d of the rectangular parallelepiped 23 are respectively equal to the beam flange width e. 25% or more, that is, c ≧ 0.25e, d ≧ 0.25e, and as shown in FIG. 19 and FIG. 20, the beam flange 4 joined to the rectangular parallelepiped 23 and the welded portion of the column 5 overlap, It is a method of manufacturing the steel structure shown in FIG. 13 by welding the beam flange 4 and the rectangular parallelepiped side surface and the column 5 and the rectangular solid upper and lower ends. Similarly, as shown in FIG. 21 and FIG. 22, when overlay welding is performed on the rear surface of the column end portion and when overlay welding is performed on the rear surface and side surface of the beam flange end portion, the beam and the column joined to the rectangular parallelepiped 23 are welded. 30 is a method of manufacturing the steel structure shown in FIG. 30 by welding the beam, the rectangular parallelepiped side face, the column, and the upper and lower ends of the rectangular parallelepiped.
[0031]
Example 8
Another example of the embodiment related to the invention according to claim 2 will be described. In the cylindrical space in FIG. 13, the cylindrical shape can be not only a circle but also an ellipse or a polygon. Moreover, the volume and the weight of the dice can be further reduced by making the cylindrical one swell. In addition, it is obvious that these cylindrical spaces can be used to fill concrete pillars.
[0032]
Example 9
An embodiment of the invention according to claim 3 will be described. 16 and FIG. 17, the solid 3 in which the vertical intermediate portion 30 of the solid rectangular parallelepiped 23 is made thinner than the upper and lower portions, and the beam 3 and the column 5 are welded together using the backing metal 10. A figure and sectional drawing are shown. In the method according to the present invention, in FIGS. 16 and 17, the dice 23 is a solid rectangular parallelepiped produced by hot working or machining a rolled steel, or a solid rectangular solid produced by forging, or a casting. The overall length 23A in the vertical direction of the rectangular parallelepiped 23 is made equal to the height 4A of the beam joined to the rectangular parallelepiped 23, and the outer dimensions of the upper and lower ends of the rectangular parallelepiped 23, that is, the length of the side 23B is made equal to the outer dimension of the column 5 that joins the rectangular parallelepiped 23, that is, the side length 5A, and the vertical intermediate part 30 of the solid rectangular parallelepiped 23 is made thinner than the upper and lower parts, A beam to be joined to the rectangular parallelepiped 23 as shown in FIG. 19 or FIG. 20 so that the secondary moment is equal to or greater than the sectional secondary moment of the upper column 5 or the lower column 5 joined to the solid rectangular parallelepiped 23. Flange Integrated so as welds pillars 5 overlaps with fabricating a steel structure with. Similarly, as shown in FIG. 31, the method according to the present invention can also be applied to the case where build-up welding 14 is performed on the back surface of the column end portion and the case where build-up welding 14 is performed on the back surface and side surfaces of the beam flange end portion 4. Thus, when overlay welding is performed, the cross-sectional area of the welded portion is increased, so that there is an advantage that the strength of the integrated welded portion is further improved. In addition, when the beam flange 4 is attached to the dice 23 by welding regardless of whether the back surface and the side surface of the beam flange 4 are overlaid, the web 9 is welded or bolted to the rectangular parallelepiped 23 before the welding 25 is performed. Facilitates column beam assembly.
[0033]
Example 10
An embodiment related to the invention according to claim 4 will be described. FIG. 24 shows an example of a dice made of cast steel with a space 26 in the upper and lower center and side surfaces of the cast steel dice 36. 24, a space 26 penetrating vertically in the vertical center axis of a rectangular parallelepiped 36 manufactured by casting is provided, and as shown in FIG. 23, the solid partial sectional minimum width of the upper end surface or the lower end surface of the rectangular parallelepiped 23 is provided. A space 37A penetrating in the horizontal direction is provided in the side surface of the rectangular parallelepiped 36 in FIG. 24 so that c or d is 25% or more of the beam flange width e to be joined. The rectangular parallelepiped 36 is manufactured such that the second moment is equal to or greater than the second moment of the section of the upper column or the lower column that joins the rectangular parallelepiped 36, and the total length in the vertical direction of the rectangular parallelepiped 36 is equal to the height of the beam joined to the rectangular parallelepiped. 19 and 20, the outer dimensions of the upper and lower ends of the rectangular parallelepiped, that is, the length of the horizontal side, are made equal to the outer dimensions of the columns joined to the rectangular parallelepiped, that is, the length of the horizontal side. 2 The welded portion of the beam flange 4 and the column 5 to be joined to each other is overlapped and integrated, and according to the present invention, the side surfaces of the beam flange 4 and the rectangular parallelepiped 36 and the column 5 are combined. And the rectangular parallelepiped upper and lower ends are welded together to produce a steel structure. Similarly, as shown in FIG. 32, the method according to the present invention can also be applied to the case where build-up welding 14 is performed on the back surface of the column end portion and the case where build-up welding 14 is performed on the back surface and side surfaces of the beam flange end portion 4. In FIG. 32, when the beam flange 4 is attached to the dice 23 by welding regardless of whether the back surface and the side surface of the beam flange 4 are overlaid, the web 9 is welded to the rectangular parallelepiped 23 or 36 before the welding 25 is performed. Joining or bolting facilitates column beam assembly.
[0034]
Example 11
An embodiment related to the invention according to claim 5 will be described. In the factory, as shown in FIG. 25, first, a small plate 38 having a bolt fastening hole 39 for temporarily assembling the beam is attached to the rectangular parallelepiped 23 by welding, and as shown in FIG. A rectangular parallelepiped structure 44 is manufactured by welding and joining the rectangular parallelepiped 23 and the column 5, and the column rectangular parallelepiped structure 44 with the small plate 38 is brought to the construction site to stand upright as shown in FIG. As shown in FIG. 5, the H-shaped steel web 9 of the beam is temporarily fixed to the small plate 38 with a bolt 40 or the like to temporarily assemble the rectangular parallelepiped structure 44 and the H-shaped steel beam 3, and finally the rectangular parallelepiped 23 and the beam 3 Are welded together to construct a steel structure as shown in FIG. Note that either the step of attaching the small plate 38 having the bolt fastening holes 39 to the side surface of the rectangular parallelepiped 23 by welding or the step of welding the rectangular parallelepiped 23 and the column 5 may be performed first.
[0035]
Example 12
An embodiment related to the invention according to claim 6 will be described. FIG. 35 shows an example in which the integrated dice 23 is cylindrical and a cylindrical space 26 is provided in the vertical central axis direction. The welded portion of the beam flange 4 and the integrated dice 23 are integrated as shown in FIG.
[0036]
【The invention's effect】
In the present invention, a welding dice that has been complicated and takes a lot of production steps is integrated with rolled steel, forged steel, or cast steel, and the dice that is the connecting point of the column beams is simplified, and the amount of welding work is reduced by half. The effects such as reduction of residual stress and strain, reduction of production man-hours, reduction of management work associated with production, and improvement of production accuracy were recognized. Conventionally, separate welding was performed while the welded portions of the column and dice and the beam and dice were close to each other, but in the present invention, by integrating the respective welded portions of the column / beam joint portion, Prevention of embrittlement due to overlapping of heat affected zone between welds, dice size reduction, dice material saving, man-hour reduction, easy application to beam-to-column or beam-to-column joints with different sizes I can do it now.
[0037]
The invention according to claims 1 to 4 maximizes the effect of the invention according to the size and material form of the dice, and the invention according to claim 5 assembles the column before the beam. In such a case, the above-described effects are maximized by using an integrated dice and integrated welding.
[Brief description of the drawings]
FIG. 1 shows an example of a three-dimensional view of a conventional building steel beam-column joint.
2 is a cross-sectional view of a conventional steel steel beam-to-column joint of a square steel pipe / diaphragm / beam flange joint.
FIG. 3 is an example of a cross-sectional view in which build-up welding is performed by applying a water-cooled or water-cooled copper paddle to the end of a member.
FIG. 4 is an example of a cross-sectional view in which build-up welding is performed by applying a water-cooled or water-cooled copper metal plate with protrusions to the end of a member.
FIG. 5 is a cross-sectional view of a state in which the end of the member 13 is overlaid and the end of the member and the overlaid weld 14 are both grooved.
FIG. 6 is a cross-sectional view of a state in which weld welding is performed on the end portion of the member 13 and groove welding is applied to the joint member 16 of the joint and joint welding is performed.
[Fig. 7] Dice with two reinforcing plates attached and a through hole in the center axis.
Fig. 8 Solid view of solid dice with beams and columns joined
FIG. 9 is a three-dimensional view of beams and columns joined to solid dice.
FIG. 10 is a sectional view of a beam and a column joined to a solid dice.
FIG. 11 is a cross-sectional view of a low-profile beam joined to a solid dice.
FIG. 12 is a three-dimensional view in which a beam and a column are joined to a solid dice provided with a cylindrical space penetrating in the vertical direction.
FIG. 13 is a sectional view in which a beam and a column are joined to a solid dice provided with a cylindrical space penetrating in a vertical direction.
FIG. 14 is a three-dimensional view of a solid die cut from a rolled steel plate
FIG. 15 is a three-dimensional view of a solid dice cut out from a rolling rod.
FIG. 16 is a three-dimensional view in which a beam and a column are joined to a dice whose upper and lower middle portions of a solid rectangular parallelepiped are thin;
FIG. 17 is a cross-sectional view in which a beam and a column are joined to a dice whose upper and lower middle portions of a solid rectangular parallelepiped are thin.
FIG. 18 is a cross-sectional view when a column and a beam are welded and joined to a dice integrated with rolled steel, forged steel, or cast steel to leave an end material.
FIG. 19 is a cross-sectional view of a case in which conventional welding with a conventional backing metal is performed on a column and a beam on a dice integrated with rolled steel, forged steel or cast steel, and the weld is integrated.
FIG. 20: When a column and a beam are welded to a dice integrated with rolled steel, forged steel, or cast steel, and the joint weld is integrated when there is a deviation between the outer surface of the dice and the beam or column surface Cross section of
FIG. 21 is a cross-sectional view of a dice integrated by rolled steel, forged steel, or cast steel, with the columns and beams subjected to back surface welding welded and the joint welds integrated.
FIG. 22 shows a case where a column and a beam subjected to back surface welding are welded to a dice integrated by rolled steel, forged steel or cast steel, and there is a shift between the outer surface of the dice and the beam or the column surface. Sectional view when welding parts are integrated
FIG. 23 is a top view c and d ≧ 0.25e showing the relationship between the solid width and the beam width when a through hole is drilled along the axis of the center of the integrated dice and the beam is welded.
FIG. 24 shows an example of a dice made of cast steel with a space at the center and side of the dice.
FIG. 25 is an external view in which a small plate having a bolt fastening hole is attached to a side surface of an integrated dice.
FIG. 26 is a three-dimensional view showing a situation in which a column cuboid structure is manufactured by welding an integrated dice attached with a small plate and a column in a factory.
FIG. 27 is an external view of a steel structure constructed by joining a rectangular parallelepiped structure and a beam by omitting bolt joining at a construction site.
FIG. 28 is a three-dimensional view of a bolted joint state in which H-shaped steel beams are joined together.
FIG. 29 is a sectional view of a joint part in a state where a column and a beam weld are integrated and welded to a solid integrated dice.
FIG. 30 is a sectional view of a joint portion in a state where a column and a beam are integrated with a solid dice provided with a cylindrical space penetrating in a vertical direction and the welded portions are integrated and welded together.
FIG. 31 is a cross-sectional view of a joint portion in a state where a column and a beam are integrated with a solid integrated dice with a narrowed middle portion and a welded portion is integrated and welded.
FIG. 32 is a sectional view of a joint part in a state where a column and a beam are integrated with a welded part and welded to an integrated die made of cast steel with a space at the center and side surfaces.
FIG. 33 is a diagram showing a method for attaching a temporary assembly small plate to a side face of a rectangular parallelepiped having a cylindrical space penetrating in a vertical direction, welding a column to the rectangular parallelepiped, and welding a beam to the rectangular parallelepiped; Sectional view of the joint with the parts integrated
FIG. 34 is a cross-sectional view of a joint part in a state in which a dice having a diaphragm with a broken umbrella and a beam flange are misunderstood.
FIG. 35 is a three-dimensional view showing a state in which a beam is welded to a cylindrical dice.
[Explanation of symbols]
1 Diaphragm of steel beam-column joint
1A Umbrella folded state of diaphragm
2 Square steel pipe between diaphragms. A member composed of 1 and 2 is called a dice.
3 H-shaped steel beam
3A low-profile H-shaped steel beam
4 H-shaped steel beam flange
4A H-beam flange flange height or height
5 Column made of square steel pipe
5A Length of column side by square steel pipe
Column with 5P round steel pipe
6 Welding of square steel pipe and diaphragm
7 Welding between beam flange and diaphragm
8 Tacking or assembly welding
9 H-shaped steel beam web
10 Back money
11 Scallop
12 Non-consumable metal pads (copper, etc.)
12P Non-consumable metal bumps (copper, etc.)
13 Flange or square steel pipe
13C groove cutting position of member 13
14 Overlay welding performed on the back of the member
15 Groove surface including overlay weld 14 and base material 13
16 Mating member
17 Joint welding
18 Plate thickness or thickness of member 13
19 Effective throat thickness of welded parts 16 and 13
20 Cylinder body integrated with cast steel, that is, dice
21 Concrete filling hole
22 Reinforcing plate
22A interior space
23 Dice or cuboid integrated with rolled steel, forged steel or cast steel
23A Integrated dice or cuboid height
23B Integrated dice or cuboid height side length
23P Vertical end face
24 Welding of integrated dice or cuboid and square steel pipe column
24A Welding of integrated dice or cuboid and circular steel pipe column
25 Welding of integrated dice or cuboid and H-shaped steel beam flange
26 Cylindrical hollow part
27 Thick rolled steel sheet
28 Cutting line
29 Blocks (dice) cut from rolled steel sheet
30 Narrow part of dice or cuboid
31 Deviation between dice or cuboid outer surface and beam surface a
31A Deviation between the outer surface of the dice or cuboid and the column surface b
32 The minimum cross section width c of the solid part of the upper or lower end surface of the dice or cuboid
33 Minimum cross-section width d of the solid part of the upper or lower end surface of the dice or cuboid
34 H-beam flange width e
35 Weld heat affected zone of a member sandwiched between two welds
Boundary line between 35A member raw material part and welding heat affected zone
36 Cast steel dice or cuboid body
37 Cast steel dice or cuboid middle part
37A Horizontally penetrating space provided in a cast steel dice or rectangular parallelepiped middle part
38 Small plate for bolt fastening
39 Bolt hole
40 volts
41 rotations
42 Rotation drive
43 Column beam joint
44 rectangular parallelepiped structure

Claims (6)

建築鉄骨構造物において、鋼製の中実直方体の高さを該直方体に接合する梁の高さと同等にすると共に、該直方体の上端及び下端の外形寸法を該直方体に接合する柱の外形寸法と同等にして、該直方体に接合する梁と柱の溶接部をそれぞれ個別に溶接して溶接部を重ねて一体化させて、該梁と該直方体側面及び該柱と該直方体鉛直方向端面とを溶接接合させて鉄骨構造物を製作する方法In the structural steel structure, the height of the solid solid rectangular parallelepiped is made equal to the height of the beam joined to the rectangular parallelepiped, and the outer dimensions of the upper and lower ends of the rectangular parallelepiped are the outer dimensions of the columns joined to the rectangular parallelepiped. Equivalently, the welded part of the beam and the column to be joined to the rectangular parallelepiped are individually welded to overlap and integrate the welded part , and the beam, the side of the rectangular parallelepiped, the column, and the vertical end face of the rectangular parallelepiped are welded. How to make a steel structure by joining 請求項1に記載の発明において、該直方体の鉛直中心軸に沿い鉛直方向に貫通する筒状の空間を該直方体に設けて、該直方体の上端面又は下端面の中実部分断面最小幅がそれぞれ梁フランジ幅の25%以上になるようにして、鉄骨構造物を製作する方法In the invention according to claim 1, a cylindrical space penetrating in a vertical direction along the vertical center axis of the rectangular parallelepiped is provided in the rectangular parallelepiped, and a solid partial sectional minimum width of the upper end surface or the lower end surface of the rectangular parallelepiped is respectively Method of manufacturing a steel structure so that it is 25% or more of the beam flange width 請求項1に記載の発明において、該中実直方体の鉛直方向中間部を上下部よりも細く且つ該中間部の断面2次モーメントを該中実直方体に接合する上部柱又は下部柱の断面2次モーメント以上になるように該直方体を製作することを特徴とする鉄骨構造物を製作する方法In the invention according to claim 1, the vertical section of the solid rectangular parallelepiped is narrower than the upper and lower sections, and the secondary section of the upper column or the lower column that joins the secondary moment of the intermediate section to the solid rectangular parallelepiped. A method of manufacturing a steel structure characterized by manufacturing the rectangular parallelepiped so as to be equal to or greater than a moment 請求項1に記載の発明において、鋳造により製作する直方体の鉛直中心軸に上下鉛直方向に貫通した空間を設けて、該直方体の上端面又は下端面の中実部分断面最小幅がそれぞれ梁フランジ幅の25%以上になるようにすると共に、該直方体の側面部に水平方向に貫通した空間を設けて、該直方体中間部の断面2次モーメントを該直方体に接合する上部柱又は下部柱の断面2次モーメント以上になるように該直方体を製作したうえ、該梁と該直方体側面及び該柱と該直方体鉛直方向端面とをそれぞれ溶接が一体化するように溶接接合させて鉄骨構造物を製作する方法In the invention according to claim 1, a space penetrating in a vertical vertical direction is provided in a vertical center axis of a rectangular parallelepiped manufactured by casting, and a solid partial sectional minimum width of an upper end surface or a lower end surface of the rectangular parallelepiped is a beam flange width. And a cross section 2 of the upper column or the lower column that joins the second moment of the section of the rectangular parallelepiped to the rectangular parallelepiped by providing a space penetrating in the horizontal direction in the side surface of the rectangular parallelepiped. A method of manufacturing a steel frame structure by manufacturing the rectangular parallelepiped so that the moment is equal to or greater than the next moment, and welding the beam, the rectangular parallelepiped side surface, the column, and the rectangular parallelepiped vertical end surface so as to integrate welding. 請求項1、2、3、又は4に記載する発明の方法において、ボルト締め用の穴を有する小板を直方体の側面に溶接で取付け、該直方体と柱とを溶接接合したのち、鉄骨組立において、該小板と梁をボルトで仮止めし、該直方体と該梁とを溶接接合させて鉄骨構造物を製作する方法In the method of the invention according to claim 1, 2, 3, or 4, in which a small plate having a bolt fastening hole is attached to a side face of a rectangular parallelepiped by welding, and the rectangular parallelepiped and the column are welded to each other, and then the steel frame is assembled. A method of manufacturing a steel structure by temporarily fastening the small plate and the beam with a bolt and welding the rectangular parallelepiped to the beam 請求項1、2、3、4、又は5に記載する発明の方法において、直方体は角形又は円筒形とし、柱は角形、円筒形、又はH形鋼であることを特徴とする鉄骨構造物を製作する方法6. The method according to claim 1, wherein the rectangular parallelepiped is a square or a cylinder and the column is a square, a cylinder, or an H-shaped steel. How to make
JP2002052860A 2002-02-28 2002-02-28 Integration method for steel beam-column joints Expired - Lifetime JP3676310B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002052860A JP3676310B2 (en) 2002-02-28 2002-02-28 Integration method for steel beam-column joints
PCT/JP2003/002329 WO2003072885A1 (en) 2002-02-28 2003-02-28 Column-to-beam connection part integration work method for structural steelwork

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002052860A JP3676310B2 (en) 2002-02-28 2002-02-28 Integration method for steel beam-column joints

Publications (2)

Publication Number Publication Date
JP2003253758A JP2003253758A (en) 2003-09-10
JP3676310B2 true JP3676310B2 (en) 2005-07-27

Family

ID=27764345

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002052860A Expired - Lifetime JP3676310B2 (en) 2002-02-28 2002-02-28 Integration method for steel beam-column joints

Country Status (2)

Country Link
JP (1) JP3676310B2 (en)
WO (1) WO2003072885A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE445742T1 (en) * 2003-09-14 2009-10-15 Robert J Simmons TURNING METHOD FOR WELDING SUPPORT SUPPORT STRUCTURE TO THE SIDE(S) OF A COLUMN
JP4861640B2 (en) * 2005-05-24 2012-01-25 株式会社アークリエイト How to make a steel structure
US8950648B2 (en) 2011-05-07 2015-02-10 Conxtech, Inc. Box column assembly
AU2018364748A1 (en) 2017-11-11 2020-06-25 Conxtech, Inc. Method and apparatus for precision manufacturing of moment connection assemblies

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61225438A (en) * 1985-03-29 1986-10-07 清水建設株式会社 Joint of pillar and beam
JP2757053B2 (en) * 1989-12-22 1998-05-25 株式会社竹中工務店 Steel structures and columns
JP3420821B2 (en) * 1994-02-08 2003-06-30 前田建設工業株式会社 Joining method of steel frame
JPH11336189A (en) * 1998-03-26 1999-12-07 Nippon Steel Metal Prod Co Ltd Column core with bulge section and steel structural unit utilizing column core

Also Published As

Publication number Publication date
WO2003072885A1 (en) 2003-09-04
JP2003253758A (en) 2003-09-10

Similar Documents

Publication Publication Date Title
JP4970827B2 (en) Direct connection method of beam and inner diaphragm of steel structure column beam joint
JP5999749B2 (en) Direct connection method for steel diaphragm beam-to-column joint and inner diaphragm with protrusions
JP2004027655A (en) Column-beam joint part intersecting method for building steel structure
JP4576899B2 (en) Method for manufacturing column-beam joint structure and column-beam joint structure
JP3676310B2 (en) Integration method for steel beam-column joints
JP2006144535A (en) Joint structure of column and beam
KR100631363B1 (en) Panel zone system of y shape tied column reinforced with high tension bolts
JP3987470B2 (en) Integration method for steel beam-column joints
JP5237401B2 (en) Welding method for H-section steel
JP4398782B2 (en) Manufacturing method of building steel structure
JP3386049B2 (en) Beam-to-column joints and H-section steel for columns
JP3346364B2 (en) Beam-column joint structure
JP4127225B2 (en) Beam-column joint
JP3956744B2 (en) STRUCTURE CONTAINING JOIN OF PILLAR AND BEAM, ITS JOINING METHOD, AND STRUCTURE MANUFACTURING METHOD
WO2005078201A1 (en) Column-to-beam joint part of steel structure and internal diaphragm direct jointing method
JPH0754024B2 (en) Steel pipe concrete composite column
JP4332074B2 (en) Tunnel structure using synthetic segment and its design method
JP4999896B2 (en) Manufacturing method of building steel structure
JP4011499B2 (en) Joint structure of steel column and steel beam
JPS5817863B2 (en) Reinforcement bar with flat section
JP2001262706A (en) Column-beam junction structure
JP6583598B1 (en) H-shaped cross-section member joining structure and manufacturing method thereof
JP2004308168A (en) Beam-column connection core and beam-column connecting structure
JP2010216075A (en) Joint structure of reinforced concrete column and steel frame beam
JP2601105B2 (en) Steel member joint hardware

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040525

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050427

R150 Certificate of patent or registration of utility model

Ref document number: 3676310

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term