JPH11280147A - Earthquake resisting type column and beam joint construction - Google Patents

Earthquake resisting type column and beam joint construction

Info

Publication number
JPH11280147A
JPH11280147A JP10084255A JP8425598A JPH11280147A JP H11280147 A JPH11280147 A JP H11280147A JP 10084255 A JP10084255 A JP 10084255A JP 8425598 A JP8425598 A JP 8425598A JP H11280147 A JPH11280147 A JP H11280147A
Authority
JP
Japan
Prior art keywords
flange
plastic deformation
joint structure
base metal
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10084255A
Other languages
Japanese (ja)
Inventor
Yasuhide Mochida
泰秀 持田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP10084255A priority Critical patent/JPH11280147A/en
Publication of JPH11280147A publication Critical patent/JPH11280147A/en
Pending legal-status Critical Current

Links

Landscapes

  • Joining Of Building Structures In Genera (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an earthquake resisting type column-beam joint construction by improving the earthquake resistance of a building, simplifying joint construction, rationalizing welding, and reducing the weight of steel framing. SOLUTION: For an earthquake resisting type column-beam joint construction, basically in a beam formed by H-section steel, the plastic deformation point is set for the base metal of beam, and the joint strength is made larger than the strength of base metal at the plastic deformation point, and the base metal of beam is subjected to plastic deformation prior to the joint portion. Then, to actually achieve this, the width of a flange 9 at the beam end portion 7 is enlarged within a predetermined range by installing a stiffening plate with a material as same as the roll material of base metal, and also it is taken into consideration that enlargement of the width of the flange 9 is performed with a built material provided at the end portion of the base metal. In addition, a slope is provided at the base metal side of the flange 5 with the width increased, and a strain stopper is provided for the flange 5 attached only to the web 7 between the upper and lower flanges 5.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐震型柱・梁接合
構造に関し、特に、塑性変形点を梁母材に設定すること
で塑性変形能力、塑性耐力を大きくさせて耐震性の向上
を図り、併せて接合構造の簡素化、溶接の合理化及び鉄
骨重量の削減をも達成する耐震型柱・梁接合構造に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an earthquake-resistant column / beam joint structure, and more particularly to an improvement in seismic resistance by setting a plastic deformation point on a beam base material to increase plastic deformation capacity and plastic resistance. In addition, the present invention relates to an earthquake-resistant column-beam joint structure that also simplifies the joint structure, rationalizes welding, and reduces the weight of steel frames.

【0002】[0002]

【従来の技術】大震災の被害状況を見ると、大震災でも
充分に耐えられると言われていた従来の耐震設計で構築
されている建物においても大きな被害を受けている。そ
の中でも、鉄骨造建物の柱・梁接合部の塑性変形能力が
充分に発揮されないために、建物に大きな被害を与えて
いる事例が多く見受けられる。その要因としては、柱・
梁仕口部の耐力不足、接合部の形状から来る応力集中に
よる脆性破壊等が挙げられ、柱・梁仕口部の充分な塑性
変形能力の確保について多くの指摘がなされている。従
来の柱・梁接合部は、図8に見られるように構成されて
おり、設計上仕口部を塑性変形点にしている。従って、
大梁30は、中央部材31がロール材のH鋼で構成さ
れ、両端部32には仕口部の耐力を向上させるために、
工場等で別途に溶接加工されたビルト材33を溶接して
一体化してある。仕口部34の耐力は、柱に設けたダイ
ヤフラムとビルト材のフランジ35とを溶接処理した構
造として計算され、耐力的にはフランジ部分のみで計算
されておりウエブ部の結合強度は考慮されていない。こ
のため、ビルト材のフランジ35は母材のものより厚い
材料が使われていることが多い。しかし、一方では溶接
部に対する信頼性の点からこれを補完するために、実際
にはウエブ部分の接合も入念に実施される。このため、
柱にはシャープレート36が溶接されており、柱と梁は
大梁端部32とシャープレート36とを高力ボルト37
で接合することで一体化されている。従って、鉄骨単価
が高くなり、大梁部材の鉄骨数量やシャープレート・ボ
ルトの数量も多くなって曲げ応力の伝達を生じてしまっ
ていた。
2. Description of the Related Art Looking at the situation of damage caused by a great earthquake, even buildings built with conventional seismic design, which is said to be sufficiently resistant to a great earthquake, are severely damaged. In particular, there are many cases where the column-beam joints of steel-framed buildings do not sufficiently exert their plastic deformation capacity, causing severe damage to the buildings. The main factors are
Insufficient proof stress of beam joints, brittle fracture due to stress concentration coming from the shape of the joints, etc., have been pointed out, and much has been pointed out about securing sufficient plastic deformation capacity of column / beam joints. The conventional column / beam joint is configured as shown in FIG. 8, and the joint is set at a plastic deformation point in design. Therefore,
In the girder 30, the central member 31 is formed of H steel as a roll material, and at both ends 32, in order to improve the strength of the joint,
A built material 33 separately welded at a factory or the like is integrated by welding. The proof strength of the connection part 34 is calculated as a structure in which the diaphragm provided on the column and the flange 35 of the built-in material are welded, and the proof strength is calculated only at the flange part, and the bonding strength of the web part is taken into consideration. Absent. For this reason, the flange 35 of the built material is often made of a material thicker than that of the base material. However, on the other hand, in order to complement this from the viewpoint of the reliability of the welded portion, in practice, the joining of the web portion is also carefully performed. For this reason,
A shear plate 36 is welded to the pillar, and the pillar and the beam are connected to the large beam end 32 and the shear plate 36 by a high-strength bolt 37.
It is integrated by joining with. Therefore, the unit cost of the steel frame has become high, and the number of steel frames and the number of shear plates and bolts of the girder members have also increased, causing the transmission of bending stress.

【0003】[0003]

【発明が解決しようとする課題】本発明は、建物の耐震
性の向上を図ることを目的にしており、加えて接合構造
の簡素化、溶接の合理化及び鉄骨重量の削減を図る耐震
型柱・梁接合構造を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to improve the seismic resistance of a building. In addition, the present invention aims to improve the seismic resistance of a building. It is intended to provide a beam joint structure.

【0004】[0004]

【課題を解決するための手段】本発明による耐震型柱・
梁接合構造は、基本的にH形鋼で形成される梁におい
て、塑性変形点を梁母材に設定し仕口耐力を塑性変形点
における母材耐力より大にして仕口部に先行して梁母材
を塑性変形させるものであり、これを具体的に達成する
ために、梁端部のフランジ幅を母材のロール材と同一材
質の補強板を設置することで所定の範囲で拡大し、又、
フランジ幅の拡大を母材の端部に設けるビルト材で行う
ことを考慮している。さらに、幅を拡大したフランジの
母材側に傾斜を設けたり、上下のフランジ間にウエブの
みに付設したフランジの歪み止めを設けることも特徴に
している。
According to the present invention, there is provided an earthquake-resistant column according to the present invention.
The beam joint structure is basically a beam formed of H-section steel, in which the plastic deformation point is set on the beam base material, the joint strength is made larger than the base material strength at the plastic deformation point, and the beam joint structure is preceded. The beam base material is plastically deformed.To achieve this concretely, the flange width at the beam end is increased within a predetermined range by installing a reinforcing plate of the same material as the base material roll material. ,or,
It is considered that the flange width is increased by using a built-in material provided at the end of the base material. Further, the present invention is characterized in that an inclined flange is provided on the base material side of the flange having an increased width, and a flange is provided between the upper and lower flanges to prevent distortion of the flange provided only on the web.

【0005】[0005]

【発明の実施の形態】図1は、本発明による耐震型柱・
梁接合構造を説明するための平面図と側面図である。図
において、1はCFTの柱であり、2は大梁である。柱
1には、ダイヤフラム3とシャープレート4とを取り付
けてある。大梁2はフランジ5を有するロール材のH鋼
であり、その母材に設定した塑性変形点6の位置から大
梁端部7まで、フランジ5に補強材8を溶接付けしてあ
る。補強材8の取り付けは、随時行うことができるもの
で特別の制限はないものの、溶接による熱応力等を加味
した製品精度の観点からは、管理の行き届いた工場等で
の溶接加工が推奨される。溶接方法としては、突き合わ
せ溶接、部分溶け込み溶接等が用いられるが、突き合わ
せ溶接は熱容量が大きく、鋼材を変質させて硬くなり割
れやすくなるので、後述の端部フランジの溶接も含めて
部分溶け込み溶接の採用が望ましい。
FIG. 1 shows an earthquake-resistant column according to the present invention.
It is the top view and side view for demonstrating a beam joining structure. In the figure, 1 is a column of CFT and 2 is a girder. A diaphragm 3 and a shear plate 4 are attached to the column 1. The girder 2 is H steel of a roll material having a flange 5, and a reinforcing member 8 is welded to the flange 5 from a position of a plastic deformation point 6 set in the base material to an end 7 of the girder. The attachment of the reinforcing member 8 can be performed at any time and there is no particular limitation. However, from the viewpoint of product accuracy in consideration of thermal stress due to welding, welding at a well-managed factory is recommended. . As a welding method, butt welding, partial penetration welding, etc. are used. Adoption is desirable.

【0006】柱1と大梁2は、柱のダイヤフラム3と幅
が広く形成された端部フランジ9との溶接及びシャープ
レート4と梁ウエブとの高力ボルト結合10で一体化し
ているが、仕口部における塑性耐力は、端部フランジ9
の接合部のみで設計されている。その結果、シャープレ
ート4と梁ウエブとの高力ボルト結合10は、お互いの
結合関係を維持する程度の強度で充分であるから、従来
の結合構造と比較して極めて簡潔に構成されている。
The pillar 1 and the girder 2 are integrated by welding the diaphragm 3 of the pillar and the end flange 9 having a wide width and the high-strength bolt connection 10 between the shear plate 4 and the beam web. The plastic strength at the mouth is determined by the end flange 9
It is designed with only the joints. As a result, the high-strength bolted joint 10 between the shear plate 4 and the beam web is sufficiently simple enough to maintain the mutual connection relationship, and thus is configured very simply as compared with the conventional jointed structure.

【0007】仕口部の強度は、母材に設定した塑性変形
点6における塑性耐力を設定してから、塑性モーメント
の勾配に対応させた状態で梁端部の塑性変形耐力を設定
しているから、結果的に塑性変形点6における塑性耐力
の数値より大に設定することになり、本実施の形態では
1.2倍にしている。この値は、梁の形状や塑性変形点
の設定位置によって任意に変えることができるが、母材
での塑性変形を先行させるために、少なくとも1.0を
越える値にしておく必要がある。従って、地震力等が建
物に加えられた時には、柱・梁仕口部に先行して塑性変
形点を設定した大梁の母材部分に塑性変形が発生するこ
とになるので、柱・梁仕口部の耐力不足、接合部の形状
から来る応力集中による脆性破壊等を未然に防ぐことが
できる。
For the strength of the joint, the plastic deformation strength at the beam end is set in a state corresponding to the gradient of the plastic moment after setting the plastic strength at the plastic deformation point 6 set on the base material. Therefore, as a result, the value is set to be larger than the value of the plastic proof stress at the plastic deformation point 6, which is 1.2 times in the present embodiment. This value can be arbitrarily changed depending on the shape of the beam and the set position of the plastic deformation point, but it is necessary to set it to a value exceeding at least 1.0 in order to precede plastic deformation in the base material. Therefore, when seismic force or the like is applied to the building, plastic deformation will occur in the base material of the girder where the plastic deformation point has been set before the column / beam connection. Insufficient proof stress of the part, brittle fracture due to stress concentration resulting from the shape of the joint part, etc. can be prevented beforehand.

【0008】図2、3は、従来の大梁と同様にロール材
の中央部11の両端にビルト材の端部12を接合した大
梁の平面図であり、他の部分は図1の場合と同様であ
る。図2の形態は、上述の幅が広く形成された端部フラ
ンジ9をビルト材の端部12に形成するものであり、ビ
ルト材の加工時にフランジ部の鋼板を予め段差13を付
けて切断加工しておいたものを組立溶接することで製造
している。ただし、従来の場合と異なっていることは上
述のように塑性変形点を仕口部においていないのでフラ
ンジ部の鋼板厚さは中央部のフランジとあまり違わない
厚さの鋼板で充分である点である。
FIGS. 2 and 3 are plan views of a girder formed by joining ends 12 of a built-in material to both ends of a center portion 11 of a roll material in the same manner as a conventional girder, and other portions are the same as those in FIG. It is. In the embodiment shown in FIG. 2, the end flange 9 having the above-mentioned wide width is formed at the end 12 of the built material, and the steel plate of the flange is cut with a step 13 in advance when the built material is processed. It is manufactured by assembling and welding what has been done. However, the difference from the conventional case is that the plastic deformation point is not at the joint as described above, so the steel plate thickness of the flange portion is sufficient with a steel plate thickness not so different from the central flange. is there.

【0009】図2の場合の塑性変形点6は、当然のこと
ながら段差13を作ったビルト材の範囲に形成されるも
のであるから、段差13での耐力と仕口耐力とはロール
材で形成していた図1の形態に比較してかなり高い数値
での設計を許容している。従って、別途に形成した補強
材を溶接するような別立て作業をする必要がなくなり、
製造面での効率化とコストの削減が可能になる。
Since the plastic deformation point 6 in the case of FIG. 2 is naturally formed in the range of the built material having the step 13, the proof stress at the step 13 and the joint proof strength are determined by the roll material. A design with a considerably higher numerical value than the form of FIG. 1 that has been formed is allowed. Therefore, there is no need to perform a separate work such as welding a separately formed reinforcing material,
Manufacturing efficiency and cost reductions are possible.

【0010】図3の形態は、幅が広く形成された端部フ
ランジ9をビルト材全体に形成するものであり、ビルト
材としてはロール材の中央部より若干厚いフランジ部の
鋼板を用いて端部H形鋼14として組立溶接することで
製造する。大梁は、ロール材の中央部11の両端にビル
ト材の端部H形鋼14を接合して形成するから、フラン
ジの段差部分はロール材とビルト材との接合部になる。
従って、母材に設定した塑性変形点6の耐力と仕口部に
おける塑性耐力とは溶接部同士の設定になる。いずれの
塑性耐力も、その溶接に対する信頼性の問題が根底にあ
るとしても、設計値としての比較設定においては同様の
性状を踏まえて行うことになり、期待する母材における
先行塑性変形には有効な形態といえる。
In the embodiment shown in FIG. 3, the end flange 9 having a large width is formed on the entire built material. The end material is formed by using a steel plate having a flange portion slightly thicker than the center of the roll material. It is manufactured by assembling and welding as the H-section steel 14. Since the girder is formed by joining end portions H of the built-in material to both ends of the center portion 11 of the roll material, the step portion of the flange becomes a joining portion between the roll material and the built material.
Therefore, the proof stress at the plastic deformation point 6 set on the base material and the plastic proof stress at the joint portion are set for the welded portions. All plastic proof stresses are based on the same properties in the comparison setting as design values, even if the reliability of the welding is at the root, and are effective for the expected plastic deformation in the expected base material. It can be said that it is a form.

【0011】図4(a)、(b)に示す形態は、フラン
ジ補強の他の形態を示す平面図及び側面図である。上記
実施の形態では、梁の母材部分に塑性変形点を設定し柱
・梁仕口部の塑性耐力は塑性モーメント勾配に従って母
材部分の値より高いものにするために、梁端部のフラン
ジ幅を拡大するように補強して対応してきた。このこと
は、基本的に仕口部におけるフランジの断面積を拡大す
ることであるから、図4に示すように梁2の端部にフラ
ンジ5と平行に補助フランジ15を設けてフランジを2
重にして実質的に断面積を拡大するものである。この際
には、柱側にも新規にスチフナ16を設けて補助フラン
ジ15と溶接接合ができるようにする。
FIGS. 4 (a) and 4 (b) are a plan view and a side view showing another form of flange reinforcement. In the above embodiment, in order to set the plastic deformation point in the base material portion of the beam and to make the plastic strength of the column / beam joint higher than the value of the base material portion in accordance with the plastic moment gradient, the flange at the beam end is used. We have responded by reinforcing it to increase its width. This basically means to increase the cross-sectional area of the flange at the joint, so that an auxiliary flange 15 is provided at the end of the beam 2 in parallel with the flange 5 as shown in FIG.
Weight to substantially increase the cross-sectional area. At this time, a stiffener 16 is newly provided also on the column side so that the auxiliary flange 15 can be welded and joined.

【0012】補強材8はフランジ5に溶接付け17され
ており、その形状は図1に示すように矩形状のままも考
えられるが、図5(a)、(b)に示すように塑性変形
点側の端部18を加工するのも効果的である。図5
(a)に示す例は、端部18を45度の角度で切欠面1
9を形成するものであり、これによって溶接時の熱応力
が補強材全体に分布されて均一な品質を確保することが
できる。なお、図5(a)では切欠面19の形状を直線
面として表示しているが、同面はこの形状に限定される
ものでなく、所定の曲率を持った切り欠き形状であって
も良い。図5(b)の例は、切欠面19に加えてフラン
ジ5に接する端部をグラインダーで円形20に加工する
ものであり、端部に集中する応力を分散させるのに効果
的である。実験によれば、これらの加工成形によって梁
に応力が加えられた時に、溶接端のフランジ5に亀裂が
生じるのを防止できることが確認できている。
The reinforcing member 8 is welded 17 to the flange 5 and its shape can be considered to be rectangular as shown in FIG. 1, but it is plastically deformed as shown in FIGS. 5 (a) and 5 (b). It is also effective to machine the end 18 on the point side. FIG.
In the example shown in (a), the end portion 18 is cut at the cutout surface 1 at an angle of 45 degrees.
The thermal stress at the time of welding is distributed over the entire reinforcing material, and uniform quality can be secured. In FIG. 5A, the shape of the cutout surface 19 is displayed as a straight surface, but the shape is not limited to this shape, and may be a cutout shape having a predetermined curvature. . In the example shown in FIG. 5B, the end in contact with the flange 5 in addition to the cutout surface 19 is formed into a circle 20 by a grinder, which is effective in dispersing the stress concentrated on the end. According to experiments, it has been confirmed that when a stress is applied to the beam by these workings, it is possible to prevent the occurrence of cracks in the flange 5 at the weld end.

【0013】図6は、本発明による耐震型柱・梁接合構
造の梁に付設したフランジ補強材を説明するための側面
図であり、図7は、図6のイ−イ断面図である。上述の
ように、本発明による耐震型柱・梁接合構造は梁母材に
先行する塑性変形点を設定するものであるから、従来の
梁よりも中央部のフランジに大きな応力が加えられるこ
とになる。このために、フランジが部分的に歪んで座屈
するような現象が起こる。
FIG. 6 is a side view for explaining a flange reinforcing member attached to a beam having an earthquake-resistant column / beam joint structure according to the present invention, and FIG. 7 is a sectional view taken along the line II in FIG. As described above, since the seismic column / beam joint structure according to the present invention sets the plastic deformation point preceding the beam base material, a greater stress is applied to the flange at the center than the conventional beam. Become. For this reason, a phenomenon occurs in which the flange is partially distorted and buckled.

【0014】そこで、中央部の梁母材にフランジの座屈
を押さえるためのフランジ補強材21を付設しておくと
効果的である。フランジ補強材21の付設状態は、図7
に示す梁2の断面図で明らかなように、梁のウエブ部分
22にフランジ補強材21を溶接23によって取り付け
るもので、上下のフランジ5とは接合していない。 従
って、梁自体の剛性には全く影響がない状態で、フラン
ジ5の座屈時の移動のみを押さえているから、本発明に
よる耐震型柱・梁接合構造のメリットをさらに向上させ
ることになる。
Therefore, it is effective to provide a flange reinforcing member 21 for suppressing the buckling of the flange on the beam base material at the center. The attached state of the flange reinforcing member 21 is shown in FIG.
As is apparent from the cross-sectional view of the beam 2 shown in FIG. 1, the flange reinforcing member 21 is attached to the web portion 22 of the beam by welding 23, and is not joined to the upper and lower flanges 5. Accordingly, only the movement of the flange 5 during buckling is suppressed without any influence on the rigidity of the beam itself, so that the advantages of the earthquake-resistant column / beam joint structure according to the present invention are further improved.

【0015】[0015]

【発明の効果】本発明による耐震型柱梁接合構造は、基
本的に塑性変形点を梁母材に設定し仕口耐力を塑性変形
点における母材耐力より大にして仕口部に先行して梁母
材を塑性変形させるものであり、これを具体的に達成す
るために、梁端部のフランジ幅を母材のロール材と同一
材質の補強板を設置することで所定の範囲で拡大し、
又、フランジ幅の拡大を母材の端部に設けるビルト材で
行うことを考慮しており、さらに、幅を拡大したフラン
ジの母材側に傾斜を設けたり、上下のフランジ間にウエ
ブのみに付設したフランジの歪み止めを設けているか
ら、塑性変形能力、塑性耐力を大きくさせて耐震性の向
上を図ることができると共に、鉄骨単価の低減を図るこ
とができ、大梁部材の鉄骨数量の低減とシャープレート
・ボルト数量の低減が図れ、結果として柱・梁接合部で
の応力の伝達が回避される効果を奏する。
The seismic column-beam joint structure according to the present invention basically sets the plastic deformation point on the beam base material, makes the joint strength larger than the base material strength at the plastic deformation point, and precedes the joint. In order to achieve this concretely, the width of the flange at the end of the beam is expanded within a predetermined range by installing a reinforcing plate of the same material as the roll material of the base material. And
In addition, it is considered that the width of the flange is increased by using a built-in material provided at the end of the base material. Since the attached flange has a strain stop, the plastic deformation capacity and the plastic proof strength can be increased to improve the seismic resistance, and the unit cost of steel can be reduced. Thus, the number of shear plates and bolts can be reduced, and as a result, the effect of avoiding the transmission of stress at the column / beam joint can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明による耐震型柱・梁接合構造を示す平面
図と側面図
FIG. 1 is a plan view and a side view showing an earthquake-resistant column / beam joint structure according to the present invention.

【図2】本発明による耐震型柱・梁接合構造の他の例を
示す平面図
FIG. 2 is a plan view showing another example of the earthquake-resistant column / beam joint structure according to the present invention.

【図3】本発明による耐震型柱・梁接合構造の他の例を
示す平面図
FIG. 3 is a plan view showing another example of the earthquake-resistant column / beam joint structure according to the present invention.

【図4】本発明による耐震型柱・梁接合構造の他の例を
示す平面図と側面図
FIG. 4 is a plan view and a side view showing another example of the earthquake-resistant column / beam joint structure according to the present invention.

【図5】補強材の加工を示す平面図FIG. 5 is a plan view showing processing of a reinforcing material.

【図6】フランジ補強材を適用した耐震型柱・梁接合構
造の側面図
FIG. 6 is a side view of an earthquake-resistant column / beam joint structure using a flange reinforcing material.

【図7】フランジ補強材を適用した梁の断面図FIG. 7 is a sectional view of a beam to which a flange reinforcing material is applied.

【図8】従来の柱梁接合構造の平面図と側面図FIG. 8 is a plan view and a side view of a conventional beam-column joint structure.

【符号の説明】[Explanation of symbols]

1 柱 16
ダイヤフラム 2 大梁 17
溶接付け 3 ダイヤフラム 18
塑性変形点側端部 4 シャープレート 19
切欠面 5 フランジ 20
円形切削 6 塑性変形点 21
フランジ補強材 7 端部 22
梁のウエブ部分 8 補強材 30
大梁 9 端部フランジ 31
中央部材 10 高力ボルト結合 32
梁端部 11 中央部 33
ビルト材 12 ビルト材端部 34
仕口部 13 段差 35
ビルト材のフランジ 14 端部H形鋼 36
シャープレート 15 補助フランジ 37
高力ボルト
1 pillar 16
Diaphragm 2 Large beam 17
Welding 3 Diaphragm 18
Plastic deformation point side end 4 Shear plate 19
Notch 5 Flange 20
Circular cutting 6 Plastic deformation point 21
Flange reinforcement 7 End 22
Web part of beam 8 Reinforcement 30
Giant beam 9 End flange 31
Central member 10 High strength bolt connection 32
Beam end 11 Central part 33
Built material 12 Built material end 34
Connection 13 Step 35
Built-in flange 14 H-section steel 36
Shear plate 15 Auxiliary flange 37
High strength bolt

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 H形鋼で形成される梁において、塑性変
形点を梁母材に設定し仕口耐力を塑性変形点における母
材耐力より大にする耐震型柱・梁接合構造。
1. A seismic column-beam joint structure in which a beam formed of an H-section steel is set to have a plastic deformation point at a beam base material and a joint strength is larger than a base material strength at a plastic deformation point.
【請求項2】 梁端部のフランジ幅を所定の範囲で拡大
することを特徴とする請求項1に記載の耐震型柱・梁接
合構造。
2. The seismic column / beam joint structure according to claim 1, wherein the flange width at the beam end is enlarged within a predetermined range.
【請求項3】 フランジ幅の拡大を補強板の設置で行う
ことを特徴とする請求項2に記載の耐震型柱・梁接合構
造。
3. The joint structure of claim 2, wherein the width of the flange is increased by installing a reinforcing plate.
【請求項4】 同一の材質で構成することを特徴とする
請求項2、3に記載の耐震型柱・梁接合構造。
4. The seismic column / beam joint structure according to claim 2, wherein the same material is used.
【請求項5】 フランジ幅の拡大をビルト材で行うこと
を特徴とする請求項2に記載の耐震型柱・梁接合構造。
5. The seismic column / beam joint structure according to claim 2, wherein the width of the flange is increased by a built-in material.
【請求項6】 ビルト材の端部部分で行うことを特徴と
する請求項5に記載の耐震型柱・梁接合構造。
6. The seismic column / beam joint structure according to claim 5, wherein the joint is carried out at an end portion of the built material.
【請求項7】 幅を拡大したフランジの母材側に傾斜を
設けたことを特徴とする請求項1〜6のいずれかに記載
の耐震型柱・梁接合構造。
7. An earthquake-resistant column / beam joint structure according to claim 1, wherein an inclination is provided on a base material side of the flange having an increased width.
【請求項8】 上下のフランジ間にウエブのみに付設し
たフランジの歪み止めを設けたことを特徴とする請求項
1〜7のいずれかに記載の耐震型柱・梁接合構造。
8. The earthquake-resistant column / beam joint structure according to claim 1, wherein a strain stop for a flange attached only to the web is provided between the upper and lower flanges.
JP10084255A 1998-03-30 1998-03-30 Earthquake resisting type column and beam joint construction Pending JPH11280147A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10084255A JPH11280147A (en) 1998-03-30 1998-03-30 Earthquake resisting type column and beam joint construction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10084255A JPH11280147A (en) 1998-03-30 1998-03-30 Earthquake resisting type column and beam joint construction

Publications (1)

Publication Number Publication Date
JPH11280147A true JPH11280147A (en) 1999-10-12

Family

ID=13825359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10084255A Pending JPH11280147A (en) 1998-03-30 1998-03-30 Earthquake resisting type column and beam joint construction

Country Status (1)

Country Link
JP (1) JPH11280147A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103669592A (en) * 2013-12-11 2014-03-26 中国能源建设集团广东省电力设计研究院 Bending-resistant component and beam-column connecting joint
JP2018184711A (en) * 2017-04-24 2018-11-22 大成建設株式会社 Steel column-beam frame consisting of steel pipe column and h-shaped steel beam

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338116U (en) * 1977-09-22 1978-04-04
JPS59165744A (en) * 1983-03-10 1984-09-19 株式会社 構建設計研究所 Pillar and beam connecting apparatus
JPH0288833A (en) * 1988-08-24 1990-03-29 Arbed Sa Earthquakeproof steel structure
JPH05331963A (en) * 1992-05-29 1993-12-14 Toshiro Suzuki Lateral buckling-reinforcing structure for structural part
JPH0617507A (en) * 1992-06-30 1994-01-25 Toshiro Suzuki Reinforcing structure and metal for structure member
JPH06313334A (en) * 1993-04-30 1994-11-08 Kajima Corp Steel column and connection structure of beam
JPH11140978A (en) * 1997-11-05 1999-05-25 Nippon Steel Corp Steel bracket with h-shaped section for connection of column and beam

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5338116U (en) * 1977-09-22 1978-04-04
JPS59165744A (en) * 1983-03-10 1984-09-19 株式会社 構建設計研究所 Pillar and beam connecting apparatus
JPH0288833A (en) * 1988-08-24 1990-03-29 Arbed Sa Earthquakeproof steel structure
JPH05331963A (en) * 1992-05-29 1993-12-14 Toshiro Suzuki Lateral buckling-reinforcing structure for structural part
JPH0617507A (en) * 1992-06-30 1994-01-25 Toshiro Suzuki Reinforcing structure and metal for structure member
JPH06313334A (en) * 1993-04-30 1994-11-08 Kajima Corp Steel column and connection structure of beam
JPH11140978A (en) * 1997-11-05 1999-05-25 Nippon Steel Corp Steel bracket with h-shaped section for connection of column and beam

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103669592A (en) * 2013-12-11 2014-03-26 中国能源建设集团广东省电力设计研究院 Bending-resistant component and beam-column connecting joint
CN103669592B (en) * 2013-12-11 2016-02-24 中国能源建设集团广东省电力设计研究院有限公司 Bending resistance parts and beam-column connection
JP2018184711A (en) * 2017-04-24 2018-11-22 大成建設株式会社 Steel column-beam frame consisting of steel pipe column and h-shaped steel beam

Similar Documents

Publication Publication Date Title
US4905436A (en) Column/beam joint structure
JP5401018B2 (en) Steel structure truss frame
JP3890515B2 (en) Earthquake-resistant column / beam joint structure
US3960458A (en) Fittings for connecting columns and beams of steel frame construction
JP4576899B2 (en) Method for manufacturing column-beam joint structure and column-beam joint structure
JP5069335B2 (en) Direct connection method of beam and inner diaphragm of steel structure column beam joint
JPH11280147A (en) Earthquake resisting type column and beam joint construction
JP4398782B2 (en) Manufacturing method of building steel structure
JPH11280150A (en) Earthquake resisting type column beam joint construction
JP7138460B2 (en) Steel beam reinforcement method and steel beam
KR102366228B1 (en) Method for manufacturing a column-beam joint structure and a column-beam joint structure
JP3346364B2 (en) Beam-column joint structure
WO2005078201A1 (en) Column-to-beam joint part of steel structure and internal diaphragm direct jointing method
JP3402312B2 (en) Column-beam joint, rolled H-section steel for column and method of manufacturing the same
JPH0941563A (en) H-section steel post and post/beam joint structure
WO2003072885A1 (en) Column-to-beam connection part integration work method for structural steelwork
JP4892045B2 (en) Manufacturing method of building steel structure
JP2000309981A (en) Structure for earthquake-resisting beam-column connection and beam composed of h-sectional member
JP4168835B2 (en) Method of manufacturing beam-column joint structure and column-beam joint structure
JP2000199270A (en) Beam-column connection structure of steel structure
JP2719146B2 (en) Joint of pillar and beam
KR20220085496A (en) Structure having excellent earthquake resistant property and method for manufacturing thereof
JP2005264710A5 (en)
JPH09209449A (en) Beam-column joint structure
JPH08281486A (en) Method for welding joint part of steel column and beam and backing strip

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20031226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040409

RD12 Notification of acceptance of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7432

Effective date: 20040409

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040712

RD14 Notification of resignation of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7434

Effective date: 20040820

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041130